WorldWideScience

Sample records for dwba coupled-channel theory

  1. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  2. Analysis of perturbation methods for rearrangement collisions: Comparison of distorted-wave and coupled-channel-wave transition amplitudes

    International Nuclear Information System (INIS)

    Suck Salk, S.H.

    1985-01-01

    With the use of projection operators, the formal expressions of distorted-wave and coupled-channel-wave transition amplitudes for rearrangement collisions are derived. Use of projection operators (for the transition amplitudes) sharpens our understanding of the structural differences between the two transition amplitudes. The merit of each representation of the transition amplitudes is discussed. Derived perturbation potentials are found to have different structures. The rigorously derived distorted-wave Born-approximation (DWBA) transition amplitude is shown to be a generalization of the earlier DWBA expression obtained from the assumption of the dominance of elastic scattering in rearrangement collisions

  3. Analysis of neutron cross sections using the coupled-channel theory

    International Nuclear Information System (INIS)

    Tanaka, Shigeya

    1975-01-01

    Fast neutron total and scattering cross sections calculated with the coupled-channel theory and the spherical optical model are compared with experimental data. The optical-potential parameters used in both the calculations were obtained from comparison of calculations with scattering data for 209 Bi. The calculations for total cross sections were made for thirty-five nuclides from 23 Na to 239 Pu in the energy range of 0.25 to 15 MeV, and good results were obtained with the coupled-channel calculations. The comparisons of the calculations with the elastic data for about twenty nuclides were made at incident energies of 8 and 14 MeV. In general, the coupled-channel calculations at 8 MeV have given better agreements with the experimental data than the spherical optical-model calculations. At 14 MeV, differences between both the calculations were small. The analysis was also made for the elastic and inelastic scattering by several nuclei such as Fe, Ni, 120 Sn, Pu in the low energy region, and good results have been given by the coupled-channel calculations. Thus, it is demonstrated that the coupled-channel calculations with one set of the optical parameters well reproduce the total and scattering cross sections over a wide energy and mass region. (auth.)

  4. Coupled channel theory of pion--deuteron reaction applied to threshold scattering

    International Nuclear Information System (INIS)

    Mizutani, T.; Koltun, D.S.

    1977-01-01

    Scattering and absorption of pions by a nuclear target are treated together in a coupled channel theory. The theory is developed explicitly for the problem of pion scattering and absorption by a deuteron. The equations are presented in terms of the integral equations of three-body scattering theory. The method is then applied in an approximate from to calculate the contribution of pion absorption to the scattering length for pion--deuteron scattering. The sensitivity of the calculated results to the model assumptions and approximations is investigated

  5. Nucleon transfer reactions in D.W.B.A; Les reactions de transfert d'un nucleon dans la D.W.B.A

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-08-01

    The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors) [French] Le formalisme de la DWBA est decrit d'une maniere aussi simple et complete que possible pour mettre en evidence les possibilites et les limites de cette methode d'analyse des reactions de transfert. L'extraction des facteurs spectroscopiques est exposee en appendice. (auteurs)

  6. Channel-coupling theory of covalent bonding in H2: A further application of arrangement-channel quantum mechanics

    International Nuclear Information System (INIS)

    Levin, F.S.; Krueger, H.

    1977-01-01

    The dissociation energy D/sub e/ and the equilibrium proton-proton separation R/sub eq/ of H 2 are calculated using the methods of arrangement-channel quantum mechanics. This theory is the channel component version of the channel-coupling array approach to many-body scattering, applied to bound-state problems. In the approximation used herein, the wave function is identical to that of the classic Heitler-London-Sugiura valence-bond calculation, which gave D/sub e/ = 3.14 eV and R/sub eq/ = 1.65a 0 , values accurate to 34% and 17.8%, respectively. The present method yields D/sub e/ = 4.437 eV and R/sub eq/ approx. = 1.42a 0 , accurate to 6.5% and 1%, respectively. Some implications of these results are discussed

  7. Nucleon transfer reactions in D.W.B.A; Les reactions de transfert d'un nucleon dans la D.W.B.A

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B.; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-08-01

    The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors) [French] Le formalisme de la DWBA est decrit d'une maniere aussi simple et complete que possible pour mettre en evidence les possibilites et les limites de cette methode d'analyse des reactions de transfert. L'extraction des facteurs spectroscopiques est exposee en appendice. (auteurs)

  8. Time-dependent, many-body scattering theory and nuclear reaction applications

    International Nuclear Information System (INIS)

    Levin, F.S.

    1977-01-01

    The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results

  9. (6Li,d) reaction on sd-, fp- and g-shell nuclei in ZR- and FR-DWBA formalisms

    International Nuclear Information System (INIS)

    Rahman, M.A.; Mecking, M.; Strohbusch, U.

    1991-06-01

    ( 6 Li,d) reaction angular distributions on target nuclei 16 ≤ A ≤ 90 have been analyzed using both ZR- and FR-DWBA formalisms. The most prevalent method of analysis of alpha-transfer reactions such as( 6 Li,d) and its reverse (d, 6 Li) (where the wave function at zero distance in the p-state of relative cluster motion in the A = 6 nuclei will not have node) is the ZR-DWBA calculations due to the relatively short time of computation. It is of particular interest to verify whether FR-DWBA calculations result in similar S α - values to those of ZR-DWBA or not. It is found that to derive similar S α -values as in FR-DWBA calculations, one requires relatively large real well depth in ZR-DWBA calculations. Qualitative discussions have been made in this direction. (author). 12 refs, 3 figs, 2 tabs

  10. Stripping reactions in a three-body system. Comparison of DWBA and exact solutions

    International Nuclear Information System (INIS)

    Brinati, J.R.

    1976-01-01

    Stripping reactions 'a estados no continuo' are studied in a three particle system. Since the three-body problem has an exact treatment, comparison will be made between the exact solution and the DWBA model solution. This problem is more complex in the continuous case, as shown in the convergence problem of the standard DWBA amplitude radial integral

  11. DWBA calculation of positron impact ionization of argon

    Energy Technology Data Exchange (ETDEWEB)

    Campeanu, R I; Alam, M, E-mail: campeanu@yorku.ca [Department of Physics and Astronomy, York University, Toronto, M3J 1P3 (Canada)

    2011-01-01

    The ionization of the 3p and 3s orbitals of argon by 200 eV incident positrons is studied with the DWBA approximation. Our TDCS results for the 3p orbital ionization are found to be in good agreement with recent CDW-EIS data.

  12. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety

    2015-01-01

    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  13. Couple stress fluid flow in a rotating channel with peristalsis

    Science.gov (United States)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  14. Analysis of transfer reactions: determination of spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  15. DWBA momentum distribution and its effect on THM

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Mukhamedzhanov, A.; Goldberg, V. [Cyclotron Institute - Texas A and M University, College Station (TX) (United States); Irgaziev, B. [GIK - Institute of Engineering Sciences and Technology, Topi District, Swabi NWFP (Pakistan); Lamia, L.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Sergi, M.L. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Tribble, R.E. [Cyclotron Institute - Texas A and M University, College Station (TX) (United States)

    2010-03-01

    The {sup 18}O(p,alpha){sup 15}N reaction is of primary importance to pin down the uncertainties affecting present-day models of asymptotic giant branch stars. An indirect measurement of the low-energy region of the {sup 18}O(p,alpha){sup 15}N reaction has been performed by means of the Trojan Horse Method. We discuss why the plane wave approximation is justified by evaluating what changes the more correct DWBA approach introduces.

  16. A proposal for calculating the importance of exchange effects in rearrangement collisions

    International Nuclear Information System (INIS)

    Mihailovic, M.V.; Nagarajan, M.A.

    1980-02-01

    A formalism based on the generator co-ordinate method (GCM) for reactions is derived to test approximations in the most commonly used methods for calculating the rearrangement amplitudes: namely the distorted wave Born approximation (DWBA), the coupled channel Born approximation (CCBA) and the coupled reaction channel (CRC). (author)

  17. On-the-energy-shell approximation for the heavy ion couple-channels problems

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    Starting with the coupled channels equations describing multiple Coulomb excitations in heavy ion collisions an approximation scheme is developed based on replacing the channel Green's functions by their on-the-energy shell forms, which permits an exact analytic solution for the scattering matrix. The trivially equivalent Coulomb polarization potential valid for strong coupling and small energy loss in the excitation processes is constructed. This potential is seen to have a very simple r-dependence. A simple formula for the sub-barrier elastic scattering cross section is then derived both by using the WRB approximation and by summing the Born series for the T-matrix. Comparison of the two forms for the elastic cross section shows that they give almost identical numerical results in the small coupling limit only. The results are also compared with the predictions of the Alder-Winther theory. (Author) [pt

  18. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  19. Missing monopole strength of the Hoyle state in the alpha inelastic scattering

    International Nuclear Information System (INIS)

    Kawabata, T; Kadoya, T; Yokota, N; Adachi, S; Baba, T; Furuno, T; Ishii, Y; Murata, M; Tsumura, M; Watanabe, H; Fujimura, H; Fujiwara, M; Hatanaka, K; Ito, T; Matsuda, Y; Tamii, A; Itoh, M; Sato, T; Maeda, Y; Zenihiro, J

    2014-01-01

    Cross sections for the alpha inelastic scattering exciting the low-lying monopole states in 12 C, 16 O, 24 Mg, 28 Si, and 40 Ca were measured and compared with the distorted- wave Born-approximation (DWBA) calculation to examine the puzzle of the missing monopole strength of the Hoyle state. It was found the DWBA calculation using the density-dependent aN interaction systematically overestimates the cross sections for the 0 + transitions, and the puzzle is a universal problem in light nuclei but not special in the Hoyle state. Since the DWBA calculation using the density-independent interaction reasonably well reproduces the experiment, this puzzle might be related to the density dependence of the effective interaction. The coupled-channel effect for the alpha inelastic scattering is also examined. The coupled- channel effect reduces the calculated cross section, and solve the puzzle of the missing monopole strengths in part, but the improvement of the density dependence of the effective interaction is still necessary to solve the puzzle

  20. Systematics of quasi-elastic processes induced by heavy ions

    International Nuclear Information System (INIS)

    Baltz, A.J.

    1976-01-01

    An attempt is made to delineate the areas in the systematics of quasi-elastic processes induced by heavy ions that are well described theoretically from the specific features that seem not to be understood. One- and two-particle transfer reactions are considered. A general systematic seen in transfer angular distribution data and theory, some successes and failures of the DWBA and coupled-channels theories in describing heavy-ion-reaction data, and the specific example 232 Th( 40 Ar,K) and implications for deep inelastic reactions with even heavier projectiles such as Kr and Xe are considered

  1. Multi-reaction-channel fitting calculations in a coupled-channel model : Photoinduced strangeness production

    NARCIS (Netherlands)

    Scholten, O.; Usov, A.

    To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level; invariably creates a large inconsistency between the different

  2. (p,t) reaction on /sup 12/C, /sup 54/Fe and /sup 208/Pb at 80 MeV. [80 MeV, angular distributions, zerio-range DWBA

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J R; Anderson, R E; Kraushaar, J J; Ristinen, R A [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Pittsburgh Univ., PA (USA). Dept. of Physics; King, N S.P. [Los Alamos Scientific Lab., NM (USA); Bacher, A; Jacobs, W W [Indiana Univ., Bloomington (USA). Dept. of Physics

    1979-06-11

    Angular distributions have been measured for the low-lying levels of the residual nuclei for the /sup 12/C, /sup 54/Fe and /sup 208/Pb(p,t) reactions at E/sub p/ = 80 MeV. The shapes of these angular distributions are generally well reproduced by the zero-range distorted-wave Born approximation (DWBA). Enhancement factors extracted from the data show that the DWBA predicts relative strengths consistent with those observed at lower bombarding energies. However, the overall empirical DWBA normalization at E/sub p/ = 80 MeV is observed to be 1/12(1/4) of that required at 40 MeV for /sup 208/Pb(/sup 54/Fe).

  3. Projected coupled cluster theory.

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E

    2017-08-14

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  4. Duality for heavy-quark systems. II. Coupled channels

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We derive the duality relation approx. = which relates a suitable energy average of the physical coupled-channel cross section sigma=sigma(e + e - →hadrons) to the same average of the cross section sigma/sub bound/ for the production of bound qq-bar states in a single-channel confining potential. The average is equated by our previous work to the average cross section for production of a qq-bar pair moving freely in the nonconfining color Coulomb potential. Thus, approx. = . The corrections to these duality relations are calculable. We give an exactly solvable coupled-two-channel model and use it to verify duality for both weak and strong coupling

  5. Theory of nuclear heavy-ion direct transfer reactions

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1979-01-01

    We review the distorted-wave approach to direct transfer reactions and draw attention to some of the shortcomings of current theories. We show that a reformulated form of the distorted-wave Born approximation (DWBA) for transfer can lead to important simplifications of the theory, which are valid for nuclear heavy-ion induced reactions at energies > or approx. =MeV/nucleon. In particular, in the semiclassical limit, it leads to a new and simple formula for the transfer t-matrix which includes all the essential physics while offering several important advantages over standard ''full-recoil finite-range'' DWBA. One such advantage is that the new formula is more transparent in that it is amendable to interpretation and analytical manipulation. At high-energy it is shown to reduce to one earlier deduced using eikonal-DWBA. The conditions for the validity of the new theory are discussed in detail. They are shown to be generally well satisfied for small-mass transfer between heavy-ions at energies at or above those particularly favour transfer (> or approx. =10 MeV/nucleon for transfer of valence nucleons). The restriction to small mass is not due to any recoil approximation; in fact, it is only a necessary restriction at certain energies. The theory treats recoil exactly. Consideration of the optimum dynamical conditions for transfer leads to a set of matching conditions. The presence of hitherto neglected absorption, arising from dynamical effects of poor matching, it suggested and qualitatively discussed. Condition under which such absorption may be neglected are derived. Results of numerical calculations are presented showing that the theory is capable of good agreement with standard full-recoil finite-range DWBA, and that it is capable of giving at least as good an account of experimental data for nucleon-transfer between heavy-ions at energies approx.10 MeV/nucleon

  6. An effective strong-coupling theory of composite particles in UV-domain

    Science.gov (United States)

    Xue, She-Sheng

    2017-05-01

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  7. An effective strong-coupling theory of composite particles in UV-domain

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2017-05-29

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  8. An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays

    Science.gov (United States)

    Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2011-12-01

    An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.

  9. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  10. The 7Li(d-vector,n0)8Be and 7Li(d-vector,n1)8Be reactions below 160 keV

    International Nuclear Information System (INIS)

    Sabourov, A.; Ahmed, M. W.; Blackston, M. A.; Crowell, A. S.; Howell, C. R.; Joshi, K.; Nelson, S. O.; Perdue, B. A.; Sabourov, K.; Tonchev, A.; Weller, H. R.; Prior, R. M.; Spraker, M. C.; Braizinha, B.; Kalantar-Nayestanaki, N.

    2006-01-01

    The polarization observables have been determined for the 7 Li(d-vector,n 0 ) 8 Be and 7 Li(d-vector ,n 1 ) 8 Be reactions at beam energies between 80 and 160 keV. A Transition Matrix Element (TME) analysis revealed unique, dominant p-wave solutions for both neutron channels. The polarization observables were compared with distorted wave Born approximation (DWBA) and coupled reaction channels (CRC) calculations. The general features of the data can be reproduced by the CRC calculations when a large target spin-orbit interaction is included. However, serious discrepancies are observed when the TMEs of the theory and experiment are compared

  11. Phi Photoproduction in a Coupled-Channel Approach

    NARCIS (Netherlands)

    Ozaki, S.; Nagahiro, H.; Hosaka, A.; Scholten, O.

    2010-01-01

    We investigate photoproduction of phi-mesons off protons within a coupled-channel effective-Lagrangian method which is based on the K-matrix approach. We take into account pi N, rho N, eta N, K Lambda, K Sigma, K Lambda (1520) and phi N channels. Especially we focus on K Lambda(1520) channel. We

  12. Coupled channels in the different models

    International Nuclear Information System (INIS)

    Badalyan, A.M.; Polikarpov, M.I.; Simonov, Yu.A.

    1980-01-01

    Description of the multichannel phenomena due to channel coupling is considered. The different methods: the relativistic Logunov-Tavkhelidze-Blankenbecler-Sugar equations, the Schroedinger equation with the separable potentials and the many-channel N-D method are discussed. The particular emphasis is made on the dependence of pole trajectories and cross sections on the parameters of the coupled channel (CC) pole interaction. In detail the properties of the N anti N interaction with annihilation are taken into account. Elastic, charge exchange and annihilation cross sections are calculated in the 0-100 MeV energy range. The peaks in all cross sections at the threshold are due to the CC poles in the L=0 waves. The position of the 16 poles in different states for the case of no CC interaction and the standard CC interaction is presented

  13. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO2 scattering

    International Nuclear Information System (INIS)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO 2 collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is converged by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO 2 scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to Σ/sub g/ symmetry. Comparison with static and static-exchange approximations are made

  14. An orthogonality condition model treatment of elastic and inelastic (α, 12C) scattering

    International Nuclear Information System (INIS)

    Suzuki, Y.; Imanishi, B.

    1981-02-01

    Elastic and inelastic scattering of α-particles on the deformed nucleus 12 C are investigated in the range of incident α-particle energies of 9 to 11 MeV by using the coupled-channel method with orthogonality condition. A doubly folded potential generated by the shell model wave functions of the α-particle and the deformed nucleus 12 C is employed for the relative motion between the α-particle and 12 C. Good agreement between theory and experiment is obtained for the elastic and inelastic angular distributions and the resonance structures. It is found, from the Born series expansion of the T-matrix, that the orthogonality constraint stresses the effects of the channel-coupling between the elastic and inelastic processes, and it indicates that the DWBA does not work well in this system. (author)

  15. Microscopic description of 7Li and 7Be for the DWBA treatment of cluster transfer reactions

    International Nuclear Information System (INIS)

    Pal, K.F.; Lovas, R.G.; Gyarmati, B.; Vertse, T.; Nagarajan, M.A.

    1983-01-01

    The overlap of the α-t interaction times, the 7 Li wave function with the product of the α and t wave functions, and the analogous quantity for the charge-conjugate system are calculated on microscopic grounds. This quantity contains the structure information on the 7 Li nucleus in the standard finite-range DWBA description of α and t stripping from and pick-up to 7 Li. This nucleus is described in the generator-coordinate model assuming the α+t two-cluster structure and schematic nucleon-nucleon forces. The model reproduces the measured g.s. properties reasonably. The microscopic potential overlap is obtained to be very different from those calculated with using local macroscopic α-t interactions, but the difference in the 12 C( 7 Li,t) 16 O cross section is only dramatic at backward angles. To facilitate further DWBA analyses, several versions of the potential overlap as well as the overlap without the potential are given in an easily accessible form. (author)

  16. Coupling of channel thermalhydraulics and fuel behaviour in ACR-1000 safety analyses

    International Nuclear Information System (INIS)

    Huang, F.L.; Lei, Q.M.; Zhu, W.; Bilanovic, Z.

    2008-01-01

    Channel thermalhydraulics and fuel thermal-mechanical behaviour are interlinked. This paper describes a channel thermalhydraulics and fuel behaviour coupling methodology that has been used in ACR-1000 safety analyses. The coupling is done for all 12 fuel bundles in a fuel channel using the channel thermalhydraulics code CATHENA MOD-3.5d/Rev 2 and the transient fuel behaviour code ELOCA 2.2. The coupling approach can be used for every fuel element or every group of fuel elements in the channel. Test cases are presented where a total of 108 fuel element models are set up to allow a full coupling between channel thermalhydraulics and detailed fuel analysis for a channel containing a string of 12 fuel bundles. An additional advantage of this coupling approach is that there is no need for a separate detailed fuel analysis because the coupling analysis, once done, provides detailed calculations for the fuel channel (fuel bundles, pressure tube, and calandria tube) as well as all the fuel elements (or element groups) in the channel. (author)

  17. Mathematical theories of classical particle channeling in perfect crystals

    International Nuclear Information System (INIS)

    Dumas, H. Scott

    2005-01-01

    We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling

  18. Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.; Macfarlane, M.H.; Pieper, S.C.

    1980-01-01

    Direct-reaction calculations for heavy ions require special computational techniques that take advantage of the physical peculiarities of heavy-ion systems. This paper is the first of a series on quantum-mechanical coupled-channels calculations for heavy ions. It deals with the problems posed by the long range of the Coulomb coupling interaction. Our approach is to use the Alder-Pauli factorization whereby the channel wave functions are expressed as products of Coulomb functions and modulating amplitudes. The equations for the modulating amplitudes are used to integrate inwards from infinity to a nuclear matching radius ( approx. = 20 fm). To adequate accuracy, the equations for the amplitudes can be reduced to first order and solved in first Born approximation. The use of the Born approximation leads to rapid recursion relations for the solutions of the Alder-Pauli equations and hence to a great reduction in computational labor. The resulting coupled-channels Coulomb functions can then be matched in the usual way to solutions of the coupled radial equations in the interior region of r space. Numerical studies demonstrate the reliability of the various techniques introduced

  19. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  20. Coupled-channel analysis for phi photoproduction with Lambda

    NARCIS (Netherlands)

    Ozaki, S.; Hosaka, A.; Nagahiro, H.; Scholten, O.

    We investigate photoproduction of phi mesons off protons within a coupled-channel effective-Lagrangian method which is based on the K-matrix approach. Since the threshold energy of the K Lambda(1520) channel is close to that of phi N, the contribution of this channel to f photoproduction near the

  1. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F

    2014-01-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed

  2. Strong-coupling theory of superconductivity

    International Nuclear Information System (INIS)

    Rainer, D.; Sauls, J.A.

    1995-01-01

    The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)

  3. Comparison between phase shift derived and exactly calculated nucleon--nucleon interaction matrix elements

    International Nuclear Information System (INIS)

    Gregersen, A.W.

    1977-01-01

    A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels

  4. Analysis of (d,n) reactions via the Dirac DWBA with finite range

    Science.gov (United States)

    Hawk, Eric; McNeil, J. A.

    2004-10-01

    The Distorted-wave Born Approximation (DWBA) is used to calculate differential cross sections of low-energy deuteron stripping reactions. The implementation makes use of Dirac phenomenological potentials with an exact treatment of finite-range effects. The mutual interaction of these effects upon the resulting calculations will be presented. In addition, we use our finite-range implementation to study the effect on the cross sections due to the model dependence of the internal deuteron wave function. Specifically, we examine this effect using the internal deuteron wave functions generated with the Reid soft-core, Bonn, and Argonne-V18 potentials.

  5. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    International Nuclear Information System (INIS)

    Danilkin, I. V.; Simonov, Yu. A.

    2010-01-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2 3 P 1 (cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J PC =1 ++ is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  6. Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method

    International Nuclear Information System (INIS)

    Bray, Igor.

    1992-04-01

    The calculations of the 3 2 S and 3 2 P spin asymmetries and the angular momentum for singlet and triplet scattering for projectile energies of 10 and 20 eV is presented. Together these observables give a most stringent test of any electron-atom scattering theory. An excellent agreement was found between the results of the coupled-channel optical method and experiment, which for the spin asymmetries can only be obtained by a good description of the couplings between the lower-lying target states and the target continuum. 10 refs., 2 figs

  7. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    Science.gov (United States)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  8. Nuclear reactions induced by the bombardment of 18O with 18O

    International Nuclear Information System (INIS)

    Kalinsky, D.; Melnik, D.; Smilansky, U.; Trautner, N.; Horowitz, Y.; Mordechai, S.

    1977-01-01

    Angular distributions have been measured for the elastic, inelastic, one and two-neutron transfer reactions for the system 18 O + 18 O at center of mass energies ranging from 10.0 to 18.0 MeV, at c.m. angles between 90deg and 125deg. The inelastic scattering data were analyzed assuming a collective excitation mechanism and with a coupled channels approach. In order to obtain a good fit it was necessary to include a hexadecapole deformation. The one and two neutron transfer reactions were analyzed in terms of a single step finite range plus recoil DWBA theory. (author)

  9. Reaction channels of 6,7Li+28Si at near-barrier energies

    International Nuclear Information System (INIS)

    Pakou, A; Rusek, K; Nicolis, N G; Alamanos, N; Doukelis, G; Gillibert, A; Kalyva, G; Kokkoris, M; Lagoyannis, A; Musumarra, A; Papachristodoulou, C; Perdikakis, G; Pierroutsakou, D; Pollacco, E C; Spyrou, A; Zarkadas, Ch

    2005-01-01

    The production of α-particles in the reactions 6,7 Li+ 28 Si was studied as a means to disentangle the various reaction channels at near-barrier energies. The competition between compound and direct reactions was determined by using the shape of angular distributions and statistical model calculations. DWBA calculations were also performed to probe the various direct channels. It was found that, approaching barrier, transfer channels are the most dominant for both reactions. For 7 Li+ 28 Si d-transfer is one of the contributing channels without excluding t-transfer, while for 6 Li+ 28 Si, n-transfer and p-transfer have substantial contribution but without excluding d-transfer

  10. Study of the (3He,t) reaction on 48Ca at 82 MeV

    International Nuclear Information System (INIS)

    Tanabe, T.; Yasue, M.; Sato, K.; Soga, F.; Igarashi, M.; Ogino, K.; Kadota, Y.; Saito, Y.; Shimokoshi, F.

    1978-01-01

    The reactions ( 3 He,t), ( 3 He, 3 He), ( 3 He,α) and ( 3 He,d) on 48 Ca have been studied at an incident energy of 82 MeV. The obtained angular distributions for the ( 3 He,t) reaction have been analyzed in terms of second-order DWBA theory, using a zero-range approximation. The relative ratio of the cross sections for the excitation of the fsub(7/2)f -1 sub(7/2) multiplets of 48 Sc could not be explained consistently by the one-step charge-exchange process only. However, the ratio was reproduced in order of magnitude by second-order DWBA calculations including the effect of two-step processes, such as ( 3 He-α-t) and ( 3 He-d-t) channels. The effects of the d- and α-channels on the elastic scattering of 3 He from 48 Ca were also examined in the framework of second-order full finite-range DWBA. (Auth.)

  11. Coupled channels Marchenko inversion for nucleon-nucleon potentials

    International Nuclear Information System (INIS)

    Kohlhoff, H.; Geramb, H.V. von

    1994-01-01

    Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)

  12. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    Directory of Open Access Journals (Sweden)

    A. L. Langston

    2018-01-01

    Full Text Available Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope–channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  13. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    Science.gov (United States)

    Langston, Abigail L.; Tucker, Gregory E.

    2018-01-01

    Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  14. Concept of spatial channel theory applied to reactor shielding analysis

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W. Jr.

    1977-01-01

    The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield

  15. The 8Li + 2H reaction studied in inverse kinematics at 3.15 MeV/nucleon using the REX-ISOLDE post-accelerator

    DEFF Research Database (Denmark)

    Tengborn, E.; Moro, A.M.; Nilsson, T.

    2011-01-01

    identified and the related angular distributions extracted and compared with coupled-channels, distorted-wave Born approximation (DWBA), and coupled-reaction-channels calculations. For the inelastic and (d,t) channels we find that higher order effects are very important and hence one needs to go beyond......The reaction 8Li + 2H has been studied in inverse kinematics at the incident energy of 3.15 MeV/nucleon, using the REX-ISOLDE post-accelerator. The reaction channels corresponding to (d,p), (d,d), and (d,t) reactions populating ground states and low-lying excited states in 7–9Li have been...

  16. K Lambda and K Sigma photoproduction in a coupled-channels framework

    NARCIS (Netherlands)

    Usov, A; Scholten, O

    A coupled-channels analysis, based on the K-matrix approach, is presented for photo-induced kaon production. It is shown that channel coupling effects are large and should not be ignored. The importance of contact terms in the analysis, associated with short-range correlations, is pointed out. The

  17. Coupled-channels analyses for 9,11Li + 208Pb fusion reactions with multi-neutron transfer couplings

    Science.gov (United States)

    Choi, Ki-Seok; Cheoun, Myung-Ki; So, W. Y.; Hagino, K.; Kim, K. S.

    2018-05-01

    We discuss the role of two-neutron transfer processes in the fusion reaction of the 9,11Li + 208Pb systems. We first analyze the 9Li + 208Pb reaction by taking into account the coupling to the 7Li + 210Pb channel. To this end, we assume that two neutrons are directly transferred to a single effective channel in 210Pb and solve the coupled-channels equations with the two channels. By adjusting the coupling strength and the effective Q-value, we successfully reproduce the experimental fusion cross sections for this system. We then analyze the 11Li + 208Pb reaction in a similar manner, that is, by taking into account three effective channels with 11Li + 208Pb, 9Li + 210Pb, and 7Li + 212Pb partitions. In order to take into account the halo structure of the 11Li nucleus, we construct the potential between 11Li and 208Pb with a double folding procedure, while we employ a Woods-Saxon type potential with the global Akyüz-Winther parameters for the other channels. Our calculation indicates that the multiple two-neutron transfer process plays a crucial role in the 11Li + 208Pb fusion reaction at energies around the Coulomb barrier.

  18. Quasiparticle-phonon coupling in inelastic proton scattering

    International Nuclear Information System (INIS)

    Weissbach, B.

    1980-01-01

    Multistep-processes in inelastic proton scattering from 89 Y are analyzed by using CCBA and DWBA on a quasiparticle phonon nuclear structure model. Indirect excitations caused by quasiparticle phonon coupling effects are found to be very important for the transition strengths and the shape of angular distributions. Core excitations are dominant for the higher order steps of the reaction. (author)

  19. Statistical theory of breakup reactions

    International Nuclear Information System (INIS)

    Bertulani, Carlos A.; Descouvemont, Pierre; Hussein, Mahir S.

    2014-01-01

    We propose an alternative for Coupled-Channels calculations with loosely bound exotic nuclei (CDCC), based on the the Random Matrix Model of the statistical theory of nuclear reactions. The coupled channels equations are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCC s ), able in principle to take into account many pseudo channels. (author)

  20. Fully microscopic DWBA analyses on 89Y (α, p)92Zr reaction

    International Nuclear Information System (INIS)

    Yuan Jian; Mao Zhiqiang; Zhang Peihua

    1988-01-01

    The differential cross sections have been measured for the 89 Y (α, p) 92 Zr reaction with some low-lying states and the 89 Y (α, α) 8( Y elastic scattering by using 26.1 MeV α beam. A fully microscopic DWBA analyses for 89 Y (α, α) 92 Zr have been performed by using 89 Y and 92 Zr shell-model wavefunction with or without the core excited configuration. With the core excited configuration, relative strengths of the ground state and the first excited state are greatly improved. Finally, the absolute cross sections for 89 (α, p) 92 Zr and importance of shallow well depth of α potential are discussed

  1. Coupling between scattering channels with SUSY transformations for equal thresholds

    International Nuclear Information System (INIS)

    Pupasov, Andrey M; Samsonov, Boris F; Sparenberg, Jean-Marc; Baye, Daniel

    2009-01-01

    Supersymmetric (SUSY) transformations of the multichannel Schroedinger equation with equal thresholds and arbitrary partial waves in all channels are studied. The structures of the transformation function and the superpotential are analysed. Relations between Jost and scattering matrices of superpartner potentials are obtained. In particular, we show that a special type of SUSY transformation allows us to introduce a coupling between scattering channels starting from a potential with an uncoupled scattering matrix. The possibility for this coupling to be trivial is discussed. We show that the transformation introduces bound and virtual states with a definite degeneracy at the factorization energy. A detailed study of the potential and scattering matrices is given for the 2 x 2 case. The possibility of inverting coupled-channel scattering data by such a SUSY transformation is demonstrated by several examples (s-s, s-p and s-d partial waves)

  2. Computational Aspects of Nuclear Coupled-Cluster Theory

    International Nuclear Information System (INIS)

    Dean, David Jarvis; Hagen, Gaute; Hjorth-Jensen, M.; Papenbrock, T.F.

    2008-01-01

    Coupled-cluster theory represents an important theoretical tool that we use to solve the quantum many-body problem. Coupled-cluster theory also lends itself to computation in a parallel computing environment. In this article, we present selected results from ab initio studies of stable and weakly bound nuclei utilizing computational techniques that we employ to solve coupled-cluster theory. We also outline several perspectives for future research directions in this area.

  3. Statistical theory of breakup reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A., E-mail: carlos.bertulani@tamuc.edu [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX (United States); Descouvemont, Pierre, E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Hussein, Mahir S., E-mail: hussein@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Estudos Avancados

    2014-07-01

    We propose an alternative for Coupled-Channels calculations with loosely bound exotic nuclei (CDCC), based on the the Random Matrix Model of the statistical theory of nuclear reactions. The coupled channels equations are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCC{sub s}), able in principle to take into account many pseudo channels. (author)

  4. Continuum level density of a coupled-channel system in the complex scaling method

    International Nuclear Information System (INIS)

    Suzuki, Ryusuke; Kato, Kiyoshi; Kruppa, Andras; Giraud, Bertrand G.

    2008-01-01

    We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the 4 He=[ 3 H+p]+[ 3 He+n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L 2 basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role. (author)

  5. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  6. DWBA (d,N) Calculations Including Dirac Phenomenological Potentials and an Exact Treatment of Finite-range Effects

    Science.gov (United States)

    Hawk, Eric

    2005-04-01

    An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.

  7. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  8. Optimization of Training Signal Transmission for Estimating MIMO Channel under Antenna Mutual Coupling Conditions

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2010-01-01

    Full Text Available This paper reports investigations on the effect of antenna mutual coupling on performance of training-based Multiple-Input Multiple-Output (MIMO channel estimation. The influence of mutual coupling is assessed for two training-based channel estimation methods, Scaled Least Square (SLS and Minimum Mean Square Error (MMSE. It is shown that the accuracy of MIMO channel estimation is governed by the sum of eigenvalues of channel correlation matrix which in turn is influenced by the mutual coupling in transmitting and receiving array antennas. A water-filling-based procedure is proposed to optimize the training signal transmission to minimize the MIMO channel estimation errors.

  9. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Pless, Stephan A; Kurata, Harley T

    2017-01-01

    Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucid......Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation....... These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD-pore coupling via PIP2, and thereby influences the unique gating effects of retigabine....

  10. Dynamical coupled channel approach to omega meson production

    Energy Technology Data Exchange (ETDEWEB)

    Mark Paris

    2007-09-10

    The dynamical coupled channel approach of Matsuyama, Sato, and Lee is used to study the $\\omega$--meson production induced by pions and photons scattering from the proton. The parameters of the model are fixed in a two-channel (\\omega N,\\pi N) calculation for the non-resonant and resonant contributions to the $T$ matrix by fitting the available unpolarized differential cross section data. The polarized photon beam asymmetry is predicted and compared to existing data.

  11. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  12. Coupled-channel equations and off-shell transformations in many-body scattering

    International Nuclear Information System (INIS)

    Cattapan, G.; Vanzani, V.

    1977-01-01

    The general structure and the basic features of several many-body coupled-channel integral equations, obtained by means of the channel coupling array device, are studied in a systematic way. Particular attention is paid to the employment of symmetric transition operators. The connection between different formulations has been clarified and the role played by some off-shell transformations for many-body transition operators has been discussed. Specific choices of the coupling scheme are considered and the corresponding coupled equations are compared with similar equations previously derived. Several sets of linear relations between transition operators have also been presented and used in a three-body context to derive uncoupled integral equations with connected kernel

  13. Three-body coupled-channel theory of scattering and breakup of light and heavy ions

    International Nuclear Information System (INIS)

    Kamimura, M.; Kameyama, H.; Kawai, M.; Sakuragi, Y.; Iseri, Y.; Yahiro, M.; Tanifuji, M.

    1986-09-01

    It is shown that the method of coupled discretized continuum channels (CDCC) based on the three-body model for direct reactions is very successful in explaining the following, recently developed experiments using deuteron, 6 Li and 7 Li projectiles whose breakup threshold energies are very low: (i) Precise measurement of all the possible analyzing powers in elastic scattering of polarized deuteron at 56 MeV, (ii) scattering of polarized deuteron at intermediate energies, (iii) deuteron projectile breakup at 56 MeV, (iv) scattering of polarized 7 Li at 20 and 44 MeV and (v) projectile breakup of 6 Li at 178 MeV and 7 Li at 70 MeV. The CDCC analyses of those data are made transparently with no adjustable parameters. (author)

  14. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  15. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  16. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.

    2003-01-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  17. Two-channel totally asymmetric simple exclusion processes

    International Nuclear Information System (INIS)

    Pronina, Ekaterina; Kolomeisky, Anatoly B

    2004-01-01

    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. Extensive computer Monte Carlo simulations fully support the theoretical predictions

  18. The interpretation of resonance formation in coupled-channel models of positron scattering by atomic hydrogen using localized optical potentials

    International Nuclear Information System (INIS)

    Bransden, B.H.; Hewitt, R.N.

    1997-01-01

    Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)

  19. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  20. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  1. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅱ)-MICROMORPHIC CONTINUUM THEORY AND COUPLE STRESS THEORY

    Institute of Scientific and Technical Information of China (English)

    戴天民

    2003-01-01

    The purpose is to reestablish the balance laws of momentum, angular momentumand energy and to derive the corresponding local and nonlocal balance equations formicromorphic continuum mechanics and couple stress theory. The desired results formicromorphic continuum mechanics and couple stress theory are naturally obtained via directtransitions and reductions from the coupled conservation law of energy for micropolarcontinuum theory, respectively. The basic balance laws and equation s for micromorphiccontinuum mechanics and couple stress theory are constituted by combining these resultsderived here and the traditional conservation laws and equations of mass and microinertiaand the entropy inequality. The incomplete degrees of the former related continuum theoriesare clarified. Finally, some special cases are conveniently derived.

  2. Four-pomeron couplings in cut reggeon field theory

    International Nuclear Information System (INIS)

    Grassberger, P.

    1980-01-01

    Four-pomeron cutting rules are studied in cut reggeon field theory (CRFT). Without any microscopic model, CRFT allows for three different 4-pomeron couplings. Demanding that CRFT is interpretable as a Markov process, only one of these couplings remains. The cutting rules for the 4-pomeron vertex thus become unique, disagreeing with those found in weak coupling diameter 3 theory. (orig.)

  3. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    Science.gov (United States)

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  4. Many-body scattering theory methods as a means for solving bound-state problems: Applications of arrangement-channel quantum mechanics

    International Nuclear Information System (INIS)

    Levin, F.S.; Krueger, H.

    1977-01-01

    We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-body bound states that must exist because bound states are obvious negative-energy extensions of scattering states. Since atomic, molecular, and nuclear systems all display multichannel effects for E > 0, at least through Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving bound-state problems could have wide applicability. The development used here is based on the channel-component-state method of the channel-coupling-array theory, recently described in detail for the E > 0 case, and various aspects of the formalism are discussed. Detailed calculations using simple approximations are discussed for H 2 + , one of the simplest systems displaying channel structure. Comparison with the exact, Born-Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the equilibrium separation and total binding energy are accurate to within 2%, while the dissociation energy is accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation, for which these numbers are less accurate than the preceding by at least a factor of 3. We also show that identical particle symmetry for the H 2 + case reduces the pair of coupled (two-channel) equations to a single equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus suggesting application of the formalism to atomic structure problems. A detailed analysis of the present numerical results, their general implications, and possible applications is also given

  5. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  6. Nontrivial asymptotically nonfree gauge theories and dynamical unification of couplings

    International Nuclear Information System (INIS)

    Kubo, J.

    1995-01-01

    Evidence for the nontriviality of asymptotically nonfree (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC

  7. Mode-coupling theory and bunch lengthening in SPEAR II

    International Nuclear Information System (INIS)

    Suzuki, T.; Chin, Y.; Satoh, K.

    1983-01-01

    A mode-coupling theory of bunched-beam instabilities is developed for a Gaussian bunch. The theory converts Sacherer's integral equation with mode coupling into a matrix eigenvalue problem. The present theory assumes well-defined azimuthal modes and takes into account radial modes which are expressed as superpositions of orthogonal functions. The theory is applied to bunch lengthening observed at SPEAR II. The theory explains qualitative features of the experimental results fairly well, but quantitative agreement is not too good. This is ascribed to insufficient knowledge of the coupling impedance of SPEAR II or to the possibility that such effects as radiation damping and quantum excitation should be included. (author)

  8. A fundamental study of ''contribution'' transport theory and channel theory applications

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    The objective of this three-year study is to develop a technique called ''channel theory'' that can be used in interpreting particle transport analysis such as frequently required in radiation shielding design and assessment. Channel theory is a technique used to provide insight into the mechanisms by which particles emitted from a source are transported through a complex system and register a response on some detector. It is based on the behavior of a pseudo particle called a ''contributon,'' which is the response carrier through space and energy channels that connect the source and detector. ''Contributons'' are those particles among all the ones contained in the system which will eventually contribute some amount of response to the detector. The specific goals of this projects are to provide a more fundamental theoretical understanding of the method, and to develop computer programs to apply the techniques to practical problems encountered in radiation transport analysis. The overall project can be divided into three components to meet these objectives: (a) Theoretical Development, (b) Code Development, and (c) Sample Applications. During the present third year of this study, an application of contributon theory to the analysis of radiation heating in a nuclear rocket has been completed, and a paper on the assessment of radiation damage response of an LWR pressure vessel and analysis of radiation propagation through space and energy channels in air at the Hiroshima weapon burst was accepted for publication. A major effort was devoted to developing a new ''Contributon Monte Carlo'' method, which can improve the efficiency of Monte Carlo calculations of radiation transport by tracking only contributons. The theoretical basis for Contributon Monte Carlo has been completed, and the implementation and testing of the technique is presently being performed

  9. Quantum field theories coupled to supergravity. AdS/CFT and local couplings

    International Nuclear Information System (INIS)

    Grosse, J.

    2006-01-01

    This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)

  10. Quantum field theories coupled to supergravity. AdS/CFT and local couplings

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, J.

    2006-08-03

    This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)

  11. Exact finite range DWBA results for the /sup 12/C(p,d)/sup 11/C reaction at 700 MeV. [Differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Rost, E; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-08

    The differential cross sections for the /sup 12/C(p,d)/sup 11/C(g.s.) reaction at 700 MeV have been calculated in a full finite range DWBA approach. The absolute cross sections agree with the data and are dominated by contributions arising from the deuteron D-state.

  12. Experimental studies of laser guiding and wake excitation in plasma channels

    International Nuclear Information System (INIS)

    Volfbeyn, P.; Lawrence Berkeley National Lab., CA

    1998-06-01

    This thesis presents results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme was proposed and experimentally tested in hydrogen and nitrogen. It made use of two laser pulses. The Ignitor, an ultrashort ( 17 W/cm 2 , 75fs laser pulse. The guiding properties and transmission and coupling efficiency were studied as a function of relative position of the channel and the injection pulse focus. Whereas entrance coupling efficiency into the channel was lower than expected, channel coupling to continuum losses were found to be in good agreement with analytical predictions. The authors speculate that increased coupling efficiency can be achieved through better mode matching into the channel. Analytic and numerical one dimensional (1-D), nonrelativistic theory of laser pulse propagation in underdense plasma was presented, in the context of laser wakefield acceleration. The relation between the laser pulse energy depletion, longitudinal laser pulse shape distortion, and changes in the group velocity and center wavelength was explored. 1-D theory was extended to treat the case of a laser exciting a wake in a hollow plasma channel, by making use of an energy conservation argument. Based on the results of this theory, a laser wakefield diagnostic was proposed where, by measuring the changes in phase or spectrum of the driving laser pulse, it is possible to infer the amplitude of the plasma wake

  13. Generic theory for channel sinuosity.

    Science.gov (United States)

    Lazarus, Eli D; Constantine, José Antonio

    2013-05-21

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.

  14. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  15. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  16. Effect of Couple Therapy Based on the Choice Theory on Social Commitment of Couples

    Directory of Open Access Journals (Sweden)

    Hossein Abbasi

    2017-09-01

    Full Text Available Background and Objective: Commitment to spouse, marriage, and family is one of the most important factors ensuring the continuity of marriage and strength of family bonds that has attracted considerable attention in the contemporary family and marriage studies. In this study, we sought to determine the effect of couple therapy based on the choice theory on the social commitment of couples. Materials and Methods: This was a quasi-experimental study with pretest-posttest design and a control group that was performed among volunteer couples visiting Isfahan Counseling and Psychology Centers in Isfahan, Iran, during 2015. The subjects consisted of 32 incompatible couples who were selected through convenience sampling and were randomly assigned into experimental (16 couples and control (16 couples groups. Then, the experimental group received nine sessions of group couple therapy during three months on family life skills based on choice theory. It is worth mentioning that the dependent variable was the social commitment of couples evaluated by the dimensions of commitment inventory of Adams and Jones (1997. The collected data were analyzed by multivariate analysis of covariance in SPSS, version 20. Results: At the post-test stage, couple therapy based on choice theory significantly enhanced social commitment in the experimental group compared to the control group (P<0.001. Conclusion: According to the findings of this study, couple therapy based on the choice theory is an effective strategy in promoting commitment and loyalty to spouse, marriage, and family and can decrease and prevent family-related problems and threats such as divorce and marital infidelity.

  17. Effects of couple stresses in MHD channel flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1977-01-01

    An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)

  18. Coupling-parameter expansion in thermodynamic perturbation theory.

    Science.gov (United States)

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  19. Schematic large-dimension coupled-channel study of strong inelastic excitations to high-lying states in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.

  20. Tetraquark candidate Zc(3900 from coupled-channel scattering - how to extract hadronic interactions? -

    Directory of Open Access Journals (Sweden)

    Ikeda Yoichi

    2018-01-01

    On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900, which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900 is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  1. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  2. Induced boson self couplings in four-fermion and Yukawa theories

    International Nuclear Information System (INIS)

    Tamvakis, K.K.

    1978-01-01

    Theories of self-interacting fermion fields are expanded in a mean field expansion in terms of boson collective variables. Divergences can be absorbed in a renormalized mass and a renormalized Yukawa-type coupling to all orders in the mean field expansion. The cubic and quartic collective boson self-couplings required by renormalization are fixed in terms of the renormalized Yukawa coupling. This fixing is demonstrated by use of the Callan-Symanzik equations. These theories are formally equivalent to Yukawa-type theories, expanded the same way, with the boson self-couplings constrained to be functions of the Yukawa coupling

  3. Strong coupling transmutation of Yukawa theory

    International Nuclear Information System (INIS)

    Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.

    1981-01-01

    In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)

  4. Cross-channel coupling in positron-atom scattering

    International Nuclear Information System (INIS)

    McAlinden, M.T.; Kernoghan, A.A.; Walters, H.R.J.

    1994-01-01

    Coupled-state calculations including positronium channels are reported for positron scattering by atomic hydrogen, lithium and sodium. Integrated cross sections and total cross sections are presented for all three atoms. For lithium differential cross sections are also given. Throughout, comparison is made between results calculated with and without inclusion of the positronium channels. S-wave cross sections for positron scattering by atomic hydrogen in the Ps(1s, 2s, 2p) + H(1s, 2s, 2p) approximation show the high energy resonance first observed by Higgins and Burke in the coupled-static approximation. This resonance has now moved up to 51.05 eV and narrowed in width to 2.92 eV. Other pronounced structure is seen in the S-wave cross sections between 10 and 20 eV; it is tentatively suggested that this structure may be due to the formation of a temporary pseudo-molecular collision complex. Results calculated in the Ps(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) + H(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) approximation show convergence towards accurate values in the energy region below and in the Ore gap. Contrary to previous work on lithium using only an atomic basis, it is found that coupling to the 3d state of lithium is not so important when positronium channels are included; this is because a mixed basis of atom and positronium states gives a more rapidly convergent approximation than an expansion based on atom states alone. The threshold behaviour of the elastic cross section and the Ps(1s) formation cross section for lithium is investigated. Results in the Ps(1s, 2s, 2p) + Na(3s, 3p) approximation for sodium show good agreement with the total cross section measurements of Kwan et al. (orig.)

  5. Multi-channels coupling-induced pattern transition in a tri-layer neuronal network

    Science.gov (United States)

    Wu, Fuqiang; Wang, Ya; Ma, Jun; Jin, Wuyin; Hobiny, Aatef

    2018-03-01

    Neurons in nerve system show complex electrical behaviors due to complex connection types and diversity in excitability. A tri-layer network is constructed to investigate the signal propagation and pattern formation by selecting different coupling channels between layers. Each layer is set as different states, and the local kinetics is described by Hindmarsh-Rose neuron model. By changing the number of coupling channels between layers and the state of the first layer, the collective behaviors of each layer and synchronization pattern of network are investigated. A statistical factor of synchronization on each layer is calculated. It is found that quiescent state in the second layer can be excited and disordered state in the third layer is suppressed when the first layer is controlled by a pacemaker, and the developed state is dependent on the number of coupling channels. Furthermore, the collapse in the first layer can cause breakdown of other layers in the network, and the mechanism is that disordered state in the third layer is enhanced when sampled signals from the collapsed layer can impose continuous disturbance on the next layer.

  6. Reduction of Couplings: Applications in Finite Theories and the MSSM

    CERN Document Server

    Mondragón, Myriam; Tracas, Nick; Zoupanos, George

    2017-01-01

    The method of reduction of couplings is applied to a Finite Unified Theory and in the MSSM.We search for renormalization group invariant relations among couplings of a renormalizable theory which holds to all orders in perturbation theory. The method leads to relations, at the unification scale, between gauge and Yukawa couplings (in the dimensionless sectors of the theory) and relations among the couplings of the trilinear terms and the Yukawa couplings, as well as a sum rule among the scalar masses and the gaugino mass (in the soft breaking sector). In the Finite Unified Theory model we predict, with remarkable agreement with the experiment, the masses of the top and bottom quarks while our predictions for the light Higgs mass and the rest supersymmetric spectrum masses are in comfortable agreement with the LHC bounds on Higgs and supersymmetric particles. In the case of the reduced MSSM the predictions are less successful but recent improvements in the code used to calculate the Higgs masses give promises ...

  7. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  8. A finite range coupled channel Born approximation code

    International Nuclear Information System (INIS)

    Nagel, P.; Koshel, R.D.

    1978-01-01

    The computer code OUKID calculates differential cross sections for direct transfer nuclear reactions in which multistep processes, arising from strongly coupled inelastic states in both the target and residual nuclei, are possible. The code is designed for heavy ion reactions where full finite range and recoil effects are important. Distorted wave functions for the elastic and inelastic scattering are calculated by solving sets of coupled differential equations using a Matrix Numerov integration procedure. These wave functions are then expanded into bases of spherical Bessel functions by the plane-wave expansion method. This approach allows the six-dimensional integrals for the transition amplitude to be reduced to products of two one-dimensional integrals. Thus, the inelastic scattering is treated in a coupled channel formalism while the transfer process is treated in a finite range born approximation formalism. (Auth.)

  9. Coupled-channel analysis for heavy-ion scattering

    International Nuclear Information System (INIS)

    Kim, Byung-Taik.

    1978-01-01

    A method is given to carry out much faster coupled-channel (CC) calculations including the Coulomb excitation. For this purpose, two approximation techniques were used, namely, the WKB approximation of Alder and Pauli, in handling the effects of Coulomb excitation, and the Pade approximation for handling the large partial wave contribution. The formulation of CC calculations based on these two approximations is briefly discussed and some results of numerical calculations are shown for 16 O scattering with 152 Sm at 72 MeV

  10. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  11. Heavy-ion fusion: Channel-coupling effects, the barrier penetration model, and the threshold anomaly for heavy-ion potentials

    International Nuclear Information System (INIS)

    Satchler, G.R.; Nagarajan, M.A.; Lilley, J.S.; Thompson, I.J.

    1987-01-01

    We study the formal structure of the influence of channel coupling on near- and sub-barrier fusion. The reduction to a one-channel description is studied, with emphasis on the channel-coupling effects being manifest primarily as an energy dependence (the ''threshold anomaly'') of the real nuclear potential. The relation to the barrier penetration model is examined critically. The results of large-scale coupled-channel calculations are used as ''data'' to illustrate the discussion. Particular emphasis is placed on the importance of reproducing correctly the partial-wave (or ''spin'') distributions. The simple barrier penetration model is found to be adequate to exhibit the strong enhancements due to channel couplings when the threshold anomaly is taken into account, although there may be important corrections due to the long-ranged peripheral absorption, especially from Coulomb excitation. copyright 1987 Academic Press, Inc

  12. The exact effective couplings of 4D N=2 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); National Technical Univ. Athens (Greece). Physics Division

    2014-07-15

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  13. The exact effective couplings of 4D N=2 gauge theories

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Humboldt-Universitaet, Berlin; Pomoni, Elli; National Technical Univ. Athens

    2014-07-01

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  14. Singlet-paired coupled cluster theory for open shells

    Science.gov (United States)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  15. Singlet-paired coupled cluster theory for open shells

    International Nuclear Information System (INIS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  16. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2015-01-01

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  17. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany)

    2015-04-15

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  18. The total angular moment selectivity in 7Li(α, α) 7Li(4.63 MeV, 7/2-) reaction at Eα = 27.2 MeV

    International Nuclear Information System (INIS)

    Dmitrenko, V.N.; Kozyr', Yu.E.

    1995-01-01

    The DWBA calculation of tensor polarisation of residual nuclei for direct inelastic scattering 7 Li(α, α) 7 Li(4.63 MeV, 7/2 - ) gives the lest approximation to experimental data at selected total angular moment and parity values J π 13/2 + . The microscopic coupled channel calculation also predicts a significant role of total angular moment states with J ≥ 13/2. at E α 27.2 MeV

  19. Perturbation theory at large order in more than one coupling constant for a field theory with fermions

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.

    1980-01-01

    We have considered the problem of evaluating the large order estimates of perturbation theory in a quantum field theory with more than one coupling constant. The theory considered is four dimensional and possesses instanton-type solutions. It contains a Boson field coupled with a Fermion through the usual g anti psi psi phi type interaction, along with the self-interaction of the Boson lambda phi 4 . Our analysis reveals a phenomenon not observed in a theory with only one coupling constant. One gets different kinds of behavior in different regions of the (lambda, g) plane. The results are quite encouraging for the application to more realistic field theories

  20. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  1. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  2. Asymptotic analysis of the average, steady, isotherml flow in coupled, parallel channels

    International Nuclear Information System (INIS)

    Lund, K.O.

    1976-01-01

    The conservation equations of mass and momentum are derived for the average flow of gases in coupled, parallel channels, or rod bundles. In the case of gas-cooled rod bundles the pitch of the rods is relatively large so the flows in the channels are strongly coupled. From this observation a perturbation parameter is derived and the descriptive equations are scaled using this parameter, which represents the ratio of the axial flow area to the transverse flow area, and which is of the order of 10 -3 in current gas-cooled fast breeder reactor designs. By expanding the velocities into perturbation series the equations for two channels are solved as an initial value problem, and the results compared to a finite difference solution of the same problem. The N-channel problem is solved to the lowest order as a two-point boundary value problem with the pressures specified at the inlet and the outlet. It is concluded from the study that asymptotic methods are effective in solving the flow problems of rod bundles; however, further work is required to evaluate the possible computational advantages of the methods

  3. Jet quenching parameters in strongly coupled nonconformal gauge theories

    International Nuclear Information System (INIS)

    Buchel, Alex

    2006-01-01

    Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases

  4. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  5. On running couplings in gauge theories from type-IIB supergravity

    CERN Document Server

    Kehagias, A A

    1999-01-01

    We construct an explicit solution of type-IIB supergravity describing the strong coupling regime of a non-supersymmetric gauge theory. The latter has a running coupling with an ultraviolet stable fixed point corresponding to the N=4 SU(N) super-Yang-Mills theory at large N. The running coupling has a power law behaviour, argued to be universal, that is consistent with holography. Around the critical point, our solution defines an asymptotic expansion for the gauge coupling beta-function. We also calculate the first correction to the Coulombic quark-antiquark potential.

  6. ACTIVITY THEORY APPLIED AT CHANNEL EXPANSIONS IN SMALL AND MEDIUM ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Siw Lundqvist

    2017-06-01

    Full Text Available Today’s commonly carried out channel expansions of commerce could be both costly and problematic to manage. Especially for small and medium-sized enterprises (SMEs that often suffer from a lack of digital competence, time and monetary resources in generally. Still, these transitions would be necessary to carry out because of customer demands and expectations concerning 24/7 availability, and access to digital commerce alternatives. Scarce resources are important reasons to search for how to carry out channel expansions with minimized problems. Activity theory (AT focuses on the whole in order to detect problems that hinder successful outcomes. Hence, this theory was applied to prior findings, from a project about SME’s channel expansions, highlighting several problems that could appear during these activities. Implications for research foremost involve issues connected to the use of AT; implications for practice particularly concern if and how AT could be used to support channel broadening activities.

  7. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Chen Song

    Full Text Available The macroscopic Nernst-Planck (NP theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  8. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    Science.gov (United States)

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  9. Matching Theory for Channel Allocation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    L. Cao

    2016-12-01

    Full Text Available For a cognitive radio network (CRN in which a set of secondary users (SUs competes for a limited number of channels (spectrum resources belonging to primary users (PUs, the channel allocation is a challenge and dominates the throughput and congestion of the network. In this paper, the channel allocation problem is first formulated as the 0-1 integer programming optimization, with considering the overall utility both of primary system and secondary system. Inspired by matching theory, a many-to-one matching game is used to remodel the channel allocation problem, and the corresponding PU proposing deferred acceptance (PPDA algorithm is also proposed to yield a stable matching. We compare the performance and computation complexity between these two solutions. Numerical results demonstrate the efficiency and obtain the communication overhead of the proposed scheme.

  10. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    International Nuclear Information System (INIS)

    Green, Michael A.

    2007-01-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel

  11. Investigation of the (p,p'), (p,d) and (p,t) reactions on some light Sn isotopes

    International Nuclear Information System (INIS)

    Blankert, P.J.

    1979-01-01

    The results are presented of the 112 Sn(p,p') 112 Sn reaction. Apart from the usual distorted-wave analysis the excitation of some states is described in the coupled-channels formalism. The results of the 112 Sn(p,d) 111 Sn and the 112 Sn(p,t) 110 Sn reactions are also reported. From the (p,d) reaction quasi-particle energies and occupation numbers are determined. Two-step DWBA calculations are performed for some states that are assumed to result from the coupling of a quasiparticle to the 2 + 1 or 3 - 1 state of the even core. In the gross structure above 3 MeV of excitation, pickup strength from deeply-bound hole states is observed. The (p,t) reaction provided spin and parity of a number of levels in 110 Sn. A two-step DWBA analysis of the excitation of the ground state and first excited 2 + state shows the importance of second-order processes. The combined results of the (p,t) reactions on 112 Sn, 114 Sn and 116 Sn are given with some emphasis on the systematic features. The derivation is given of some expressions for spectroscopic amplitudes necessary in the two-step DWBA calculations for the (p,t) reactions. For all reactions a comparison is made with other existing data and with the results of model calculations. (Auth.)

  12. Matter couplings in supergravity theories

    International Nuclear Information System (INIS)

    Bagger, J.A.

    1983-01-01

    The N = 1 supersymmetric nonlinear sigma model is coupled to supergravity. The results are expressed in the language of Kahler geometry. Topological considerations constrain the scalar fields to lie on a Kahler manifold of restricted type, or a Hodge manifold. For topologically nontrivial manifolds, this leads to the quantization of Newton's constant in terms of the scalar self-coupling. The isometries of the N = 1 model are gauged. This gives a geometrical picture of what might be called the gauge invariant supersymmetric nonlinear sigma model. It also provides a new interpretation of the Fayet-Iliopoulos D-term. The gauge invariant supersymmetric nonlinear sigma model is coupled to N = 1 supergravity. This leads to a deeper understanding of the connections between supergravity, R-invariance and the Fayet-Iliopoulos D-term. It also provides a foundation for phenomenological studies of supergravity theories. Finally, the N = 2 supersymmetric nonlinear sigma model is coupled to supergravity. The scalar fields are found to lie on a negatively curved quaternionic manifold. This implies that matter self-couplings that are allowed in N = 2 supersymmetry are forbidden in N = 2 supergravity, and vice versa

  13. Infrared equivalence of strongly and weakly coupled gauge theories

    International Nuclear Information System (INIS)

    Olesen, P.

    1975-10-01

    Using the decoupling theorem of Apelquist and Carazzone, it is shown that in terms of Feynman diagrams the pure Yang-Mills theory is equivalent in the infrared limit to a theory (zero-mass renormalized), where the vector mesons are coupled fo fermions, and where the fermions do not decouple. By taking enough fermions it is then shown that even though the pure Yang-Mills theory is characterized by the lack of applicability of perturbation theory, nevertheless the effective coupling in the equivalent fermion description is very weak. The effective mass in the zero-mass renormalization blows up. In the fermion description, diagrams involving only vector mesons are suppressed relative to diagrams containing at least one fermion loop. (Auth.)

  14. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  15. Ab initio R-matrix/Multi-channel Quantum Defect Theory applied to Molecular Core Excitation and Ionization

    International Nuclear Information System (INIS)

    Hiyama, M.; Kosugi, N.

    2004-01-01

    Full text: Ab initio R-matrix/MQDT approach, which is a combination of ab initio R-matrix techniques and the multi channel quantum defect theory (MQDT), has recently been developed by one of the present authors (MH) and Child, to successfully obtain the potential energy curves of Rydberg states converging to not only the lowest but also the higher ionized states. This approach is also applied to estimate the valence state interaction with Rydberg and continuum (ionization) channels. Very recently we have made an original ab initio polyatomic R-matrix/MQDT program package, GSCF4R based on Gaussian type basis functions for the bound and continuum states, to extensively study molecular excitation and ionization in the X-ray region as well as in the VUV region. We are going to report the results for core excitation and ionization of diatomic molecules such as NO and O 2 to show that the R-matrix/MQDT method is indispensable to describe the core-to-Rydberg states with the higher quantum number and the continuum states. These results lead us to the conclusion that the close-coupling approximation augmented with the correlation term within the R-matrix/MQDT formalism is powerful to calculate the Rydberg-valence mixing and the interchannel coupling between several core-ionized states

  16. Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina.

    Directory of Open Access Journals (Sweden)

    Astrid Zayas-Santiago

    Full Text Available Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown.We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus, endowed with both diurnal and nocturnal vision, by (i immunohistochemistry, (ii whole-cell voltage-clamp, and (iii fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications.Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling.Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.

  17. The (φ4)3+1 theory with infinitesimal bare coupling constants

    International Nuclear Information System (INIS)

    Yotsuyanagi, I.

    1987-01-01

    We study the (φ 4 ) 3+1 theory by means of a variational method improved with a BCS-type vacuum state. We examine the theory with both negative and positive infinitesimal bare coupling constants, where the theory has been suggested to exist nontrivially and stably in the infinite ultraviolet cutoff limit. When the cutoff is sent to infinity, we find the instability of the vacuum energy at the end point value of the variational parameter in the case of the negative bare coupling constant. For the positive bare coupling constant, we can renormalize the vacuum energy without using the extremal condition with respect to the variational mass parameter. We do not find an instability for the whole range of parameters including the end point. We still have a possibility that the theory with this bare coupling constant is nontrivial and stable. (orig.)

  18. On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel

    2017-01-01

    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....

  19. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  20. Coupled Cluster Theory for Large Molecules

    DEFF Research Database (Denmark)

    Baudin, Pablo

    This thesis describes the development of local approximations to coupled cluster (CC) theory for large molecules. Two different methods are presented, the divide–expand–consolidate scheme (DEC), for the calculation of ground state energies, and a local framework denoted LoFEx, for the calculation...

  1. Spin foam models of Yang-Mills theory coupled to gravity

    International Nuclear Information System (INIS)

    Mikovic, A

    2003-01-01

    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barrett-Crane ansatz. In the Euclidean gravity case, we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidean gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity

  2. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  3. Optical model representation of coupled channel effects

    International Nuclear Information System (INIS)

    Wall, N.S.; Cowley, A.A.; Johnson, R.C.; Kobas, A.M.

    1977-01-01

    A modification to the usual 6-parameter Woods-Saxon parameterization of the optical model for the scattering of composite particles is proposed. This additional real term reflects the effect of coupling other channels to the elastic scattering. The analyses favor a repulsive interaction for this term, especially for alpha particles. It is found that the repulsive term when combined with a Woods-Saxon term yields potentials with central values and volume integrals similar to those found by uncoupled elastic scattering calculations. These values are V(r = 0) approximately equal to 125 MeV and J/4A approximately equal to 300 MeV-fm 3

  4. Strong coupling in F-theory and geometrically non-Higgsable seven-branes

    Directory of Open Access Journals (Sweden)

    James Halverson

    2017-06-01

    Full Text Available Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O(1 in the vicinity of the brane; that it sources nilpotent SL(2,Z monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU(3 and SU(2 seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany–Witten moves on (p,q string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres–Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.

  5. Coupled channel calculations of K-shell ionization in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Greiner, W.; Soff, G.

    1986-07-01

    We report theoretical results on K-shell ionization for a variety of asymmetric collision systems. The calculated ionization rates are compared with experimental data. The coupled channel formalism underlying these calculations is presented. It is based on a set of relativistic target centred states, taking a screened potential of Dirac-Fock-Slater type into account. We discuss the effects of different matrix elements, e.g. continuum-continuum couplings. The binding effect is inherently contained in our approach and described in a dynamical way. (orig.)

  6. Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides

    NARCIS (Netherlands)

    Bertolotti, M.; Symes, W.W.; Stoffer, Remco; Hiremath, K.R.; Driessen, A.; Michelotti, F; Hammer, Manfred

    Analysis of integrated optical cylindrical microresonators involves the coupling between a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is based on analytically represented mode profiles. With the bend modes expressed in Cartesian coordinates, coupled mode

  7. Channel coupling in A(e,e N)B reactions

    CERN Document Server

    Kell, J

    1999-01-01

    The sensitivity of momentum distributions, recoil polarization observables, and response functions for nucleon knockout by polarized electron scattering to channel coupling in final-state interactions is investigated using a model in which both the distorting and the coupling potentials are constructed by folding density-dependent nucleon-nucleon effective interactions with nuclear transition densities. Elastic reorientation, inelastic scattering, and charge exchange are included for all possible couplings within the model space. Calculations for sup 1 sup 6 O are presented for 200 and 433 MeV ejectile energies, corresponding to proposed experiments at MAMI and TJNAF, and for sup 1 sup 2 C at 70 and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative importance of charge exchange decreases as the ejectile energy increases, but remains significant for 200 MeV. Both proton and neutron knockout cross sections for large recoil momenta, p sub m greater than 300 MeV/c, are substantially affe...

  8. Siegert pseudostate formulation of scattering theory: two-channel case

    CERN Document Server

    Sitnikov, G V

    2003-01-01

    Siegert pseudostates (SPS) are a finite basis representation of Siegert states (SS) for finite-range potentials. This paper presents a generalization of the SPS formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura ÝPhys. Rev. A 58, 2077 (1998)¿ for s-wave scattering in the one-channel case, to s-wave scattering in the two-channel case. This includes the investigation of the properties of orthogonality and completeness of two-channel SPS and the derivation of the SPS expansions for the two- channel Green function, wave function, and scattering matrix. Similar to the one-channel case, two types of expansions for the scattering matrix are obtained: one has a form of a sum and requires the knowledge of both the SPS eigenvalues and eigenfunctions, while the other has a form of a product and involves the eigenvalues only. As the size of the basis tends to infinity, the product formulas obtained here in terms of SPS coincide with those given by Le Couteur ÝProc. R. Soc. Lo...

  9. The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    International Nuclear Information System (INIS)

    Kim, Bongsoo; Kawasaki, Kyozi

    2007-01-01

    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory. (fast track communication)

  10. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    Haddad, S.

    2010-01-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  11. Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering

    Science.gov (United States)

    Tang, K. T.; Karplus, M.

    1970-10-01

    A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the “linear model” is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.

  12. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  13. Study of the threshold anomaly in the scattering of polarized 7Li from 208Pb

    International Nuclear Information System (INIS)

    Martel, I.; Gomez-Camacho, J.; Blyth, C.O.; Davis, N.J.; Rusek, K.; Connell, K.A.; Lilley, J.S.; Bailey, M.W.

    1995-01-01

    Experimental data on elastic and inelastic analysing powers T 20 and inelastic cross sections for the scattering of polarized 7 Li from a 208 Pb target are presented. The experimental data are analyzed with DWBA and coupled channels calculations, which show the sensitivity of the experimental data to the real and imaginary parts of the nuclear transition form factor. This study reveals the existence of a threshold anomaly for the transition terms of the interaction. ((orig.))

  14. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria. E-mail: pscientific@aec.org.sy. MS received 10 June 2012; revised 18 October 2012; accepted 12 December 2012. Abstract. The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied ...

  15. Coupled-channel analysis of nucleon scattering from 40Ca

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1985-05-01

    Differential cross sections and analyzing powers for neutron scattering from 40 Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other σ(theta) and σsub(T) measurements, as well as available 40 Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + 40 Ca potential up to 80 MeV

  16. Coupled-channel analysis of nucleon scattering from 40Ca

    International Nuclear Information System (INIS)

    Delaroche, J.-P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1986-01-01

    Differential cross sections and analyzing powers for neutron scattering from 40 Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other σ(theta) and σsub(T) measurements, as well as available 40 Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + 40 Ca potential up to 80 MeV. (author)

  17. Coupled Model of channels in parallel and neutron kinetics in two dimensions

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.; Valle G, E. del

    2004-01-01

    In this work an arrangement of thermohydraulic channels is presented that represent those four quadrants of a nucleus of reactor type BWR. The channels are coupled to a model of neutronic in two dimensions that allow to generate the radial profile of power of the reactor. Nevertheless that the neutronic pattern is of two dimensions, it is supplemented with axial additional information when considering the axial profiles of power for each thermo hydraulic channel. The stationary state is obtained the one it imposes as frontier condition the same pressure drop for all the channels. This condition is satisfied to iterating on the flow of coolant in each channel to equal the pressure drop in all the channels. This stationary state is perturbed later on when modifying the values for the effective sections corresponding to an it assembles. The calculation in parallel of the neutronic and the thermo hydraulic is carried out with Vpm (Virtual parallel machine) by means of an outline teacher-slave in a local net of computers. (Author)

  18. Elements of a compatible optimization theory for coupled systems; Elements d'une theorie de l'optimisation compatible de systemes couples

    Energy Technology Data Exchange (ETDEWEB)

    Bonnemay, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [French] La premiere these traite de l'optimalisation compatible des systemes couples. Une theorie du jeu a deux joueurs et a somme non nulle est d'abord developpee. Ses conclusions sont etendues ensuite au jeu a un nombre fini quelconque de joueurs. Apres cette etude essentiellement statique, l'aspect dynamique du probleme est introduit dans les jeux evolutifs. L'application du principe du maximum de PONTRYAGIN permet d'enoncer un theoreme d'optimalite compatible qui constitue une condition necessaire. (auteur)

  19. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Science.gov (United States)

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  20. Dynamical coupled-channel analysis at EBAC. (Excited Baryon Analysis Center)

    International Nuclear Information System (INIS)

    Lee, T.-S.H.; Thomas Jefferson National Accelerator Facility, Newport News, VA

    2008-01-01

    In this contribution, the author reports on the dynamical coupled-channels analysis being pursued at the Excited Baryon Analysis Center (EBAC) of Jefferson Laboratory. EBAC was established in January 2006. Its objective is to extract the parameters associated with the excited states (N*) of the nucleon from the world data of meson production reactions, and to also develop theoretical interpretations of the extracted N* parameters

  1. Applying marketing channel theory to food marketing in developing countries: A vertical disintegration model for horticultural marketing channels in Kenya

    NARCIS (Netherlands)

    Dijkstra, T.; Meulenberg, M.T.G.; Tilburg, van A.

    2001-01-01

    This article shows that marketing channel theory, which has been extensively applied in developed countries, can also be of great value to the developing world. Notably, the channel approach makes it possible to explain the number of trade levels observed in food marketing systems. We propose here a

  2. Pitch Channel Control of a REMUS AUV with Input Saturation and Coupling Disturbances

    Directory of Open Access Journals (Sweden)

    Nailong Wu

    2018-02-01

    Full Text Available The motion of an underwater vehicle is prone to be affected by time-varying model parameters and the actuator limitation in control practice. Adaptive control is an effective method to deal with the general system dynamic uncertainties and disturbances. However, the effect of disturbances control on transient dynamics is not prominent. In this paper, we redesign the L 1 adaptive control architecture (L1AC with anti-windup (AW compensator to guarantee robust and fast adaption of the underwater vehicle with input saturation and coupling disturbances. To reduce the fluctuation of vehicle states, the Riccati-based AW compensator is utilized to compensate the output signal from L1AC controller via taking proper modification. The proposed method is applied to the pitch channel of REMUS vehicle’s six Degrees Of Freedom (DOF model with strong nonlinearities and compared with L1AC baseline controller. Simulations show the effectiveness of the proposed control strategy compared to the original L1AC. Besides, the fluctuation in roll channel coupled with pitch channel is suppressed according to the performances of control tests.

  3. Can Single-Reference Coupled Cluster Theory Describe Static Correlation?

    Science.gov (United States)

    Bulik, Ireneusz W; Henderson, Thomas M; Scuseria, Gustavo E

    2015-07-14

    While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher-body cluster operators in the ansatz, or allowing symmetry breaking in the reference. None of these solutions are ideal; multireference coupled cluster is not black box, including higher-body cluster operators is computationally demanding, and allowing symmetry breaking leads to the loss of good quantum numbers. It has long been recognized that quasidegeneracies can instead be treated by modifying the coupled cluster ansatz. The recently introduced pair coupled cluster doubles (pCCD) approach is one such example which avoids catastrophic failures and accurately models strong correlations in a symmetry-adapted framework. Here, we generalize pCCD to a singlet-paired coupled cluster model (CCD0) intermediate between coupled cluster doubles and pCCD, yielding a method that possesses the invariances of the former and much of the stability of the latter. Moreover, CCD0 retains the full structure of coupled cluster theory, including a fermionic wave function, antisymmetric cluster amplitudes, and well-defined response equations and density matrices.

  4. Coupled channel analysis of s-wave ππ and K anti-K photoproduction

    International Nuclear Information System (INIS)

    Chueng-Ryong Ji; Szczepaniak, A.; Kaminski, R.; Lesniak, L.; Williams, R.

    1997-10-01

    We present a coupled channel partial wave analysis of non-diffractive S-wave π + π - and K + K - photoproduction focusing on the K anti-K threshold. Final state interactions are included. We calculate total cross sections, angular and effective mass distributions in both ππ and K anti-K channels. Our results indicate that these processes are experimentally measurable and valuable information on the f 0 (980) resonance structure can be obtained. (author)

  5. A coupled deformation-diffusion theory for fluid-saturated porous solids

    Science.gov (United States)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  6. Energy dependence of the zero-range DWBA normalization of the /sup 58/Ni(/sup 3/He,. cap alpha. )/sup 57/Ni reaction. [15 to 205 GeV, finite-range and nonlocality corrections

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J R; Zimmerman, W R; Kraushaar, J J [Colorado Univ., Boulder (USA). Dept. of Physics and Astrophysics

    1977-01-04

    Strong transitions in the /sup 58/Ni(/sup 3/He,..cap alpha..)/sup 57/Ni reaction were analyzed using both the zero-range and exact finite-range DWBA. Data considered covered a range of bombarding energies from 15 to 205 MeV. The zero-range DWBA described all data well when finite-range and non-locality corrections were included in the local energy approximation. Comparison of zero-range and exact finite-range calculations showed the local energy approximation correction to be very accurate over the entire energy region. Empirically determined D/sub 0/ values showed no energy dependence. A theoretical D/sub 0/ value calculated using an ..cap alpha.. wave function which reproduced the measured ..cap alpha.. rms charge radius and the elastic electron scattering form factor agreed well the empirical values. Comparison was made between these values and D/sub 0/ values quoted previously in the literature.

  7. Physics and numerical methods of OPTMAN. A coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitations

    International Nuclear Information System (INIS)

    Soukhovitskii, Efrem Sh.; Morogovskii, Gennadij B.; Chiba, Satoshi; Iwamoto, Osamu; Fukahori, Tokio

    2004-03-01

    This report gives a detailed description of the theory and computational algorithms of modernized coupled-channels optical model code OPTMAN based on the soft-rotator model for the collective nuclear structure and excitations. This work was performed under the Project Agreement B-521 with the International Science and Technology Center (Moscow), financing party of which is Japan. As a result of this work, the computational method of OPTMAN was totally updated, and an user-friendly interface was attached. (author)

  8. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  9. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    Science.gov (United States)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  10. Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing.

    Science.gov (United States)

    Irie, Tomohiko; Trussell, Laurence O

    2017-11-15

    Action potentials clustered into high-frequency bursts play distinct roles in neural computations. However, little is known about ionic currents that control the duration and probability of these bursts. We found that, in cartwheel inhibitory interneurons of the dorsal cochlear nucleus, the likelihood of bursts and the interval between their spikelets were controlled by Ca 2+ acting across two nanodomains, one between plasma membrane P/Q Ca 2+ channels and endoplasmic reticulum (ER) ryanodine receptors and another between ryanodine receptors and large-conductance, voltage- and Ca 2+ -activated K + (BK) channels. Each spike triggered Ca 2+ -induced Ca 2+ release (CICR) from the ER immediately beneath somatic, but not axonal or dendritic, plasma membrane. Moreover, immunolabeling demonstrated close apposition of ryanodine receptors and BK channels. Double-nanodomain coupling between somatic plasma membrane and hypolemmal ER cisterns provides a unique mechanism for rapid control of action potentials on the millisecond timescale. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. On the Chew-Low plot as a limiting case of the distorted wave theory of break-up reactions

    International Nuclear Information System (INIS)

    Baur, G.

    1976-01-01

    A recently developed formulation of break-up reactions in the frame of the DW approximation is compared to a theory of Chew and Low given in 1958. By suitably rewriting the DWBA matrix element, one can pick out a term, dominant for certain kinematical conditions, which is identical to the expression given by Chew and Low. (orig.) [de

  12. Measurement of the Higgs boson coupling properties in the diphoton, ZZ and WW decay channels using the ATLAS detector

    CERN Document Server

    Gupta, Ruchi; The ATLAS collaboration

    2017-01-01

    The coupling properties of the Higgs boson are studied in the diphoton, ZZ to four-lepton decay channels using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Measurements of simplified template cross sections, designed to measure the different Higgs boson production processes in specific regions of phase space, are reported for diphoton and four-leptons decay channels. Cross sections for different higgs boson production modes are interpreted in terms of coupling modifiers. In ZZ decay channel, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model.

  13. Minimal coupling schemes in N-body reaction theory

    International Nuclear Information System (INIS)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1982-01-01

    A new derivation of the N-body equations of Bencze, Redish, and Sloan is obtained through the use of Watson-type multiple scattering techniques. The derivation establishes an intimate connection between these partition-labeled N-body equations and the particle-labeled Rosenberg equations. This result yields new insight into the implicit role of channel coupling in, and the minimal dimensionality of, the partition-labeled equations

  14. An incident flux expansion transport theory method suitable for coupling to diffusion theory methods in hexagonal geometry

    International Nuclear Information System (INIS)

    Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang

    2013-01-01

    Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s

  15. Theory of free-bound transitions in channeling radiation

    International Nuclear Information System (INIS)

    Saenz, A.W.; Nagl, A.; Uberall, H.

    1988-01-01

    On the basis of a single-string model, we derive formulas for the transition strengths of free-bound transitions of axially channeled electrons. We illustrate the theory by numerical calculations of these strengths for 3.5-MeV electrons in Si. Experimental evidence for such transitions has been obtained previously [J.U. Andersen et al., Nucl. Instrum. Methods 194, 209 (1982)] and is in good qualitative agreement with our calculations

  16. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  17. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2014-08-07

    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  18. New singularities in nonrelativistic coupled channel scattering. II. Fourth order

    International Nuclear Information System (INIS)

    Khuri, N.N.; Tsun Wu, T.

    1997-01-01

    We consider a two-channel nonrelativistic potential scattering problem, and study perturbation theory in fourth order for the forward amplitude. The main result is that the new singularity demonstrated in second order in the preceding paper I also occurs at the same point in fourth order. Its strength is again that of a pole. copyright 1997 The American Physical Society

  19. Connection dynamics of a gauge theory of gravity coupled with matter

    International Nuclear Information System (INIS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-01-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert–Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero–Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert–Palatini term and the quadratic torsion term in this gauge theory of gravity. (paper)

  20. Vanishing chiral couplings in the large-NC resonance theory

    International Nuclear Information System (INIS)

    Portoles, Jorge; Rosell, Ignasi; Ruiz-Femenia, Pedro

    2007-01-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-N C chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/N C expansion

  1. Reaction channel coupling effects for nucleons on 16O: Induced undularity and proton-neutron potential differences

    Science.gov (United States)

    Keeley, N.; Mackintosh, R. S.

    2018-01-01

    Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.

  2. Yukawa couplings in SO(10) heterotic M-theory vacua

    International Nuclear Information System (INIS)

    Faraggi, Alon E.; Garavuso, Richard S.

    2003-01-01

    We demonstrate the existence of a class of N=1 supersymmetric nonperturbative vacua of Horava-Witten M-theory compactified on a torus fibered Calabi-Yau 3-fold Z with first homotopy group π 1 (Z)=Z 2 , having the following properties: (1) SO(10) grand unification group, (2) net number of three generations of chiral fermions in the observable sector, and (3) potentially viable matter Yukawa couplings. These vacua correspond to semistable holomorphic vector bundles V Z over Z having structure group SU(4) C , and generically contain M5-branes in the bulk space. The nontrivial first homotopy group allows Wilson line breaking of the SO(10) symmetry. Additionally, we propose how the 11-dimensional Horava-Witten M-theory framework may be used to extend the perturbative calculation of the top quark Yukawa coupling in the realistic free-fermionic models to the nonperturbative regime. The basic argument being that the relevant coupling couples twisted-twisted-untwisted states and can be calculated at the level of the Z 2 xZ 2 orbifold without resorting to the full three generation models

  3. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  4. Mothers "Google It Up:" Extending Communication Channel Behavior in Diffusion of Innovations Theory.

    Science.gov (United States)

    Sundstrom, Beth

    2016-01-01

    This study employed qualitative methods, conducting 44 in-depth interviews with biological mothers of newborns to understand women's perceptions and use of new media, mass media, and interpersonal communication channels in relation to health issues. Findings contribute to theoretical and practical understandings of the role of communication channels in diffusion of innovations theory. In particular, this study provides a foundation for the use of qualitative research to advance applications of diffusion of innovations theory. Results suggest that participants resisted mass media portrayals of women's health. When faced with a health question, participants uniformly started with the Internet to "Google it up." Findings suggest new media comprise a new communication channel with new rules, serving the functions of both personal and impersonal influence. In particular, pregnancy and the postpartum period emerged as a time when campaign planners can access women in new ways online. As a result, campaign planners could benefit from introducing new ideas online and capitalizing on the strength of weak ties favored in new media. Results expand the innovativeness/needs paradox in diffusion of innovations theory by elaborating on the role of new media to reach underserved populations. These findings provide an opportunity to better understand patient information seeking through the lens of diffusion of innovations theory.

  5. A theory of burn-out in heated channels at low mass velocities

    International Nuclear Information System (INIS)

    Randles, J.

    1963-01-01

    At low coolant mass velocities the fraction by weight of vapour flowing out of heated channels can become extremely large (∼ 90%). Consequently, the dominating feature of burn-out at small flow rates is that it occurs at high vapour qualities. For such a high degree of evaporation, the induced turbulence is very strong and the liquid phase is dispersed into a spray of droplets. By the application of the first law of thermodynamics and some basic relationships of turbulence theory to this spray, it is shown how an expression for the critical heat flux can be derived. By comparing this expression with the data from burn-out measurements on uniformly heated channels, reasonably good agreement is obtained. It is demonstrated that eddy slip and channel geometry are extremely important in the determination of the level of turbulence in the droplet motion. Having thus established a reasonable degree of plausibility for the theory, it is applied to channels heated by a chopped cosine form of power distribution. The results indicate that the effect of the axial variation of the power on the burnout heat flux can be described in a simple manner. (author)

  6. Convergent close-coupling method: a `complete scattering theory`?

    Energy Technology Data Exchange (ETDEWEB)

    Bray, I; Fursa, D V

    1995-09-01

    It is demonstrated that a single convergent close-coupling (CCC) calculation of 100 eV electron impact on the ground state of helium is able to provide accurate elastic and inelastic (n {<=} 3 levels) differential cross sections, as well as singly-, doubly-, and triply-, differential ionization cross sections. Hence, it is suggested that the CCC theory deserve the title of a `complete scattering theory`. 28 refs., 5 figs.

  7. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  8. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  9. Multispectral Detection with Metal-Dielectric Filters: An Investigation in Several Wavelength Bands with Temporal Coupled-Mode Theory

    Science.gov (United States)

    Lesmanne, Emeline; Espiau de Lamaestre, Roch; Boutami, Salim; Durantin, Cédric; Dussopt, Laurent; Badano, Giacomo

    2016-09-01

    Multispectral infrared (IR) detection is of great interest to enhance our ability to gather information from a scene. Filtering is a low-cost alternative to the complex multispectral device architectures to which the IR community has devoted much attention. Multilayer dielectric filters are standard in industry, but they require changing the thickness of at least one layer to tune the wavelength. Here, we pursue an approach based on apertures in a metallic layer of fixed thickness, in which the filtered wavelengths are selected by varying the aperture geometry. In particular, we study filters made of at least one sheet of resonating apertures in metal embedded in dielectrics. We will discuss two interesting problems that arise when one attempts to design such filters. First, metallic absorption must be taken into account. Second, the form and size of the pattern is limited by lithography. We will present some design examples and an attempt at explaining the filtering behavior based on the temporal coupled mode theory. That theory models the filter as a resonator interacting with the environment via loss channels. The transmission is solely determined by the loss rates associated with those channels. This model allows us to give a general picture of the filtering performance and compare their characteristics at different wavelength bands.

  10. Investigating the relationship between watching satellite channels and intimacy and marital satisfaction of couples in Isfahan, Iran, in 2014.

    Science.gov (United States)

    Babaie, Zohre; Keshvari, Mahrokh; Zamani, Ahmadreza

    2016-01-01

    In the age of communication and media that families are rapidly driven towards using satellite channels and other media, considering family health in this regard is essential. A determinant of health is marital satisfaction. The aim of this study was to investigate the relationship between watching satellite channels and intimacy and marital satisfaction in Isfahan, Iran. This cross-sectional and correlational study was conducted on one group of 480 couples ( n = 960) participating from 8 health-treatment centers in Isfahan. Multi-stage cluster sampling was used in this study. Inclusion criteria included at least 2 years of marriage. After completion of Bagarozzi's Marital Intimacy Questionnaire and ENRICH Marital Inventory, the couples were divided into two groups based on watching satellite networks. Data were analyzed using SPSS 18. There was a significant relationship between intimacy and marital satisfaction in both viewers and non-viewers of satellite channels ( P satellite viewing group was 22.4 minutes and in non-viewers group was 47.95 min. In addition, the duration of interaction had a significant relationship with marital satisfaction and intimacy ( P satellite channels reduced the intimacy and marital satisfaction of the couples, and duration of interaction among the couples.

  11. Coupled-channel analysis of nucleon scattering from /sup 40/Ca

    Energy Technology Data Exchange (ETDEWEB)

    Delaroche, J.-P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1986-01-01

    Differential cross sections and analyzing powers for neutron scattering from /sup 40/Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other sigma(theta) and sigmasub(T) measurements, as well as available /sup 40/Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + /sup 40/Ca potential up to 80 MeV.

  12. The calculation of Feshbach resonances using coupled propagator equations

    International Nuclear Information System (INIS)

    Zhan, Hongbin; Zhang, Yinchun; Winkler, P.

    1994-01-01

    A coupled channel theory of resonances has been formulated within the propagator approach of man-body theory and applied to the 1s3s 2 resonance of e-helium scattering. This system has previously been studied both experimentally and theoretically. These results for the width of the resonance agree well with these earlier findings

  13. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    Science.gov (United States)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  14. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  15. A theory manual for multi-physics code coupling in LIME.

    Energy Technology Data Exchange (ETDEWEB)

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  16. Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Anco, Stephen C.

    2003-01-01

    A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here

  17. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    International Nuclear Information System (INIS)

    Gonzalez-Martin, S.; Martin, C.P.

    2018-01-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion → fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κy 2 order of the vertex involving two fermions and one graviton only. (orig.)

  18. High-energy scattering in strongly coupled N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Sprenger, Martin

    2014-11-01

    This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS 5 x S 5 -geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS 5 . This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the multi

  19. Theory of bulk-surface coupling in topological insulator films

    Science.gov (United States)

    Saha, Kush; Garate, Ion

    2014-12-01

    We present a quantitative microscopic theory of the disorder- and phonon-induced coupling between surface and bulk states in doped topological insulator films. We find a simple mathematical structure for the surface-to-bulk scattering matrix elements and confirm the importance of bulk-surface coupling in transport and photoemission experiments, assessing its dependence on temperature, carrier density, film thickness, and particle-hole asymmetry.

  20. The mass spectrum and coupling in affine Toda theories

    International Nuclear Information System (INIS)

    Fring, A.; Liao, H.C.; Olive, D.I.

    1991-01-01

    We provide a unified derivation of the mass spectrum and the three point coupling of the classical affine Toda field theories, using general Lie algebraic techniques. The masses are proportional to the components of the right Perron-Frobenius vector and the three point coupling is proportional to the area of the triangle formed by the masses of the fusing particles. (orig.)

  1. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  2. Random matrix theory of multi-antenna communications: the Ricean channel

    International Nuclear Information System (INIS)

    Moustakas, Aris L; Simon, Steven H

    2005-01-01

    The use of multi-antenna arrays in wireless communications through disordered media promises huge increases in the information transmission rate. It is therefore important to analyse the information capacity of such systems in realistic situations of microwave transmission, where the statistics of the transmission amplitudes (channel) may be coloured. Here, we present an approach that provides analytic expressions for the statistics, i.e. the moments of the distribution, of the mutual information for general Gaussian channel statistics. The mathematical method applies tools developed originally in the context of coherent wave propagation in disordered media, such as random matrix theory and replicas. Although it is valid formally for large antenna numbers, this approach produces extremely accurate results even for arrays with as few as two antennas. We also develop a method to analytically optimize over the input signal distribution, which enables us to calculate analytic capacities when the transmitter has knowledge of the statistics of the channel. The emphasis of this paper is on elucidating the novel mathematical methods used. We do this by analysing a specific case when the channel matrix is a complex Gaussian with arbitrary mean and unit covariance, which is usually called the Ricean channel

  3. Coupled-channel analysis of nucleon scattering from /sup 40/Ca

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1985-01-01

    Differential cross sections and analyzing powers for neutron scattering from /sup 40/Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other σ(θ) and σ/sub T/ measurements, as well as available /sup 40/Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + /sup 40/Ca potential up to 80 MeV

  4. A unitary approach to the coupling between the NN and πNN channels

    International Nuclear Information System (INIS)

    Blankleider, B.

    1980-11-01

    Some basic properties of the πNN system, in particular its coupling to the NN channel, are investigated. A set of linear integral equations that couple the N-N to the π-d channel, and satisfy two- and three-body unitarity is derived. By including the π-N amplitude in the P 11 channel, and retaining certain disconnected diagrams, it is found that the propagators for the nucleons, and form factors for the vertices, become dressed without changing the basic structure of the equations. For the numerical solution relativistic kinematics for the pion and non-relativistic kinematics for the nucleons are used. There is uncertainty about the importance of real pion absorption in the π-d elastic scattering reaction. Although the effect of absorption can be very large, its influence is cancelled to a large extent by the further inclusion of P 11 rescattering. The inclusion of absorption signnificantly lowers the dips in the π-d differential cross sections at higher energies. The model is able to reproduce the sole experimental value of the tensor polarization t 20 at 180 deg. so far available. Numerical results for the reaction NN→πd are in excellent agreement with the differential cross sections at all but the very high energies

  5. Seniority zero pair coupled cluster doubles theory

    International Nuclear Information System (INIS)

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-01-01

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems

  6. On Yang--Mills Theories with Chiral Matter at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-08-20

    Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.

  7. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  8. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  9. Fivebrane instantons and higher derivative couplings in type I theory

    International Nuclear Information System (INIS)

    Hammou, Amine B.; Morales, Jose F.

    2000-01-01

    We express the infinite sum of D5-brane instanton corrections to R 2 couplings in N=4 type I string vacua, in terms of an elliptic index counting 1/2-BPS excitations in the effective Sp(N) brane theory. We compute the index explicitly in the infrared, where the effective theory is argued to flow to an orbifold CFT. The form of the instanton sum agrees completely with the predicted formula from a dual one-loop computation in type IIA theory on K3xT 2 . The proposed CFT provides a proper description of the whole spectrum of masses, charges and multiplicities for 1/2- and 1/4-BPS states, associated to bound states of D5-branes and KK momenta. These results are applied to show how fivebrane instanton sums, entering higher derivative couplings which are sensitive to 1/4-BPS contributions, also match the perturbative results in the dual type IIA theory

  10. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.

    Science.gov (United States)

    Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A

    2006-02-01

    Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.

  11. Interpretation of bend strength increase of graphite by the couple-stress theory

    International Nuclear Information System (INIS)

    Tang, P.Y.

    1981-05-01

    This paper presents a continued evaluation of the applicability of the couple-stress constitutive theory to graphite. The evaluation is performed by examining four-point bend and uniaxial tensile data of various sized cylindrical and square specimens for three grades of graphites. These data are superficially inconsistent and, usually, at variance with the predictions of classical theories. Nevertheless, this evaluation finds that they can be consistently interpreted by the couple-stress theory. This is compatible with results of an initial evaluation that considered one size of cylindrical specimen for H-451 graphite

  12. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  13. Phi-value analysis of a linear, sequential reaction mechanism: theory and application to ion channel gating.

    Science.gov (United States)

    Zhou, Yu; Pearson, John E; Auerbach, Anthony

    2005-12-01

    We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.

  14. Elements of a compatible optimization theory for coupled systems; Elements d'une theorie de l'optimisation compatible de systemes couples

    Energy Technology Data Exchange (ETDEWEB)

    Bonnemay, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [French] La premiere these traite de l'optimalisation compatible des systemes couples. Une theorie du jeu a deux joueurs et a somme non nulle est d'abord developpee. Ses conclusions sont etendues ensuite au jeu a un nombre fini quelconque de joueurs. Apres cette etude essentiellement statique, l'aspect dynamique du probleme est introduit dans les jeux evolutifs. L'application du principe du maximum de PONTRYAGIN permet d'enoncer un theoreme d'optimalite compatible qui constitue une condition necessaire. (auteur)

  15. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    Science.gov (United States)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  16. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    International Nuclear Information System (INIS)

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-01-01

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10 8 -fold range of Ca 2+ concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to

  17. Strong coupling gauge theories and effective field theories. Proceedings of the 2002 international workshop

    International Nuclear Information System (INIS)

    Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi

    2003-01-01

    This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)

  18. Direct reactions and nuclear spectroscopy; forward into the 21st century

    International Nuclear Information System (INIS)

    Keeley, N.

    2006-01-01

    The use of direct reactions of the (d,p) (3He,d) etc. type in nuclear spectroscopy has a long history. The availability of beams of exotic nuclei has seen a resurgence of interest in the technique as a means of probing the structure of nuclei close to, or even beyond, the driplines. Analysis of these reactions to extract spectroscopic information has usually been performed with standard DWBA. However, while the DWBA is still useful, as it is based on first-order perturbation theory it should only be used where couplings are weak and proceed predominantly in a single step. Examples where either or both of these conditions are violated, with important consequences for the spectroscopic information extracted, are presented. Some of the sources of uncertainty that remain in the derived quantities are also discussed, along with possible means of reducing them

  19. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    Science.gov (United States)

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. More Than Flow: Revisiting the Theory of Four Channels of Flow

    Directory of Open Access Journals (Sweden)

    Ching-I Teng

    2012-01-01

    Full Text Available Flow (FCF theory has received considerable attention in recent decades. In addition to flow, FCF theory proposed three influential factors, that is, boredom, frustration, and apathy. While these factors have received relatively less attention than flow, Internet applications have grown exponentially, warranting a closer reexamination of the applicability of the FCF theory. Thus, this study tested the theory that high/low levels of skill and challenge lead to four channels of flow. The study sample included 253 online gamers who provided valid responses to an online survey. Analytical results support the FCF theory, although a few exceptions were noted. First, skill was insignificantly related to apathy, possibly because low-skill users can realize significant achievements to compensate for their apathy. Moreover, in contrast with the FCF theory, challenge was positively related to boredom, revealing that gamers become bored with difficult yet repetitive challenges. Two important findings suggest new directions for FCF theory.

  1. Dirac potentials in a coupled channel approach to inelastic scattering

    International Nuclear Information System (INIS)

    Mishra, V.K.; Clark, B.C.; Cooper, E.D.; Mercer, R.L.

    1990-01-01

    It has been shown that there exist transformations that can be used to change the Lorentz transformation character of potentials, which appear in the Dirac equation for elastic scattering. We consider the situation for inelastic scattering described by coupled channel Dirac equations. We examine a two-level problem where both the ground and excited states are assumed to have zero spin. Even in this simple case we have not found an appropriate transformation. However, if the excited state has zero excitation energy it is possible to find a transformation

  2. Theory and simulation of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1979-01-01

    The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results

  3. Elastic enhancement factor in the 11B(p,n0)11C reaction at Ep=14.3 MeV

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pessoa, E.F.; Schelin, H.R.; Carlson, B.V.; Douglas, R.A.

    1985-01-01

    The elastic enhancement factor in charge exchange reactions proceeding via the compound nucleus, predicted to attain the value of 2 in the weak isospin mixing regime by Harney, Weidenmuller and Richter five years ago, is tested here in the system 11 B(p,n) 11 C at = 14.3 MeV. Both the DWBA and Hauser-Feshbach calculations employed in the analysis are used in a way which physically simulates a two coupled-channels model. Our results show an enhancement factor larger than 1 indicating that isospin is mainly conserved in this reaction. (Author) [pt

  4. Doublet channel neutron-deuteron scattering in leading order effective field theory

    OpenAIRE

    B. BlankleiderFlinders U.; J. Gegelia(INFN)

    2015-01-01

    The doublet channel neutron-deuteron scattering amplitude is calculated in leading order effective field theory (EFT). It is shown that this amplitude does not depend on a constant contact interaction three-body force. Satisfactory agreement with available data is obtained when only two-body forces are included.

  5. Development of sub-channel/system coupled code and its application to a supercritical water-cooled test loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Yang, T.; Cheng, X.

    2014-01-01

    To analyze the local thermal-hydraulic parameters in the supercritical water reactor-fuel qualification test (SCWR-FQT) fuel bundle with a flow blockage, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code and system code are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal-hydraulic parameters are predicted by the sub-channel code COBRA-SC. Sensitivity analysis are carried out respectively in ATHLET-SC and COBRA-SC code, to identify the appropriate models for description of the flow blockage phenomenon in the test loop. Some measures to mitigate the accident consequence are also trialed to demonstrate their effectiveness. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel assembly can be reduced effectively by the safety measures of SCWR-FQT. (author)

  6. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials

    International Nuclear Information System (INIS)

    Silveirinha, Mario G.; Engheta, Nader

    2007-01-01

    In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field confinement originally identified by Silveirinha and Engheta [Phys. Rev. Lett. 97, 157403 (2006)], where we demonstrated the possibility of using materials with permittivity ε near zero to drastically improve the transmission of electromagnetic energy through a narrow irregular channel with very subwavelength transverse cross section. Here, we present additional physical insights, describe applications of the tunneling effect in relevant waveguide scenarios (e.g., the 'perfect' or 'super' waveguide coupling), and study the effect of metal losses in the metallic walls and the possibility of using near-zero ε materials to confine energy in a subwavelength cavity with gigantic field enhancement. In addition, we systematically study the propagation of electromagnetic waves through narrow channels filled with anisotropic near-zero ε materials. It is demonstrated that these materials may have interesting potentials, and that for some particular geometries, the reflectivity of the channel is independent of the specific dimensions or parameters of near-zero ε transition. We also describe several realistic metamaterial implementations of the studied problems, based on standard metallic waveguides, microstrip line configurations, and wire media

  7. Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston E

    2003-06-07

    The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.

  8. Theories of quantum dissipation and nonlinear coupling bath descriptors

    Science.gov (United States)

    Xu, Rui-Xue; Liu, Yang; Zhang, Hou-Dao; Yan, YiJing

    2018-03-01

    The quest of an exact and nonperturbative treatment of quantum dissipation in nonlinear coupling environments remains in general an intractable task. In this work, we address the key issues toward the solutions to the lowest nonlinear environment, a harmonic bath coupled both linearly and quadratically with an arbitrary system. To determine the bath coupling descriptors, we propose a physical mapping scheme, together with the prescription reference invariance requirement. We then adopt a recently developed dissipaton equation of motion theory [R. X. Xu et al., Chin. J. Chem. Phys. 30, 395 (2017)], with the underlying statistical quasi-particle ("dissipaton") algebra being extended to the quadratic bath coupling. We report the numerical results on a two-level system dynamics and absorption and emission line shapes.

  9. Thermalization and confinement in strongly coupled gauge theories

    Directory of Open Access Journals (Sweden)

    Ishii Takaaki

    2016-01-01

    Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.

  10. Agency Theory, Futures Markets and Risk Shifting in Commodity Marketing Channels

    NARCIS (Netherlands)

    Kuwornu, J.K.M.; Kuiper, W.E.; Pennings, J.M.E.; Meulenberg, M.T.G.

    2004-01-01

    This paper applies agency theory to access risk shifting between the principal (marketing firms) and the agent (farmers) in a food marketing channel. It compares the case in which there is a futures market available for the risk-averse agents with the case in which there is no futures trading. The

  11. E{sub 6} Yukawa couplings in F-theory as D-brane instanton effects

    Energy Technology Data Exchange (ETDEWEB)

    Collinucci, Andrés [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany)

    2017-03-29

    At weak coupling the neighborhood of a E{sub 6} Yukawa point in SU(5) GUT F-theory models is described by a non-resolvable orientifold of the conifold. We explicitly show, first directly in IIB and then via a mirror symmetry argument, that in this limit the E{sub 6} Yukawa coupling is better described as coming from the non-perturbative contribution of a euclidean D1-brane wrapping the non-resolvable cycle. We also discuss how the M-theory description interpolates between the weak and strong coupling viewpoints.

  12. Weak and strong coupling equilibration in nonabelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, Liam [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Kurkela, Aleksi [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Faculty of Science and Technology, University of Stavanger,4036 Stavanger (Norway); Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder,Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado,Boulder, Colorado 80309 (United States); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge, MA 02139 (United States); Zhu, Yan [Department of Physics, University of Jyväskyla, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics,P.O. Box 64, 00014 University of Helsinki (Finland)

    2016-04-06

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  13. Weak and strong coupling equilibration in nonabelian gauge theories

    International Nuclear Information System (INIS)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; Schee, Wilke van der; Zhu, Yan

    2016-01-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  14. Gauge coupling unification from unified theories in higher dimensions

    International Nuclear Information System (INIS)

    Hall, Lawrence J.; Nomura, Yasunori

    2002-01-01

    Higher dimensional grand unified theories, with gauge symmetry breaking by orbifold compactification, possess SU(5) breaking at fixed points, and do not automatically lead to tree-level gauge coupling unification. A new framework is introduced that guarantees precise unification--even the leading loop threshold corrections are predicted, although they are model dependent. Precise agreement with the experimental result, α s exp =0.117±0.002, occurs only for a unique theory, and gives α s KK =0.118±0.004±0.003. Remarkably, this unique theory is also the simplest, with SU(5) gauge interactions and two Higgs hypermultiplets propagating in a single extra dimension. This result is more successful and precise than that obtained from conventional supersymmetric grand unification, α s SGUT =0.130±0.004±Δ SGUT . There is a simultaneous solution to the three outstanding problems of 4D supersymmetric grand unified theories: a large mass splitting between Higgs doublets and their color triplet partners is forced, proton decay via dimension five operators is automatically forbidden, and the absence of fermion mass relations amongst light quarks and leptons is guaranteed, while preserving the successful m b /m τ relation. The theory necessarily has a strongly coupled top quark located on a fixed point and part of the lightest generation propagating in the bulk. The string and compactification scales are determined to be around 10 17 GeV and 10 15 GeV, respectively

  15. Estimating Total Fusion Cross Sections by Using a Coupled-Channel Method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki-Seok; Cheoun, Myung-Ki [Soongsil University, Seoul (Korea, Republic of); Kim, K. S. [Korea Aerospace University, Koyang (Korea, Republic of); Kim, T. H.; So, W. Y. [Kangwon National University at Dogye, Samcheok (Korea, Republic of)

    2017-01-15

    We calculate the total fusion cross sections for the {sup 6}He + {sup 209}Bi, {sup 6}Li + {sup 209}Bi,{sup 9}Be + {sup 208}Pb, {sup 10}Be + {sup 209}Bi, and {sup 11}Li + {sup 208}Pb systems by using a coupled-channel (CC) method and compare the results with the experimental data. In the CC approach for the total fusion cross sections, we exploit a globally determined Wood-Saxon potential with Aky¨uz-Winther parameters and couplings of the ground state to the low-lying excited states in the projectile and the target nuclei. The total fusion cross sections obtained with the CC are compared with those obtained without the CC couplings. The latter approach is tantamount to a one-dimensional barrier penetration model. Finally, our approach is applied to understand new data for the {sup 11}Li+{sup 208}Pb system. Possible ambiguities inherent in those approaches are discussed in detail for further applications to the fusion system of halo and/or neutron-rich nuclei.

  16. Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ensign, P.W.

    1987-01-01

    By the Adler-Bardeen theorem, only one-loop Feynman diagrams contribute to the anomalous divergences of quantum axial currents. The anomalous nature of scale transformations is manifested by an anomalous trace of the energy-momentum tensor, T/sup μ//sub μ/. Renormalization group arguments show that the quantum T/sup μ//sub μ/ must be proportional to the β-function. Since the β-function receives contributions at all loop levels, the Adler-Bardeen theorem appears to conflict with supersymmetry. Recently Grisaru, Milewski and Zanon constructed a supersymmetric axial current for pure supersymmetric Yang-Mills theory which satisfies the Adler-Bardeen theorem to two-loops. They used supersymmetric background field theory and regularization by dimensional reduction to maintain manifest supersymmetry and gauge invariance. In this thesis, their construction is extended to supersymmetric Yang-Mills theory coupled to chiral matter fields. The Adler-Bardeen theorem is then proven to all orders in perturbation theory for both the pure and coupled theories. The extension to coupled supersymmetric Yang-Mills supports the general validity of these techniques, and adds considerable insight into the structure of the anomalies. The all orders proof demonstrates that there is no conflict between supersymmetry and the Adler-Bardeen theorem

  17. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    Science.gov (United States)

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  18. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  19. Cosmological three-coupled scalar theory for the dS/LCFT correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo; Moon, Taeyoon, E-mail: ysmyung@inje.ac.kr, E-mail: tymoon@inje.ac.kr [Institute of Basic Science and Department of Computer Simulation, Inje University, Gimhae 621-749 (Korea, Republic of)

    2015-01-01

    We investigate cosmological perturbations generated during de Sitter inflation in the three-coupled scalar theory. This theory is composed of three coupled scalars φ{sub p},p=1,2,3) to give a sixth-order derivative scalar theory for φ{sub 3}, in addition to tensor. Recovering the power spectra between scalars from the LCFT correlators in momentum space indicates that the de Sitter/logarithmic conformal field theory (dS/LCFT) correspondence works in the superhorizon limit. We use LCFT correlators derived from the dS/LCFT differentiate dictionary to compare cosmological correlators (power spectra) and find also LCFT correlators by making use of extrapolate dictionary. This is because the former approach is more conventional than the latter. A bulk version dual to the truncation process to find a unitary CFT in the LCFT corresponds to selecting a physical field φ{sub 2} with positive norm propagating on the dS spacetime.

  20. Continuum orbital approximations in weak-coupling theories for inelastic electron scattering

    International Nuclear Information System (INIS)

    Peek, J.M.; Mann, J.B.

    1977-01-01

    Two approximations, motivated by heavy-particle scattering theory, are tested for weak-coupling electron-atom (ion) inelastic scattering theory. They consist of replacing the one-electron scattering orbitals by their Langer uniform approximations and the use of an average trajectory approximation which entirely avoids the necessity for generating continuum orbitals. Numerical tests for a dipole-allowed and a dipole-forbidden event, based on Coulomb-Born theory with exchange neglected, reveal the error trends. It is concluded that the uniform approximation gives a satisfactory prediction for traditional weak-coupling theories while the average approximation should be limited to collision energies exceeding at least twice the threshold energy. The accuracy for both approximations is higher for positive ions than for neutral targets. Partial-wave collision-strength data indicate that greater care should be exercised in using these approximations to predict quantities differential in the scattering angle. An application to the 2s 2 S-2p 2 P transition in Ne VIII is presented

  1. Coupled-channel dynamics in the Nambu--Jona-Lasinio model

    International Nuclear Information System (INIS)

    Celenza, L.S.; Pantziris, A.; Shakin, C.M.; Szweda, J.

    1993-01-01

    We study the scalar-isoscalar sector of the Nambu--Jona-Lasinio (NJL) model and extend the model to include a description of the coupling of the quark-antiquark states to the two-pion continuum. The q bar q interaction gives rise to a sigma meson, which takes on a width and energy shift that depends upon the strength of the coupling for q+bar q→π+π. (For weak channel coupling, the resonance is located at the mass of the sigma, m σ congruent 2m q cons , where m q cons is the constituent quark mass of the NJL model.) We consider two models for the q bar q→ππ coupling. In the first model, we find a low-energy resonance, with the resonance energy E R ≤2m q cons . We then see that the values, obtained from the analysis of experimental data, of the scalar-isoscalar phase shift describing ππ scattering δ 0 0 , are not compatible with the existence of a low-mass sigma. In the second model, the resonance is pushed upward into the region of the two-quark continuum, E R >2m q cons . This second model provides an example of a phenomenon where the behavior of the q bar q T matrix is parametrized for q 2 ≤0 by a mass that is smaller than the physical mass that characterizes the pole in the T matrix. The behavior of the second model suggests how the absence of experimental evidence for a low-mass sigma may be reconciled with the importance of such a meson in nuclear structure studies

  2. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  3. On the theory of coupled πNN-NN systems

    International Nuclear Information System (INIS)

    Machavariani, A.I.

    1982-01-01

    On the basis of the deuteron and δ asobar as a one-particle state, a version of relativistic equations for coupled πNN and NN systems is obtained. It is demonstrated that, if one neglects the non-pole term of the pion-nucleon Green function in the (3.3) resonance region, the three-body equations reduce to a set of equations for the two-body amplitudes of transitions between the πd, NN and Nδ channels

  4. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  5. Extension of BEPU methods to Sub-channel Thermal-Hydraulics and to Coupled Three-Dimensional Neutronics/Thermal-Hydraulics Codes

    International Nuclear Information System (INIS)

    Avramova, M.; Ivanov, K.; Arenas, C.

    2013-01-01

    The principles that support the risk-informed regulation are to be considered in an integrated decision-making process. Thus, any evaluation of licensing issues supported by a safety analysis would take into account both deterministic and probabilistic aspects of the problem. The deterministic aspects will be addressed using Best Estimate code calculations and considering the associated uncertainties i.e. Plus Uncertainty (BEPU) calculations. In recent years there has been an increasing demand from nuclear research, industry, safety and regulation for best estimate predictions to be provided with their confidence bounds. This applies also to the sub-channel thermal-hydraulic codes, which are used to evaluate local safety parameters. The paper discusses the extension of BEPU methods to the sub-channel thermal-hydraulic codes on the example of the Pennsylvania State University (PSU) version of COBRA-TF (CTF). The use of coupled codes supplemented with uncertainty analysis allows to avoid unnecessary penalties due to incoherent approximations in the traditional decoupled calculations, and to obtain more accurate evaluation of margins regarding licensing limit. This becomes important for licensing power upgrades, improved fuel assembly and control rod designs, higher burn-up and others issues related to operating LWRs as well as to the new Generation 3+ designs being licensed now (ESBWR, AP-1000, EPR-1600 and etc.). The paper presents the application of Generalized Perturbation Theory (GPT) to generate uncertainties associated with the few-group assembly homogenized neutron cross-section data used as input in coupled reactor core calculations. This is followed by a discussion of uncertainty propagation methodologies, being implemented by PSU in cooperation of Technical University of Catalonia (UPC) for reactor core calculations and for comprehensive multi-physics simulations. (authors)

  6. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, P. (Dept. of Mathematical Sciences, Univ. of Durham (United Kingdom))

    1994-04-25

    We solve Schroedinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero. (orig.)

  7. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    Science.gov (United States)

    Mansfield, Paul

    1994-04-01

    We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.

  8. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    International Nuclear Information System (INIS)

    Mansfield, P.

    1994-01-01

    We solve Schroedinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero. (orig.)

  9. Nuclear theory research. Technical progress report

    International Nuclear Information System (INIS)

    1982-01-01

    Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential

  10. Global synchronization criteria with channel time-delay for chaotic time-delay system

    International Nuclear Information System (INIS)

    Sun Jitao

    2004-01-01

    Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved

  11. Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.

    Science.gov (United States)

    Myhre, Rolf H; Coriani, Sonia; Koch, Henrik

    2016-06-14

    Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.

  12. Spatial channel theory: A technique for determining the directional flow of radiation through reactor systems

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W.

    1977-01-01

    A method is introduced for determining streaming paths through a non-multiplying medium. The concepts of a ''response continuum'' and a pseudo-particle called a contribution are developed to describe the spatial channels through which response flows from a source to a detector. An example application of channel theory to complex shield analysis is cited

  13. Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels

    International Nuclear Information System (INIS)

    Esarey, E.; Schroeder, C. B.; Shadwick, B. A.; Wurtele, J. S.; Leemans, W. P.

    2000-01-01

    Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations, self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in most regimes of interest. (c) 2000 The American Physical Society

  14. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.

  15. QCD and strongly coupled gauge theories: challenges and perspectives

    NARCIS (Netherlands)

    Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J. L.; Ketzer, B.; Lin, H. W.; Llanes-Estrada, F. J.; Meyer, H.; Pakhlov, P.; Pallante, E.; Polikarpov, M. I.; Sazdjian, H.; Schmitt, A.; Snow, W. M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Nezza, P. Di; Fodor, Z.; Tormo, X. Garcia i; Höllwieser, R.; Kalwait, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, Jian-Wei; Ricciardi, G.; Salgado, C. A.; Schwenzer, K.; Stefanis, N. G.; Hippel, G. M. von; Zakharov, V. I .

    2014-01-01

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex

  16. Application of the pertubation theory to a two channels model for sensitivity calculations in PWR cores

    International Nuclear Information System (INIS)

    Oliveira, A.C.J.G. de; Andrade Lima, F.R. de

    1989-01-01

    The present work is an application of the perturbation theory (Matricial formalism) to a simplified two channels model, for sensitivity calculations in PWR cores. Expressions for some sensitivity coefficients of thermohydraulic interest were developed from the proposed model. The code CASNUR.FOR was written in FORTRAN to evaluate these sensitivity coefficients. The comparison between results obtained from the matrical formalism of pertubation theory with those obtained directly from the two channels model, makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations. (author) [pt

  17. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1983-02-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in non relativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as General Relativity and couples minimally to a complex scalar field leading to a fourdimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory

  18. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1984-01-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in nonrelativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as general relativity and couples minimally to a complex scalar field leading to a four-dimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory. (author)

  19. Coupled channel folding model description of α scattering from 9Be

    International Nuclear Information System (INIS)

    Roy, S.; Chatterjee, J.M.; Majumdar, H.; Datta, S.K.; Banerjee, S.R.; Chintalapudi, S.N.

    1995-01-01

    Alpha scattering from 9 Be at E α = 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of 9 Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2 - (g.s.) and 5/2 - (2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries

  20. Theory of Bernstein waves coupling with loop antennas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1987-04-01

    We present a fully three-dimensional theory of antenna coupling to Ion Bernstein Waves near the first harmonic of the ion cyclotron resonance in tokamak plasmas. The boundary conditions in vacuum are solved analytically for arbitrary orientation of the antenna and Faraday screen conductors. The wave equations in the plasma, which include Finite Larmor Radius and finite electron inertia effects, cyclotron and harmonic damping by the ions, and Landau and collisional damping by the electrons, are solved numerically using a Finite Elements discretisation with cubic Hermite interpolating functions. Applications to Alcator C give reasonably good agreement between the calculated and measured radiation resistance in the range in which efficient heating is observed; outside this range the calculated resistance is lower than the experimental one. In general, the coupling efficiency is found to be very sensitive to the edge plasma density, good coupling requiring a low density plasma layer in the vicinity of the Faraday screen. Coupling also improves with increasing scrape-off ion temperature, and is appreciably better for antisymmetric than for symmetric toroidal current distributions in the antenna. (orig.)

  1. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    Science.gov (United States)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  2. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore.

    Directory of Open Access Journals (Sweden)

    Alex K Lyashchenko

    Full Text Available Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model but couple more loosely (as envisioned in a modular model of protein activation. Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile "slow" channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.

  3. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Caroline; Litvinova, Elena [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2016-07-15

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ-meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes {sup 68-78}Ni. A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data. (orig.)

  4. Coupled-reaction-channel analysis of the (d,6Li) reaction on 24Mg and 26Mg to low-lying states

    International Nuclear Information System (INIS)

    Oelert, W.

    1986-01-01

    Experimental spectroscopic factors of the alpha-transfer reaction on nuclei of the sd-shell show rather strong inconsistencies and scatter much more strongly than explainable by the quoted errors. The poorer the quality of agreement between experimental and theoretical angular distribution shapes, the more inconsistent the comparison of spectroscopic factors either between different experiments or between theory and experiment. In view of the strong deformation of nuclei in the lower part of the sd-shell, higher-order reaction mechanisms are expected. A coupled-reaction-channel analysis for the transitions to the 0 + , 2 + , and 4 + states of the ground-state bands in 20 Ne and 22 Ne excited via the (d, 6 Li) reaction yields good agreement between experimental and theoretical angular distribution shapes as well as spectroscopic information. (orig.)

  5. Elements of a compatible optimization theory for coupled systems

    International Nuclear Information System (INIS)

    Bonnemay, A.

    1969-01-01

    The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [fr

  6. Coupled channel analysis of the 142Ce (α,α)142Ce* reaction: study of a vibrational-rotational transition nucleus

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1983-01-01

    The angular distribution of the elastic and inelastic scattering of a particles corresponding to the excitation of the low-lying collective states of 142 Ce were measured at an incident energy of 18.0 MeV. The angular distribution of the following excited states were obtained: 641, 1.219, 1.450, 1.536, 1.653, 1.742, 2.004, 2.043, 2.114, 2.125, 2.279, 2.364, 2.542, 2.604 e 3.067 MeV. The angular distributions of the ground state and the first six excited states were analysed within the flamework of the Anharmonic Vibrational and Symmetric Rotational Models, with the Coupled Channel Theory. The Anharmonic Vibrational Model gave the best and most complete description of the experimental data. The wave functions and the deformation parameters of the analysed states were determined. (Author) [pt

  7. Problems of the π meson-nucleus interaction theory

    International Nuclear Information System (INIS)

    Kopaleishvili, T.I.

    1984-01-01

    The theory of multiple scattering as applied to PI-meson scattering on nuclei is outlined on the base of optical potential method: first in neglecting the real absorption of a pion by a nucleus and then for the case when this effect is taken into account. The pion interaction with a deuteron is considered both neglecting the pion absorption channel (the relativisitic problem of three bodies) and with account of the absorption channels and pion emission (in this case the problem is solved within the frames of the channel coupling theory for the pion-two nucleus system and the system of two nucleons). Approximate or model solutions to the problem of elastic pion-nuclear scattering primarily in the range of (3.3)-resonance are presented. The formulated theory permits to uniquely describe the observed processes caused by the strong pion interaction with a two-nucleon system

  8. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels; Acoplamiento de cinetica neutronica unidimensional a canales termohidraulicos en paralelo

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [IIE, Av. Reforma 113, Col. Palmira, Cuernavaca, Morelos (Mexico)]. e-mail: mcf@iie.org.mx

    2003-07-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  9. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  10. Experimental verification of microbending theory using mode coupling to discrete cladding modes

    DEFF Research Database (Denmark)

    Probst, C. B.; Bjarklev, Anders Overgaard; Andreasen, S. B.

    1989-01-01

    a microbending theory in which coupling between the guided mode and a number of discrete cladding modes is considered. Very good agreement between theory and measurement is achieved. The consequences of the existence of discrete cladding modes with regard to the proper choice of artificial microbending spectrum...

  11. Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    International Nuclear Information System (INIS)

    Hyun, S.; Shin, J.; Yee, J.H.; Lee, H.

    1997-01-01

    We find the static vortex solutions of the model of a Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws. copyright 1997 The American Physical Society

  12. A study of the reactions 14C( vector d, dprime)14C and 14C ( vector d, p)15C at 16.0 MeV

    International Nuclear Information System (INIS)

    Murillo, G.; Sen, S.; Darden, S.E.

    1994-01-01

    Cross-section and vector-analyzing-power measurements for 14 C(d, d prime) and 14 C(d, p) reactions have been carried out for E d =16 MeV. The inelastic-scattering data have been analyzed using the DWBA with a collective and a microscopic model form-factor and also by using the coupled-channels formalism with a vibrational model form-factor. It is observed that while the cross-section angular-distribution data for the two 2 + states at E x =7.012 and 8.318 MeV are very similar, the corresponding vector analyzing powers are quite different. The results of the analyses indicate that the distinctive characteristics probably arise from the difference in the relative importance of the proton and neutron components in the transition amplitude. The 3 - state at E x =6.728 MeV is identified as predominantly a 1p-3h state. Although the deformation parameters are relatively large, the single-particle structure aspects play a more dominant role than channel-coupling effects in populating the inelastic states. The transfer reaction data have been analyzed using the DWBA for bound and unbound states. The importance of two-step processes has been investigated via coupled-reaction-channels calculations. The g.s. and the states with excitation energies 0.770, 3.103 and 4.78 MeV in 15 C are populated primarily by a one-step process with a small two-step contribution in the case of the 3.103 MeV state. The 4.22 MeV state is populated predominantly by two-step processes. The 4.78 and the 5.83 MeV states have been identified as 1p-2h and 3p-4h, [3]/[2] + state, respectively, in an earlier report. There is close similarity in the level structures and reaction mechanisms between the states of 15 C and 17 O populated via the (d, p) reaction. ((orig.))

  13. Importance of channel coupling for very large angle proton-nucleus scattering and the failure of the optical model

    International Nuclear Information System (INIS)

    Amado, R.D.; Sparrow, D.A.

    1984-01-01

    The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely

  14. Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity

    CERN Document Server

    Ceresole, Anna T; Ferrara, Sergio; Van Proeyen, A; Ceresole, A; D'Auria, R; Ferrara, S; Van Proeyen, A

    1995-01-01

    We consider duality transformations in N=2, d=4 Yang-Mills theory coupled to N=2 supergravity. A symplectic and coordinate covariant framework is established, which allows one to discuss stringy `classical and quantum duality symmetries' (monodromies), incorporating T and S dualities. In particular, we shall be able to study theories (like N=2 heterotic strings) which are formulated in symplectic basis where a `holomorphic prepotential' F does not exist, and yet give general expressions for all relevant physical quantities. Duality transformations and symmetries for the N=1 matter coupled Yang--Mills supergravity system are also exhibited. The implications of duality symmetry on all N>2 extended supergravities are briefly mentioned. We finally give the general form of the central charge and the N=2 semiclassical spectrum of the dyonic BPS saturated states (as it comes by truncation of the N=4 spectrum).

  15. Strong Coupling Dynamics of Four-Dimensional N=1 Gauge Theories from M Theory Fivebrane

    International Nuclear Information System (INIS)

    Hori, K.; Ooguri, H.; Oz, Y.

    1997-01-01

    It has been known that the fivebrane of type IIA theory can be used to give an exact low energy description of N=2 supersymmetric gauge theories in four dimensions. We follow the recent M theory description by Witten and show that it can be used to study theories with N=1 supersymmetry. The N=2 supersymmetry can be broken to N=1 by turning on a mass for the adjoint chiral superfield in the N=2 vector multiplet. We construct the configuration of the fivebrane for both finite and infinite values of the adjoint mass. The fivebrane describes strong coupling dynamics of N=1 theory with SU(N c ) gauge group and N f quarks. For N c > N f , we show how the brane configuration encodes the information of the Affleck-Dine-Seiberg superpotential. For N c and f , we study the deformation space of the brane configuration and compare it with the moduli space of the N=1 theory. We find agreement with field theory results, including the quantum deformation of the moduli space at N c = N f . We also prove the type II s-rule in M theory and find new non-renormalization theorems for N = 1 superpotentials

  16. Coupled-Mode Theory for Complex-Index, Corrugated Multilayer Stacks

    DEFF Research Database (Denmark)

    Lüder, Hannes; Gerken, Martina; Adam, Jost

    , and by choosing a bi-orthogonal basis, obtained by solving the corresponding adjoint problem. With the once found modal solutions of the unperturbed waveguide, we can calculate the coupling coefficients, which describe the mode coupling caused by the introduced periodic corrugation. [1] C. Kluge et al., Opt......We present a coupled-mode theory (CMT) approach for modelling the modal behaviour of multi- layer thinfilm devices with complex material parameters and periodic corrugations. Our method provides fast computation and extended physical insight as compared to standard numerical methods...... to be non-Hermitian, introducing two major consequences. First, the eigenvalues (i. e. the mode neff) have to be found in the complex plane (Fig. 2). Second, the classical mode orthogonality is no longer valid. We address both challenges by a combination of three complex-root solving algorithms...

  17. Molecular-state close-coupling theory including continuum states. I. Derivation of close-coupled equations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Bandarage, G.

    1988-01-01

    We formulate a close-coupling theory of slow ion-atom collisions based on molecular (adiabatic) electronic states, and including the electronic continuum. The continuum is represented by packet states spanning it locally and constructed explicitly from exact continuum states. Particular attention is given to two fundamental questions: (1) Unbound electrons can escape from the local region spanned by the packet states. We derive close-coupled integral equations correctly including the escape effects; the ''propagator'' generated by these integral equations does not conserve probability within the close-coupled basis. Previous molecular-state formulations including the continuum give no account of escape effects. (2) Nonadiabatic couplings of adiabatic continuum states with the same energy are singular, reflecting the fact that an adiabatic description of continuum behavior is not valid outside a local region. We treat these singularities explicitly and show that an accurate representation of nonadiabatic couplings within the local region spanned by a set of packet states is well behaved. Hence an adiabatic basis-set description can be used to describe close coupling to the continuum in a local ''interaction region,'' provided the effects of escape are included. In principle, the formulation developed here can be extended to a large class of model problems involving many-electron systems and including models for Penning ionization and collisional detachment processes

  18. Matter couplings in Horava-Lifshitz theories and their cosmological applications

    International Nuclear Information System (INIS)

    Carloni, Sante; Elizalde, Emilio; Silva, Pedro J

    2011-01-01

    In this paper, the issue of how to introduce matter in Horava-Lifshitz theories of gravity is addressed. This is a key point in order to complete the proper definition of these theories and, more importantly, to study their possible phenomenological implications. As is well known, in Horava-Lifshitz gravity, the breakdown of Lorentz invariance invalidates the usual notion of minimally coupled matter. Two different approaches to bypass this problem are described here. One is based on a Kaluza-Klein reinterpretation of the 3+1 decomposition of the gravity degrees of freedom, which naturally leads to a definition of a U(1) gauge symmetry and, hence, to a new type of minimal coupling. The other approach relies on a midi-superspace formalism and the subsequent parametrization of the matter stress-energy tensor in terms of deep infrared variables. Using the last option, the phase space of Horava-Lifshitz cosmology in the presence of general matter couplings is studied. It is found, in particular, that the equation of state of the effective matter may be very different from the actual matter one, owing to the nonlinear interactions which exist between matter and gravity.

  19. From the nucleus discovery to DWBA; De la decouverte du noyau a la DWBA

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B. [Ecole Joliot Curie, 33 - Gradignan (France)

    2007-07-01

    The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones.

  20. Development of sub-channel code SACoS and its application in coupled neutronics/thermal hydraulics system for SCWR

    International Nuclear Information System (INIS)

    Chaudri, Khurrum Saleem; Su Yali; Chen Ronghua; Tian Wenxi; Su Guanghui; Qiu Suizheng

    2012-01-01

    Highlights: ► A tool is developed for coupled neutronics/thermal-hydraulic analysis for SCWR. ► For thermal hydraulic analysis, a sub-channel code SACoS is developed and verified. ► Coupled analysis agree quite well with the reference calculations. ► Different choice of important parameters makes huge difference in design calculations. - Abstract: Supercritical Water Reactor (SCWR) is one of the promising reactors from the list of fourth generation of nuclear reactors. High thermal efficiency and low cost of electricity make it an attractive option in the era of growing energy demand. An almost seven fold density variation for coolant/moderator along the active height does not allow the use of constant density assumption for design calculations, as used for previous generations of reactors. The advancement in computer technology gives us the superior option of performing coupled analysis. Thermal hydraulics calculations of supercritical water systems present extra challenges as not many computational tools are available to perform that job. This paper introduces a new sub-channel code called Sub-channel Analysis Code of SCWR (SACoS) and its application in coupled analyses of High Performance Light Water Reactor (HPLWR). SACoS can compute the basic thermal hydraulic parameters needed for design studies of a supercritical water reactor. Multiple heat transfer and pressure drop correlations are incorporated in the code according to the flow regime. It has the additional capability of calculating the thermal hydraulic parameters of moderator flowing in water box and between fuel assemblies under co-current or counter current flow conditions. Using MCNP4c and SACoS, a coupled system has been developed for SCWR design analyses. The developed coupled system is verified by performing and comparing HPLWR calculations. The results were found to be in very good agreement. Significant difference between the results was seen when Doppler feedback effect was included in

  1. Linear-response theory of Coulomb drag in coupled electron systems

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    1995-01-01

    We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which...

  2. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

    International Nuclear Information System (INIS)

    Neuscamman, Eric

    2013-01-01

    We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation

  3. Correlation functions with fusion-channel multiplicity in W3 Toda field theory

    International Nuclear Information System (INIS)

    Belavin, Vladimir; Estienne, Benoit; Foda, Omar; Santachiara, Raoul

    2016-01-01

    Current studies of W N Toda field theory focus on correlation functions such that the W N highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W 3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl 3 , and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl 3 . We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W N theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  4. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.

    Science.gov (United States)

    Nath, Sunil

    2017-11-01

    The vital coupled processes of oxidative phosphorylation and photosynthetic phosphorylation synthesize molecules of adenosine-5'-triphosphate (ATP), the universal biological energy currency, and sustain all life on our planet. The chemiosmotic theory of energy coupling in oxidative and photophosphorylation was proposed by Mitchell >50years ago. It has had a contentious history, with part of the accumulated body of experimental evidence supporting it, and part of it in conflict with the theory. Although the theory was strongly criticized by many prominent scientists, the controversy has never been resolved. Here, the mathematical steps of Mitchell's original derivation leading to the principal equation of the chemiosmotic theory are scrutinized, and a fundamental flaw in them has been identified. Surprisingly, this flaw had not been detected earlier. Discovery of such a defect negates, or at least considerably weakens, the theoretical foundations on which the chemiosmotic theory is based. Ad hoc or simplistic ways to remedy this defect are shown to be scientifically unproductive and sterile. A novel two-ion theory of biological energy coupling salvages the situation by rectifying the fundamental flaw in the chemiosmotic theory, and the governing equations of the new theory have been shown to accurately quantify and predict extensive recent experimental data on ATP synthesis by F 1 F O -ATP synthase without using adjustable parameters. Some major biological implications arising from the new thinking are discussed. The principles of energy transduction and coupling proposed in the new paradigm are shown to be of a very general and universal nature. It is concluded that the timely availability after a 25-year research struggle of Nath's torsional mechanism of energy transduction and ATP synthesis is a rational alternative that has the power to solve the problems arising from the past, and also meet present and future challenges in this important interdisciplinary field

  5. Communication: spin-orbit splittings in degenerate open-shell states via Mukherjee's multireference coupled-cluster theory: a measure for the coupling contribution.

    Science.gov (United States)

    Mück, Leonie Anna; Gauss, Jürgen

    2012-03-21

    We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics

  6. Channel coupling and distortion effects in the excitation of the 02+ state in 12C by alpha scattering

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1983-01-01

    The excitation of the 0 2 + (7.65 MeV) state in 12 C by inelastic alpha scattering is investigated using microscopic resonating-group wave-functions in a coupled channel folding model. The importance of coupling to other states and the influence of varying the optical potential in the excited states is studied. Both effects must be taken into account for a quantitative description

  7. Matter coupled to quantum gravity in group field theory

    International Nuclear Information System (INIS)

    Ryan, James

    2006-01-01

    We present an account of a new model incorporating 3d Riemannian quantum gravity and matter at the group field theory level. We outline how the Feynman diagram amplitudes of this model are spin foam amplitudes for gravity coupled to matter fields and discuss some features of the model. To conclude, we describe some related future work

  8. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1989-01-01

    This report summarizes progress during the past year in the following areas of research: Pion charge exchange reactions, including a theory of the contribution of pion absorption and correlated double scattering to double charge exchange, new coupled channel calculations for single and double charge exchange from 14 C. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values. Proposed research for the coming year in each area is presented

  9. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  10. Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.

    Science.gov (United States)

    Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel

    2002-10-21

    Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.

  11. Research on out-phase oscillation in a nuclear-coupled parallel double-channel boiling system

    International Nuclear Information System (INIS)

    Zhou Linglan; Zhang Hong; Liu Yu; Zang Xi'nian

    2011-01-01

    In this paper, the RELAP5 thermal-hydraulic system code is coupled with the TDOT-T 3D neutron kinetic code by PVM (Parallel Virtual Machine). A parallel double-channel boiling system is built by the coupled code and the instability boundary of out-of-phase oscillation in the system is obtained. The effects of axis power distribution and neutron feedback on the out-of-phase oscillation are analyzed in details. It is found that there are type-Ⅰ and type-Ⅱ density wave oscillation regions when the axial power peak is located at upstream of the heating section. At relatively lower values of fuel time constant, the neutron feedback always delays both types of density wave oscillations. (authors)

  12. Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System

    International Nuclear Information System (INIS)

    Souleymanou, Abbagari; Kuetche, Victor K.; Bouetou, Thomas B.; Kofane, Timoleon C.

    2012-01-01

    In the wake of the recent investigation of new coupled integrable dispersionless equations by means of the Darboux transformation [Zhaqilao, et al., Chin. Phys. B 18 (2009) 1780], we carry out the initial value analysis of the previous system using the fourth-order Runge-Kutta's computational scheme. As a result, while depicting its phase portraits accordingly, we show that the above dispersionless system actually supports two kinds of solutions amongst which the localized traveling wave-guide channels. In addition, paying particular interests to such localized structures, we construct the bilinear transformation of the current system from which scattering amongst the above waves can be deeply studied. (general)

  13. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  14. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  15. Differential cross sections and spin flip for inelastic scattering of 15.0-18.25 MeV neutrons on carbon 12

    International Nuclear Information System (INIS)

    Thumm, M.

    1976-01-01

    The angular distribution of the spin-flip analysing power is stronly energy-dependent, supporting the assumption of structure effects. Elastic scattering data were also measured and analysed together with results of other authors in the frame work of the optical model. An interpretation of the inelastic scattering data was only possible by the assumption of a strong, energy-dependent deformation of the spin-orbit potential. Therefore the results of the inelastic channel were also compared with a microscopic DWBA theory. In the framework of this formalism, the energy dependence could be reproduced quite well. (BJ) [de

  16. Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-01-01

    Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  17. Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions

    International Nuclear Information System (INIS)

    Babington, J.; Erdmenger, J.

    2005-01-01

    We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ β-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)

  18. Theory of the ion-channel laser

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1990-09-01

    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency ω∼2 γ 2 ωβ, where γ is the Lorentz factor and ωβ is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This ''bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the ''KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of ''optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed

  19. $H\\rightarrow\\gamma\\gamma$ Coupling Measurements

    CERN Document Server

    Vasquez, Jared Gregory; The ATLAS collaboration

    2017-01-01

    Since the discovery of the Higgs boson, measurements of the decay rates and couplings have become paramount to an understanding of the new boson and its role in electroweak symmetry breaking and the mechanism of fermion mass generation. Despite the small branching ratio, the diphoton decay channel is a particularly attractive method to study these properties thanks to the clean signal peak and novel analysis strategy. This poster will present the latest 13 TeV measurements on the signal strengths (and their ratios) from various Higgs production modes in the diphoton decay channel. The measurements are further extended to include cross-section measurements in theory motivated kinematic regions as defined by the Simplified Template Cross-Section framework.

  20. Longitudinal profile of channels cut by springs

    OpenAIRE

    Devauchelle , O.; PETROFF , A. P.; LOBKOVSKY , A. E.; Rothman , D. H.

    2011-01-01

    International audience; We propose a simple theory for the longitudinal profile of channels incised by groundwater flow. The aquifer surrounding the stream is represented in two dimensions through Darcy's law and the Dupuit approximation. The model is based on the assumption that, everywhere in the stream, the shear stress exerted on the sediment by the flow is close to the minimal intensity required to displace a sand grain. Because of the coupling of the stream discharge with the water tabl...

  1. Asymptotically exact solution of the multi-channel resonant-level model

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  2. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    Science.gov (United States)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  3. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  4. The Dark Side of Strongly Coupled Theories

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2008-01-01

    We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...

  5. Optimization of nanoparticle focusing by coupling thermophoresis and engineered vortex in a microfluidic channel

    Science.gov (United States)

    Zhao, Chao; Cao, Zhibo; Fraser, John; Oztekin, Alparslan; Cheng, Xuanhong

    2017-01-01

    Enriching nanoparticles in an aqueous solution is commonly practiced for various applications. Despite recent advances in microfluidic technologies, a general method to concentrate nanoparticles in a microfluidic channel in a label free and continuous flow fashion is not yet available, due to strong Brownian motion on the nanoscale. Recent research of thermophoresis indicates that thermophoretic force can overcome the Brownian force to direct nanoparticle movement. Coupling thermophoresis with natural convection on the microscale has been shown to induce significant enrichment of biomolecules in a thermal diffusion column. However, the column operates in a batch process, and the concentrated samples are inconvenient to retrieve. We have recently designed a microfluidic device that combines a helical fluid motion and simple one-dimensional temperature gradient to achieve effective nanoparticle focusing in a continuous flow. The helical convection is introduced by microgrooves patterned on the channel floor, which directly controls the focusing speed and power. Here, COMSOL simulations are conducted to study how the device geometry and flow rate influence transport and subsequent nanoparticle focusing, with a constant temperature gradient. The results demonstrate a complex dependence of nanoparticle accumulation on the microgroove tilting angle, depth, and spacing, as well as channel width and flow rate. Further dimensional analyses reveal that the ratio between particle velocities induced by thermophoretic and fluid inertial forces governs the particle concentration factor, with a maximum concentration at a ratio of approximately one. This simple relationship provides fundamental insights about nanoparticle transport in coupled flow and thermal fields. The study also offers a useful guideline to the design and operation of nanoparticle concentrators based on combining engineered helical fluid motion subject to phoretic fields.

  6. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  7. Coupled channel folding model description of {alpha} scattering from {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Chatterjee, J.M.; Majumdar, H. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Datta, S.K. [Nuclear Science Centre, P.O.10502, New Delhi 110067 (India); Banerjee, S.R. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Calcutta 700064 (India); Chintalapudi, S.N. [Inter-University Consortium, Department of Atomic Energy Facilities, Bidhannagar, Calcutta 700064 (India)

    1995-09-01

    Alpha scattering from {sup 9}Be at {ital E}{sub {alpha}}= 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of {sup 9}Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2{sup {minus}}(g.s.) and 5/2{sup {minus}}(2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries.

  8. Scattering of 14.2 MeV polarized neutrons from 12C

    International Nuclear Information System (INIS)

    Casparis, R.; Leemann, B.Th.; Preiswerk, M.; Rudin, H.; Wagner, R.; Zupranski, P.

    1976-01-01

    Polarized 14.2 MeV neutrons with a polarization of approximately 50% were produced in the 3 H(d(pol),n(pol)) 4 He reaction using vector polarized deuterons from an 'atomic beam' source of polarized ions. The angular distributions of the analyzing power in the elastic and inelastic (Q = -4.43 MeV) scattering of neutrons from carbon have been measured at ten angles in the range from 22 0 to 152 0 c.m. A time-of-flight technique was used to separate elastically and inelastically scattered neutrons. The results have been compared with theoretical calculations obtained with the DWBA and the coupled channels method. (Auth.)

  9. Meson-baryon interactions in unitarized chiral perturbation theory

    International Nuclear Information System (INIS)

    Garcia Recio, G.; Nieves, J.; Ruiz Arriola, E.; Vicente Vacas, M.

    2003-01-01

    Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The s-wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), Λ(1405) and Λ(1670) resonances which compare well with accepted numbers

  10. Approximation scheme for strongly coupled plasmas: Dynamical theory

    International Nuclear Information System (INIS)

    Golden, K.I.; Kalman, G.

    1979-01-01

    The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α

  11. Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium

    Directory of Open Access Journals (Sweden)

    A.S. Eegunjobi

    Full Text Available Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over. Keywords: MHD channel flow, Couple stress fluid, Porous medium, Thermal radiation, Entropy generation, Injection/suction

  12. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  13. Fast neutron scattering from soft nuclei: coupled-channel formalism and illustrations

    International Nuclear Information System (INIS)

    Delaroche, J.P.

    1986-01-01

    Spectra of most of the even-even nuclei have a character which is neither that of a pure vibrator nor that of a pure rotor. Instead, the nuclear spectra display very often both characters. Therefore, improvements in the analysises of nucleon scattering and reaction cross sections require that appropriate collective models of nuclear structure be used. A selection of these models is reviewed, and suggestions are given as to how to extend the familiar coupled-channel formalism to incorporate these enriched collective pictures. These extensions are primarily intended to describe inelastic scattering from levels belonging to β - , γ - and octupole bands. Illustrations are given for neutron and proton scattering off various nuclei [fr

  14. A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries

    Science.gov (United States)

    Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung

    2018-05-01

    In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.

  15. Non-Abelian formulation of a vector-tensor gauge theory with topological coupling

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Cabo, A.; Silva, M.B.D.

    1995-08-01

    We obtain a non-Abelian version of a theory involving vector and tensor and tensor gauge fields interacting via a massive topological coupling, besides the nonminimum one. The new fact is that the non-Abelian theory is not reducible and Stuckelberg fields are introduced in order to compatibilize gauge invariance, nontrivial physical degrees of freedom and the limit of the Abelian case. (author). 9 refs

  16. Approximate method for treating dispersion in one-way quantum channels

    International Nuclear Information System (INIS)

    Stace, T. M.; Wiseman, H. M.

    2006-01-01

    Coupling the output of a source quantum system into a target quantum system is easily treated by cascaded systems theory if the intervening quantum channel is dispersionless. However, dispersion may be important in some transfer protocols, especially in solid-state systems. In this paper we show how to generalize cascaded systems theory to treat such dispersion, provided it is not too strong. We show that the technique also works for fermionic systems with a low flux, and can be extended to treat fermionic systems with large flux. To test our theory, we calculate the effect of dispersion on the fidelity of a simple protocol of quantum state transfer. We find good agreement with an approximate analytical theory that had been previously developed for this example

  17. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    Science.gov (United States)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  18. Investigating the relationship between watching satellite channels and intimacy and marital satisfaction of couples in Isfahan, Iran, in 2014

    OpenAIRE

    Babaie, Zohre; Keshvari, Mahrokh; Zamani, Ahmadreza

    2016-01-01

    Background: In the age of communication and media that families are rapidly driven towards using satellite channels and other media, considering family health in this regard is essential. A determinant of health is marital satisfaction. The aim of this study was to investigate the relationship between watching satellite channels and intimacy and marital satisfaction in Isfahan, Iran. Materials and Methods: This cross-sectional and correlational study was conducted on one group of 480 couples ...

  19. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  20. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.

    Science.gov (United States)

    Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan

    2012-07-05

    Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.

  1. Chiral 2d theories from N=4 SYM with varying coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Craig [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Schäfer-Nameki, Sakura [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2017-04-19

    We study 2d chiral theories arising from 4d N=4 Super-Yang Mills (SYM) with varying coupling τ. The 2d theory is obtained by dimensional reduction of N=4 SYM on a complex curve with a partial topological twist that accounts for the non-constant τ. The resulting 2d theories can preserve (0,n) with n=2,4,6,8 chiral supersymmetry, and have a natural realization in terms of strings from wrapped D3-branes in F-theory. We determine the twisted dimensional reduction, as well as the spectrum and anomaly polynomials of the resulting strings in various dimensions. We complement this by considering the dual M-theory configurations, which can either be realized in terms of M5-branes wrapped on complex surfaces, or M2-branes on curves that result in 1d supersymmetric quantum mechanics.

  2. Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2016-06-22

    Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  3. /sup 16/O(/sup 16/O, /sup 12/C)/sup 20/Ne reaction in the framework of the coupled channel formalism

    Energy Technology Data Exchange (ETDEWEB)

    Krause, O; Scheid, W; Greiner, W [Frankfurt Univ. (Germany, F.R.). Inst. fuer Theoretische Physik

    1974-01-01

    The transfer reaction /sup 16/O(/sup 16/O, /sup 12/C)/sup 20/Ne is treated in the coupled channel formalism. The influence of the transfer channels on the intermediate structure in the elastic excitation function is discussed. The /sup 16/O and /sup 20/Ne-nuclei are described in an ..cap alpha..-cluster model.

  4. Theory and experiment of laterally coupled multi-longitudinal-mode semiconductor lasers

    NARCIS (Netherlands)

    Lenstra, D.; Yousefi, M.; Barsella, A.; Morthier, G.; Baets, R.G.F.; McMurtry, S.; Vilcot, J.-P.

    2003-01-01

    This report presents simulations and measurements of multimode dynamics in the twin-stripe laser resulting from complicated gain competition effects. The theory is based on a novel multi-longitudinal rate equations model, while accounting for both coherent and incoherent lateral coupling between the

  5. Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory

    Science.gov (United States)

    Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto

    2009-06-01

    We derive a semiclassical equation of motion for a “composite” quark in strongly coupled large-Nc N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.

  6. Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto

    2009-01-01

    We derive a semiclassical equation of motion for a 'composite' quark in strongly coupled large-N c N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.

  7. Dynamical equations for a Regge theory with crossing symmetry and unitarity. II. The case of strong coupling, and elimination of ghost poles

    International Nuclear Information System (INIS)

    Johnson, P.W.; Warnock, R.L.

    1977-01-01

    Equations for the construction of a crossing-symmetric unitary Regge theory of meson-meson scattering are described. In the case of strong coupling, Regge trajectories are to be generated dynamically as zeros of the D function in a nonlinear N/D system. This paper is concerned mainly with writing the inputs to the N/D system in such a way that a convergent theory with exact crossing symmetry is defined. The scheme demands elimination of ghosts, i.e., bound-state poles at energies below threshold where trajectories pass through zero. A method for ghost elimination is proposed which entails an s-wave subtraction constant, and allows the physical s wave to be different from the l-analytic amplitude evaluated at l = 0. A dynamical model is suggested in which the subtraction constant alone generates the meson-meson interaction. An alternative ghost-elimination scheme proposed by Gell-Mann, in which only l-analytic amplitudes are involved, can be discussed in a formalism including channels with spin

  8. Similarity-transformed equation-of-motion vibrational coupled-cluster theory

    Science.gov (United States)

    Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So

    2018-02-01

    A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

  9. On the flavor problem in strongly coupled theories

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin

    2012-11-28

    This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B{sub d}{yields}{mu}{sup +}{mu}{sup -}) and B(B{sub s}{yields}{mu}{sup +}{mu}{sup -}), and two vertices, viz. S{sub {psi}{phi}} and vertical stroke {epsilon}{sub K} vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale {Lambda}{sub NP} in the TeV range, except for the CP violating quantity vertical stroke {epsilon}{sub K} vertical stroke, which requires {Lambda}{sub NP}=O(10) TeV in the absence of fine-tuning. The numerous modifications of the

  10. On the flavor problem in strongly coupled theories

    International Nuclear Information System (INIS)

    Bauer, Martin

    2012-01-01

    This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B d →μ + μ - ) and B(B s →μ + μ - ), and two vertices, viz. S ψφ and vertical stroke ε K vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale Λ NP in the TeV range, except for the CP violating quantity vertical stroke ε K vertical stroke, which requires Λ NP =O(10) TeV in the absence of fine-tuning. The numerous modifications of the Randall Sundrum model in the literature, which try to attenuate this bound are reviewed and categorized

  11. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  12. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  13. An ab-initio coupled mode theory for near field radiative thermal transfer.

    Science.gov (United States)

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  14. On-line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on T-channel chips.

    Science.gov (United States)

    Kitagawa, Fumihiko; Kinami, Saeko; Takegawa, Yuuki; Nukatsuka, Isoshi; Sueyoshi, Kenji; Kawai, Takayuki; Otsuka, Koji

    2017-01-01

    To achieve an on-line coupling of the sample preconcentration by a large-volume sample stacking with an electroosmotic flow pump (LVSEP) with microchip gel electrophoresis (MCGE), a sample solution, a background solution for LVSEP and a sieving solution for MCGE were loaded in a T-form channel and three reservoirs on PDMS microchips. By utilizing the difference in the flow resistance of the two channels, a low-viscosity sample and a viscous polymer solution were easily introduced into the LVSEP and MCGE channels, respectively. Fluorescence imaging of the sequential LVSEP-MCGE processes clearly demonstrated that a faster stacking of anionic fluorescein and successive introduction into the MCGE channel can be carried out on the T-channel chip. To evaluate the preconcentration performance, a conventional MCZE analysis of fluorescein on the cross-channel chip was compared with LVSEP-MCGE on the short T-channel chip, and as a result that the value of sensitive enhancement factor (SEF) was estimated to be 370. The repeatability of the peak height was good with the RSD value of 3.2%, indicating the robustness of the enrichment performance. In the successive LVSEP-MCGE analysis of φX174/HaeIII digest, the DNA fragments were well enriched to a sharp peak in the LVSEP channel, and they were separated in the MCGE channel, whose electropherogram was well-resembled with that in the conventional MCGE. The values of SEF for the DNA fragments were calculated to be ranging from 74 to 108. Thus, the successive LVSEP-MCGE analysis was effective for both preconcentrating and separating DNA fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Coupled channel effects in quasi-elastic barrier distributions of 16,18O + 206Pb systems

    International Nuclear Information System (INIS)

    Jha, V.; Roy, B.J.; Parkar, V.V.; Kumawat, H.; Pal, U.K.; Pandit, S.K.; Mahata, K.; Shrivastava, A.; Mohanty, A.K.

    2013-01-01

    The fusion barrier distribution and QEBD for the 16 O + 208 Pb have been studied in great detail. The couplings due to the collective excitations of the colliding nuclei are found to have the dominant effect as deduced by the conventional coupled-channels calculations used to explain the experimental QEBD and fusion barrier distributions. In contrast, for the 18 O + 206 Pb system, the role of single neutron stripping (Q-value= -1.308 MeV) and neutron pair transfer (Q-value = + 1.917 MeV) are expected to be significant. In the present work, the QEBD measurements for the 18 O + 206 Pb system are performed for the investigation of these aspects

  16. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  17. Search for anomalous Wtb couplings and top FCNC in t-channel single-top-quark events

    CERN Document Server

    CMS Collaboration

    2014-01-01

    Single-top-quark events in the $t$-channel are used to probe Wtb anomalous couplings and to search for top quark Flavor Changing Neutral Current (FCNC) interactions in proton-proton collisions at $\\sqrt{s}=7$ TeV. The analyzed data correspond to an integrated luminosity of 5~fb$^{-1}$. Events with the top quark decaying into a muon, neutrino and b-quark are selected. A Bayesian neural network is used to discriminate between signal and backgrounds. The observed event yields are consistent with SM prediction, and exclusion limits at 95\\% C.L. are determined. The exclusion limits on anomalous right vector and left tensor couplings of the Wtb vertex are found to be $|f_{V}^{R}|< 0.34$ and $|f_{T}^{L}|<0.09$. In the scenarios with FCNC tcg and tug couplings, limits on the coupling strengths are found to be $\\kappa_{tug}/\\Lambda < 1.8 \\cdot 10^{-2}~ \\mathrm{TeV^{-1}},\\ \\kappa_{tcg}/\\Lambda < 5.6 \\cdot 10^{-2} ~ \\mathrm{TeV^{-1}}$ which corresponds to limits on the branching ratios $Br(t~\\rightarrow~u+g)...

  18. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Directory of Open Access Journals (Sweden)

    T. Egami

    2010-01-01

    Full Text Available We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  19. Spin foam model for pure gauge theory coupled to quantum gravity

    International Nuclear Information System (INIS)

    Oriti, Daniele; Pfeiffer, Hendryk

    2002-01-01

    We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale

  20. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  1. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.

    Science.gov (United States)

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-11-14

    In this study, an experiment was designed to verify the low power consumption of galvanic coupling human-body communication. A silver electrode (silver content: 99%) is placed in a pig leg and a sine wave signal with the power of 0 dBm is input. Compared with radio frequency communication and antenna transmission communication, attenuation is reduced by approximately 10 to 15 dB, so channel characteristics are highly improved.

  2. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  3. Second-order Born effect in coplanar doubly symmetric (e,2e) collisions for sodium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Jiao, Liguang [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Zhou, Yajun, E-mail: yajunzhou2003@yahoo.com.cn [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2012-06-18

    The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e,2e) collisions for alkali target sodium at excess energies of 6–60 eV. Comparing with the first-order DWBA calculations, the inclusion of second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e,2e) problems in low and intermediate energy range. -- Highlights: ► We consider second-order Born effect in (e,2e) collisions for sodium. ► Our second-order term gives a correct description on the multi scattering process. ► Our second-order DWBA model improves the agreement between theory and experiment.

  4. Gravitational nonminimally coupled electromagnetic fields: a possible solution to some idiosincrasies of Einstein-Maxwell theory

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1988-01-01

    A theory of nonminimal coupling of electromagnetism and gravitation in the framework of Riomannian geometry is constructed. As a consequence the main difficulties concerning the Einstein-Maxwell theory are cleared away. The theory works as a kind of correction to the Einstein-Maxwell one for regions with strong curvature and for times much greater than the Planck time. A Reissner-Nordstroem-type solution is exhibited and comments are made on a parameter which somewhat resembles the ''Schwarzschild radius''. A mechanism of charge creation via nonminimal coupling is also discussed. We calculate the propagation of photons in a Robertson-Walker background and find that the effect of the nonminimal coupling in this case may be to deviate the photon from the null geodesics, increasing its velocity beyond the flat-space value. Taking into account this results, the observed isotropy of the background radiation can be explained in a simple way, regardless of any assumption about the state of the Universe prior to the Planck time. (author) [pt

  5. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  6. Siegert pseudostate formulation of scattering theory: Nonzero angular momenta in the one-channel case

    International Nuclear Information System (INIS)

    Batishchev, Pavel A.; Tolstikhin, Oleg I.

    2007-01-01

    The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials

  7. A flat Chern-Simons gauge theory for (2+1)-dimensional gravity coupled to point particles

    International Nuclear Information System (INIS)

    Grignani, G.; Nardelli, G.

    1991-01-01

    We present a classical ISO (2,1) Chern-Simons gauge theory for planar gravity coupled to point-like sources. The theory is defined in terms of flat coordinates whose relation with the space-time coordinates is established. Though flat, the theory is equivalent to Einstein's as we show explicitly in two examples. (orig.)

  8. Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs

  9. The coupled-channel T-matrix: its lowest-order Born + Lanczos approximants

    International Nuclear Information System (INIS)

    Znojil, M.

    1995-01-01

    Three iterative methods of solution of the Lippmann-Schwinger equations (viz., the method of continued fractions by J.Horacek and T.Sasakawa), its Born-remainder modification and a coupled-channel matrix-continued-fraction generalization are all interpreted as special cases of a common iterative matrix prescription. Firstly, in terms of certain asymmetric projectors P≠P + , we re-derive the three particular older methods as different realizations of the well-known Lanczos inversion. Then, a generalized iteration method is proposed as a Born-like re-arrangement of any intermediate Lanczos iteration step. A maximal flexibility is achieved in the formalism which might compete with the standard Pade re-summations in practice. Its first few truncations are listed, therefore. 26 refs., 1 tab

  10. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  11. Running coupling in SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari

    2016-01-01

    We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...... with the existence of a fixed point in the interval 2.2g∗23. We also measure the anomalous dimension and find that its value at the fixed point is γ∗≃0.2±0.03....... constant using the step scaling method with the Schrödinger functional and study the remaining discretization effects. At weak coupling we observe significant discretization effects, which make it difficult to obtain a fully controlled continuum limit. Nevertheless, the data remains consistent...

  12. PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel

    International Nuclear Information System (INIS)

    Pilch, M.

    1982-01-01

    PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds

  13. New Trends in Model Coupling Theory, Numerics and Applications

    International Nuclear Information System (INIS)

    Coquel, F.; Godlewski, E.; Herard, J. M.; Segre, J.

    2010-01-01

    This special issue comprises selected papers from the workshop New Trends in Model Coupling, Theory, Numerics and Applications (NTMC'09) which took place in Paris, September 2 - 4, 2009. The research of optimal technological solutions in a large amount of industrial systems requires to perform numerical simulations of complex phenomena which are often characterized by the coupling of models related to various space and/or time scales. Thus, the so-called multi-scale modelling has been a thriving scientific activity which connects applied mathematics and other disciplines such as physics, chemistry, biology or even social sciences. To illustrate the variety of fields concerned by the natural occurrence of model coupling we may quote: meteorology where it is required to take into account several turbulence scales or the interaction between oceans and atmosphere, but also regional models in a global description, solid mechanics where a thorough understanding of complex phenomena such as propagation of cracks needs to couple various models from the atomistic level to the macroscopic level; plasma physics for fusion energy for instance where dense plasmas and collisionless plasma coexist; multiphase fluid dynamics when several types of flow corresponding to several types of models are present simultaneously in complex circuits; social behaviour analysis with interaction between individual actions and collective behaviour. (authors)

  14. Equilibrium fluctuation relations for voltage coupling in membrane proteins.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2015-11-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free

  15. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    Directory of Open Access Journals (Sweden)

    Victor M. García-Chocano

    2011-12-01

    Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  16. Charge-transfer channel in quantum dot-graphene hybrid materials

    Science.gov (United States)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  17. Gravity currents in rotating channels. Part 1. Steady-state theory

    Science.gov (United States)

    Hacker, J. N.; Linden, P. F.

    2002-04-01

    A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g[prime prime or minute]H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g[prime prime or minute]H)[minus sign]1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W [rightward arrow] [infty infinity]. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall

  18. The holomorphicity of the gauge coupling constant in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Li, H.

    1993-01-01

    Holomorphicity is the analytical dependence of the gauge coupling function, f = 1/g 2 + Θ/8π 2 , on the chiral fields in supergravity and supersymmetric gauge theories. The holomorphic property of 1/g 2 in supersymmetric gauge theories is studied by calculating its dependence on the mass matrix. The general representations of the mass matrix allowed by the constraints of gauge invariance is considered, and calculate the one- and two-loop corrections to 1/g 2 for both super QED and super Yang-Mills theories. For the massive mass matrix it is shown that one- and two-loop corrections to the gauge coupling constant are holomorphic. The reason for two-loop holomorphicity is that the second order logarithmic terms cancel out. For the mass matrix with at least one zero mode, it is recognized that there are two distinct cases which we call pseudo massive and intrinsically massless. For the case of pseudo mass matrix, the reducible representation of the gauge group is (i) complex with equal numbers of irreducible representations and their conjugates, (ii) real, or (iii) pseudo-real. Even though there are massless modes, it is found that the dependence of the gauge coupling constant on the mass matrix is holomorphic. This holomorphicity follows because the mass matrix can be perturbed to regularize the infrared divergence. For the case of intrinsically massless mass matrix, a reducible complex representation with unequal numbers of irreducible representations and their conjugates. The author shows that loop corrections to the gauge coupling constant are non-holomorphic. The reason is an infrared momentum cutoff is used which spins holomorphicity. The results show that, for the pseudo massive case, even though there is an infrared divergence, the one- and two-loop corrections are still holomorphic. Hence, it is concluded that non-holomorphicity is caused by the unbalanced numbers of families and antifamilies in the complex representation

  19. Quantum theory of a one-dimensional laser with output coupling. 2. Nonlinear theory

    International Nuclear Information System (INIS)

    Penaforte, J.C.; Baseia, B.

    1984-01-01

    A previous paper describing the quantum theory of a laser in linear approximation is here extended to the nonlinear case. Instead of the approach of conventional theory - which deals with discrete 'cavity-modes' and includes artificial mechanisms to simulates radiation field losses due to beam extraction - a more realistic model of optical cavity having output coupling is used that works entirely within the continuous spectrum, allowing one to obtain the equations for the field both inside and outside the laser cavity. Besides the quantum noise due to spontaneous emission, a noise term of classical nature due to transmission losses automatically emerges from the present treatment. For single-collective-mode operation the equations for laser field are solved exactly, yielding the transient and steady-state solutions. Inside the laser cavity, the results of nonlinear analysis agree with those found in conventional theory once the conventional 'mode-amplitude' is reinterpreted as a collective variable. Outside the cavity - unaccessible region in the conventional treatment - the solution for the laser field is also exhibited. Further considerations as concerning the role played by the noise terms in the field buildup are discussed. (Author) [pt

  20. Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories

    CERN Document Server

    ‎Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi

    2018-01-01

    This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...

  1. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    Science.gov (United States)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for

  2. Tetraquark candidate Zc(3900) from coupled-channel scattering - how to extract hadronic interactions? -

    Science.gov (United States)

    Ikeda, Yoichi

    2018-03-01

    We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  3. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  4. Integrated cross sections for the ionisation of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1992-05-01

    Distorted-wave Born approximation (DWBA) calculations are reported for singly-differential and total cross sections for the electron impact ionisation for atomic hydrogen at 25, 40, 60, 100, 150 and 250 eV. The theory is compared with available experiments. At all the energies except 25 eV the theory predicts a lower singly-differential cross section for the low-energy side of the secondary-electron energies (<5 eV), compared to the only available absolute measurements of Shyn (1992). The DWBA calculation is in good agreement with the experiment at 25 eV but only if e-e post-collision interaction is included in the theory in some way. 23 refs., 2 figs

  5. Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state

    International Nuclear Information System (INIS)

    Fujimoto, Yukinobu; Miyake, Kazumasa

    2012-01-01

    It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.

  6. Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions

    Science.gov (United States)

    Shen, Chao-Wei; Rönchen, Deborah; Meißner, Ulf-G.; Zou, Bing-Song

    2018-01-01

    We use a unitary coupled-channel model to study the \\bar{{{D}}}{{{Λ }}}{{c}}-\\bar{{{D}}}{{{Σ }}}{{c}} interactions. In our calculation, SU(3) flavor symmetry is applied to determine the coupling constants. Several resonant and bound states with different spin and parity are dynamically generated in the mass range of the recently observed pentaquarks. The approach is also extended to the hidden beauty sector to study the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions. As the b-quark mass is heavier than the c-quark mass, there are more resonances observed for the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions and they are more tightly bound. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetry and the Emergence of Structure in QCD” (NSFC 11621131001, DFG TR110), as well as an NSFC fund (11647601). The work of UGM was also supported by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025)

  7. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  8. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  9. Dynamical coupled-channels model for meson productions and application to strange nuclear physics

    International Nuclear Information System (INIS)

    Nakamura, S.X.; Kamano, H.; Lee, T.-S.H.; Sato, T.

    2013-01-01

    We discuss our dynamical coupled-channels (DCC) model in the context of extracting interesting strange nuclear physics from forthcoming J-PARC data. We describe the dynamical contents of the model, and its capability of describing a large amount of data of S=0 sector, namely, πN, γN → πN, ηN, KΛ, KΣ data. Then we discuss future extensions of the DCC model to S ≠ 0 and B ≥ 1 sectors. We emphasize that realistic amplitudes will be essential for extracting interesting physics from data, and the extended DCC model will play an important role there. (author)

  10. Unified Gauge Theories and Reduction of Couplings: from Finiteness to Fuzzy Extra Dimensions

    Directory of Open Access Journals (Sweden)

    George Zoupanos

    2008-02-01

    Full Text Available Finite Unified Theories (FUTs are N = 1 supersymmetric Grand Unified Theories, which can be made all-loop finite, both in the dimensionless (gauge and Yukawa couplings and dimensionful (soft supersymmetry breaking terms sectors. This remarkable property, based on the reduction of couplings at the quantum level, provides a drastic reduction in the number of free parameters, which in turn leads to an accurate prediction of the top quark mass in the dimensionless sector, and predictions for the Higgs boson mass and the supersymmetric spectrum in the dimensionful sector. Here we examine the predictions of two such FUTs. Next we consider gauge theories defined in higher dimensions, where the extra dimensions form a fuzzy space (a finite matrix manifold. We reinterpret these gauge theories as four-dimensional theories with Kaluza-Klein modes. We then perform a generalized à la Forgacs-Manton dimensional reduction. We emphasize some striking features emerging such as (i the appearance of non-Abelian gauge theories in four dimensions starting from an Abelian gauge theory in higher dimensions, (ii the fact that the spontaneous symmetry breaking of the theory takes place entirely in the extra dimensions and (iii the renormalizability of the theory both in higher as well as in four dimensions. Then reversing the above approach we present a renormalizable four dimensional SU(N gauge theory with a suitable multiplet of scalar fields, which via spontaneous symmetry breaking dynamically develops extra dimensions in the form of a fuzzy sphere SN2. We explicitly find the tower of massive Kaluza-Klein modes consistent with an interpretation as gauge theory on M4 × S2, the scalars being interpreted as gauge fields on S2. Depending on the parameters of the model the low-energy gauge group can be SU(n, or broken further to SU(n1 × SU(n2 × U(1. Therefore the second picture justifies the first one in a renormalizable framework but in addition has the potential to

  11. More effective field theory for non-relativistic scattering

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1997-01-01

    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)

  12. Interference of Coulomb and nuclear excitation in inelastic scattering of 20Ne from 40Ca

    International Nuclear Information System (INIS)

    Ratel, Guy.

    1976-01-01

    Angular distributions at 54 and 63MeV and excitation functions from 35 to 95MeV for the elastic and inelastic scattering of 20 Ne by 40 Ca have been measured. Experimental data for the inelastic scattering leading to the 20 Ne (2 + , 1.63MeV) state show a characteristic minimum for the angular distributions and excitation functions. This phenomenon was explained by an interference effect between Coulomb and nuclear excitation amplitudes with the DWBA and the coupled-channel formalism. The existence of this interference minimum could be explained only by assuming a nuclear deformation stronger than these obtained with light ion scattering. However a small shift between the experimental data and theoretical curves suggests that effects of a stronger complex coupling or nuclear reorientation due to the large quadrupole moment of 20 Ne must be included [fr

  13. Study of doubly excited states of H- and He in the coupled-channel hypersperical adiabatic approach

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1989-01-01

    Doubly excited states (DES) of H - and He are investigated within the coupled-channel hyperspherical adiabatic (HSA) approach. Influence of the angular and radial electron correlations on the rate of convergence of the values of the potential curves and matrix elements of radial coupling is studied numerically. The scheme based on molecular classification of the HSA basis states is used for the classification of DES. The results of the multichannel calculations of 1 S e and 1 P 0 DES of H - and He below the second threshold are presented. The obtained results are compared with other calculations and experiment. The region of applicability of the adiabatic approximation is discussed. 75 refs.; 10 tabs

  14. Asymmetry of spin-flip of polarized protons in the inelastic scattering to the first 2+ states of 48Ti and 50Ti

    International Nuclear Information System (INIS)

    Tomizawa, M.; Aoki, T.; Aoki, Y.; Sakai, T.; Tagishi, Y.; Yagi, K.; Murayama, T.

    1990-01-01

    Angular distributions of differential cross section, analyzing power, spin-flip probability and spin-flip asymmetry in the excitation of the first 2 + states in 48 Ti and 50 Ti were measured at incident energies of 11 and 18 MeV using (p,p'γ) coincidence technique with polarized proton beam. The angular distributions show strong incident energy and target dependence. The results were analyzed in terms of a macroscopic coupled channels method based on the vibrational model and of the microscopic distorted wave Born approximation (DWBA) based on shell-model wave functions and effective nucleon-nucleon interactions. The spin-flip asymmetry is quite sensitive to the spin-dependent part in the interaction which causes the inelastic scattering. (author)

  15. Elastic and Inelastic α-scatterings from {sup 58}Ni, {sup 116}Sn, and {sup 20}'8Pb targets at 288, 340, 480, and 699 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Behairy, Kassem O., E-mail: drkasemomar@yahoo.com [Physics Department, Aswan University (Egypt); Mahmoud, Zakaria M.M.; Hassanain, M.A. [Physics Department, Faculty of Science, Assiut University (Egypt)

    2015-12-15

    Real double-folding optical potentials are calculated using the S1Y effective nucleon-nucleon (NN) interaction and the tρρ approximation in order to analyze elastic and inelastic scattering of α-particles from {sup 58}Ni, {sup 116}Sn, and {sup 208}Pb targets at 288, 340, 480, and 699 MeV. The relativistic corrections for momenta and reduced masses are performed to investigate the data at the energies 480 and 699 MeV. The second-order (double-scattering) correction to the tρρ potential is also considered. The inelastic scattering to low-lying excited states (2{sup +}) is investigated using the distorted wave born approximation (DWBA) and the coupled-channel (CC) techniques. (author)

  16. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  17. Theory of pairwise coupling embedded in more general local dispersion relations

    International Nuclear Information System (INIS)

    Fuchs, V.; Bers, A.; Harten, L.

    1985-01-01

    Earlier work on the mode conversion theory by Fuchs, Ko, and Bers is detailed and expanded upon, and its relation to energy conservation is discussed. Given a local dispersion relation, D(ω; k, z) = 0, describing stable waves excited at an externally imposed frequency ω, a pairwise mode-coupling event embedded therein is extracted by expanding D(k, z) around a contour k = k/sub c/(z) given by partialD/partialk = 0. The branch points of D(k, z) = 0 are the turning points of a second-order differential-equation representation. In obtaining the fraction of mode-converted energy, the connection formula and conservation of energy must be used together. Also, proper attention must be given to distinguish cases for which the coupling disappears or persists upon confluence of the branches, a property which is shown to depend on the forward (v/sub g/v/sub ph/>0) or backward (v/sub g/v/sub ph/<0) nature of the waves. Examples occurring in ion-cyclotron and lower-hybrid heating are presented, illustrating the use of the theory

  18. Vacancy-rearrangement theory in the first Magnus approximation

    International Nuclear Information System (INIS)

    Becker, R.L.

    1984-01-01

    In the present paper we employ the first Magnus approximation (M1A), a unitarized Born approximation, in semiclassical collision theory. We have found previously that the M1A gives a substantial improvement over the first Born approximation (B1A) and can give a good approximation to a full coupled channels calculation of the mean L-shell vacancy probability per electron, p/sub L/, when the L-vacancies are accompanied by a K-shell vacancy (p/sub L/ is obtained experimentally from measurements of K/sub α/-satellite intensities). For sufficiently strong projectile-electron interactions (sufficiently large Z/sub p/ or small v) the M1A ceases to reproduce the coupled channels results, but it is accurate over a much wider range of Z/sub p/ and v than the B1A. 27 references

  19. Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity

    DEFF Research Database (Denmark)

    Bertolami, O.; Ferreira, R. Z.

    2013-01-01

    In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...

  20. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  1. Multi-step direct reactions at low energies

    International Nuclear Information System (INIS)

    Marcinkowski, A.; Marianski, B.

    2001-01-01

    Full text: The theory of the multistep direct (MSD) reactions of Feshbach, Kerman and Koonin has for quite some time become a subject of controversy due to the bi orthogonal distorted waves involved in the transition amplitudes describing the MSD cross sections. The bi orthogonal wave functions result in non-normal DWBA matrix elements, that can be expressed in terms of normal DWBA matrix elements multiplied by the inverse elastic scattering S-matrix. It has been argued that the enhancing inverse S-factors are washed out by averaging over energy in the continuum. As a result normal DWBA matrix elements are commonly used in practical calculations. Almost all analyses of inelastic scattering and charge-exchange reactions using the DWBA matrix elements have concluded that nucleon emission at low energies can be described as one-step reaction mainly. On the other hand, it has been shown that the limits imposed by the energy weighted sum rules (EWSR's) on transition of given angular momentum transfer lead to a significant reduction of the one step cross section that can be compensated by the enhanced MSD cross sections obtained with the use of the non-normal DWBA matrix elements. Very recently the MSD theory of FKK was modified to include collective excitations and the non-normal DWBA matrix elements and the prescription for calculations of the cross sections for the MSD reactions was given. In the present paper we present the results of the modified theory used for describing the 93 Nb (n,xn) 93 Nb reaction at incident energy of 20 MeV and the 65 Cu (p,xn) 65 Zn reaction at 27 MeV. The results show enhanced contributions from two-, three- and four step reactions. We investigate the importance of the multi-phonon, multi particle hole and the mixed particle hole-phonon excitations in neutron scattering to the continuum. We also show the importance of the different sequences of collisions of the leading continuum nucleon that contribute to the MSD (p,n) reaction. When all

  2. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  3. From the nucleus discovery to DWBA

    International Nuclear Information System (INIS)

    Fernandez, B.

    2007-01-01

    The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones

  4. Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories

    Science.gov (United States)

    Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid

    2018-01-01

    In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.

  5. Can Lorentz-breaking fermionic condensates form in large N strongly-coupled Lattice Gauge Theories?

    OpenAIRE

    Tomboulis, E. T.

    2010-01-01

    The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone boson. Though a number of effective field theory analyses of such phenomena have recently been given it remains an open question whether they can take place in an underlying UV complete theory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling limit. We appl...

  6. Distorted-wave calculation of He(e,2 e) including core-exchange amplitudes

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1992-04-01

    Distorted-wave Born approximation (DWBA) calculations are reported for coplanar symmetric ionization of helium at energies of 100 and 200 eV. The best possible one-configuration incident distorted wave functions together with the capture scattering have been used to produce a better agreement with absolute measurements at 100 eV compared with the previous DWBA calculations. However the discrepancy between experiment and theory at 200 eV for large angles has not been resolved by these modifications. Moreover capture scattering has been found negligible at 28.6 to 200 eV. Similar DWBA calculations for hydrogen close to the threshold are also reported. Very good agreement with experiment has been found at 17.6 eV. 20 refs., 4 figs

  7. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    Science.gov (United States)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  8. Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ensign, P.; Mahanthappa, K.T.

    1987-01-01

    We construct the supercurrent and a supersymmetric current which satisfies the Adler-Bardeen theorem in supersymmetric Yang-Mills theory coupled to non-self-interacting chiral matter. Using the formulation recently developed by Grisaru, Milewski, and Zanon, supersymmetry and gauge invariance are maintained with supersymmetric background-field theory and regularization by dimensional reduction. We verify the finiteness of the supercurrent to one loop, and the Adler-Bardeen theorem to two loops by explicit calculations in the minimal-subtraction scheme. We then demonstrate the subtraction-scheme independence of the one-loop Adler-Bardeen anomaly and prove the existence of a subtraction scheme in which the Adler-Bardeen theorem is satisfied to all orders in perturbation theory

  9. Research on the quantum multistep theory for pre-equilibrium nuclear reaction

    CERN Document Server

    Su Zong Di; Abdurixit, A; Wang Shu Nuan; Li Bao Xian; Huang Zhong; Liu Jian Feng; Zhang Benai; Zhu Yao Yin; Li Zhi Wen

    2002-01-01

    The Feshbach-Kerman-Koonin (FKK) quantum multistep theory of the pre-equilibrium reaction is further improved and perfected. A unified description for the multistep compound (MSC) process of the pre-equilibrium reaction and the compound nucleus (CN) process of full equilibrium reaction can be presented. This formula can integrate MSC and CN theories with the optical model and Hauser-Feshbach formula, and can get self-consistent expression. In multistep direct (MSD) process of the pre-equilibrium reaction, the mu-step cross section can be expressed by the convolution of mu one-step cross section. And the one step cross section for continuum can be written as the product of an averaged DWBA matrix element and the state density. For calculating the multistep direct reaction cross section, two methods, the state densities and full microscopic model, are used and compared. Some typical experiments are analyzed by using the work mentioned above. The calculated results are reasonable and in good agreement with the e...

  10. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.

    1983-10-01

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  11. Density functional theory study of inter-layer coupling in bulk tin selenide

    Science.gov (United States)

    Song, Hong-Yue; Lü, Jing-Tao

    2018-03-01

    We study the inter-layer coupling in bulk tin selenide (SnSe) through density functional theory based calculations. Different approximations for the exchange-correlation functionals and the van der Waals interaction are employed. By performing comparison with graphite, MoS2 and black phosphorus, we analyze the inter-layer coupling from different points of view, including the binding energy, the low frequency inter-layer optical phonons, and the inter-layer charge transfer. We find that, there is a strong charge transfer between layers of SnSe, resulting in the strongest inter-layer coupling. Moreover, the charge transfer renders the inter-layer coupling in SnSe not of van der Waals type. Mechanical exfoliation has been used to fabricate mono- or few-layer graphene, MoS2 and black phosphorus. But, our results show that it may be difficult to apply similar technique to SnSe.

  12. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.

  13. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center

  14. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    would be a great contribution in the growing field of quantum optics in semiconductors. The efforts in QD systems are again driven by the atomic systems which not only have shown the vacuum Rabi splitting, but also the second rung, e.g. via direct spectroscopy and via photon-correlation measurements. In this thesis, it is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission. The resonance fluorescence equations are derived and solved for strong-coupling semiconductor quantum-dot systems using a fully quantized multimode theory and a cluster-expansion approach. A reduced model is developed to explain the origin of auto- and cross-correlation resonances in the two-photon emission spectrum of the fluorescent light. These resonances are traced back to the two-photon strong-coupling states of Jaynes-Cummings ladder. The accuracy of the reduced model is verified via numerical solution of the resonance fluorescence equations. The analysis reveals the direct relation between the squeezed-light emission and the strong-coupling states in optically excited semiconductor systems. (orig.)

  15. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  16. Particle production in field theories coupled to strong external sources, I: Formalism and main results

    International Nuclear Information System (INIS)

    Gelis, Francois; Venugopalan, Raju

    2006-01-01

    We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory

  17. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  18. Channel perceptions and usage: beyond media richness factors

    NARCIS (Netherlands)

    Pieterson, Willem Jan; Teerling, Marije; Ebbers, Wolfgang E.; Wimmer, Maria A.; Scholl, Hans J.; Ferro, Enrico

    2008-01-01

    In this paper, we asses how service channel perceptions affect channel choice and channel usage. Building on communication theories, such as the Media Richness Theory, we explore how different channel characteristics are perceived by citizens in a Dutch governmental service chain. The results of our

  19. Analyticity of effective coupling and propagators in massless models of quantum field theory

    International Nuclear Information System (INIS)

    Oehme, R.

    1982-01-01

    For massless models of quantum field theory, some general theorems are proved concerning the analytic continuation of the renormalization group functions as well as the effective coupling and the propagators. Starting points are analytic properties of the effective coupling and the propagators in the momentum variable k 2 , which can be converted into analyticity of β- and γ-functions in the coupling parameter lambda. It is shown that the β-function can have branch point singularities related to stationary points of the effective coupling as a function of k 2 . The type of these singularities of β(lambda) can be determined explicitly. Examples of possible physical interest are extremal values of the effective coupling at space-like points in the momentum variable, as well as complex conjugate stationary points close to the real k 2 -axis. The latter may be related to the sudden transition between weak and strong coupling regimes of the system. Finally, for the effective coupling and for the propagators, the analytic continuation in both variables k 2 and lambda is discussed. (orig.)

  20. The coupled cluster theory of quantum lattice systems

    International Nuclear Information System (INIS)

    Bishop, R.; Xian, Yang

    1994-01-01

    The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory

  1. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  2. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    Science.gov (United States)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  3. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  4. Flexoelectric Effect on Vibration of Piezoelectric Microbeams Based on a Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Xingjia Li

    2017-01-01

    Full Text Available A novel electric Gibbs function was proposed for the piezoelectric microbeams (PMBs by employing a modified couple stress theory. Based on the new Gibbs function and the Euler-Bernoulli beam theory, the governing equations which incorporate the effects of couple stress, flexoelectricity, and piezoelectricity were derived for the mechanics of PMBs. The analysis of the effective bending rigidity shows the effects of size and flexoelectricity can greaten the stiffness of PMBs so that the natural frequency increases significantly compared with the Euler-Bernoulli beam, and then the mechanical and electrical properties of PMBs are enhanced compared to the classical beam. This study can guide the design of microscale piezoelectric/flexoelectric structures which may find potential applications in the microelectromechanical systems (MEMS.

  5. Super-pixel extraction based on multi-channel pulse coupled neural network

    Science.gov (United States)

    Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.

  6. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  7. On SYM theory and all order bulk singularity structures of BPS strings in type II theory

    Science.gov (United States)

    Hatefi, Ehsan

    2018-06-01

    The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.

  8. Cavity mode control in side-coupled periodic waveguides: theory and experiment

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, A.; Lavrinenko, Andrei

    2010-01-01

    We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases...... as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, whose frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion...... at the photonic band-edge.We illustrate our approach through numerical modeling of cavities created in arrays of dielectric rods, and confirm our predictions with experimental observations....

  9. A new scheme for the running coupling constant in gauge theories using Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurachi, Masafumi [Los Alamos National Laboratory; Bilgici, Erek [AUSTRIA; Flachi, Antonion [KYOTO UNIV; Itou, Etsuko [KOGAKUIN UNIV; David Lin, C J [NATIONAL CHIAO-TUNG UNIV; Matsufuru, Hideo [KEK; Ohki, Hiroshi [KYOTO UNIV; Onogi, Tetsuya [KYOTO UNIV; Yamazaki, Takeshi [UNIV OF TSUKUBA

    2009-01-01

    We propose a new renormalization scheme of the running coupling constant in general gauge theories defined by using the Wilson loops. The renormalized coupling constant is obtained from the Cretz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter calculation is performed by adopting the zeta-function resummation techniques. We make a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.

  10. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  11. On the theory of direct reactions with many particle final states

    International Nuclear Information System (INIS)

    Trautmann, D.; Baur, G.

    1977-01-01

    We study the theory of direct reactions with many particle final states. First, we concentrate on the DWBA formulation of the break-up of deuterons on heavy nuclei below the Coulomb barrier. Because there are no free parameters, this permits a clean test of the theory by comparing it to the experimental data. The agreement is very good. The theory is applied to the break-up of antideuteronic atoms. Then the effect of virtual deuteron break-up on Rutherford scattering is studied. It is small, but it seems to be measurable. Also the deuteron break-up above the Coulomb barrier can be well explained theoretically. In this context, small effects are studied briefly. A semiclassical theory of the break-up process is given, which results in an intuitive picture and a fast computational method. Our theory lends itself in a natural way to the study of stripping reactions to unbound states. The relation of stripping into the continuum to elastic scattering of the transferred particle on the same target nucleus is explained. Then the connection of stripping to bound and unbound states is established. Finally various examples of stripping of uncharged and charged particles into the continuum are given to illustrate the theory. Resonance wave functions describing the transferred particle are discussed. In a conclusion an outlook for possible future developments of experiment and theory is given. (author)

  12. Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity

    Directory of Open Access Journals (Sweden)

    Bertolami Orfeu

    2013-09-01

    Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.

  13. The S-Matrix coupling dependence for a, d and e affine Toda field theory

    International Nuclear Information System (INIS)

    Braden, H.W.; Sasaki, R.

    1990-09-01

    Affine Toda field theories are solvable 1+1 dimensional quantum field theories closely related to integrable deformations of conformal field theory. The S-Matrix elements for an affine Toda field theory are known to depend on the coupling constant β through one universal function B(β) which cannot be determined by unitarity, crossing and the bootstrap. From the requirement of nonexistence of extra poles in the physical region its form is conjectured to be B(β) = (2π) -1 ·β 2 /((1+β 2 )/4π). We show that the above conjecture is correct up to one loop order (i.e., β 4 ) of perturbation for simply laced, i.e., a, d and e affine Toda field theories using a general argument which exhibits much of the richness of these theories. (author)

  14. Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings

    International Nuclear Information System (INIS)

    Anselmi, Damiano

    2003-01-01

    I study some aspects of the renormalization of quantum field theories with infinitely many couplings in arbitrary spacetime dimensions. I prove that when the spacetime manifold admits a metric of constant curvature, the propagator is not affected by terms with higher derivatives. More generally, certain Lagrangian terms are not turned on by renormalization, if they are absent at the tree level. This restricts the form of the action of a non-renormalizable theory, and has applications to quantum gravity. The new action contains infinitely many couplings, but not all of the ones that might have been expected. In quantum gravity, the metric of constant curvature is an extremal, but not a minimum, of the complete action. Nonetheless, it appears to be the right perturbative vacuum, at least when the curvature is negative, suggesting that the quantum vacuum has a negative asymptotically constant curvature. The results of this paper give also a set of rules for a more economical use of effective quantum field theories and suggest that it might be possible to give mathematical sense to theories with infinitely many couplings at high energies, to search for physical predictions

  15. Second law analysis for hydromagnetic couple stress fluid flow through a porous channel

    Directory of Open Access Journals (Sweden)

    S.O. Kareem

    2016-06-01

    Full Text Available In this work, the combined effects of magnetic field and ohmic heating on the entropy generation rate in the flow of couple stress fluid through a porous channel are investigated. The equations governing the fluid flow are formulated, non-dimensionalised and solved using a rapidly convergent semi-analytical Adomian decomposition method (ADM. The result of the computation shows a significant dependence of fluid’s thermophysical parameters on Joule’s dissipation as well as decline in the rate of change of fluid momentum due to the interplay between Lorentz and viscous forces. Moreover, the rate of entropy generation in the flow system drops as the magnitude of the magnetic field increases.

  16. The Bekenstein bound in strongly coupled O(N) scalar field theory

    International Nuclear Information System (INIS)

    Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.

    2009-09-01

    We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)

  17. Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels

    Directory of Open Access Journals (Sweden)

    Marco Petti

    2018-04-01

    Full Text Available The silting of tidal channels is a natural process that affects several shallow lagoons and makes it difficult to navigate, requiring regular maintenance interventions. This phenomenon is the result of the complex non-linear interaction between tidal currents and wave motion. In this work, the morphodynamic evolution of the Marano and Grado lagoon is investigated by means of a two-dimensional horizontal (2DH morphological-hydrodynamic and a spectral coupled model. An innovative procedure to reproduce the overall bathymetric changes in the medium term and, in particular, the volumes deposited inside channels, is presented. An average year with a sequence of winds and tides acting over that time was reconstructed, carrying out cross correlation techniques and spectral analyses of measured data. The predicted morphological evolution matches the annual dredged volumes in the lagoon critical branches and shows the distribution of erosion and deposition of cohesive sediments according to spatially variable values of critical shear stress.

  18. A coupled-channels analysis of pion scattering and pion-induced eta production on the nucleon

    International Nuclear Information System (INIS)

    Pratt, R.K.; Bennhold, C.; Surya, Y.

    1995-01-01

    Motivated by new, upcoming Brookhaven data, pion scattering and pion-induced eta production on the nucleon in the S 11 (1535) resonance region is studied in an extension of the unitary, relativistic resonance model by Surya and Gross. The Kernel of the relativistic wave equation includes the nucleon, Roper, δ(1232), D 13 (1520) and S 11 (1535) pole terms along with contact σ- and ρ-like exchange terms. The formalism includes a coupling between the πN and ηN channels. The resonance parameters are adjusted to reproduce the experimental πN phase shifts

  19. Isospin non-conservation in 14N(d,d')14N reaction

    International Nuclear Information System (INIS)

    Aoki, Y.; Sanada, J.; Yagi, K.; Kunori, S.; Higashi, Y.

    1978-01-01

    The deuteron inelastic scattering experiments on 14 N are made at E sub(d) = 10.03, 11.65, 14.82 and 17.88 MeV, laying an emphasis on the isospin-forbidden excitation of the 2.31 MeV (0 + , T = 1) state. In order to clarify the reaction mechanism, we have performed analyses assuming both the direct reaction mechanism and the compound nucleus formation. For the above isospin-forbidden transition, the calculation in the second-order DWBA which assumes the isospin mixing in the intermediate channels, reproduces fairly well the strong energy dependence of the angular distribution and the cross section. For the isospin-allowed transition the simple DWBA calculation gives reasonable agreement with the experiment. The present calculation shows that the observed isospin violation is well accounted for by the direct multi-step reaction mechanism assuming the isospin mixing in the intermediate channels. (author)

  20. TORUS: Theory of Reactions for Unstable iSotopes.Topical Collaboration for Nuclear Theory Project. Period: June 1, 2010 - May 31, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-28

    The work of this collaboration during its existence is summarized. The mission of the TORUS Topical Collaboration was to develop new methods that advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct reaction calculations. This multi-institution collaborative effort was and remains directly relevant to three areas of interest: the properties of nuclei far from stability, microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory. The TORUS project focused on understanding the details of (d,p) reactions for neutron transfer to heavier nuclei. The bulk of the work fell into three areas: coupled channel theory, modeling (d,p) reactions with a Faddeev-AGS approach, and capture reactions.

  1. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    Energy Technology Data Exchange (ETDEWEB)

    Amann, Christian P., E-mail: Christian.2.Amann@uni-konstanz.de; Fuchs, Matthias, E-mail: Matthias.Fuchs@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany); Denisov, Dmitry; Dang, Minh Triet; Schall, Peter [Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam (Netherlands); Struth, Bernd [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  2. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    International Nuclear Information System (INIS)

    Amann, Christian P.; Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-01-01

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses

  3. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    Science.gov (United States)

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  4. Computer simulations of channel meandering and the formation of point bars: Linking channel dynamics to the preserved stratigraphy

    Science.gov (United States)

    Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.

    2012-12-01

    Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001

  5. Photon control by multi-periodic binary grating waveguides: A coupled-mode theory approach

    DEFF Research Database (Denmark)

    Adam, Jost; Lüder, Hannes; Gerken, Martina

    only lead to quantitative results outside the device’s band gaps, since only radiative propagation loss is calculated.n order to provide more physical and quantitative insight to grating-induced waveguide losses, we implemented a coupled-mode theory (CMT) approach for the semi-analytical treatment...

  6. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  7. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  8. Uplink scheduling and adjacent-channel coupling loss analysis for TD-LTE deployment.

    Science.gov (United States)

    Yeo, Woon-Young; Moon, Sung Ho; Kim, Jae-Hoon

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI.

  9. Coupling of tt̄ and γγ with a strongly interacting Electroweak Symmetry Breaking Sector

    Directory of Open Access Journals (Sweden)

    Delgado Rafael L.

    2017-01-01

    Full Text Available We report the coupling of an external γγ or tt̄ state to a strongly interacting EWSBS satisfying unitarity. We exploit perturbation theory for those coupling of the external state, whereas the EWSBS is taken as strongly interacting. We use a modified version of the IAM unitarization procedure to model such a strongly interacting regime. The matrix elements VLVL → VLVL, VLVL ↔ hh, hh → hh, VLVL ↔ {γγ, tt̄}, hh ↔ {γγ, tt̄} are all computed to NLO in perturbation theory with the Nonlinear Effective Field Theory of the EWSBS, within the Equivalence Theorem. This allows us to describe resonances of the electroweak sector that may be found at the LHC and their effect on other channels such as γγ or tt̄ where they may be discovered.

  10. Renormalization group analysis of the temperature dependent coupling constant in massless theory

    International Nuclear Information System (INIS)

    Yamada, Hirofumi.

    1987-06-01

    A general analysis of finite temperature renormalization group equations for massless theories is presented. It is found that in a direction where momenta and temperature are scaled up with their ratio fixed the coupling constant behaves in the same manner as in zero temperature and that asymptotic freedom at short distances is also maintained at finite temperature. (author)

  11. Properties of the twisted Polyakov loop coupling and the infrared fixed point in the SU(3) gauge theories

    Science.gov (United States)

    Itou, Etsuko

    2013-08-01

    We report the nonperturbative behavior of the twisted Polyakov loop (TPL) coupling constant for the SU(3) gauge theories defined by the ratio of Polyakov loop correlators in finite volume with twisted boundary condition. We reveal the vacuum structures and the phase structure for the lattice gauge theory with the twisted boundary condition. Carrying out the numerical simulations, we determine the nonperturbative running coupling constant in this renormalization scheme for the quenched QCD and N_f=12 SU(3) gauge theories. First, we study the quenched QCD theory using the plaquette gauge action. The TPL coupling constant has a fake fixed point in the confinement phase. We discuss this fake fixed point of the TPL scheme and obtain the nonperturbative running coupling constant in the deconfinement phase, where the magnitude of the Polyakov loop shows the nonzero values. We also investigate the system coupled to fundamental fermions. Since we use the naive staggered fermion with the twisted boundary condition in our simulation, only multiples of 12 are allowed for the number of flavors. According to the perturbative two-loop analysis, the N_f=12 SU(3) gauge theory might have a conformal fixed point in the infrared region. However, recent lattice studies show controversial results for the existence of the fixed point. We point out possible problems in previous work, and present our careful study. Finally, we find the infrared fixed point (IRFP) and discuss the robustness of the nontrivial IRFP of a many-flavor system under the change of the analysis method. Some preliminary results were reported in the proceedings [E. Bilgici et al., PoS(Lattice 2009), 063 (2009); Itou et al., PoS(Lattice 2010), 054 (2010)] and the letter paper [T. Aoyama et al., arXiv:1109.5806 [hep-lat

  12. Microvillar ion channels: cytoskeletal modulation of ion fluxes.

    Science.gov (United States)

    Lange, K

    2000-10-21

    The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical

  13. Coupled-channel optical calculation of electron-hydrogen scattering: elastic scattering from 0.5 to 30 eV

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1991-01-01

    A coupled-channel optical method for electron-atomic hydrogen scattering is presented in a form that treats both the projectile and the target electrons symmetrically. Elastic differential cross sections are calculated at a range of energies from 0.5 to 30 eV and are found to be in complete agreement with the absolute measurements, previously reported. Total and total ionization cross sections are also presented. 13 refs., 2 tabs., 2 figs

  14. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    International Nuclear Information System (INIS)

    Hillenbach, M.

    2007-01-01

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  15. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  16. Effects of electric field and Coriolis force on electrohydrodynamic stability of poorly conducting couple stress parallel fluid flow in a channel

    International Nuclear Information System (INIS)

    Shankar, B.M.; Rudraiah, N.

    2013-01-01

    The linear stability of electrohydrodynamic poorly conducting couple stress viscous parallel fluid flow in a channel is studied in the presence of a non-uniform transverse electric field and Coriolis force using energy method and supplemented with Galerkin Technique. The sufficient condition for stability is obtained for sufficiently small values of the Reynolds number, R e . From this condition we show that strengthening or weakening of the stability criterion is dictated by the values of the strength of electric field, the coefficient of couple stress fluid and independent of Taylor number. In particular, it is shown that the interaction of electric field with couple stress is more effective in stabilizing the poorly conducting couple stress fluid compared to that in an ordinary Newtonian viscous fluid. (author)

  17. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    International Nuclear Information System (INIS)

    Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-01-01

    In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  18. Implementation of the CCGM approximation for surface diffraction using Wigner R-matrix theory

    International Nuclear Information System (INIS)

    Lauderdale, J.G.; McCurdy, C.W.

    1983-01-01

    The CCGM approximation for surface scattering proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)] is implemented for realistic surface interaction potentials using Wigner R-matrix theory. The resulting procedure is highly efficient computationally and is in no way limited to hard wall or purely repulsive potentials. Comparison is made with the results of close-coupling calculations of other workers which include the same diffraction channels in order to fairly evaluate the CCGM approximation which is an approximation to the coupled channels Lippman--Schwinger equation for the T matrix. The shapes of selective adsorption features, whether maxima or minima, in the scattered intensity are well represented in this approach for cases in which the surface corrugation is not too strong

  19. Towards the blackbox computation of magnetic exchange coupling parameters in polynuclear transition-metal complexes: theory, implementation, and application.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2013-05-07

    We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.

  20. Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1988-01-01

    Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry

  1. Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories

    OpenAIRE

    Chernicoff, Mariano; Guijosa, Alberto

    2008-01-01

    We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in N=4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a ...

  2. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2018-03-01

    Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  3. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Science.gov (United States)

    Armoni, Adi; Ireson, Edwin; Vadacchino, Davide

    2018-03-01

    We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  4. Open-channel effects on heavy-quarkonium spectra: a phenomenological study within a one-open-channel approximation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kato, K.; Yabusaki, N.; Hirano, M.; Nakanishi, R.; Sakai, M.

    1997-01-01

    Open-channel effects on charmonium (S- and D-waves) and bottomonium (S-wave) J P = 1 - spectra are investigated within a one-open-channel approximation. Mass shifts and decay widths of these states just above the threshold are obtained by taking into account a coupling between confined quarkonium states and decaying states of the open channel. The final-state interaction (FSI) between the decaying meson and antimeson plays a very important role in producing a reasonable magnitude of coupling; the FSI provides the open-channel poles (R 1 , R 2 ) at the appropriate positions on the complex energy plane. The result is found to be independent of the detailed form of the transition potential and the final-state interaction. (author)

  5. Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory

    Science.gov (United States)

    Usselman, Austin

    We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one

  6. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    Science.gov (United States)

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  7. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  8. RBS cross-section of MeV ions channeling in crystals from quantum theory

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Spizzirri, P.G.; Allen, L.J.

    1999-01-01

    We present an alternative approach to describing Rutherford Backscattered (RBS) angular yield scans. The Bloch wave method to formulate the cross-section is a fundamental approach originating from Schrodinger's equation. This quantum formulation is often used when describing various aspects of electron diffraction including Backscattering, EDX and TEM but has seen little application to the very short wavelength regime of MeV ions. It offers several significant advantages. Great freedom is given to crystal properties and structure in the theory allowing a fundamental insight into the channeling phenomena and hence the crystal itself. We have calculated both planar and axial channeling scans and these maps are shown to be in good agreement to their experimental counterparts. There is excellent correlation between the theoretical and experimental results for both χ min and Ψ 1/2 . Further investigation is required into the area of absorption or dechanneling. This phenomenon requires different mechanisms for electron and ion scattering differ greatly

  9. Semi-analytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2015-01-01

    We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained, ......-trivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest.......We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained......, and for two types of two-dimensional PhCs, with one and two cavities side-coupled to an extended waveguide, the theory is validated against numerically exact computations. For the single cavity, a slightly asymmetric spectrum is found, which the QNM theory reproduces, and for two cavities a non...

  10. Renormalization of supersymmetric gauge theories on orbifolds: Brane gauge couplings and higher derivative operators

    International Nuclear Information System (INIS)

    Groot Nibbelink, Stefan; Hillenbach, Mark

    2005-01-01

    We consider supersymmetric gauge theories coupled to hypermultiplets on five- and six-dimensional orbifolds and determine the bulk and local fixed point renormalizations of the gauge couplings. We infer from a component analysis that the hypermultiplet does not induce renormalization of the brane gauge couplings on the five-dimensional orbifold S 1 /Z 2 . This is not due to supersymmetry, since the bosonic and fermionic contributions cancel separately. We extend this investigation to T 2 /Z N orbifolds using supergraph techniques in six dimensions. On general Z N orbifolds the gauge couplings do renormalize at the fixed points, except for the Z 2 fixed points of even ordered orbifolds. To cancel the bulk one-loop divergences a dimension six higher derivative operator is needed, in addition to the standard bulk gauge kinetic term.

  11. Anomalous triple gauge couplings in the effective field theory approach at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, Adam [Laboratoire de Physique Théorique,Bat. 210, Université Paris-Sud, 91405 Orsay (France); González-Alonso, Martín [IPN de Lyon/CNRS,Universite Lyon 1, Villeurbanne (France); Greljo, Admir [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Faculty of Science, University of Sarajevo,Zmaja od Bosne 33-35, 71000 Sarajevo (Bosnia and Herzegovina); Marzocca, David [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Son, Minho [Department of Physics, Korea Advanced Institute of Science and Technology,291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2017-02-22

    We discuss how to perform consistent extractions of anomalous triple gauge couplings (aTGC) from electroweak boson pair production at the LHC in the Standard Model Effective Field Theory (SMEFT). After recasting recent ATLAS and CMS searches in pp→WZ(WW)→ℓ{sup ′}νℓ{sup +}ℓ{sup −}(ν{sub ℓ}) channels, we find that: (a) working consistently at order Λ{sup −2} in the SMEFT expansion the existing aTGC bounds from Higgs and LEP-2 data are not improved, (b) the strong limits quoted by the experimental collaborations are due to the partial Λ{sup −4} corrections (dimension-6 squared contributions). Using helicity selection rule arguments we are able to explain the suppression in some of the interference terms, and discuss conditions on New Physics (NP) models that can benefit from such LHC analyses. Furthermore, standard analyses assume implicitly a quite large NP scale, an assumption that can be relaxed by imposing cuts on the underlying scale of the process (√(ŝ)). In practice, we find almost no correlation between √(ŝ) and the experimentally accessible quantities, which complicates the SMEFT interpretation. Nevertheless, we provide a method to set (conservative) aTGC bounds in this situation, and recast the present searches accordingly. Finally, we introduce a simple NP model for aTGC to compare the bounds obtained directly in the model with those from the SMEFT analysis.

  12. Exploring Partner Intimacy Among Couples Raising Children on the Autism Spectrum: A Grounded Theory Investigation.

    Science.gov (United States)

    Johnson, Jake; Piercy, Fred P

    2017-10-01

    In this study, we explored how couples raising children with autism spectrum disorder negotiate intimacy, including what contextual and temporal factors influence these processes. We conducted conjoint interviews with 12 couples, employing grounded theory methodology to collect and analyze the data. Our results indicated that fostering intimacy in these couples' relationships involves partners working together to make key cognitive and relational shifts. Couples are aided or hindered in making these shifts by the degree to which they experience various contextual and environmental factors as resources or roadblocks. We also found that intimacy is not a fixed point at which couples one day arrive, but is an iterative process taking place over time and requiring work to develop and maintain. © 2017 American Association for Marriage and Family Therapy.

  13. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.

  14. Low energy gauge couplings in grand unified theories and high precision physics

    International Nuclear Information System (INIS)

    Lynn, B.W.

    1993-09-01

    I generalize the leading log relations between low energy SU(3) QCD , SU(2) rvec I and U(l) Y effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3) QCD x U(L) QED subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs' masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs' or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the τ and ν τ can affect the relation between gauge couplings for |q 2 | → m b 2 as can hadronic resonances and multi-hadron states for lower |q 2 |. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations

  15. Low energy gauge couplings in grand unified theories and high precision physics

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, B.W. [Stanford Univ., CA (United States). Dept. of Physics]|[Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-09-01

    I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.

  16. Non-topological solitons in field theories with kinetic self-coupling

    International Nuclear Information System (INIS)

    Diaz-Alonso, Joaquin; Rubiera-Garcia, Diego

    2007-01-01

    We investigate some fundamental features of a class of non-linear relativistic Lagrangian field theories with kinetic self-coupling. We focus our attention upon theories admitting static, spherically symmetric solutions in three space dimensions which are finite-energy and stable. We determine general conditions for the existence and stability of these non-topological soliton solutions. In particular, we perform a linear stability analysis that goes beyond the usual Derrick-like criteria. On the basis of these considerations we obtain a complete characterization of the soliton-supporting members of the aforementioned class of non-linear field theories. We then classify the family of soliton-supporting theories according to the central and asymptotic behaviors of the soliton field, and provide illustrative explicit examples of models belonging to each of the corresponding sub-families. In the present work we restrict most of our considerations to one and many-components scalar models. We show that in these cases the finite-energy static spherically symmetric solutions are stable against charge-preserving perturbations, provided that the vacuum energy of the model vanishes and the energy density is positive definite. We also discuss briefly the extension of the present approach to models involving other types of fields, but a detailed study of this more general scenario will be addressed in a separate publication

  17. Oxygen-coupled Redox Regulation of the Skeletal Muscle Ryanodine Receptor/Ca2+ Release Channel (RyR1)

    Science.gov (United States)

    Sun, Qi-An; Wang, Benlian; Miyagi, Masaru; Hess, Douglas T.; Stamler, Jonathan S.

    2013-01-01

    In mammalian skeletal muscle, Ca2+ release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca2+-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca2+ channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in “hot spot” regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues. PMID:23798702

  18. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Y.K., E-mail: ykhahn22@verizon.net

    2014-12-15

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the

  19. Effects of Interfacial Translation-rotation Coupling for Confined Ferrofluids

    Science.gov (United States)

    Fang, Angbo

    2011-03-01

    Ferrofluids have wide applications ranging from semiconductor fabrications to biomedical processes. The hydrodynamic spin diffusion theory for ferrofluids has been successful in explaining many experimental data, but it suffers from some fatal flaws. For example, it fails to predict the incorrect flow direction for a ferrofluid confined in a concentric cylinder channel in the presence of a rotating magnetic field. In this work we develop a method to establish the general hydrodynamic boundary conditions (BCs) for micro-polar fluids such as ferrofluids. Through a dynamic generalization of the mesoscopic diffuse interface model, we are able to obtain the surface dissipation functional, in which the interfacial translation-rotation coupling plays a significant role. The generalized hydrodynamic BCs can be obtained straightforwardly by using Onsager's variational approach. The resulted velocity profile and other quantities compares well with the experimental data, strikingly different from traditional theories. The methodology can be applied to study the hydrodynamic behavior of other structured fluids in confined channels or multi-phase flows. The work is supported by a research award made by the King Abdullah University of Science and Technology.

  20. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    International Nuclear Information System (INIS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-01-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  1. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    Science.gov (United States)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-03-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  2. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    International Nuclear Information System (INIS)

    Zhang, Xing; Herbert, John M.

    2014-01-01

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state

  3. A non-linear theory for the bubble regime of plasma wake fields in tailored plasma channels

    CERN Document Server

    Thomas, Johannes

    2016-01-01

    We introduce a first full analytical bubble and blow-out model for a radially inhomogeneous plasma in a quasi-static approximation. For both cases we calculate the accelerating and the focusing fields. In our model we also assume a thin electron layer that surrounds the wake field and calculate the field configuration within. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. From a previous study of hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime we know that pancake-like laser pulses lead to highest electron energies [Pukhov et al, PRL 113, 245003 (2014)]. As it was shown, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths by varying the plasma density profile inside a deep channel. Now we show why the radial fields in the vacuum part of a channel become defocussing.

  4. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    Science.gov (United States)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  5. Studies to the stochastic theory of coupled reactorkinetic-thermohydraulic systems Pt. 2

    International Nuclear Information System (INIS)

    Mesko, L.

    1983-06-01

    The description is given of the noise phenomena taking place in a multivariable coupled system by a comprehensive model based on the theory of stochastic fluctuations. A comparison is made with models using transfer function formalism for systems characterized by deterministic open and closed loop signal transmission properties. The advantages of the stochastic model are illustrated by simple reactor dynamical examples having diagnostical importance. (author)

  6. The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory

    International Nuclear Information System (INIS)

    Bartels, J.; Schomerus, V.; Sprenger, M.

    2015-01-01

    We describe a general algorithm for the computation of the remainder function for n-gluon scattering in multi-Regge kinematics for strongly coupled planar N=4 super Yang-Mills theory. This regime is accessible through the infrared physics of an auxiliary quantum integrable system describing strings in AdS 5 ×S 5 . Explicit formulas are presented for n=6 and n=7 external gluons. Our results are consistent with expectations from perturbative gauge theory. This paper comprises the technical details for the results announced in http://dx.doi.org/10.1007/JHEP10(2014)067.

  7. Quantum privacy and Schur product channels

    Science.gov (United States)

    Levick, Jeremy; Kribs, David W.; Pereira, Rajesh

    2017-12-01

    We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.

  8. Search for anomalous Wtb couplings and top FCNC in t-channel single-top-quark events in the CMS experiment

    CERN Document Server

    Tsirova, Natalia

    2015-01-01

    Single-top-quark events in the t-channel are used to probe Wtb anomalous couplings and to search for top-quark Flavor-Changing Neutral Current (FCNC) interactions in proton-proton collisions with the CMS experiment. A Bayesian neural network is used to discriminate between signal and backgrounds. The observed event yields are consistent with SM prediction, and exclusion limits at 95\\% C.L. are determined.

  9. Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters

    Science.gov (United States)

    Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail

    2016-11-01

    We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.

  10. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Science.gov (United States)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  11. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  12. Reciprocity relation for multichannel coupling kernels

    International Nuclear Information System (INIS)

    Cotanch, S.R.; Satchler, G.R.

    1981-01-01

    Assuming time-reversal invariance of the many-body Hamiltonian, it is proven that the kernels in a general coupled-channels formulation are symmetric, to within a specified spin-dependent phase, under the interchange of channel labels and coordinates. The theorem is valid for both Hermitian and suitably chosen non-Hermitian Hamiltonians which contain complex effective interactions. While of direct practical consequence for nuclear rearrangement reactions, the reciprocity relation is also appropriate for other areas of physics which involve coupled-channels analysis

  13. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

    Science.gov (United States)

    Yuan, Dongliang; Xu, Peng; Xu, Tengfei

    2017-01-01

    An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.

  14. QCD and strongly coupled gauge theories: challenges and perspectives

    CERN Document Server

    Brambilla, N.; Foka, P.; Gardner, S.; Kronfeld, A.S.; Alford, M.G.; Alkofer, R.; Butenschoen, M.; Cohen, T.D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J.L.; Ketzer, B.; Lin, H.W.; Llanes-Estrada, F.J.; Meyer, H.B.; Pakhlov, P.; Pallante, E.; Polikarpov, M.I.; Sazdjian, H.; Schmitt, A.; Snow, W.M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Hollwieser, R.; Janik, M.A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J.W.; Ricciardi, G.; Salgado, C.A.; Schwenzer, K.; Stefanis, N.G.; von Hippel, G.M.; Zakharov, V.I.

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  15. Group field theory formulation of 3D quantum gravity coupled to matter fields

    International Nuclear Information System (INIS)

    Oriti, Daniele; Ryan, James

    2006-01-01

    We present a new group field theory describing 3D Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs coloured with SU(2) algebraic data, from which one can reconstruct at once a three-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3D quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss

  16. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  17. Sudden rotation reactive scattering: Theory and application to 3-D H+H2

    International Nuclear Information System (INIS)

    Bowman, J.M.; Lee, K.T.

    1980-01-01

    An approximate quantum mechanical theory of reactive scattering is presented and applied to the H+H 2 reaction in three dimensions. Centrifugal sudden and rotational sudden approximations are made in each arrangement channel, however, vibrational states are treated in a fully coupled manner. Matching of arrangement channel wave functions is done where the arrangement channel centrifugal potentials are equal. This matching is particularly appropriate for collinearly favored reactions. Integral and differential cross sections are calculated for the H+H 2 reaction for H 2 in the ground and first excited vibrational states. These calculations employ the Porter--Karplus potential energy surface mainly to allow for comparisons with previous accurate and approximate quantal and quasiclassical calculations

  18. Study on the dissociative recombination of HeH+ by multi-channel quantum defect theory

    Directory of Open Access Journals (Sweden)

    Takagi Hidekazu

    2015-01-01

    Full Text Available The dissociative recombination of HeH+ is studied using multi-channel quantum defect theory. We investigated how the partial waves of incident electrons affect the DR cross section. The DR cross section depends on the position of the center of partial wave expansion for the adiabatic S-matrix of electron scattering. When the Rydberg states correlate with the Rydberg states of the hydrogen atom at large internuclear distances, the center should be on the hydrogen atom for a better convergence of the expansion.

  19. Explicitly-correlated ring-coupled-cluster-doubles theory: Including exchange for computations on closed-shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Hehn, Anna-Sophia; Holzer, Christof; Klopper, Wim, E-mail: klopper@kit.edu

    2016-11-10

    Highlights: • Ring-coupled-cluster-doubles approach now implemented with exchange terms. • Ring-coupled-cluster-doubles approach now implemented with F12 functions. • Szabo–Ostlund scheme (SO2) implemented for use in SAPT. • Fast convergence to the limit of a complete basis. • Implementation in the TURBOMOLE program system. - Abstract: Random-phase-approximation (RPA) methods have proven to be powerful tools in electronic-structure theory, being non-empirical, computationally efficient and broadly applicable to a variety of molecular systems including small-gap systems, transition-metal compounds and dispersion-dominated complexes. Applications are however hindered due to the slow basis-set convergence of the electron-correlation energy with the one-electron basis. As a remedy, we present approximate explicitly-correlated RPA approaches based on the ring-coupled-cluster-doubles formulation including exchange contributions. Test calculations demonstrate that the basis-set convergence of correlation energies is drastically accelerated through the explicitly-correlated approach, reaching 99% of the basis-set limit with triple-zeta basis sets. When implemented in close analogy to early work by Szabo and Ostlund [36], the new explicitly-correlated ring-coupled-cluster-doubles approach including exchange has the perspective to become a valuable tool in the framework of symmetry-adapted perturbation theory (SAPT) for the computation of dispersion energies of molecular complexes of weakly interacting closed-shell systems.

  20. Running couplings and operator mixing in the gravitational corrections to coupling constants

    International Nuclear Information System (INIS)

    Anber, Mohamed M.; Donoghue, John F.; El-Houssieny, Mohamed

    2011-01-01

    The use of a running coupling constant in renormalizable theories is well known, but the implementation of this idea for effective field theories with a dimensional coupling constant is, in general, less useful. Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with varying conclusions. We sort through many of the issues involved, most particularly the idea of operator mixing and also the kinematics of crossing, using calculations in Yukawa and λφ 4 theories as illustrative examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such as λφ 4 , a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge theories, a running coupling fails to correctly account for the energy dependence of the interaction strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that operators which are normally discarded, such as those that vanish by the equations of motion, are required for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in the running of couplings is not useful or universal in the description of physical processes.

  1. Convergence of an L2-approach in the coupled-channels optical potential method for e-H scattering

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1990-08-01

    An L 2 approach to the coupled-channels optical method is studied. The investigation is done for electron-hydrogen elastic scattering at projectile energies of 30, 50, 100 and 200 eV. Weak coupling, free-particle Green's function and no exchange in Q-space are appoximations used to calculate the polarization potential. This model problem is solved exactly using actual hydrogen discrete and continuum functions. The convergence of an L 2 approach with the Laguerre basis to the exact result is investigated. It is found that a basis of 10 Laguerre functions is sufficient for convergence of approximately 5% in the polarization potential matrix elements and 2% in the differential cross sections for non-large angles. The convergence is faster for smaller energies. In general, the convergence to the exact result is slow. 12 refs., 2 tabs., 2 figs

  2. Convergence of the Distorted Wave Born series

    International Nuclear Information System (INIS)

    MacMillan, D.S.

    1981-01-01

    The aim of this thesis is to begin to understand the idea of reaction mechanisms in nonrelativistic scattering systems. If we have a complete reaction theory of a particular scattering system, then we claim that the theory itself must contain information about important reaction mechanisms in the system. This information can be used to decide what reaction mechanisms should be included in an approximate calculation. To investigate this claim, we studied several solvable models. The primary concept employed in studying our models is the convergence of the multistep series generated by iterating the corresponding scattering integral equation. We known that the eigenvalues of the kernel of the Lippmann-Schwinger equation for potential scattering determine the rate of convergence of the Born series. The Born series will converge only if these eigenvalues all life within the unit circle. We extend these results to a study of the distorted wave Born series for inelastic scattering. The convergence criterion tells us when approximations are valid. We learn how the convergence of the distorted wave series depends upon energy, coupling constants, angular momentum, and angular momentum transfer. In one of our models, we look at several possible distorting potentials to see which one gives the best convergence. We have also applied our results to several actual DWBA or coupled channel calculations in the literature. In addition to the study of models of two-body scattering systems, we have considered the case of rearrangement scattering. We have discussed the formulation of (N greater than or equal to 3)-body distorted wave equations in which the interior dynamics have been redistributed by introducing compact N-body distortion potentials

  3. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein

    2018-01-25

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  4. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein; Georghiades, Costas; Alouini, Mohamed-Slim

    2018-01-01

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  5. Process research on Emotionally Focused Therapy (EFT) for couples: linking theory to practice.

    Science.gov (United States)

    Greenman, Paul S; Johnson, Susan M

    2013-03-01

    The focus of this article is on the link among theory, process, and outcome in the practice of Emotionally Focused Therapy (EFT) for couples. We describe the EFT model of change and the EFT perspective on adult love as the reflection of underlying attachment processes. We outline the manner in which theory and research inform EFT interventions. This leads into a detailed review of the literature on the processes of change in EFT. We highlight the client responses and therapist operations that have emerged from process research and their relation to treatment outcomes. We discuss the implications of this body of research for clinical practice and training. © FPI, Inc.

  6. Bridging quantum chemistry and nuclear structure theory: Coupled-cluster calculations for closed- and open-shell nuclei

    International Nuclear Information System (INIS)

    Piecuch, Piotr; Wloch, Marta; Gour, Jeffrey R.; Dean, David J.; Papenbrock, Thomas; Hjorth-Jensen, Morten

    2005-01-01

    We review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences

  7. A global view on the Higgs self-coupling

    International Nuclear Information System (INIS)

    Di Vita, S.; Grojean, C.; Humboldt-Universitaet, Berlin; Panico, G.; Riembau, M.; Vantalon, T.; Barcelona Institute of Science and Technology, Bellaterra

    2017-04-01

    The Higgs self-coupling is notoriously intangible at the LHC. It was recently proposed to probe the trilinear Higgs interaction through its radiative corrections to single-Higgs processes. This approach however requires to disentangle these effects from those associated to deviations of other Higgs-couplings to fermions and gauge bosons. We show that a global fit exploiting only single-Higgs inclusive data suffers from degeneracies that prevent one from extracting robust bounds on each individual coupling. We show how the inclusion of double-Higgs production via gluon fusion, and the use of differential measurements in the associated single-Higgs production channels WH, ZH and t anti tH, can help to overcome the deficiencies of a global Higgs-couplings fit. In particular, we bound the variations of the Higgs trilinear self-coupling relative to its SM value to the interval [0.1, 2.3] at 68% confidence level at the high-luminosity LHC, and we discuss the robustness of our results against various assumptions on the experimental uncertainties and the underlying new physics dynamics. We also study how to obtain a parametrically enhanced deviation of the Higgs self-couplings and we estimate how large this deviation can be in a self-consistent effective field theory framework.

  8. A global view on the Higgs self-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Di Vita, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Grojean, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Panico, G. [Barcelona Institute of Science and Technology, Bellaterra (Spain). IFAE; Riembau, M.; Vantalon, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Barcelona Institute of Science and Technology, Bellaterra (Spain). IFAE

    2017-04-15

    The Higgs self-coupling is notoriously intangible at the LHC. It was recently proposed to probe the trilinear Higgs interaction through its radiative corrections to single-Higgs processes. This approach however requires to disentangle these effects from those associated to deviations of other Higgs-couplings to fermions and gauge bosons. We show that a global fit exploiting only single-Higgs inclusive data suffers from degeneracies that prevent one from extracting robust bounds on each individual coupling. We show how the inclusion of double-Higgs production via gluon fusion, and the use of differential measurements in the associated single-Higgs production channels WH, ZH and t anti tH, can help to overcome the deficiencies of a global Higgs-couplings fit. In particular, we bound the variations of the Higgs trilinear self-coupling relative to its SM value to the interval [0.1, 2.3] at 68% confidence level at the high-luminosity LHC, and we discuss the robustness of our results against various assumptions on the experimental uncertainties and the underlying new physics dynamics. We also study how to obtain a parametrically enhanced deviation of the Higgs self-couplings and we estimate how large this deviation can be in a self-consistent effective field theory framework.

  9. Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations.

    Science.gov (United States)

    Lutnaes, Ola B; Teale, Andrew M; Helgaker, Trygve; Tozer, David J; Ruud, Kenneth; Gauss, Jürgen

    2009-10-14

    An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.

  10. Singular-perturbation--strong-coupling field theory and the moments problem

    International Nuclear Information System (INIS)

    Handy, C.R.

    1981-01-01

    Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain

  11. Fluctuations of nuclear cross sections in the region of strong overlapping resonances and at large number of open channels

    International Nuclear Information System (INIS)

    Kun, S.Yu.

    1985-01-01

    On the basis of the symmetrized Simonius representation of the S matrix statistical properties of its fluctuating component in the presence of direct reactions are investigated. The case is considered where the resonance levels are strongly overlapping and there is a lot of open channels, assuming that compound-nucleus cross sections which couple different channels are equal. It is shown that using the averaged unitarity condition on the real energy axis one can eliminate both resonance-resonance and channel-channel correlations from partial r transition amplitudes. As a result, we derive the basic points of the Epicson fluctuation theory of nuclear cross sections, independently of the relation between the resonance overlapping and the number of open channels, and the validity of the Hauser-Feshbach model is established. If the number of open channels is large, the time of uniform population of compound-nucleus configurations, for an open excited nuclear system, is much smaller than the Poincare time. The life time of compound nucleus is discussed

  12. Limitations of Evolutionary Theory in Explaining Marital Satisfaction and Stability of Couple Relationships

    Directory of Open Access Journals (Sweden)

    Victoria Cabrera García

    2014-01-01

    Full Text Available The explanation of marital satisfaction and stability in trajectories of couple relationships has been the central interest in different studies (Karney, Bradbury. & Johnson, 1999; Sabatelli & Ripoll, 2004; Schoebi, Karney & Bradbury, 2012. However, there are still several questions and unknown aspects surrounding the topic. Within this context, the present reflection seeks to analyze whether the principles of Evolutionary Theory suffice to explain three marital trajectories in terms of satisfaction and stability. With this in mind, we have included other explanations proposed by the Psychosocial Theory that Evolutionary Theory does not refer to in order to better understand mating behavior. Moreover, other factors that could account for satisfied and stable relationships were analyzed. Suggestions for future investigations include the analysis of other marital trajectories that may or may not end in separation or divorce but are not included in this article.

  13. An Extra Push from Entrance-Channel Effects

    International Nuclear Information System (INIS)

    Grar, Nabila; Rowley, Neil

    2006-01-01

    The fusion probability for heavy symmetric systems is known to show certain very specific features. Apart from the large variance of the fusion barrier distribution, it is found that the energy at which the s-wave transmission is 0.5 is shifted to an energy significantly higher than the nominal (e.g. Bass) Coulomb barrier. This last feature is referred to in the literature as the 'extra push' effect. Many models have been devised to explain the origin of these findings. It is worth noting, however, that despite the extra push, the capture cross section is still greatly enhanced at the very lowest energies. This fact cannot be explained within the framework of macroscopic theories involving conditional saddle points or frictional forces. We have performed full coupled-channel calculations for heavy, symmetric systems treating correctly the long-range Coulomb excitations of the collective quadrupole- and octupole-phonon states in the target and projectile. The results obtained show that the extra push and the overall shape of the fusion probability are simply explained by these entrance-channel effects

  14. Decomposition theory of chemical reactions

    International Nuclear Information System (INIS)

    Rabitz, S.; Rabitz, H.

    1977-01-01

    The coupled channel formulation is utilized to variationally derive approximate closed-form expressions for reactive transition matrices. In conjunction with this effort it is shown that the effect of differing choices of possible channel coupling arrays becomes important when incomplete channel basis sets are used. Generalized techniques are employed to derive the necessary variational principles. The inherent coupling of the Green's functions in the resulting expression for the transition matrix makes inclusion of continuum states in the basis sets less crucial. The practical viability of this formulation as a computational scheme for chemical systems is discussed

  15. Study of the /sup 58/Ni, /sup 90/Zr and /sup 208/Pb(p,d) reactions at 121 MeV. [DWBA, angular distributions, spectroscopic factors, finite range calculations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R E; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Indiana Univ., Bloomington (USA). Dept. of Physics

    1978-01-01

    The (p,d) reaction has been studied on /sup 58/Ni, /sup 90/Zr and /sup 208/Pb at 121 MeV in order to test the applicability of the usual DWBA methods to higher energy data. The calculations describe the angular distribution for the strongly excited low-lying states reasonably well when adiabatic-deuteron optical potentials are used. Some discrepancies in shape persist, however, and some values of the spectroscopic factors differ from lower energy data in spite of many variations in the calculations. By use of exact finite-range calculations a value of D/sup 2//sub 0/ = 1.23 x 10/sup 4/ MeV/sup 2/.fm/sup 3/ was found for use at 121 MeV. Deuteron D-state contributions were negligible at forward angles and two-step contributions do not appear more significant than for data at lower energy.

  16. Testing Universal Relations of Neutron Stars with a Nonlinear Matter-Gravity Coupling Theory

    Science.gov (United States)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2014-02-01

    Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.

  17. Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory

    International Nuclear Information System (INIS)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2014-01-01

    Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.

  18. Top quark forward-backward asymmetry from new t-channel physics

    CERN Document Server

    Jung, Sunghoon; Pierce, Aaron; Wells, James D

    2010-01-01

    Motivated by recent measurements of the top quark forward-backward asymmetry at the Tevatron, we study how t-channel new physics can contribute to a large value. We concentrate on a theory with an abelian gauge boson possessing flavor changing couplings between up and top quarks, but satisfies flavor physics constraints. Collider constraints are strong, but can be consistent with the aid of small flavor diagonal couplings. We find that M_Z' ~ 160 GeV can yield a total lab-frame asymmetry of ~18% without being in conflict with other observables. There are implications for future collider searches, including exotic top quark decays, like-sign top quark production, and detailed measurements of the top production cross section. An alternate model with a gauged non-Abelian flavor symmetry would have similar phenomenology, but lacks the like-sign top signal.

  19. Nuclear structure of 41Ca from inelastic proton scattering

    International Nuclear Information System (INIS)

    Vold, P.B.; Cline, D.; Voigt, M.J.A. de

    1977-01-01

    Angular distributions have been measured for inelastic and elastic scattering of 19 MeV protons on 40 41 Ca. A total of 89 levels were identified below 6.4 MeV in 41 Ca with an energy resolution of 12 keV. Inelastic transition strengths have been extracted using DWBA theory with a vibrational model form factor. These transition strengths correlate well with inelastic α-scattering and electromagnetic values. The quadrupole strengths are interpreted in terms of the coexistence model and imply that the excited-core admixture in the ground states of both 40 Ca and 41 Ca are approximately 5%. The octupole strengths in 41 Ca exhibits features characteristic of the weak coupling of an fsub(7/2) neutron to the lowest 3 - state in 40 Ca. The l = 5 strength exhibits a similar weak-coupling behavior. In both cases the microscopic structure appreciably reduces the transition strength for the highest spin member of the weak-coupling multiplets. (Auth.)

  20. Ab initio theory of spin-orbit coupling for quantum bits in diamond exhibiting dynamic Jahn-Teller effect

    Science.gov (United States)

    Gali, Adam; Thiering, Gergő

    Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).