WorldWideScience

Sample records for dwarf stars

  1. Asteroseismology of white dwarf stars

    CERN Document Server

    Córsico, A H

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity of white dwarfs can be inferred from spectroscopy, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods of appropriate theoretical models. In this communication, we first briefly describe the physical properties of white dwarf stars and the various families of pulsating white dwarfs known up to the present day, and then we present two recent analysis carried out by the La...

  2. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  3. The evolution of iron white dwarf stars

    Directory of Open Access Journals (Sweden)

    J. A. Panei

    2001-01-01

    Full Text Available Recent measurements by Hipparcos provide strong observational evidence supporting the existence of white dwarf stars with iron-rich core composition. Here we examine the evolution of iron-rich white dwarfs, for which the cooling is substancially accelerated as compared with the standard carbon-oxigen white dwarfs.

  4. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  5. Stars at Low Metallicity in Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, Eline; Battaglia, Giuseppina; Cole, Andrew; Hunt, LK; Madden, S; Schneider, R

    2008-01-01

    Dwarf galaxies offer an opportunity to understand the properties of low metallicity star formation both today and at the earliest times at the, epoch of the formation of the first stars. Here we concentrate on two galaxies in the Local Group: the dwarf irregular galaxy Leo A, which has been the rece

  6. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  7. New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Dwarfs

    CERN Document Server

    Reid, I. Neill

    2005-01-01

    There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs a...

  8. Blue straggler stars in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.; Tolstoy, E.; Sigurdsson, S.; Irwin, M. J.; Battaglia, G.

    2007-01-01

    Blue straggler star (BSS) candidates have been observed in all old dwarf spheroidal galaxies (dSphs), however whether or not they are authentic BSSs or young stars has been a point of debate. To both address this issue and obtain a better understanding of the formation of BSSs in different environme

  9. Pulsating White Dwarf Stars and Precision Asteroseismology

    CERN Document Server

    Winget, D E

    2008-01-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  10. Pulsating White Dwarf Stars and Precision Asteroseismology

    Science.gov (United States)

    Winget, D. E.; Kepler, S. O.

    2008-09-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  11. Star formation history in forming dwarf galaxies

    Science.gov (United States)

    Berczik, P.; Kravchuk, S. G.

    The processes of formation and evolution of isolated dwarf galaxies over the Hubble timescale is followed by means of SPH techniques. As an initial protogalaxy perturbation we consider an isolated, uniform, solid -- body rotated sphere involved into the Hubble flow and made of dark and baryonic matter in a 10:1 ratio. The simulations are carried out for the set of models having spin parameters lambda in the range from 0.01 to 0.08 and the total mass of dark matter 1011 M_odot . Our model includes gasdynamics, radiative processes, star formation, supernova feedback and simplified chemistry. The application of modified star formation criterion which accounts for chaotic motions and the time lag between initial development of suitable conditions for star formation and star formation itself (Berczik P.P, Kravchuk S.G. 1997, Ap.Sp.Sci.) provides the realistic description of the process of galaxy formation and evolution. Two parameters: total mass and initial angular momentum of the dwarf protogalaxy play the crucial role in its star formation activity. After the 15 Gyr of the evolution the rapidly rotated dwarf galaxies manifest themselves as an extremly gasrich, heavy element deficient objects showing the initial burst of star formation activity in several spatially separated regions. Slowly rotating objects manifest themselves finally as typical evolved dwarf galaxies.

  12. Massive Star Clusters in Dwarf Galaxies

    CERN Document Server

    Larsen, Soeren S

    2015-01-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  13. Magnetic White Dwarf Stars in the SDSS

    CERN Document Server

    Kepler, S O; Jordan, Stefan; Kleinman, Scot J; Kulebi, Baybars; Koester, Detlev; Peçanha, Viviane; Castanheira, Bárbara G; Nitta, Atsuko; Costa, José Eduardo da Silveira; Winget, Don Earl; Kanaan, Antonio; Fraga, Luciano

    2012-01-01

    To obtain a better statistics on the occurrence of magnetism among white dwarfs, we searched the spectra of the hydrogen atmosphere white dwarf stars (DAs) in the Data Release 7 of the Sloan Digital Sky Survey (SDSS) for Zeeman splittings and estimated the magnetic fields. We found 521 DAs with detectable Zeeman splittings, with fields in the range from around 1 MG to 733 MG, which amounts to 4% of all DAs observed. As the SDSS spectra have low signal-to-noise ratios, we carefully investigated by simulations with theoretical spectra how reliable our detection of magnetic field was.

  14. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  15. Unlocking the secrets of white dwarf stars

    CERN Document Server

    Van Horn, Hugh M

    2015-01-01

    White dwarfs, each containing about as much mass as our Sun but packed into a volume about the size of Earth, are the endpoints of evolution for most stars. Thousands of these faint objects have now been discovered, though only a century ago only three were known. They are among the most common stars in the Milky Way Galaxy, and they have become important tools in understanding the universe. Yet a century ago only three white dwarfs were known.   The existence of these stars completely baffled the scientists of the day, and solving the mysteries of these strange objects required revolutionary advances in science and technology, including the development of quantum physics, the construction and utilization of large telescopes, the invention of the digital computer, and the ability to make astronomical observations from space.   This book tells the story of the growth in our understanding of white dwarf stars, set within the context of the relevant scientific and technological advances. Part popular science, ...

  16. Charged Condensate and Helium Dwarf Stars

    CERN Document Server

    Gabadadze, Gregory

    2008-01-01

    White dwarf stars composed of carbon, oxygen or heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat -- the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  17. Lessons for Asteroseismology from White Dwarf Stars

    Indian Academy of Sciences (India)

    Travis S. Metcalfe

    2005-06-01

    The interpretation of pulsation data for sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a particular set of oscillation frequencies. I review the past development and the current state of white dwarf asteroseismology, with an emphasis on what this can tell us about the road to success for asteroseismology of other types of stars.

  18. Asteroseismology of DAV White Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A.

    1997-12-31

    The author reviews the seismological structural determinations of ZZ Ceti stars done to date, and supplement these with additional preliminary determinations of his own. He compares the constraints on the hydrogen layer mass to see what trends emerge and also determines if the observed hydrogen layer masses are consistent with proposed theories. He then looks ahead to the prospects of further DAV white dwarf seismology.

  19. Star formation in proto dwarf galaxies

    Science.gov (United States)

    Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.

    1990-01-01

    The effects of the onset of star formation on the residual gas in primordial low-mass Local-Group dwarf spheroidal galaxies is studied by a series of hydrodynamical simulations. The models have concentrated on the effect of photoionization. The results indicate that photoionization in the presence of a moderate gas density gradient can eject most of the residual gas on a time scale of a few 10 to the 7th power years. High central gas density combined with inefficient star formation, however, may prevent mass ejection. The effect of supernova explosions is discussed briefly.

  20. Gas, Stars and Star Formation in ALFALFA Dwarf Galaxies

    CERN Document Server

    Huang, S; Giovanelli, R; Brinchmann, J; Stierwalt, S; Neff, S G

    2012-01-01

    We examine the global properties of the stellar and HI components of 229 low HI mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with HI masses < 10^{7.7} M_sun and HI line widths < 80 km s^{-1}. SDSS data are combined with photometric properties derived from GALEX to derive stellar masses (M_*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs) and estimates of their SFRs and M_* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M_* < 10^8 M_sun is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of t...

  1. M dwarf stars in the light of (future) exoplanet searches

    CERN Document Server

    Rojas-Ayala, B; Mann, A W; Lépine, S; Gaidos, E; Bonfils, X; Helling, Ch; Henry, T J; Rogers, L A; von Braun, K; Youdin, A

    2012-01-01

    We present a brief overview of a splinter session on M dwarf stars as planet hosts that was organized as part of the Cool Stars 17 conference. The session was devoted to reviewing our current knowledge of M dwarf stars and exoplanets in order to prepare for current and future exoplanet searches focusing in low mass stars. We review the observational and theoretical challenges to characterize M dwarf stars and the importance of accurate fundamental parameters for the proper characterization of their exoplanets and our understanding on planet formation.

  2. On the Stability of Strange Dwarf Hybrid Stars

    Science.gov (United States)

    Alford, Mark G.; Harris, Steven P.; Sachdeva, Pratik S.

    2017-10-01

    We investigate the stability of “strange dwarfs”: white-dwarf-sized stars with a density discontinuity between a small dense core of quark matter and a thick low-density mantle of degenerate electrons. Previous work on strange dwarfs suggested that such a discontinuity could stabilize stars that would have been classified as unstable by the conventional criteria based on extrema in the mass–radius relation. We investigate the stability of such stars by numerically solving the Sturm–Liouville equations for the lowest-energy modes of the star. We find that the conventional criteria are correct, and strange dwarfs are not stable.

  3. Evolutionary and pulsational properties of white dwarf stars

    CERN Document Server

    Althaus, Leandro G; Isern, Jordi; a-Berro, Enrique Garcí

    2010-01-01

    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs ...

  4. Accretion phenomena in nearby star-forming dwarf galaxies

    Science.gov (United States)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  5. Direct detection of brown dwarf companions of nearby stars

    Science.gov (United States)

    Oppenheimer, Ben R.

    This thesis presents the first direct detection of a substellar companion of a star other than the Sun. This object, a brown dwarf called Gliese 229B, presented a unique opportunity to characterize low-temperature brown dwarfs for the first time. The discovery and initial spectrum of Gliese 229B show that the object must be substellar based on its intrinsic luminosity of 6.4×10-6Lsolar and its cool surface temperature, 900 K. Detailed study of Gliese 229B includes extensive photometric measurements from 0.5 to 12 μm, high signal-to-noise ratio spectroscopy from 0.84 to 5.0 μm and the detection of 0'' t; yr-1 of orbital motion. These results are presented in Chapters 2 and 3. A detailed review of brown dwarf science leads to a complete and scientifically meaningful definition of the classes ``planet'' and ``brown dwarf''' in Chapter 1. After the discovery of Gliese 229B, which was found in a survey for companions of young stars, we began an extensive search for brown dwarf companions in orbit about all known stars within 8 pc of the Sun and with δ > -35°. The search includes optical coronagraphic and infrared direct imaging of these stars, conducted on the Palomar 60' and 200' telescopes respectively. The search was designed to find companions of each star without color bias. While the search revealed no other brown dwarf companions of these stars, it did uncover 6 new stellar companions. The sensitivity limits of the survey permit the detection of brown dwarfs up to four magnitudes fainter than Gliese 229B around 90% of the stars. The sensitivity is, however, not uniform spatially or from star to star. This limits our ability to make strong statements about the prevalence of brown dwarf companions of nearby stars. The survey does have sensitivity to all stellar companions between 3 and 30' from the survey stars, however. Chapter 5 describes related work on very low-mass stars in the Pleiades star cluster. This optical spectroscopy involved trying to find a

  6. Abundances In Very Metal Poor Dwarf Stars

    CERN Document Server

    Cohen, J G; McWilliam, A; Shectman, S; Thompson, I; Wasserburg, G J; Ivans, I I; Dehn, M; Karlsson, T; Melendez, J; Cohen, Judith G.; Christlieb, Norbert; William, Andrew Mc; Shectman, Steve; Thompson, Ian; Ivans, Inese; Dehn, Matthias; Karlsson, Torgny

    2004-01-01

    We discuss the detailed composition of 28 extremely metal-poor dwarfs, 22 of which are from the Hamburg/ESO Survey, based on Keck Echelle spectra. Our sample has a median [Fe/H] of -2.7 dex, extends to -3.5 dex, and is somewhat less metal-poor than was expected from [Fe/H](HK,HES) determined from low resolution spectra. Our analysis supports the existence of a sharp decline in the distribution of halo stars with metallicity below [Fe/H] = -3.0 dex. So far no additional turnoff stars with [Fe/H]}<-3.5 have been identified in our follow up efforts. For the best observed elements between Mg and Ni, we find that the abundance ratios appear to have reached a plateau, i.e. [X/Fe] is approximately constant as a function of [Fe/H], except for Cr, Mn and Co, which show trends of abundance ratios varying with [Fe/H]. These abundance ratios at low metallicity correspond approximately to the yield expected from Type II SN with a narrow range in mass and explosion parameters; high mass Type II SN progenitors are requir...

  7. A radio-pulsing white dwarf binary star

    Science.gov (United States)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  8. New light on dark stars red dwarfs, low-mass stars, brown dwarfs

    CERN Document Server

    Reid, I Neill

    2000-01-01

    Perhaps the most common question that a child asks when he or she sees the night sky from a dark site for the first time is: 'How many stars are there?' This happens to be a question which has exercised the intellectual skills of many astronomers over the course of most of the last century, including, for the last two decades, one of the authors of this text. Until recently, the most accurate answer was 'We are not certain, but there is a good chance that almost all of them are M dwarfs. ' Within the last three years, results from new sky-surveys - particularly the first deep surveys at near­ infrared wavelengths - have provided a breakthrough in this subject, solidifying our census of the lowest-mass stars and identifying large numbers of the hitherto almost mythical substellar-mass brown dwarfs. These extremely low-luminosity objects are the central subjects of this book, and the subtitle should be interpreted accordingly. The expression 'low-mass stars' carries a wide range of meanings in the astronomical...

  9. The formation of low-mass stars and brown dwarfs

    CERN Document Server

    Stamatellos, Dimitris

    2013-01-01

    It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragmentation, ejection of protostellar embryos, disc fragmentation, and photo-erosion of prestellar cores. I will focus on the disc fragmentation theory and discuss how it addresses critical observational constraints, i.e. the low-mass initial mass function, the brown dwarf desert, and the binary statistics of low-mass stars and brown dwarfs. I will examine whether observations may be used to distinguish between different formation mechanisms, and give a few examples of systems that strongly favour a specific formation scenario. Finally, I will argue that it is likely that all mechanisms may play a role in low-mass star and brown dwarf formation.

  10. Central stars of planetary nebulae: The white dwarf connection

    CERN Document Server

    Werner, K

    2011-01-01

    This paper is focused on the transition phase between central stars and white dwarfs, i.e. objects in the effective temperature range 100,000 - 200,000 K. We confine our review to hydrogen-deficient stars because the common H-rich objects are subject of the paper by Ziegler et al. in these proceedings. We address the claimed iron-deficiency in PG1159 stars and [WC] central stars. The discovery of new Ne VII and Ne VIII lines in PG1159 stars suggests that the identification of O VII and O VIII lines that are used for spectral classification of [WCE] stars is wrong. We then present evidence for two distinct post-AGB evolutionary sequences for H-deficient stars based on abundance analyses of the He-dominated O(He) stars and the hot DO white dwarf KPD0005+5106. Finally, we report on evidence for an H-deficient post-super AGB evolution sequence represented by the hottest known, carbon/oxygen-atmosphere white dwarf H1504+65 and the recently discovered carbon-atmosphere "hot DQ" white dwarfs.

  11. Bose-Einstein condensation in helium white dwarf stars. I

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, M.E. [Faculty of Astronomy and Geophysics, University of La Plata, Paseo del Bosque s.n., La Plata (Argentina); Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.a [Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Benvenuto, O.G.; De Vito, M.A. [Faculty of Astronomy and Geophysics, University of La Plata, Paseo del Bosque s.n., La Plata (Argentina); Instituto de Astrofisica La Plata, CCT (Argentina)

    2010-01-18

    The formation of a Bose-Einstein condensate in the interior of helium white dwarfs stars is discussed. Following the proposal made by Gabadadze and Rosen, we have explored the consequences of such a mechanism by calculating the cooling time of the stars. We have found that it is shorter than the value predicted by the standard model.

  12. Star Formation and the ISM in Dwarf Galaxies

    CERN Document Server

    Young, L M; Dohm-Palmer, R C; Lo, K Y

    2000-01-01

    High spatial and spectral resolution observations of the atomic interstellar medium in nearby dwarf galaxies reveal evidence for warm and cold neutral gas, just like the phases in our own Galaxy. The cold or quiescent phase (about 20% of the HI in the galaxies studied, except for LGS 3) seems to be associated with star formation activity--- it may mark the regions where the conditions are right for star formation. These results help to explain the patterns of star formation activity which are seen in color-magnitude data for the dwarf irregulars.

  13. Abundance Survey of M and K Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  14. Delayed Star Formation in Isolated Dwarf Galaxies: HST Star Formation History of the Aquarius Dwarf Irregular

    CERN Document Server

    Cole, Andrew A; Dolphin, Andrew E; Skillman, Evan D; McConnachie, Alan W; Brooks, Alyson M; Leaman, Ryan

    2014-01-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CD...

  15. Runaway Dwarf Carbon Stars as Candidate Supernova Ejecta

    CERN Document Server

    Plant, Kathryn A; Guhathakurta, Puragra; Cunningham, Emily C; Toloba, Elisa; Munn, Jeffrey A

    2016-01-01

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531$\\pm 4$ km s$^{-1}$. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425$\\pm 9$ km s$^{-1}$. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of $C_2$ bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric $C_2$ via mass transfer from an evolved companion.

  16. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  17. M-dwarf binaries as tracers of star and brown dwarf formation

    CERN Document Server

    Marks, Michael; Kroupa, Pavel; Leigh, Nathan; Thies, Ingo

    2015-01-01

    The separation distribution for M-dwarf binaries in the ASTRALUX survey is narrower and peaking at smaller separations than the distribution for solar-type binaries. This is often interpreted to mean that M-dwarfs constitute a continuous transition from brown dwarfs (BDs) to stars. Here a prediction for the M-dwarf separation distribution is presented, using a dynamical population synthesis (DPS) model in which "star-like" binaries with late-type primaries ($\\lesssim1.5 M_{\\rm sun}$) follow universal initial distribution functions and are dynamically processed in their birth embedded clusters. A separate "BD-like" population has both its own distribution functions for binaries and initial mass function (IMF), which overlaps in mass with the IMF for stars. Combining these two formation modes results in a peak on top of a wider separation distribution for late M-dwarfs consistent with the late ASTRALUX sample. The DPS separation distribution for early M-dwarfs shows no such peak and is in agreement with the M-d...

  18. The White Dwarf Binary Pathways Survey I: A sample of FGK stars with white dwarf companions

    CERN Document Server

    Parsons, S G; Schreiber, M R; Gansicke, B T; Zorotovic, M; Ren, J J

    2016-01-01

    The number of white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one ...

  19. The Habitability of Planets Orbiting M-dwarf Stars

    CERN Document Server

    Shields, Aomawa L; Johnson, John A

    2016-01-01

    The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge g...

  20. Gaia, Non-Single Stars, Brown Dwarfs, and Exoplanets

    CERN Document Server

    Sozzetti, A

    2014-01-01

    In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short periods, respectively. Furthermore, thousands of detected ultra-cool dwarfs in the backyard of the Sun will have direct (absolute) distance estimates from Gaia, and for these Gaia astrometry will be of sufficient precision to reveal any orbiting companions with masses as low as that of Jupiter. Gaia observations thus bear the potential for critical contributions to many important questions in brown dwarfs astrophysics (how do they form in isolation and as companions to stars? Can planets form around them? What are their fundamental parameters such as ages, masses, and radii? What is their atmospheric physics?), and their connection to stars and planets. The full legacy potential of Gaia in the realm of brown dwarf science will be realized when combined with other det...

  1. New White Dwarf Stars in the Sloan Digital Sky Survey Data Release 10

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Kleinman, Scot J; Romero, Alejandra Daniela; Nitta, Atsuko; Eisenstein, Daniel J; Costa, José Eduardo da Silveira; Külebi, Baybars; Jordan, Stefan; Dufour, Patrick; Giommi, Paolo; Rebassa-Mansergas, Alberto

    2014-01-01

    We report the discovery of 9 088 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spectra on helium atmosphere white dwarfs, 71 DQs, 42 hot DO/PG1159s, 171 white dwarf+main sequence star binaries, 206 magnetic DAHs, 327 continuum dominated DCs, 397 metal polluted white dwarfs, 450 helium dominated white dwarfs, 647 subdwarfs and 6887 new hydrogen dominated white dwarf stars.

  2. Circumstellar Debris and Pollution at White Dwarf Stars

    CERN Document Server

    Farihi, J

    2016-01-01

    Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have been produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.

  3. Effective Field Theory for Quantum Liquid in Dwarf Stars

    CERN Document Server

    Gabadadze, Gregory

    2009-01-01

    An effective field theory approach is used to describe quantum matter at greater-than-atomic but less-than-nuclear densities which are encountered in white dwarf stars. We focus on the density and temperature regime for which charged spin-0 nuclei form an interacting charged Bose-Einstein condensate, while the neutralizing electrons form a degenerate fermi gas. After a brief introductory review, we summarize distinctive properties of the charged condensate, such as a mass gap in the bosonic sector as well as gapless fermionic excitations. Charged impurities placed in the condensate are screened with great efficiency, greater than in an equivalent uncondensed plasma. We discuss a generalization of the Friedel potential which takes into account bosonic collective excitations in addition to the fermionic excitations. We argue that the charged condensate could exist in helium-core white dwarf stars and discuss the evolution of these dwarfs. Condensation would lead to a significantly faster rate of cooling than th...

  4. Lithium production in the merging of white dwarf stars

    CERN Document Server

    Longland, Richard; José, Jordi; García-Berro, Enrique; Althaus, Leandro G

    2012-01-01

    The origin of R Coronae Borealis stars has been elusive for over 200 years. Currently, two theories for their formation have been presented. These are the Final Flash scenario, in which a dying asymptotic giant branch (AGB) star throws off its atmosphere to reveal the hydrogen poor, heavily processed material underneath, and the double degenerate scenario, in which two white dwarfs merge to produce a new star with renewed vigour. Some theories predict that the temperatures reached during the latter scenario would destroy any lithium originally present in the white dwarfs. The observed lithium content of some R Coronae Borealis stars, therefore, is often interpreted as an indication that the Final Flash scenario best describes their formation. In this paper, it is shown that lithium production can, indeed, occur in the merging of a helium white dwarf with a carbon-oxygen white dwarf if their chemical composition, particularly that of 3He, is fully considered. The production mechanism is described in detail, an...

  5. MWA targeted campaign of nearby, flaring M dwarf stars

    Science.gov (United States)

    Lynch, C.; Murphy, T.; Kaplan, D. L.

    2017-01-01

    Flaring activity is a common characteristic of magnetically active stellar systems. Flare events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. Early 100 - 200 MHz observations of M dwarf flare stars detected bright (>100 mJy) flares with occurrence rates between 0.06 - 0.8 flares per hour. These rates imply that observing 100 - 200 MHz flares from M dwarf stars is fairly easy with many detections expected for modern low-frequency telescopes. However, long observational campaigns using these modern telescopes have not reproduced these early detections. This could be because the rates are over estimated and contaminated by radio frequency interference. Recently Lynch et al. (submitted) detected four flares from UV Ceti at 154 MHz using the Murchison Widefield Array. The flares have flux densities between 10-65 mJy -- a factor of 100 fainter than most flares in the literature at these frequencies -- and are only detected in circular polarization. The flare rates for these newly detected flares are roughly consistent with earlier rates however the uncertainties are large. Building off this result we propose a 102 hour survey of the closet six M dwarf stars with observed magnetic activity traced in X-rays and 100 - 200 MHz emission. The rates measured from this survey would inform the duration required for future blind surveys for flares from M dwarf stars.

  6. High-Frequency Properties of Ultracool Dwarf Star Radio Transients, or The Little Dwarfs that Could

    Science.gov (United States)

    Ravi, Vikram; Hobbs, George; Keith, Michael; Champion, David; Ferrario, Lilia; Wickramasinghe, Dayal

    2009-07-01

    Radio transients are among the most intriguing phenomena in astronomy. Numerous flaring events, some periodic, have lately surfaced, with only few identified with known objects such as magnetic stars. Periodic, non-thermal, highly circularly-polarised pulses and unusually strong quiescence have been recently detected from three late-type quickly-rotating (~2hr periods) ultracool dwarf stars (>M7) at centimetric wavelengths. This violates empirical relations and quantifiers of dwarf-star surface activity. Measurements of dwarf-star kiloGauss magnetic fields have led to emission models based on dipole fields and incoherent gyrosynchrotron or coherent electron-cyclotron maser mechanisms. We propose to observe two such similar objects at 1cm and 7mm (LP944-20 and DENIS1048-3956) that are known to flare but without detected periodicities. No observations of high-frequency emission from any magnetic star have been published. The broadband capabilities of CABB will provide extraordinary frequency-synthesised sensitivity in a search for periodicity. The obtained spectral indices, along with possible high-frequency spectral cut-offs, will greatly help constrain emission models of magnetic stars. This is the first attempt to characterise the high-frequency transient radio sky, a key science project for future telescopes such as ASKAP and the SKA.

  7. Infrared Observations of Star-Forming Dwarf Galaxies with Spitzer

    Science.gov (United States)

    Rosenberg, J. L.; Ashby, M. L. N.; Salzer, J. J.

    2004-12-01

    We present a study of the infrared properties of a sample of actively star-forming dwarf galaxies (MB >-18) drawn from the KPNO International Spectroscopic Survey. Nearby actively star-forming dwarf galaxies are possible analogs to the high redshift star-forming systems that serve as galactic building blocks in hierarchical galaxy formation scenarios. These galaxies are gas-rich, metal-poor systems undergoing bursts of star formation in the local universe. A subset of such objects from the line-flux limited objective-prism survey of Salzer et al. (2001) lie in the NOAO Bootes field, and have therefore been observed by Spitzer as part of the IRAC Shallow Survey. We use the IRAC data to measure the stellar mass in these galaxies. In addition, we examine whether these metal-poor dwarf galaxies show warm dust emission, and examine whether it traces the star formation as it does in normal disk galaxies. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support of this work. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA.

  8. Discovery of five new massive pulsating white dwarf stars

    Science.gov (United States)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  9. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    CERN Document Server

    McQuinn, Kristen B W; Dolphin, Andrew E; Mitchell, Noah P

    2015-01-01

    Integrating our knowledge of star formation traced by observations at different wavelengths is essential for correctly interpreting and comparing star formation activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The datasets are from the panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, HST optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near UV fluxes predicted from the CMD-based SFRs - using four different models - agree with the measured, extinction corrected, integrated near UV fluxes from GALEX images, but the far UV predicted fluxes do not. Further, we find a systematic deviation between the SFRs based on integrated far U...

  10. Formation of low-mass stars and brown dwarfs

    OpenAIRE

    Hennebelle, Patrick

    2012-01-01

    These lectures attempt to expose the most important ideas, which have been proposed to explain the formation of stars with particular emphasis on the formation of brown dwarfs and low-mass stars. We first describe the important physical processes which trigger the collapse of a self-gravitating piece of fluid and regulate the star formation rate in molecular clouds. Then we review the various theories which have been proposed along the years to explain the origin of the stellar initial mass f...

  11. NTT Observations Indicate that Brown Dwarfs Form Like Stars

    Science.gov (United States)

    2001-06-01

    Dusty Disks Detected around Very Young Substellar Objects in the Orion Nebula Summary An international team of astronomers [2] is announcing today the discovery of dusty disks surrounding numerous very faint objects that are believed to be recently formed Brown Dwarfs in the Orion Nebula [3]. This finding is based on detailed observations with SOFI, a specialised infrared-sensitive instrument at the ESO 3.5-m New Technology Telescope at the La Silla Observatory. It is of special interest because it sheds light on the origin and nature of substellar objects, known as "Brown Dwarfs" . In particular, these results suggest that Brown Dwarfs share a common origin with stars and that Brown Dwarfs are more similar in nature to stars than to planets and, like stars, have the potential to form with accompanying systems of planets. Moreover, the presence of dusty protoplanetary disks around the faintest objects in the Orion Nebula cluster confirms both the membership of these faint stars in the cluster and their nature as bona-fide substellar objects, making this the largest population of Brown Dwarf objects yet known . These important results are being reported today to the American Astronomical Society Meeting in Pasadena (California, USA). PR Photo 22a/01 : Infrared picture of the Orion Nebula (NTT + SOFI). PR Photo 22b/01 : "Finding Chart" for Very Young Brown Dwarfs in the Orion Nebula. PR Photo 22c/01 : Animated GIF presentation of PR Photos 22a+b/01. Faint substellar objects in the Milky Way Over the past 5 years, several groups of astronomers have identified a type of very faint, substellar objects within our Milky Way galaxy. These gaseous objects have very low masses and will never shine like normal stars because they cannot achieve central temperatures high enough for sustained thermal nuclear reactions to occur in their cores. Such objects weigh less than about 7% of our Sun and have been variously called "Brown Dwarfs" , "Failed Stars" or "Super Planets

  12. About K Dwarfs - Investigating the Goldilocks Stars of Exobiology

    Science.gov (United States)

    Cuntz, Manfred; Guinan, Edward F.

    2017-01-01

    In this study, we argue that stars between spectral type late-G and mid-K (with a maximum at early-K), i.e., orange dwarfs, are expected to provide the best conditions for the development and sustainability of life, including advanced life forms. Though our study is mostly theoretical, observational data are considered as fit. Our analysis considers a variety of stellar properties, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic dynamo generated X-ray--UV emissions, and (5) the frequency and severity of (super-)flares; both (4) and (5) greatly reduce the suitability of M-type dwarfs to host life-bearing planets. M-type dwarfs are numerous, having long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Therefore, we argue that K-dwarfs should be rightfully considered "Goldilocks" stars, thus deserving heightened attention in future observational and theoretical studies.

  13. Using Narrow Band Photometry to Classify Stars and Brown Dwarfs

    CERN Document Server

    Mainzer, A K; Sievers, J L; Young, E T; Lean, Ian S. Mc

    2004-01-01

    We present a new system of narrow band filters in the near infrared that can be used to classify stars and brown dwarfs. This set of four filters, spanning the H band, can be used to identify molecular features unique to brown dwarfs, such as H2O and CH4. The four filters are centered at 1.495 um (H2O), 1.595 um (continuum), 1.66 um (CH4), and 1.75 um (H2O). Using two H2O filters allows us to solve for individual objects' reddenings. This can be accomplished by constructing a color-color-color cube and rotating it until the reddening vector disappears. We created a model of predicted color-color-color values for different spectral types by integrating filter bandpass data with spectra of known stars and brown dwarfs. We validated this model by making photometric measurements of seven known L and T dwarfs, ranging from L1 - T7.5. The photometric measurements agree with the model to within +/-0.1 mag, allowing us to create spectral indices for different spectral types. We can classify A through early M stars to...

  14. The Chromospheric Activity-Age Relation for M Dwarf Stars

    Science.gov (United States)

    Silvestri, N. M.; Oswalt, T. D.; Hawley, S. L.

    2000-12-01

    We present preliminary results from our study in which we use moderate resolution spectroscopy to determine the correlation between the chromospheric activity and age of M dwarf stars in wide binary systems. We have observed ~50 M dwarf stars from our sample with the Apache Point Observatory 3.5-m telescope. We measure the ratio of Hα luminosity to the bolometric luminosity (LHα /Lbol) of the M dwarf---a measure of activity that is proven to correlate well with age. This project is unique in that it will extend the chromospheric activity-age relation of low-mass main sequence stars beyond the ages provided by cluster methods. The ages so determined are also independent of the uncertainties in cluster age determinations. The technique has the potential to improve by at least a factor of two the precision and the range over which ages can currently be determined for main sequence stars. Work on this project is supported by the NASA Graduate Student Researchers Program grant NGT-50290 (N.M.S.).

  15. Formation of low-mass stars and brown dwarfs

    CERN Document Server

    Hennebelle, Patrick

    2012-01-01

    These lectures attempt to expose the most important ideas, which have been proposed to explain the formation of stars with particular emphasis on the formation of brown dwarfs and low-mass stars. We first describe the important physical processes which trigger the collapse of a self-gravitating piece of fluid and regulate the star formation rate in molecular clouds. Then we review the various theories which have been proposed along the years to explain the origin of the stellar initial mass function paying particular attention to four models, namely the competitive accretion and the theories based respectively on stopped accretion, MHD shocks and turbulent dispersion. As it is yet unsettled whether the brown dwarfs form as low-mass stars, we present the theory of brown dwarfs based on disk fragmentation stressing all the uncertainties due to the radiative feedback and magnetic field. Finally, we describe the results of large scale simulations performed to explain the collapse and fragmentation of molecular cl...

  16. Formation of Low-Mass Stars and Brown Dwarfs

    Science.gov (United States)

    Hennebelle, P.

    2012-11-01

    These lectures attempt to expose the most important ideas, which have been proposed to explain the formation of stars with particular emphasis on the formation of brown dwarfs and low-mass stars. We first describe the important physical processes which trigger the collapse of a self-gravitating piece of fluid and regulate the star formation rate in molecular clouds. Then we review the various theories which have been proposed along the years to explain the origin of the stellar initial mass function paying particular attention to four models, namely the competitive accretion and the theories based respectively on stopped accretion, MHD shocks and turbulent dispersion. As it is yet unsettled whether the brown dwarfs form as low-mass stars, we present the theory of brown dwarfs based on disk fragmentation stressing all the uncertainties due to the radiative feedback and magnetic field. Finally, we describe the results of large scale simulations performed to explain the collapse and fragmentation of molecular clouds.

  17. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  18. Axions and the cooling of white dwarf stars

    CERN Document Server

    Isern, J; Torres, S; Catalan, S

    2008-01-01

    White dwarfs are the end-product of the lifes of intermediate- and low-mass stars and their evolution is described as a simple cooling process. Recently, it has been possible to determine with an unprecedented precision their luminosity function, that is, the number of stars per unit volume and luminosity interval. We show here that the shape of the bright branch of this function is only sensitive to the averaged cooling rate of white dwarfs and we propose to use this property to check the possible existence of axions, a proposed but not yet detected weakly interacting particle. Our results indicate that the inclusion of the emission of axions in the evolutionary models of white dwarfs noticeably improves the agreement between the theoretical calculations and the observational white dwarf luminosity function. The best fit is obtained for m_a cos^2 \\beta ~ 5 meV, where m_a is the mass of the axion and cos^2 \\beta is a free parameter. We also show that values larger than 10 meV are clearly excluded. The existin...

  19. On the Metallicity of Star-forming Dwarf Galaxies

    CERN Document Server

    Legrand, F; Silich, S A; Kunth, D; Cerviño, M; Legrand, Francois; Tenorio-Tagle, Guillermo; Silich, Sergiy; Kunth, Daniel; Cervino, Miguel

    2001-01-01

    We construct three extreme different scenarios of the star formation histories applicable to a sample of dwarf galaxies, based either on their present metallicity or their luminosity. The three possible scenarios imply different mechanical energy input rates and these we compare with the theoretical lower limits established for the ejection of processed matter out of dwarf galaxies. The comparison strongly points at the existence of extended gaseous haloes in these galaxies, acting as the barrier that allows galaxies to retain their metals and enhance their abundance. At the same time our findings strongly point at a continuous star-forming process, rather than to coeval bursts, as the main contributors to the overall metallicity in our galaxy sample.

  20. Chemical abundances of stars with brown-dwarf companions

    CERN Document Server

    Sánchez, D Mata; Israelian, G; Santos, N C; Sahlmann, J; Udry, S

    2014-01-01

    It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $\\alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance...

  1. White dwarf stars as strange quark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O G [Departamento de AstronomIa y AstroFisica, Pontificia Universidad Catolica, Vicuna Mackenna 4860, Casilla 306, Santiago (Chile); Facultad de Ciencias Astronomicas y GeoFisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina)

    2005-11-01

    We show that the presence of a strange matter core inside a white dwarf (WD) star produces a drastic change in the spectrum of non-radial oscillations in the range of periods corresponding to gravity modes. The distinctive, observable signal for such a core is a very short period spacing between consecutive modes, far shorter than in the case of pulsating WDs without any compact core. (letter to the editor)

  2. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    Science.gov (United States)

    Kepler, S. O.; Pelisoli, I.; Koester, D.; Ourique, G.; Romero, A. D.; Reindl, N.; Kleinman, S. J.; Eisenstein, D. J.; Valois, A. D. M.; Amaral, L. A.

    2016-02-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra (DQs). We found one central star of a planetary nebula, one ultracompact helium binary (AM CVn), one oxygen line-dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium-dominated white dwarfs, 148 white dwarf + main-sequence star binaries, 236 metal-polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen-dominated white dwarf stars, and 2675 cool hydrogen-dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N ≥ 15 in DR12, including the ones in DR7 and DR10, with an average S/N = 26, corrected to the 3D convection scale, and also the distribution after correcting for the observed volume, using 1/Vmax.

  3. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J; Eisenstein, Daniel J; Valois, A Dean M; Amaral, Larissa A

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found one central star of a planetary nebula, one ultra-compact helium binary (AM CVn), one oxygen line dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium dominated white dwarfs, 148 white dwarf+main sequence star binaries, 236 metal polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen dominated white dwarf stars, and 2675 cool hydrogen dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N>15 in DR12, including the ones in DR7 and DR10, with an average S/N=26, correc...

  4. Luminosity functions for very low mass stars and brown dwarfs

    Science.gov (United States)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  5. Hypervelocity Star Candidates in the SEGUE G & K Dwarf Sample

    CERN Document Server

    Palladino, Lauren E; Holley-Bockelmann, Kelly; Prieto, Carlos Allende; Beers, Timothy C; Lee, Young Sun; Schneider, Donald P

    2013-01-01

    We identify 13 candidate hypervelocity stars from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) G and K dwarf samples. Previous searches for hypervelocity stars have only focused on large radial velocities; in this study we also use proper motions to select the candidates. We determine the hypervelocity likelihood of each candidate, considering the significant errors often associated with high proper motion stars via Monte Carlo simulations. We find that more than half of the candidates exceed their escape velocities with at least 90% probability. All of our candidates also have less than a 60% chance of being a high velocity fluke within the SEGUE sample. Based on orbits calculated using the observed 6-d positions and velocities, few, if any, of these candidates originate from the Galactic Center. If these candidates are truly hypervelocity stars, they were not ejected by interactions with the Milky Way's supermassive black hole. This calls for a more serious examination of alternati...

  6. Exploration of the brown dwarf regime around solar-like stars by CoRoT

    CERN Document Server

    Csizmadia, Szilárd

    2016-01-01

    Aims. A summary of the CoRoT brown dwarf investigations are presented. Methods. Transiting brown dwarfs around solar like stars were studied by using the photometric time-series of CoRoT, and ground based radial velocity measurements. Results. CoRoT detected three transiting brown dwarfs around F and G dwarf stars. The occurence rate of brown dwarfs was found to be 0.20 +/- 0.15% around solar-like stars which is compatible with the value obtained by Kepler-data.

  7. THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tian, Feng [Center for Earth System Sciences, Tsinghua University, Beijing 100084 (China); Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Mauas, Pablo; Vieytes, Mariela [Instituto de Astronomsica del Espacio (CONICET-UBA), C.C. 67 Sucursal 28, 1428 Buenos Aires (Argentina); Walkowicz, Lucianne M., E-mail: kevin.france@colorado.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-02-15

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV-quiet' M dwarfs are observed. The bright stellar Ly{alpha} emission lines are reconstructed, and we find that the Ly{alpha} line fluxes comprise {approx}37%-75% of the total 1150-3100 A flux from most M dwarfs; {approx}>10{sup 3} times the solar value. We develop an empirical scaling relation between Ly{alpha} and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Ly{alpha}. The intrinsic unreddened flux ratio is F(Ly{alpha})/F(Mg II) = 10 {+-} 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O{sub 2} and O{sub 3}, is shown to be {approx}0.5-3 for all M dwarfs in our sample, >10{sup 3} times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10{sup 2}-10{sup 3} s timescales. This effect should be taken into account in future UV

  8. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; Walkowicz, Lucianne M.

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  9. Bubble-Induced Star Formation in Dwarf Irregular Galaxies

    CERN Document Server

    Kawata, Daisuke; Barnes, David J; Grand, Robert J J; Rahimi, Awat

    2013-01-01

    To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM. We use the new version of our original N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae (SNe) feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor inter-stellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from lar...

  10. Direct imaging searches for planets around white dwarf stars

    Science.gov (United States)

    Burleigh, Matt; Hogan, Emma; Clarke, Fraser

    White dwarfs are excellent targets for direct imaging searches for extra-solar planets, since they are up to 10^4 times fainter than their main sequence progenitors, providing a huge gain in the contrast problem. In addition, the orbits of planetary companions that lie beyond the maximum extent of the Red Giant envelope are expected to widen considerably, improving resolution and further encouraging direct detection. We discuss current searches for planetary companions to white dwarfs, including our own “DODO” programme. At the time of writing, no planetary companion to a white dwarf has been detected. The most sensitive searches have been capable of detecting companions ≳5M_{Jup}, and their non-detection is consistent with the conclusions of McCarthy & Zuckerman (2004), that no more than 3% of stars harbour 5-10M_{Jup} planets at orbits between 75-300AU. Extremely Large Telescopes are required to enable deeper searches sensitive to lower mass planets, and to provide larger target samples including more distant and older white dwarfs. ELTs will also enable spectroscopic follow-up for any resolved planets, and follow-up of any planetary companions discovered astrometrically by GAIA and SIM.

  11. The Ultraviolet Radiation Environment Around M dwarf Exoplanet Host Stars

    CERN Document Server

    France, Kevin; Linsky, Jeffrey L; Roberge, Aki; Stocke, John T; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M

    2012-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. The combined FUV+NUV spectra are publically available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar Ly-alpha emission lines are reconstructed, and we find that the Ly-alpha line fluxes comprise ~37-75% of the tota...

  12. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  13. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  14. Infrared Opacities in Dense Atmospheres of Cool White Dwarf Stars

    CERN Document Server

    Kowalski, Piotr M; Dufour, Patrick

    2016-01-01

    Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H$_2$-He collision-induced absorption (CIA). We discuss the implication of these results for interpretation of the spectra of cool stars.

  15. Infrared Opacities in Dense Atmospheres of Cool White Dwarf Stars

    Science.gov (United States)

    Kowalski, P. M.; Blouin, S.; Dufour, P.

    2017-03-01

    Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H2-He collision-induced absorption (CIA). We discuss the implication of these results for the interpretation of the spectra of cool stars.

  16. The star formation history of the Sculptor Dwarf Irregular Galaxy

    CERN Document Server

    Lianou, Sophia

    2012-01-01

    [abridged] We study the resolved stellar populations and derive the SFH of the SDIG, a gas-rich dwarf galaxy member of the NGC7793 subgroup in the Sculptor group. We construct a CMD using archival HST observations and examine its stellar content. We derive its SFH using a maximum-likelihood fit to the CMD. The CMD shows that SDIG contains stars from 10Myr to several Gyr old, as revealed from the MS, BL, luminous AGB, and RGB stars. The young stars with ages less than ~250Myr show a spatial distribution confined to its central regions, and additionally the young MS stars exhibit an off-center density peak. The intermediate-age and older stars are more spatially extended. SDIG is dominated by intermediate-age stars with an average age of 6.4Gyr. The average metallicity inferred is [M/H]\\approx -1.5dex. Its SFH is consistent with a constant SFR, except for ages younger than ~200Myr. The lifetime average SFR is 1.3x10^{-3} Mo/yr. More recently than 100Myr, there has been a burst of SF at a rate ~2-3 times higher ...

  17. Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars

    CERN Document Server

    Horowitz, C J; Berry, D K

    2010-01-01

    We determine the phase diagram for dense carbon/ oxygen mixtures in White Dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the $^{12}$C($\\alpha,\\gamma$)$^{16}$O reaction to S_{300} <= 170 keV barns.

  18. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    CERN Document Server

    Mohanty, Subhanjoy; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850um observations for 7 very low mass stars (VLMS) and brown dwarfs (BDs): 3 in Taurus, 4 in the TWA, and all classical T Tauri (cTT) analogs. We detect 2 of the 3 Taurus disks, but none of the TWA ones. Our 3sigma limits correspond to a dust mass of 1.2 MEarth in Taurus and a mere 0.2 MEarth in the TWA (3--10x deeper than previous work). We combine our data with other sub-mm/mm surveys of Taurus, rho Oph and the TWA to investigate trends in disk mass and grain growth during the cTT phase. We find : (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is 100 AU for intermediate-mass stars, solar-types and VLMS, and 20 AU for BDs. (2) While the upper envelope of disk masses increases with Mstar from BDs to VLMS to solar-types, no increase is seen from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate masses. (3) Many disks around Taurus and rho Oph intermediate-mass and solar-type stars evin...

  19. The Correlation Dimension of Young Stars in Dwarf Galaxies

    CERN Document Server

    Odekon, M C

    2006-01-01

    We present the correlation dimension of resolved young stars in four actively star-forming dwarf galaxies that are sufficiently resolved and transparent to be modeled as projections of three-dimensional point distributions. We use data in the Hubble Space Telescope archive; photometry for one of them, UGCA 292, is presented here for the first time. We find that there are statistically distinguishable differences in the nature of stellar clustering among the sample galaxies. The young stars of VII Zw 403, the brightest galaxy in the sample, have the highest value for the correlation dimension and also the most dramatic decrease with logarithmic scale, falling from $1.68\\pm0.14$ to $0.10\\pm0.05$ over less than a factor of ten in $r$. This decrease is consistent with the edge effect produced by a projected Poisson distribution within a 2:2:1 ellipsoid. The young stars in UGC 4483, the faintest galaxy in the sample, exhibit very different behavior, with a constant value of about 0.5 over this same range in $r$, e...

  20. First stars VII. Lithium in extremely metal poor dwarfs

    CERN Document Server

    Bonifacio, P; Sivarani, T; Cayrel, R; Spite, M; Spite, F; Plez, B; Andersen, J; Barbuy, B; Beers, T C; Depagne, E; Hill, V; François, P; Nordström, B; Primas, F

    2006-01-01

    Aims. This study aims to determine the level and constancy of the Spite plateau as definitively as possible from homogeneous high-quality VLT-UVES spectra of 19 of the most metal-poor dwarf stars known. Methods. Our high-resolution (R ~ 43000), high S/N spectra are analysed with OSMARCS 1D LTE model atmospheres and turbospectrum synthetic spectra to determine effective temperatures, surface gravities, and metallicities as well as Li abundances for our stars. Results. Eliminating a cool subgiant and a spectroscopic binary, we find 8 stars to have -3.5 < [Fe/H] < -3.0 and 9 stars with -3.0 < [Fe/H] < -2.5. Our best value for the mean level of the plateau is A(Li) =2.10 +- 0.09. The scatter around the mean is entirely explained by our estimate of the observational error and does not allow for any intrinsic scatter in the Li abundances. In addition, we conclude that a systematic error of the order of 200 K in any of the current temperature scales remains possible. The iron excitation equilibria in our...

  1. About Exobiology: The Case for Dwarf K Stars

    CERN Document Server

    Cuntz, M

    2016-01-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early-K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic dynamo generated X-ray - UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on t...

  2. Metallicity measurements using atomic lines in M and K dwarf stars

    CERN Document Server

    Woolf, V M; Woolf, Vincent M.; Wallerstein, George

    2004-01-01

    We report the first survey of chemical abundances in M and K dwarf stars using atomic absorption lines in high resolution spectra. We have measured Fe and Ti abundances in 35 M and K dwarf stars using equivalent widths measured from (lambda / Delta lambda) = 33,000 spectra. Our analysis takes advantage of recent improvements in model atmospheres of low-temperature dwarf stars. The stars have temperatures between 3300 and 4700 K, with most cooler than 4100 K. They cover an iron abundance range of -2.44 < [Fe/H] < +0.16. Our measurements show [Ti/Fe] decreasing with increasing [Fe/H], a trend similar to that measured for warmer stars where abundance analysis techniques have been tested more thoroughly. This study is a step toward the observational calibration of procedures to estimate the metallicity of low-mass dwarf stars using photometric and low-resolution spectral indices.

  3. Kinematics and chemistry of faint high latitude dwarf carbon stars

    Science.gov (United States)

    Yoon, Jinmi; Beers, Timothy C.; Dietz, Sarah; Lee, Young Sun; Placco, Vinicius M.

    2017-01-01

    The diffuse halo system of the Milky Way is complex, and has been shown to comprise at least two main components: a near-zero net rotation inner-halo and a more rapidly rotating outer-halo component. Studies of the ancient, very metal-poor stars in the Galactic halo system are crucial for understanding its early formation history. The so-called carbon-enhanced metal-poor (CEMP) stars are an important subset of the stars in the halo system, which exhibit distinctive kinematic and chemical signatures that can be used to constrain the star-formation histories and assembly of the various Galactic components.We have examined the sample of main-sequence dwarf and other faint high Galactic latitude carbon-enhanced stars from the Sloan Digital Sky Survey studied by Green (2013). As noted by Green, many of these starsexhibit high proper motions, which have been later claimed to be related to possible binary ejection models Plant et al. (2016). By use of the CEMP sub-classification approach of Yoon et al. (2016), we investigate whether the kinematics of these stars might instead result from their membership in the inner/outer halo populations of the Galaxy.ReferencesGreen, P. 2013, ApJ, 765, 12Plant, K. et al. 2016, AAS 227.34115Yoon, J. et al. 2016, ApJ, in pressAcknowledgementThis work was supported in part by the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements).

  4. HR2875 Spectroscopic discovery of the first B star + white dwarf binary

    CERN Document Server

    Burleigh, M R; Burleigh, Matt; Barstow, Martin

    1998-01-01

    We report the discovery, in an Extreme Ultraviolet Explorer (EUVE) short wavelength spectrum, of an unresolved hot white dwarf companion to the 5th-magnitude B5Vp star HR2875. This is the first time that a non-interacting white dwarf$+$ B star binary has been discovered; previously, the the earliest type star known with a white dwarf companion was Sirius (A1V). Since the white dwarf must have evolved from a main sequence progenitor with a mass greater than that of a B5V star ($\\geq$6.0M$_\\odot$), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial-final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39,000K and 49,000K. We also argue that this degenerate star is likely to have mass significantly greater than the mean mass for white dwarf stars ($\\approx$0.55M$_\\odot$). Finally, we suggest that other bright B stars (e.g.\\ Field Camera and EUVE may a...

  5. Detailed analysis of Balmer lines in cool dwarf stars

    CERN Document Server

    Barklem, P S; Allende-Prieto, C; Kochukhov, O P; Piskunov, N; O'Mara, B J

    2002-01-01

    An analysis of H alpha and H beta spectra in a sample of 30 cool dwarf and subgiant stars is presented using MARCS model atmospheres based on the most recent calculations of the line opacities. A detailed quantitative comparison of the solar flux spectra with model spectra shows that Balmer line profile shapes, and therefore the temperature structure in the line formation region, are best represented under the mixing length theory by any combination of a low mixing-length parameter alpha and a low convective structure parameter y. A slightly lower effective temperature is obtained for the sun than the accepted value, which we attribute to errors in models and line opacities. The programme stars span temperatures from 4800 to 7100 K and include a small number of population II stars. Effective temperatures have been derived using a quantitative fitting method with a detailed error analysis. Our temperatures find good agreement with those from the Infrared Flux Method (IRFM) near solar metallicity but show diffe...

  6. A Star Formation Law for Dwarf Irregular Galaxies

    CERN Document Server

    Elmegreen, Bruce G

    2015-01-01

    The radial profiles of gas, stars, and far ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time give the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed HI surface densities and calculated scale heights. The radial profiles of the star formation rates are equal to about 1% of the HI surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxi...

  7. Dwarf galaxy formation with H2-regulated star formation

    CERN Document Server

    Kuhlen, M; Madau, P; Smith, B; Wise, J

    2011-01-01

    We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h 4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with "supernova feedback". We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transi...

  8. Model Atmospheres From Very Low Mass Stars to Brown Dwarfs

    CERN Document Server

    Allard, F; Freytag, B

    2010-01-01

    Since the discovery of brown dwarfs in 1994, and the discovery of dust cloud formation in the latest Very Low Mass Stars (VLMs) and Brown Dwarfs (BDs) in 1996, the most important challenge in modeling their atmospheres as become the understanding of cloud formation and advective mixing. For this purpose, we have developed radiation hydrodynamic 2D model atmosphere simulations to study the formation of forsterite dust in presence of advection, condensation, and sedimentation across the M-L-T VLMs to BDs sequence (Teff = 2800 K to 900 K, Freytag et al. 2010). We discovered the formation of gravity waves as a driving mechanism for the formation of clouds in these atmospheres, and derived a rule for the velocity field versus atmospheric depth and Teff , which is relatively insensitive to gravity. This rule has been used in the construction of the new model atmosphere grid, BT-Settl, to determine the microturbulence velocity, the diffusion coefficient, and the advective mixing of molecules as a function of depth. ...

  9. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  10. Synthetic activity indicators for M-type dwarf stars

    CERN Document Server

    Wedemeyer, Sven

    2015-01-01

    Here, we present a set of time-dependent 3D RMHD simulations of a M-dwarf star representative of AD Leo, which extend from the upper convection zone into the chromosphere. The 3D model atmospheres are characterized by a very dynamic and intermittent structure on small spatial and temporal scales and a wealth of physical processes, which by nature cannot be described by means of 1D static model atmospheres. Artificial observations of these models imply that a combination of complementary diagnostics such as Ca II lines and the continuum intensity from UV to millimeter wavelengths, probe various properties of the dynamics, thermal and magnetic structure of the photosphere and the chromosphere and thus provide measures of stellar activity, which can be compared to observations. The complicated magnetic field structure and its imprint in synthetic diagnostics may have important implications for the understanding and characterization of stellar activity and with it possibly for the evaluation of planetary habitabi...

  11. An Extended Star Formation History in an Ultra Compact Dwarf

    CERN Document Server

    Norris, Mark A; Faifer, Favio R; Kannappan, Sheila J; Forte, Juan Carlos; Bosch, Remco C E van den

    2015-01-01

    There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra compact dwarfs (UCDs), with suggestions that UCDs are simply the high mass extension of the globular cluster (GC) population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of stripped-nucleus type UCDs being known. In this paper we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (< 0.7"). With these data we examine the spatially resolved kinematics and star formation history of this unusual object. We find no evidence of a rise in the central velocity dispersion of the UCD, suggesting that this UCD lacks a massive central black hole like those found in some other compact stellar systems, a conclusion confirmed by detailed dynamical mod...

  12. A Second Stellar Color Locus: a Bridge from White Dwarfs to M stars

    CERN Document Server

    Smolcic, V; Knapp, G R; Lupton, R H; Pavlovski, K; Ilijic, S; Schlegel, D J; Smith, J A; McGehee, P M; Silvestri, N M; Hawley, S L; Rockosi, C M; Gunn, J E; Strauss, M A; Fan, X; Eisenstein, D J; Harris, H

    2004-01-01

    We report the discovery of a locus of stars in the SDSS g-r vs. u-g color-color diagram that connects the colors of white dwarfs and M dwarfs. While its contrast with respect to the main stellar locus is only ~1:2300, this previously unrecognized feature includes 863 stars from the SDSS Data Release 1. The position and shape of the feature are in good agreement with predictions of a simple binary star model that consists of a white dwarf and an M dwarf, with the components' luminosity ratio controlling the position along this binary system locus. SDSS DR1 spectra for 47 of these objects strongly support this model. The absolute magnitude--color distribution inferred for the white dwarf component is in good agreement with the models of Bergeron et al. (1995).

  13. New Pulsating DB White Dwarf Stars from the Sloan Digital Sky Survey

    CERN Document Server

    Nitta, A; Krzesínski, J; Kepler, S O; Metcalfe, T S; Mukadam, Anjum S; Mullally, Fergal; Nather, R E; Sullivan, Denis J; Thompson, Susan E; Winget, D E

    2008-01-01

    We are searching for new He atmosphere white dwarf pulsators (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, the H atmosphere white dwarf pulsators (DAVs or ZZ Ceti stars). Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. So far we have discovered nine new DBVs, doubling the number of previously known DBVs. Here we report the new pulsators' lightcurves and power spectra.

  14. Stellar evolution on the borderline of white dwarf and neutron star formation

    NARCIS (Netherlands)

    Poelarends, A.J.T.

    2007-01-01

    This thesis is about the evolution of stars, specifically about the final fate of stars at the borderline between the formation of white dwarfs and neutron stars. It is well known that the mass and the metallicity are the two determining factors in stellar evolution, and for a given initial chemical

  15. Granulation in K-type Dwarf Stars. I. Spectroscopic observations

    CERN Document Server

    Ramírez, I; Lambert, D L

    2008-01-01

    Very high resolution (R~160,000-210,000), high signal-to-noise ratio (S/N>300) spectra of nine bright K-dwarfs were obtained with the 2dcoude spectrograph on the 2.7m Telescope at McDonald Observatory to determine wavelength shifts and asymmetries of Fe I lines. The observed shapes and positions of Fe I lines reveal asymmetries and wavelength shifts that indicate the presence of granulation. In particular, line bisectors show characteristic C-shapes while line core wavelengths are blueshifted by an amount that increases with decreasing equivalent width (EW). On average, Fe I line bisectors have a span that ranges from nearly 0 for the weakest lines (residual core flux > 0.7) to about 75 m/s for the strongest lines (residual core flux ~ 0.3) while wavelength shifts range from about -150 m/s in the weakest (EW ~ 10 mA) lines to 0 in the strongest (EW > 100 mA) features. A more detailed inspection of the bisectors and wavelength shifts reveals star-to-star differences that are likely associated with differences ...

  16. Interactions between brown-dwarf binaries and Sun-like stars

    CERN Document Server

    Kaplan, M; Whitworth, A P

    2012-01-01

    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, $a\\ga 100\\,{\\rm AU}$ (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close ($a\\la 10\\,{\\rm AU}$) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulatio...

  17. Strange stars, strange dwarfs, and planetary-like strange-matter objects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Schaab, C.; Weigel, M.K. [Ludwig-Maximilians Univ., Munich (Germany). Inst. for Theoretical Physics; Glendenning, N.K. [Lawrence Berkeley Lab., CA (United States). Nuclear Science Div.

    1995-05-01

    This paper gives an overview of the properties of all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from strange stars to strange dwarfs. In contrast to their non-strange counterparts--neutron stars and white dwarfs--their properties are determined by two (rather than one) parameters, the central star density and the density at the base of the nuclear crust. This leads to stellar strange-matter configurations whose properties are much more complex than those of the conventional sequence. As an example, two generically different categories of stable strange dwarfs are found, which could be the observed white dwarfs. Furthermore the authors find very-low-mass strange stellar objects, with masses as small as those of Jupiter or even lighter planets. Such objects, if abundant enough, should be seen by the presently performed gravitational microlensing searches.

  18. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    Science.gov (United States)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  19. Can Red Dwarf stars support Earth-like vegetation?

    Science.gov (United States)

    Gale, Joseph; Wandel, Amri

    2016-07-01

    The Kepler mission has shown that Earthlike planets are common. Of particular interest in our search for extra-solar-system, life-clement conditions, are planets orbiting Red Dwarf (RD) stars, the most numerous stellar type in the Milky Way galaxy. Early considerations indicated that conditions on RD planets would be inimical to life, as their Habitable Zones would be so close as to make planets tidally locked to their star. This was expected to engender tempestuous climates and to expose life forms to flares of ionizing electro-magnetic radiation and charged particles. Moreover, the less photon energy of the radiation of the relatively cool RDs would be too low in the 300-700nm waveband required for Oxygenic Photosynthesis (OP). Recent calculations show that these negative factors are less severe than originally estimated. Many authors have suggested that OP may evolve on RP planets to utilize infrared photons in the 700-1000nm waveband. However, projecting from OP and the vegetation in analogous regions on Earth, we argue that the evolutionary pressure to do so would be small. On RD planets there will be regions receiving continuous illumination, of moderate intensity, containing a significant component of photosynthetic 400-700nm radiation. On Earth, OP has been an essential factor in producing the Biosphere environment that enabled the appearance and evolution of complex life. We conclude that the conditions for OP could exist on RD planets and consequently the evolution of vegetation and complex life is possible (albeit not necessary). Furthermore, the huge number of RDs and their long lifetimes, make advanced vegetation, OP and consequently complex life on RD planets probable, and statistically more likely than on planets of solar type stars.

  20. Mt. Suhora M dwarf survey - Detection of eight short-period variable stars

    CERN Document Server

    Machado, L Fox; Winiarski, M; Krzesiński, J; Dróżdz, M

    2011-01-01

    The Mt. Suhora M\\,dwarf survey searching for pulsations in low mass main sequence stars has acquired CCD photometry of 46 M\\,dwarf stars during the first year of the project (Baran et al 2011). As a by-product of this search hundreds field stars have been checked for variability. This paper presents our initial result of a search for periodic variables in field stars observed in the course of the survey. On the basis of the periodicity and the shape of the light curves, eight new variables has been detected, among which five are $\\delta$ Scuti stars and three likely RR Lyrae stars. Although variation in one of the stars has been previously detected, it was classified incorrectly. To support our classification, in August 2010, we performed spectroscopic observations to derive spectral types and luminosity classes for all eight variable stars.

  1. Rejuvenation of the Innocent Bystander: Testing Spin-Up in a Dwarf Carbon Star Sample

    Science.gov (United States)

    Green, Paul

    2014-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dC stars are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  2. M dwarfs and the fraction of high carbon-to-oxygen stars in the solar neighbourhood

    CERN Document Server

    Gizis, John E; Hauschildt, Peter H

    2015-01-01

    We investigate the frequency of high carbon-to-oxygen (C/O $= 0.9$) M dwarf stars in the solar neighbourhood. Using synthetic spectra, we find that such M dwarfs would have weaker TiO bands relative to hydride features. Similar weakening has already been detected in M-subdwarf (sdM) stars. By comparing to existing spectroscopic surveys of nearby stars, we show that less than one percent of nearby stars have high carbon-to-oxygen ratios. This limit does not include stars with C/O$=0.9$, [m/H]$>0.3$, and [C/Fe]$>0.1$, which we predict to have low-resolution optical spectra similar to solar metallicity M dwarfs.

  3. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhanjoy; Mortlock, Daniel [Imperial College London, 1010 Blackett Lab, Prince Consort Rd., London SW7 2AZ (United Kingdom); Greaves, Jane [SUPA, Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pascucci, Ilaria; Apai, Daniel [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Scholz, Aleks [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Thompson, Mark [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Lodato, Giuseppe [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Looper, Dagny, E-mail: s.mohanty@imperial.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)

    2013-08-20

    We present SCUBA-2 850 {mu}m observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3{sigma} limits correspond to a dust mass of 1.2 M{sub Circled-Plus} in Taurus and a mere 0.2 M{sub Circled-Plus} in the TWA (3-10 Multiplication-Sign deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, {rho} Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is {approx}100 AU for intermediate-mass stars, solar types, and VLMS, and {approx}20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M{sub *} from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and {rho} Oph intermediate-mass and solar-type stars evince an opacity index of {beta} {approx} 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 {mu}m fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A

  4. Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K.

    2011-01-01

    Carina is a small and faint classical dwarf spheroidal galaxy in the halo of the Milky Way with a highly episodic star formation history (e.g., Hurley-Keller et al. 1998). Using VLT/FLAMES in high resolution mode, we significantly increase the sample of stars with abundance determinations in Carina,

  5. Stellar populations and star formation histories in late-type dwarfs

    CERN Document Server

    Tosi, M P

    2003-01-01

    Studies of the resolved stellar populations in nearby systems are crucial to understand galaxy evolution. Here, we summarize how the interpretation of the colour-magnitude diagrams of field stars in late-type dwarfs inside and outside the Local Group has allowed us to infer their star formation histories and put useful constraints on the evolution of this type of galaxies.

  6. The first carbon-enhanced metal-poor star found in the Sculptor dwarf spheroidal

    NARCIS (Netherlands)

    Skúladóttir, Á.; Tolstoy, E.; Salvadori, S.; Hill, V.; Pettini, M.; Shetrone, M. D.; Starkenburg, E.

    The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connection with the chemical elements produced by the first stellar generation is still highly debated. In contrast to the Galactic halo, not many CEMP stars have been found in the dwarf spheroidal galaxies around the Milky

  7. GD1212: Probing deep into the interior of a pulsating white dwarf star

    Directory of Open Access Journals (Sweden)

    Giammichele N.

    2015-01-01

    Full Text Available We present the first self-consistent seismic analysis of a white dwarf star, GD 1212, in the Kepler2 field. We precisely establish the fundamental parameters of the star using the forward method based on physically sound models. We unravel the internal structure as well as the rotation profile of GD1212 deeper than in any other ZZCeti stars studied so far. This opens up interesting prospects for future analyses of the white dwarf pulsators monitored in the Kepler and Kepler2 fields.

  8. Local Group Dwarf Galaxies and the Star Formation Law at High Redshift

    CERN Document Server

    Gnedin, N Yu

    2000-01-01

    I show how the existing observational data on Local Group dwarf galaxies can be used to estimate the average star formation law during the first 3 Gyr of the history of the universe. I find that the observational data are consistent with the orthodox Schmidt law with a star formation efficiency of about 4 percent if the star formation is continuous (during the first 3 Gyr). The efficiency is proportionally higher if most of the gas in the dwarfs was consumed (and never replenished) in a short time interval well before the universe turned 3 Gyr.

  9. Brown dwarf accretion: Nonconventional star formation over very long timescales

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available We investigate the process of accretion of interstellar gas by the Galactic population of brown dwarfs over very long timescales typical for physical eschatology. In particular, we use the classical Hoyle-Lyttleton-Bondi accretion model to investigate the rate at which brown dwarfs collect enough additional mass to become red dwarfs, accretion-induced changes in the mass function of the low- mass objects, and the corresponding accretion heating of brown dwarfs. In addition, we show how we can make the definition of the final mass function for stellar objects more precise.

  10. Double white dwarf mergers and elemental surface abundances in extreme helium and R Coronae Borealis stars

    CERN Document Server

    Jeffery, C Simon; Saio, Hideyuki

    2011-01-01

    The surface abundances of extreme helium (EHe) and R Coronae Borealis (RCB) stars are discussed in terms of the merger of a carbon-oxygen white dwarf with a helium white dwarf. The model is expressed as a linear mixture of the individual layers of both constituent white dwarfs, taking account of the specific evolution of each star. In developing this recipe from previous versions, particular attention has been given to the inter-shell abundances of the asymptotic giant branch star which evolved to become the carbon-oxygen white dwarf. Thus the surface composition of the merged star is estimated as a function of the initial mass and metallicity of its progenitor. The question of whether additional nucleosynthesis occurs during the white dwarf merger has been examined. The high observed abundances of carbon and oxygen must either originate by dredge-up from the core of the carbon-oxygen white dwarf during a cold merger or be generated directly by alpha-burning during a hot merger. The presence of large quantiti...

  11. An r-process Enhanced Star in the Dwarf Galaxy Tucana III

    Science.gov (United States)

    Hansen, T. T.; Simon, J. D.; Marshall, J. L.; Li, T. S.; Carollo, D.; DePoy, D. L.; Nagasawa, D. Q.; Bernstein, R. A.; Drlica-Wagner, A.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Eifler, T. F.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Miquel, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; DES Collaboration

    2017-03-01

    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66‑593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Star Cluster Luminosity Functions and Cluster Formation Efficiencies in LEGUS Dwarf Galaxies

    Science.gov (United States)

    Cook, David O.; Lee, Janice C.; Adamo, Angela; Kim, Hwiyun; Ryon, Jenna E.; LEGUS Team

    2017-01-01

    We present preliminary results of star cluster luminosity functions (LFs) and cluster formation efficiencies (Γ) in the LEGUS dwarf galaxy sub-sample. We have used a combination of automated and visual identification techniques to allow us to construct a more complete sample of clusters in these low-mass, low-SFR environments compared to previous studies of dwarf galaxies. Cluster properties are derived from fitting UV and optical (NUV-I) HST photometry to both deterministic and stochastic single-aged stellar populations models. We compare the cluster formation efficiencies and LF slopes to those of previous studies in both dwarf and massive spiral galaxy environments. Recent studies have found that both the LF slope and Γ form trends with galaxy environment. Our LF slope and Γ measurements in the LEGUS dwarfs will allow us to test these trends in the extreme, low-SFR regime and provide a better understanding of the star formation process.

  13. The evolution of white dwarfs resulting from helium-enhanced, low-metallicity progenitor stars

    CERN Document Server

    Althaus, Leandro G; Córsico, Alejandro H; Torres, Santiago; García--Berro, Enrique

    2016-01-01

    Some globular clusters host multiple stellar populations with different chemical abundance patterns. This is particularly true for $\\omega$ Centauri, which shows clear evidence of a helium- enriched sub-population characterized by a helium abundance as high as $Y= 0.4$. We present a whole and consistent set of evolutionary tracks from the ZAMS to the white dwarf stage appropriate for the study of the formation and evolution of white dwarfs resulting from the evolution of helium-rich progenitors. Different issues of the white dwarf evolution and their helium-rich progenitors have been explored. In particular, the final mass of the remnants, the role of overshooting during the thermally-pulsing phase, and the cooling of the resulting white dwarfs differ markedly from the evolutionary predictions of progenitor stars with standard initial helium abundance. Finally, the pulsational properties of the resulting white dwarfs are also explored. We find that, for the range of initial masses explored in this paper, the ...

  14. ALFALFA HI Content and Star Formation in Virgo Cluster Early-Type Dwarfs

    CERN Document Server

    Koopmann, R A; Haynes, M P; Brosch, N

    2009-01-01

    The ALFALFA (Arecibo Legacy Fast ALFA) blind survey is providing a census of HI in galaxies of all types in a range of environments. Here we report on ALFALFA results for Virgo Cluster early-type dwarfs between declinations of 4 and 16 degrees. Less than 2% of the Virgo early-type dwarf population is detected, compared to 70-80% of the Im/BCD dwarf population. Most of the dwarfs detected in HI show evidence for ongoing or recent star formation. Early-type galaxies with HI tend to be located in the outer regions of the cluster and to be brighter. Early-type dwarfs with HI may be undergoing morphological transition due to cluster environmental effects.

  15. K-band spectroscopic metallicities and temperatures of M-dwarf stars

    Directory of Open Access Journals (Sweden)

    Rojas-Ayala Bárbara

    2013-04-01

    Full Text Available I present the metallicity and effective temperature techniques developed for M dwarf stars by Rojas-Ayala et al. (2010, 2012. These techniques are based on absorption features present in the modest resolution K-band spectra (R∼2700 of M dwarfs and have been calibrated using FGK+M dwarf pairs and synthetic atmosphere models. The H2O-K2 index seems to overestimate the effective temperatures of M dwarfs when compared to interferometric measurements. The metallicity distribution of the M dwarf host candidates by the Kepler Mission hints that jovian-size planets form preferentially around solar and super-solar metallicity environments, while small rocky planet host exhibit a wide range of metallicities, just like in their solar-type counterparts.

  16. How Dry is the Brown Dwarf Desert?: Quantifying the Relative Number of Planets, Brown Dwarfs and Stellar Companions around Nearby Sun-like Stars

    CERN Document Server

    Grether, D; Grether, Daniel; Lineweaver, Charles H.

    2004-01-01

    Sun-like stars have stellar, brown dwarf and planetary companions. To help constrain their formation and migration scenarios, we analyse the close companions (orbital period 2 M_Solar respectively. However, we find no evidence that companion mass scales with host mass in general. Approximately 16% of Sun-like stars have close (P < 5 years) companions more massive than Jupiter: 11% are stellar, 1% are brown dwarf and 4% are giant planets. The companion mass function in the brown dwarf and stellar mass range, has a different shape than the initial mass function of individual stars and free-floating brown dwarfs. This suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits.

  17. White dwarf mergers and the origin of R Coronae Borealis stars

    CERN Document Server

    Lorén-Aguilar, P; José, J; García-Berro, E; Althaus, L G; Isern, J

    2011-01-01

    We present a nucleosynthesis study of the merger of a 0.4 solar masses helium white dwarf with a 0.8 solar masses carbon-oxygen white dwarf, coupling the thermodynamic history of Smoothed Particle Hydrodynamics particles with a post-processing code. The resulting chemical abundance pattern, particularly for oxygen and fluorine, is in qualitative agreement with the observed abundances in R Coronae Borealis stars.

  18. Episodic model for star formation history and chemical abundances in giant and dwarf galaxies

    Science.gov (United States)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-11-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  19. The Evolutionary Status of Isolated Dwarf Irregular Galaxies II. Star Formation Histories and Gas Depletion

    CERN Document Server

    Van Zee, L

    2001-01-01

    The results of UBV and H alpha imaging of a large sample of isolated dwarf irregular galaxies are interpreted in the context of composite stellar population models. The observed optical colors are best fit by composite stellar populations which have had approximately constant star formation rates for at least 10 Gyr. The galaxies span a range of central surface brightness, from 20.5 to 25.0 mag arcsec^{-2}; there is no correlation between surface brightness and star formation history. Although the current star formation rates are low, it is possible to reproduce the observed luminosities without a major starburst episode. The derived gas depletion timescales are long, typically ~20 Gyr. These results indicate that dwarf irregular galaxies will be able to continue with their slow, but constant, star formation activity for at least another Hubble time. The sample of isolated dIs is compared to a sample of star bursting dwarf galaxies taken from the literature. The star bursting dwarf galaxies have many similar ...

  20. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    Energy Technology Data Exchange (ETDEWEB)

    Holwerda, B. W.; Bouwens, R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Trenti, M. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Clarkson, W. [Department of Natural Sciences College of Arts, Sciences and Letters, University of Michigan-Dearborn 4901 Evergreen Road, Dearborn, MI 48128 (United States); Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; Ryan, R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); De Marchi, G. [European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Andersen, M., E-mail: holwerda@strw.leidenuniv.nl [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041 Grenoble (France)

    2014-06-10

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selection of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of

  1. Rejuvenation of the Innocent Bystander: Testing Spin-Up in Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul

    2013-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dCs are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  2. Star Formation in NGC4532/DDO 137'S Tidal Dwarf Galaxies and 500 KPC HI Stream

    Science.gov (United States)

    Higdon, Sarah

    Mergers and close-passages between gas rich galaxies can result in the formation of long HI/stellar streams. The tidally induced star formation and gas concentrations can result in the creation of tidal dwarf galaxies (TDGs). TDGs may contribute significantly to the dwarf galaxy population, by far the most common galaxy type in the current epoch. We have discovered one of the longest known tidal streams (500 kpc) in the NGC 4535/DDO 137 system. We propose 3 ksec FUV/NUV images centered on the stream and its five TDGs. We will readily detect faint/low mass star forming regions (~2E-17 erg s-1 cm-2 A-1) to 5-sigma. The GALEX observations are a unique opportunity to undertake a sensitive and comprehensive study of tidally induced star formation, dwarf galaxy formation and inter-galactic enrichment in this system.

  3. Environmental effects on stellar populations of star clusters and dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2017-03-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of gravitationally bound systems in an external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance. The developed theoretical framework has direct applications to the cases of massive star clusters, dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  4. Oscillations of red dwarfs in evolved low-mass binaries with neutron stars

    Science.gov (United States)

    Sarna, Marek J.; Lee, Umin; Muslimov, Alexander G.

    1994-01-01

    We investigate a novel aspect of a problem related to the properties of low-mass binaries (LMBs) with millisecond pulsars: the pulsations of the red dwarf (donor) companion of the neutron star (NS). The illumination of the donor star by the pulsar's high-energy nonthermal radiation and relativistic wind may substantially affect its structure. We present a quantitative analysis of the oscillation spectrum of a red dwarf which has evolved in an LMB and has undergone the stage of evaporation. We calculate the p- and g-modes for red dwarfs with masses in the interval (0.2-0.6) stellar mass. For comparison, similar calculations are presented for zero age main-sequence (ZAMS) stars of the same masses. For less massive donor stars (approximately 0.2 stellar mass) the oscillation spectrum becomes quantitatively different from that of their ZAMS counterparts. The differnce is due to the fact that a ZAMS star of 0.2 stellar mass is fully convective, while the donor star in an LMB is expected to be far from thermal equilibrium and not fully convective. As a result, in contrast to a low-mass ZAMS star, a red dwarf of the same mass in an LMB allows the existence of g-modes. We also consider tidally forced g-modes, and perform a linear analysis of these oscillations for different degrees of nonsynchronism between the orbital and spin rotation of the red dwarf component. We demonstrate the existence of a series of reasonances for the low-order g-modes which may occur in LMBs at a late stage of their evolution. We discuss the possibility that these oscillations may trigger Roche lobe overflow and sudden mass loss by the donor star. Further implications of this effect for gamma- and X-ray burst phenomena are outlined.

  5. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor

    CERN Document Server

    Frebel, Anna; Simon, Joshua D

    2009-01-01

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. However, verification of the iron-deficiency and measurements of additional elements, such as the alpha-element Mg, are mandatory for demonstrating that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming the iron abundance of less than 1/4000th that of the Sun, and showing that the overall abundance pattern mirrors th...

  6. Inclusion of horizontal branch stars in the derivation of star formation histories of dwarf galaxies: The Carina dSph

    NARCIS (Netherlands)

    Savino, Alessandro; Salaris, Maurizio; Tolstoy, Eline

    2015-01-01

    We present a detailed analysis of the horizontal branch of the Carina dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from main sequence and red giant branch spectroscopic

  7. Properties and Star Formation Histories of Intermediate Redshift Dwarf Low-Mass Star-Forming Galaxies

    Science.gov (United States)

    Rodríguez-Muñoz, L.; Gallego, J.; Pacifici, C.; Tresse, L.; Charlot, S.; Gil de Paz, A.; Barro, G.; Villar, V.

    2017-03-01

    The epoch when low-mass star-forming galaxies (LMSFGs) form the bulk of their stellar mass is uncertain. While some models predict an early formation, others favor a delayed scenario until later ages of the Universe. We present improved constraints on the physical properties and star formation histories (SFHs) of a sample of intermediate redshift LMSFGs selected by their stellar mass or blue-compact-dwarf-like properties. Our work takes advantage of the deep UV-to-FIR photometric coverage available on the Extended-Chandra Deep Field South and our own dedicated deep VLT/VIMOS optical spectroscopy programs. On the one hand, we estimate the stellar mass (M_{*}), star formation rate (SFR), and SFH of each galaxy modeling its spectral energy distribution. We use a novel approach by Pacifici et al. 2012, that (1) consistently combines photometric (broad-band) and spectroscopic (emission line fluxes and equivalent widths) data, and (2) uses physically-motivated SFHs with non-uniform variations of the SFR as a function of time. On the other hand, we characterize the properties of their interstellar medium by analyzing the emission line features visible in the VIMOS spectroscopy. The final sample includes 91 spectroscopically confirmed LMSFGs (7.3 ≤ logM_{*}/M_{⊙} ≤ 9.5) at 0.3 star forming galaxies over 2 dex in stellar mass, and high specific-SFR. Furthermore, they are characterized by strong emission lines, low metallicity, and an enhanced level of excitation. Our selection criterion based on mass gathers galaxies within a wide range of properties, and possibly, different evolutionary stages. Despite the individual differences, the average SFH that we obtain suggests a late and fast (˜2 Gyr prior their observation) assembly scenario for this type of system.

  8. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  9. The Imprint of Reionization on the Star Formation Histories of Dwarf Galaxies

    CERN Document Server

    Benitez-Llambay, Alejandro; Abadi, Mario G; Gottloeber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2014-01-01

    We explore the impact of cosmic reionization on nearby isolated dwarf galaxies using a compilation of SFHs estimated from deep HST data and a cosmological hydrodynamical simulation of the Local Group. The nearby dwarfs show a wide diversity of star formation histories; from ancient systems that have largely completed their star formation $\\sim 10$ Gyr ago to young dwarfs that have formed the majority of their stars in the past $\\sim 5$ Gyr to two-component systems characterized by the overlap of comparable numbers of old and young stars. Taken as an ensemble, star formation in nearby dwarfs dips to lower-than-average rates at intermediate times ($4

  10. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  11. Star Formation at Low Rates: How a Lack of Massive Stars Impacts the Evolution of Dwarf Galaxies

    Science.gov (United States)

    Hensler, Gerhard

    2017-01-01

    In recent years dedicated observations have uncovered star formation at extremely low rates in dwarf galaxies, tidal tails, ram-pressure stripped gas clouds, and the outskirts of galactic disks. At the same time, numerical simulations of galaxy evolution have advanced to higher spatial and mass resolutions, but have yet to account for the underfilling of the uppermost mass bins of stellar initial mass function (IMF) at low star-formation rates. In such situations, simulations may simply scale down the IMF, without realizing that this unrealistically results infractions of massive stars, along with fractions of massive star feedback energy (e.g., radiation and SNII explosions). Not properlyaccounting for such parameters has consequences for the self-regulation of star formation, the energetics of galaxies, as well as for the evolution of chemical abundances.Here we present numerical simulations of dwarf galaxies with low star-formation rates allowing for two extreme cases of the IMF: a "filled" case with fractional massive stars vs. a truncated IMF, at which the IMF is built bottom-up until the gas reservoir allows the formation of a last single star at an uppermost mass. The aim of the study is to demonstrate the different effects on galaxy evolution with respect to self-regulation, feedback, and chemistry. The case of a stochastic sampled IMF is situated somewhere in between these extremes.

  12. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus

    CERN Document Server

    Visscher, C

    2005-01-01

    We use thermochemical equilibrium and kinetic calculations to model sulfur and phosphorus chemistry in the atmospheres of giant planets, brown dwarfs, low-mass stars, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. Our results are independent of any particular model atmosphere and the behavior of different gases can be used to constrain atmospheric structure and metallicity. Hydrogen sulfide is the dominant sulfur gas in substellar atmospheres and approximately represents the atmospheric sulfur inventory. Depending on the prevailing S and C chemistry, the abundance of minor sulfur gases may constrain atmospheric temperatures or metallicity. Disequilibrium abundances of PH3 are expected in the observable atmospheres of substellar objects, and PH3 is representative of the total P abundance in giant planets and T dwarfs. A number of other phosphorus gases become relatively abunda...

  13. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    CERN Document Server

    Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel

    2016-01-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...

  14. A VLT/FORS2 spectroscopic survey of individual stars in a transforming dwarf galaxy

    CERN Document Server

    Battaglia, G; Rejkuba, M

    2016-01-01

    Understanding the properties of dwarf galaxies is important not only to put them in their proper cosmological context, but also to understand the formation and evolution of the most common type of galaxies. Dwarf galaxies are divided into two main classes, dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs), which differ from each other mainly because the former are gas-rich objects currently forming stars, while the latter are gas-deficient with no on-going star formation. Transition types (dT) are thought to represent dIs in the process of losing their gas, and can therefore shed light into the possible process of dwarf irregulars (dIrrs) becoming gas-deficient, passively evolving galaxies. Here we present preliminary results from our wide-area VLT/FORS2 MXU spectroscopic survey of the Phoenix dT, from which we obtained line-of-sight velocities and metallicities from the nIR Ca II triplet lines for a large sample of individual Red Giant Branch stars.

  15. Short duration high amplitude flares detected on the M dwarf star KIC 5474065

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Garcia-Alvarez, David; Brooks, Adam; Barclay, Thomas; Still, Martin

    2013-01-01

    Using data obtained during the RATS-Kepler project we identified one short duration flare in a 1 hour sequence of ground based photometry of the dwarf star KIC 5474065. Observations made using GTC show it is a star with a M4 V spectral type. Kepler observations made using 1 min sampling show that KIC 5474065 exhibits large amplitude (deltaF/F>0.4) optical flares which have a duration as short as 10 mins. We compare the energy distribution of flares from KIC 5474065 with that of KIC 9726699, which has also been observed using 1 min sampling, and ground based observations of other M dwarf stars in the literature. We discuss the possible implications of these short duration, relatively low energy flares would have on the atmosphere of exo-planets orbiting in the habitable zone of these flare stars.

  16. V and K-band Mass-Luminosity Relations for M Dwarf Stars

    Science.gov (United States)

    Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio

    2015-08-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.

  17. Suppression of star formation in dwarf galaxies by grain photoelectric feedback

    CERN Document Server

    Forbes, John C; Goldbaum, Nathan J; Dekel, Avishai

    2016-01-01

    Photoelectric heating has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies found some indication that photoelectric heating could suppress star formation. However, simulations that include photoelectric heating have typically found that it has little effect on the rate of star formation in either spiral galaxies or dwarfs suggesting that supernovae and not photoelectric heating are responsible for setting the star formation law in galaxies. This result is in tension with recent work indicating that a star formation law that depends on galaxy metallicity, as expected for photoelectric heating but not for supernovae, reproduces the present-day galaxy population better than a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, where the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating, and we resolve...

  18. The nature of the F str lambda 4077 stars. 3: Spectroscopy of the barium dwarfs and other CP stars

    Science.gov (United States)

    North, P.; Berthet, S.; Lanz, T.

    1994-01-01

    The abundances of C, O, Al, Ca, iron-peak and s-process elements have been derived from high-resolution spectra for a sample of stars classified as F str lambda 4077 by Bidelman. Among the 20 stars mentioned by Bidelman, we have discovered 8 barium dwarfs (or CH subgiants, according to Bond's terminology), while a 9th star, HD 182274, was already known as a CH subgiant. In addition, we have analyzed three barium stars taken from the list of Lu et al. (1983) which are probably dwarfs rather than giants, and three CH subgiants. The other 11 F str lambda 4077 stars resemble either the delta Delphini stars, since their iron abundance is enhanced while Ca is normal, or are probably spectrum composites. A few Am, Ap, lambda Bootis and normal stars have been analyzed for comparison. In particular, we have included three lambda Boo candidates, selected from their photometric properties, and their iron deficiency is confirmed. The spectroscopic, photometric and statistical evidences concerning the Ba dwarfs, support the idea that these stars may be the main sequence counterparts, and possibly the progenitors of the Ba giants. The C/O ratio varies in these stars from normal values to a maximum of 1.5, but mostly within 0.6 and 1.2. Some of these objects may therefore be considered, in this sense, as carbon stars. On the other hand, the abundances of carbon and s-process elements relative to iron are inversely correlated with metallicity, and may even exceed significantly those of typical, solar-metallicity carbon stars. Metal-deficient C stars must therefore have (C/Fe) greater than or approximately equal to 1 and (s/Fe) greater than or approximately equal to 1.5 as soon as (Fe/H) less than or approximately equal to -1. The neutron exposure is shown to increase when the metallicity decreases, which is compatible with the C-13 (alpha, n) O-16 neutron source, but not with the Ne-22 (alpha, n) Mg-25 one. The evolutionary state (within the main sequence) of the Ba dwarfs, is

  19. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael [Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  20. I -Love- Q relations for white dwarf stars

    Science.gov (United States)

    Boshkayev, K.; Quevedo, H.; Zhami, B.

    2017-02-01

    We investigate the equilibrium configurations of uniformly rotating white dwarfs, using Chandrasekhar and Salpeter equations of state in the framework of Newtonian physics. The Hartle formalism is applied to integrate the field equation together with the hydrostatic equilibrium condition. We consider the equations of structure up to the second order in the angular velocity, and compute all basic parameters of rotating white dwarfs to test the so-called moment of inertia, rotational Love number, and quadrupole moment (I-Love-Q) relations. We found that the I-Love-Q relations are also valid for white dwarfs regardless of the equation of state and nuclear composition. In addition, we show that the moment of inertia, quadrupole moment, and eccentricity (I-Q-e) relations are valid as well.

  1. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  2. Nucleosynthesis during the Merger of White Dwarfs and the Origin of R Coronae Borealis Stars

    CERN Document Server

    Longland, R; José, J; García-Berro, E; Althaus, L G; Isern, J

    2011-01-01

    Many hydrogen deficient stars are characterised by surface abundance patterns that are hard to reconcile with conventional stellar evolution. Instead, it has been suggested that they may represent the result of a merger episode between a helium and a carbon-oxygen white dwarf. In this Letter, we present a nucleosynthesis study of the merger of a 0.4 M_sol helium white dwarf with a 0.8 M_sol carbon-oxygen white dwarf, by coupling the thermodynamic history of Smoothed Particle Hydrodynamics particles with a post-processing code. The resulting chemical abundance pattern, particularly for oxygen and fluorine, is in qualitative agreement with the observed abundances in R Coronae Borealis stars.

  3. Spectroscopic Reductions of White Dwarf Stars to Support Dark Energy Survey Calibrations

    Science.gov (United States)

    Gulledge, Deborah Jean; Robertson, Jacob M.; Tucker, Douglas Lee; Smith, J. Allyn; Wester, William; Tremblay, Pier-Emmanuel; Fix, Mees B.

    2017-01-01

    The Dark Energy Survey is an imaging survey that covers 5000 square degrees in the Southern hemisphere to map galaxies and gather information on dark energy. Science requirements for the survey require a 0.5% uncertainty in color, driven by supernova science. The Dark Energy Survey relies a calibration technique that uses white dwarf stars to set zero points. These white dwarf spectra are fit to models which are used to generate synthetic photometry. These values are compared to the measured values from the survey to verify that the zero points are correct. We present results to date of the spectroscopic reductions of these white dwarf stars in support of the calibrations for the Dark Energy Survey.

  4. Field #3 of the Palomar-Groningen Survey; 1, Variable stars at the edge of the Sagittarius dwarf galaxy

    CERN Document Server

    Ng, Y K

    1996-01-01

    A catalogue is presented with variable (RR Lyrae, semiregular and Mira) stars located inside field #3 of the Palomar-Groningen Survey, at the outer edge of the Sagittarius dwarf galaxy. One of the semiregular variables is a carbon star, comparable with those found by Azzopardi et al. (1991). Serendipity provides the suggestion, that their carbon stars might not be located inside, but behind the bulge in the Sagittarius dwarf galaxy.

  5. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    CERN Document Server

    Lemasle, B; Hill, V; Tolstoy, E; Irwin, M; Jablonka, P; Venn, K; Battaglia, G; Starkenburg, E; Shetrone, M; Letarte, B; Francois, P; Helmi, A; Primas, F; Kaufer, A; Szeifert, T

    2014-01-01

    Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H]>-1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several alpha, iron-peak and neutron-capture elements in a sample of 47 individual Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Similar to other dwarf spheroid...

  6. Supernova 2011fe from an Exploding Carbon-Oxygen White Dwarf Star

    CERN Document Server

    Nugent, Peter E; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-01-01

    Type Ia supernovae (SNe Ia) have been used empirically as standardized candles to reveal the accelerating universe even though fundamental details, such as the nature of the progenitor system and how the star explodes, remained a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary could be anything from a main sequence star to a red giant, or even another white dwarf. The uncertainty stems from the fact that no recent SN Ia has been discovered close enough to detect the stars before explosion. Here we report early observations of SN 2011fe (PTF11kly) in M101 at a distance of 6.4 Mpc, the closest SN Ia in the past 25 years. We find that the exploding star was likely a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was most likely a main sequence star. Early spectroscopy shows high-velocity oxygen that varies on a time scale of hours and extensive mixing of newly synthesized intermediate mass ele...

  7. Dwarf Elliptical Galaxies Structure, Star Formation, and Color-Magnitude Diagrams

    CERN Document Server

    Carraro, G; Girardi, L; Lia, C

    2001-01-01

    The aim of this paper is to cast light on the formation and evolution of elliptical galaxies by means of N-body/hydro-dynamical simulations that include star formation, feed-back and chemical evolution. Particular attention is paid to the case of dwarf spheroidals of the Local Group which, thanks to their proximity and modern ground-based and space instrumentation, can be resolved into single stars so that independent determinations of their age and star formation history can be derived. Dwarf galaxies are known to exhibit complicated histories of star formation ranging from a single very old episode to a series of bursts over most of the Hubble time. We start from virialized haloes of dark matter, and follow the infall of gas into the potential wells and the formation of stars. We find that in objects of the same total mass, different star formation histories are possible, if the collapse phase started at different initial densities. We predict the final structure of dwarf spheroidal galaxies, their kinemati...

  8. The Dwarf Spheroidal Companions to M31: Variable Stars in Andromeda II

    CERN Document Server

    Pritzl, B J; Jacoby, G H; Costa, G S D; Pritzl, Barton J.; Armandroff, Taft E.; Jacoby, George H.

    2004-01-01

    (abridged) We present the results of a variable star search in Andromeda II, a dwarf spheroidal galaxy companion to M31, using HST/WFPC2 observations. Seventy-three variables were found, one of which is an anomalous Cepheid while the others are RR Lyrae stars. The anomalous Cepheid has properties consistent with those found in other dwarf spheroidal galaxies. For the RR Lyrae stars, the mean periods are 0.571 day and 0.363 day for the fundamental mode and first-overtone mode stars, respectively. With this fundamental mode mean period and the mean metallicity determined from the red giant branch (=-1.49), Andromeda II follows the period-metallicity relation defined by the Galactic globular clusters and other dwarf spheroidal galaxies. We also find that the properties of the RR Lyrae stars themselves indicate a mean abundance that is consistent with that determined from the red giants. There is, however, a significant spread among the RR Lyrae stars in the period-amplitude diagram, which is possibly related to ...

  9. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    CERN Document Server

    Gillon, Michael; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Gagliuffi, Daniella Bardalez; Magain, Pierre; Queloz, Didier

    2016-01-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ultracool dwarfs. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disk, there should be a large but hitherto undetected population of terrestrial planets orbiting them - ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain poss...

  10. They are Small Worlds After All: Revised Properties of Kepler M Dwarf Stars and their Planets

    CERN Document Server

    Gaidos, E; Kraus, A L; Ireland, M

    2015-01-01

    We classified the reddest (r-J> 2.2) stars observed by the NASA Kepler mission into main sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We then revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging and aperture masking to identify companion stars, and refitting of the light curves to identify the component most likely to host the planet. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multi-planet systems. We determined that Kepler M dwarfs host an average of 1.9+/-0.3 planets with radii of 1-4Re and orbital periods of 1.5-180d. Th...

  11. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on non-L

  12. Milky Way Red Dwarfs in the BoRG Survey; Galactic scale-height and the distribution of dwarfs stars in WFC3 imaging

    CERN Document Server

    Holwerda, B W; Clarkson, W; Sahu, K; Bradley, L; Stiavelli, M; Pirzkal, N; De Marchi, G; Andersen, M; Bouwens, R; Ryan, R

    2014-01-01

    We present a tally of Milky Way late-type dwarf stars in 68 WFC3 pure-parallel fields (227 arcmin^2) from the Brightest of Reionizing Galaxies (BoRG) survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the CANDELS and the ERS mosaics, we identify a morphological selection criterion using the half-light radius (r50), a near-infrared J-H, G-J color region where M-dwarfs are found, and a V-J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selection of M-dwarfs and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m_F125W < 24. Based on the M-dwarfs statistics, we conclude that (a) the previously identified North/South discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the Northern fields on average than in Southern ones, (b) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4...

  13. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    Science.gov (United States)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  14. Ultra faint dwarfs : probing early cosmic star formation

    NARCIS (Netherlands)

    Salvadori, Stefania; Ferrara, Andrea

    2009-01-01

    We investigate the nature of the newly discovered Ultra Faint dwarf spheroidal galaxies (UF dSphs) in a general cosmological context simultaneously accounting for various 'classical' dSphs and Milky Way properties including their metallicity distribution function (MDF). To this aim, we extend the

  15. The first carbon-enhanced metal-poor star found in the Sculptor dwarf spheroidal

    CERN Document Server

    Skuladottir, Asa; Salvadori, Stefania; Hill, Vanessa; Pettini, Max; Shetrone, Matthew D; Starkenburg, Else

    2014-01-01

    The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connection with the chemical elements produced by the first stellar generation is still highly debated. In contrast to the Galactic halo, not many CEMP stars have been found in the dwarf spheroidal galaxies around the Milky Way. Here we present detailed abundances from ESO VLT/UVES high-resolution spectroscopy for ET0097, the first CEMP star found in the Sculptor dwarf spheroidal. This star has $\\text{[Fe/H]}=-2.03\\pm0.10$, $\\text{[C/Fe]}=0.51\\pm0.10$ and $\\text{[N/Fe]}=1.18\\pm0.20$. The traditional definition of CEMP stars is $\\text{[C/Fe]}\\geq0.70$, but taking into account that this luminous red giant branch star has undergone mixing, it was intrinsically less nitrogen enhanced and more carbon-rich when it was formed, and so it falls under the definition of CEMP stars, as proposed by Aoki et al. (2007) to account for this effect. By making corrections for this mixing, we conclude that the star had $\\text{[C/Fe]}\\approx0.8$ during its e...

  16. Kelu-1 is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics

    CERN Document Server

    Liu, M C; Liu, Michael C.; Leggett, Sandy K.

    2005-01-01

    (Abridged) We present near-IR imaging of the nearby L dwarf Kelu-1 obtained with the Keck sodium laser guide star adaptive optics (LGS AO) system as part of a high angular resolution survey for substellar binaries. Kelu-1 was one of the first free-floating L dwarfs identified, and the origin of its overluminosity compared to other similar objects has been a long-standing question. Our images clearly resolve Kelu-1 into a 0.29'' (5.4 AU) binary, and a previous non-detection by HST demonstrates that the system is a true physical pair. Binarity explains the properties of Kelu-1 that were previously noted to be anomalous compared to other early-L dwarfs. We estimate spectral types of L1.5-L3 and L3-L4.5 for the two components, giving model-derived masses of 0.05-0.07 Msun and 0.045-0.065 Msun for an estimated age of 0.3-0.8 Gyr. More distant companions are not detected to a limit of 5-9 Mjup. The presence of lithium absorption indicates that both components are substellar, but the weakness of this feature relativ...

  17. A search for mass segregation of stars and brown dwarfs in \\rho\\ Ophiuchi

    CERN Document Server

    Parker, Richard J; de Oliveira, Catarina Alves

    2012-01-01

    We apply two different algorithms to search for mass segregation to a recent observational census of the rho Ophiuchi star forming region. Firstly, we apply the Lambda_MSR method, which compares the minimum spanning tree (MST) of a chosen subset of stars to MSTs of random subsets of stars in the cluster, and determine the mass segregation ratio, Lambda_MSR. Secondly, we apply the m-Sigma method, which calculates the local stellar surface density around each star and determines the statistical significance of the average surface density for a chosen mass bin, compared to the average surface density in the whole cluster. Using both methods, we find no indication of mass segregation (normal or inverse) in the spatial distribution of stars and brown dwarfs in rho Ophiuchi. Although rho Ophiuchi suffers from high visual extinction, we show that a significant mass segregation signature would be detectable, albeit slightly diluted, despite dust obscuration of centrally located massive stars.

  18. Habitable Worlds Around M Dwarf Stars: The CAPSCam Astrometric Planet Search

    Science.gov (United States)

    Boss, Alan P.; Weinberger, Alycia J.; Anglada-Escudé, Guillem; Thompson, Ian B.; Brahm, Rafael

    2014-04-01

    M dwarf stars are attractive targets in the search for habitable worlds as a result of their relative abundance and proximity, making them likely targets for future direct detection efforts. Hot super-Earths as well as gas giants have already been detected around a number of early M dwarfs, and the former appear to be the high-mass end of the population of rocky, terrestrial exoplanets. The Carnegie Astrometric Planet Search (CAPS) program has been underway since March 2007, searching ~ 100 nearby late M, L, and T dwarfs for gas giant planets on orbits wide enough for habitable worlds to orbit interior to them. The CAPSCam-N camera on the 2.5-m du Pont telescope at the Las Campanas Observatory has demonstrated the ability to detect planets as low in mass as Saturn orbiting at several AU around late M dwarfs within 15 pc. Over the next decade, the CAPS program will provide new constraints on the planetary census around late M dwarf stars, and hence on the suitability of these nearby planetary systems for supporting life.

  19. A Re-appraisal of the Habitability of Planets Around M Dwarf Stars

    CERN Document Server

    Tarter, J C; Mancinelli, R L; Aurnou, J M; Backman, D E; Basri, G S; Boss, A P; Clarke, A; Deming, D; Doyle, L R; Feigelson, E D; Freund, F; Grinspoon, D H; Haberle, R M; Hauck, S A; Heath, M J; Henry, T J; Hollingsworth, J L; Joshi, M M; Kilston, S; Liu, M C; Meikle, E; Reid, I N; Rothschild, L J; Scalo, J M; Segura, A; Tang, C M; Tiedje, J M; Turnbull, M C; Walkowicz, L M; Weber, A L; Young, R E; Tarter, Jill C.; Backus, Peter R.; Mancinelli, Rocco L.; Aurnou, Jonathan M.; Backman, Dana E.; Basri, Gibor S.; Boss, Alan P.; Clarke, Andrew; Deming, Drake; Doyle, Laurance R.; Feigelson, Eric D.; Freund, Friedmann; Grinspoon, David H.; Haberle, Robert M.; II, Steven A. Hauck; Heath, Martin J.; Henry, Todd J.; Hollingsworth, Jeffery L.; Joshi, Manoj M.; Kilston, Steven; Liu, Michael C.; Meikle, Eric; Rothschild, Lynn J.; Scalo, John M.; Segura, Antigona; Tang, Carol M.; Tiedje, James M.; Turnbull, Margaret C.; Walkowicz, Lucianne M.; Weber, Arthur L.; Young, Richard E.

    2006-01-01

    Stable, hydrogen-burning, M dwarf stars comprise about 75% of all stars in the Galaxy. They are extremely long-lived and because they are much smaller in mass than the Sun (between 0.5 and 0.08 MSun), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially-habitable, wet planets residing within their habitable zones, which are only ~ 1/5 to 1/50 of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 MEarth orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within...

  20. Young star clusters in the outer disks of LITTLE THINGS dwarf irregular galaxies

    CERN Document Server

    Hunter, Deidre A; Gehret, Elizabeth

    2016-01-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf (BCD) galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1 to 8 disk scale lengths and have ages of <20 Myrs and masses of 20 to 1E5 Msolar. The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the HI surface density is ~1 Msolar per pc2, although both the HI and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the ave...

  1. The potential of asteroseismology for probing the core chemical stratification in white dwarf stars

    CERN Document Server

    Giammichele, N; Brassard, P; G.,; Fontaine,

    2016-01-01

    Context. The details of the C/O core structure in white dwarf stars has mostly remained inaccessible to the technique of asteroseismology, despite several attempts carried out in the past. Aims. We re-assess the potential of asteroseismology for probing the chemical stratification in white dwarf cores, in light of new highly efficient tools recently developed for that purpose. Methods. Using the forward modeling approach and a new parameterization for the core chemical stratification in ZZ Ceti stars, we test several situations typical of the usually limited constraints available, such as small numbers of observed independent modes, to carry out asteroseismology of these stars. Results. We find that, even with a limited number of modes, the core chemical stratification (in particular, the location of the steep chemical transitions expected in the oxygen profile) can be determined quite precisely due to the significant sensitivity of some confined modes to partial reflexion (trapping) effects. These effects ar...

  2. Discovery of a brown dwarf companion to the A3V star β Circini

    Science.gov (United States)

    Smith, L. C.; Lucas, P. W.; Contreras Peña, C.; Kurtev, R.; Marocco, F.; Jones, H. R. A.; Beamin, J. C.; Napiwotzki, R.; Borissova, J.; Burningham, B.; Faherty, J.; Pinfield, D. J.; Gromadzki, M.; Ivanov, V. D.; Minniti, D.; Stimson, W.; Villanueva, V.

    2015-12-01

    We report the discovery of an L dwarf companion to the A3V star β Circini. VVV J151721.49-585131.5, or β Cir B, was identified in a proper motion and parallax catalogue of the VISTA Variables in the Vía Láctea survey as having near-infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of β Cir. The projected separation of ˜3.6 arcmin corresponds to 6656 au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of 370-500 Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0 ± 0.5 and lacks the typical signatures of low-surface gravity seen in younger brown dwarfs. This suggests that signs of low-surface gravity disappear from the spectra of early L dwarfs by an age of ˜370-500 Myr, as expected from theoretical isochrones. The mass of β Cir B is estimated from the BHAC15 isochrones as 0.056 ± 0.007 M⊙.

  3. Evolution and colors of helium-core white dwarf stars with high-metallicity progenitors

    CERN Document Server

    Althaus, L G; Romero, A D; Rohrmann, R D; Córsico, A H; García-Berro, E; Bertolami, M M Miller

    2009-01-01

    Motivated by the recent detection of single and binary He-core white dwarfs in metal-rich clusters, we present a full set of evolutionary calculations and colors appropriate for the study of such white dwarfs. The paper is also aimed at investigating whether stable hydrogen burning may constitute a main source of energy for massive He-core white dwarfs resulting from high-metallicity progenitors. White dwarf sequences are derived by taking into account the evolutionary history of progenitor stars with supersolar metallicities. We also incorporate a self-consistent, time-dependent treatment of gravitational settling and chemical diffusion, as well as of the residual nuclear burning. We find that the influence of residual nuclear burning during the late stages of white dwarf evolution is strongly dependent on the occurrence of chemical diffusion at the base of the hydrogen-rich envelope. When no diffusion is considered, residual hydrogen burning strongly influences the advanced stages of white dwarf cooling, in...

  4. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281, S9, 9000 Gent (Belgium)

    2015-12-20

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.

  5. Stabilization of CO2 Atmospheres on Exoplanets around M Dwarf Stars

    CERN Document Server

    Gao, Peter; Robinson, Tyler D; Li, Cheng; Yung, Yuk L

    2015-01-01

    We investigate the chemical stability of CO2-dominated atmospheres of M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. On planets orbiting Sun-like stars, the photolysis of CO2 by Far-UV (FUV) radiation is balanced by the reaction between CO and OH, the rate of which depends on H2O abundance. By comparison, planets orbiting M dwarf stars experience higher FUV radiation compared to planets orbiting Sun-like stars, and they are also likely to have low H2O abundance due to M dwarfs having a prolonged, high-luminosity pre-main sequence (Luger & Barnes 2015). We show that, for H2O-depleted planets around M dwarfs, a CO2-dominated atmosphere is stable to conversion to CO and O2 by relying on a catalytic cycle involving H2O2 photolysis. However, this cycle breaks down for planets with atmospheric hydrogen mixing ratios below ~1 ppm, resulting in ~40% of the atmospheric CO2 being converted to CO and O2 on a time scale of 1 Myr. The increased abundance of O2 also results in high O3 concent...

  6. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Baranec, Christoph [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Mann, Andrew W. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Lépine, Sebastien [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Buccino, Andrea; Mauas, Pablo; Petrucci, Romina [Instituto de Astronomía y Física del Espacio, C1428EHA Buenos Aires (Argentina); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  7. On mode trapping in pulsating DA white dwarf stars

    CERN Document Server

    Benvenuto, O G; Althaus, L G; Serenelli, A M

    2002-01-01

    The present work is designed to explore the effects of the time-dependent element diffusion on the mode trapping properties of DA white dwarf models with various thickness of the hydrogen envelope. Our predictions are compared with the standard assumption of diffusive equilibrium in the trace element approximation. We find that element diffusion markedly weakens the presence of mode trapping originated in the outer layers of the models, even for the case of thin hydrogen envelopes.

  8. Bursts of star formation in computer simulations of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  9. Cool carbon stars in the halo and in dwarf galaxies: Halpha, colours, and variabiity

    CERN Document Server

    Mauron, Nicolas; Berlioz-Arthaud, Paul; Klotz, Alain

    2013-01-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Halpha in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution ...

  10. Detailed Abundances of Two Very Metal-Poor Stars in Dwarf Galaxies

    CERN Document Server

    Kirby, Evan N

    2012-01-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae. These supernovae could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two Milky Way dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[alpha/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of supernova yields is the cause. The earlies...

  11. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  12. Kepler-445, Kepler-446 and the Occurrence of Compact Multiples Orbiting Mid-M Dwarf Stars

    CERN Document Server

    Muirhead, Philip S; Vanderburg, Andrew; Morton, Timothy D; Kraus, Adam; Ireland, Michael; Swift, Jonathan J; Feiden, Gregory A; Gaidos, Eric; Gazak, J Zachary

    2015-01-01

    We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([Fe/H]=+0.25 $\\pm$ 0.10) M4 dwarf with three transiting planets, and Kepler-446 is a metal-poor ([Fe/H]=-0.30 $\\pm$ 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar to GJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely-rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kep...

  13. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  14. They are small worlds after all: revised properties of Kepler M dwarf stars and their planets

    Science.gov (United States)

    Gaidos, E.; Mann, A. W.; Kraus, A. L.; Ireland, M.

    2016-04-01

    We classified the reddest (r - J > 2.2) stars observed by the NASA Kepler mission into main-sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging to identify companion stars, and, in the case of binaries, fitting light curves to identify the likely planet host. In 49 of 54 systems, we validated the primary as the host star. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multiplanet systems. We determined that Kepler M dwarfs host an average of 2.2 ± 0.3 planets with radii of 1-4 R⊕ and orbital periods of 1.5-180 d. The radius distribution peaks at ˜1.2 R⊕ and is essentially zero at 4 R⊕, although we identify three giant planet candidates other than the previously confirmed Kepler-45b. There is suggestive but not significant evidence that the radius distribution varies with orbital period. The distribution with logarithmic orbital period is flat except for a decline for orbits less than a few days. 12 candidate planets, including two Jupiter-size objects, experience an irradiance below the threshold level for a runaway greenhouse on an Earth-like planet and are thus in a `habitable zone'.

  15. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback

    Science.gov (United States)

    Forbes, John C.; Krumholz, Mark R.; Goldbaum, Nathan J.; Dekel, Avishai

    2016-07-01

    Photoelectric heating—heating of dust grains by far-ultraviolet photons—has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity—as is expected with photoelectric heating, but not with supernovae—reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time, suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  16. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    Science.gov (United States)

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  17. A Very High Proper Motion Star and the First L dwarf in the Kepler Field

    CERN Document Server

    Gizis, John E; Burgasser, Adam J

    2011-01-01

    We report two nearby high proper motion dwarfs of special interest identified using the Preliminary Data Release of the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). WISEP J191239.91-361516.4 has a motion of 2.1 arcseconds per year. Photometry identifies it as a mid-M dwarf. WISEP J190648.47+401106.8 is a spectroscopically confirmed L1 dwarf in the Kepler Mission field with a motion of 0.48 arcseconds per year. The estimated distance is 17 parsecs. Both lie at relatively low galactic latitudes and demonstrate the possibility of discovering proper motion stars independently of the historic photographic sky surveys.

  18. Scl-1013644: a CEMP-s star in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    Salgado, C.; Da Costa, G. S.; Yong, D.; Norris, J. E.

    2016-11-01

    Recent studies of the Milky Way and its satellites have paid special attention to the importance of carbon-enhanced metal-poor (CEMP) stars due to their involvement in Galactic formation history and their possible connection with the chemical elements originating in the first stellar generation. In an ongoing study of red giants in the Sculptor dwarf galaxy, we have discovered a star with extremely strong CN and CH molecular bands. This star, Scl-1013644, has previously been identified by Geisler et al. as a star with an enrichment in the heavy elements. Spectrum synthesis has been used to derive the carbon, nitrogen and barium abundances for Scl-1013644. Our findings are [C/Fe] = +0.8, [N/Fe] = -0.3 and [Ba/Fe] = +2.1 with the latter result consistent with the value found by Geisler et al. These results reveal Scl-1013644 as a CEMP-s star, the third such star discovered in this dwarf galaxy.

  19. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    CERN Document Server

    Makarova, L N; Karachentsev, I D; Tully, R B; Rizzi, L

    2016-01-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys revealing the old red giant branch and red clump. With the new observational data we determined the Andromeda XVIII distance to be D = 1.33+-0.08 Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2x10^6 Msun. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star form...

  20. A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet

    CERN Document Server

    Hartman, J D; Noyes, R W; Sipöcz, B; Kovács, G; Mazeh, T; Shporer, A; Pál, A

    2009-01-01

    Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broad-band photometric variability of a sample of 27,560 field K and M dwarfs selected by color and proper-motion. A total of 3496 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1928 stars, including 79 eclipsing binaries, as secure variable star detections that are not high probability blends. We find that only 43 of these stars, including 7 of the eclipsing binaries, have previously been identified as variables or are blended with previously identified variables. One of the newly identified eclipsing binaries is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M_1 = M_2 = 0.258 +- 0.008 M_Sun and R_1 = R_2 = 0.289 +- 0.007 R_Sun. The radii of the component s...

  1. Investigation of the Puzzling Abundance Pattern in the Stars of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Li, Hongjie; Zhang, Bo

    2013-01-01

    Many works have found unusual characteristics of elemental abundances in nearby dwarf galaxies. This implies that there is a key factor of galactic evolution that is different from that of the Milky Way (MW). The chemical abundances of the stars in the Fornax dwarf spheroidal galaxy (Fornax dSph) provide excellent information for setting constraints on the models of the galactic chemical evolution. In this work, adopting the five-component approach, we fit the abundances of the Fornax dSph stars, including $\\alpha$ elements, iron group elements and neutron-capture elements. For most sample stars, the relative contributions from the various processes to the elemental abundances are not usually in the MW proportions. We find that the contributions from massive stars to the primary $\\alpha$ elements and iron group elements increase monotonously with increasing [Fe/H]. This means that the effect of the galactic wind is not strong enough to halt star formation and the contributions from massive stars to $\\alpha$ e...

  2. Two new pulsating low-mass pre-white dwarfs or SX Phenix stars?*

    CERN Document Server

    Corti, M A; Córsico, A H; Kepler, S O; Althaus, L G; Koester, D; Arias, J P Sánchez

    2016-01-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity for probing their interiors and to determine their evolution, by employing the tools of asteroseismology. Aims. We aim to analyze high-speed photometry of SDSSJ145847.02$+$070754.46 and SDSSJ173001.94$+$070600.25 and discover brightness variabilities. In order to locate these stars in the $T_{\\rm eff} - \\log g$ diagram we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods. To carry out this study, we used the photometric data obtained by us for these stars with the 2.15m telescope at CASLEO, Argentina. We analyzed their light curves and we apply the Discrete Fourier Transform to determine the pulsation frequencies. Finally, we compare both stars in the $T_{\\rm eff} - \\log g$ diagram, with known two pre-white dwarfs, seven pulsating pre-ELM white dwarf stars, $\\delta$ Scuti and SX Phe stars. Results. We report the discovery of pulsations in SDSSJ145847.02$+$070754.46 and SDSSJ173001.9...

  3. Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample

    CERN Document Server

    Borgniet, Simon; Meunier, Nadège; Galland, Franck

    2016-01-01

    Massive, Main-Sequence AF-type stars have so far remained unexplored in past radial velocity surveys, due to their small number of spectral lines and their high rotational velocities that prevent the classic RV computation method. Our aim was to search for giant planets around AF MS stars, to get first statistical information on their occurrence rate and to compare the results with evolved stars and lower-mass MS stars. We used the HARPS spectrograph located on the 3.6m telescope at ESO La Silla Observatory to observe 108 AF MS stars with B-V in the -0.04 to 0.58 range and masses in the range 1.1-3.6 Msun. We used our SAFIR software specifically developed to compute the radial velocities of these early-type stars. We report the new detection of a mpsini = 4.51 Mjup companion with a ~826-day period to the F6V dwarf HD111998. We present new data on the 2-planet system around the F6IV-V dwarf HD60532. We also report the detection of 14 binaries with long-term RV trends. 70% of our targets show detection limits b...

  4. Lattice Structure in Astrophysics: A reconsideration of White Dwarfs, Variables, and Wolf-Rayet Stars

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2016-03-01

    Stars of the main sequence display a mass-luminosity relation which indicates that they share a common building block (hydrogen) and lattice structure (hexagonal planar) with the solar photosphere. White dwarfs however display very low luminosity in spite of their elevated color temperature. Rather than postulate that these stars represent degenerate matter, as Eddington and Chandrasekhar were forced to assume given their gaseous models, within the context of a Liquid Metallic Hydrogen Solar Model white dwarfs might simply be thought as possessing a different lattice structure (e.g. body centered cubic) and hence a lowered emissivity. They do not need to possess exceeding densities, reduced radii, and degeneracy in order to account for their lowered emissivity. Similarly, variable stars might well be oscillating between lattices types wherein the energy differences involved in the transformations are small. Other stars, such as Wolf-Rayet stars, which lack photospheric emission, might be too hot to enable a discrete lattice to form. Though condensed, the photosphere in that case would have a lattice which is so poorly organized that its emissivity is trivial. Nonetheless, the broad emission lines of Wolf-Rayet stars indicates that these objects are not breaking apart but rather, are important sites of condensation.

  5. Metallicity calibrations for dwarf stars and giants in the Geneva photometric system

    Science.gov (United States)

    Netopil, Martin

    2017-08-01

    We use the most homogeneous Geneva seven-colour photometric system to derive new metallicity calibrations for early A- to K-type stars that cover both, dwarf stars and giants. The calibrations are based on several spectroscopic data sets that were merged to a common scale, and we applied them to open cluster data to obtain an additional proof of the metallicity scale and accuracy. In total, metallicities of 54 open clusters are presented. The accuracy of the calibrations for single stars is in general below 0.1 dex, but for the open cluster sample with mean values based on several stars we find a much better precision, a scatter as low as about 0.03 dex. Furthermore, we combine the new results with another comprehensive photometric data set to present a catalogue of mean metallicities for more than 3000 F- and G-type dwarf stars with σ ˜ 0.06 dex. The list was extended by more than 1200 hotter stars up to about 8500 K (or spectral type A3) by taking advantage of their almost reddening free characteristic in the new Geneva metallicity calibrations. These two large samples are well suited as primary or secondary calibrators of other data, and we already identified about 20 spectroscopic data sets that show offsets up to about 0.4 dex.

  6. Scl-1013644: a CEMP-s star in the Sculptor Dwarf Spheroidal Galaxy

    CERN Document Server

    Salgado, C; Yong, D; Norris, J E

    2016-01-01

    Recent studies of the Milky Way and its satellites have paid special attention to the importance of carbon-enhanced metal-poor (CEMP) stars due to their involvement in Galactic formation history and their possible connection with the chemical elements originating in the first stellar generation. In an ongoing study of red giants in the Sculptor dwarf galaxy we have discovered a star with extremely strong CN and CH molecular bands. This star, Scl-1013644, has previously been identified by Geisler et al. (2005) as a star with an enrichment in the heavy elements. Spectrum synthesis has been used to derive the carbon, nitrogen and barium abundances for Scl-1013644. Our findings are [C/Fe] = +0.8, [N/Fe] = -0.3 and [Ba/Fe] = +2.1 with the latter result consistent with the value found by Geisler et al. (2005). These results reveal Scl-1013644 as a CEMP-s star, the third such star discovered in this dwarf galaxy.

  7. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  8. Improved synthetic spectra of helium-core white dwarf stars

    CERN Document Server

    Rohrmann, R D; Althaus, L G; Benvenuto, O G

    2002-01-01

    We examine the emergent fluxes from helium-core white dwarfs following their evolution from the end of pre-white dwarf stages down to advanced cooling stages. For this purpose, we include a detailed treatment of the physics of the atmosphere, particularly an improved representation of the state of the gas by taking into account non-ideal effects according to the so-called occupation probability formalism. The present calculations also incorporate hydrogen line opacity from Lyman, Balmer and Paschen series, pseudo-continuum absorptions and new updated induced-dipole absorption from H$_2$-H$_2$, H$_2$-He and H-He pairs. We find that the non-ideal effects and line absorption alter the appearance of the stellar spectrum and have a significant influence upon the photometric colours in the UBVRI-JHKL system. This occurs specially for hot models $T_{\\rm eff}\\ga 8000$ due to line and pseudo-continuum opacities, and for cool models $T_{\\rm eff}\\la 4000$ where the perturbation of atoms and molecules by neighbour partic...

  9. Elucidating the True Binary Fraction of VLM Stars and Brown Dwarfs with Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Gelino, Christopher R.; SAHLMANN, JOHANNES; Schmidt, Sarah J.; Gagne, Jonathan; Skrzypek, Nathalie

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs are found in abundance in nearly all Galactic environments, yet their formation mechanism(s) remain an open question. One means of testing current formation theories is to use multiplicity statistics. The majority of VLM binaries have been discovered through direct imaging, and current angular resolution limits (0.05”-0.1") are coincident with the 1-4 AU peak in the projected separation distribution of known systems, suggesting an observational bias. I have developed a separation-independent method to detect T dwarf companions to late-M/early-L dwarfs by identifying methane absorption in their unresolved, low-resolution, near-infrared spectra using spectral indices and template fitting. Over 60 spectral binary candidates have been identified with this and comparable methods. I discuss follow-up observations, including laser-guide star adaptive optics imaging with Keck/NIRC2, which have confirmed 9 systems; and radial velocity and astrometric monitoring observations that have confirmed 7 others. The direct imaging results indicate a resolved binary fraction of 18%, coincident with current estimates of the VLM binary fraction; however, our sample contained 5 previously confirmed binaries, raising its true binary fraction to 47%. To more accurately measure the true VLM binary fraction, I describe the construction of an unbiased, volume-limited, near-infrared spectral sample of M7-L5 dwarfs within 25 pc, of which 4 (1%) are found to be spectral binary candidates. I model the complex selection biases of this method through a population simulation, set constraints on the true binary fraction as traced by these systems, and compare to the predictions of current formation theories. I also describe how this method may be applied to conduct a separation-unbiased search for giant exoplanets orbiting young VLM stars and brown dwarfs.

  10. Star formation history and evolution of gas-rich dwarf galaxies in the Centaurus A group

    CERN Document Server

    Grossi, M; Pritzl, B J; Knezek, P M; Gallagher, J S; Minchin, R F; Freeman, K C

    2006-01-01

    We analyse the properties of three unusual dwarf galaxies in the Centaurus A group discovered with the HIPASS survey. From their optical morphology they appear to be low surface brightness dwarf spheroidals, yet they are gas-rich (M_{HI}/L_{B} > 1) with gas-mass-to-stellar light ratios larger than typical dwarf irregular galaxies. Therefore these systems appear different from any dwarfs of the Local Group. They should be favoured hosts for starburst, whereas we find a faint star formation region in only one object. We have obtained 21-cm data and Hubble Space Telescope photometry in V and I bands, and have constructed Colour Magnitude Diagrams (CMDs) to investigate their stellar populations and to set a constraint on their age. From the comparison of the observed and model CMDs we infer that all three galaxies are at least older than 2 Gyr (possibly even as old as 10 Gyr) and remain gas-rich because their star formation rates (SFRs) have been very low (< 10^{-3} M_{sun}/yr) throughout. In such systems, sta...

  11. Dark influences II: gas and star formation in minor mergers of dwarf galaxies with dark satellites

    CERN Document Server

    Starkenburg, Tjitske K; Sales, Laura V

    2015-01-01

    Mergers have been proposed to induce starbursts and to lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model. Notably, because of their low mass, most of their interactions will be with dark satellites. In this paper we follow the evolution of gas-rich disky dwarf galaxies as they experience a minor merger with a dark satellite. We aim to characterize the effects of such an interaction on the dwarf's star formation, morphology and kinematical properties. We perform a suite of carefully set-up hydrodynamical simulations of dwarf galaxies that include dark matter, gas, and stars, merging with a satellite consisting solely of dark matter. For the host system we vary the gas fraction, disk size and thickness, halo mass and concentration, while for the satellite we explore different masses, concentrations and orbits. We find that the inter...

  12. Ancient planetary systems are orbiting a large fraction of white dwarf stars

    CERN Document Server

    Zuckerman, B; Klein, B; Koester, D; Jura, M

    2010-01-01

    Infrared studies have revealed debris likely related to planet formation in orbit around ~30% of youthful, intermediate mass, main sequence stars. We present evidence, based on atmospheric pollution by various elements heavier than helium, that a comparable fraction of the white dwarf descendants of such main sequence stars are orbited by planetary systems. These systems have survived, at least in part, through all stages of stellar evolution that precede the white dwarf. During the time interval (~200 million years) that a typical polluted white dwarf in our sample has been cooling it has accreted from its planetary system the mass of one of the largest asteroids in our solar system (e.g., Vesta or Ceres). Usually, this accreted mass will be only a fraction of the total mass of rocky material that orbits these white dwarfs; for plausible planetary system configurations we estimate that this total mass is likely to be at least equal to that of the Sun's asteroid belt, and perhaps much larger. We report abunda...

  13. The ages and colours of cool helium-core white dwarf stars

    CERN Document Server

    Serenelli, A M; Rohrmann, R D; Benvenuto, O G

    2001-01-01

    The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-gray model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 solar masses and follow their evolution from the end of mass loss episodes during their pre-white dwarf evolution down to very low surface luminosities. We find that when the effective temperature decreases below 4000K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour-colour and colour-magnitude diagrams and we find that helium-core white dwarfs with masses ranging from approx. 0.18 to 0.3 solar masses can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M_V approx. 16.5. In view of these results,...

  14. The Near-Ultraviolet Luminosity Function of Young, Early M-Type Dwarf Stars

    CERN Document Server

    Ansdell, Megan; Mann, Andrew W; Lepine, Sebastien; James, David; Buccino, Andrea; Baranec, Christoph; Law, Nicholas M; Riddle, Reed; Mauas, Pablo; Petrucci, Romina

    2014-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magneto-hydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lepine & Gaidos (2011) catalog of bright M dwarfs with the GALEX catalog of NUV (1771-2831A) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (> 2.5 sigma) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated ...

  15. Neutral interstellar medium phases and star formation tracers in dwarf galaxies

    Science.gov (United States)

    Cigan, Phillip Johnathan

    Dwarf galaxies present interesting observational challenges for the studies of various galaxy properties: despite their abundance and proximity to the Milky Way, they typically have very low surface brightnesses and small physical sizes. Until now, only the extreme variety of dwarfs --- those undergoing strong bouts of star formation --- have been observed in the FIR, due to observational difficulties. However, this population does not represent the majority of dwarfs, which have only moderate star formation rates and extremely low metallicity (the fraction of heavy elements to hydrogen). The advent of the Herschel Space Telescope, with its superior resolution and sensitivity over previous generations of telescopes, has made it possible to measure FIR spectral lines and broadband continuum in normal dwarf galaxies, expanding the scope of studies beyond the brighter, but more extreme, varieties. The general goal of my research was to study the conditions in the interstellar media (ISM) of typical dwarf galaxies. The LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, TheHI Nearby Galaxy Survey) project aims to unravel many mysteries of nearby dwarfs using a suite of multi-wavelength data, and the new additions from Herschel help provide insight into the physics of these systems. I reduced and analyzed FIR fine-structure spectral line data for the LITTLE THINGS sample to study the different phases of the ISM, as well as FIR photometry data to access the dust properties and infrared continuum emission in these systems. The FIR spectral lines are diagnostics for the conditions in the ISM of galaxies, telling us about heating efficiency, the fraction of gas that resides in photodissociation regions (PDRs), abundance of highly ionized gas from massive stars, and other physical descriptions. The photometric continuum observations enable the modeling of interstellar dust properties -- dust plays an important role in shielding and cooling molecular clouds which

  16. Weak Galactic halo--dwarf spheroidal connection from RR Lyrae stars

    CERN Document Server

    Fiorentino, Giuliana; Monelli, Matteo; Stetson, Peter B; Tolstoy, Eline; Gallart, Carme; Salaris, Maurizio; Martinez, Clara; Bernard, Edouard J

    2014-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in six dwarf spheroidals and eleven ultra faint dwarf galaxies (1,300) show a Gaussian period distribution well peaked around a mean period of =0.610+-0.001 days (sigma=0.03). The Halo RRL (15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dwarf spheroidals apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P 0.75mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered eighteen globulars covering a broad range in metallicity (-2.3< [Fe/H]< -1.1) and hosting more than 35 R...

  17. Discovery of a brown dwarf companion to the A3V star \\beta{} Circini

    CERN Document Server

    Smith, L C; Peña, C Contreras; Kurtev, R; Marocco, F; Jones, H R A; Beamin, J C; Napiwotzki, R; Borissova, J; Burningham, B; Faherty, J; Pinfield, D J; Gromadzki, M; Ivanov, V D; Minniti, D; Stimson, W; Villanueva, V

    2015-01-01

    We report the discovery of an L dwarf companion to the A3V star \\beta{} Circini. VVV J151721.49-585131.5, or \\beta{} Cir B, was identified in a proper motion and parallax catalogue of the Vista Variables in the V\\'{i}a L\\'{a}ctea survey as having near infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of \\beta{} Cir. The projected separation of $\\sim$3.6' corresponds to $6656$ au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of $370-500$ Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0$\\pm$0.5 and lacks the typical signatures of low surface gravity seen in younger brown dwarfs. This suggests that signs of low surface gravit...

  18. Metallicity Distribution Functions of Dwarf Galaxies: A Probe of Star Formation History and Baryonic Physics

    Science.gov (United States)

    Escala, Ivanna; Kirby, Evan N.; Wetzel, Andrew R.; Hopkins, Philip F.

    2016-06-01

    We examine the metallicity distribution functions (MDFs) of simulated, isolated dwarf galaxies (M_{star} = 4 × 10^{4} - 3 × 10^{8} M_{⊙}) from the Feedback in Realistic Environments (FIRE) project to quantify the impact of star formation history (SFH) and baryonic physics. These high-resolution cosmological simulations include realistic treatments of stellar evolution and complex gas dynamics and do not require the usual approximations (e.g., instantaneous recycling and instantaneous mixing) of analytic chemical evolution models. The evolution of the MDF with redshift informs which processes drive the dominant contributions to the distribution at z = 0, thus enabling a reconstruction of the SFH and gas loss/accretion history. We then compare the theoretical MDFs to the observed MDFs of Local Group dwarf galaxies to infer plausible SFHs for each matched galaxy.

  19. Models of very-low-mass stars, brown dwarfs and exoplanets.

    Science.gov (United States)

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  20. Simulating the photometric study of pulsating white dwarf stars in the physics laboratory

    CERN Document Server

    Chote, Paul

    2015-01-01

    We have designed a realistic simulation of astronomical observing using a relatively low-cost commercial CCD camera and a microcontroller-based circuit that drives LEDs inside a light-tight box with time-varying intensities. As part of a laboratory experiment, students can acquire sequences of images using the camera, and then perform data analysis using a language such as MATLAB or Python to: (a) extract the intensity of the imaged LEDs, (b) perform basic calibrations on the time-series data, and (c) convert their data into the frequency domain where they can then identify the frequency structure. The primary focus is on studying light curves produced by the pulsating white dwarf stars. The exercise provides an introduction to CCD observing, a framework for teaching concepts in numerical data analysis and Fourier techniques, and connections with the physics of white dwarf stars.

  1. How the first stars shaped the faintest gas-dominated dwarf galaxies

    Science.gov (United States)

    Verbeke, Robbert; Vandenbroucke, Bert; de Rijcke, Sven

    2016-08-01

    Cosmological simulations predict that dark matter halos with circular velocities lower than 30 km/s should have lost most of their neutral gas by heating of the ultra-violet background. This is in stark contrast with gas-rich galaxies such as e.g. Leo T, Leo P and Pisces A, which all have circular velocities of ~15 km/s (Ryan-Weber et al. 2008, Bernstein-Cooper et al. 2014, Tollerud et al. 2015). We show that when we include feedback from the first stars into our models, simulated dwarfs have very different properties at redshift 0 than when this form of feedback is not included. Including this Population-III feedback leads to galaxies that lie on the baryonic Tully-Fisher relation over the entire mass range of star forming dwarf galaxies, as well as reproducing a broad range of other observational properties.

  2. Measuring the Initial Mass Function of Low Mass Stars and Brown Dwarfs

    CERN Document Server

    Jeffries, R D

    2012-01-01

    I review efforts to determine the form and any lower limit to the initial mass function in the Galactic disk, using observations of low-mass stars and brown dwarfs in the field, young clusters and star forming regions. I focus on the methodologies that have been used and the uncertainties that exist due to observational limitations and to systematic uncertainties in calibrations and theoretical models. I conclude that whilst it is possible that the low-mass IMFs deduced from the field and most young clusters are similar, there are too many problems to be sure; there are examples of low-mass cluster IMFs that appear to be very discrepant and the IMFs for brown dwarfs in the field and young clusters have yet to be reconciled convincingly.

  3. Chromospherically Active Stars in the RAVE Survey. II. Young Dwarfs in the Solar Neighborhood

    Science.gov (United States)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Seabroke, G.; Steinmetz, M.; Wojno, J.; Bienaymé, O.; Bland-Hawthorn, J.; Conrad, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kunder, A.; Navarro, J.; Parker, Q. A.; Reid, W.; Siviero, A.; Watson, F. G.; Wyse, R. F. G.

    2017-01-01

    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age–activity relation for main-sequence dwarfs in a range from a few 10 {Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 {Gyr} and ∼2000 younger than 100 {Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J ‑ K versus {N}{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J ‑ K versus {W}1-{W}2 diagram, and very cool temperatures (J-K> 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE’s radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database.

  4. Self-consistent photometric and spectroscopic Star Formation Histories in Dwarf Galaxies

    Science.gov (United States)

    García-Benito, R.; Pérez, E.; Pérez-Montero, E.; González Delgado, R.; Vílchez, J. M.

    2016-06-01

    This project aims to unify the spectroscopic and stellar photometric views by performing a comprehensive study of a sample of the nearest Blue Compact Dwarf Galaxies (BCDs). We plan to derive Star Formation Histories (SFH) both by means of Color-Magnitude Diagrams (CMDs) from extant Hubble Space Telescope (HST) optical imaging and with spectral fitting methods techniques using MUSE, allowing us to obtain state-of-the-art 2D stellar properties and abundances of the gas in BCDs.

  5. The merging of white dwarf and neutron star systems: gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Berro, Enrique [Departament de Fisica Aplicada, Escola Politecnica Superior de Castelldefels, Universitat Politecnica de Catalunya, Avda. del Canal OlImpic s/n, 08860 Castelldefels (Spain); Pedemonte, Alba G [Departament de Fisica Aplicada, Escola Politecnica Superior de Castelldefels, Universitat Politecnica de Catalunya, Avda. del Canal OlImpic s/n, 08860 Castelldefels (Spain); GarcIa-Senz, Domingo [Departament de Fisica i Enginyeria Nuclear, Facultat de Informatica de Barcelona, Universitat Politecnica de Catalunya, c/ Jordi Girona Salgado, s/n, 08034, Barcelona (Spain); Loren-Aguilar, Pablo [Institut de Ciencies de l' Espai, CSIC, Facultat de Ciencies, Campus UAB, 08193 Bellaterra (Spain); Isern, Jordi [Institut de Ciencies de l' Espai, CSIC, Facultat de Ciencies, Campus UAB, 08193 Bellaterra (Spain); Lobo, Jose A [Institut de Ciencies de l' Espai, CSIC, Facultat de Ciencies, Campus UAB, 08193 Bellaterra (Spain)

    2007-05-15

    We have computed the gravitational wave emission arising from the coalescence of binary systems composed of a white dwarf and a neutron star. In order to do so, we have followed the evolution of such systems using a Smoothed Particle Hydrodynamics code. Here we present some of the results obtained so far, paying special attention to the detectability of the emitted gravitational waves. Within this context, we show which could be the impact of individual merging episodes for LISA.

  6. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    OpenAIRE

    Vivas, A. Katherina; Mateo, Mario

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (

  7. Continuum and line emission of flares on red dwarf stars

    CERN Document Server

    Morchenko, Egor; Livshits, Moisey

    2015-01-01

    The emission spectrum has been calculated of a homogeneous pure hydrogen layer, which parameters are typical for a flare on a red dwarf. The ionization and excitation states were determined by the solution of steady-state equations taking into account the continuum and all discrete hydrogen levels. We consider the following elementary processes: electron-impact transitions, spontaneous and induced radiative transitions, and ionization by the bremsstrahlung and recombination radiation of the layer itself. The Biberman--Holstein approximation was used to calculate the scattering of line radiation. Asymptotic formulae for the escape probability are obtained for a symmetric line profile taking into account the Stark and Doppler effects. The approximation for the core of the H$-\\alpha$ line by a gaussian curve has been substantiated. The spectral intensity of the continuous spectrum, the intensity of the lines of the Balmer series and the magnitude of the Balmer jump have been calculated. The conditions have been ...

  8. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States)

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  9. Detailed Abundances of Two Very Metal-poor Stars in Dwarf Galaxies

    Science.gov (United States)

    Kirby, Evan N.; Cohen, Judith G.

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[α/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] Lt -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] ~ -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo. Data herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. UVES abundances of stars in nearby dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Venn, K; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    2002-01-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of contr

  11. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    Science.gov (United States)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  12. Discovery of temperate Earth-sized planets transiting a nearby ultracool dwarf star

    Science.gov (United States)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; Queloz, Didier

    2016-10-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0±0.5-type dwarf star at a distance of 12.0±0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  13. A Study of the Star-forming Dwarf Galaxy NGC 855 with Spitzer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present a study of the dwarf elliptical galaxy NGC 855 using the narrow-band Ha and Spitzer data. Both the Ha and Spitzer IRAC images confirm star-forming activity in the center of NGC 855. We obtained a star formation rate (SFR) of 0.022 and 0.025 M☉yr-1, respectively, from the Spitzer IRAC 8.0 μm and MIPS 24 μm emission data. The HI observa tion suggests that the star-forming activity might be triggered by a minor merger. We also find that there is a distinct IR emission region in 5.8 and 8.0μm bands, located at about 10 "away from the nucleus of NGC 855. Given the strong 8.0μm but faint Hα emission, we expect that it is a heavily obscured star-forming region, which needs to be confirmed by further optical spectroscopic observations.

  14. Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

    CERN Document Server

    Klimentowski, J; Kazantzidis, S; Prada, F; Mayer, L; Mamon, G A; Klimentowski, Jaroslaw; Lokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.

    2006-01-01

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonst...

  15. Probability of CME Impact on Exoplanets Orbiting M Dwarfs and Solar-like Stars

    Science.gov (United States)

    Kay, C.; Opher, M.; Kornbleuth, M.

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5-5 CME impacts per day for M dwarf exoplanets, 0.05-0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  16. Searching For Infrared Excesses Around White Dwarf Stars

    Science.gov (United States)

    Deeb Wilson, Elin; Rebull, Luisa M.; Debes, John H.; Stark, Chris

    2017-01-01

    Many WDs have been found to be “polluted,” meaning they contain heavier elements in their atmospheres. Either an active process that counters gravitational settling is taking place, or an external mechanism is the cause. One proposed external mechanism for atmospheric pollution of WDs is the disintegration and accretion of rocky bodies, which would result in a circumstellar (CS) disk. As CS disks are heated, they emit excess infrared (IR) emission. WDs with IR excesses indicative of a CS disk are known as dusty WDs. Statistical studies are still needed to determine how numerous dusty, polluted WDs are, along with trends and correlations regarding rate of planetary accretion, the lifetimes of CS disks, and the structure and evolution of CS disks. These findings will allow for a better understanding of the fates of planets along with potential habitability of surviving planets.In this work, we are trying to confirm IR excesses around a sample of 69 WD stars selected as part of the WISE InfraRed Excesses around Degenerates (WIRED) Survey (Debes et al. 2011). We have archival data from WISE, Spitzer, 2MASS, DENIS, and SDSS. The targets were initially selected from the Sloan Digital Sky Survey (SDSS), and identified as containing IR excesses based on WISE data. We also have data from the Four Star Infrared Camera array, which is part of Carnegie Institution’s Magellan 6.5 meter Baade Telescope located at Las Campanas Observatory in Chile. These Four Star data are much higher spatial resolution than the WISE data that were used to determine if each WD has an IR excess. There are often not many bands delineating the IR excess portion of the SED; therefore, we are using the Four Star data to check if there is another source in the WISE beam affecting the IR excess.

  17. Accretion-disc model spectra for dwarf-nova stars

    OpenAIRE

    Idan, Irit; Lasota, Jean-Pierre; Hameury, Jean-Marie; Shaviv, Giora

    2008-01-01

    Radiation from accretion discs in cataclysmic variable stars (CVs) provides fundamental information about the properties of these close binary systems and about the physics of accretion in general. The detailed diagnostics of accretion disc structure can be achieved by including in its description all the relevant heating and cooling physical mechanism, in particular the convective energy transport that, although dominant at temperatures less than about 10 000 K, is usually not taken into acc...

  18. Inclusion of Horizontal Branch stars in the derivation of star formation histories of dwarf galaxies: the Carina dSph

    CERN Document Server

    Savino, Alessandro; Tolstoy, Eline

    2015-01-01

    We present a detailed analysis of the Horizontal Branch of the Carina Dwarf Spheroidal Galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from main sequence and red giant branch spectroscopic observations. We found that a range of integrated red giant branch mass loss values of 0.1-0.14 M, increasing with metallicity, is able to reproduce the colour extension of the old Horizontal Branch. However, leaving the mass loss as the only free parameter is not enough to match the detailed morphology of Carina Horizontal Branch. We explored the role played by the star formation history on the discrepancies between synthetic and observed Horizontal Branches. We derived a toy bursty star formation history that reproduces the horizontal branch star counts, and also matches qualitatively the red giant and the turn off regions. This star formation history is made of a subset of age and [M/H] components of the star formation ...

  19. First axion bounds from a pulsating helium-rich white dwarf star

    Science.gov (United States)

    Battich, T.; Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.

    2016-08-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain gae < 3.3 × 10-13 for the axion-electron coupling constant, or macos2β lesssim 11.5 meV for the axion mass. This constraint is relaxed to gae < 5.5 × 10-13 (macos2β lesssim 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.

  20. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    Science.gov (United States)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of i=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ∼ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  1. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.; Karachentsev, I. D.; Tully, R. B.; Rizzi, L.

    2016-10-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys revealing the old red giant branch and red clump. With the new observational data we determined the Andromeda XVIII distance to be D = 1.33_{-0.09}^{+0.06} Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2 × 106 M⊙. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star formation processes of dSphs KKR 25, KKs 03, as well as dTr KK 258. Their star formation histories were uniformly measured by us from HST/ACS observations. All the galaxies are situated well beyond the Local Group and the two dSphs KKR 25 and KKs 03 are extremely isolated. Evidently, the evolution of these objects has proceeded without influence of neighbours.

  2. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.; Karachentsev, I. D.; Tully, R. B.; Rizzi, L.

    2017-01-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) revealing the old red giant branch and red clump. With the new observational data, we determined the Andromeda XVIII distance to be D = 1.33_{-0.09}^{+0.06} Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2 × 106 M⊙. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star formation processes of dSphs KKR 25, KKs 03, as well as dTr KK 258. Their star formation histories were uniformly measured by us from HST/ACS observations. All the galaxies are situated well beyond the Local Group, and the two dSphs KKR 25 and KKs 03 are extremely isolated. Evidently, the evolution of these objects has proceeded without influence of neighbours.

  3. Insights into Pre-Enrichment of Star Clusters and Self-Enrichment of Dwarf Galaxies from their Intrinsic Metallicity Dispersions

    CERN Document Server

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity $\\bar{Z}$ and intrinsic spread in metallicity $\\sigma(Z)^{2}$. A plot of $\\sigma(Z)^{2}$ versus $\\bar{Z}$ shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model (e.g., Oey 2000), where the star cluster and dwarf galaxy behaviour in the $\\sigma(Z)^{2}-\\bar{Z}$ diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the...

  4. The NIR Ca II triplet at low metallicity : Searching for extremely low-metallicity stars in classical dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; Gonzalez Hernandez, J.I.; Irwin, M.; Helmi, A.; Battaglia, G.; Jablonka, P.; Tafelmeyer, M.; Shetrone, M.; Venn, K.; de Boer, T.

    2010-01-01

    The NIR Ca II triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain the

  5. Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view

    Science.gov (United States)

    Hu, Chia-Yu; Naab, Thorsten; Walch, Stefanie; Glover, Simon C. O.; Clark, Paul C.

    2016-06-01

    We study the connection of star formation to atomic (H I) and molecular hydrogen (H2) in isolated, low-metallicity dwarf galaxies with high-resolution (mgas = 4 M⊙, Nngb = 100) smoothed particle hydrodynamics simulations. The model includes self-gravity, non-equilibrium cooling, shielding from a uniform and constant interstellar radiation field, the chemistry of H2 formation, H2-independent star formation, supernova feedback and metal enrichment. We find that the H2 mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities n feedback at small radii and by the assumed radiation field at large radii. The decreasing cold gas fractions result in a rapid increase in depletion time (up to 100 Gyr) for total gas surface densities Σ _{H I+H_2} ≲ 10 M⊙ pc-2, in agreement with observations of dwarf galaxies in the Kennicutt-Schmidt plane.

  6. Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements

    Science.gov (United States)

    Shipman, Harry; Barnhill, Maurice; Provencal, Judi; Roby, Scott; Bues, Irmela; Cordova, France; Hammond, Gordon; Hintzen, Paul; Koester, Detlev; Liebert, James

    1995-01-01

    Observations of cool white dwarf stars with the Hubble Space Telescope (HST) has uncovered a number of spectral features from previouslly unobserved species. In this paper we present the data on four cool white dwarfs. We present identifications, equivalent width measurements, and brief summaries of the significance of our findings. The four stars observed are GD 40 (DBZ3, G 74-7 (DAZ), L 745-46A (DZ), and LDS 749B (DBA). Many additional species of heavey elements were detected in GD 40 and G 74-7. In L 745-46A, while the detections are limited to Fe 1, Fe II, and Mg II, the quality of the Mg II h and K line profiles should permit a test of the line broadening theories, which are so crucial to abundance determinations. The clear detection of Mg II h and k in LDS 749 B should, once an abundance determination is made, provide a clear test of the hypothesis that the DBA stars are the result of accretion from the interstellar medium. This star contains no other clear features other than a tantalizing hint of C II 1335 with a P Cygni profile, and some expected He 1 lines.

  7. Mode identification from combination frequency amplitudes in pulsating white dwarf stars

    Science.gov (United States)

    Yeates, Celeste Marie

    The lightcurves of variable DA and DB white dwarf stars are usually multi- periodic and non-sinusoidal, so that their Fourier transforms show peaks at eigenfrequencies of the pulsation modes and at sums and differences of these frequencies. These combination frequencies provide extra information about the pulsations, both physical and geometrical, that is lost unless they are analyzed. Several theories provide a context for this analysis by predicting combination frequency amplitudes. In these theories, the combination frequencies arise from nonlineax mixing of oscillation modes in the outer layers of the white dwarf, so their analysis cannot yield direct information on the global structure of the star as eigenmodes provide. However, their sensitivity to mode geometry does make them a useful tool for identifying the spherical degree of the modes that mix to produce them. In this dissertation, we analyze data from eight hot, low-amplitude DAV white dwarfs and measure the amplitudes of combination frequencies present. By comparing these amplitudes to the predictions of the theory of Goldreich and Wu, we have verified that the theory is crudely consistent with the measurements. We have also investigated to what extent the combination frequencies can be used to measure the spherical degree ([cursive l]) of the modes that produce them. We find that modes with [cursive l] > 2 are easily identifiable as high [cursive l] based on their combination frequencies alone. Distinguishing between [cursive l] = 1 and 2 is also possible using harmonics. These results will be useful for conducting seismological analyses of large ensembles of ZZ Ceti stars, such as those being discovered using the Sloan Digital Sky Survey. Because this method relies only on photometry at optical wavelengths, it can be applied to faint stars using 4 m class telescopes. We present new data from the 4.1 m Southern Astrophysical Research Telescope for the ZZ Ceti star L19-2. We use these data to determine

  8. VLT/FLAMES spectroscopy of Red Giant Branch stars in the Carina dwarf spheroidal galaxy

    CERN Document Server

    Lemasle, B; Tolstoy, E; Venn, K A; Shetrone, M D; Irwin, M J; de Boer, T J L; Starkenburg, E; Salvadori, S

    2011-01-01

    The ages of individual Red Giant Branch stars (RGB) can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the 1st dredge-up). This means that they trace the ISM in the galaxy at the time the star formed, and hence the chemical enrichment history of the galaxy. CMD analysis has shown the Carina dwarf spheroidal (dSph) to have had an unusually episodic star formation history (SFH) which is expected to be reflected in the abundances of different chemical elements. We use the VLT-FLAMES spectrograph in HR mode (R~20000) to measure the abundances of several chemical elements in a sample of 35 RGB stars in Carina. We also combine these abundances with photometry to derive age estimates for these stars. This allows us to determine which of two distinct star formation (SF) episodes the stars in our sample belong to, and thus to define the relationship between SF and chemical...

  9. Subaru/HDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy

    CERN Document Server

    Sadakane, K; Ikuta, C; Aoki, W; Jablonka, P; Tajitsu, A

    2004-01-01

    With the HDS (High Dispersion Spectrograph) on the Subaru telescope, we obtained high resolution optical region spectra of three red giant stars (cos 4, cos 82, and cos 347) in the Ursa Minor dwarf spheriodal galaxy. Chemical abundances in these stars have been analysed for 26 elements including alpha-, iron-peak, and neutron capture elements. All three stars show low abundances of alpha-elements (Mg, Si, and Ca) and two stars (cos 82 and cos 347) show high abundance of Mn compared to Galactic halo stars of similar metallicity. One star (cos 4) has been confirmed to be very metal deficient ([Fe/H]=-2.7) and found to show anomalously low abundances of Mn, Cu, and Ba. In another star cos 82 ([Fe/H]=-1.5), we have found large excess of heavy neutron-capture elements with the general abundance pattern similar to the scaled solar system r-process abundance curve. These observational results are rather puzzling: low abundances of alpha-elements and high abundance of Mn seem to sugggest a significant contribution of...

  10. The chemical compositions of two nitrogen-rich, metal-poor, halo dwarf stars

    Science.gov (United States)

    Beveridge, Renee C.; Sneden, Cristopher

    1994-07-01

    New high resolution, high signal-to-noise spectra have been obtained for HD 25329 and HD 74000, dwarf stars that are metal-poor but nitrogen-rich members of the galactic halo. An atmosphere parameter and chemical composition analysis confirms earlier assertions of both their metal poverty, (Fe/H) approximately equals -2, and their high gravity, log g greater than 4. The relative abundances of the alpha-capture and iron-peak elements are normal for metal-poor stars. Overabundances of sodium, and possibly aluminum as well, are derived, but there are no pronounced depletions of oxygen; thus these stars do not show the sodium/oxygen or nitrogen/oxygen anticorrelations seen in globular cluster giants. All very heavy elements synthesized through s-process neutron-capture nucleosynthesis are enhanced in these stars. It is likely that the enrichments of nitrogen, sodium, aluminum, and the very heavy elements in these stars originated in material dredged up from the helium-burning shells of former AGB stars, but there is no direct evidence for binary companions for these stars.

  11. Metal-rich carbon stars in the Sagittarius Dwarf Spheroidal galaxy

    CERN Document Server

    Lagadec, Eric; Sloan, G C; Wood, Peter R; Matsuura, Mikako; Bernard-Salas, Jeronimo; Blommaert, J A D L; Cioni, M -R L; Feast, M W; Groenewegen, M A T; Hony, Sacha; Menzies, J W; van Loon, J Th; Whitelock, P A

    2009-01-01

    We present spectroscopic observations from the {\\it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$\\times 10^{-8} $M$_{\\odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars ...

  12. First axion bounds from a pulsating helium-rich white dwarf star

    CERN Document Server

    Battich, Tiara; Althaus, Leandro Gabriel; Bertolami, Marcelo Miguel Miller

    2016-01-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and asses the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsa...

  13. Shock formation around planets orbiting M-dwarf stars

    CERN Document Server

    Vidotto, A A; Jardine, M; Helling, Ch; Wood, K

    2011-01-01

    Bow shocks can be formed around planets due to their interaction with the coronal medium of the host stars. The net velocity of the particles impacting on the planet determines the orientation of the shock. At the Earth's orbit, the (mainly radial) solar wind is primarily responsible for the formation of a shock facing towards the Sun. However, for close-in planets that possess high Keplerian velocities and are frequently located at regions where the host star's wind is still accelerating, a shock may develop ahead of the planet. If the compressed material is able to absorb stellar radiation, then the signature of bow shocks may be observed during transits. Bow-shock models have been investigated in a series of papers (Vidotto et al. 2010, 2011,a,b; Llama et al. 2011) for known transiting systems. Once the signature of a bow-shock is observed, one can infer the magnetic field intensity of the transiting planet. Here, we investigate the potential to use this model to detect magnetic fields of (hypothetical) pl...

  14. The Herschel Virgo Cluster Survey. XVIII. Star-forming dwarfs in a cluster environment

    CERN Document Server

    Grossi, M; Madden, S C; Hughes, T M; Auld, R; Baes, M; Bendo, G J; Bianchi, S; Bizzocchi, L; Boquien, M; Boselli, A; Clemens, M; Corbelli, E; Cortese, L; Davies, J; De Looze, I; Alighieri, S di Serego; Fritz, J; Pappalardo, C; Pierini, D; Rémy-Ruyer, A; Smith, M W L; Verstappen, J; Viaene, S; Vlahakis, C

    2014-01-01

    To assess the effects of the cluster environment on the different components of the interstellar medium, we analyse the FIR-submm properties of a sample of star-forming dwarf (SFD) galaxies detected by the Herschel Virgo Cluster Survey (HeViCS). We determine dust masses and dust temperatures by fitting a modified black body (MBB) function to the spectral energy distributions (SEDs). Stellar and gas masses, star formation rates (SFRs), and metallicities are obtained from the analysis of a set of ancillary data. Dust is detected in 49 out of 140 optically identified dwarfs covered by the HeViCS field; considering only dwarfs brighter than $m_B$ = 18 mag, this gives a detection rate of 43%. After evaluating different emissivity indices, we find that the FIR-submm SEDs are best-fit by $\\beta$=1.5, with a median dust temperature $T_d$ = 22.4 K. Assuming $\\beta$=1.5, 67% of the 23 galaxies detected in all five Herschel bands show emission at 500 $\\mu$m in excess of the MBB model. The excess is inversely correlated ...

  15. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    CERN Document Server

    Vivas, A Katherina

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxy's tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a dist...

  16. The effect of feedback and reionization on star formation in low-mass dwarf galaxy haloes

    CERN Document Server

    Simpson, Christine M; Johnston, Kathryn V; Smith, Britton D; Mac Low, Mordecai-Mark; Sharma, Sanjib; Tumlinson, Jason

    2012-01-01

    We simulate the evolution of a 10^9 Msun dark matter halo in a cosmological setting with an adaptive-mesh refinement code as an analogue to local low luminosity dwarf irregular and dwarf spheroidal galaxies. The primary goal of our study is to investigate the roles of reionization and supernova feedback in determining the star formation histories of low mass dwarf galaxies. We include a wide range of physical effects, including metal cooling, molecular hydrogen formation and cooling, photoionization and photodissociation from a metagalactic background, a simple prescription for self-shielding, star formation, and a simple model for supernova driven energetic feedback. We carry out simulations excluding each major effect in turn. We find that reionization is primarily responsible for expelling most of the gas in our simulations, but that supernova feedback is required to disperse the dense, cold gas in the core of the halo. Moreover, we show that the timing of reionization can produce an order of magnitude dif...

  17. A Survey of Local Group Galaxies Currently Forming Stars: \\\\II. UBVRI Photometry of Stars in Seven Dwarfs

    CERN Document Server

    Massey, P; Hodge, P W; Jacoby, G H; McNeill, R T; Smith, R C; Strong, S B; Massey, Philip; Hodge, Paul W.; Jacoby, George H.; Neill, Reagin T. Mc; Strong, Shay B.

    2007-01-01

    We have obtained UBVRI images with the Kitt Peak and Cerro Tololo 4-m telescopes and Mosaic cameras of seven dwarfs in (or near) the Local Group, all of which have known evidence of recent star formation: IC10, NGC 6822, WLM, Sextans B, Sextans A, Pegasus,and Phoenix. We construct color-magnitude diagrams (CMDs) of these systems, as well as neighboring regions that can be used to evaluate the degree of foreground contamination by stars in the Milky Way. Inter-comparison of these CMDs with those of M31, M33, the LMC, and the SMC permits us to determine improved reddening values for a typical OB star found within these galaxies. All of the CMDs reveal a strong or modest number of blue supergiants. All but Pegasus and Phoenix also show the clear presence of red supergiants in the CMD, although IC10 appears to be deficient in these objects given its large WR population. The bright stars of intermediate color in the CMD are badly contaminated by foreground stars (30-100%), and considerable spectroscopy is needed b...

  18. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    Science.gov (United States)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  19. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  20. Twins: The Two Shortest Period Non-Interacting Double Degenerate White Dwarf Stars

    CERN Document Server

    Mullally, F; Thompson, Susan E; Lupton, Robert

    2009-01-01

    We report on the detection of the two shortest period non-interacting white dwarf binary systems. These systems, SDSS J143633.29+501026.8 and SDSS J105353.89+520031.0, were identified by searching for radial velocity variations in the individual exposures that make up the published spectra from the Sloan Digital Sky Survey. We followed up these systems with time series spectroscopy to measure the period and mass ratios of these systems. Although we only place a lower bound on the companion masses, we argue that they must also be white dwarf stars. With periods of approximately 1 hour, we estimate that the systems will merge in less than 100 Myr, but the merger product will likely not be massive enough to result in a Type 1a supernova.

  1. Stellar populations and Star Formation History of the Metal-Poor Dwarf Galaxy DDO 68

    CERN Document Server

    Sacchi, E; Cignoni, M; Aloisi, A; Sohn, T; Tosi, M; van der Marel, R P; Grocholski, A J; James, B

    2016-01-01

    We present the star formation history of the extremely metal-poor dwarf galaxy DDO~68, based on our $V-$ and $I-$ band photometry with the Advanced Camera for Surveys on board of the Hubble Space Telescope. With a metallicity of only $12+\\log(O/H)=7.15$ and an isolated location in the periphery of the nearby Lynx-Cancer void, DDO~68 is one of the most metal poor galaxies known. It has been argued in the past that DDO~68 is a young system that started forming stars only $\\sim 0.15$~Gyr ago. Our data provide a deep and uncontaminated optical color-magnitude diagram that now allows us to disprove this hypothesis, since we find a population of at least $\\sim 1$~Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is \\mbox{$\\simeq 0.01$ M$_{\\odot}$ yr$^{-1}$}, providing a total mass of formed stars of \\mbox{$\\simeq 1.3 ...

  2. Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor and Sextans

    CERN Document Server

    Tafelmeyer, M; Hill, V; Shetrone, M; Tolstoy, E; Irwin, M J; Battaglia, G; Helmi, A; Starkenburg, E; Venn, K A; Abel, T; Francois, P; Kaufer, A; North, P; Primas, F; Szeifert, T

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to have [Fe/H] <= -3 and three stars are below [Fe/H]~-3.5. This constitutes the first evidence that the classical dSphs Fornax and Sextans join Sculptor in containing extremely metal-poor stars and suggests that all of the classical dSphs contain extremely metal-poor stars. One giant in Sculptor at [Fe/H]=-3.96 +- 0.10 is the most metal-poor star ever observed in an external galaxy. We carried out a detailed analysis of the chemical abundances of the alpha, iron peak, and the heavy elements, and we performed a comparison with the Milky Way halo and the ultra faint dwarf stellar populations. Carbon, barium and strontium show distinct features characterized by the early stages of galaxy formation and can constrain the o...

  3. Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view

    CERN Document Server

    Hu, Chia-Yu; Walch, Stefanie; Glover, Simon C O; Clark, Paul C

    2015-01-01

    We study the connection of star formation to atomic (HI) and molecular hydrogen (H$_2$) in isolated, low metallicity dwarf galaxies with high-resolution ($m_{\\rm gas}$ = 4 M$_\\odot$, $N_{\\rm ngb}$ = 100) SPH simulations. The model includes self-gravity, non-equilibrium cooling, shielding from an interstellar radiation field, the chemistry of H$_2$ formation, H$_2$-independent star formation, supernova feedback and metal enrichment. We find that the H$_2$ mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities $n <$ 1 cm$^{-3}$. Because of the long chemical timescales, the H$_2$ mass remains out of chemical equilibrium throughout the simulation. Star formation is well-correlated with cold ( T $\\leqslant$ 100 K ) gas, but this dense and cold gas - the reservoir for star formation - is dominated by HI, not H$_2...

  4. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuliana [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bono, Giuseppe [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Stetson, Peter B. [National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Tolstoy, Eline [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Salaris, Maurizio [Astrophysics Research Institute, Liverpool John Moores University IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L35RF (United Kingdom); Bernard, Edouard J., E-mail: giuliana.fiorentino@oabo.inaf.it [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  5. New Paradigm in Dwarf Galaxy Bursting Star Formation?

    Science.gov (United States)

    Pustilnik, S. A.; Kniazev, A. Yu.; Ugryumov, A. V.

    The last decade statistical studies of DG samples with strong SF clearly indicate that most of late-type DGs are not companions of massive galaxies, and moreover, tend to be well isolated from them (e.g. Salzer 1989, Pustilnik et al. 1995). This caused the revival of the idea of Spontaneous Self-Regulating Star Formation as the main SF mechanism in DGs. We summarize recent evidences from HI VLA observations of low-mass companions of HII galaxies (Taylor et al 1995), and new unpublished data on faint blue companions of BCGs (Lipovetsky et al. 1997) which highly prefer the hypothesis that in the most of HII galaxies SF bursts are triggered by tidals from low-mass partners. The important question on back (reverse) effect of the disturbed HII-galaxy to the low-mass companion is discussed in the light of available data on companions' properties. The observed frequency of synchronous SF bursts in low-mass galaxy pairs is confronted with current knowledge on DG type distribution.

  6. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries

    CERN Document Server

    Jiang, Long; Dey, Jishnu; Dey, Mira

    2015-01-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during the binary evolution, as observed in most of the binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are PSRs J2234$+$06, J1946$+$3417 and J1950$+$2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive white dwarfs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from neutron stars to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitati...

  7. Constraints on MACHO Dark Matter from the Star Cluster in the Dwarf Galaxy Eridanus II

    CERN Document Server

    Brandt, Timothy D

    2016-01-01

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The star cluster has a luminosity of just ~2000 L_sun and is relatively puffy, with a half-light radius of 13 pc, making it much more fragile than other known clusters in dwarf galaxies. For a wide range of plausible dark matter halo properties, Eri II's star cluster combines with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ~10$^{-7}$ M_sun up to arbitrarily high masses. The cluster in Eri II closes the ~20--100 M_sun window of allowed MACHO dark matter and provides much stronger constraints than wide Galactic binaries for MACHOs of up to thousands o...

  8. Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Lardo, C; Pancino, E; Romano, D; de Boer, T J L; Starkenburg, E; Tolstoy, E; Irwin, M J; Jablonka, P; Tosi, M

    2015-01-01

    We present [C/Fe] and [N/Fe] abundance ratios and CH({\\lambda}4300) and S({\\lambda}3883) index measurements for 94 red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy from VLT/VIMOS MOS observations at a resolving power R= 1150 at 4020 {\\AA}. This is the first time that [N/Fe] abundances are derived for a large number of stars in a dwarf spheroidal. We found a trend for the [C/Fe] abundance to decrease with increasing luminosity on the RGB across the whole metallicity range, a phenomenon observed in both field and globular cluster giants, which can be interpreted in the framework of evolutionary mixing of partially processed CNO material. Both our measurements of [C/Fe] and [N/Fe] are in good agreement with the theoretical predictions for stars at similar luminosity and metallicity. We detected a dispersion in the carbon abundance at a given [Fe/H], which cannot be ascribed to measurement uncertainties alone. We interpret this observational evidence as the result of the contribution of differ...

  9. An extended star formation history in an ultra-compact dwarf

    Science.gov (United States)

    Norris, Mark A.; Escudero, Carlos G.; Faifer, Favio R.; Kannappan, Sheila J.; Forte, Juan Carlos; van den Bosch, Remco C. E.

    2015-08-01

    There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra-compact dwarfs (UCDs), with suggestions that UCDs are simply the high-mass extension of the globular cluster population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of stripped-nucleus-type UCDs being known. In this paper, we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped-nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (<0.7 arcsec). With these data we examine the spatially resolved kinematics and star formation history of this unusual object. We find no evidence of a rise in the central velocity dispersion of the UCD, suggesting that this UCD lacks a massive central black hole like those found in some other compact stellar systems, a conclusion confirmed by detailed dynamical modelling. Finally, we are able to use our extremely high signal-to-noise spectrum to detect a temporally extended star formation history for this UCD. We find that the UCD was forming stars since the earliest epochs until at least 1-2 Gyr ago. Taken together these observations confirm that NGC 4546-UCD1 is the remnant nucleus of a nucleated dwarf galaxy that was tidally destroyed by NGC 4546 within the last 1-2 Gyr.

  10. Dwarf galaxies in voids: Suppressing star formation with photo-heating

    CERN Document Server

    Hoeft, M; Gottlöber, S; Springel, V; Hoeft, Matthias; Yepes, Gustavo; Gottloeber, Stefan; Springel, Volker

    2005-01-01

    We study structure formation in cosmological void regions using high-resolution hydrodynamical simulations. Despite being significantly underdense, voids are populated abundantly with small dark matter halos which should appear as dwarf galaxies if their star formation is not suppressed significantly. We here investigate to which extent the cosmological UV-background photo-evaporates baryons out of halos of dwarf galaxies, and thereby limits their cooling and star formation rates. Assuming a Haardt & Madau UV-background with reionisation at redshift z=6, our samples of simulated galaxies show that halos with masses below a characteristic mass of M_c(z=0) = 6.5 x 10^9 h^{-1} M_sun are baryon-poor, but in general not completely empty, because baryons that are in the condensed cold phase or are already locked up in stars resist evaporation. In halos with mass M < M_c, we find that photo-heating suppresses further cooling of gas. The redshift and UV-background dependent characteristic mass M_c(z) can be un...

  11. Two candidate brown dwarf companions around core helium-burning stars

    CERN Document Server

    Schaffenroth, V; Nagel, K; Geier, S; Koen, C; Heber, U; Edelmann, H

    2014-01-01

    Hot subdwarf stars of spectral type B (sdBs) are evolved, core helium-burning objects. The formation of those objects is puzzling, because the progenitor star has to lose almost its entire hydrogen envelope in the red-giant phase. Binary interactions have been invoked, but single sdBs exist as well. We report the discovery of two close hot subdwarf binaries with small radial velocity amplitudes. Follow-up photometry revealed reflection effects originating from cool irradiated companions, but no eclipses. The lower mass limits for the companions of CPD-64$^{\\circ}$481 ($0.048\\,M_{\\rm \\odot}$) and PHL\\,457 ($0.027\\,M_{\\rm \\odot}$) are significantly below the stellar mass limit. Hence they could be brown dwarfs unless the inclination is unfavourable. Two very similar systems have already been reported. The probability that none of them is a brown dwarf is very small, 0.02%. Hence we provide further evidence that substellar companions with masses that low are able to eject a common envelope and form an sdB star. ...

  12. Multi-fibre optical spectroscopy of low-mass stars and brown dwarfs in Upper Sco

    CERN Document Server

    Lodieu, N; Hambly, N C

    2011-01-01

    We have obtained multi-fibre intermediate-resolution optical spectroscopy of 94 photometric and proper motion selected low-mass star and brown dwarf candidates in Upper Sco with AAT/AAOmega. We have estimated the spectral types and measured the equivalent widths of youth and gravity diagnostic features to confirm the spectroscopic membership of about 95% of the candidates extracted from 6.5 square degrees in Upper Sco. We also detect lithium in the spectra with the highest signal-to-noise, consolidating our conclusions about their youth. Furthermore, we derive an estimate of our selections using spectroscopic data obtained for a large number of stars falling into the instrument's field-of-view. We have estimated the effective temperatures and masses for each new spectroscopic member using the latest evolutionary models available for low-mass stars and brown dwarfs. Combining the current optical spectroscopy presented here with near-infrared spectroscopy obtained for the faintest photometric candidates, we con...

  13. An independent limit on the axion mass from the variable white dwarf star R548

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A.H.; Althaus, L.G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Romero, A.D.; Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); Mukadam, A.S. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); García-Berro, E. [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860 Castelldefels (Spain); Isern, J. [Institut de Ciències de l' Espai (CSIC), Campus UAB, 08193 Bellaterra (Spain); Corti, M.A., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: aromero@fcaglp.unlp.edu.ar, E-mail: anjum@astro.washington.edu, E-mail: enrique.garcia-berro@upc.edu, E-mail: isern@ice.cat, E-mail: kepler@if.ufrgs.br, E-mail: mariela@fcaglp.fcaglp.unlp.edu.ar [Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET), C.C. No. 5, 1894 Villa Elisa (Argentina)

    2012-12-01

    Pulsating white dwarfs with hydrogen-rich atmospheres, also known as DAV stars, can be used as astrophysical laboratories to constrain the properties of fundamental particles like axions. Comparing the measured cooling rates of these stars with the expected values from theoretical models allows us to search for sources of additional cooling due to the emission of weakly interacting particles. In this paper, we present an independent inference of the mass of the axion using the recent determination of the evolutionary cooling rate of R548, the DAV class prototype. We employ a state-of-the-art code which allows us to perform a detailed asteroseismological fit based on fully evolutionary sequences. Stellar cooling is the solely responsible of the rates of change of period with time (.Π)) for the DAV class. Thus, the inclusion of axion emission in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DAV stars. This allows us to compare the theoretical .Π) values to the corresponding empirical rate of change of period with time of R548 to discern the presence of axion cooling. We found that if the dominant period at 213.13 s in R548 is associated with a pulsation mode trapped in the hydrogen envelope, our models indicate the existence of additional cooling in this pulsating white dwarf, consistent with axions of mass m{sub a}cos {sup 2}β ∼ 17.1 meV at a 2σ confidence level. This determination is in agreement with the value inferred from another well-studied DAV, G117-B15A. We now have two independent and consistent estimates of the mass of the axion obtained from DAVs, although additional studies of other pulsating white dwarfs are needed to confirm this value of the axion mass.

  14. GIANO Y-band spectroscopy of dwarf stars: Phosphorus, sulphur, and strontium abundances

    Science.gov (United States)

    Caffau, E.; Andrievsky, S.; Korotin, S.; Origlia, L.; Oliva, E.; Sanna, N.; Ludwig, H.-G.; Bonifacio, P.

    2016-01-01

    Context. In recent years a number of poorly studied chemical elements, such as phosphorus, sulphur, and strontium, have received special attention as important tracers of the Galactic chemical evolution. Aims: By exploiting the capabilities of the infrared echelle spectrograph GIANO mounted at the Telescopio Nazionale Galileo, we acquired high resolution spectra of four Galactic dwarf stars spanning the metallicity range between about one-third and twice the solar value. We performed a detailed feasibility study about the effectiveness of the P, S, and Sr line diagnostics in the Y band between 1.03 and 1.10 μm. Methods: Accurate chemical abundances have been derived using one-dimensional model atmospheres computed in local thermodynamic equilibrium (LTE). We computed the line formation assuming LTE for P, while we performed non-LTE analysis to derive S and Sr abundances. Results: We were able to derive phosphorus abundance for three stars and an upper limit for one star, while we obtained the abundance of sulphur and strontium for all of the stars. We find [P/Fe] and [S/Fe] abundance ratios consistent with solar-scaled or slightly depleted values, while the [Sr/Fe] abundance ratios are more scattered (by ±0.2 dex) around the solar-scaled value. This is fully consistent with previous studies using both optical and infrared spectroscopy. Conclusions: We verified that high-resolution, Y-band spectroscopy as provided by GIANO is a powerful tool to study the chemical evolution of P, S, and Sr in dwarf stars. Based on observations obtained with GIANO.

  15. Color, Structure, and Star Formation History of Dwarf Galaxies over the last ~3 Gyr with GEMS and SDSS

    CERN Document Server

    Barazza, F D; Bell, E F; Caldwell, J A R; Jogee, S; McIntosh, D H; Meisenheimer, K; Peng, C Y; Rix, H W; Wolf, C; Barazza, Fabio D.; Barden, Marco; Bell, Eric F.; Caldwell, John A. R.; Intosh, Daniel H. Mc; Jogee, Shardha; Meisenheimer, Klaus; Peng, Chien Y.; Rix, Hans-Walter; Wolf, Christian

    2006-01-01

    We present a study of the colors, structural properties, and star formation histories for a sample of ~1600 dwarfs over look-back times of ~3 Gyr (z=0.002-0.25). The sample consists of 401 distant dwarfs drawn from the Galaxy Evolution from Morphologies and SEDs (GEMS) survey, which provides high resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and accurate redshifts, and of 1291 dwarfs at 10-90 Mpc compiled from the Sloan Digitized Sky Survey (SDSS). The sample is complete down to an effective surface brightness of 22 mag arcsec^-2 in z and includes dwarfs with M_g=-18.5 to -14 mag. Rest-frame luminosities in Johnson UBV and SDSS ugr filters are provided by the COMBO-17 survey and structural parameters have been determined by S\\'ersic fits. We find that the GEMS dwarfs are bluer than the SDSS dwarfs by ~0.13 mag in g-r, which is consistent with the color evolution over ~2 Gyr of star formation histories involving moderate starbursts and long periods of continuous star formatio...

  16. The Star Formation Histories of Local Group Dwarf Galaxies II. Searching For Signatures of Reionization

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2014-01-01

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10$^4$ $<$ M$_{\\star}$ $<$ 10$^9$ M$_{\\odot}$). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted `true fossils' identified by Bovill & Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environment...

  17. Variable stars in the field of the Hydra II ultra-faint dwarf galaxy

    CERN Document Server

    Vivas, A Katherina; Olsen, Knut; Blum, Robert; Walker, Alistair; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland; Majewski, Steven; Kaleida, Catherine; Muñoz, Ricardo; Conn, Blair; Jin, Shoko

    2015-01-01

    We report the discovery of one RR Lyrae star in the ultra--faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Interamerican Observatory, Chile. The RR Lyrae star has a mean magnitude of $i = 21.30\\pm 0.04$ which translates to a heliocentric distance of $151\\pm 8$ kpc for Hydra II; this value is $\\sim 13\\%$ larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of $76^{+12}_{-10}$ pc and a brighter absolute magnitude of $M_V = -5.1 \\pm 0.3$, which keeps this object within the realm of the dwarf galaxies. The pulsational properties of the RR Lyrae star ($P=0.645$ d, $\\Delta g = 0.68$ mag) suggest Hydra II may be a member of the intermediate Oosterhoff or Oosterhoff II group. A comparison with other RR Lyrae stars in ultra--faint systems indicates similar pulsational properties among them...

  18. Asteroseismology of DAV white dwarf stars and G29-38

    CERN Document Server

    Chen, Yan-Hui

    2013-01-01

    Asteroseismology is a powerful tool to detect the inner structure of stars. It is also widely used to study white dwarfs. In this paper, we discuss the asteroseismology work of DAV stars. The detailed period to period fitting method is fully discussed, including the reliability to detect the inner structure of DAV stars. If we assume that all observed modes of some DAV star are the $l$ = 1 ones, the errors of model fitting will be always great. If we assume that the observed modes are composed of $l$ = 1 and 2 modes, the errors of model fitting will be small. However, there will be modes identified as $l$ = 2 without quintuplets observed. G29-38 has been observed spectroscopically and photometrically for many years. Thompson et al. (2008) made $l$ identifications for the star through limb darkening effect. With eleven known $l$ modes, we also do the asteroseismology work for G29-38, which reduces the blind $l$ fittings and is a fair choice. Unfortunately, our two best-fitting models are not in line with the p...

  19. Hypervelocity star candidates in the SEGUE G and K dwarf sample

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Lauren E.; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Schlesinger, Katharine J. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Allende Prieto, Carlos [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Lee, Young Sun [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Schneider, Donald P., E-mail: lauren.e.palladino.1@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-01

    We present 20 candidate hypervelocity stars from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) G and K dwarf samples. Previous searches for hypervelocity stars have only focused on large radial velocities; in this study, we also use proper motions to select the candidates. We determine the hypervelocity likelihood of each candidate by means of Monte Carlo simulations, considering the significant errors often associated with high proper motion stars. We find that nearly half of the candidates exceed their escape velocities with at least 98% probability. Every candidate also has less than a 25% chance of being a high-velocity fluke within the SEGUE sample. Based on orbits calculated using the observed six-dimensional positions and velocities, few, if any, of these candidates originate from the Galactic center. If these candidates are truly hypervelocity stars, they were not ejected by interactions with the Milky Way's supermassive black hole. This calls for a more serious examination of alternative hypervelocity-star ejection scenarios.

  20. Variable stars in the ultra-faint dwarf spheroidal galaxy Ursa Major I

    CERN Document Server

    Garofalo, Alessia; Clementini, Gisella; Ripepi, Vincenzo; Dall'Ora, Massimo; Moretti, Maria Ida; Coppola, Giuseppina; Musella, Ilaria; Marconi, Marcella

    2013-01-01

    We have performed the first study of the variable star population of Ursa Major I (UMa I), an ultra-faint dwarf satellite recently discovered around the Milky Way by the Sloan Digital Sky Survey. Combining time series observations in the B and V bands from four different telescopes, we have identified seven RR Lyrae stars in UMa I, of which five are fundamental-mode (RRab) and two are first-overtone pulsators (RRc). Our V, B-V color-magnitude diagram of UMa I reaches V~23 mag (at a signal-to-noise ratio of ~ 6) and shows features typical of a single old stellar population. The mean pulsation period of the RRab stars = 0.628, {\\sigma} = 0.071 days (or = 0.599, {\\sigma} = 0.032 days, if V4, the longest period and brightest variable, is discarded) and the position on the period-amplitude diagram suggest an Oosterhoff-intermediate classification for the galaxy. The RR Lyrae stars trace the galaxy horizontal branch at an average apparent magnitude of = 20.43 +/- 0.02 mag (average on 6 stars and discarding V4), ...

  1. Planets Around Low-Mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    CERN Document Server

    Bowler, Brendan P; Shkolnik, Evgenya L; Tamura, Motohide

    2014-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (>1 MJup) around 122 newly identified nearby (<40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1", respectively, which corresponds to limiting planet masses of 0.5-10 MJup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 $\\pm$ 6 MJup; L0$^{+2}_{-1}$; 120 $\\pm$ 20 AU), GJ 3629 B (64$^{+30}_{-23}$ MJup; M7.5 $\\pm$ 0.5; 6.5 $\\pm$ 0.5 AU), 1RXS J034231.8+121622 B (35 $\\pm$ 8 MJup; L0 $\\pm$ 1; 19.8 $\\pm$ 0.9 AU), and 2MASS J15594729+4403595 B (43 $\\pm$ 9 MJup; M8.0 $\\pm$ 0.5; 190 $\\pm$ 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of...

  2. Probability of CME Impact on Exoplanets Orbiting M Dwarfs and Solar-Like Stars

    CERN Document Server

    Kay, C; Kornbleuth, M

    2016-01-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not get trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbi...

  3. Flare Activity and Polarization States of White Dwarfs in Binary Star Systems

    Science.gov (United States)

    Boneva, D.; Filipov, L.

    2017-03-01

    We investigate flare activity and emission properties of white dwarf binary stars. We apply the polarization as a mechanism to probe the flares and the released resulting radiation. The polarization could appear as patterns in these cases, as it depends mainly on the properties of radiation and geometry of the source. The observational data of MV Lyr and CH Cyg are analysed. A repeated variability in the brightness could affect the degree of polarization. Detectable variations in the polarization parameters of selected binaries for the flares activity period are shown in the result. The analysis may help us to establish more evidence of the close correlation between flares, flow structure transformation around the primary star and polarization parameter variability.

  4. The minimum mass for star formation, and the origin of binary brown dwarfs

    CERN Document Server

    Stamatellos, A P W D

    2006-01-01

    Our first aim is to calculate the minimum mass for Primary Fragmentation in a variety of potential star-formation scenarios, i.e. (i) hierarchical fragmentation of a 3-D medium; (ii) one-shot, 2-D fragmentation of a shock-compressed layer; (iii) fragmentation of a circumstellar disc. Our second aim is to evaluate the role of H2 dissociation in facilitating Secondary Fragmentation and thereby producing close, low-mass binaries. Results: (i)For contemporary, local star formation, the minimum mass for Primary Fragmentation is in the range 0.001-0.004Msun, irrespective of the scenario considered. (ii)Circumstellar discs are only able to radiate fast enough to undergo Primary Fragmentation in their cool outer parts (R>100AU). Therefore brown dwarfs (BDs) should have difficulty forming by Primary Fragmentation at R100AU could be the source of brown dwarfs in wide orbits, and could explain why massive discs with Rd>100AU are rarely seen.(iii)H2 dissociation can lead to collapse and Secondary Fragmentation, thereby c...

  5. N-body simulations of planetary accretion around M dwarf stars

    CERN Document Server

    Ogihara, Masahiro

    2009-01-01

    We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions. In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and 4 to 6 planets eventually remain in mutual mean motion resonances and their orbits have small eccentricities and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely-packed ~ 40 small protoplanets remain in mutual mean motion resonances. In this case, they start orbit cross...

  6. Living with a Red Dwarf: Rotation and X-ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    CERN Document Server

    Guinan, Edward F; Durbin, Allyn

    2016-01-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high RV of ~+245 km s^-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating Activity/Irradiance-Rotation-Age relations, and an important test bed for stellar dynamos and the resulting X-ray -- UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone (Anglada-Escude et al. 2014a, 2015). However, Robertson et al. (2015) questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H I Lyman-alpha 1215.67A emission line can be reliably made, because it is...

  7. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    Science.gov (United States)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  8. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  9. An M dwarf Companion to an F-type Star in a young main-sequence binary

    CERN Document Server

    Eigmüller, Ph; Csizmadia, Sz; Lehmann, H; Erikson, A; Fridlund, M; Hartmann, M; Hatzes, A; Pasternacki, Th; Rauer, H; Tkachenko, A; Voss, H

    2016-01-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectro- scopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 +- 0.073) Msun and a radius of (1.474 +- 0.040) Rsun. The companion is an M dwarf with a mass of (0.188 +- 0.014) Msun and a radius of (0.234 +- 0.009) Rsun. The orbital period is (1.35121 +- 0:00001)d. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ~250 Myrs. The mass-radius re...

  10. Evolution of star-forming dwarf galaxies: characterizing the star formation scenarios

    Science.gov (United States)

    Martín-Manjón, M. L.; Mollá, M.; Díaz, A. I.; Terlevich, R.

    2012-02-01

    We use the self-consistent model technique developed by Martín-Manjón et al. that combines the chemical evolution with stellar population synthesis and photoionization codes, to study the star formation scenarios capable of reproducing the observed properties of star-forming galaxies. The comparison of our model results with a data base of H II galaxies shows that the observed spectra and colours of the present burst and the older underlying population are reproduced by models in a bursting scenario with star formation efficiency involving close to 20 per cent of the total mass of gas, and interburst times longer than 100 Myr, and more probably around 1 Gyr. Other modes like gasping and continuous star formation are not favoured.

  11. Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample

    Science.gov (United States)

    Borgniet, S.; Lagrange, A.-M.; Meunier, N.; Galland, F.

    2017-03-01

    Context. Massive, main-sequence (MS) AF-type stars have so far remained unexplored in past radial velocities (RV) surveys due to their small number of spectral lines and high rotational velocities that prevent the classic RV computation method. Aims: Our aim is to search for giant planets (GPs) around AF MS stars, to get primary statistical information on their occurrence rate and to compare the results with evolved stars and lower-mass MS stars. Methods: We used the HARPS spectrograph located on the 3.6 m telescope at ESO La Silla Observatory to observe 108 AF MS stars with B-V in the range -0.04 to 0.58 and masses in the range 1.1 to 3.6 M⊙. We used our SAFIR software developed to compute the RV and other spectroscopic observables of these early-type stars. We characterized the detected companions as well as the intrinsic stellar variability. We computed the detection limits and used them as well as the detected companions to derive the first estimates of the close-in brown dwarf (BD) and GP frequencies around AF stars. Results: We report the detection of a mpsini = 4.51MJup planetary companion with an 826-day period to the F6V dwarf HD 111998. We also present new data on the two-planet system around the F6IV-V dwarf HD 60532. We also report the detections of 14 binaries with long-term RV trends and/or high-amplitude RV variations combined to a flat RV-bisector span diagram. We constrain the minimal masses and semi-major axes of these companions and check that these constraints are compatible with the stellar companions previously detected by direct imaging or astrometry for six of these targets. We get detection limits deep into the planetary domain with 70% of our targets showing detection limits between 0.1 and 10 MJup at all orbital periods in the 1- to 103-day range. We derive BD (13 ≤mpsini ≤ 80 MJup) occurrence rates in the 1- to 103-day period range of 2-2+5% and 2.6-2.6+6.7% for stars with M⋆ in the ranges 1.1 to 1.5 and 1.5 to 3 M

  12. Delving Deeper into the Tumultuous Lives of Galactic Dwarfs: Modeling Star Formation Histories

    CERN Document Server

    Orban, Chris; Weisz, Daniel R; Skillman, Evan D; Dolphin, Andrew E; Holtzman, John A

    2008-01-01

    The paucity of observed dwarf galaxies in the Local Group and the relative overabundance of predicted dark matter halos remains one of the greatest puzzles of the LCDM paradigm. Solving this puzzle now requires not only matching the numbers of objects but also understanding the details of their star formation histories. We present a summary of such histories derived from HST data using the color-magnitude diagram fitting method. We interpret the new data by using and extending the phenomenological model of Kravtsov, Gnedin & Klypin (2004), which is based on the mass assembly histories of dark matter halos and the Kennicutt-Schmidt law of star formation. The model correctly predicts the radial distributions of dIrr and, separately, dSph galaxy types as well as the mean age of the stellar populations. However, in order to be consistent with the observations, the model needs a significant amount of recent star formation in the last 1 and 2 Gyr. Within the framework of our extended models, this prolonged star...

  13. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  14. The Potential of Planets Orbiting Red Dwarf Stars to Support Oxygenic Photosynthesis and Complex Life

    CERN Document Server

    Gale, Joseph

    2015-01-01

    We review the latest findings on extra-solar planets and their potential to support Earth-like life. Focusing on planets orbiting Red Dwarf (RD) stars, the most abundant stellar type, we show that including RDs as potential host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbor by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing exoplanet habitability. Early considerations indicated that conditions on RD planets would be inimical to life, as their Habitable Zones (where liquid water could exist) would be so close as to make planets tidally locked to their star. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has been argued that the lesser photon energy of the radiation of the relatively cool RD...

  15. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston, ACT 2611 (Australia)

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  16. Rotational studies in the Orion Nebula Cluster: from solar mass stars to brown dwarfs

    CERN Document Server

    Rodriguez-Ledesma, Maria Victoria; Eislöffel, Jochen

    2009-01-01

    Rotational studies at a variety of ages and masses are important for constraining the angular momentum evolution of young stellar objects (YSO). Of particular interest are the very low mass (VLM) stars and brown dwarfs (BDs), because of the significant lack of known rotational periods in that mass range. We provide for the first time information on rotational periods for a large sample of young VLM stars and BDs. This extensive rotational period study in the 1 Myr old Orion Nebula Cluster (ONC) is based on a deep photometric monitoring campaign using the Wide Field Imager (WFI) camera on the ESO/MPG 2.2m telescope on La Silla, Chile. Accurate I-band photometry of 2908 stars was obtained, extending three magnitudes deeper than previous studies in the ONC. We found 487 periodic variables with estimated masses between 0.5 Msun and 0.015 Msun, 124 of which are BD candidates. This is by far the most extensive and complete rotational period data set for young VLM stars and BDs. In addition, 808 objects show non-per...

  17. Toward High Precision Seismic Studies of White Dwarf Stars: Parametrization of the Core and Tests of Accuracy

    CERN Document Server

    Giammichele, N; Fontaine, G; Brassard, P

    2016-01-01

    We present a prescription for parametrizing the chemical profile in the core of white dwarfs in the light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired from successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akima splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it ...

  18. The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation

    CERN Document Server

    Stamatellos, Dimitris

    2008-01-01

    We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive extended discs around Sun-like stars. Such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs fragment within a few thousand years, and produce mainlybrown dwarf (BDs) stars, but also planetary mass (PM) stars and very low-mass hydrogen-burning (HB) stars. Most of the the PM stars and BDs are ejected by mutual interactions. We analyse the statistical properties of these stars, and compare them with observations. After a few hundred thousand years the Sun-like primary is typically left with a close low-mass HB companion, and two much wider companions: a low-mass HB star and a BD star, or a BD-BD binary. There is a BD desert extending out to at least ~100 AU; this is because BDs tend to be formed further out than low-mass HB stars, and then they tend to be scattered...

  19. Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

    Science.gov (United States)

    Klimentowski, Jarosław; Łokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.

    2007-06-01

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal (dSph) galaxies. For this purpose we have run a high-resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disc and it has a NFW-like dark matter (DM) halo. After 10 Gyr of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated DM haloes. We model the cleaned-up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio (M/L) and velocity anisotropy parameter. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and M/L of the dwarf with accuracy typically better than 25 per cent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy. We show that after careful removal of interlopers the velocity dispersion profile of Fornax can be reproduced by a model in which mass traces light with a M/L of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of

  20. Mass Modelling of Dwarf Spheroidal Galaxies: the Effect of Unbound Stars From Tidal Tails And the Milky Way

    Energy Technology Data Exchange (ETDEWEB)

    Klimentowski, Jaroslaw; Lokas, Ewa L.; /Warsaw, Copernicus Astron. Ctr.; Kazantzidis, Stelios; /KIPAC, Menlo Park; Prada, Francisco; /IAA, Granada; Mayer, Lucio; /Zurich,; Mamon, Gary A.; /Paris, Inst. Astrophys. /Meudon Observ.

    2006-11-14

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N- body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions.We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails.We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated dark matter haloes. We model the cleaned up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio and velocity anisotropy parameter. We show that even for such strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25 percent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy for which we find a mass-to-light ratio of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way.

  1. The ACS LCID project : RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy tucana

    NARCIS (Netherlands)

    Bernard, Edouard J.; Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D.; Stetson, Peter B.; Cole, Andrew A.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous, longe

  2. Quark-Novae in Neutron Star-White-Dwarf Binaries: A model for dim, sub-Chandrasekhar, Type Ia Supernovae ?

    CERN Document Server

    Ouyed, Rachid

    2011-01-01

    We show that appealing to a Quark-Nova in a tight NS-WD binary system, a Type Ia explosion can occur for a narrow range in white dwarf mass (0.5 2 universe, we expect QNe-Ia to manifest themselves as rare sub-Chandrasekhar Type Ias; most likely in star-forming galaxies.

  3. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  4. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Bournaud, F.; Martins, F.; Monier, R.; Reyle, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf speroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between -2.0 and -

  5. The ACS Nearby Galaxy Survey Treasury VIII. The Global Star Formation Histories of 60 Dwarf Galaxies in the Local Volume

    CERN Document Server

    Weisz, Daniel R; Williams, Benjamin F; Gilbert, Karoline M; Skillman, Evan D; Seth, Anil C; Dolphin, Andrew E; McQuinn, Kristen B W; Gogarten, Stephanie M; Holtzman, Jon; Rosema, Keith; Cole, Andrew; Karachentsev, Igor D; Zaritsky, Dennis

    2011-01-01

    We present uniformly measured star formation histories (SFHs) of 60 nearby (D~4Mpc) dwarf galaxies based on CMDs of resolved stellar populations from images taken with HST as part of the ACS Nearby Galaxy Survey Treasury program (ANGST). This volume-limited sample contains 12 dSph/dE, 5 dwarf spiral, 28 dI, 12 transition, and 3 tidal dwarf galaxies. From the best fit SFHs we find three significant results: (1) the average dwarf galaxy formed >50% of its stars by z~2 and 60% of its stars by z~1, regardless of current morphological type; (2) the mean SFHs of dIs, dTrans, and dSphs are similar over most of cosmic time, with the clearest differences appearing during the most recent 1 Gyr; and (3) the mean values are inconsistent with simple SFH models, e.g., exponentially declining SFRs. The mean SFHs are in general agreement with the cosmic SFH, although we observe offsets near z~1 that could be evidence that low mass systems experienced delayed star formation relative to more massive galaxies. The sample shows ...

  6. The ACS LCID project : RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy tucana

    NARCIS (Netherlands)

    Bernard, Edouard J.; Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D.; Stetson, Peter B.; Cole, Andrew A.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous,

  7. Stellar Populations and Star Formation History of the Metal-poor Dwarf Galaxy DDO 68

    Science.gov (United States)

    Sacchi, E.; Annibali, F.; Cignoni, M.; Aloisi, A.; Sohn, T.; Tosi, M.; van der Marel, R. P.; Grocholski, A. J.; James, B.

    2016-10-01

    We present the star formation history (SFH) of the extremely metal-poor dwarf galaxy DDO 68, based on our photometry with the Advanced Camera for Surveys. With a metallicity of only 12+{log}({{O}}/{{H}})=7.15 and a very isolated location, DDO 68 is one of the most metal-poor galaxies known. It has been argued that DDO 68 is a young system that started forming stars only ∼0.15 Gyr ago. Our data provide a deep and uncontaminated optical color–magnitude diagram (CMD) that allows us to disprove this hypothesis since we find a population of at least ∼1 Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is ≃0.01 M ⊙ yr‑1, corresponding to a total astrated mass of ≃1.3 × 108 M ⊙. Our photometry allows us to infer the distance from the tip of the red giant branch, D = 12.08 ± 0.67 Mpc; however, to let our synthetic CMD reproduce the observed ones, we need a slightly higher distance, D = 12.65 Mpc, or (m ‑ M)0 = 30.51, still inside the errors of the previous determination, and we adopt the latter. DDO 68 shows a very interesting and complex history, with its quite disturbed shape and a long tail, probably due to tidal interactions. The SFH of the tail differs from that of the main body mainly for enhanced activity at recent epochs likely triggered by the interaction. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS5-26555.

  8. The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life

    Science.gov (United States)

    Gale, Joseph; Wandel, Amri

    2017-01-01

    We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around

  9. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star forming dwarf galaxies

    CERN Document Server

    Tang, Jing; Rosenfield, Philip; Slemer, Alessandra; Marigo, Paola; Girardi, Léo; Bianchi, Luciana

    2014-01-01

    We extend the {\\sl\\,PARSEC} library of stellar evolutionary tracks by computing new models of massive stars, from 14\\Msun to 350\\Msun. The input physics is the same used in the {\\sl\\,PARSEC}~V1.1 version, but for the mass-loss rate which is included by considering the most recent updates in literature. We focus on low metallicity, $Z$=0.001 and $Z$=0.004, for which the metal poor dwarf irregular star forming galaxies, Sextans A, WLM and NCG6822, provide simple but powerful workbenches. The models reproduce fairly well the observed CMDs but the stellar colour distributions indicate that the predicted blue loop is not hot enough in models with canonical extent of overshooting. In the framework of a mild extended mixing during central hydrogen burning, the only way to reconcile the discrepancy is to enhance the overshooting at the base of the convective envelope (EO) during the first dredge-UP. The mixing scales required to reproduce the observed loops, EO=2\\HP or EO=4\\HP, are definitely larger than those derive...

  10. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    Science.gov (United States)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-01

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  11. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  12. HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star

    CERN Document Server

    Bakos, G Á; Bayliss, D; Hartman, J D; Zhou, G; Brahm, R; Mancini, L; deVal-Borro, M; Bhatti, W; Jordán, A; Rabus, M; Espinoza, N; Csubry, Z; Howard, A W; Fulton, B J; Buchhave, L A; Ciceri, S; Henning, T; Schmidt, B; Isaacson, H; Noyes, R W; Marcy, G W; Suc, V; Howe, A R; Burrows, A S; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120+/-0.012 M_Jup, a radius of 0.563+0.046-0.034 R_Jup, and an orbital period of 3.1853 days. The host star is a moderately bright (V = 13.340+/-0.010 mag, K_S = 10.976+/-0.026 mag) K dwarf star with a mass of 0.849+/-0.027 M_Sun, a radius of 0.815+0.049-0.035 R_Sun, and a metallicity of [Fe/H]= +0.250+/-0.080. The star is photometrically quiet to within the precision of the HATSouth measurements, has low RV jitter, and shows no evidence for chromospheric activity in its spectrum. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18+/-4% (rock-iron core and H2-He envelope), or 9+/-4% (ice core and H2-He envelope), i.e.it has a composition broadly similar to that of Uranus and Neptune, and ve...

  13. The SONYC survey: Towards a complete census of brown dwarfs in star forming regions

    CERN Document Server

    Muzic, K; Geers, V C; Jayawardhana, R; Tamura, M; Dawson, P; Ray, T P

    2013-01-01

    SONYC, short for "Substellar Objects in Nearby Young Clusters", is a survey program to provide a census of the substellar population in nearby star forming regions. We have conducted deep optical and near-infrared photometry in five young regions (NGC1333, rho Ophiuchi, Chamaeleon-I, Upper Sco, and Lupus-3), combined with proper motions, and followed by extensive spectroscopic campaigns with Subaru and VLT, in which we have obtained more than 700 spectra of candidate low-mass objects. We have identified and characterized more than 60 new substellar objects, among them a handful of objects with masses close to, or below the Deuterium burning limit. Through SONYC and surveys by other groups, the substellar IMF is now well characterized down to ~ 5 - 10 MJup, and we find that the ratio of the number of stars with respect to brown dwarfs lies between 2 and 6. A comprehensive survey of NGC 1333 reveals that, down to ~5MJup, free-floating objects with planetary masses are 20-50 times less numerous than stars, i.e. ...

  14. An independent limit on the axion mass from the variable white dwarf star R548

    CERN Document Server

    Córsico, Alejandro H; Romero, Alejandra D; Mukadam, Anjum S; García--Berro, Enrique; Isern, Jordi; Kepler, S O; Corti, Mariela A

    2012-01-01

    Pulsating white dwarfs with hydrogen-rich atmospheres, also known as DAV stars, can be used as astrophysical laboratories to constrain the properties of fundamental particles like axions. Comparing the measured cooling rates of these stars with the expected values from theoretical models allows us to search for sources of additional cooling due to the emission of weakly interacting particles. In this paper, we present an independent inference of the mass of the axion using the recent determination of the evolutionary cooling rate of R548, the DAV class prototype. We employ a state-of-the-art code which allows us to perform a detailed asteroseismological fit based on fully evolutionary sequences. Stellar cooling is the solely responsible of the rates of change of period with time ($\\dot\\Pi$) for the DAV class. Thus, the inclusion of axion emission in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DAV stars. This allows us to compare the theor...

  15. Black Holes, Neutron Stars and White Dwarf Candidates from Microlensing with OGLE-III

    CERN Document Server

    Wyrzykowski, L; Skowron, J; Rybicki, K A; Mroz, P; Kozlowski, S; Udalski, A; Szymanski, M K; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Pietrukowicz, P; Poleski, R; Pawlak, M; Ilkiewicz, K; Rattenbury, N J

    2015-01-01

    Most stellar remnants so far have been found in binary systems, where they interact with matter from their companions. Isolated neutron stars and black holes are difficult to find as they are dark, yet they are predicted to exist in our Galaxy in vast numbers. We explored the OGLE-III database of 150 million objects observed in years 2001-2009 and found 59 microlensing events exhibiting a parallax effect due to the Earth's motion around the Sun. Combining parallax and brightness measurements from microlensing light curves with expected proper motions in the Milky Way, we identified 15 microlensing events which are consistent with having a white dwarf, neutron star or a black hole lens and we estimated their masses and distances. The most massive of our black hole candidates has 8.3 M_Sun and is at a distance of 2.4 kpc. The distribution of masses of our candidates indicates a continuum in mass distribution with no mass gap between neutron stars and black holes. We also present predictions on how such events w...

  16. DISCOVERY OF MIRA VARIABLE STARS IN THE METAL-POOR SEXTANS DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Tsuyoshi [Japan Spaceguard Association, 1716-3 Ookura, Bisei, Ibara, Okayama 714-1411 (Japan); Matsunaga, Noriyuki; Nakada, Yoshikazu [Kiso Observatory, Institute of Astronomy, School of Science, University of Tokyo, 10762-30 Mitake, Kiso-machi, Kiso-gun, Nagano 397-0101 (Japan); Hasegawa, Takashi, E-mail: sakamoto@spaceguard.or.jp [Gunma Astronomical Observatory, 6860-86 Nakayama, Takayama, Agatsuma, Gunma 377-0702 (Japan)

    2012-12-10

    We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal galaxy (dSph). We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the I{sub c} band show large-amplitude (3.7 and 0.9 mag) and long-period (326 {+-} 15 and 122 {+-} 5 days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras (75.3{sup +12.8}{sub -10.9} and 79.8{sup +11.5}{sub -9.9} kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph (90.0 {+-} 10.0 kpc). These are the first Miras found in a stellar system with a metallicity as low as [Fe/H] {approx} -1.9 than any other known system with Miras.

  17. Homogeneous abundance analysis of dwarf, subgiant and giant FGK stars with and without giant planets

    CERN Document Server

    da Silva, R; Rocha-Pinto, H J

    2015-01-01

    We have analyzed high-resolution and high signal-to-noise ratio optical spectra of nearby FGK stars with and without detected giant planets in order to homogeneously measure their photospheric parameters, mass, age, and the abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29 are subgiants, and 140 are giants. The photospheric parameters are derived from the equivalent widths of Fe I and Fe II lines. Masses and ages come from the interpolation in evolutionary tracks and isochrones on the HR diagram. The abundance determination is based on the equivalent widths of selected atomic lines of the refractory elements and on the spectral synthesis of C_2, CN, C I, O I, and Na I features. We apply a set of statistical methods to analyze the abundances derived for the three subsamples. Our results show that: i) giant stars systematically exhi...

  18. GIANO Y-band spectroscopy of dwarf stars: Phosphorus, Sulphur, and Strontium abundances

    CERN Document Server

    Caffau, E; Korotin, S; Origlia, L; Oliva, E; Sanna, N; Ludwig, H -G; Bonifacio, P

    2015-01-01

    In recent years a number of poorly studied chemical elements, such as phosphorus, sulphur, and strontium, have received special attention as important tracers of the Galactic chemical evolution. By exploiting the capabilities of the infrared echelle spectrograph GIANO mounted at the Telescopio Nazionale Galileo, we acquired high resolution spectra of four Galactic dwarf stars spanning the metallicity range between about one-third and twice the solar value. We performed a detailed feasibility study about the effectiveness of the P, S, and Sr line diagnostics in the Y band between 1.03 and 1.10 microm. Accurate chemical abundances have been derived using one-dimensional model atmospheres computed in local thermodynamic equilibrium (LTE). We computed the line formation assuming LTE for P, while we performed non-LTE analysis to derive S and Sr abundances. We were able to derive phosphorus abundance for three stars and an upper limit for one star, while we obtained the abundance of sulphur and strontium for all of...

  19. Carbon Shell or Core Ignitions in White Dwarfs Accreting from Helium Stars

    CERN Document Server

    Brooks, Jared; Schwab, Josiah; Paxton, Bill

    2016-01-01

    White dwarfs accreting from helium stars can stably burn at the accreted rate and avoid the challenge of mass loss associated with unstable Helium burning that is a concern for many Type Ia supernovae scenarios. We study binaries with helium stars of mass $1.25 M_\\odot\\le M_{\\rm{He}} \\le 1.8 M_\\odot$, which have lost their hydrogen rich envelopes in an earlier common envelope event and now orbit with periods ($P_{\\rm orb}$) of several hours with non-rotating $0.84$ and $1.0 M_\\odot$ C/O WDs. The helium stars fill their Roche lobes (RLs) after exhaustion of central helium and donate helium on their thermal timescales (${\\sim}10^5$yr). As shown by others, these mass transfer rates coincide with the steady helium burning range for WDs, and grow the WD core up to near the Chandrasekhar mass ($M_{\\rm Ch}$) and a core carbon ignition. We show here, however, that many of these scenarios lead to an ignition of hot carbon ashes near the outer edge of the WD and an inward going carbon flame that does not cause an explo...

  20. Not Alone: Tracing the Origins of Very Low Mass Stars and Brown Dwarfs Through Multiplicity Studies

    CERN Document Server

    Burgasser, A J; Siegler, N; Close, L; Allen, P; Lowrance, P J; Gizis, J; Burgasser, Adam J.; Siegler, Nick; Close, Laird; Allen, Peter; Lowrance, Patrick; Gizis, John

    2006-01-01

    The properties of multiple stellar systems have long provided important empirical constraints for star formation theories, enabling (along with several other lines of evidence) a concrete, qualitative picture of the birth and early evolution of normal stars. At very low masses (VLM; M = 0.8) occurring infrequently (perhaps 10-30%). Both the frequency and maximum separation of stellar and brown dwarf binaries steadily decrease for lower system masses, suggesting that VLM binary formation and/or evolution may be a mass-dependent process. There is evidence for a fairly rapid decline in the number of loosely-bound systems below ~0.3 M_sun, corresponding to a factor of 10-20 increase in the minimum binding energy of VLM binaries as compared to more massive stellar binaries. This wide-separation ``desert'' is present among both field (~1-5 Gyr) and older (> 100 Myr) cluster systems, while the youngest (<~10 Myr) VLM binaries, particularly those in nearby, low-density star forming regions, appear to have somewhat...

  1. On the survival of brown dwarfs and planets engulfed by their giant host star

    CERN Document Server

    Passy, Jean-Claude; De Marco, Orsola

    2012-01-01

    The recent discovery of two Earth-mass planets in close orbits around an evolved star has raised questions as to whether substellar companions can survive encounters with their host stars. We consider whether these companions could have been stripped of significant amounts of mass during the phase when they orbited through the dense inner envelopes of the giant. We apply the criterion derived by Murray et al. for disruption of gravitationally bound objects by ram pressure, to determine whether mass loss may have played a role in the histories of these and other recently discovered low-mass companions to evolved stars. We find that the brown dwarf and Jovian mass objects circling WD 0137-349, SDSS J08205+0008, and HIP 13044 are most unlikely to have lost significant mass during the common envelope phase. However, the Earth-mass planets found around KIC 05807616 could well be the remnant of one or two Jovian mass planets that lost extensive mass during the common envelope phase.

  2. The self regulating star formation of gas rich dwarf galaxies in quiescent phase

    CERN Document Server

    Kobayashi, M A R; Kobayashi, Masakazu A.R.; Kamaya, Hideyuki

    2004-01-01

    The expected episodic or intermittent star formation histories (SFHs) of gas rich dwarf irregular galaxies (dIrrs) are the longstanding puzzles to understand their whole evolutional history. Solving this puzzle, we should grasp what physical mechanism causes the quiescent phase of star formation under the very gas rich condition after the first starburst phase. We consider that this quiescent phase is kept by lack of H2, which can be important coolant to generate the next generation of stars in the low-metal environment like dIrrs. Furthermore, in dIrrs, H2 formation through gas-phase reactions may dominate the one on dust-grain surfaces because their interstellar medium (ISM) are very plentiful and the typical dust-to-gas ratio of dIrrs (D_dIrrs = 1.31 x 10^-2 D_MW, where D_MW is its value for the local ISM) is on the same order with a critical value D_cr ~ 10^-2 D_MW. We show that the lack of H2 is mainly led by H- destruction when gas-phase H2 formation dominates since H- is important intermediary of gas-p...

  3. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  4. No Neutron Star Companion To The Lowest Mass SDSS White Dwarf

    CERN Document Server

    Agueros, Marcel; Camilo, Fernando; Kilic, Mukremin; Anderson, Scott; Freire, Paulo; Kleinman, Scot; Liebert, James; Silvestri, Nicole

    2009-01-01

    SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 +/- 0.05 (M ~ 0.17 M_sun; Kilic et al. 2007a,b). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638's companion showed that it must be a compact object with a mass >= 0.28 M_sun (Kilic 2007b). Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638's companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.

  5. Probing Galactic Structure with the Spatial Correlation Function of SEGUE G-dwarf Stars

    CERN Document Server

    Mao, Qingqing; Holley-Bockelmann, Kelly; Schlesinger, Katharine J; Johnson, Jennifer A; Rockosi, Constance M; Beers, Timothy C; Schneider, Donald P; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena

    2015-01-01

    We measure the two-point correlation function of G-dwarf stars within 1-3 kpc of the Sun in multiple lines-of-sight using the Schlesinger et al. G-dwarf sample from the SDSS SEGUE survey. The shapes of the correlation functions along individual SEGUE lines-of-sight depend sensitively on both the stellar-density gradients and the survey geometry. We fit smooth disk galaxy models to our SEGUE clustering measurements, and obtain strong constraints on the thin- and thick-disk components of the Milky Way. Specifically, we constrain the values of the thin- and thick-disk scale heights with 3% and 2% precision, respectively, and the values of the thin- and thick-disk scale lengths with 20% and 8% precision, respectively. Moreover, we find that a two-disk model is unable to fully explain our clustering measurements, which exhibit an excess of clustering at small scales (< 50 pc). This suggests the presence of small-scale substructure in the disk system of the Milky Way.

  6. Searching for star-forming dwarf galaxies in the Antlia cluster

    CERN Document Server

    Vaduvescu, O; Bassino, L P; Castelli, A V Smith; Calderon, J P

    2014-01-01

    The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Using the Gemini South and GMOS camera, we acquired the Halpha imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties. Using archival VISTA VHS survey images, we derived K_S magnitudes and surface brightness profile fits for the whole sample to assess basic physical properties. FS90-98, FS90-106, and FS90-147 are confirmed as BCDs and cluster members, based on their morphology, K_S surface photometry, oxygen abundance, and velocity redshift. FS90-15...

  7. A census of very-low-mass stars and brown dwarfs in the sigma Orionis cluster

    CERN Document Server

    Lodieu, N; Rebolo, R; Martín, E L; Hambly, N C

    2009-01-01

    (ABRIDGED) We have analysed the near-infrared photometric data from the Fourth Data Release (DR4) of the UKIRT Infrared Deep Sky Suvey (UKIDSS) Galactic Clusters Survey (GCS) to derive the cluster luminosity and mass functions, evaluate the extent of the cluster, and study the distribution and variability of low-mass stars and brown dwarfs down to the deuterium-burning limit. We have recovered most of the previously published members and found a total of 287 candidate members within the central 30 arcmin in the 0.5-0.009 Msun mass range, including new objects not previously reported in the literature. This new catalogue represents a homogeneous dataset of brown dwarf member candidates over the central 30 arcmin of the cluster. The expected photometric contamination by field objects with similar magnitudes and colours to sigma Orionis members is ~15%. We present evidence of variability at the 99.5% confidence level over ~yearly timescales in 10 member candidates that exhibit signs of youth and the presence of ...

  8. Evolution and colours of helium-core white dwarf stars the case of low metallicity progenitors

    CERN Document Server

    Serenelli, A M; Rohrmann, R D; Benvenuto, O G

    2002-01-01

    The present work is designed to explore the evolution of helium-core white dwarf (HeWD) stars for the case of metallicities much lower than the solar one (Z=0.001 and Z=0.0002). Evolution is followed in a self-consistent way with the predictions of detalied and new non-grey atmospheres, time-dependent element diffusion and the history of the white dwarf progenitor. Reliable initial models for low mass HeWDs are obtained by applying mass loss rates to a 1msun stellar model. The loss of angular momentum caused by gravitational wave emission and magnetic stellar wind braking are considered. Model atmospheres, based on a detailed treatment of the microphysics entering the WD atmosphere enable us to provide accurate colours and magnitudes at both early and advanced evolutionary stages. We find that most of our evolutionary sequences experience several episodes of hydrogen thermonuclear flashes. In particular, the lower the metallicity, the larger the minimum stellar mass for the occurrence fo flashes induced by CN...

  9. Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries

    CERN Document Server

    Sravan, Niharika; Kalogera, Vassiliki; Althaus, Leandro G

    2014-01-01

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational wave sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to gravitational-wave observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. We find that the contribution from tides should not be neglected when analyzing periastron precession signatures in gravitational-wave signals: not accounting for tides can produce errors as high as a factor of 80 in the WD...

  10. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305 (United States)

    2016-04-10

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), and lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  11. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    CERN Document Server

    Moussa, Mohamed

    2015-01-01

    This paper addresses the effect of generalized uncertainty principle, emerged by a different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, non-relativistic ideal gases and degenerate fermions. A modification in pressure, particle number and energy density are calculated. Astrophysical objects such as main sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity, is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but it may be considered reasonable values in the astrophysical regime.

  12. Dwarf nova-type cataclysmic variable stars are significant radio emitters

    CERN Document Server

    Coppejans, Deanne L; Miller-Jones, James C A; Rupen, Michael P; Sivakoff, Gregory R; Knigge, Christian; Groot, Paul J; Woudt, Patrick A; Waagen, Elizabeth O; Templeton, Matthew

    2016-01-01

    We present 8--12\\,GHz radio light curves of five dwarf nova (DN) type Cataclysmic Variable stars (CVs) in outburst (RX And, U Gem and Z Cam), or superoutburst (SU UMa and YZ Cnc), increasing the number of radio-detected DN by a factor of two. The observed radio emission was variable on time-scales of minutes to days, and we argue that it is likely to be synchrotron emission. This sample shows no correlation between the radio luminosity and optical luminosity, orbital period, CV class, or outburst type; however higher-cadence observations are necessary to test this, as the measured luminosity is dependent on the timing of the observations in these variable objects. The observations show that the previously detected radio emission from SS Cyg is not unique in type, luminosity (in the plateau phase of the outburst), or variability time-scales. Our results prove that DN, as a class, are radio emitters in outburst.

  13. NuSTAR and swift observations of the fast rotating magnetized white dwarf AE Aquarii

    DEFF Research Database (Denmark)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.;

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P-spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L-X similar to 10(31) erg s(-1)). We have analyzed overlapping observations...... of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(-0.45)(+0.18), 2.29(-0.82)(+0.96), and 9.33(-2.18)(+6.07) keV, or an optically thin thermal plasma...

  14. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  15. The Star Formation Histories of Local Group Dwarf Galaxies I. Hubble Space Telescope / Wide Field Planetary Camera 2 Observations

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2014-01-01

    We present uniformly measured star formation histories (SFHs) of 40 Local Group dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with $\\tau$ $\\sim$ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs (dTrans), and dwarf ellipticals (dEs) can be approximated by the combination of an exponentially declining SFH ($\\tau$ $\\sim$ 3-4 Gyr) for lookback ages $>$ 10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z=2 ranges considerably (80\\%...

  16. Is beryllium ultra-depletion in solar-type stars linked to the presence of a white dwarf companion?

    CERN Document Server

    Desidera, S; Lugaro, M

    2015-01-01

    Abundance studies of solar-type stars revealed a small fraction of objects with extreme depletion of beryllium. We investigate the possible link between the beryllium depletion and the presence of companions. The classical methods (radial velocity, astrometry, imaging) used to search for binary companions were exploited. We also performed a chemical analysis to identify binaries by the alteration in abundances that is produced by the accretion of material lost by a former evolved companion. We found that all the four previously investigated stars that were found to be ultra--depleted in Be are binaries. In two cases the companion is a white dwarf, and in the other two cases the companion might be a white dwarf or a main-sequence star. One new barium star was identified. We speculate that the interaction with the white dwarf progenitor caused an alteration in the abundance pattern of the star, which resulted in severe beryllium depletion. Possible mechanisms such as thermohaline mixing, episodic accretion, and...

  17. Exoplanets as probes of the winds of host stars: the case of the M dwarf GJ 436

    Science.gov (United States)

    Vidotto, A. A.; Bourrier, V.

    2017-10-01

    Winds of cool dwarfs are difficult to observe, with only a few M dwarfs presenting observationally derived mass-loss rates (\\dot{M}), which span several orders of magnitude. Close-in exoplanets are conveniently positioned in the inner regions of stellar winds and can, thus, be used to probe the otherwise-unobservable local properties of their host-stars' winds. Here, we use local stellar wind characteristics observationally derived in the studies of atmospheric evaporation of the warm-neptune GJ 436b to derive the global characteristics of the wind of its M-dwarf host. Using an isothermal wind model, we constrain the stellar wind temperature to be in the range (0.36-0.43) MK, with \\dot{M}=(0.5-2.5) × 10^{-15} M_{⊙} yr^{-1}. By computing the pressure balance between the stellar wind and the interstellar medium, we derive the size of the astrophere of GJ 436 to be around 25 au, significantly more compact than the heliosphere. We demonstrate in this paper that transmission spectroscopy, coupled to planetary atmospheric evaporation and stellar wind models, can be a useful tool for constraining the large-scale wind structure of planet-hosting stars. Extending our approach to future planetary systems discoveries will open new perspectives for the combined characterization of planetary exospheres and winds of cool dwarf stars.

  18. Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-04-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance-rotation-age relations, and an important test bed for stellar dynamos and the resulting X-ray-UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray-UV effects on planets hosted by Kapteyn's Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn's Star's planets to coronal - chromospheric XUV emissions over time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13020. This work is also based on observations obtained with the Chandra X-ray Observatory, a NASA science mission, program #13200633.

  19. The abundance of biotic exoplanets and life on planets of Red Dwarf stars

    Science.gov (United States)

    Wandel, Amri; Gale, Joseph

    2016-07-01

    The Kepler mission has shown that Earthlike planets orbiting within the Habitable Zones of their host stars are common. We derive an expression for the abundance of life bearing (biotic) extra-solar-system planets (exoplanets) in terms of the (yet unknown) probability for the evolution of biotic life. This "biotic probability" may be estimated by future missions and observations, e.g. spectral analyses of the atmospheres of exoplanets, looking for biomarkers. We show that a biotic probability in the range 0.001-1 implies that a biotic planet may be expected within ~10-100 light years from Earth. Of particular interest in the search for exolife are planets orbiting Red Dwarf (RD) stars, the most frequent stellar type. Previous researches suggested that conditions on planets near RDs would be inimical to life, e.g. the Habitable Zone of RDs is small, so their habitable planets would be close enough to be tidally locked. Recent calculations show that this and other properties of RDs, presumed hostile for the evolution of life, are less severe than originally estimated. We conclude that RD planets could be hospitable for the evolution of life as we know it, not less so than planets of solar-type stars. This result, together with the large number of RDs and their Kepler planet-statistics, makes finding life on RD planets ~10-1000 times more likely than on planets of solar-type stars. Our nearest biotic RD-planet is likely to be 2-10 times closer than the nearest solar-type one.

  20. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Science.gov (United States)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Astrophysical false positives in direct imaging for exoplanets: a white dwarf close to a rejuvenated star

    Science.gov (United States)

    Zurlo, A.; Vigan, A.; Hagelberg, J.; Desidera, S.; Chauvin, G.; Almenara, J. M.; Biazzo, K.; Bonnefoy, M.; Carson, J. C.; Covino, E.; Delorme, P.; D'Orazi, V.; Gratton, R.; Mesa, D.; Messina, S.; Moutou, C.; Segransan, D.; Turatto, M.; Udry, S.; Wildi, F.

    2013-06-01

    Context. As is the case for all techniques involved in the research for exoplanets, direct imaging has to take into account the probability of so-called astrophysical false positives, which are phenomena that mimic the signature of the objects we are seeking. Aims: In this work we present the case of a false positive found during a direct-imaging survey conducted with VLT/NACO. A promising exoplanet candidate was detected around the K2-type star HD 8049 in July 2010. Its contrast of ΔH = 7.05 at 1.57 arcsec allowed us to assume a 35 MJup companion at 50 projected AU, for the nominal system age and heliocentric distance. Methods: To check whether it was gravitationally bound to the host star, as opposed to an unrelated background object, we re-observed the system one year later and concluded a high probability of a bound system. We also used radial velocity measurements of the host star, spanning a time range of ~30 yr, to constrain the companion's mass and orbital properties, as well as to probe the host star's spectral age indicators and general spectral energy distribution. We also obtained U-band imaging with EFOSC and near-infrared spectroscopy for the companion. Results: Combining all these information we conclude that the companion of HD 8049 is a white dwarf (WD) with temperature Teff = 18 800 ± 2100 K and mass MWD = 0.56 ± 0.08 M⊙. The significant radial velocity trend combined with the imaging data indicates that the most probable orbit has a semi-major axis of about 50 AU. The discrepancy between the age indicators speaks against a bona-fide young star. The moderately high level of chromospheric activity and fast rotation, mimicking the properties of a young star, might be induced by the exchange of mass with the progenitor of the WD. This example demonstrates some of the challenges in determining accurate age estimates and identifications of faint companions. Based on observations collected at La Silla and Paranal Observatory, ESO (Chile): Programs

  2. Molecular gas and star formation in the Tidal Dwarf Galaxy VCC 2062

    CERN Document Server

    Lisenfeld, U; Duc, P A; Boquien, M; Brinks, E; Bournaud, F; Lelli, F; Charmandaris, V

    2016-01-01

    The physical mechanisms driving star formation (SF) in galaxies are still not fully understood. Tidal dwarf galaxies (TDGs), made of gas ejected during galaxy interactions, seem to be devoid of dark matter and have a near-solar metallicity. The latter makes it possible to study molecular gas and its link to SF using standard tracers (CO, dust) in a peculiar environment. We present a detailed study of a nearby TDG in the Virgo Cluster, VCC 2062, using new high-resolution CO(1--0) data from the Plateau de Bure, deep optical imaging from the Next Generation Virgo Cluster Survey (NGVS), and complementary multiwavelength data. Until now, there was some doubt whether VCC 2062 was a true TDG, but the new deep optical images from the NGVS reveal a stellar bridge between VCC 2062 and its parent galaxy, NGC 4694, which is clear proof of its tidal origin. Several high-resolution tracers (\\halpha, UV, 8~\\mi, and 24~\\mi) of the star formation rate (SFR) are compared to the molecular gas distribution as traced by the CO(1-...

  3. Outside-in Shrinking of the Star-forming Disk of Dwarf Irregular Galaxies

    CERN Document Server

    Zhang, Hong-Xin; Elmegreen, Bruce G; Gao, Yu; Schruba, Andreas

    2011-01-01

    We have studied multi-band surface brightness profiles of a representative sample of 34 nearby dwarf irregular galaxies (dIrrs). Our data include GALEX FUV/NUV, UBV, H\\alpha, and Spitzer 3.6 \\mum images. These galaxies constitute the majority of the LITTLE THINGS survey. By modeling the azimuthal averages of the spectral energy distributions with a complete library of star formation (SF) histories, we derived the stellar mass surface density distributions and the SF rate averaged over three different timescales: the recent 0.1 Gyr, 1 Gyr and a Hubble time. We find that, for \\sim 80% (27 galaxies) of our sample galaxies, radial profiles (at least in the outer part) at shorter wavelengths have shorter disk scale lengths than those at longer wavelengths. This indicates that the star-forming disk has been shrinking. In addition, the radial distributions of the stellar mass surface density are well described as piece-wise exponential profiles, and \\sim 80% of the galaxies have steeper mass profiles in the outer di...

  4. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Science.gov (United States)

    Cognard, Ismaël; Freire, Paulo C. C.; Guillemot, Lucas; Theureau, Gilles; Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Stappers, Benjamin; Lyne, Andrew G.; Bassa, Cees; Desvignes, Gregory; Lazarus, Patrick

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222-0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m p = 1.76 ± 0.06 M ⊙ and a WD mass m c = 1.293 ± 0.025 M ⊙. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10-2 M ⊙) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222-0137 puts that system into a poorly tested parameter range.

  5. Dwarf spheroidal satellites of M31: I. Variable stars and stellar populations in Andromeda XIX

    CERN Document Server

    Cusano, Felice; Garofalo, Alessia; Cignoni, Michele; Federici, Luciana; Marconi, Marcella; Musella, Ilaria; Ripepi, Vincenzo; Boutsia, Konstantina; Fumana, Marco; Gallozzi, Stefano; Testa, Vincenzo

    2013-01-01

    We present B,V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.2') of Andromeda's dwarf spheroidal companions, that we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23'x 23' area centered on And XIX and present the deepest color magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V~26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which, however, extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and 3 of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ( = 0.62 d, \\sigma= 0.03 d) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermedia...

  6. HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star

    Science.gov (United States)

    Bakos, G. Á.; Penev, K.; Bayliss, D.; Hartman, J. D.; Zhou, G.; Brahm, R.; Mancini, L.; de Val-Borro, M.; Bhatti, W.; Jordán, A.; Rabus, M.; Espinoza, N.; Csubry, Z.; Howard, A. W.; Fulton, B. J.; Buchhave, L. A.; Ciceri, S.; Henning, T.; Schmidt, B.; Isaacson, H.; Noyes, R. W.; Marcy, G. W.; Suc, V.; Howe, A. R.; Burrows, A. S.; Lázár, J.; Papp, I.; Sári, P.

    2015-11-01

    We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120 ± 0.012 {M}{{J}}, a radius of {0.563}-0.034+0.046 {R}{{J}}, and an orbital period of 3.1853 days. The host star is a moderately bright (V=13.340\\+/- 0.010 mag, {K}S=10.976\\+/- 0.026 mag) K dwarf star with a mass of 0.849 ± 0.027 {M}⊙ , a radius of {0.815}-0.035+0.049 {R}⊙ , and a metallicity of [{Fe}/{{H}}] =+0.250\\+/- 0.080. The star is photometrically quiet to within the precision of the HATSouth measurements, has low RV jitter, and shows no evidence for chromospheric activity in its spectrum. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18 ± 4% (rock-iron core and H2-He envelope), or 9 ± 4% (ice core and H2-He envelope), i.e., it has a composition broadly similar to that of Uranus and Neptune, and very different from that of Saturn, which has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with accurately (Mauna Kea, the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  7. Dwarf spheroidal satellites of M31. I. Variable stars and stellar populations in Andromeda XIX

    Energy Technology Data Exchange (ETDEWEB)

    Cusano, Felice; Clementini, Gisella; Garofalo, Alessia; Federici, Luciana, E-mail: felice.cusano@oabo.inaf.it, E-mail: gisella.clementini@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: alessia.garofalo@studio.unibo.it [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); and others

    2013-12-10

    We present B, V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.'2) of Andromeda's dwarf spheroidal companions, which we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23' × 23' area centered on And XIX and present the deepest color-magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V ∼ 26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and three of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ((P {sub ab}) = 0.62 days, σ = 0.03 days) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars ((V(RR)) = 25.34 mag, σ = 0.10 mag), we determine a distance modulus of (m – M){sub 0} = 24.52 ± 0.23 mag in a scale where the distance to the Large Magellanic Cloud (LMC) is 18.5 ± 0.1 mag. The ACs follow a well-defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.

  8. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  9. Chemical Abundances of M-dwarfs from the APOGEE Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186

    Science.gov (United States)

    Souto, D.; Cunha, K.; García-Hernández, D. A.; Zamora, O.; Allende Prieto, C.; Smith, V. V.; Mahadevan, S.; Blake, C.; Johnson, J. A.; Jönsson, H.; Pinsonneault, M.; Holtzman, J.; Majewski, S. R.; Shetrone, M.; Teske, J.; Nidever, D.; Schiavon, R.; Sobeck, J.; García Pérez, A. E.; Gómez Maqueo Chew, Y.; Stassun, K.

    2017-02-01

    We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution (R ∼ 22,500) H-band spectra from the SDSS-IV–APOGEE survey. Chemical abundances of 13 elements—C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe—are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H2O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H]Kepler-138 = ‑0.09 ± 0.09 dex and [Fe/H]Kepler-186 = ‑0.08 ± 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by ∼0.1–0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 ± 0.10 for Kepler-138 and 0.52 ± 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.

  10. Follow-up spectroscopic observations of HD 107148 B: A new white dwarf companion of an exoplanet host star

    Science.gov (United States)

    Mugrauer, M.; Dinçel, B.

    2016-07-01

    We report on our follow-up spectroscopy of HD 1071478 B, a recently detected faint co-moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35 arcsec (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co-moving companion, we obtained follow-up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400 K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56±0.05 M_⊙, a luminosity of (2.0±0.2)×10-4 L_⊙, log g [cm s-2])=7.95±0.09, and a cooling age of 2100±270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  11. NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, Kevin L.; Loutrel, Nicholas P.; McCurdy, Nicholas S.; Melso, Nicole D.; Star, Kimberly M.; Terrien, Ryan C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Mace, Gregory N.; McLean, Ian S. [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095 (United States); Young, Michael D.; Rhode, Katherine L. [Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405 (United States); Davy Kirkpatrick, J., E-mail: kluhman@astro.psu.edu [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-12-01

    We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dwarfs that exhibit unusually blue near-IR colors. Among the possible mechanisms that have been previously proposed for the peculiar colors of these L dwarfs, low metallicity does not appear to be a viable explanation for 2MASS J17430860+8526594 since our spectrum of the primary suggests that its metallicity is not significantly subsolar.

  12. Numerical simulations of bubble-induced star formation in dwarf irregular galaxies with a novel stellar feedback scheme

    Science.gov (United States)

    Kawata, Daisuke; Gibson, Brad K.; Barnes, David J.; Grand, Robert J. J.; Rahimi, Awat

    2014-02-01

    To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to Wolf-Lundmark-Melotte, using a new stellar feedback scheme. We use the new version of our original N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star-forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor interstellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from larger spiral galaxies where the non-axisymmetric structures, such as spiral arms, are a main driver of star formation.

  13. The ACS LCID Project: RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy Tucana

    CERN Document Server

    Bernard, Edouard J; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D; Stetson, Peter B; Cole, Andrew A; Drozdovsky, Igor; Hidalgo, Sebastian L; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous, longer period RR Lyrae variables. Through comparison with the predictions of theoretical models of stellar evolution and stellar pulsation, we interpret the fainter RR Lyrae stars as a more metal-rich subsample. In addition, we show that they must be older than about 10 Gyr. Therefore, the metallicity gradient must have appeared very early on in the history of this galaxy.

  14. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    CERN Document Server

    Deason, Alis J; Wechsler, Risa H

    2016-01-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW) mass M_vir ~ 10^12.1 M_sun) halos using a suite of 45 zoom-in, dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z=0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M_star ~ 10^8-10^10 M_sun. Halos with more quiescent accretion histories tend to have lower mass progenitors (10^8-10^9 M_sun), and lower overall accreted stellar masses. Ultra-faint mass (M_star 10^8 M_sun can contribute a considerable fraction (~20-60 %) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surv...

  15. Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    CERN Document Server

    Lodieu, N; Bejar, V J S; Gauza, B; Ruiz, M T; Rebolo, R; Pinfield, D J; Martin, E L

    2014-01-01

    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of...

  16. Long-term stellar activity variations of stars from the HARPS M-dwarf sample: Comparison between activity indices

    CERN Document Server

    da Silva, J Gomes; Bonfils, X

    2010-01-01

    We used four known chromospheric activity indicators to measure long-term activity variations in a sample of 23 M-dwarf stars from the HARPS planet search program. We compared the indices using weighted Pearson correlation coefficients and found that in general (i) the correlation between $S_{CaII}$ and \\ion{Na}{i} is very strong and does not depend on the activity level of the stars, (ii) the correlation between our $S_{CaII}$ and H$\\alpha$ seems to depend on the activity level of the stars, and (iii) there is no strong correlation between $S_{CaII}$ and \\ion{He}{i} for these type of stars.

  17. Magnetic activity in the HARPS M dwarf sample. The rotation-activity relationship for very low-mass stars through

    Science.gov (United States)

    Astudillo-Defru, N.; Delfosse, X.; Bonfils, X.; Forveille, T.; Lovis, C.; Rameau, J.

    2017-03-01

    Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the -index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs - the most numerous stars of the Galaxy - were left out of these analyses and no calibration of their Ca ii H and K emission to an exists to date. Aims: We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the -index that extends to the realm of M dwarfs, and by evaluating the relationship between and the rotation period. Methods: We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the . We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results: The index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the

  18. Magnetospheric Structure and Atmospheric Joule Heating of Habitable Planets Orbiting M-dwarf Stars

    CERN Document Server

    Cohen, O; Glocer, A; Garraffo, C; Poppenhaeger, K; Bell, J M; Ridley, A J; Gombosi, T I

    2014-01-01

    We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic (MHD) models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvenic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvenic sectors, while no bow shock forms in the sub-Alfvenic sectors. The planets reside most of the time in the sub-Alfvenic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the planetary interaction with the stellar wind. For the steady-state solution, the heating is about 0.1-3\\% of the total incoming stellar ir...

  19. NuSTAR AND SWIFT Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii

    Science.gov (United States)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, Will W.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.

  20. New Low-Mass Stars and Brown Dwarfs with Disks in Lupus

    CERN Document Server

    Allen, P R; Myers, P C; Megeath, S T; Allen, L E; Hartmann, L; Fazio, G G

    2007-01-01

    Using the Infrared Array Camera and the Multiband Imaging Photometer aboard the {\\it Spitzer Space Telescope}, we have obtained images of the Lupus 3 star-forming cloud at 3.6, 4.5, 5.8, 8.0, and 24 \\micron. We present photometry in these bands for the 41 previously known members that are within our images. In addition, we have identified 19 possible new members of the cloud based on red 3.6-8.0 \\micron colors that are indicative of circumstellar disks. We have performed optical spectroscopy on 6 of these candidates, all of which are confirmed as young low-mass members of Lupus 3. The spectral types of these new members range from M4.75 to M8, corresponding to masses of 0.2-0.03 $M_\\odot$ for ages of $\\sim1$ Myr according to theoretical evolutionary models. We also present optical spectroscopy of a candidate disk-bearing object in the vicinity of the Lupus 1 cloud, 2M 1541-3345, which Jayawardhana & Ivanov recently classified as a young brown dwarf ($M\\sim0.03$ $M_\\odot$) with a spectral type of M8. In co...

  1. A Pulsation Search Among Young Brown Dwarfs and Very Low Mass Stars

    CERN Document Server

    Cody, Ann Marie

    2014-01-01

    In 2005, Palla & Baraffe proposed that brown dwarfs (BDs) and very low mass stars (VLMSs; <0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated periods of 1-4 hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters $\\sigma$ Orionis, Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able to grow to obs...

  2. A pulsation search among young brown dwarfs and very-low-mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Cody, Ann Marie; Hillenbrand, Lynne A., E-mail: amc@ipac.caltech.edu [California Institute of Technology, Department of Astrophysics, MC 249-17, Pasadena, CA 91125 (United States)

    2014-12-01

    In 2005, Palla and Baraffe proposed that brown dwarfs (BDs) and very-low-mass stars (VLMSs; < 0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated periods of one to four hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters σ Orionis, Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able to grow to observable amplitudes in the early pre-main sequence. In spite of the nondetection, we did uncover a rich set of variability behavior—both periodic and aperiodic—on day to week timescales. We present new compilations of variable sources from our sample, as well as three new candidate cluster members in Chamaeleon I.

  3. Warm Dust around Cool Stars: Field M Dwarfs with WISE 12 or 22 Micron Excess Emission

    CERN Document Server

    Theissen, Christopher A

    2014-01-01

    Using the SDSS DR7 spectroscopic catalog, we searched the WISE AllWISE catalog to investigate the occurrence of warm dust, as inferred from IR excesses, around field M dwarfs (dMs). We developed SDSS/WISE color selection criteria to identify 175 dMs (from 70,841) that show IR flux greater than typical dM photosphere levels at 12 and/or 22 $\\mu$m, including seven new stars within the Orion OB1 footprint. We characterize the dust populations inferred from each IR excess, and investigate the possibility that these excesses could arise from ultracool binary companions by modeling combined SEDs. Our observed IR fluxes are greater than levels expected from ultracool companions ($>3\\sigma$). We also estimate that the probability the observed IR excesses are due to chance alignments with extragalactic sources is $<$ 0.1%. Using SDSS spectra we measure surface gravity dependent features (K, Na, and CaH 3), and find $<$ 15% of our sample indicate low surface gravities. Examining tracers of youth (H$\\alpha$, UV fl...

  4. Discovery of true, likely and possible symbiotic stars in the dwarf spheroidal NGC 205

    CERN Document Server

    Gonçalves, Denise R; de la Rosa, Ignacio G; Akras, Stavros

    2014-01-01

    In this paper we discuss the photometric and spectroscopic observations of newly discovered (symbiotic) systems in the dwarf spheroidal galaxy NGC 205. The Gemini Multi-Object Spectrograph on-off band [O III] 5007 A emission imaging highlighted several [O III] line emitters, for which optical spectra were then obtained (Gon\\c{c}alves et al. 2014). The detailed study of the spectra of three objects allow us to identify them as true, likely and possible symbiotic systems (SySts), the first ones discovered in this galaxy. SySt-1 is unambiguously classified as a symbiotic star, because of the presence of unique emission lines which belong only to symbiotic spectra, the well known O VI Raman scattered lines. SySt-2 is only possibly a SySt because the Ne VII Raman scattered line at 4881 A, recently identified in a well studied Galactic symbiotic as another very conspicuous property of symbiotic, could as well be identified as N III or [Fe III]. Finally, SySt-3 is likely a symbiotic binary because in the red part of...

  5. Thermal and electric conductivities of Coulomb crystals in neutron stars and white dwarfs

    CERN Document Server

    Baiko, D A

    1996-01-01

    Thermal and electric conductivities are calculated for degenerate electrons scattered by phonons in a crystal made of atomic nuclei. The exact phonon spectrum and the Debye--Waller factor are taken into account. Monte Carlo calculations are performed for body-centered cubic (bcc) crystals made of C, O, Ne, Mg, Si, S, Ca, and Fe nuclei in the density range from 10^3 to 10^{11} g cm^{-3} at temperatures lower than the melting temperature but higher than the temperature at which the Umklapp processes begin to be "frozen out". A simplified method of calculation is proposed, which makes it possible to describe the results in terms of simple analytic expressions, to extend these expressions to any species of nucleus, and to consider face-centered cubic (fcc) crystals. The kinetic coefficients are shown to depend tangibly on the lattice type. The results are applicable to studies of heat transfer and evolution of the magnetic field in the cores of white dwarfs and in the crusts of neutron stars. The thermal drift of...

  6. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    CERN Document Server

    Gu, Wei-Min; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche lobe overflow mechanism can be responsible for the observed repeating b...

  7. Self-consistent evolution of accreting low-mass stars and brown dwarfs

    CERN Document Server

    Baraffe, I; Vorobyov, E I; Chabrier, G

    2016-01-01

    We present self-consistent calculations coupling numerical hydrodynamics simulations of collapsing pre-stellar cores and stellar evolution models of accreting objects. We analyse the main impact of consistent accretion history on the evolution and lithium depletion of young low-mass stars and brown dwarfs. These consistent models confirm the generation of a luminosity spread in Herzsprung-Russell diagrams at ages $\\sim$ 1-10 Myr. They also confirm that early accretion can produce objects with abnormal Li depletion, as found in a previous study that was based on arbitrary accretion rates. The results strengthen that objects with anomalously high level of Li depletion in young clusters should be extremely rare. We also find that early phases of burst accretion can produce coeval models of similar mass with a range of different Li surface abundances, and in particular with Li-excess compared to the predictions of non-accreting counterparts. This result is due to a subtle competition between the effect of burst a...

  8. BANYAN. VIII. New Low-Mass Stars and Brown Dwarfs with Candidate Circumstellar Disks

    CERN Document Server

    Boucher, Anne; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K; Doyon, René; Chen, Christine H

    2016-01-01

    We present the results of a search for new circumstellar disks around low-mass stars and brown dwarfs with spectral types >K5 that are confirmed or candidate members of nearby young moving groups. Our search input sample was drawn from the BANYAN surveys of Malo et al. and Gagn\\'e et al. Two-Micron All-Sky Survey and Wide-field Infrared Survey Explorer data were used to detect near- to mid-infrared excesses that would reveal the presence of circumstellar disks. A total of 13 targets with convincing excesses were identified: four are new and nine were already known in the literature. The new candidates are 2MASS J05010082$-$4337102 (M4.5), J08561384$-$1342242 (M8$\\,\\gamma$), J12474428$-$3816464 (M9$\\,\\gamma$) and J02265658$-$5327032 (L0$\\,\\delta$), and are candidate members of the TW Hya ($\\sim10\\pm 3\\,$Myr), Columba ($\\sim 42^{+6}_{-4}\\,$Myr) and Tucana-Horologium ($\\sim 45\\pm 4\\,$Myr) associations, with masses of $120$ and $13-18\\,M_{\\mathrm{Jup}}$. The M8$-$L0 objects in Columba and Tucana-Horologium are po...

  9. Cleaning spectroscopic samples of stars in nearby dwarf galaxies: The use of the nIR MgI line to weed out Milky Way contaminants

    CERN Document Server

    Battaglia, Giuseppina

    2012-01-01

    Dwarf galaxies provide insights on the processes of star formation and chemical enrichment at the low end of the galaxy mass function, as well as on the clustering of dark matter on small scales. In studies of Local Group dwarf galaxies, spectroscopic samples of individual stars are used to derive the internal kinematics and abundance properties of these galaxies. It is therefore important to clean these samples from Milky Way stars, not related to the dwarf galaxy, since they can contaminate the analysis of the properties of these objects. Here we introduce a new diagnostic for separating Milky Way contaminant stars -- that mainly constitute of dwarf stars -- and red giant branch stars targeted in dwarf galaxies. As discriminator we use the trends in the equivalent width of the nIR MgI line at 8806.8 \\AA\\ as a function of the equivalent width of CaII triplet lines. This method is particularly useful for works dealing with multi-object intermediate resolution spectroscopy focusing in the region of the nIR CaI...

  10. THE CHEMICAL SIGNATURE OF A RELIC STAR CLUSTER IN THE SEXTANS DWARF SPHEROIDAL GALAXY-IMPLICATIONS FOR NEAR-FIELD COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Torgny [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Freeman, Ken C. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611 (Australia); Silk, Joe, E-mail: torgny.karlsson@physics.uu.se [Physics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-11-10

    We present tentative evidence for the existence of a dissolved star cluster at [Fe/H] = -2.7 in the Sextans dwarf spheroidal galaxy. We use the technique of chemical tagging to identify stars that are highly clustered in a multi-dimensional chemical abundance space (C-space). In a sample of six stars, three, possibly four, stars are identified as potential cluster stars. The initial stellar mass of the parent cluster is estimated from two independent observations to be M{sub *,init}=1.9{sup +1.5}{sub -0.9}(1.6{sup +1.2}{sub -0.8}) Multiplication-Sign 10{sup 5} M{sub sun}, assuming a Salpeter (Kroupa) initial mass function. If corroborated by follow-up spectroscopy, this star cluster is the most metal-poor system identified to date. Chemical signatures of remnant clusters in dwarf galaxies like Sextans provide us with a very powerful probe to the high-redshift universe. From available observational data, we argue that the average star cluster mass in the majority of the newly discovered ultra-faint dwarf galaxies was notably lower than it is in the Galaxy today and possibly lower than in the more luminous, classical dwarf spheroidal galaxies. Furthermore, the mean cumulative metallicity function of the dwarf spheroidals falls below that of the ultra-faints, which increases with increasing metallicity as predicted from our stochastic chemical evolution model. These two findings, together with a possible difference in the ([Mg/Fe]) ratio suggest that the ultra-faint dwarf galaxy population, or a significant fraction thereof, and the dwarf spheroidal population were formed in different environments and would thus be distinct in origin.

  11. STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY : FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Cole, Andrew A.; Venn, Kim A.; Tolstoy, Eline; Irwin, Mike J.; Szeifert, Thomas; Skillman, Evan D.; McConnachie, Alan W.

    2009-01-01

    We present the first determination of the radial velocities and metallicities of 78 red giant stars in the isolated dwarf irregular galaxy WLM. Observations of the calcium II triplet in these stars were made with FORS2 at the VLT-UT2 in two separated fields of view in WLM, and the [Fe/H] values were

  12. The ACS Nearby Galaxy Survey Treasury. X. Quantifying the Star Cluster Formation Efficiency of Nearby Dwarf Galaxies

    CERN Document Server

    Cook, David O; Dale, Daniel A; Johnson, L Clifton; Weisz, Daniel R; Fouesneau, Morgan; Olsen, Knut A G; Engelbracht, Charles W; Dalcanton, Julianne J

    2012-01-01

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t_age < 100Myr) cluster sample. Our data provides the first constraints on two proposed relationships between the star formation rate of galaxies and the properties of their cluster systems in the low star formation rate regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data suggesting there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample gala...

  13. Two planets around Kapteyn's star : a cold and a temperate super-Earth orbiting the nearest halo red-dwarf

    CERN Document Server

    Anglada-Escudé, Guillem; Tuomi, Mikko; Zechmeister, Mathias; Jenkins, James S; Ofir, Aviv; Dreizler, Stefan; Gerlach, Enrico; Marvin, Chris J; Reiners, Ansgar; Jeffers, Sandra V; Butler, R Paul; Vogt, Steven S; Amado, Pedro J; Rodríguez-López, Cristina; Berdiñas, Zaira M; Morin, Julian; Crane, Jeff D; Shectman, Stephen A; Thompson, Ian B; Díaz, Mateo; Rivera, Eugenio; Sarmiento, Luis F; Jones, Hugh R A

    2014-01-01

    Exoplanets of a few Earth masses can be now detected around nearby low-mass stars using Doppler spectroscopy. In this paper, we investigate the radial velocity variations of Kapteyn's star, which is both a sub-dwarf M-star and the nearest halo object to the Sun. The observations comprise archival and new HARPS, HIRES and PFS Doppler measurements. Two Doppler signals are detected at periods of 48 and 120 days using likelihood periodograms and a Bayesian analysis of the data. Using the same techniques, the activity indicies and archival ASAS-3 photometry show evidence for low-level activity periodicities of the order of several hundred days. However, there are no significant correlations with the radial velocity variations on the same time-scales. The inclusion of planetary Keplerian signals in the model results in levels of correlated and excess white noise that are remarkably low compared to younger G, K and M dwarfs. We conclude that Kapteyn's star is most probably orbited by two super-Earth mass planets, on...

  14. The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Young Clusters

    Science.gov (United States)

    Luhman, K. L.; Rieke, G. H.; Young, Erick T.; Cotera, Angela S.; Chen, H.; Rieke, Marcia J.; Schneider, Glenn; Thompson, Rodger I.

    2000-09-01

    We have obtained images of the Trapezium Cluster (140''×140'' 0.3 pc×0.3 pc) with the Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). Combining these data with new ground-based K-band spectra (R=800) and existing spectral types and photometry, we have constructed an H-R diagram and used it and other arguments to infer masses and ages. To allow comparison with the results of our previous studies of IC 348 and ρ Oph, we first use the models of D'Antona & Mazzitelli. With these models, the distributions of ages of comparable samples of stars in the Trapezium, ρ Oph, and IC 348 indicate median ages of ~0.4 Myr for the first two regions and ~1-2 Myr for the latter. The low-mass initial mass functions (IMFs) in these sites of clustered star formation are similar over a wide range of stellar densities (ρ Oph, n=0.2-1×103 pc-3 IC 348, n=1×103 pc-3 Trapezium, n=1-5×104 pc-3) and other environmental conditions (e.g., presence or absence of OB stars). With current data, we cannot rule out modest variations in the substellar mass functions among these clusters. We then make the best estimate of the true form of the IMF in the Trapezium by using the evolutionary models of Baraffe et al. and an empirically adjusted temperature scale and compare this mass function to recent results for the Pleiades and the field. All of these data are consistent with an IMF that is flat or rises slowly from the substellar regime to about 0.6 Msolar and then rolls over into a power law that continues from about 1 Msolar to higher masses with a slope similar to or somewhat larger than the Salpeter value of 1.35. For the Trapezium, this behavior holds from our completeness limit of ~0.02 Msolar and probably, after a modest completeness correction, even from 0.01-0.02 Msolar. These data include ~50 likely brown dwarfs. We test the predictions of theories of the IMF against (1) the shape of the IMF, which is not log-normal, in clusters and the field, (2) the

  15. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  16. An aluminum/calcium-rich, iron-poor, white dwarf star: evidence for an extrasolar planetary lithosphere?

    CERN Document Server

    Zuckerman, B; Dufour, P; Melis, Carl; Klein, B; Jura, M

    2011-01-01

    The presence of elements heavier than helium in white dwarf atmospheres is often a signpost for the existence of rocky objects that currently or previously orbited these stars. We have measured the abundances of various elements in the hydrogen-atmosphere white dwarfs G149-28 and NLTT 43806. In comparison with other white dwarfs with atmospheres polluted by heavy elements, NLTT 43806 is substantially enriched in aluminum but relatively poor in iron. We compare the relative abundances of Al and eight other heavy elements seen in NLTT 43806 with the elemental composition of bulk Earth, with simulated extrasolar rocky planets, with solar system meteorites, with the atmospheric compositions of other polluted white dwarfs, and with the outer layers of the Moon and Earth. Best agreement is found with a model that involves accretion of a mixture of terrestrial crust and upper mantle material onto NLTT 43806. The implication is that NLTT 43806 is orbited by a differentiated rocky planet, perhaps quite similar to Eart...

  17. Cool Companions to White Dwarf Stars from the Two Micron All Sky Survey All Sky Data Release

    CERN Document Server

    Hoard, D W; Sturch, L K; Widhalm, A M; Weiler, K P; Pretorius, M L; Wellhouse, J W; Gibiansky, M; Sturch, Laura K.; Widhalm, Allison M.; Weiler, Kevin P.; Pretorius, Magaretha L.; Wellhouse, Joseph W.; Gibiansky, Maxsim

    2007-01-01

    We present the culmination of our near-infrared survey of the optically spectroscopically identified white dwarf stars from the McCook & Sion catalog, conducted using photometric data from the Two Micron All Sky Survey final All Sky Data Release. The color-selection technique, which identifies candidate binaries containing a white dwarf and a low mass stellar (or sub-stellar) companion via their distinctive locus in the near-infrared color-color diagram, is demonstrated to be simple to apply and to yield candidates with a high rate of subsequent confirmation. We recover 105 confirmed binaries, and identify 28 firm candidates (20 of which are new to this work) and 21 tentative candidates (17 of which are new to this work) from the 2MASS data. Only a small number of candidates from our survey have likely companion spectral types later than M5, none of which is an obvious L type (i.e., potential brown dwarf) companion. Only one previously known WD + brown dwarf binary is detected. This result is discussed in...

  18. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    Science.gov (United States)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  19. Constraining the nature of dark matter with the star formation history of the faintest Local Group dwarf galaxy satellites

    CERN Document Server

    Chau, Alice; Governato, Fabio

    2016-01-01

    $\\Lambda$-Warm Dark Matter (WDM) has been proposed as alternative scenario to $\\Lambda$ cold dark matter (CDM), motivated by discrepancies at the scale of dwarf galaxies, with less small-scale power and realized by collisionless particles with energies in the range $1-3$ keV. We present a new approach to constrain the viability of such WDM models using star formation histories of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high time-resolution star formation histories (SFHs) obtained with HST-based color magnitude diagrams with the range of possible collapse redshifts of their dark matter halos expected in CDM and in different WDM scenarios. The collapse redshift is inferred after determining a plausible infall mass of the subhalo. This is based on the current mass of individual dwarf inferred from stellar kinematics combined with results of cosmological simulations providing information on the subhalo evolution. Since WDM subhalos close to the filtering mass scale form signific...

  20. NuSTAR observations of the Dwarf Nova GK Persei in 2015: comparison between outburst and quiescent phases

    CERN Document Server

    Wada, Yuuki; Nakazawa, Kazuhiro; Makishima, Kazuo; Hayashi, Takayuki; Ishida, Manabu

    2016-01-01

    We report on NuSTAR observations of the Intermediate Polar GK Persei which also behaves as a Dwarf Nova. It exhibited a Dwarf Nova outburst in 2015 March-April. The object was observed in 3-79 keV X-rays with NuSTAR, once at the outburst peak, and again in 2015 September during quiescence. The 5-50 keV flux during the outburst was 26 times higher than that during the quiescence. With a multi-temperature emission model and a reflection model, we derived the post-shock temperature as 19.2 +/- 0.7 keV in the outburst, and 38.5 +4.1/-3.6 keV in the quiescence. This temperature difference is considered to reflect changes in the radius at which the accreting matter, forming an accretion disk, is captured by the magnetosphere of the white dwarf (WD). Assuming that this radius scales as the power of -2/7 of the mass accretion rate, and utilizing the two temperature measurements, as well as the standard mass-radius relation of WDs, we determined the WD mass in GK Persei as 0.90 +/- 0.06 solar masses. The magnetic fiel...

  1. The angular sizes of dwarf stars and subgiants - Non-linear surface brightness relations in BVRcIc from interferometry

    CERN Document Server

    Kervella, Pierre

    2008-01-01

    Context: The prediction of stellar angular diameters from broadband photometry plays an important role for different applications. In particular, long-baseline interferometry, gravitational microlensing, extrasolar planet transits, and many other observing techniques require accurate predictions of the angular size of stars. These predictions are based on the surface brightness-colour (SBC) relations. Aims: Our goal is to calibrate general-purpose SBC relations using visible colours, the most commonly available data for most stars. Methods: We compiled the existing long-baseline interferometric observations of nearby dwarf and subgiant stars and the corresponding broadband photometry in the Johnson B V and Cousins Rc Ic bands. We then adjusted polynomial SBC models to these data. Results: Due to the presence of spectral features that depend on the effective temperature, the SBC relations are usually not linear for visible colours. We present polynomial fits that can be employed with BVRcIc based colours to pr...

  2. Detection of binary and multiple systems among rapidly rotating K and M dwarf stars from Kepler data

    CERN Document Server

    Oláh, Katalin; Joss, Matthew

    2016-01-01

    From an examination of ~18,000 Kepler light curves of K- and M-stars we find some 500 which exhibit rotational periods of less than 2 days. Among such stars, approximately 50 show two or more incommensurate periodicities. We discuss the tools that allow us to differentiate between rotational modulation and other types of light variations, e.g., due to pulsations or binary modulations. We find that these multiple periodicities are independent of each other and likely belong to different, but physically bound, stars. This scenario was checked directly by UKIRT and adaptive optics imaging, time-resolved Fourier transforms, and pixel-level analysis of the data. Our result is potentially important for discovering young multiple stellar systems among rapidly rotating K- and M-dwarfs.

  3. Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models: I. Parameter accuracy and benchmark stars

    CERN Document Server

    Passegger, Vera Maria; Reiners, Ansgar

    2016-01-01

    M-dwarf stars are the most numerous stars in the Universe; they span a wide range in mass and are in the focus of ongoing and planned exoplanet surveys. To investigate and understand their physical nature, detailed spectral information and accurate stellar models are needed. We use a new synthetic atmosphere model generation and compare model spectra to observations. To test the model accuracy, we compared the models to four benchmark stars with atmospheric parameters for which independent information from interferometric radius measurements is available. We used $\\chi^2$ -based methods to determine parameters from high-resolution spectroscopic observations. Our synthetic spectra are based on the new PHOENIX grid that uses the ACES description for the equation of state. This is a model generation expected to be especially suitable for the low-temperature atmospheres. We identified suitable spectral tracers of atmospheric parameters and determined the uncertainties in $T_{\\rm eff}$, $\\log{g}$, and [Fe/H] resul...

  4. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry

    CERN Document Server

    Britavskiy, N E; Mehner, A; Boyer, M L; McQuinn, K B W

    2015-01-01

    Increasing the statistics of spectroscopically confirmed evolved massive stars in the Local Group enables the investigation of the mass loss phenomena that occur in these stars in the late stages of their evolution. We aim to complete the census of luminous mid-IR sources in star-forming dwarf irregular (dIrr) galaxies of the Local Group. To achieve this we employed mid-IR photometric selection criteria to identify evolved massive stars, such as red supergiants (RSGs) and luminous blue variables (LBVs), by using the fact that these types of stars have infrared excess due to dust. The method is based on 3.6 $\\mu$m and 4.5 $\\mu$m photometry from archival ${\\it Spitzer}$ Space Telescope images of nearby galaxies. We applied our criteria to 4 dIrr galaxies: Pegasus, Phoenix, Sextans A, and WLM, selecting 79 point sources, which we observed with the VLT/FORS2 spectrograph in multi-object spectroscopy mode. We identified 13 RSGs, of which 6 are new discoveries, also 2 new emission line stars, and 1 candidate yellow...

  5. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  6. Ultra-faint dwarf galaxies as a test of early enrichment and metallicity-dependent star formation

    CERN Document Server

    Tassis, Konstantinos; Kravtsov, Andrey V

    2011-01-01

    The tight relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because the abundance of molecular hydrogen is sensitive to the abundance of dust, which catalyzes the formation of H_2 and helps to shield it from dissociating radiation. In this study we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H_2-based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption time scale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value sta...

  7. Chemical analysis of carbon stars in the Local Group: I. The Small Magellanic Cloud and the Sagittarius dwarf spheroidal galaxy

    CERN Document Server

    De Laverny, P; Dominguez, I; Plez, B; Straniero, O; Wahlin, R; Eriksson, K; Jørgensen, U G

    2005-01-01

    We present the first results of our ongoing chemical study of carbon stars in the Local Group of galaxies. We used spectra obtained with UVES at the 8.2 m Kueyen-VLT telescope and a new grid of spherical model atmospheres for cool carbon-rich stars which include polyatomic opacities, to perform a full chemical analysis of one carbon star, BMB-B~30, in the Small Magellanic Cloud (SMC) and two, IGI95-C1 and IGI95-C3, in the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy. Our main goal is to test the dependence on the stellar metallicity of the s-process nucleosynthesis and mixing mechanism occurring in AGB stars. For these three stars, we find important s-element enhancements with respect to the mean metallicity ([M/H]), namely [s/M]$\\approx$+1.0, similar to the figure found in galactic AGB stars of similar metallicity. The abundance ratios derived between elements belonging to the first and second s-process abundance peaks, corresponding to nuclei with a magic number of neutrons N=50 (88Sr, 89Y, 90Zr) and N=82...

  8. L-dwarf variability Magnetic star spots or non-uniform clouds?

    CERN Document Server

    Gelino, C R; Holtzmann, J A; Ackerman, A S; Lodders, K; Gelino, Christopher R.; Marley, Mark S.; Holtzman, Jon A.; Ackerman, Andrew S.; Lodders, Katharina

    2001-01-01

    The recent discovery of photometric variations in L dwarfs has opened a discussion on the cause of the variations. We argue against the existence of magnetic spots in these atmospheres and favor the idea that non-uniform condensate coverage (i.e. clouds) is responsible for the variations. The magnetic Reynolds number (Rm) in the atmosphere of L dwarfs, which describes how well the gas couples with the magnetic field, is too small (<<1) to support the formation of magnetic spots. In constrast silicate and iron clouds form in the photospheres of L dwarfs. Inhomogeneities in such cloud decks can plausibly produce the observed photometric variations. Further evidence in support of clouds is the tendency for variable L dwarfs to be bluer in J-Ks than the average L dwarf of a given spectral type. This color effect is expected if clear holes appear in an otherwise uniform cloud layer.

  9. Herschel/PACS view of disks around low-mass stars and brown dwarfs in the TW Hya association

    CERN Document Server

    Liu, Yao; Gong, Munan; Allers, Katelyn N; Brown, Joanna M; Kraus, Adam L; Liu, Michael C; Shkolnik, Evgenya L; van Dishoeck, Ewine F

    2014-01-01

    We conducted Herschel/PACS observations of five very low-mass stars or brown dwarfs located in the TW Hya association with the goal of characterizing the properties of disks in the low stellar mass regime. We detected all five targets at $70\\,\\mu{\\rm{m}}$ and $100\\,\\mu{\\rm{m}}$ and three targets at $160\\,\\mu{\\rm{m}}$. Our observations, combined with previous photometry from 2MASS, WISE, and SCUBA-2, enabled us to construct SEDs with extended wavelength coverage. Using sophisticated radiative transfer models, we analyzed the observed SEDs of the five detected objects with a hybrid fitting strategy that combines the model grids and the simulated annealing algorithm and evaluated the constraints on the disk properties via the Bayesian inference method. The modelling suggests that disks around low-mass stars and brown dwarfs are generally flatter than their higher mass counterparts, but the range of disk mass extends to well below the value found in T Tauri stars, and the disk scale heights are comparable in both...

  10. Brown dwarfs and planetary mass objects in star-forming regions. (Spanish Title: Enanas marrones y objetos de masas planetarias en regiones de formación estelar)

    Science.gov (United States)

    Gómez, M.

    In this contribution we present the properties of substellar mass objects and discuss the different formation mechanisms of brown dwarfs. In particular we analyze the so-called T Tauri formation mode, with disks and jets, and its implications for the existence of planetary systems associated with subestellar mass objects or brown dwarfs. We also briefly discuss the properties of planemos (planetary mass objects). Finally we consider the contribution of these objects to the Initial Mass Function (IMF). Although brown dwarfs and planetary mass objects seem to be as common as stars in the Galaxy, their precise contribution to the IMF still remains uncertain.

  11. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs

    Science.gov (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold

    2017-09-01

    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  12. Novae from isolated white dwarfs as a source of helium for second generation stars in globular clusters

    CERN Document Server

    Maccarone, Thomas J

    2011-01-01

    We explore the possible contribution of classical and recurrent novae from isolated white dwarfs accreting from the intracluster medium to the abundances of "second generation" globular cluster stellar populations. We show that under reasonable assumptions the helium abundances of clusters can be enhanced substantially by these novae and argue that novae should be considered as an important, and perhaps even dominant channel in the evolution of the intracluster medium. We also discuss a possible test for whether helium enhancement really is the cause of the multiple main sequences in globular clusters that is independent of the positions of stars in the color-magnitude diagram.

  13. A close look at the Centaurus A group of galaxies III. Recent star formation histories of late-type dwarfs around M83

    CERN Document Server

    Crnojević, D; Cole, A A

    2011-01-01

    We study the resolved stellar populations of dwarf galaxies in the nearby Centaurus A/M83 group of galaxies. Our goal is to characterize their evolutionary history and to investigate eventual similarities or differences with the dwarf population in other group environments. This work presents the analysis of five late-type (irregular) dwarfs found in the vicinity of the giant spiral M83. Using archival HST/ACS data, we perform synthetic color-magnitude diagram modeling to derive the star formation histories of these late-type dwarfs. The target objects show heterogeneous star formation histories, with average star formation rates of 0.08 to 0.70x10^{-2} M_odot/yr. Some of them present prolonged, global bursts of star formation (~300-500 Myr). The studied galaxies are all metal-poor ([Fe/H] ~-1.4). We further investigate the spatial extent of different stellar populations, finding that the young stars show a clumpy distribution, as opposed to the smooth, broad extent of the old ones. The actively star forming ...

  14. Hubble Space Telescope study of resolved red giant stars in the outer halos of nearby dwarf starburst galaxies

    CERN Document Server

    Ryś, Agnieszka; van der Marel, Roeland P; Aloisi, Alessandra; Annibali, Francesca

    2011-01-01

    [abridged] Aims. We observed the outer parts of NGC 1569 and NGC 4449, two of the closest and strongest dwarf starburst galaxies in the local universe, to characterize their stellar density and populations, and obtain new insights into the structure, formation, and evolution of starburst galaxies and galaxy halos. Methods. We obtained HST/WFPC2 images between 5 and 8 scale radii from the center, along the intermediate and minor axes. We performed point-source photometry to determine color magnitude diagrams of I vs. V-I. We compared the results at different radii, including also our prior HST/ACS results for more centrally located fields. Results. We detect stars in the RGB and TP-AGB (carbon star) phases in all outer fields, but not younger stars such as those present at smaller radii. The RGB star density profile is well fit by either a de Vaucouleurs profile or a power-law profile, but has more stars at large radii than a single exponential. To within the uncertainties, there are no radial gradients in the...

  15. The Sagittarius Dwarf spheroidal Galaxy Survey (SDGS); 2, The stellar content and constraints on the star formation history

    CERN Document Server

    Bellazzini, M; Buonanno, R; Bellazzini, Michele; Ferraro, Francesco R.; Buonanno, Roberto

    1999-01-01

    A detailed study of the Star Formation History of the Sgr dSph galaxy is performed through the analysis of the data from the Sagittarius Dwarf Galaxy Survey (SDGS; Bellazzini, Ferraro & Buonanno 1999). Accurate statistical decontamination of the SDGS Color - Magnitude diagrams allow us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different region of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~ -2.0 to [Fe/H]~ -0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the Star Formation History of the Sgr is derived. According to this scheme, star formation began at very early time from a low metal content Inter Stellar Medium and lasted for several Gyr, coupled with progressive chemical enrichment. The Star Formation Rate (SFR) had a peak from 8 to 10 gyr ago when the mean metallicity ...

  16. Investigating the rotational evolution of very low-mass stars and brown dwarfs in young clusters using Monte Carlo simulations

    CERN Document Server

    Vasconcelos, M J

    2016-01-01

    Context. Very low-mass (VLM) stars and brown dwarfs (BDs) present a different rotational behaviour from their solar mass counter-parts. Aims. We investigate the rotational evolution of young VLM stars and BDs using Monte Carlo simulations under the hypothesis of disk locking and stellar angular momentum conservation. Methods. We built a set of objects with masses ranging from 0.01 Mo to 0.4 Mo and considered models with single- and double- peaked initial period distributions with and without disk locking. An object is considered to be diskless when its mass accretion rate is below a given threshold. Results. Models with initial single-peaked period distributions reproduce the observations well given that BDs rotate faster than VLM stars. We observe a correlation between rotational period and mass when we relax the disk locking hypothesis, but with a shallower slope compared to some observational results. The angular momentum evolution of diskless stars is flatter than it is for stars with a disk which occurs ...

  17. Asteroseismology of hot pre-white dwarf stars: the case of the DOV stars PG 2131+066 and PG 1707+427, and the PNNV star NGC 1501

    CERN Document Server

    Córsico, A H; Bertolami, M M Miller; García--Berro, E

    2009-01-01

    We present an asteroseismological study on the two high-gravity pulsating PG1159 (GW Vir or DOV) stars, PG 2131+066 and PG 1707+427, and on the pulsating [WCE] star NGC 1501. We compute adiabatic $g$-mode pulsation periods on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Msun. These models take into account the complete evolution of progenitor stars, through the thermally pulsing AGB phase, and born-again episode. We constrain the stellar mass of PG 2131+066, PG 1707+427 and NGC 1501 by comparing the observed period spacing with the asymptotic period spacing and with the average of the computed period spacings. We also employ the individual observed periods in search of representative seismological models for each star. This work closes our short series of asteroseismological studies on pulsating pre-white dwarf stars. Our results demonstrate the usefulness of asteroseismology for probing the internal structure and evolutionary status of pre-white dwarf stars. In particular, aster...

  18. New M, L, and T Dwarf Companions to Nearby Stars from the Wide-field Infrared Survey Explorer

    CERN Document Server

    Luhman, Kevin L; McCurdy, Nicholas S; Mace, Gregory N; Melso, Nicole D; Star, Kimberly M; Young, Michael D; Terrien, Ryan C; McLean, Ian S; Kirkpatrick, J Davy; Rhode, Katherine L

    2012-01-01

    We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dw...

  19. Compact Stellar Systems in the Fornax Cluster Super-massive Star Clusters or Extremely Compact Dwarf Galaxies?

    CERN Document Server

    Drinkwater, M J; Gregg, M D; Phillipps, S

    2000-01-01

    We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes -13dwarf galaxies. These objects are all within 30 arcminutes of the central galaxy of the cluster, NGC 1399, but are distributed over larger radii than the globular cluster system of that galaxy. We suggest that these objects are either super-massive star clusters (intra-cluster globular clusters or tidally stripped nuclei of dwarf galaxies) or a new type of low-luminosity compact elliptical dwarf (M32-type) galaxy. The best way to test these hypotheses will be to obtain high resolution imaging and high-dispersion spectroscopy to determine their structures and mass-to-light ratios. This will allow us ...

  20. An upper limit to the secular variation of the gravitational constant from white dwarf stars

    CERN Document Server

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Isern, Jordi

    2011-01-01

    A variation of the gravitational constant over cosmological ages modifies the main sequence lifetimes and white dwarf cooling ages. Using an state-of-the-art stellar evolutionary code we compute the effects of a secularly varying G on the main sequence ages and, employing white dwarf cooling ages computed taking into account the effects of a running G, we place constraints on the rate of variation of Newton's constant. This is done using the white dwarf luminosity function and the distance of the well studied open Galactic cluster NGC 6791. We derive an upper bound G'/G ~ -1.8 10^{-12} 1/yr. This upper limit for the secular variation of the gravitational constant compares favorably with those obtained using other stellar evolutionary properties, and can be easily improved if deep images of the cluster allow to obtain an improved white dwarf luminosity function.

  1. The Effects of Element Diffusion on the Pulsational Properties of Variable DA White Dwarf Stars

    CERN Document Server

    Corsico, A H; Althaus, L G; Serenelli, A M

    2002-01-01

    We explore the effects of element diffusion due to gravitational settling and thermal and chemical diffusion on the pulsational properties of DA white dwarfs. To this end, we employ an updated evolutionary code coupled with a pulsational, finite difference code for computing the linear, non-radial g-modes in the adiabatic approximation. We follow the evolution of a 0.55 \\msun white dwarf model in a self-consistent way with the evolution of chemical abundance distribution as given by time dependent diffusion processes. Results are compared with the standard treatment of diffusive equilibrium in the trace element approximation. Appreciable differences are found between the two employed treatments. We conclude that time dependent element diffusion plays an important role in determining the whole oscillation pattern and the temporal derivative of the periods in DAV white dwarfs. In addition, we discuss the plausibility of the standard description employed in accounting for diffusion in most of white dwarf asteros...

  2. Toward the End of Stars: Discovering the Galaxy's Coldest Brown Dwarfs

    CERN Document Server

    Burgasser, Adam J; Cruz, Kelle; Cushing, Michael; Leggett, Sandy; Lodders, Katharina; Mainzer, Amanda; Marley, Mark; Metchev, Stanimir; Mohanty, Subhanjoy; Oppenheimer, Ben; West, Andrew

    2009-01-01

    This White Paper to the National Academy of Sciences Astro2010 Decadal Review Committee highlights cross-disciplinary science opportunities over the next decade with cold brown dwarfs, sources defined here as having photospheric temperatures less than ~1000 K.

  3. Chemo-orbital evidence from SDSS/SEGUE G dwarf stars for a mixed origin of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    van de Ven G.

    2012-02-01

    Full Text Available About 13,000 G dwarf within 7stars and smoothly extends into a thick disk with α-enhanced stars, consistent with an in-situ formation through radial migration. On the other hand, the metal-poor population with enhanced α-abundance, higher scale height, and disperse kinematical properties, is difficult to explain with radial migration but might have originated from gas-rich mergers. The thick disk of the Milky Way seems to have a mixed origin.

  4. Diagnostics of models and observations in the contexts of exoplanets, brown dwarfs, and very low-mass stars.

    Science.gov (United States)

    Kopytova, Taisiya

    2016-01-01

    When studying isolated brown dwarfs and directly imaged exoplanets with insignificant orbital motion,we have to rely on theoretical models to determine basic parameters such as mass, age, effective temperature, and surface gravity.While stellar and atmospheric models are rapidly evolving, we need a powerful tool to test and calibrate them.In my thesis, I focussed on comparing interior and atmospheric models with observational data, in the effort of taking into account various systematic effects that can significantly influence the data analysis.As a first step, about 460 candidate member os the Hyades were screened for companions using diffraction limited imaging observation (both our own data and archival data). As a result I could establish the single star sequence for the Hyades comprising about 250 stars (Kopytova et al. 2015, accepted to A&A). Open clusters contain many coeval objects of the same chemical composition and age, and spanning a range of masses. We compare the obtained sequence with a set of theoretical isochrones identifying systematic offsets and revealing probable issues in the models.However, there are many cases when it is impossible to test models before comparing them with observations.As a second step, we apply atmospheric models for constraining parameters of WISE 0855-07, the coolest known Y dwarf(Kopytova et al. 2014, ApJ 797, 3). We demonstrate the limits of constraining effective temperature and the presence/absence of water clouds.As a third step, we introduce a novel method to take into account the above-mentioned systematics. We construct a "systematics vector" that allows us to reveal problematic wavelength ranges when fitting atmospheric models to observed near-infrared spectraof brown dwarfs and exoplanets (Kopytova et al., in prep.). This approach plays a crucial role when retrieving abundances for these objects, in particularly, a C/O ratio. The latter parameter is an important key to formation scenarios of brown dwarf and

  5. The mass donor star and the accretion disc of the dwarf nova V2051 Ophiuchi in the infrared

    Science.gov (United States)

    Wojcikiewicz, Eduardo; Baptista, Raymundo; Ribeiro, Tiago

    2016-07-01

    We report the analysis of infrared JHK_s high speed photometry of the dwarf nova V2051 Oph in quiescence. We model the ellipsoidal variations in the light curve to measure the fluxes of the mass donor star. Its colors are consistent with an M8 ± 1 spectral type with an equivalent blackbody temperature of T_{bb}= (2700± 300) K, in agreement with spectroscopic measurements and with theoretical expectation for donor stars at the same orbital period. We use the mass donor star fluxes and the Barnes & Evans relation to find a photometric parallax distance of (102 ± 16) pc to the binary. At this distance the outbursts of V2051 Oph occur at disc temperatures everywhere lower than the minimum/critical temperature predicted by the disc instability model, underscoring previous suggestions that they are powered by mass transfer bursts. We subtract the contribution of the mass donor star and apply eclipse mapping techniques to the remaining light curve in order to investigate the structure and emission of its accretion disc. The infrared accretion disc is bright and 'blue' in the inner regions and becomes progressively fainter and redder with increasing radii, indicating that the disc temperature decreases with radius. Bulges in the eclipse shape, more prominent in the H and K_s bands, lead to asymmetric arcs in the eclipse maps reminiscent of the spiral arms found in disc maps of outbursting dwarf novae. The arcs show an azimuthal extent of ˜90^o, extend from the intermediate to the outer disc regions (0.3-0.4 R_{L1}, where R_{L1} is the distance from disc center to the inner lagrangian point), and account for ≃ 30 per cent of the total flux in the H and K_s bands.

  6. A search for companions to brown dwarfs in the Taurus and Chamaeleon star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, K. O.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Konopacky, Q. M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); McLeod, K. K. [Whitin Observatory, Wellesley College, Wellesley, MA 02481 (United States); Apai, D.; Pascucci, I. [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Ghez, A. M. [Division of Astronomy and Astrophysics, University of California, Los Angeles, CA 90095 (United States); Robberto, M., E-mail: todorovk@phys.ethz.ch [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-06-10

    We have used WFPC2 on board the Hubble Space Telescope to obtain images of 47 members of the Taurus and Chamaeleon I star-forming regions that have spectral types of M6-L0 (M ∼ 0.01-0.1 M {sub ☉}). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. In these images, we have identified promising candidate companions to 2MASS J04414489+2301513 (ρ = 0.''105/15 AU), 2MASS J04221332+1934392 (ρ = 0.''05/7 AU), and ISO 217 (ρ = 0.''03/5 AU). We reported the first candidate in a previous study, showing that it has a similar proper motion as the primary in images from WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon I, and Upper Sco (τ ∼ 10 Myr), we measure binary fractions of 14/93 = 0.15{sub −0.03}{sup +0.05} for M4-M6 (M ∼ 0.1-0.3 M {sub ☉}) and 4/108 = 0.04{sub −0.01}{sup +0.03} for >M6 (M ≲ 0.1 M {sub ☉}) at separations of >10 AU. Given the youth and low density of these regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon I than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming.

  7. Limits on a Gravitational Field Dependence of the Proton--Electron Mass Ratio from H$_2$ in White Dwarf Stars

    CERN Document Server

    Bagdonaite, Julija; Preval, Simon P; Barstow, Martin A; Barrow, John D; Murphy, Michael T; Ubachs, Wim

    2014-01-01

    Spectra of molecular hydrogen (H$_2$) are employed to search for a possible proton-to-electron mass ratio ($\\mu$) dependence on gravity. The Lyman transitions of H$_2$, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions ($T \\sim 13\\,000$ K) of their photospheres. We derive sensitivity coefficients $K_i$ which define how the individual H$_2$ transitions shift due to $\\mu$-dependence. The spectrum of white dwarf star GD133 yields a $\\Delta\\mu/\\mu$ constraint of $(-2.7\\pm4.7_{\\rm stat}\\pm 0.2_{\\rm sys})\\times10^{-5}$ for a local environment of a gravitational potential $\\phi\\sim10^4\\ \\phi_\\textrm{Earth}$, while that of G29$-$38 yields $\\Delta\\mu/\\mu=(-5.8\\pm3.8_{\\rm stat}\\pm 0.3_{\\rm sys})\\times10^{-5}$ for a potential of $2 \\times 10^4$ $\\phi_\\textrm{Earth}$.

  8. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star

    Energy Technology Data Exchange (ETDEWEB)

    Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.; Ellis,Richard S.; Conley, Alexander J.; Le Borgne, Damien; Carlberg, RaymondG.; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook,Isobel M.; Hsiao, Eric Y.; Neill, James D.; Pain, Reynald; Perrett,Kathryn M.; Pritchet, Christopher J.

    2006-02-01

    The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionally high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.

  9. Photometric Study on Stellar Magnetic Activity: I. Flare Variability of Red Dwarf Stars in the Open Cluster M37

    CERN Document Server

    Chang, S -W; Hartman, J D

    2015-01-01

    Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2500 red dwarfs and successfully identified 420 flare events from 312 cluster M dwarf stars. For each flare light curve, we derived observational and physical parameters, such as flare shape, peak amplitude, duration, energy, and peak luminosity. We show that cool stars produce serendipitous flares energetic enough to be observed in the $r$-band, and their temporal and peak characteristics are almost the same as those in traditional $U$-band observations. We also found many large-amplitude flares with inferred $\\Delta u > 6$ mag in the cluster sample which had been rarely reported in previous ground-based observations. Following the ergodic hypothesis, we investigate in detail statistical properties of flare parameters over a range of energy ($E_{r}$ $\\simeq$ $10^{31}-10^{34}$ erg). As expected, there are no statistical differences in the distributions of flare timescales, energies, and freque...

  10. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98

    OpenAIRE

    Melbourne, J; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D.C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the ...

  11. Probing the boundary between star clusters and dwarf galaxies: A MUSE view on the dynamics of Crater/Laevens I

    Science.gov (United States)

    Voggel, Karina; Hilker, Michael; Baumgardt, Holger; Collins, Michelle L. M.; Grebel, Eva K.; Husemann, Bernd; Richtler, Tom; Frank, Matthias J.

    2016-08-01

    We present MUSE observations of the debated ultrafaint stellar system Crater. We spectroscopically confirm 26 member stars of this system via radial velocity measurements. We derive the systematic instrumental velocity uncertainty of MUSE spectra to be 2.27 km s- 1. This new data set increases the confirmed member stars of Crater by a factor of 3. One out of three bright blue stars and a fainter blue star just above the main-sequence turn-off are also found to be likely members of the system. The observations reveal that Crater has a systemic radial velocity of v_sys=148.18^+1.08_-1.15 km s^{-1}, whereas the most likely velocity dispersion of this system is σ _v=2.04^+2.19_-1.06 km s^{-1}. The total dynamical mass of the system, assuming dynamical equilibrium is then M_tot=1.50^{+4.9}_{-1.2}× 10^5 M_{⊙} implying a mass-to-light ratio of M/LV = 8.52^{+28.0}_{-6.5} M_{⊙}/L_{⊙}, which is consistent with a purely baryonic stellar population within its errors and no significant evidence for the presence of dark matter was found. We also find evidence for a velocity gradient in the radial velocity distribution. We conclude that our findings strongly support that Crater is a faint intermediate-age outer halo globular cluster and not a dwarf galaxy.

  12. Iron abundance in hot hydrogen-deficient central stars and white dwarfs from FUSE, HST, and IUE spectroscopy

    CERN Document Server

    Miksa, S; Dreizler, S; Kruk, J W; Rauch, T; Werner, K

    2002-01-01

    We present a first systematic investigation of the iron abundance in very hot (Teff>50,000K) hydrogen-deficient post-AGB stars. Our sample comprises 16 PG1159 stars and four DO white dwarfs. We use recent FUSE observations as well as HST and IUE archival data to perform spectral analyses with line blanketed NLTE model atmospheres. Iron is not detected in any PG1159 star. In most cases this is compatible with a solar iron abundance due to limited quality of HST and IUE data, although the tendency to an iron underabundance may be recognized. However, the absence of iron lines in excellent FUSE spectra suggests an underabundance by at least 1 dex in two objects (K1-16 NGC 7094). A similar result has been reported recently in the [WC]-PG1159 transition object Abell 78 (Werner et al. 2002). We discuss dust fractionation and s-process neutron-captures as possible origins. We also announce the first identification of sulfur in PG1159 stars.

  13. LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN’S STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn, E-mail: scott.engle@villanova.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2016-04-20

    As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s{sup −1}. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time.

  14. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...... imbalances that suggest the presence of life. I have also directly performed spectroscopic and photometric observations of exoplanets to discover and/or improve our knowledge of their properties and to participate in the development of the techniques that is being used to discover and characterize exoplanets."...

  15. M dwarf stars-the by-product of X-ray selected AGN candidates

    Institute of Scientific and Technical Information of China (English)

    Yu Bai; Yan-Chun Sun; Xiang-Tao He; Yang Chen; Jiang-Hua Wu; Qing-Kang Li; Richard F.Green; Wolfgang Voges

    2012-01-01

    X-ray loud M dwarfs are a major source of by-products (contamination)in the X-ray band of the multiwavelength quasar survey.As a by-product,the low dispersion spectra of 22 M dwarfs are obtained in which the spectra of 16 sources are taken for the first time.The spectral types and distances of the sample arc given based on spectral indices CaH2,CaH3,and TiOS.The parameter (ι)TiO/CaH is calculated to separate the different metallicity classes among dwarfs,subdwarfs and extreme subdwarfs.We also discuss the distributions in the diagrams of log( Lx/ Lbol),the ratio between X-ray and bolometric luminosity versus spectral type and infrared colors.

  16. Time dependent diffusion in pulsating white dwarf stars Asteroseismology of G117-B15A

    CERN Document Server

    Benvenuto, O G; Althaus, L G; Serenelli, A M

    2002-01-01

    We study the structural characteristic of the variable DA white dwarf G117B-15A by applying the methods of asteroseismology. For such a purpose, we construct white dwarf evolutionary models considering a detailed and up-to-date physical description as well as several processes responsible for the occurrence of element diffusion. We have considered several thickness for the outermost hydrogen layer, whereas for the inner helium-, carbon- and oxygen-rich layers we considered realistic profiles predicted by calculations of the white dwarf progenitor evolution. The evolution of each of the considered model sequences were followed down to very low effective temperature; in particular, from 12500K on we computed the dipolar, linear, adiabatic oscillations with low radial order. We find that asteroseismological results are not univocal regarding mode identification for the case of G117B-15A. However, our asteroseismological results are compatible with spectroscopical data only if the observed periods of 215.2, 271.0...

  17. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...... imbalances that suggest the presence of life. I have also directly performed spectroscopic and photometric observations of exoplanets to discover and/or improve our knowledge of their properties and to participate in the development of the techniques that is being used to discover and characterize exoplanets."...

  18. HST-ACS photometry of the isolated dwarf galaxy VV124=UGC 4879. Detection of the blue horizontal branch and identification of two young star clusters

    NARCIS (Netherlands)

    Bellazzini, M.; Perina, S.; Galleti, S.; Oosterloo, T.

    2011-01-01

    We present deep V and I photometry of the isolated dwarf galaxy VV124=UGC 4879, obtained from archival images taken with the Hubble Space Telescope - Advanced Camera for Surveys. In the color-magnitude diagrams of stars at distances greater than 40″ from the center of the galaxy, we clearly identify

  19. HST-ACS photometry of the isolated dwarf galaxy VV124=UGC 4879 : Detection of the blue horizontal branch and identification of two young star clusters

    NARCIS (Netherlands)

    Bellazzini, M.; Perina, S.; Galleti, S.; Oosterloo, T.

    2011-01-01

    We present deep V and I photometry of the isolated dwarf galaxy VV124=UGC 4879, obtained from archival images taken with the Hubble Space Telescope - Advanced Camera for Surveys. In the color-magnitude diagrams of stars at distances greater than 40″ from the center of the galaxy, we clearly identify

  20. The Local Group dwarf leo T : HI on the brink of star formation

    NARCIS (Netherlands)

    Ryan-Weber, Emma V.; Begum, Ayesha; Oosterloo, Tom; Pal, Sabyasachi; Irwin, Michael J.; Belokurov, Vasily; Evans, N. Wyn; Zucker, Daniel B.

    2008-01-01

    We present Giant Meterwave Radio Telescope (GMRT) andWesterbork Synthesis Radio Telescope (WSRT) observations of the recently discovered Local Group dwarf galaxy, Leo T. The peak HI column density is measured to be 7 x 1020 cm(-2), and the total HI mass is 2.8 x 10(5) M-circle dot,, based on a dista

  1. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.; Sales, L. V.

    2016-01-01

    Context. It has been proposed that mergers induce starbursts and lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model.

  2. Evolution of white dwarf stars with high-metallicity progenitors: the role of 22Ne diffusion

    CERN Document Server

    Althaus, Leandro G; Renedo, Isabel; Isern, Jordi; Córsico, Alejandro H; Rohrmann, Rene D

    2010-01-01

    Motivated by the strong discrepancy between the main sequence turn-off age and the white dwarf cooling age in the metal-rich open cluster NGC 6791, we compute a grid of white dwarf evolutionary sequences that incorporates for the first time the energy released by the processes of 22Ne sedimentation and of carbon/oxygen phase separation upon crystallization. The grid covers the mass range from 0.52 to 1.0 Msun, and it is appropriate for the study of white dwarfs in metal-rich clusters. The evolutionary calculations are based on a detailed and self-consistent treatment of the energy released from these two processes, as well as on the employment of realistic carbon/oxygen profiles, of relevance for an accurate evaluation of the energy released by carbon/oxygen phase separation. We find that 22Ne sedimentation strongly delays the cooling rate of white dwarfs stemming from progenitors with high metallicities at moderate luminosities, whilst carbon/oxygen phase separation adds considerable delays at low luminositi...

  3. The Low-Mass Stellar IMF at High Redshift Faint Stars in the Ursa Minor Dwarf Spheroidal Galaxy

    CERN Document Server

    Wyse, R F G; Feltzing, S; Houdashelt, M L; Wyse, Rosemary F.G.; Gilmore, Gerard; Feltzing, Sofia; Houdashelt, Mark

    1999-01-01

    Low-mass stars, those with main-sequence lifetimes that are of order the age of the Universe, provide unique constraints on the Initial Mass Function (IMF) when they formed. Star counts in systems with simple star-formation histories are particularly straightforward to interpret, and those in old systems allow one to determine the low-mass stellar IMF at large look-back times and thus at high redshift. We present the faint stellar luminosity function (based on optical HST data) in an external galaxy, the Ursa Minor dwarf Spheroidal (dSph). This relatively-nearby (distance 70kpc) companion galaxy to the Milky Way has a stellar population with narrow distributions of age and of metallicity, remarkably similar to that of a classical halo globular cluster such as M92 or M15, i.e. old and metal-poor. Contrasting with globular clusters, the internal velocity dispersion of the Ursa Minor dSph indicates the presence of significant amounts of dark matter. We find that the main sequence stellar luminosity function of t...

  4. The binarity of Galactic dwarf stars along with effective temperature and metallicity

    Science.gov (United States)

    Gao, Shuang; Zhao, He; Yang, Hang; Gao, Ran

    2017-07-01

    The fraction of binary stars fb is one of most valuable tools to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity [Fe/H] by employing the differential radial velocity (DRV) method and the large sample observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Main-sequence stars from A- to K-type in the third data release of LAMOST are selected to estimate fb. Contributions to a profile of DRV from the radial velocity (RV) error of single stars σRV and the orbital motion of binary stars are evaluated from the DRV profile. We employ 365 911 stars with randomly repeating spectral observations to present a detailed analysis of fb and σRV in the two-dimensional space of Teff and [Fe/H]. The A-type stars are more likely to be companions in binary star systems than other stars. Furthermore, the reverse correlation between fb and [Fe/H] can be shown statistically, which suggests that fb is a joint function of Teff and [Fe/H]. At the same time, σRV of the sample are fitted for different Teff and [Fe/H]. Metal-rich cold stars in our sample have the best RV measurement.

  5. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  6. Gravity Defied: From Potato Asteroids to Magnetised Neutron Stars: 3. White Dwarfs (Dead Stars of the First Kind)

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-05-01

    During its active lifetime, a star burns its nuclear fuel, andgravitation is held off by the pressure of the heated gas. Gravityshould take over once this fuel is exhausted unless someother agency saves the star from such a fate. Low mass starsfind peace as ‘white dwarfs’ when the electrons settle intoa Fermi degenerate phase where the pressure of degenerateelectrons balance the gravitational pressure.

  7. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases to...

  8. Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    CERN Document Server

    Grossi, M; Bizzocchi, L; Giovanardi, C; Bomans, D; Coelho, B; De Looze, I; Gonçalves, T S; Hunt, L K; Leonardo, E; Madden, S; Menéndez-Delmestre, K; Pappalardo, C; Riguccini, L

    2016-01-01

    We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 $\\mu$m emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 10$^9$ M$_{\\odot}$, contrary to the atomic hydrogen fraction, M$_{HI}$/M$_*$, which increases inversely with M$_*$. The flattening of the M$_{H_2}$/M$_*$ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwa...

  9. Detailed abundances in extremely metal poor dwarf stars extracted from SDSS

    CERN Document Server

    Sbordone, Luca; Caffau, Elisabetta; Ludwig, Hans-Gunther

    2012-01-01

    We report on the result of an ongoing campaign to determine chemical abundances in extremely metal poor (EMP) turn-off (TO) stars selected from the Sloan Digital Sky Survey (SDSS) low resolution spectra. This contribution focuses principally on the largest part of the sample (18 stars out of 29), observed with UVES@VLT and analyzed by means of the automatic abundance analysis code MyGIsFOS to derive atmosphere parameters and detailed compositions. The most significant findings include i) the detection of a C-rich, strongly Mg-enhanced star ([Mg/Fe]=1.45); ii) a group of Mn-rich stars ([Mn/Fe]>-0.4); iii) a group of Ni-rich stars ([Ni/Fe]>0.2). Li is measured in twelve stars, while for three upper limits are derived.

  10. Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties

    CERN Document Server

    Engstrom, T A; Crespi, V H

    2015-01-01

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are "bred" by a genetic algorithm, and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the $T=0$ bulk phase diagrams, five of which are complicated multinary structures not before predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravit...

  11. Tidal evolution of CoRoT massive planets and brown dwarfs and of their host stars

    CERN Document Server

    Ferraz-Mello, Sylvio

    2016-01-01

    Aims: Revisit and improvement of the main results obtained in the study of the tidal evolution of several massive CoRoT planets and brown dwarfs and of the rotation of their host stars. Methods: Simulations of the past and future evolution of the orbital and rotational elements of the systems under the joint action of the tidal torques and the braking due to the stellar wind. Results: Presentation of several paradigms and significant examples of tidal evolution in extrasolar planetary systems. It is shown that the high quality of the photometric and spectrographic observations of the CoRoT objects allow for a precise study of their past and future evolution and to estimate the tidal parameters ruling the dissipation in the systems.

  12. MagAO Imaging of Long-period Objects (MILO). II. A Puzzling White Dwarf around the Sun-like Star HD 11112

    CERN Document Server

    Rodigas, Timothy J; Simon, Amelie; Arriagada, Pamela; Faherty, Jackie; Anglada-Escude, Guillem; Mamajek, Eric E; Weinberger, Alycia; Butler, R Paul; Males, Jared R; Morzinski, Katie; Close, Laird M; Hinz, Philip M; Bailey, Jeremy; Carter, Brad; Jenkins, James S; Jones, Hugh; O'Toole, Simon; Tinney, C G; Wittenmyer, Rob; Debes, John

    2016-01-01

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2\\fasec 2 (100 AU) at multiple wavelengths spanning 0.6-4 \\microns ~and show that it is most likely a gravitationally-bound cool white dwarf. Modeling its spectral energy distribution (SED) suggests that its mass is 0.9-1.1 \\msun, which corresponds to very high-eccentricity, near edge-on orbits from Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is $>2\\sigma$ discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate ...

  13. A close look at the Centaurus A group of galaxies IV. Recent star formation histories of late-type dwarfs around CenA

    CERN Document Server

    Crnojević, D; Cole, A A

    2012-01-01

    We study a sample of 5 dwarf irregular galaxies in the CenA/M83 group, which are companions to the giant elliptical CenA. We aim at deriving their physical properties over their lifetime and compare them to those of dwarfs located in different environments. We use archival HST/ACS data and apply synthetic color-magnitude diagram fitting in order to reconstruct the past star formation activity of the target galaxies. The average star formation rate for the studied galaxies ranges from 10^{-3} up to \\sim 7x10^{-2} M_odot/yr, and their mean metallicities correlate with their luminosities (from [Fe/H]\\sim -1.4 up to \\sim -1.0). The form of the star formation histories varies across the sample, with quiescent periods alternating with intermittent enhancements in the star formation (from a few up to several times the average lifetime value). The dwarfs in this sample formed ~35% to ~60% of their stellar content prior to ~5 Gyr ago. The resulting star formation histories for the CenA companions are similar to those ...

  14. The SW Sex-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    CERN Document Server

    Khruzina, T; Kjurkchieva, D; 10.1051/0004-6361/201220385

    2013-01-01

    We present new photometric and spectral observations of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188. To obtain a light curve solution we used model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. The high mass accr...

  15. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  16. Insight into the structure and physics of M dwarf stars through determination of the rotation, metallicities, and radii of the nearby population

    Science.gov (United States)

    Newton, Elisabeth R.

    2016-01-01

    Despite the prevalence of M dwarfs, their fundamental properties--their sizes, compositions, and ages--are not well-constrained. Empirical determination of these properties is important for gaining insight into their stellar structure, magnetic field generation, and angular momentum evolution. Knowledge of the stellar parameters is also key to characterizing planetary systems. I used observations to empirically constrain the properties of nearby, mid-to-late M dwarfs targeted by the MEarth transiting planet survey. I obtained low-resolution (R=2000) NIR spectra of 450 M dwarfs using SpeX on IRTF. I measured their absolute radial velocities with an accuracy of 4 km/s by exploiting telluric lines to establish an absolute wavelength calibration, and developed techniques to estimate M dwarf metallicities from K-band spectral line equivalent widths (EWs) or 2MASS colors to 0.15 dex. Using stars with interferometric radii, I showed that H-band EWs can be used to infer K and M dwarf temperatures to 69K, and radii to 0.027Rsun. I applied these relations to planet-hosting stars from Kepler, showing that the typical planet is 15% larger than is inferred if adopting other stellar parameters. Using photometry from the MEarth-North Observatory, I measured rotation periods from 0.1 to 150 days for 350 M dwarfs. There is a prevalence of stable spot patterns, and no correlation between period and amplitude for fully-convective stars. Using galactic kinematics as a proxy for age, I demonstrated a smooth age-rotation relation. I found that rapid rotators (PMauna Kea within the indigenous Hawaiian community, and acknowledge the opportunity to conduct these observations.

  17. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    Science.gov (United States)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  18. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  19. Automated Detection of Dwarf Galaxies and Star Clusters in SMASH through the NOAO Data Lab

    Science.gov (United States)

    Olsen, Knut A.; Nidever, David L.; Fitzpatrick, Michael J.; Mighell, Kenneth J.; SMASH Collaboration; NOAO Data Lab Team

    2017-01-01

    We present an automated method, using the NOAO Data Lab environment, for the detection of dwarf galaxy-scale objects in catalog data from the Survey of the Magellanic Stellar History (SMASH). SMASH has imaged ~480 square degrees of the southern sky, over a partially filled area of 2400 square degrees, to 24th mag in gri (uz~23) using the Dark Energy Camera (DECam). The NOAO Data Lab (http://datalab.noao.edu) is being developed to support community research of the massive data sets now being derived from NOAO’s wide-field telescopes, in particular DECam. A key feature of the Data Lab is the ability to perform efficient automated analysis of catalog and imaging data. Our method, which is an example of this feature, allows for the rapid search of candidate dwarf galaxies and stellar clusters in deep catalog data. Using SMASH as the catalog data source, we easily recover the previously discovered Hydra II dwarf galaxy and SMASH-I LMC globular cluster, as well as a number of other potentially interesting candidate stellar systems.

  20. Extremely metal-poor stars in classical dwarf spheroidal galaxies : Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to hav

  1. Extremely metal-poor stars in classical dwarf spheroidal galaxies : Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to hav

  2. Empirical solutions to the high-redshift overproduction of stars in modeled dwarf galaxies

    CERN Document Server

    White, Catherine E; Ferguson, Henry C

    2014-01-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M$_{\\rm{H}} \\lesssim 10^{11}$ \\msun), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: 1) the mass loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, 2) the efficiency of star formation may be lower in low mass halos at high redsh...

  3. Strangelet dwarfs

    CERN Document Server

    Alford, Mark G; Reddy, Sanjay

    2011-01-01

    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.

  4. Hint of star exoplanet interaction by modelling the stellar auroral radio emission of the M8.5 dwarf TVLM 513-46546

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The stellar auroral radio emission has been recognized in some early-type magnetic stars and in many ultra-cool dwarfs. The typical features are the highly polarized pulses explained in terms of Electron Cyclotron Maser emission mechanism. The A0 type star CU Virginis is the prototype of the stars showing this coherent emission; the repeatability and stability of its auroral radio emission allow us to well study this elusive phenomenon. Taking advantage of the CU Vir insights, we built a 3D-model able to reproduce the timing and pulse profile of the auroral radio emission from a dipolar magnetosphere. This model can be applied to stars with an overall symmetric magnetic field topology and showing auroral radio emission, like the ultra-cool dwarfs. In this paper, we simulate the cyclic circularly-polarized pulses of the ultra-cool dwarf TVLM 513-46546, observed with the VLA at 4.88 and 8.44 GHz on May 2006. The auroral radio emission originates in polar rings located at different elevations as a function of th...

  5. THE INTERACTION OF VENUS-LIKE, M-DWARF PLANETS WITH THE STELLAR WIND OF THEIR HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J.; Garraffo, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138 (United States); Ma, Y. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California (United States); Glocer, A. [NASA/GSFC, Code 673 Greenbelt, MD 20771 (United States); Bell, J. M. [Center for Planetary Atmospheres and Flight Sciences, National Institute of Aerospace, Hampton, VA 23666 (United States); Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109 (United States)

    2015-06-10

    We study the interaction between the atmospheres of Venus-like, non-magnetized exoplanets orbiting an M-dwarf star, and the stellar wind using a multi-species MHD model. We focus our investigation on the effect of enhanced stellar wind and enhanced EUV flux as the planetary distance from the star decreases. Our simulations reveal different topologies of the planetary space environment for sub- and super-Alfvénic stellar wind conditions, which could lead to dynamic energy deposition into the atmosphere during the transition along the planetary orbit. We find that the stellar wind penetration for non-magnetized planets is very deep, up to a few hundreds of kilometers. We estimate a lower limit for the atmospheric mass-loss rate and find that it is insignificant over the lifetime of the planet. However, we predict that when accounting for atmospheric ion acceleration, a significant amount of the planetary atmosphere could be eroded over the course of a billion years.

  6. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually `merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  7. Planets Around Low-Mass Stars (PALMS). III. A Young Dusty L Dwarf Companion at the Deuterium-Burning Limit

    CERN Document Server

    Bowler, Brendan P; Shkolnik, Evgenya L; Dupuy, Trent J

    2013-01-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.45" (~52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R~3800) 1.5-2.4 $\\mu$m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ~120 Myr AB Dor young moving group based on the photometric distance to the primary (36 +/- 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I $\\lambda$6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ~10-120 Myr is possible. The age...

  8. The Interaction of Venus-like, M-dwarf Planets with the Stellar Wind of Their Host Star

    CERN Document Server

    Cohen, O; Drake, J J; Glocer, A; Garraffo, C; Bell, J M; Gombosi, T I

    2015-01-01

    We study the interaction between the atmospheres of Venus-like, non-magnetized exoplanets orbiting an M-dwarf star, and the stellar wind using a multi-species Magnetohydrodynaic (MHD) model. We focus our investigation on the effect of enhanced stellar wind and enhanced EUV flux as the planetary distance from the star decreases. Our simulations reveal different topologies of the planetary space environment for sub- and super-Alfvenic stellar wind conditions, which could lead to dynamic energy deposition in to the atmosphere during the transition along the planetary orbit. We find that the stellar wind penetration for non-magnetized planets is very deep, up to a few hundreds of kilometers. We estimate a lower limit for the atmospheric mass-loss rate and find that it is insignificant over the lifetime of the planet. However, we predict that when accounting for atmospheric ion acceleration, a significant amount of the planetary atmosphere could be eroded over the course of a billion years.

  9. Auto-consistent metallicity and star formation history of the nearest blue compact dwarf galaxy NGC 6789

    CERN Document Server

    García-Benito, Rubén

    2012-01-01

    We present a detailed auto-consistent study of the nearest blue compact dwarf galaxy NGC 6789 by means of optical and UV archive photometry data and optical long-slit ISIS-WHT spectroscopy observations of the five brightest star-forming knots. The analysis of the spectra in all knots allowed the derivation of ionic chemical abundances of oxygen, nitrogen, sulphur, argon and neon using measures of both the high- and low-excitation electron temperatures, leading to the conclusion that NGC 6789 is chemically homogeneous with low values of the abundance of oxygen in the range 12+log(O/H) = 7.80-7.93, but presenting at the same time higher values of the nitrogen-to-oxygen ratio than expected for its metal regime. We used archival HST/WFPC2 F555W and F814W observations of NGC 6789 to perform a photometric study of the colour-magnitude diagram (CMD) of the resolved stellar populations and derive its star formation history (SFH), which is compatible with the presence of different young and old stellar populations who...

  10. Discovery of seven T Tauri stars and a brown dwarf candidate in the nearby TW Hydrae Association

    CERN Document Server

    Webb, R A; Platais, I; Patience, J; White, R J; Schwartz, M J; McCarthy, C

    1999-01-01

    We report the discovery of five T Tauri star systems, two of which are resolved binaries, in the vicinity of the nearest known region of recent star formation, the TW Hydrae Association. The newly discovered systems display the same signatures of youth (namely high X-ray flux, large Li abundance and strong chromospheric activity) and the same proper motion as the original five members. These similarities firmly establish the group as a bona fide T Tauri association, unique in its proximity to Earth and its complete isolation from any known molecular clouds. At an age of ~10 Myr and a distance of ~50 pc, the association members are excellent candidates for future studies of circumstellar disk dissipation and the formation of brown dwarfs and planets. Indeed, as an example, our speckle imaging revealed a faint, very likely companion 2" north of CoD-33 7795 (TWA 5). Its color and brightness suggest a spectral type ~M8.5 which, at an age of ~10^7 years, implies a mass ~20 M(Jupiter).

  11. Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs

    CERN Document Server

    Ginski, C; Mugrauer, M; Neuhäuser, R; Vogt, N; Errmann, R; Berndt, A

    2014-01-01

    The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios we search for signatures in the orbit dynamics of the systems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion. We show for the first time that the GQ Lup system shows significant change in both separation and position angle. Our analysis yi...

  12. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  13. The Eclipsing Cataclysmic Variable Lanning 386: Dwarf Nova, SW Sextantis Star, or Both?

    OpenAIRE

    Brady, S; Thorstensen, J.R.; Koppelman, M. D.; Prieto, J. L.; Garnavich, P. M.; Hirschauer, A.; Florack, M.

    2008-01-01

    We present photometry and spectroscopy of the suspected cataclysmic variable (CV) Lanning 386. We confirm that it is a CV, and observe deep eclipses, from which we determine the orbital period Porb to be 0.1640517 +- 0.0000001 d (= 3.94 h). Photometric monitoring over two observing seasons shows a very active system with frequent outbursts of variable amplitude, up to approx. 2 mag. The spectrum in quiescence is typical of dwarf novae, but in its high state the system shows strong HeII emissi...

  14. Basic calibrations of the photographic RGU system. III - Intermediate and extreme Population II dwarf stars

    Science.gov (United States)

    Buser, R.; Fenkart, R. P.

    1990-11-01

    This paper presents an extended calibration of the color-magnitude and two-color diagrams and the metal-abundance parameter for the intermediate Population II and the extreme halo dwarfs observed in the Basel Palomar-Schmidt RGU three-color photometric surveys of the galaxy. The calibration covers the metallicity range between values +0.50 and -3.00. It is shown that the calibrations presented are sufficiently accurate to be useful for the future analyses of photographic survey data.

  15. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada)

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  16. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  17. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Krumholz, Mark R.; Wise, John H.; Turk, Matthew J.; Goldbaum, Nathan J.; Abel, Tom

    2013-11-15

    AWe investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 1011 M , we find that the correlation between SFR density (estimated from mock Hα emission) and H2 density shows large scatter, especially at high resolutions of ≲ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  18. HI properties and star formation history of a fly-by pair of blue compact dwarf galaxies

    Science.gov (United States)

    Kim, Jinhyub; Chung, Aeree; Ivy Wong, O.; Lee, Bumhyun; Sung, Eon-Chang; Staveley-Smith, Lister

    2017-09-01

    A fly-by interaction has been suggested to be one of the major explanations for enhanced star formation in blue compact dwarf (BCD) galaxies, yet no direct evidence for this scenario has been found to date. In the Hi Parkes all-sky survey (HIPASS), ESO 435-IG 020 and ESO 435-G 016, a BCD pair were found in a common, extended gas envelope of atomic hydrogen, providing an ideal case to test the hypothesis that the starburst in BCDs can be indeed triggered by a fly-by interaction. Using high-resolution data from the Australia Telescope Compact Array (ATCA), we investigated Hi properties and the spectral energy distribution (SED) of the BCD pair to study their interaction and star formation histories. The high-resolution Hi data of both BCDs reveal a number of peculiarities, which are suggestive of tidal perturbation. Meanwhile, 40% of the HIPASS flux is not accounted for in the ATCA observations with no Hi gas bridge found between the two BCDs. Intriguingly, in the residual of the HIPASS and the ATCA data, 10% of the missing flux appears to be located between the two BCDs. While the SED-based age of the most dominant young stellar population is old enough to have originated from the interaction with any neighbors (including the other of the two BCDs), the most recent star formation activity traced by strong Hα emission in ESO 435-IG 020 and the shear motion of gas in ESO 435-G 016, suggest a more recent or current tidal interaction. Based on these and the residual emission between the HIPASS and the ATCA data, we propose an interaction between the two BCDs as the origin of their recently enhanced star formation activity. The shear motion on the gas disk, potentially with re-accretion of the stripped gas, could be responsible for the active star formation in this BCD pair. The reduced datacube (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A54

  19. Sensitivity of Biosignatures on Earth-like Planets orbiting in the Habitable Zone of Cool M-Dwarf Stars to varying Stellar UV Radiation and Surface Biomass Emissions

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Godolt, Mareike; Rauer, Heike

    2015-01-01

    We find that variations in the UV emissions of cool M-dwarf stars have a potentially large impact upon atmospheric biosignatures in simulations of Earth-like exoplanets i.e. planets with Earths development, and biomass and a molecular nitrogen-oxygen dominated atmosphere. Starting with an assumed black-body stellar emission for an M7 class dwarf star, the stellar UV irradiation was increased stepwise and the resulting climate-photochemical response of the planetary atmosphere was calculated. Results suggest a Goldilocks effect with respect to the spectral detection of ozone. At weak UV levels, the ozone column was weak (due to weaker production from the Chapman mechanism) hence its spectral detection was challenging. At strong UV levels, ozone formation is stronger but its associated stratospheric heating leads to a weakening in temperature gradients between the stratosphere and troposphere, which results in weakened spectral bands. Also, increased UV levels can lead to enhanced abundances of hydrogen oxides ...

  20. THE GAS PHASE MASS METALLICITY RELATION FOR DWARF GALAXIES: DEPENDENCE ON STAR FORMATION RATE AND HI GAS MASS

    Energy Technology Data Exchange (ETDEWEB)

    Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Saintonge, Amélie; Accurso, Gioacchino [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Brough, Sarah; Oliva-Altamirano, Paola [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)

    2015-10-20

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMR{sub SFR}) as well as HI-gas mass (FMR{sub HI}). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMR{sub SFR} and FMR{sub HI} across the stellar mass range 10{sup 6.6}–10{sup 8.8} M{sub ⊙}, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMR{sub SFR} (0.02 dex) is significantly lower than that of the MZR. The FMR{sub SFR} is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10{sup −2.4} M{sub ⊙} yr{sup −1}, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR{sub HI}. We also find that the FMR{sub HI} is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML{sub SFR}) and HI-gas mass (FML{sub HI}). We find that the FML{sub HI} relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FML{sub HI} relation is not improved over the FMR{sub HI} scenario. This leads us to conclude that the FMR{sub HI} is the best candidate for a physically motivated fundamental metallicity relation.

  1. Non-parametric star formation histories for 5 dwarf spheroidal galaxies of the local group

    CERN Document Server

    Hernández, X; Valls-Gabaud, D; Gilmore, Gerard; Valls-Gabaud, David

    2000-01-01

    We use recent HST colour-magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, LeoI, LeoII, Ursa Minor and Draco) to infer the star formation histories of these systems, $SFR(t)$. Applying a new variational calculus maximum likelihood method which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume {\\it a priori} the form of the function one is trying to recover. The results are checked independently using Saha's $W$ statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity weighted mean star formation history of this sample of galaxies.

  2. KELT-9b: A giant planet with the temperature of a red dwarf star transiting an unevolved A0 star

    Science.gov (United States)

    Gaudi, B. Scott; Stassun, Keivan G.; Collins, Karen A.; Beatty, Thomas G.; Zhou, George; Latham, David W.; Bieryla, Allyson; Eastman, Jason D.; Siverd, Robert; Crepp, Justin R.; Gonzales, Erica J.; Stevens, Daniel J.; Buchhave, Lars A.; Pepper, Joshua; Johnson, Marshall C.; Colon, Knicole D.; Jensen, Eric L. N.; Rodriguez, Joseph; KELT and KELT-FUN Collaborations

    2017-06-01

    We report the discovery of KELT-9b, the hottest, most irradiated known hot Jupiter, with a period of ~1.5 days, and radius and mass of ~1.8 Jupiter radii and ~2.7 Jupiter masses. The host is a massive (~2.3 solar masses), hot (effective temperature of ~9,600 K) rapidly-rotating (projected rotation velocity of ~100 km/s) A0 star. Given the implied planetary equilibrium temperature of ~3800 K and scale height of ~1000 km (assuming zero albedo and no heat redistribution), this system provides one of the best targets for detailed characterization of a hot Jupiter atmosphere under extreme irradiation. The planet has been confirmed via high-precision primary transit observations in multiple bands, a lack of companions in deep AO observations, radial velocity detection of the reflex motion of the star due to the companion, detection of the Doppler tomographic signal, and a detection of the secondary eclipse depth in the far-red optical (z) that implies a brightness temperature of ~4600 K, and thus exceptionally poor heat redistribution to the night side. We find that the planet is on a near-polar orbit, likely resulting in orbital precession that will be detectable within a few years. The brightness of the host, the extreme planet temperature, large planet-to-star radius ratio, large planetary atmospheric scale height, and short orbital period, make this an exceptional target for follow-up studies of the planet's atmosphere, which may exhibit unusual photochemistry due to the extreme amount of incident high-energy radiation.

  3. A Search for Planets and Brown Dwarfs around Post Main Sequence Stars

    Science.gov (United States)

    Otani, Tomomi; Oswalt, Terry D.

    2016-06-01

    The most promising current theory for the origin of subdwarf B (sdB) stars is that they were formed during binary star evolution. This project was conducted to test this hypothesis by searching for companions around six sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion. If it is emitting a periodic signal, the orbital motion of the star around the system’s center of mass causes periodic changes in the light pulse arrival times. O-C diagrams for six sdB pulsators were constructed from several years’ observations, providing useful limits on suspected companions’ minimum masses and semimajor axes. The results were constrained by “period vs. amplitude” and “mass vs. semimajor axis” models to quantify companion masses and semimajor axes that are consistent with the observational data, if any. Two of our targets, V391 Peg and HS0702+6043, are noted in previous publications to have substellar companions. These were used to validate the method used in this research. The results of this study yielded the same masses and semimajor axes for these two stars as the published values, within the uncertainties. Another of the targets, EC20117-4014, is noted in the literature as a binary system containing an sdB and F5V star, however the orbital period and separation were unknown. The new data obtained in this study contain the signal of a companion candidate with a period of 158.01 days. Several possible mass and semimajor axis combinations for the companion are consistent with the observations. One of the other targets in this study displayed preliminary evidence for a companion that will require further observation. Though still a small sample, these results suggest that planets often survive the post-main-sequence evolution of their parent stars.

  4. The ACS LCID project. IX. Imprints of the early universe in the radial variation of the star formation history of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Sebastian L.; Monelli, Matteo; Aparicio, Antonio; Gallart, Carme, E-mail: shidalgo@iac.es, E-mail: monelli@iac.es, E-mail: aparicio@iac.es, E-mail: carme@iac.es [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife, Canary Islands (Spain); and others

    2013-12-01

    Based on Hubble Space Telescope observations from the Local Cosmology from Isolated Dwarfs project, we present the star formation histories, as a function of galactocentric radius, of four isolated Local Group dwarf galaxies: two dSph galaxies, Cetus and Tucana, and two transition galaxies (dTrs), LGS-3 and Phoenix. The oldest stellar populations of the dSphs and dTrs are, within the uncertainties, coeval (∼13 Gyr) at all galactocentric radii. We find that there are no significative differences between the four galaxies in the fundamental properties (such as the normalized star formation rate or age-metallicity relation) of their outer regions (radii greater than four exponential scale lengths); at large radii, these galaxies consist exclusively of old (≳ 10.5 Gyr) metal-poor stars. The duration of star formation in the inner regions varies from galaxy to galaxy, and the extended central star formation in the dTrs produces the dichotomy between dSph and dTr galaxy types. The dTr galaxies show prominent radial stellar population gradients: The centers of these galaxies host young (≲ 1 Gyr) populations, while the age of the last formation event increases smoothly with increasing radius. This contrasts with the two dSph galaxies. Tucana shows a similar, but milder, gradient, but no gradient in age is detected Cetus. For the three galaxies with significant stellar population gradients, the exponential scale length decreases with time. These results are in agreement with outside-in scenarios of dwarf galaxy evolution, in which a quenching of the star formation toward the center occurs as the galaxy runs out of gas in the outskirts.

  5. The Oldest Stars of the Extremely Metal-Poor Local Group Dwarf Irregular Galaxy Leo A

    Science.gov (United States)

    Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Drozdovsky, Igor O.; Greggio, Laura; Crone, Mary M.

    2002-08-01

    We present deep Hubble Space Telescope (HST) single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters that exhibit red horizontal branches and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but we lack the detection of main-sequence turnoffs that would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, only 3% of solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  6. Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars.

    Science.gov (United States)

    Murdin, B N; Li, Juerong; Pang, M L Y; Bowyer, E T; Litvinenko, K L; Clowes, S K; Engelkamp, H; Pidgeon, C R; Galbraith, I; Abrosimov, N V; Riemann, H; Pavlov, S G; Hübers, H-W; Murdin, P G

    2013-01-01

    Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.

  7. The Fate of Dwarf Galaxies in Clusters and the Origin of Intracluster Stars

    CERN Document Server

    Brito, William

    2009-01-01

    This thesis presents a review of related important concepts in cosmology followed by details of the author's role in a research project on the origin of intracluster light. The author's role in the development of the simulations varied from searching parameters in the literature, through writing and modifying code in IDL, FORTRAN, and UNIX to carrying out hundreds of simulations using the particle-particle algorithm described in this thesis, as well as partaking in joint analysis of the simulation results. Part of this work in the isolated cluster simulations has been submitted for publication (Barai, Brito & Martel 2009). The main results of the simulations described in this thesis are: 1) destruction of dwarf galaxies by mergers dominates destruction by tides, and 2) destruction of galaxies by tides is sufficient to explain the observed intracluster light. These results support the accepted explanation for the origin of the intracluster light. In an ongoing, second stage of the simulation, which extends...

  8. Mass-radius relations for white dwarf stars of different internal compositions

    CERN Document Server

    Panei, J A; Benvenuto, O G

    2000-01-01

    The purpose of this work is to present accurate and detailed mass-radius relations for white dwarf (WD) models with helium, carbon, oxygen, silicon and iron cores, by using a fully updated stellar evolutionary code. We considered masses from 0.15 to 0.5 Mo for the case of helium core, from 0.45 to 1.2 Mo for carbon, oxygen and silicon cores and from 0.45 to 1.0 Mo for the case of an iron core. In view of recent measurements made by Hipparcos that strongly suggest the existence of WDs with an iron-dominated core, we focus our attention mainly on the finite-temperature, mass-radius relations for WD models with iron interiors. Furthermore, we explore the effects of gravitational, chemical and thermal diffusion on low-mass helium WD models with hydrogen and helium envelopes.

  9. The spectroscopic study of M8.5-M9.5 stars and brown dwarfs

    Directory of Open Access Journals (Sweden)

    Pavlenko Y.V.

    2013-04-01

    Full Text Available We present high-resolution spectra analysis of the three late-M dwarfs LP944-20, SIPS J2045-6332 and DENIS-P J0021.0-4244. The stellar spectra were observed with Very Large Telescope/Ultraviolet–Visual Echelle Spectrograph (VLT/UVES in optical and near-infrared regions. The effective temperatures Teff and log g was defined by comparing observed and theoretical energy distributions for the investigated objects. Synthetic spectra were calculated for PHOENIX atmosphere models – COND and DUSTY, as well as for Semi-empirical atmosphere model. We discuss the influence of the effects associated with dust in stellar atmosphere on the energy distribution in the stellar spectra.

  10. Observation and modeling of main sequence star chromospheres. 3: Differential analysis of hydrogen lines versus activity level in M dwarfs

    Science.gov (United States)

    Houdebine, E. R.; Doyle, J. G.; Koscielecki, M.

    1995-02-01

    We use the constraints at the extremes in magnetic activity level to simulate the effect of varying magnetic non-thermal heating in dM and dMe chromospheres by varying the transition region pressure and temperature minimum. We built four grids of model atmospheres with temperature minimum either at 2,660 K or 3,000 K, and a range of transition region pressure. We found that when decreasing the transition region pressure (i.e. the chromospheric temperature gradient), the Balmer lines change rapidly from emission to strong absorption, then the profiles weaken and become narrower until they disappear totally (zero Halpha stars). The Paschen and Brackett series exhibit a qualitatively similar behavior, but the `emission domain' is at a higher column mass. The Brackett lines never really develop a strong absorption. In opposition with other series, the Lyman lines show a monotonous decrease and even change to absorption for very low density models. These differences are useful spectral diagnostics for M dwarf atmospheres. All hydrogen series, except the Lyman series for intermediate and high pressures, are sensitive to the temperature minimum when large changes are considered. We also investigated the effect of the temperature break zone and found it is important only for high pressure atmospheres. Our grids of models successfully reproduce all type of observed Halpha profiles: (1) high activity with strong emission and weak self-reversal, (2) filled in intermediate activity with inner wings in emission and the core in absorption, (3) intermediate activity with strong and broad absorption, (4) low activity with weak and narrow absorption, (5) `zero activity' with an undetectable profile. We discuss the line characteristics over this wide range of physical conditions. We analyze the ionization fraction and electron density for our series of chromospheres. Changes in the ionization fraction are important throughout the pressure range. Heavy elements are the main electron

  11. Surface brightness and color distributions in blue compact dwarf galaxies. I - Haro 2, an extreme example of a star-forming young elliptical galaxy

    Science.gov (United States)

    Loose, Hans-Hermann; Thuan, Trinh X.

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The 'missing' mass problem of Haro 2 is also discussed.

  12. Magnetic activity in the HARPS M-dwarf sample. The rotation-activity relationship for very low-mass stars through R'HK

    CERN Document Server

    Astudillo-Defru, Nicola; Bonfils, Xavier; Forveille, Thierry; Lovis, Christophe; Rameau, Julien

    2016-01-01

    Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres. Starting with the historical Mount Wilson monitoring program, CaH&K lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca H&Kemission is traditionally quantified through the R'HK-index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M-dwarfs were left out of these analyses and no calibration of their Ca ii H&K emission to an R'HK exists to date. We set out to characterize the magnetic activity of the low and very low-mass stars by providing a calibration of the R'HK-index that extends to the realm of M-dwarfs, and by evaluating the relation between R'HK and the rot...

  13. Asteroseismology of ZZ Ceti stars with fully evolutionary white dwarf models: I. The impact of the uncertainties from prior evolution on the period spectrum

    CERN Document Server

    De Gerónimo, Francisco C; Córsico, Alejandro H; Romero, Alejandra D; Kepler, S O

    2016-01-01

    ZZ Ceti stars are pulsating white dwarfs with a carbon-oxygen core build up during the core helium burning and thermally pulsing Asymptotic Giant Branch phases. Through the interpretation of their pulsation periods by means of asteroseismology, details about their origin and evolution can be inferred. The whole pulsation spectrum exhibited by ZZ Ceti stars strongly depends on the inner chemical structure. At present, there are several processes affecting the chemical profiles that are still not accurately determined. We present a study of the impact of the current uncertainties of the white dwarf formation and evolution on the expected pulsation properties of ZZ Ceti stars. Our analysis is based on a set of carbon-oxygen core white dwarf models with masses $0.548$ and $0.837 M_{\\sun}$ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We have considered models in which we varied the number of thermal pulses, the amount of overshooting, and the $^{12}$C$(\\alpha,\\gamma)^{16}$O reac...

  14. HATS-15 b and HATS-16 b: Two massive planets transiting old G dwarf stars

    CERN Document Server

    Ciceri, S; Henning, T; Bakos, G Á; Penev, K; Brahm, R; Zhou, G; Hartman, J D; Bayliss, D; Jordán, A; Csubry, Z; de Val-Borro, M; Bhatti, W; Rabus, M; Espinoza, N; Suc, V; Schmidt, B; Noyes, R; Howard, A W; Fulton, B J; Isaacson, H; Marcy, G W; Butler, R P; Arriagada, P; Crane, J; Shectman, S; Thompson, I; Tan, T G; Lázár, J; Papp, I; Sari, P

    2015-01-01

    We report the discovery of HATS-15 b and HATS-16 b, two massive transiting extrasolar planets orbiting evolved ($\\sim 10$ Gyr) main-sequence stars. The planet HATS-15 b, which is hosted by a G9V star ($V=14.8$ mag), is a hot Jupiter with mass of $2.17\\pm0.15\\, M_{\\mathrm{J}}$ and radius of $1.105\\pm0.0.040\\, R_{\\mathrm{J}}$, and completes its orbit in nearly 1.7 days. HATS-16 b is a very massive hot Jupiter with mass of $3.27\\pm0.19\\, M_{\\mathrm{J}}$ and radius of $1.30\\pm0.15\\, R_{\\mathrm{J}}$; it orbits around its G3 V parent star ($V=13.8$ mag) in $\\sim2.7$ days. HATS-16 is slightly active and shows a periodic photometric modulation, implying a rotational period of 12 days which is unexpectedly short given its isochronal age. This fast rotation might be the result of the tidal interaction between the star and its planet.

  15. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.

    Science.gov (United States)

    Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-22

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  16. The ACS LCID project. IX. Imprints of the early Universe in the radial variation of the star formation history of dwarf galaxies

    CERN Document Server

    Hidalgo, Sebastian L; Aparicio, Antonio; Gallart, Carme; Skillman, Evan D; Cassisi, Santi; Bernard, Edouard J; Mayer, Lucio; Stetson, Peter; Cole, Andrew; Dolphin, Andrew

    2013-01-01

    Based on Hubble Space Telescope observations from the Local Cosmology from Isolated Dwarfs project, we present the star formation histories, as a function of galactocentric radius, of four isolated Local Group dwarf galaxies: two dSph galaxies, Cetus and Tucana, and two transition galaxies (dTrs), LGS-3 and Phoenix. The oldest stellar populations of the dSphs and dTrs are, within the uncertainties, coeval ($\\sim 13 Gyr$) at all galactocentric radii. We find that there are no significative differences between the four galaxies in the fundamental properties (such as the normalized star formation rate or age-metallicity relation) of their outer regions (radii greater than four exponential scale lengths); at large radii, these galaxies consist exclusively of old ($\\geq 10.5 Gyr$) metal-poor stars. The duration of star formation in the inner regions vary from galaxy to galaxy, and the extended central star formation in the dTrs produces the dichotomy between dSph and dTr galaxy types. The dTr galaxies show promine...

  17. Extended Magnetospheres in Pre-main-sequence Evolution: From T Tauri Stars to the Brown Dwarf Limit

    Science.gov (United States)

    Gómez de Castro, Ana I.; Marcos-Arenal, Pablo

    2012-04-01

    extended and dense stellar magnetosphere directly driven by local collisional processes. The brown dwarf 2MASS J12073346-3332539 has been found to follow the same flux-flux relations of the TTSs. Thus, TTS-normalized flux scaling laws seem to be extendable to the brown dwarf limit and can be used for identification/diagnosis purposes. We report the discovery of an inverse correlation between the C IV-normalized flux and the magnetospheric radius derived for stars with known magnetic fields. The normalized C IV flux is found to be vpropexp (- αr mag), with α = 0.5-0.7.

  18. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone

    CERN Document Server

    Joshi, M

    2012-01-01

    M-stars comprise 80% of main-sequence stars, and so their planetary systems provide the best chance for finding habitable planets, i.e.: those with surface liquid water. We have modelled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M-stars) using spectrally resolved data of the Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 ?m, combined with M-stars emitting a significant fraction of their radiation at these same longer wavelengths, mean that the albedos of ice and snow on planets orbiting M-stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M-stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of c...

  19. Envelope overshooting in low-metallicity intermediate- and high-mass stars: a test with the Sagittarius dwarf irregular galaxy

    Science.gov (United States)

    Tang, Jing; Bressan, Alessandro; Slemer, Alessandra; Marigo, Paola; Girardi, Leo; Bianchi, Luciana; Rosenfield, Phil; Momany, Yazan

    2016-01-01

    We check the performance of the Padova TRieste Stellar Evolution Code (PARSEC) tracks in reproducing the blue loops of intermediate age and young stellar populations at very low metallicity. We compute new evolutionary PARSEC tracks of intermediate- and high-mass stars from 2 to 350 M⊙ with enhanced envelope overshooting (EO), EO = 2HP and 4HP, for very low metallicity, Z = 0.0005. The input physics, including the mass-loss rate, has been described in PARSEC, version V1.2. By comparing the synthetic colour-magnitude diagrams (CMDs) obtained from the different sets of models with EO = 0.7HP (the standard PARSEC tracks), 2HP and 4HP, with deep observations of the Sagittarius dwarf irregular galaxy (SagDIG), we find that the overshooting scale EO = 2HP best reproduces the observed loops. This result is consistent with that obtained by Tang et al. for Z in the range 0.001-0.004. We also discuss the dependence of the blue loop extension on the adopted instability criterion. Contrary to what has been stated in the literature, we find that the Schwarzschild criterion, instead of the Ledoux criterion, favours the development of blue loops. Other factors that could affect the CMD comparisons, such as differential internal extinction or the presence of binary systems, are found to have negligible effects on the results. Thus, we confirm that, in the presence of core overshooting during the H-burning phase, a large EO is needed to reproduce the main features of the central He-burning phase of intermediate- and high-mass stars.

  20. Booms and Busts: the Burstiness of Star Formation in Nearby Dwarf Galaxies

    CERN Document Server

    Cole, Andrew A

    2009-01-01

    In this review I summarise recent advances in our understanding of the importance of starburst events to the evolutionary histories of nearby galaxies. Ongoing bursts are easily diagnosed in emission-line surveys, but assessing the timing and intensity of fossil bursts requires more effort, usually demanding color-magnitude diagrams or spectroscopy of individual stars. For ages older than ~1 Gyr, this type of observation is currently limited to the Local Group and its immediate surroundings. However, if the Local Volume is representative of the Universe as a whole, then studies of the age and metallicity distributions of star clusters and resolved stellar populations should give statistical clues as to the frequency and importance of bursts to the histories of galaxies in general. Based on starburst statistics in the literature and synthetic colour-magnitude diagram studies of Local Group galaxies, I attempt to distinguish between systemic starbursts that strongly impact galaxy evolution and stochastic bursts...

  1. Gas-Rich Local Dwarf Star-Forming Galaxies and their connection with the Distant Universe

    CERN Document Server

    Kunth, D

    1998-01-01

    I discuss the properties of gas-rich forming galaxies. I particularly emphasize the latest results on Lyman alpha emission that are relevant to the search of distant young galaxies. The interdependance of the Lyman alpha escape with the properties of the ISM in starburst galaxies is outlined. A new model from G. Tenorio-Tagle and his collaborators explaining Lyman alpha profiles in starburst galaxies from the hydrodynamics of superbubbles powered by massive stars is presented. I stress again that since Lyman alpha is primarely a diagnostic of the ISM, it is mandatory to understand how the ISM and Lyman alpha are related to firmly relate Lyman alpha to the cosmic star-formation rate.

  2. A Pan-STARRS1 Proper-Motion Survey for Young Brown Dwarfs in the Taurus and the Upper Scorpius Star-Forming Regions

    Science.gov (United States)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene A.; Aller, Kimberly Mei

    2017-01-01

    Young brown dwarfs are of prime importance to investigate the universality of the initial mass function (IMF) and to understand the physical connections between substellar and planetary-mass objects. Pan-STARRS1 (PS1) 3π survey (δ ≥ -30○) is finished and has obtained stacked images reaching down to the planetary regime (≤ 13 MJup) in nearby star-forming regions, thus providing an innovative tool to search for brown dwarfs. Using photometry and astrometry from PS1, WISE, 2MASS and UKIDSS, we are performing the widest and deepest brown dwarf survey in Taurus (≈370 deg2, ˜1 Myr) and Upper Scorpius (USco, ≈450 deg2, ˜10 Myr), which are among the closest star-forming regions. Our work is the first to measure proper motions, a robust proxy of membership, for Taurus and USco brown dwarf candidates over such large area and long time baseline (˜13 yr by combining PS1 and 2MASS). Our spectroscopic follow-up has found the lowest-mass objects in both regions (Taurus: ≈ 6 MJup USco: ≈ 14 MJup), and has yielded a success rates of ≈ 80% and ≈ 90% in Taurus and USco, respectively, far better than any previous searches (≤ 50%). Our newly confirmed members have already added ≈ 60% more brown dwarfs in USco and more than doubled the number of L-type members (≤ 20 MJup) in both regions. Upon completion, our discoveries will be a significant addition to the substellar regimes of the Taurus and the USco IMF and will provide more benchmarks to investigate the compositions of substellar and planetary atmospheres.

  3. VizieR Online Data Catalog: Chromospheric models of dwarf M stars (Mauas+ 1997)

    Science.gov (United States)

    Mauas, P.; Falchi, A.; Pasquini, L.; Pallavicini, R.

    1997-04-01

    Tables 4 and 5 give the atmospheric parameters for our models of dM stars Gl 588 and Gl 628. The columns give the column mass in g/cm-2, the electron temperature in K, the microturbulent velocity in km/s; the continuum optical depth at 5000Å; the hydrogen, proton, and electron density in particles per cm-3; and the height h (in km) above the level where tau5000=1. (2 data files).

  4. Astrophysical false positives in direct imaging for exoplanets: a white dwarf close to a rejuvenated star

    CERN Document Server

    Zurlo, A; Hagelberg, J; Desidera, S; Chauvin, G; Almenara, J M; Biazzo, K; Bonnefoy, M; Carson, J C; Covino, E; Delorme, P; D'Orazi, V; Gratton, R; Mesa, D; Messina, S; Moutou, C; Segransan, D; Turatto, M; Udry, S; Wildi, F

    2013-01-01

    As is the case for all techniques involved in the research for exoplanets, direct imaging has to take into account the probability of so-called astrophysical false positives, which are phenomena that mimic the signature of objects we are seeking. In this work we aim to present a case of a false positive found during a direct imaging survey conducted with VLT/NACO. A promising exoplanet candidate was detected around the K2-type star HD\\,8049 in July 2010.Its contrast of $\\Delta H$=7.05 at 1.57 arcsec allowed us to guess the presence of a 35 \\MJup companion at 50 projected AU, for the nominal system age and heliocentric distance.To check whether it was gravitationally bound to the host star, as opposed to an unrelated background object, we re-observed the system one year later and concluded a high probability of a bound system. We also used radial velocity measurements of the host star, spanning a time range of $\\sim$ 30 yr, to constrain the companion's mass and orbital properties, as well as to probe the host ...

  5. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

    Science.gov (United States)

    Gillon, Michaël; Triaud, Amaury H. M. J.; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M.; Lederer, Susan M.; de Wit, Julien; Burdanov, Artem; Ingalls, James G.; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N.; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R.; Carey, Sean J.; Chaushev, Aleksander; Copperwheat, Chris M.; Delrez, Laetitia; Fernandes, Catarina S.; Holdsworth, Daniel L.; Kotze, Enrico J.; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-01

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  6. M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems

    CERN Document Server

    Rappaport, S; Levine, A; Joss, M; Sanchis-Ojeda, R; Barclay, T; Still, M; Handler, G; Oláh, K; Muirhead, P S; Huber, D; Vida, K

    2014-01-01

    We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have three or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star sy...

  7. Spectroscopic Study of Extended Star Clusters in Dwarf Galaxy NGC 6822

    CERN Document Server

    Hwang, Narae; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W; Kim, Sang Chul; Miller, Bryan; Weisz, Daniel

    2014-01-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South 8.1m telescope. Their radial velocities derived from the spectra range from $-61.2 \\pm 20.4$ km s$^{-1}$ (for C1) to $-115.34 \\pm 57.9$ km s$^{-1}$ (for C4) and, unlike the intermediate age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old ($\\geq 8$ Gyr) and metal poor ([Fe/H]$\\lesssim -1.5$). NGC 6822 is found to have both metal poor ([Fe/H]$\\approx -2.0$) and metal rich ([Fe/H]$\\approx -0.9$) star clusters within 15 arcmin (2 kpc) from the center, while only metal poor clusters are observed in the outer halo with $r \\geq 20$ arcmin (2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have deter...

  8. The Oldest Stars of the Extremely Metal-Poor Local Group Dwarf Irregular Galaxy Leo A

    CERN Document Server

    Schulte-Ladbeck, R E; Drozdovsky, I O; Greggio, L; Crone, M M; Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Drozdovsky, Igor O.; Greggio, Laura; Crone, Mary M.

    2002-01-01

    We present deep Hubble Space Telescope single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. (1998) in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters which exhibit red horizontal branches, and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A, and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but lack the detection of main-sequence turnoffs which would provide unambiguous proof of ancient (>10 Gyr) stellar generation...

  9. Merger of a White Dwarf-Neutron Star Binary to $10^{29}$ Carat Diamonds: Origin of the Pulsar Planets

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We show that the merger and tidal disruption of a C/O white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disk produced of the disrupted WD, we model its long term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disk opacity. For plausible values of the disk viscosity $\\alpha \\sim 10^{-3}-10^{-2}$ and the RIAF mass loss efficiency, we find that the disk mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon-dominated disk is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger ...

  10. Envelope Overshooting in Low Metallicity Intermediate- and High-mass Stars: a test with the Sagittarius Dwarf Irregular Galaxy

    CERN Document Server

    Tang, Jing; Slemer, Alessandra; Marigo, Paola; Girardi, Leo; Bianchi, Luciana; Rosnfield, Phil; Momany, Yazan

    2015-01-01

    We check the performance of the {\\sl\\,PARSEC} tracks in reproducing the blue loops of intermediate age and young stellar populations at very low metallicity. We compute new evolutionary {\\sl\\,PARSEC} tracks of intermediate- and high-mass stars from 2\\Msun to 350\\Msun with enhanced envelope overshooting (EO), EO=2\\HP and 4\\HP, for very low metallicity, Z=0.0005. The input physics, including the mass-loss rate, has been described in {\\sl\\,PARSEC}~V1.2 version. By comparing the synthetic color-magnitude diagrams (CMDs) obtained from the different sets of models with envelope overshooting EO=0.7\\HP (the standard {\\sl\\,PARSEC} tracks), 2\\HP and 4\\HP, with deep observations of the Sagittarius dwarf irregular galaxy (SagDIG), we find an overshooting scale EO=2\\HP to best reproduce the observed loops. This result is consistent with that obtained by \\citet{Tang_etal14} for Z in the range 0.001-0.004. We also discuss the dependence of the blue loop extension on the adopted instability criterion and find that, contrary ...

  11. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at z>1

    CERN Document Server

    van der Wel, A; Rix, H -W; Finkelstein, S L; Koekemoer, A M; Weiner, B J; Wuyts, S; Bell, E F; Faber, S M; Trump, J R; Koo, D; Ferguson, H C; Scarlata, C; Hathi, N P; Dunlop, J S; Newman, J A; Dickinson, M; Salmon, B; Kocevski, D F de Mello D D; Lai, K; Grogin, N A; Rodney, S A; Guo, Yicheng; McGrath, E G; Lee, K -S; Calvo, G B; Huang, K -H

    2011-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z=1.6-1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines -- with rest-frame equivalent widths ~1000\\AA -- in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with ~10^8 Msol in stellar mass, undergoing an enormous starburst phase with M*/(dM*/dt) of only ~15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7 x 10^-4 Mpc^-3) can produce in ~4 Gyr much of the stellar mass density that is presently contained in 10^8-10^9 Mso...

  12. The Gas Phase Mass Metallicity Relation for Dwarf Galaxies: Dependence on Star Formation Rate and HI Gas Mass

    CERN Document Server

    Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola

    2015-01-01

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{\\text{SFR}}$) as well as HI-gas mass (FMR$_{\\text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{\\text{SFR}}$ and FMR$_{\\text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_\\odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$\\sigma$ mean scatter in the MZR to be 0.05 dex. The 1$\\sigma$ mean scatter in the FMR$_{\\text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{\\text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_\\odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{\\text{HI}}$. We also find that th...

  13. Physical Properties of Young Brown Dwarfs and Very Low-Mass Stars Inferred from High-Resolution Model Spectra

    CERN Document Server

    Rice, Emily L; McLean, Ian S; Prato, L; Kirkpatrick, J Davy

    2009-01-01

    By comparing near-infrared spectra with atmosphere models, we infer the effective temperature, surface gravity, projected rotational velocity, and radial velocity for 21 very-low-mass stars and brown dwarfs. The unique sample consists of two sequences in spectral type from M6-M9, one of 5-10 Myr objects and one of >1 Gyr field objects. A third sequence is comprised of only ~M6 objects with ages ranging from 1 Gyr. Spectra were obtained in the J band at medium (R~2,000) and high (R~20,000) resolutions with NIRSPEC on the Keck II telescope. Synthetic spectra were generated from atmospheric structures calculated with the PHOENIX model atmosphere code. Using multi-dimensional least-squares fitting and Monte Carlo routines we determine the best-fit model parameters for each observed spectrum and note which spectral regions provide consistent results. We identify successes in the reproduction of observed features by atmospheric models, including pressure-broadened KI lines, and investigate deficiencies in the model...

  14. Juvenile Ultracool Dwarfs

    CERN Document Server

    Rice, Emily L; Cruz, Kelle; Barman, Travis; Looper, Dagny; Malo, Lison; Mamajek, Eric E; Metchev, Stanimir; Shkolnik, Evgenya L

    2011-01-01

    Juvenile ultracool dwarfs are late spectral type objects (later than ~M6) with ages between 10 Myr and several 100 Myr. Their age-related properties lie intermediate between very low mass objects in nearby star-forming regions (ages 1-5 Myr) and field stars and brown dwarfs that are members of the disk population (ages 1-5 Gyr). Kinematic associations of nearby young stars with ages from ~10-100 Myr provide sources for juvenile ultracool dwarfs. The lowest mass confirmed members of these groups are late-M dwarfs. Several apparently young L dwarfs and a few T dwarfs are known, but they have not been kinematically associated with any groups. Normalizing the field IMF to the high mass population of these groups suggests that more low mass (mainly late-M and possibly L dwarf) members have yet to be found. The lowest mass members of these groups, along with low mass companions to known young stars, provide benchmark objects with which spectroscopic age indicators for juvenile ultracool dwarfs can be calibrated and...

  15. A Hybrid Scenario for the Formation of Brown Dwarfs and Very Low Mass Stars

    CERN Document Server

    Basu, Shantanu

    2012-01-01

    We present a calculation of protostellar disk formation and evolution in which gaseous clumps (essentially, the first Larson cores formed via disk fragmentation) are ejected from the disk during the early stage of evolution. This is a universal process related to the phenomenon of ejection in multiple systems of point masses. However, it occurs in our model entirely due to the interaction of compact, gravitationally-bound gaseous clumps and is free from the smoothing-length uncertainty that is characteristic of models using sink particles. Clumps that survive ejection span a mass range of 0.08--0.35 $M_\\odot$, and have ejection velocities $0.8 \\pm 0.35$ km s$^{-1}$, which are several times greater than the escape speed. We suggest that, upon contraction, these clumps can form substellar or low-mass stellar objects with notable disks, or even close-separation very-low-mass binaries. In this hybrid scenario, allowing for ejection of clumps rather than finished protostars/proto--brown-dwarfs, disk formation and ...

  16. Diffusion and the occurrence of hydrogen shell flashes in helium white dwarf stars

    CERN Document Server

    Althaus, L G; Benvenuto, O G

    2000-01-01

    We investigate the effects of element diffusion on the structure and evolution of low-mass helium white dwarfs (WD). Attention is focused on the occurrence of hydrogen shell flashes induced by diffusion processes during cooling phases. Initial models from 0.406 to 0.161 solar masses are constructed by applying mass loss rates at different stages of the RGB evolution of a solar model. The multicomponent flow equations describing gravitational settling, and chemical and thermal diffusion are solved and the diffusion calculations are coupled to an evolutionary code. In addition, the same sequences are computed but neglecting diffusion. We find that element diffusion strongly affects the structure and cooling history of helium WD. In particular, diffusion induces the occurrence of hydrogen shell flashes in models with masses ranging from 0.18 to 0.41 solar masses, which is in sharp contrast from the situation when diffusion is neglected. In connection with the further evolution, these diffusion-induced flashes le...

  17. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    Science.gov (United States)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; Johnson, K. E.; Tzanavaris, Panayiotis; Gronwall, C.

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  18. EvryFlare: Flare rates and intensities for every 10 < g' < 15 solar-type and red dwarf star in the Southern sky

    Science.gov (United States)

    Howard, Ward; Fors, Octavi; Ratzloff, Jeff; Corbett, Hank; del Ser, Daniel; Law, Nicholas

    2017-05-01

    Habitable-zone rocky planets orbit nearly all stars; however, stellar flares make detecting these planets and discovering their actual habitability challenging. Although Kepler measured flare rates for various spectral-types around distant stars, the flare rates and intensities of nearby stars available to planet searches and follow-up remain poorly characterized. High-cadence, long-timescale photometry of such stars will provide the intensity and frequency of flares incident upon nearby HZ planets. At the same time, optical counterparts to CME-exoplanet-magnetosphere searches in the radio, and potentially-reduced flare interference for radial-velocity planet searches are obtained. The EvryFlare project employs the CTIO-based Evryscope, a combination of twenty-four telescopes, together giving instantaneous sky coverage of 8000 square degrees. Solar-type and red dwarf stars are selected by color and searched with an automated flare detector. We are currently sensitive to flares down to about 10 milli-magnitudes at g' 12 and about 0.2 of a magnitude at g' 15. With 2-minute cadence and a projected 5-year timeline with 1.5 years already recorded, we are precisely characterizing the flare rates and intensities of bright, nearby stars. With this information, we provide insight into the frequency and relative insolation incident upon HZ planets discovered orbiting nearby stars, as well as provide optical counterparts for radio planetary magnetosphere searches.

  19. The Origin of Superflares on G-Type Dwarf Stars of Various Ages

    CERN Document Server

    Katsova, M M

    2015-01-01

    We analyze new observations of superflares on G-stars discovered in the optical and near IR ranges with the Kepler mission. An evolution of solar-type activity is discussed. We give an estimate of the maximal total energy, $E_{tot} = 10^{34}\\;\\mbox{erg}$ of a flare that can occur on the young Sun at its age of 1 Gyr when the cycle was formed. We believe that the main source of the flare optical continuum is a low-temperature condensation forming in the course of the response of the chromosphere to an impulsive heating. For a superflare on the young Sun, we adopt the accelerated electron flux, $F_e (E>\\mbox{20 keV}) = 3 \\times 10^{11} \\: \\mbox{erg} \\; \\mbox{cm}^{-2} \\; \\mbox{s}^{-1}$, that is limited by the return current, and obtain the area of the optical continuum source on a G star, $S \\approx 10^{19} \\:\\mbox{cm}^2$. This value is close to the area of the $H_\\alpha$-ribbons in the largest solar flares, while the area of bright patches of a white-light flare on the contemporary Sun is smaller by about two o...

  20. Rotational Dynamics and Star Formation in the Nearby Dwarf Galaxy NGC 5238

    CERN Document Server

    Cannon, John M; Teich, Yaron G; Ball, Catherine; Banovetz, John; Brock, Annika; Eisner, Brian A; Fitzgibbon, Kathleen; Miazzo, Masao; Nizami, Asra; Reilly, Bridget; Ruvolo, Elizabeth; Singer, Quinton

    2016-01-01

    We present new HI spectral line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array (VLA). Located at a distance of 4.51+/-0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H-alpha and UV continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our HI images resolve the disk on physical scales of ~400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. The HI disk is asymmetric in the outer regions, and the areas of high HI mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The HI column density exceeds 10^21 cm^-2 in much of the disk. We quantify the degree of co-spatiality of dense HI gas and sites of ongoing star formation as traced by far-UV and H-alpha emission. The neutral ga...

  1. On the age of Galactic bulge microlensed dwarf and subgiant stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2015-01-01

    Recent results by Bensby and collaborators on the ages of microlensed stars in the Galactic bulge have challenged the picture of an exclusively old stellar population. However, these age estimates have not been independently confirmed. In this paper we verify these results by means of a grid-based method and quantify the systematic biases that might be induced by some assumptions adopted to compute stellar models. We explore the impact of increasing the initial helium abundance, neglecting the element microscopic diffusion, and changing the mixing-length calibration in theoretical stellar track computations. We adopt the SCEPtER pipeline with a novel stellar model grid for metallicities [Fe/H] from -2.00 to 0.55 dex, and masses in the range [0.60; 1.60] Msun from the ZAMS to the helium flash at the red giant branch tip. We show for the considered evolutionary phases that our technique provides unbiased age estimates. Our age results are in good agreement with Bensby and collaborators findings and show 16 star...

  2. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Science.gov (United States)

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  3. A New Theory for the Mechanic Equilibrium of White Dwarf Star%一个关于白矮星力学平衡的新理论

    Institute of Scientific and Technical Information of China (English)

    邓昭镜; 潘春燕

    2003-01-01

    将一个新理论--正、负能谱(PNES)热力学理论应用于白矮星系统的力学平衡问题, 对白矮星初期演化阶段的力学平衡进行了详细的分析. 虽然应用PNES热力学理论所得出的结论与原有的理论结果一致. 但是PNES理论的基本原理和思路与原有的理论完全不同, 按照原有理论, 白矮星系统只是一种电子系统, 氦离子系统只被视为约束电子系统的外部约束条件. 显然原有理论不能反映白矮星的实际状态, 因为白矮星并不是一个电子系统而是一个由电子子系和氦离子子系组成的复合系统. 因此, 对白矮星的力学平衡问题和演化问题都必须以由电子子系和氦离子子系组成的复合系统来进行研究. 本文应用这一新理论(PNES热力学理论), 以复合系统的观点研究了白矮的力学平衡问题.%Applying the new theory the positive and negative energy spectrum (PNES) thermodynamical theory to the mechanical equilibrium of white dwarf stars, the mechanical equilibrium of white dwarf star at early stage has been analysed carefully. Although the conclusion of PNES thermodynamical theory is consistent with the conclusion of the original theory, but the fundamental principle and the train of thought in PNES theory is quite different from the original theory. According as the original theory has regarded the white dwarf star system is a electron system alone, the helium-ion system is only looked as a external condition that the electron system is restricted. Obviously, that the original theory can't reflects the practical state of white dwarf stars, because the white dwarf tar isn't a electron system but a composite system which is composed of the electron sub system and helium ion sub_system. Therefore, The mechanical equilibrium problem and the evolution problem of white dwarf star must be engaged in research of the composite system composed of the electron sub system and helium ion sub_system. This

  4. Gas-rich Local Dwarf Star-Forming Galaxies and Their Connection With the Distant Universe

    Science.gov (United States)

    Kunth, D.

    1999-07-01

    I discuss the properties of gas-rich forming galaxies. I particularlyemphasize the latest results on Lyα emission that are relevant to the search of distant young galaxies. The interdependance of the Lyα escape with the properties of the ISM in starburst galaxies is outlined. A new modelfrom G. Tenorio-Tagle and his collaborators explains Lyα profiles instarburst galaxies from the hydrodynamics of superbubbles powered by massivestars. I stress again that since Lyα is primarely a diagnostic ofthe ISM, it is mandatory to understand how the ISM and Lyα arerelated to firmly relate Lyα to the cosmic star-formation rate.

  5. Axion cooling of white dwarfs

    CERN Document Server

    Isern, J; Garcia--Berro, E; Salaris, M; Torres, S

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  6. Response of Atmospheric Biomarkers to NOx-induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M-Dwarf Stars

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Patzer, Beate; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2015-01-01

    Understanding whether M-dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M-dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides in the planetary atmosphere, hence affecting biomarkers such as ozone. We apply a stationary model, that is, without a time-dependence, hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by t...

  7. Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.

    2017-03-01

    We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.

  8. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    Science.gov (United States)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  9. A Census of Young Stars and Brown Dwarfs in IC 348 and NGC 1333

    CERN Document Server

    Luhman, K L; Loutrel, N P

    2016-01-01

    We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for Ks<16.8 at Aj<1.5 in IC 348 and for Ks<16.2 at Aj<3 in NGC 1333, which correspond to masses of <=0.01 Msun for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ~0.005 Msun. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass function...

  10. A Census of Young Stars and Brown Dwarfs in IC 348 and NGC 1333

    Science.gov (United States)

    Luhman, K. L.; Esplin, T. L.; Loutrel, N. P.

    2016-08-01

    We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K s Hertzsprung-Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy. Based on data from the NASA Infrared Telescope Facility, Gemini Observatory, Canada-France-Hawaii Telescope, Keck Observatory, Subaru Telescope, the Digitized Sky Survey, and the Two Micron All-Sky Survey.

  11. Early Phases Of Galaxy Assembly Revealed By Young Star-Forming Dwarfs At Z 3

    Science.gov (United States)

    Amorín, Ricardo; VUDS Collaboration

    2017-06-01

    Studying lower-redshift analogs of the first galaxies is essential to scrutinize the details of galaxy formation and cosmic reionization, paving the way for a better interpretation of observations of primeval galaxies with the James Webb Space Telescope. In this talk I will present a thorough study of a recently discovered population of small, sub-L* star-forming galaxies at redshift z 2-4 that exhibit all the rest-frame properties expected for early galaxies in their first epoch of assembling and chemical enrichment. Selected by their strong nebular emission in the UV (including emission lines such as CIII]1908, CIV1550 and OIII]1664) from thousands of galaxies in the VIMOS Ultra Deep Survey, these young low mass systems are extremely metal-deficient galaxies that are likely experiencing their first significant starburst episode. I will discuss their rest-frame properties, hard radiations fields, strong Lyman-alpha emission, HST morphologies and strongly sub-solar chemical abundances. Finally, I will compare their properties with that of galaxies observed at the edge of the reionization epoch, which pose interesting prospects for JWST studies.

  12. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. V. Evidence for a wide age distribution and a complex MDF

    CERN Document Server

    Bensby, T; Feltzing, S; Johnson, J A; Gould, A; Cohen, J G; Asplund, M; Meléndez, J; Lucatello, S; Han, C; Thompson, I; Gal-Yam, A; Udalski, A; Bennett, D P; Bond, I A; Kohei, W; Sumi, T; Suzuki, D; Suzuki, K; Takino, S; Tristram, P; Yamai, N; Yonehara, A

    2012-01-01

    Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. [ABRIDGED], we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) The metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H]=-1.9 to +0.6; (ii) The dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. [ABRIDGED]; (iii) The stars with [Fe/H]-0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4-5 Gyr and a tail towards higher ages; (v) There are indications in the [alpha/Fe] - [Fe/H] that the "knee" occurs around [Fe/H] = -0.3 to -0....

  13. A New View of the Dwarf Spheroidal Satellites of the Milky Way From VLT/FLAMES: Where are the Very Metal Poor Stars?

    Energy Technology Data Exchange (ETDEWEB)

    Helmi, Amina; Irwin, M.J.; Tolstoy, E.; Battaglia, G.; Hill, V.; Jablonka, P.; Venn, K.; Shetrone, M.; Letarte, B.; Arimoto, N.; Abel, T.; Francois, P.; Kaufer, A.; Primas, F.; Sadakane, K.; Szeifert, T.; /Kapteyn Astron. Inst., Groningen /Cambridge U., Inst. of Astron. /Meudon Observ. /LASTRO Observ. /Victoria U. /Texas U., McDonald Observ.

    2006-11-20

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems had been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.

  14. Green Peas and diagnostics for Lyman continuum leaking in star-forming dwarf galaxies

    Science.gov (United States)

    Thuan, Trinh

    2014-10-01

    One of the key questions in observational cosmology is the identification of the sources responsible for cosmic reionization. The general consensus is that a population of faint low-mass galaxies must be responsible for the bulk of the ionizing photons. However, attempts at identifying individual galaxies showing Lyman continuum (LyC) leakage have so far not been successful, both at high and low redshifts. We propose here to observe directly the LyC of five so-called "Green Pea" (GP) galaxies. GPs share many of the properties of the Lyman Break galaxies at high z (compactness, low mass, low metallicity, high specific star formation rate, gas-rich and clumpy morphology) and may constitute local examples of the long sought-after LyC leaking galaxies. The five GPs have been identified by searching the Sloan Data Release 10 spectral data base of 2 million spectra for non-AGN emission-line objects that meet the following criteria: high [OIII]5007/[OII]3727 ratios, large GALEX FUV fluxes, and redshifted enough (z~0.3) so that the LyC is shifted into the sensitive spectral range of COS. Our unique GP sample will allow us to combine for the first time four fundamental tests for LyC leaking in galaxies and validate their usefulness as LyC leaking indicators : 1) direct measurements of the LyC; 2) high [OIII]/[OII] ratios; 3) characteristics of the Lyman alpha line profile; and 4) residual intensities in the low-ionization ISM absorption UV lines.

  15. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Maybhate, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Charlton, J. C.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Fedotov, K.; Desjardins, T. D.; Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Mulchaey, J. S. [Carnegie Observatories, Pasadena, CA 91101 (United States); English, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Walker, L. M.; Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 3813, Charlottesville, VA 22904 (United States); Tzanavaris, P., E-mail: iraklis@aao.gov.au [Laboratory for X-ray Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  16. Identifications and limited spectroscopy for Luyten common proper motion stars with probable white dwarf components. I - Pair brighter than 17th magnitude

    Science.gov (United States)

    Oswalt, Terry D.; Hintzen, Paul M.; Luyten, Willem J.

    1988-01-01

    Identifications are provided for 103 bright Luyten common proper motion (CPM) stellar systems with m(pg) less than 17.0 mag containing likely white dwarf (WD) components. New spectral types are presented for 55 components, and spectral types for 51 more are available in the literature. With the CPM systems previously published by Giclas et al. (1978), the Luyten stars provide a uniform sample of nearly 200 pairs or multiples brighter than 17h magnitude. Selection effects biasing the combined samples are discussed; in particular, evidence is presented that fewer than 1 percent of wide WD binaries have been detected.

  17. Paschen-Back effect in the CrH molecule and its application for magnetic field measurements on stars, brown dwarfs, and hot exoplanets

    OpenAIRE

    Kuzmychov, O.; Berdyugina, S. V.

    2013-01-01

    We investigated the Paschen-Back effect in the (0,0) band of the A6{\\Sigma}+-X6{\\Sigma}+ system of the CrH molecule, and we examined its potential for estimating magnetic fields on stars and substellar objects, such as brown dwarfs and hot exoplanets. We carried out quantum mechanical calculations to obtain the energy level structure of the electronic-vibrational-rotational states considered both in the absence and in the presence of a magnetic field. Level mixing due to magnetic field pertur...

  18. Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?

    CERN Document Server

    Desort, M; Galland, F; Udry, S; Montagnier, G; Beust, H; Boisse, I; Bonfils, X; Bouchy, F; Delfosse, X; Eggenberger, A; Ehrenreich, D; Forveille, T; Hébrard, G; Loeillet, B; Lovis, C; Mayor, M; Meunier, N; Moutou, C; Pepe, F; Perrier, C; Pont, F; Queloz, D; Santos, N C; Ségransan, D; Vidal-Madjar, A

    2009-01-01

    (abridged) In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the results obtained on the early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the spectra. Our dedicated radial-velocity measurement method was used to monitor the star's radial velocities over five years. We also use complementary, high angular resolution and high-contrast images taken with PUEO at CFHT. We show that Theta Cygni radial velocities are quasi-periodically variable, with a ~150-day period. These variations are not due to the ~0.35-Msun stellar companion that we detected in imaging at more than 46 AU from the star. The absence of correlation between the bisector velocity span variations and the radial velocity variations for this 7 km/s vsini star, as well as other criteria indicate that the observed radial velocity variations are not due to stellar spots. The observed amplitude of the bisector velocity span variations also seems to rule out ste...

  19. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98

    CERN Document Server

    Melbourne, J; Dalcanton, J; Ammons, S M; Max, C; Koo, D C; Girardi, Leo; Dolphin, A

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the Red Clump and the Main Sequence turn-off for 0.5 Gyr old populations. Compared to the optical color magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate age (0.5 - 5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10^-4 Mo yr^-1) for much of cosmic time. Except for the youngest main sequence populations (age &...

  20. Trumpeting M Dwarfs with CONCH-SHELL: a Catalog of Nearby Cool Host-Stars for Habitable ExopLanets and Life

    CERN Document Server

    Gaidos, E; Lepine, S; Buccino, A; James, D; Ansdell, M; Petrucci, R; Mauas, P; Hilton, E J

    2014-01-01

    We present an all-sky catalog of 2970 nearby ($d \\lesssim 50$ pc), bright ($J< 9$) M- or late K-type dwarf stars, 86% of which have been confirmed by spectroscopy. This catalog will be useful for searches for Earth-size and possibly Earth-like planets by future space-based transit missions and ground-based infrared Doppler radial velocity surveys. Stars were selected from the SUPERBLINK proper motion catalog according to absolute magnitudes, spectra, or a combination of reduced proper motions and photometric colors. From our spectra we determined gravity-sensitive indices, and identified and removed 0.2% of these as interloping hotter or evolved stars. Thirteen percent of the stars exhibit H-alpha emission, an indication of stellar magnetic activity and possible youth. The mean metallicity is [Fe/H] = -0.07 with a standard deviation of 0.22 dex, similar to nearby solar-type stars. We determined stellar effective temperatures by least-squares fitting of spectra to model predictions calibrated by fits to sta...