WorldWideScience

Sample records for dwarf disc galaxy

  1. Tidal Dwarf Galaxies: Disc Formation at z=0

    CERN Document Server

    Lelli, Federico; Brinks, Elias; McGaugh, Stacy S

    2015-01-01

    Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs). We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A). We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter i...

  2. Early-type dwarf galaxies with multicomponent stellar structure: Are they remnants of disc galaxies strongly transformed by their environment?

    CERN Document Server

    Aguerri, J Alfonso L

    2016-01-01

    The surface brightness distribution of $\\sim$30-40$\\%$ of the early-type dwarf galaxies with $-18 \\leq M_{B} \\leq -15$ in the Virgo and the Coma clusters is fitted by models that include two structural components (S\\`ersic + exponential) as for bright disc galaxies.The goal of the present study is to determine whether early-type dwarf galaxies with a two-component stellar structure in the Virgo and the Coma clusters are low-luminosity copies of bright disc galaxies or are the remnants of bright galaxies strongly transformed by cluster environmental effects.I analysed the location of bright disc galaxies and early-type dwarfs in the $r_{b,e}/h$- $n$ plane. The location in this plane of the two-component dwarf galaxies was compared with the remnants of tidally disrupted disc galaxies reported by numerical simulations. Bright unbarred disc galaxies show a strong correlation in the $r_{b,e}/h$-$n$ plane. Galaxies with larger S\\`ersic shape parameters show a higher $r_{b,e}/h$ ratio. In contrast, two-component ear...

  3. Gas dynamics in tidal dwarf galaxies: disc formation at z=0

    CERN Document Server

    Lelli, F; Brinks, E; Bournaud, F; McGaugh, S S; Lisenfeld, U; Weilbacher, P M; Boquien, M; Revaz, Y; Braine, J; Koribalski, B S; Belles, P -E

    2015-01-01

    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting/merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can form only from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona-fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291 we analyse existing HI data from the Very Large Array (VLA), while for NGC 7252 we present new HI observations from the Jansky VLA together with long-slit and integral-field optical spectroscopy. For all six TDGs, the HI emission can be described by rotating disc models. These HI discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consis...

  4. Stellar populations of Virgo cluster early-type dwarf galaxies with and without discs: a dichotomy in age?

    CERN Document Server

    Paudel, S; Kuntschner, H; Grebel, E; Glatt, K

    2010-01-01

    [Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average stellar population characteristics for different morphological subclasses. The nucleated galaxies without discs are older and more metal poor than the dEs with discs . The alpha-element abundance ratio appears consistent with the solar value for both morphological types. Besides a well-defined relation of metallicity and luminosity, we also find a clear anti-correlation between age and luminosity. More specifically, there appears to be a bimodality: brighter galaxies, including the discy ones, exhibit significantly younger ages than fainter dEs. Therefore, it appears less likely that fainter and brighter dEs have experienced the same evolutionary history, as the well-established trend of decreasing average stellar age when going from the most luminous ellipticals to...

  5. Discs of Satellites: the new dwarf spheroidals

    CERN Document Server

    Metz, Manuel; Jerjen, Helmut

    2009-01-01

    The spatial distributions of the most recently discovered ultra faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation we pay special attention to the selection bias introduced due to the limited sky coverage of SDSS. We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also notice a deficit of satellite galaxies with Galactocentric distances larger than 100 kpc that are away from the disc-of-satellites of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the discs-of-satellites are optical manifestations of a phase-space correlation of satellite galaxies.

  6. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  7. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  8. Dwarf spheroidal galaxies keystones of galaxy evolution

    CERN Document Server

    Gallagher, S C; Gallagher, S; Wyse, F G

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  9. Manganese in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; Francois, P.

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other

  10. Lopsidedness in dwarf irregular galaxies

    CERN Document Server

    Heller, A B; Almoznino, E; Van Zee, L; Salzer, J J; Heller, Ana B.; Brosch, Noah; Almoznino, Elchanan; Zee, Liese van; Salzer, John J.

    2000-01-01

    We quantify the amplitude of the lopsidedness, the azimuthal angular asymmetry index, and the concentration of star forming regions, as represented by the distribution of the H$\\alpha$ emission, in a sample of 78 late-type irregular galaxies. We bin the observed galaxies in two groups representing blue compact galaxies (BCDs) and low surface brightness dwarf galaxies (LSBs). The light distribution is analysed with a novel algorithm, which allows detection of details in the light distribution pattern. We find that while the asymmetry of the underlying continuum light, representing the older stellar generations, is relatively small, the H$\\alpha$ emission is very asymmetric and is correlated in position angle with the continuum light. We test a model of random star formation over the extent of a galaxy by simulating HII regions in artificial dwarf galaxies. The implication is that random star formation over the full extent of a galaxy may be generated in LSB dwarf-irregular galaxies but not in BCD galaxies.

  11. Magnetic white dwarfs with debris discs

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2013-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetic fields within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. Smoothed Particle Hydrodynamics simulations show that in mergers in which the two white dwarfs have different masses a disc around the central compact object is formed. If the central object is magnetized it can interact with the disc through its magnetosphere. The torque applied by the disc changes the spin of the star, whereas the transferred angular momentum from the star to the disc determines the properties of the disc. In this work we build a model for the disc evolution under the effect of magnetic accretion, and for the angular momentum evolution of the star, which can be compared with the observations. Our model pre...

  12. Morphological Mutations of Dwarf Galaxies

    CERN Document Server

    Hensler, Gerhard

    2012-01-01

    Dwarf galaxies (DGs) are extremely challenging objects in extragalactic astrophysics. They are expected to originate as the first units in Cold Dark-Matter cosmology. They are the galaxy type most sensitive to environmental influences and their division into multiple types with various properties have invoked the picture of their variant morphological transformations. Detailed observations reveal characteristics which allow to deduce the evolutionary paths and to witness how the environment has affected the evolution. Here we review peculiarities of general morphological DG types and refer to processes which can deplete gas-rich irregular DGs leading to dwarf ellipticals, while gas replenishment implies an evolutionary cycling. Finally, as the less understood DG types the Milky Way satellite dwarf spheroidal galaxies are discussed in the context of transformation.

  13. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matt

  14. Stars at Low Metallicity in Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, Eline; Battaglia, Giuseppina; Cole, Andrew; Hunt, LK; Madden, S; Schneider, R

    2008-01-01

    Dwarf galaxies offer an opportunity to understand the properties of low metallicity star formation both today and at the earliest times at the, epoch of the formation of the first stars. Here we concentrate on two galaxies in the Local Group: the dwarf irregular galaxy Leo A, which has been the rece

  15. Dark matter in dwarf galaxies

    OpenAIRE

    Roos, Matts

    2017-01-01

    Although the cusp-core controversy for dwarf galaxies is seen as a problem, I argue that the cored central profiles can be explained by flattened cusps because they suffer from conflicting measurements and poor statistics and because there is a large number of conventional processes that could have flattened them since their creation, none of which requires new physics. Other problems, such as "too big to fail", are not discussed.

  16. Modelling Neutral Hydrogen Discs of Spiral Galaxies

    Institute of Scientific and Technical Information of China (English)

    林伟鹏; 洪碧海

    2002-01-01

    We present an analytical model of a neutral hydrogen disc in a spiral galaxy. The gas disc of the spiral galaxy isassumed to have an exponential surface density profile and to be ionized by the cosmic ultraviolet background.To compare with observations, we consider the disc position angle and inclination angle for a line of sight goingthrough the galaxy disc. The HI column densities depend on the strength of ionizing field and disc position andinclination. The model was applied to NGC 3198 and the results were compared with observational data. TheHI disc profile at large disc radii can be tested by further HI observations using radio telescopes with a largeraperture than the present facilities. This HI disc model can be used to predict quasar absorption line systems bygalaxy discs if quasar lines of sight go through the discs.

  17. The Blue Straggler Population in Dwarf Galaxies

    CERN Document Server

    Momany, Yazan

    2014-01-01

    In this chapter I review the recent developments regarding the study of Blue Stragglers (BSS) in dwarf galaxies. The loose density environment of dwarf galaxies resembles that of the Galactic Halo, hence it is natural to compare their common BSS properties. At the same time, it is unescapable to compare with the BSS properties in Galactic Globular clusters, which constitute the reference point for BSS studies. Admittedly, the literature on BSS in dwarf galaxies is not plentiful. The limitation is mostly due to the large distance to even the closest dwarf galaxies. Nevertheless, recent studies have allowed a deeper insight on the BSS photometric properties that are worth examining.

  18. Manganese in dwarf spheroidal galaxies

    CERN Document Server

    North, P; Jablonka, P; Hill, V; Shetrone, M; Letarte, B; Lemasle, B; Venn, K A; Battaglia, G; Tolstoy, E; Irwin, M J; Primas, F; Francois, P

    2012-01-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and ...

  19. Study of the nature of dark matter in halos of dwarf galaxies

    Science.gov (United States)

    Karmakar, Pradip; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2015-08-01

    The kinematics of dwarf galaxies are strongly influenced by dark matter down to small galactocentric radii. So they are good candidates to investigate the nature of Dark Matter. In the present work we have carried out mass modeling of a number of recently observed dwarf galaxies Swaters et al. in Astron. Astrophys. 493:871, 2009. We have used a Navarro-Frenk-White (NFW) halo, Freeman disc along with a gaseous disc for modeling the observed rotation curves of those dwarf galaxies. For comparison we also used a Burkert halo, Freeman disc and gaseous disc. For both the scenario we have performed Kolmogorov-Smirnov (KS) test between the observed and predicted rotational velocity profiles. The tests are rejected for NFW halo almost in 50 per cent cases but they are accepted almost for all cases for Burkert halo, preferring a Burkert halo model generally for dwarf galaxies. The above results reveal a constant density core of dark matter (DM) in the halos of dwarf galaxies compared to a cuspy nature of NFW halo and a possible challenge to -CDM scenario for the nature of dark matter in most of the dwarf galaxies.

  20. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    Science.gov (United States)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  1. Shell Galaxies, Dynamical Friction, and Dwarf Disruption

    CERN Document Server

    Ebrova, Ivana; Canalizo, Gabriela; Bennert, Nicola; Jilkova, Lucie

    2009-01-01

    Using N-body simulations of shell galaxies created in nearly radial minor mergers, we investigate the error of collision dating, resulting from the neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.

  2. At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores

    CERN Document Server

    Governato, Fabio; Mayer, Lucio; Brooks, Alyson; Rhee, George; Wadsley, James; Jonsson, Patrik; Willman, Beth; Stinson, Greg; Quinn, Thomas; Madau, Piero

    2009-01-01

    For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resultin...

  3. Metals and ionizing photons from dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, S.; Tolstoy, E.; Ferrara, A.; Zaroubi, S.

    2014-01-01

    We estimate the potential contribution of M <10(9)M(circle dot) dwarf galaxies to the reionization and early metal enrichment of the Milky Way environment, or circum-Galactic medium. Our approach is to use the observed properties of ancient stars ()under tilde>12 Gyr old) measured in nearby dwarf ga

  4. Metallic Winds in Dwarf Galaxies

    Science.gov (United States)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N-Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  5. Understanding dwarf galaxies as galactic building blocks

    CERN Document Server

    Tosi, M P

    2003-01-01

    This is a summary of a general discussion held during the third EuroConference on galaxy evolution. Various observational features of the stellar populations in present--day dwarf galaxies were presented to introduce the discussion on the possibility that these systems be the main building blocks of spiral and elliptical galaxies. Many people in the audience turned out to think that the inconsistencies among the observed properties of large and dwarf galaxies are too many to believe that the former are built up only by means of successive accretions of the latter. However, theorists of hierarchical galaxy formation suggested that present--day dwarfs are not representative of the galactic building blocks, which may be completely invisible nowadays. Some of them suggested that, contrary to what is usually assumed in hierarchical modelling, the actual building blocks were still fully gaseous systems when their major mergers occurred. If this is the case, then most of the inconsistencies can be overcome, and the ...

  6. Evolution of dwarf galaxies : A dynamical perspective

    NARCIS (Netherlands)

    Lelli, Federico; Fraternali, Filippo; Verheijen, Marc

    2014-01-01

    For a rotating galaxy, the inner circular-velocity gradient dRV(0) provides a direct estimate of the central dynamical mass density, including gas, stars, and dark matter. We consider 60 low-mass galaxies with high-quality H I and/or stellar rotation curves (including starbursting dwarfs, irregulars

  7. Evolution of dwarf galaxies: a dynamical perspective

    NARCIS (Netherlands)

    Lelli, Federico; Fraternali, Filippo; Verheijen, Marc

    2014-01-01

    For a rotating galaxy, the inner circular-velocity gradient dRV(0) provides a direct estimate of the central dynamical mass density, including gas, stars, and dark matter. We consider 60 low-mass galaxies with high-quality H I and/or stellar rotation curves (including starbursting dwarfs, irregulars

  8. Missing dark matter in dwarf galaxies?

    CERN Document Server

    Oman, Kyle A; Sales, Laura V; Fattahi, Azadeh; Frenk, Carlos S; Sawala, Till; Schaller, Matthieu; White, Simon D M

    2016-01-01

    We use cosmological hydrodynamical simulations of the APOSTLE project to examine the fraction of baryons in $\\Lambda$CDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or they inhabit haloes with extreme deficits in their dark matter content. This `missing dark matter' is reminiscent of the inner mass deficits of galaxies with slowly-rising rotation curves, but extends...

  9. Internal kinematics of modelled interacting disc galaxies

    CERN Document Server

    Kronberger, T; Schindler, S; Böhm, A; Kutdemir, E; Ziegler, B L

    2006-01-01

    We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied in observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys significantly disturb the velocity fields and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are rising or falling profiles in direction to the companion galaxy and bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. The appearance of these distortions depends, however, strongly on the viewing angle. The velocity ...

  10. Morphological transformations of Dwarf Galaxies in the Local Group

    CERN Document Server

    Carraro, Giovanni

    2014-01-01

    In the Local Group there are three main types of dwarf galaxies: Dwarf Irregulars, Dwarf Spheroidals, and Dwarf Ellipticals. Intermediate/transitional types are present as well. This contribution reviews the idea that the present day variety of dwarf galaxy morphologies in the Local Group might reveal the existence of a transformation chain of events, of which any particular dwarf galaxy represents a manifestation of a particular stage. In other words, all dwarf galaxies that now are part of the Local Group would have formed identically in the early universe, but then evolved differently because of morphological transformations induced by dynamical processes like galaxy harassment, ram pressure stripping, photo-evaporation, and so forth. We start describing the population of dwarf galaxies and their spatial distribution in the LG. Then, we describe those phenomena that can alter the morphology of a dwarf galaxies, essentially by removing, partially or completely, their gas content. Lastly, we discuss morpholo...

  11. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  12. Brown dwarfs forming in discs: Where to look for them?

    Directory of Open Access Journals (Sweden)

    Stamatellos D.

    2011-07-01

    Full Text Available A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation for the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100–5000 AU around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  13. Brown dwarfs forming in discs: where to look for them?

    CERN Document Server

    Stamatellos, Dimitris

    2009-01-01

    A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100-5000 AU) around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  14. Photometric properties of Local Volume dwarf galaxies

    CERN Document Server

    Sharina, M E; Dolphin, A E; Karachentseva, V E; Tully, R Brent; Karataeva, G M; Makarov, D I; Makarova, L N; Sakai, S; Shaya, E J; Nikolaev, E Yu; Kuznetsov, A N

    2007-01-01

    We present surface photometry and metallicity measurements for 104 nearby dwarf galaxies imaged with the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. In addition, we carried out photometry for 26 galaxies of the sample and for Sextans~B on images of the Sloan Digital Sky Survey. Our sample comprises dwarf spheroidal, irregular and transition type galaxies located within ~10 Mpc in the field and in nearby groups: M81, Centaurus A, Sculptor, and Canes Venatici I cloud. It is found that the early-type galaxies have on average higher metallicity at a given luminosity in comparison to the late-type objects. Dwarf galaxies with M_B > -12 -- -13 mag deviate toward larger scale lengths from the scale length -- luminosity relation common for spiral galaxies, h \\propto L^{0.5}_B. The following correlations between fundamental parameters of the galaxies are consistent with expectations if there is pronounced gas-loss through galactic winds: 1) between the luminosit...

  15. Massive Star Clusters in Dwarf Galaxies

    CERN Document Server

    Larsen, Soeren S

    2015-01-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  16. Blue diffuse dwarf galaxies: a clearer picture

    Science.gov (United States)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e. galaxies with population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ∼150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  17. Signs of a faint disc population at polluted white dwarfs

    CERN Document Server

    Bergfors, Carolina; Dufour, Patrick; Rocchetto, Marco

    2014-01-01

    Observations of atmospheric metals and dust discs around white dwarfs provide important clues to the fate of terrestrial planetary systems around intermediate mass stars. We present Spitzer IRAC observations of 15 metal polluted white dwarfs to investigate the occurrence and physical properties of circumstellar dust created by the disruption of planetary bodies. We find subtle infrared excess emission consistent with warm dust around KUV 15519+1730 and HS 2132+0941, and weaker excess around the DZ white dwarf G245-58, which, if real, makes it the coolest white dwarf known to exhibit a 3.6 micron excess and the first DZ star with a bright disc. All together our data corroborate a picture where 1) discs at metal-enriched white dwarfs are commonplace and most escape detection in the infrared (possibly as narrow rings), 2) the discs are long lived, having lifetimes on the order of 10^6 yr or longer, and 3) the frequency of bright, infrared detectable discs decreases with age, on a timescale of roughly 500 Myr, su...

  18. Galaxy Zoo: finding offset discs and bars in SDSS galaxies★

    Science.gov (United States)

    Kruk, Sandor J.; Lintott, Chris J.; Simmons, Brooke D.; Bamford, Steven P.; Cardamone, Carolin N.; Fortson, Lucy; Hart, Ross E.; Häußler, Boris; Masters, Karen L.; Nichol, Robert C.; Schawinski, Kevin; Smethurst, Rebecca J.

    2017-08-01

    We use multiwavelength Sloan Digital Sky Survey (SDSS) images and Galaxy Zoo morphologies to identify a sample of ∼270 late-type galaxies with an off-centre bar. We measure offsets in the range 0.2-2.5 kpc between the photometric centres of the stellar disc and stellar bar. The measured offsets correlate with global asymmetries of the galaxies, with those with largest offsets showing higher lopsidedness. These findings are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions producing off-centre bars. We find that the majority of galaxies with off-centre bars are of Magellanic type, with a median mass of 109.6 M⊙, and 91 per cent of them having M⋆ < 3 × 1010 M⊙, the characteristic mass at which galaxies start having higher central concentrations attributed to the presence of bulges. We conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Although this may be due to the incompleteness of the SDSS spectroscopic survey at the faint end, alternative scenarios that give rise to offset bars such as interactions with dark companions or the effect of lopsided halo potentials should be considered. Future observations are needed to confirm possible low-mass companion candidates and to determine the shape of the dark matter halo, in order to find the explanation for the off-centre bars in these galaxies.

  19. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Sarah M.; Drinkwater, Michael J. [School of Mathematics and Physics, University of Queensland, Qld 4072 (Australia); Meurer, Gerhardt; Bekki, Kenji [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Dopita, Michael A.; Nicholls, David C. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Kilborn, Virginia, E-mail: sarah@sarahsweet.com.au [Swinburne University of Technology, Mail number H30, PO Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  20. Star formation history in forming dwarf galaxies

    Science.gov (United States)

    Berczik, P.; Kravchuk, S. G.

    The processes of formation and evolution of isolated dwarf galaxies over the Hubble timescale is followed by means of SPH techniques. As an initial protogalaxy perturbation we consider an isolated, uniform, solid -- body rotated sphere involved into the Hubble flow and made of dark and baryonic matter in a 10:1 ratio. The simulations are carried out for the set of models having spin parameters lambda in the range from 0.01 to 0.08 and the total mass of dark matter 1011 M_odot . Our model includes gasdynamics, radiative processes, star formation, supernova feedback and simplified chemistry. The application of modified star formation criterion which accounts for chaotic motions and the time lag between initial development of suitable conditions for star formation and star formation itself (Berczik P.P, Kravchuk S.G. 1997, Ap.Sp.Sci.) provides the realistic description of the process of galaxy formation and evolution. Two parameters: total mass and initial angular momentum of the dwarf protogalaxy play the crucial role in its star formation activity. After the 15 Gyr of the evolution the rapidly rotated dwarf galaxies manifest themselves as an extremly gasrich, heavy element deficient objects showing the initial burst of star formation activity in several spatially separated regions. Slowly rotating objects manifest themselves finally as typical evolved dwarf galaxies.

  1. Blue straggler stars in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.; Tolstoy, E.; Sigurdsson, S.; Irwin, M. J.; Battaglia, G.

    2007-01-01

    Blue straggler star (BSS) candidates have been observed in all old dwarf spheroidal galaxies (dSphs), however whether or not they are authentic BSSs or young stars has been a point of debate. To both address this issue and obtain a better understanding of the formation of BSSs in different environme

  2. HI Recycling Formation of Tidal Dwarf Galaxies

    CERN Document Server

    Duc, P A; Duc, Pierre-Alain; Brinks, Elias

    2000-01-01

    Galactic collisions trigger a number of phenomena, such as transportation inward of gas from distances of up to kiloparsecs from the center of a galaxy to the nuclear region, fuelling a central starburst or nuclear activity. The inverse process, the ejection of material into the intergalactic medium by tidal forces, is another important aspect and can be studied especially well through detailed HI observations of interacting systems which have shown that a large fraction of the gaseous component of colliding galaxies can be expelled. Part of this tidal debris might fall back, be dispersed throughout the intergalactic medium or recondense to form a new generation of galaxies: the so-called tidal dwarf galaxies. The latter are nearby examples of galaxies in formation. The properties of these recycled objects are reviewed here and different ways to identify them are reviewed.

  3. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    CERN Document Server

    Deason, Alis; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased towards larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger ...

  4. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies

    Science.gov (United States)

    Wheeler, Coral; Pace, Andrew B.; Bullock, James S.; Boylan-Kolchin, Michael; Oñorbe, Jose; Elbert, Oliver D.; Fitts, Alex; Hopkins, Philip F.; Kereš, Dušan

    2017-02-01

    We perform a systematic Bayesian analysis of rotation versus dispersion support (vrot/σ) in 40 dwarf galaxies throughout the local volume (LV) over a stellar mass range of 10^{3.5} M_{⊙}sample have vrot/σ ≲ 1.0, while all have vrot/σ ≲ 2.0. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally supported stellar discs, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between vrot/σ and distance to the closest L⋆ galaxy, nor between vrot/σ and M⋆ within our mass range. We apply the same Bayesian analysis to four FIRE hydrodynamic zoom-in simulations of isolated dwarf galaxies (10^9 M_{⊙}population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular-momentum-supported discs. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.

  5. Satellites and Haloes of Dwarf Galaxies

    CERN Document Server

    Sales, Laura V; White, Simon D M; Navarro, Julio F

    2012-01-01

    We study the abundance of satellite galaxies as a function of primary stellar mass using the SDSS/DR7 spectroscopic catalogue. In contrast with previous studies, which focussed mainly on bright primaries, our central galaxies span a wide range of stellar mass, 10^7.5 < M_*^pri/M_sun < 10^11, from dwarfs to central cluster galaxies. Our analysis confirms that the average number of satellites around bright primaries, when expressed in terms of satellite-to-primary stellar mass ratio (m_*^sat/M_*^pri), is a strong function of M_*^pri. On the other hand, satellite abundance is largely independent of primary mass for dwarf primaries (M_*^pri<10^10 M_sun). These results are consistent with galaxy formation models in the LCDM scenario. We find excellent agreement between SDSS data and semi-analytic mock galaxy catalogues constructed from the Millennium-II Simulation. Satellite galaxies trace dark matter substructure in LCDM, so satellite abundance reflects the dependence on halo mass, M_200, of both substru...

  6. An Overview of the Dwarf Galaxy Survey

    CERN Document Server

    Madden, S C; Galametz, M; Cormier, D; Lebouteiller, V; Galliano, F; Hony, S; Bendo, G J; Smith, M W L; Pohlen, M; Roussel, H; Sauvage, M; Wu, R; Sturm, E; Poglitsch, A; Contursi, A; Doublier, V; Baes, M; Barlow, M J; Boselli, A; Boquien, M; Carlson, L R; Ciesla, L; Cooray, A; Cortese, L; De Looze, I; Irwin, J A; Isaak, K; Kamenetzky, J; Karczewski, O L; Lu, N; MacHattie, J A; Halloran, B O; Parkin, T J; Rangwala, N; Schirm, M R P; Schulz, B; Spinoglio, L; Vaccari, M; Wilson, C D; Wozniak, H

    2013-01-01

    The Dwarf Galaxy Survey (DGS) program is studying low-metallicity galaxies using 230h of far-infrared (FIR) and submillimetre (submm) photometric and spectroscopic observations of the Herschel Space Observatory and draws to this a rich database of a wide range of wavelengths tracing the dust, gas and stars. This sample of 50 galaxies includes the largest metallicity range achievable in the local Universe including the lowest metallicity (Z) galaxies, 1/50 Zsun, and spans 4 orders of magnitude in star formation rates. The survey is designed to get a handle on the physics of the interstellar medium (ISM) of low metallicity dwarf galaxies, especially on their dust and gas properties and the ISM heating and cooling processes. The DGS produces PACS and SPIRE maps of low-metallicity galaxies observed at 70, 100, 160, 250, 350, and 500 mic with the highest sensitivity achievable to date in the FIR and submm. The FIR fine-structure lines, [CII] 158 mic, [OI] 63 mic, [OI] 145 mic, [OIII] 88 mic, [NIII] 57 mic and [NII...

  7. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  8. Missing dark matter in dwarf galaxies?

    Science.gov (United States)

    Oman, Kyle A.; Navarro, Julio F.; Sales, Laura V.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; White, Simon D. M.

    2016-08-01

    We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in ΛCDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to 10 times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or their dark matter content is much lower than expected from ΛCDM haloes. This `missing dark matter' is reminiscent of the inner mass deficit of galaxies with slowly rising rotation curves, but cannot be explained away by star formation-induced `cores' in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard ΛCDM paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.

  9. Pulsar searches in nearby dwarf spheroidal galaxies

    Science.gov (United States)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  10. Tests of Modified Gravity with Dwarf Galaxies

    CERN Document Server

    Jain, Bhuvnesh

    2011-01-01

    In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this "fifth" force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can...

  11. The Unexpected Past of a Dwarf Galaxy

    Science.gov (United States)

    1996-08-01

    New Light on Cannibalism in the Local Group of Galaxies The Local Group of Galaxies consists of a few large spiral galaxies - for instance the Milky Way galaxy in which we live, and the Andromeda galaxy that is visible to the unaided eye in the northern constellation of the same name - as well as two dozen much smaller galaxies of mostly irregular shape. Whereas the larger galaxies have extended halos of very old stars, no such halos have ever been seen around the smaller ones. Now, however, Dante Minniti and Albert Zijlstra [1], working at the ESO 3.5-metre New Technology Telescope (NTT), have found a large halo of old and metal-poor stars around one of the dwarf galaxies in the Local Group. This finding is quite unexpected. It revises our understanding of star formation in these galaxies and provides important information about the past evolution of galaxies [2]. Galaxy halos The Milky Way galaxy is surrounded by a large, roughly spherical halo of old stars. The diameter is about 100,000 light years and the stars therein, known as Population II stars, are among the oldest known, with ages of 10 billion years or even more. They also differ from the younger stars nearer to the main plane of the Milky Way (in which our 4.7 billion year old Sun is located) by being very metal-poor. Many of the halo stars consist almost solely of hydrogen and helium, reflecting the composition of matter in the young Universe. This halo is important for our understanding of the processes that led to the formation of the Milky Way galaxy. It is believed that many of the halo stars and those of the same type found in globular clusters existed already before the Milky Way had fully formed. Galaxy cannibalism Many astronomers suspect that galaxies evolve and gradually grow larger and heavier by practising cannibalism on their own kind. In this picture, when two galaxies collide in space, the stars and nebulae in the smaller one will disperse and soon be taken over by the larger one, which

  12. Disruption of a Dwarf Galaxy Under Strong Shocking: The Origin of omega Centauri

    CERN Document Server

    Tsuchiya, T; Dinescu, D I

    2004-01-01

    We perform N-body simulations of the dynamical evolution of a dwarf galaxy falling into the Milky Way galaxy in order to understand the formation scenario of the peculiar globular cluster $\\omega$ Centauri. We use self-consistent models of the bulge and the disc of the Milky Way, as well as of the dwarf galaxy, and explore a range of dwarf models with different density distributions. Namely, we use King (1966) and Hernquist (1990) density profiles to model the density distribution in the dwarf. The central region of our King model has a density profile approximately $\\propto r^{-2}$, while that of the Hernquist model is $\\propto r^{-1}$. The difference in the dwarf's density distributions leads to distinct evolutionary scenarios. The King model dwarf loses its mass exponentially as a function of apocentric distance, with the mass-loss rate depending on the initial mass and size of the dwarf. Regardless of the initial mass and size, the King model dwarf remains more massive than $10^8$ \\msun after a few Gyr of...

  13. Global HI Kinematics in Dwarf Galaxies

    CERN Document Server

    Stilp, Adrienne M; Warren, Steven R; Skillman, Evan; Ott, Juergen; Koribalski, Baerbel

    2013-01-01

    HI line widths are typically interpreted as a measure of ISM turbulence, which is potentially driven by star formation. In an effort to better understand the possible connections between line widths and star formation, we have characterized \\hi{} kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce an average, global \\hi{} line profile. These "superprofiles" are composed of a central narrow peak (~6-10 km/s) with higher-velocity wings to either side that contain ~10-15% of the total flux. The superprofiles are all very similar, indicating a universal global HI profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of star formation (SF), with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical proper...

  14. Disc heating: possible link between weak bars and superthin galaxies

    CERN Document Server

    Saha, Kanak

    2014-01-01

    The extreme flatness of stellar discs in superthin galaxies is puzzling and the apparent dearth of these objects in cosmological simulation poses challenging problem to the standard cold dark matter paradigm. Irrespective of mergers or accretion that a galaxy might be going through, stars are heated as they get older while they interact with the spirals and bars which are ubiquitous in disc galaxies -- leading to a puffed up stellar disc. It remains unclear how superthin galaxies maintain their thinness through the cosmic evolution. We follow the internal evolution of a sample of 16 initially extremely thin stellar discs using collisionless N-body simulation. All of these discs eventually form a bar in their central region. Depending on the initial condition, some of these stellar discs readily form strong bars while others grow weak bars over secular evolution time scale. We show that galaxies with strong bars heat the stars very efficiently, eventually making their stellar discs thicker. On the other hand, ...

  15. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    CERN Document Server

    Hoeft, Matthias

    2010-01-01

    Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in Universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed, that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultra-violet background radiation low-mass haloes show generally are reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 km/s. The suppressed baryon accretion is caused by the...

  16. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  17. Exoplanet recycling in massive white-dwarf debris discs

    Science.gov (United States)

    Van Lieshout, Rik

    2017-06-01

    When a star evolves into a white dwarf, the planetary system it hosts can become unstable. Planets in such systems may then be scattered onto star-grazing orbits, leading to their tidal disruption as they pass within the white dwarf’s Roche limit. We study the massive, compact debris discs that may arrise from this process using a combination of analytical estimates and numerical modelling. The discs are gravitationally unstable, resulting in an enhanced effective viscosity due to angular momentum transport associated with self-gravity wakes. For disc masses greater than ~1026 g (corresponding to progenitor objects comparable to the Galilean moons), viscous spreading dominates over Poynting-Robertson drag in the outer parts of the disc. In such massive discs, mass is transported both in- and outwards. When the outward-flowing material spreads beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of Saturn’s innermost moonlets. This process recycles a substantial fraction of the original disc mass (tens of percents), with the bulk of the mass locked in a single large body orbitting in a 2:1 mean-motion resonance with the Roche limit. As such, the recycling of a tidally disrupted super-Earth could yield an Earth-mass planet on a 10--20 hr orbit. For white dwarfs with a temperature below 6000-7000 K (corresponding to a cooling age of >1--2 Gyr), this orbit is located in the white dwarf’s habitable zone. The recycling process also creates a string of smaller bodies just outside the Roche limit. These may account for the collection of minor planets postulated to orbit white dwarf WD 1145+017.

  18. Wakes of ram pressure stripped disc galaxies

    CERN Document Server

    Roediger, E; Hoeft, M

    2006-01-01

    Spiral galaxies that move through the intracluster medium lose a substantial amount of their gas discs due to ram pressure stripping. The recent observations of NGC 4388 by Oosterloo & van Gorkom 2005 reveal a tail of stripped gas of ~ 100 kpc behind the source galaxy. We present first 3D hydrodynamical simulations of the evolution of such ram pressure stripped tails. We find that if the ICM wind does not vary significantly over a period of a few 100 Myr, subsonic galaxies produce a tail with regular features similar to a von-Karman vortex street. In this case, the tail widens systematically by about 45 kpc per 100 kpc distance behind the source galaxy. The widening rate is independent of the galaxy's inclination for a large range of inclinations. For supersonic galaxies, the tail is more irregular than for subsonic ones. The tail observed for NGC 4388 is narrower than the tails in our simulations. Reasons for this difference may be additional physical processes such as heat conduction or viscosity. In ad...

  19. The Faint Globular Cluster in the Dwarf Galaxy Andromeda I

    Science.gov (United States)

    Caldwell, Nelson; Strader, Jay; Sand, David J.; Willman, Beth; Seth, Anil C.

    2017-09-01

    Observations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (M V -3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters.

  20. The properties of discs around planets and brown dwarfs as evidence for disc fragmentation

    CERN Document Server

    Stamatellos, Dimitris

    2015-01-01

    Direct imaging searches have revealed many very low-mass objects, including a small number of planetary mass objects, as wide-orbit companions to young stars. The formation mechanism of these objects remains uncertain. In this paper we present the predictions of the disc fragmentation model regarding the properties of the discs around such low-mass objects. We find that the discs around objects that have formed by fragmentation in discs hosted by Sun-like stars (referred to as 'parent' discs and 'parent' stars) are more massive than expected from the ${M}_{\\rm disc}-M_*$ relation (which is derived for stars with masses $M_*>0.2 {\\rm M}_{\\odot}$). Accordingly, the accretion rates onto these objects are also higher than expected from the $\\dot{M}_*-M_*$ relation. Moreover there is no significant correlation between the mass of the brown dwarf or planet with the mass of its disc nor with the accretion rate from the disc onto it. The discs around objects that form by disc fragmentation have larger than expected m...

  1. The Alignment of Red-Sequence Dwarf Galaxies

    Science.gov (United States)

    Archer, Haylee; Barkhouse, Wayne; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-01-01

    The alignment of cluster galaxies has been used to determine the impact of the high-density environment on the evolution of galaxies. We have undertaken a study to measure the alignment of cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope. To supplement our KPNO sample, we have included an additional 64 low-redshift clusters from the WINGS dataset. From the combined cluster sample (121 clusters), we have selected cluster dwarf galaxies based on their position relative to the cluster red-sequence. We present our preliminary results based on the alignment of the dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by position of the cluster members, and 3) a radius vector pointing from the cluster center to the dwarf galaxy.

  2. Formation of Isolated Dwarf Galaxies with Feedback

    CERN Document Server

    Sawala, Till; White, Simon D M

    2009-01-01

    We present results of high resolution hydrodynamical simulations of the formation and evolution of dwarf spheroidal galaxies. Our simulations start from cosmological initial conditions at high redshift. They include metal-dependent cooling, star formation, feedback from type II and type Ia supernovae and UV background radiation, with sub-grid recipes identical to those applied in a previous study of Milky Way type galaxies. We find that a combination of feedback and the cosmic UV background is necessary to explain the properties of dwarf spheroidal galaxies in isolation, and that their effect is strongly moderated by the depth of the gravitational potential. Taking this into account, our models naturally reproduce the observed luminosities and metallicities. The final objects have halo masses between 2.3*10^8 and 1.1*10^9 solar masses, mean velocity dispersions between 6.5 and 9.7 kms^-1, stellar masses ranging from 5*10^5 to 1.2*10^7 solar masses, median metallicities between [Fe/H] = -1.8 and -1.1, and half...

  3. GLOBAL H I KINEMATICS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Warren, Steven R.; Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2013-03-10

    H I line widths are typically interpreted as a measure of interstellar medium turbulence, which is potentially driven by star formation (SF). In an effort to better understand the possible connections between line widths and SF, we have characterized H I kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce average global H I line profiles. These ''superprofiles'' are composed of a central narrow peak ({approx}6-10 km s{sup -1}) with higher-velocity wings to either side that contain {approx}10%-15% of the total flux. The superprofiles are all very similar, indicating a universal global H I profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of SF, with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with ({Sigma}{sub HI}). The fraction of mass and characteristic velocity of the high-velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding H I to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.

  4. Dwarf satellite galaxies in the modified dynamics

    CERN Document Server

    Milgrom, M

    2000-01-01

    In the modified dynamics (MOND) the inner workings of dwarf satellites can be greatly affected by their mother galaxy-over and beyond its tidal effects. Because of MOND's nonlinearity a system's internal dynamics can be altered by an external field in which it is immersed (even when this field, by itself, is constant in space). As a result, the size and velocity dispersion of the satellite vary as the external field varies along its orbit. A notable outcome of this is a substantial increase in the dwarf's vulnerability to eventual tidal disruption-rather higher than Newtonian dynamics (with a dark-matter halo) would lead us to expect for a satellite with given observed parameters.

  5. Accretion phenomena in nearby star-forming dwarf galaxies

    Science.gov (United States)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  6. FINDING DWARF GALAXIES FROM THEIR TIDAL IMPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Sukanya [Physics Department, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Bigiel, Frank [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg Albert-Ueberle Str. 2 69120 Heidelberg (Germany); Chang, Philip [Physics Department, University of Wisconsin-Milwaukee, P.O. Box 413, 2200 E. Kenwood Blvd., Milwaukee, WI 53201-0413 (United States); Blitz, Leo, E-mail: schakra1@fau.edu, E-mail: chang65@uwm.edu [Astronomy Department, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2011-12-10

    We describe ongoing work on a new method that allows one to approximately determine the mass and relative position (in galactocentric radius and azimuth) of galactic companions purely from analysis of observed disturbances in gas disks. We demonstrate the validity of this method, which we call Tidal Analysis, by applying it to local spirals with known optical companions, namely M51 and NGC 1512. These galaxies span the range from having a very low mass companion ({approx}one-hundredth the mass of the primary galaxy) to a fairly massive companion ({approx}one-third the mass of the primary galaxy). This approach has broad implications for many areas of astrophysics-for the indirect detection of dark matter (or dark-matter-dominated dwarf galaxies), and for galaxy evolution in its use to decipher the dynamical impact of satellites on galactic disks. Here, we provide a proof of principle of the method by applying it to infer and quantitatively characterize optically visible galactic companions of local spirals, from the analysis of observed disturbances in outer gas disks.

  7. Blue diffuse dwarf galaxies: a clearer picture

    CERN Document Server

    James, Bethan L; Stark, Daniel P; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W; McQuinn, Kristen B W

    2016-01-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e., galaxies with <1/10 solar metallicity. However, due to the bright emission line based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014 we reoriented this search using only morphological properties and uncovered a population of ~150 `blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their SDSS photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43<12+log(O/H)<8.01), with ~20% of our sample classified as being XMP galaxies, and find they are actively forming stars at rates ...

  8. Morphological Evolution of Disc Galaxies in Binary Systems

    CERN Document Server

    Chan, R

    2013-01-01

    We present the results of several numerical simulations of disc binary galaxies. It was performed detailed numerical N-body simulations of the dynamical interaction of two disc galaxies. The disc galaxies are embedded in spherical halos of dark matter and present central bulges. The dynamical evolution of the binary galaxy is analyzed in order to study the morphological evolution of the stellar distribution of the discs. The satellite galaxy is held on fixed, coplanar or polar discs, of eccentric ($e=0.1$, $e=0.4$ or $e=0.7$) orbits. Both galaxies have the same mass and size similar to the Milk Way. We have shown that the merge of two disc galaxy, depending on the initial conditions, can result in a disc or a lenticular galaxy, instead of an elliptical one. Besides, we have demonstrated that the time of merging increases linearly with the initial apocentric distance of the galaxies and decreases with the orbit's eccentricity. We also have shown that the tidal forces and the fusion of the discs can excite tran...

  9. Star formation in proto dwarf galaxies

    Science.gov (United States)

    Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.

    1990-01-01

    The effects of the onset of star formation on the residual gas in primordial low-mass Local-Group dwarf spheroidal galaxies is studied by a series of hydrodynamical simulations. The models have concentrated on the effect of photoionization. The results indicate that photoionization in the presence of a moderate gas density gradient can eject most of the residual gas on a time scale of a few 10 to the 7th power years. High central gas density combined with inefficient star formation, however, may prevent mass ejection. The effect of supernova explosions is discussed briefly.

  10. Spitzer Observations of Tidal Dwarf Galaxies

    CERN Document Server

    Higdon, Sarah J U

    2007-01-01

    We present Spitzer observations of Tidal Dwarf Galaxies (TDGs) in three interacting systems: NGC 5291, Arp105 and Stephan's Quintet. The spectra show bright emission from polyaromatic hydrocarbons (PAHs), nebular lines and warm molecular hydrogen, characteristic of recent episodes of star formation. The PAH emission that falls in the IRAC 8.0 micron band leads to the TDGs having an extremely red IRAC color, with [4.5] - [8.0] > 3. The emission from PAHs is characterized by a model with mainly neutral 100-C PAH atoms.

  11. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  12. Testing modified gravity with dwarf spheroidal galaxies

    Science.gov (United States)

    Haghi, Hosein; Amiri, Vahid

    2016-12-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M*/L) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σlos) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant M*/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The H I Nearby Galaxy Survey catalogue of galaxies. We find that the derived M*/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M*/L values, we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.

  13. Cores in Dwarf Galaxies from Fermi Repulsion

    CERN Document Server

    Randall, Lisa; Unwin, James

    2016-01-01

    We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of larger than 130 pc can be achieved for fermion dark matter with mass in the range 70 eV - 400 eV. While in conventional dark matter scenarios, such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lyman-$\\alpha$ clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is rel...

  14. The formation of brown dwarfs in discs: Physics, numerics, and observations

    CERN Document Server

    Stamatellos, Dimitris

    2010-01-01

    A large fraction of brown dwarfs and low-mass stars may form by gravitational fragmentation of relatively massive (a few 0.1 Msun), extended (a few hundred AU) discs around Sun-like stars. We present an ensemble of radiative hydrodynamic simulations that examine the conditions for disc fragmentation. We demonstrate that this model can explain the low-mass IMF, the brown dwarf desert, and the binary properties of low-mass stars and brown dwarfs. Observing discs that are undergoing fragmentation is possible but very improbable, as the process of disc fragmentation is short lived (discs fragment within a few thousand years).

  15. Testing hydrodynamics schemes in galaxy disc simulations

    Science.gov (United States)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  16. Does the stellar disc flattening depend on the galaxy type?

    CERN Document Server

    Mosenkov, A V; Reshetnikov, V P; Bizyaev, D V; Kautsch, S J

    2015-01-01

    We analyze the dependence of the stellar disc flatness on the galaxy morphological type using 2D decomposition of galaxies from the reliable subsample of the Edge-on Galaxies in SDSS (EGIS) catalogue. Combining these data with the retrieved models of the edge-on galaxies from the Two Micron All Sky Survey (2MASS) and the Spitzer Survey of Stellar Structure in Galaxies (S$^4$G) catalogue, we make the following conclusions: (1) The disc relative thickness $z_0/h$ in the near- and mid-infrared passbands correlates weakly with morphological type and does not correlate with the bulge-to-total luminosity ratio $B/T$ in all studied bands. (2) Applying an 1D photometric profile analysis overestimates the disc thickness in galaxies with large bulges making an illusion of the relationship between the disc flattening and the ratio $B/T$. (3) In our sample the early-type disc galaxies (S0/a) have both flat and "puffed" discs. The early spirals and intermediate-type galaxies have a large scatter of the disc flatness, whic...

  17. Constraining Galaxy Formation Models with Dwarf Ellipticals in Clusters

    CERN Document Server

    Conselice, C J

    2005-01-01

    Recent observations demonstrate that dwarf elliptical (dE) galaxies in clusters, despite their faintness, are likely a critical galaxy type for understanding the processes behind galaxy formation. Dwarf ellipticals are the most common galaxy type, and are particularly abundant in rich galaxy clusters. The dwarf to giant ratio is in fact highest in rich clusters of galaxies, suggesting that cluster dEs do not form in groups that later merge to form clusters. Dwarf ellipticals are potentially the only galaxy type whose formation is sensitive to global, rather than local, environment. The dominant idea for explaining the formation of these systems, through Cold Dark Matter models, is that dEs form early and within their present environments. Recent results suggest that some dwarfs appear in clusters after the bulk of massive galaxies form, a scenario not predicted in standard hierarchical structure formation models. Many dEs have younger and more metal rich stellar populations than dwarfs in lower density enviro...

  18. Life and times of dwarf spheroidal galaxies

    CERN Document Server

    Salvadori, S; Schneider, R

    2008-01-01

    We propose a cosmological scenario for the formation and evolution of dwarf spheroidal galaxies (dSphs), satellites of the Milky Way (MW). An improved version of the semi-analytical code GAMETE (GAlaxy Merger Tree & Evolution) is used to follow the dSphs evolution simultaneously with the MW formation, matching the observed properties of both. In this scenario dSph galaxies represent fossil objects virializing at z = 7.2 +/- 0.7 (i.e. in the pre-reionization era z > z_rei = 6) in the MW environment, which at that epoch has already been pre-enriched up to [Fe/H] ~ -3; their dynamical masses are in the narrow range M = (1.6 +/- 0.7) x 10^8 M_sun, although a larger spread might be introduced by a more refined treatment of reionization. Mechanical feedback effects are dramatic in such low-mass objects, causing the complete blow-away of the gas ~100 Myr after the formation epoch: 99% of the present-day stellar mass, M_* = (3 +/- 0.7) x 10^6 M_sun, forms during this evolutionary phase, i.e. their age is >13 Gyr....

  19. Testing modified gravity with dwarf spheroidal galaxies

    CERN Document Server

    Haghi, Hosein

    2016-01-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light ($M_*/L$) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion ($\\sigma_{\\emph{los}}$) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant $M_*/L$ ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters $ \\alpha $ and $ \\mu $ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The HI Nearby Galaxy Survey catalogue of galaxies. We find that the derived $M_*/L$ ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of ...

  20. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  1. Dynamical stability and evolution of the discs of Sc galaxies

    CERN Document Server

    Fuchs, B

    1997-01-01

    We examine the local stability of galactic discs against axisymmetric density perturbations with special attention to the different dynamics of the stellar and gaseous components. In particular the discs of the Milky Way and of NGC 6946 are studied. The Milky Way is shown to be stable, whereas the inner parts of NGC 6946, a typical Sc galaxy from the Kennicutt (1989) sample, are dynamically unstable. The ensuing dynamical evolution of the composite disc is studied by numerical simulations. The evolution is so fierce that the stellar disc heats up dynamically on a short time scale to such a degree, which seems to contradict the morphological appearance of the galaxy. The star formation rate required to cool the disc dynamically is estimated. Even if the star formation rate in NGC 6946 is at present high enough to meet this requirement, it is argued that the discs of Sc galaxies cannot sustain such a high star formation rate for longer periods.

  2. Characterizing the population of active galactic nuclei in dwarf galaxies

    Science.gov (United States)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  3. Drivers of HI Turbulence in Dwarf Galaxies

    CERN Document Server

    Stilp, Adrienne M; Skillman, Evan D; Warren, Steven R; Ott, Juergen; Koribalski, Baerbel

    2013-01-01

    Neutral hydrogen (HI) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation (SF), recent studies have shown that this driving mechanism may not be dominant in regions of low SF rate surface density (SFRSD), such as found in dwarf galaxies or the outer regions of spirals. We have generated average HI line profiles in a number of nearby dwarfs and low-mass spirals by co-adding HI spectra in regions with either a common radius or SFRSD. We find that the spatially-resolved superprofiles are composed of a central narrow peak (5-15 km/s) with higher velocity wings to either side. With the assumption that the central peak reflects the turbulent velocity dispersion, we compare HI kinematics to local ISM properties, including surface mass densities and measures of SF. The HI velocity dispersion is correlated most strongly with surface mass density, which points at a gravitational origin for turbulence, but it is...

  4. Dwarf galaxies in the Antlia Cluster: First results

    CERN Document Server

    Castelli, A V S; Cellone, S A; Richtler, T; Dirsch, B; Infante, L; Aruta, C; Gómez, M

    2006-01-01

    We present the first results of a project aimed to study the galaxy population of the Antlia cluster, the third nearest galaxy cluster after Virgo and Fornax. The observations for the Antlia project consist of Washington wide-field images taken with the MOSAIC camera mounted at the prime focus of the CTIO 4-m Blanco telescope. Our preliminary results correspond to the identification and classification of dwarf galaxies in the central cluster region, extending the list of Ferguson & Sandage (1990). The final aim of our project is to study the luminosity function, morphology and structural parameters of dwarf galaxies in the Antlia cluster with a more complete sample.

  5. The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

    CERN Document Server

    Goerdt, Tobias; Kazantzidis, Stelios; Kaufmann, Tobias; Macciò, Andrea V; Stadel, Joachim

    2007-01-01

    Ultra compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins. We perform high-resolution N-body / Smoothed Particle Hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funneled down inner galactic bars,...

  6. Dwarf galaxies beyond our doorstep: the Centaurus A group

    CERN Document Server

    Crnojević, D; Cole, A A; Koch, A; Rejkuba, M; Da Costa, G; Jerjen, H

    2010-01-01

    The study of dwarf galaxies in groups is a powerful tool for investigating galaxy evolution, chemical enrichment and environmental effects on these objects. Here we present results obtained for dwarf galaxies in the Centaurus A complex, a dense nearby (~4 Mpc) group that contains two giant galaxies and about 30 dwarf companions of different morphologies and stellar contents. We use archival optical (HST/ACS) and near-infrared (VLT/ISAAC) data to derive physical properties and evolutionary histories from the resolved stellar populations of these dwarf galaxies. In particular, for early-type dwarfs we are able to construct metallicity distribution functions, find population gradients and quantify the intermediate-age star formation episodes. For late-type dwarfs, we compute recent (~1 Gyr) star formation histories and study their stellar distribution. We then compare these results with properties of the dwarfs in our Milky Way and in other groups. Our work will ultimately lead to a better understanding of the e...

  7. Chemodynamic evolution of dwarf galaxies in tidal fields

    CERN Document Server

    Williamson, David; Romeo, Alessandro B

    2016-01-01

    The mass-metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing a truncated gas disk with a large metallicity. This suggests that the role of tides on the mass-metallicity relation is to move dwarf galaxies to higher metallicities.

  8. The prevalence of dwarf galaxy compact groups over cosmic time

    Science.gov (United States)

    Wiens, Christopher

    2017-01-01

    Galaxy interactions are critical to the evolution of the universe, influencing everything from star formation to the structure of the known universe. By studying galaxy interactions through computer simulations, we are instantaneously able to observe processes that normally take billions of years. “Compact groups” are extremely dense assemblies of at least 3 but typically no more than 10 galaxies that are interacting gravitationally. These groups yield much information about galaxy interactions and mergers in dense environments but are difficult to observe at high redshifts. Compact groups of only dwarf galaxies probe a regime of galaxy evolution that has been hypothesized to be common in the early universe. Here we investigate the populations of such dwarf galaxy compact groups in the Millennium II simulation. Millennium II is a massive n-body simulation of cold dark matter particles on a time scale equivalent to the known universe; allowing us to access to high redshift galaxies and the ability to track their descendants. Our preliminary findings indicate that these dwarf galaxy compact groups do exist in the Millennium II simulation. In the simulation, there is a non-inconsequential number of dwarf compact groups with an evolutionary track that mirrors the more massive compact groups with a peak in groups around a redshift of 2.

  9. The effect of gravitational tides on dwarf spheroidal galaxies

    CERN Document Server

    Nichols, Matthew; Jablonka, Pascale

    2014-01-01

    The effect of the local environment on the evolution of dwarf spheroidal galaxies is poorly understood. We have undertaken a suite of simulations to investigate the tidal impact of the Milky Way on the chemodynamical evolution of dwarf spheroidals that resemble present day classical dwarfs using the SPH code GEAR. After simulating the models through a large parameter space of potential orbits the resulting properties are compared with observations from both a dynamical point of view, but also from the, often neglected, chemical point of view. In general, we find that tidal effects quench the star formation even inside gas-endowed dwarfs. Such quenching, may produce the radial distribution of dwarf spheroidals from the orbits seen within large cosmological simulations. We also find that the metallicity gradient within a dwarf is gradually erased through tidal interactions as stellar orbits move to higher radii. The model dwarfs also shift to higher $\\langle$[Fe/H]$\\rangle$/L ratios, but only when losing $>$$20...

  10. The formation of disc galaxies in a LCDM universe

    OpenAIRE

    Agertz, Oscar; Teyssier, Romain; Moore, Ben

    2010-01-01

    We study the formation of disc galaxies in a fully cosmological framework using adaptive mesh refinement simulations. We perform an extensive parameter study of the main subgrid processes that control how gas is converted into stars and the coupled effect of supernovae feedback. We argue that previous attempts to form disc galaxies have been unsuccessful because of the universal adoption of strong feedback combined with high star formation efficiencies. Unless extreme amounts of energy are in...

  11. Wave Dark Matter and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Parry, Alan R.

    We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term'' of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant Upsilon. In the introductory Chapter 1, we present some preliminary background material to define and motivate the study of wave dark matter and describe some of the properties of dwarf spheroidal galaxies. In Chapter 2, we present several different ways of describing a spherically symmetric spacetime and the resulting metrics. We then focus our discussion on an especially useful form of the metric of a spherically symmetric spacetime in polar-areal coordinates and its properties. In particular, we show how the metric component functions chosen are extremely compatible with notions in Newtonian mechanics. We also show the monotonicity of the Hawking mass in these coordinates. Finally, we discuss how these coordinates and the metric can be used to solve the spherically symmetric Einstein-Klein-Gordon equations. In Chapter 3, we explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiotF(r) for some constant o ∈ R and complex-valued function F(r). We show that the corresponding metric is static if and only if F( r) = h(r)eia for some constant alpha ∈ R and real-valued function h(r). We describe the

  12. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  13. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    2015-01-01

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly d

  14. Nucleated Dwarf Elliptical Galaxies in the Coma Cluster

    NARCIS (Netherlands)

    Matkovic, Ana; Ferguson, H. C.; Peng, E.; den Brok, M.

    2010-01-01

    Recent studies show that most dwarf elliptical galaxies (dE) in nearby clusters possess nuclear star clusters. Earlier studies used photographic plates and frequently missed the faint nuclei in dEs. For the first time, we are able to identify nuclei in a large number of dE galaxies in the Coma clust

  15. The mass content of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Andersen, J; BlandHawthorn, J; Nordstrom, B

    2009-01-01

    We present a new determination of the mass content of the Sculptor dwarf spheroidal galaxy, based on a novel approach which takes into account the two distinct stellar populations present in this galaxy. This method helps to partially break the well-known mass-anisotropy degeneracy present in the mo

  16. Formation Histories of Dwarf Galaxies in the Local Group

    CERN Document Server

    Ricotti, M; Ricotti, Massimo; Gnedin, Nickolay Y.

    2004-01-01

    We compare the properties of dwarf galaxies in the Local Group with the simulated galaxies formed before reionization in a cosmological simulation of unprecedented spatial and mass resolution. We find that a subset of the Local Group dwarfs are remarkably similar to the simulated dwarf galaxies in all their properties. Based on this similarity, we propose the hypothesis that Local Group dwarfs form in a variety of ways: some of them are ``true fossils'' of the pre-reionization era, some of them form most of their stars later, after reionization (we call them ``survivors'' of the reionization era), and the rest of them form an intermediate group of ``polluted fossils''. We also identify a simple observational test that is able to falsify our hypothesis.

  17. The Cold Gas Content of Bulgeless Dwarf Galaxies

    CERN Document Server

    Pilkington, K; Calura, F; Brooks, A M; Mayer, L; Brook, C B; Stinson, G S; Thacker, R J; Few, C G; Cunnama, D; Wadsley, J

    2011-01-01

    We present an analysis of the neutral hydrogen (HI) properties of a fully cosmological hydrodynamical dwarf galaxy, run with varying simulation parameters. As reported by Governato et al. (2010), the high resolution, high star formation density threshold version of this galaxy is the first simulation to result in the successful reproduction of a (dwarf) spiral galaxy without any associated stellar bulge. We have set out to compare in detail the HI distribution and kinematics of this simulated bulgeless disk with what is observed in a sample of nearby dwarfs. To do so, we extracted the radial gas density profiles, velocity dispersion (e.g., velocity ellipsoid, turbulence), and the power spectrum of structure within the cold interstellar medium from the simulations. The highest resolution dwarf, when using a high density star formation threshold comparable to densities of giant molecular clouds, possesses bulk characteristics consistent with those observed in nature, though the cold gas is not as radially exten...

  18. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    Science.gov (United States)

    Slater, Colin T.; Bell, Eric F.

    2014-09-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M sstarf 5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  19. Very thin disc galaxies in the SDSS catalogue of edge-on galaxies

    Science.gov (United States)

    Bizyaev, D. V.; Kautsch, S. J.; Sotnikova, N. Ya.; Reshetnikov, V. P.; Mosenkov, A. V.

    2017-03-01

    We study the properties of galaxies with very thin discs (VTDs) using a sample of 85 objects whose stellar disc radial-to-vertical scale ratio determined from photometric decomposition, exceeds 9. We present evidences of similarities between the VTD galaxies and low surface brightness (LSB) disc galaxies, and conclude that both small and giant LSB galaxies may reveal themselves as VTD, edge-on galaxies. Our VTD galaxies are mostly bulgeless, and those with large radial scalelength tend to have redder colours. We performed spectral observations of 22 VTD galaxies with the Dual Imaging Spectrograph on the 3.5 m telescope at the Apache Point Observatory. The spectra with good resolution (R ∼ 5000) allow us to determine the distance and the ionized gas rotation curve maximum for the galaxies. Our VTD galaxies have low dust content, in contrast to regular disc galaxies. Apparently, VTD galaxies reside in specific cosmological low-density environments and tend to have less connection with filaments. Comparing a toy model that assumes marginally low star formation in galactic discs with obtained gas kinematics data, we conclude that there is a threshold central surface density of about 88 M⊙ pc-2, which we observe in the case of very thin, rotationally supported galactic discs.

  20. IC3328 a "dwarf elliptical galaxy" with spiral structure

    CERN Document Server

    Jerjen, H; Binggeli, B; Jerjen, Helmut; Kalnajs, Agris; Binggeli, Bruno

    2000-01-01

    We present the 2-D photometric decomposition of the Virgo galaxy IC3328. The analysis of the global light distribution of this morphologically classified nucleated dwarf elliptical galaxy (dE1,N) reveals a tightly wound, bi-symmetric spiral structure with a diameter of 4.5 kpc, precisely centered on the nucleus of the dwarf. The amplitude of the spiral is only three percent of the dwarf's surface brightness making it the faintest and smallest spiral ever found in a galaxy. In terms of pitch angle and arm winding the spiral is similar to the intermediate-type galaxy M51, but it lacks the dust and prominent HII regions which signal the presence of gas. The visual evidence of a spiral pattern in an early-type dwarf galaxy reopens the question on whether these dwarfs are genuine rotationally supported or anisotropic stellar systems. In the case of IC3328, we argue for a nearly face-on disk (dS0) galaxy with an estimated maximum rotation velocity of v_c,max = 55kms-1. The faintness of the spiral and the small moti...

  1. Star Formation and the ISM in Dwarf Galaxies

    CERN Document Server

    Young, L M; Dohm-Palmer, R C; Lo, K Y

    2000-01-01

    High spatial and spectral resolution observations of the atomic interstellar medium in nearby dwarf galaxies reveal evidence for warm and cold neutral gas, just like the phases in our own Galaxy. The cold or quiescent phase (about 20% of the HI in the galaxies studied, except for LGS 3) seems to be associated with star formation activity--- it may mark the regions where the conditions are right for star formation. These results help to explain the patterns of star formation activity which are seen in color-magnitude data for the dwarf irregulars.

  2. Scalelength of 30000 SDSS disc galaxies (Fathi+, 2010)

    NARCIS (Netherlands)

    Fathi, K.; Allen, M.; Boch, T.; Hatziminaoglou, E.; Peletier, R. F.

    2012-01-01

    Disc scalelength (h) for 30000 galaxies from the Sloan Digitized Sky Survey (SDSS) Data Release 7, in the r-band. Also included is the Asymmetry parameter for each galaxy. Virtual Observatory methods and tools were used to define, retrieve and analyze the images for this unprecedentedly large sample

  3. Angular momentum of disc galaxies with a lognormal density distribution

    CERN Document Server

    Marr, John Herbert

    2015-01-01

    Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\\vert{}$E$\\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\\pm{}$0.018 and 1.643$\\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\\lambda{}$=0.423$\\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\\lambda{}}^*=1.47\\pm{}0.20\\time...

  4. Migration and kinematics in growing disc galaxies with thin and thick discs

    Science.gov (United States)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2017-09-01

    We analyse disc heating and radial migration in N-body models of growing disc galaxies with thick and thin discs. Similar to thin-disc-only models, galaxies with appropriate non-axisymmetric structures reproduce observational constraints on radial disc heating in and migration to the Solar Neighbourhood (Snhd). The presence of thick discs can suppress non-axisymmetries and thus higher baryonic-to-dark matter fractions are required than in models that only have a thin disc. Models that are baryon dominated to roughly the Solar radius R0 are favoured, in agreement with data for the Milky Way. For inside-out growing discs, today's thick-disc stars at R0 are dominated by outwards migrators. Whether outwards migrators are vertically hotter than non-migrators depends on the radial gradient of the thick-disc vertical velocity dispersion. There is an effective upper boundary in angular momentum that thick-disc stars born in the centre of a galaxy can reach by migration, which explains the fading of the high [α/Fe] sequence outside R0. Our models compare well to Snhd kinematics from Radial Velocity Survey and Tycho-Gaia Astrometric Solution data. For such comparisons, it is important to take into account the azimuthal variation of kinematics at R ∼ R0 and biases from survey selection functions. The vertical heating of thin-disc stars by giant molecular clouds is only mildly affected by the presence of thick discs. Our models predict higher vertical velocity dispersions for the oldest stars than found in the Snhd age velocity dispersion relation, possibly because of measurement uncertainties or an underestimation of the number of old cold stars in our models.

  5. The observed peripheral growth of disc galaxies from z ~ 1

    Science.gov (United States)

    Gadotti, Dimitri A.; Sachdeva, Sonali; Saha, Kanak; Singh, Harinder P.

    2017-03-01

    Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry for a sample of 600 disc galaxies from z ~ 1 till z ~ 0. We find that disc galaxies have gained more than 50 per cent of their present stellar mass over the last 8 Gyr. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z ~ 1 to z ~ 0, the average effective (half-light) radius undergoes a marginal increase in comparison. This indicates that galaxies grow more substantially in their outskirts, and is consistent with the inside-out growth picture. The substantial increase in mass and size indicates that accretion of external material has been a dominant mode of galaxy growth, where the circumgalactic environment plays a significant role.

  6. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    CERN Document Server

    Wheeler, Coral; Bullock, James S; Boylan-Kolchin, Michael; Elbert, Oliver; Garrison-Kimmel, Shea; Hopkins, Philip F; Keres, Dusan

    2015-01-01

    We present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies ($M_{\\rm vir} \\simeq 10^{10} M_{\\odot}$) and ultra-faint galaxies ($M_{\\rm vir} \\simeq 10^9 M_{\\odot}$), and with two feedback implementations. The resultant central galaxies lie on an extrapolated abundance matching relation from $M_{\\star} \\simeq 10^6$ to $10^4 M_{\\odot}$ without a break. Every host is filled with subhalos, many of which form stars. Our dwarfs with $M_{\\star} \\simeq 10^6 M_{\\odot}$ each have 1-2 well-resolved satellites with $M_{\\star} = 3-200 \\times 10^3 M_{\\odot}$. Even our isolated ultra-faint galaxies have star-forming subhalos. If this is representative, dwarf galaxies throughout the universe should commonly host tiny satellite galaxies of their own. We combine our results with the ELVIS simulations to show that targeting $\\sim 50~ \\rm kpc$ regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by $\\sim 35\\%...

  7. 3D Simulations of Galactic Winds in Dwarf Galaxies

    CERN Document Server

    Marcolini, A; D'Ercole, A; Marcolini, Andrea; Brighenti, Fabrizio; Ercole, Annibale D'

    2002-01-01

    We present 3D hydrodynamical simulations of galactic winds in dwarf, gas-rich galaxies. The galaxy is moving through the ICM of a small galaxy group at v=200 km/s. The ram pressure removes the galactic gas at large radii, but does not strongly influence the ISM near the center. A starburst generates a galactic wind. The newly produced metals are expelled in the ICM and carried to large distance from the galaxy by the ram pressure. 500 Myr after the starburst only a few percent of the heavy elements produced are present in the central region of the dwarf galaxy. A large collection of ram pressure + wind models will be presented in a forthcoming paper.

  8. On the Metallicity of Star-forming Dwarf Galaxies

    CERN Document Server

    Legrand, F; Silich, S A; Kunth, D; Cerviño, M; Legrand, Francois; Tenorio-Tagle, Guillermo; Silich, Sergiy; Kunth, Daniel; Cervino, Miguel

    2001-01-01

    We construct three extreme different scenarios of the star formation histories applicable to a sample of dwarf galaxies, based either on their present metallicity or their luminosity. The three possible scenarios imply different mechanical energy input rates and these we compare with the theoretical lower limits established for the ejection of processed matter out of dwarf galaxies. The comparison strongly points at the existence of extended gaseous haloes in these galaxies, acting as the barrier that allows galaxies to retain their metals and enhance their abundance. At the same time our findings strongly point at a continuous star-forming process, rather than to coeval bursts, as the main contributors to the overall metallicity in our galaxy sample.

  9. New Low Surface Brightness Dwarf Galaxies Detected Around Nearby Spirals

    CERN Document Server

    Karachentsev, I D; Zilch, T; Blauensteiner, M; Elvov, M; Hochleitner, P; Hubl, B; Kerschhuber, G; Küppers, S; Neyer, F; Pölzl, R; Remmel, P; Schneider, O; Sparenberg, R; Trulson, U; Willems, G; Ziegler, H

    2015-01-01

    We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC,672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC,2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their absolute magnitudes are in the range of -8.6 > M_B > -13.3, their effective diameters are 0.4-4.7 kpc, and the average surface brightness is 26.1 mag/sq arcsec. The mean linear projected separation of the satellite candidates from the host galaxies is 73 kpc. Our spectroscopic observations of two LSB dwarfs with the Russian 6-meter telescope confirm their physical connection to the host galaxies NGC,891 and NGC,2683.

  10. LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies

    CERN Document Server

    Iorio, Giuliano; Nipoti, Carlo; Di Teodoro, Enrico; Read, Justin I; Battaglia, Giuseppina

    2016-01-01

    Dwarf Irregular galaxies (dIrrs) are the smallest stellar systems with extended HI discs. The study of the kinematics of such discs is a powerful tool to estimate the total matter distribution at these very small scales. In this work, we study the HI kinematics of 17 galaxies extracted from the `Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey' (LITTLE THINGS). Our approach differs significantly from previous studies in that we directly fit 3D models (two spatial dimensions plus one spectral dimension) using the software $^\\text{3D}$BAROLO, fully exploiting the information in the HI datacubes. For each galaxy we derive the geometric parameters of the HI disc (inclination and position angle), the radial distribution of the surface density, the velocity-dispersion ($\\sigma_v$) profile and the rotation curve. The circular velocity (V$_{\\text{c}}$), which traces directly the galactic potential, is then obtained by correcting the rotation curve for the asymmetric drift. As an initial ap...

  11. Unveiling the Secret of a Virgo Dwarf Galaxy

    Science.gov (United States)

    2000-05-01

    Dwarf galaxies may not be as impressive in appearance as their larger brethren, but they are at least as interesting from a scientific point of view. And sometimes they may have hidden properties that will only be found by means of careful observations, probing the signals of their stars at the faintest level. Such as the entirely unexpected, well developed spiral structure within an otherwise seemingly normal dwarf elliptical galaxy! This is the surprise result of a new study by a team of astronomers [1], headed by Helmut Jerjen from the Australian National University (Canberra) who obtained detailed observations with the ESO Very Large Telescope (VLT) of the dwarf galaxy IC 3328 in the Virgo Cluster of Galaxies, some 50 million light-years away. Dwarf galaxies Dwarf galaxies are present in all major clusters of galaxies and dominate by numbers in the universe. They may contain a few (tens of) millions of stars, as compared to galaxies of normal size with hundreds of billions of stars. About two dozen dwarf galaxies are known in the "Local Group" of galaxies of which the Milky Way galaxy in which we live is also a member. The Large and Small Magellanic Clouds are some of the best known dwarf galaxies - they are of the irregular type - while NGC 147 and NGC 205, two companions to the great Andromeda Galaxy, are of the elliptical type. Dwarf elliptical galaxies are characterized by their smooth appearance. From various studies, it is known that they are tri-axial ellipsoids of different degrees of elongation. Some are almost spherical while others are more pancake- or cigar-shaped. Like the elliptical galaxies of normal size, dwarf ellipticals are almost pure aggregates of stars. In contrast, spiral galaxies also contain clouds of gas and dust. The visible mass of spiral galaxies is in a rotating disk. Dwarf ellipticals generally keep their form because of the random motions of their stars. VLT observations of dwarf elliptical galaxies Using the FORS1 multi

  12. On the formation of dwarf galaxies and stellar haloes

    Science.gov (United States)

    Read, J. I.; Pontzen, A. P.; Viel, M.

    2006-09-01

    Using analytic arguments and a suite of very high resolution (~103Msolar per particle) cosmological hydrodynamical simulations, we argue that high-redshift, z ~ 10, M ~ 108Msolar haloes, form the smallest `baryonic building block' (BBB) for galaxy formation. These haloes are just massive enough to efficiently form stars through atomic line cooling and to hold on to their gas in the presence of supernova (SN) winds and reionization. These combined effects, in particular that of the SN feedback, create a sharp transition: over the mass range 3-10 × 107Msolar, the BBBs drop two orders of magnitude in stellar mass. Below ~2 × 107Msolar, galaxies will be dark with almost no stars and no gas. Above this scale is the smallest unit of galaxy formation: the BBB. We show that the BBBs have stellar distributions which are spheroidal, of low rotational velocity, old and metal poor: they resemble the dwarf spheroidal galaxies (dSphs) of the Local Group (LG). Unlike the LG dSphs, however, they contain significant gas fractions. We connect these high-redshift BBBs to the smallest dwarf galaxies observed at z = 0 using linear theory. A small fraction (~100) of these gas-rich BBBs at high redshift fall in to a galaxy the size of the Milky Way (MW). We suggest that 10 per cent of these survive to become the observed LG dwarf galaxies at the present epoch. This is consistent with recent numerical estimates. Those infalling haloes on benign orbits which keep them far away from the MW or Andromeda manage to retain their gas and slowly form stars - these become the smallest dwarf irregular galaxies; those on more severe orbits lose their gas faster than they can form stars and become the dwarf spheroidals. The remaining 90 per cent of the BBBs will be accreted. We show that this gives a metallicity and total stellar mass consistent with the MW old stellar halo.

  13. The link between mass distribution and starbursts in dwarf galaxies

    CERN Document Server

    McQuinn, Kristen B W; Skillman, Evan D; Dolphin, Andrew E; McGaugh, Stacy S; Williams, Benjamin F

    2015-01-01

    Recent studies have shown that starburst dwarf galaxies have steeply rising rotation curves in their inner parts, pointing to a close link between the intense star formation and a centrally concentrated mass distribution (baryons and dark matter). More quiescent dwarf irregulars typically have slowly rising rotation curves, although some "compact" irregulars with steep, inner rotation curves exist. We analyze archival Hubble Space Telescope images of two nearby "compact" irregular galaxies (NGC 4190 and NGC 5204), which were selected solely on the basis of their dynamical properties and their proximity. We derive their recent star-formation histories by fitting color-magnitude diagrams of resolved stellar populations, and find that the star-formation properties of both galaxies are consistent with those of known starburst dwarfs. Despite the small sample, this strongly reinforces the notion that the starburst activity is closely related to the inner shape of the potential well.

  14. Charting Unexplored Dwarf Galaxy Territory With RR Lyrae

    CERN Document Server

    Baker, Mariah

    2015-01-01

    Observational bias against finding Milky Way (MW) dwarf galaxies at low Galactic latitudes (b 50 kpc in these unmined regions of parameter space, with only modest contamination from interloper groups when large halo structures are excluded. For example, a friends-of-friends (FOF) search with a linking length of 500 pc could reveal dwarf galaxies more luminous than M_V = -3.2 mag and with surface brightnesses as faint as 31 mag arcsec^-2 (or even fainter, depending on RR Lyrae specific frequency). Although existing public RR Lyrae catalogs are highly incomplete at d > 50 kpc and/or include 600 kpc, LSST is the only planned survey that will be both wide-field and deep enough to use RR Lyrae to definitively measure the Milky Way's dwarf galaxy census to extremely low surface brightnesses, and through the Galactic plane.

  15. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter

    CERN Document Server

    Diez-Tejedor, Alberto; Profumo, Stefano

    2014-01-01

    We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of an attractive self-interaction the condensate develops a mass density profile with a characteristic scale radius that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness and dwarf galaxies. We discuss the implications of our findings for the particle dark matter model and argue that a single classical coherent state cannot play, in general, a relevant role for the description of dark matter in galaxies.

  16. Formation of ultra-compact blue dwarf galaxies and their evolution into nucleated dwarfs

    CERN Document Server

    Bekki, Kenji

    2015-01-01

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf-dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf-dwarf mergers. We find that the remnants of dwarf-dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z~[0.2-1]Z_sun). We also find that the remnants of these mergers can have rather high mass-densities (10^4 M_sun pc^-3) within the central 10 pc and small half-light radii (40-100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R<100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multi...

  17. NIHAO VI. The hidden discs of simulated galaxies

    CERN Document Server

    Obreja, A; Dutton, A A; Macciò, A V; Wang, L; Kang, X

    2016-01-01

    Detailed studies of galaxy formation require clear definitions of the structural components of galaxies. Precisely defined components also enable better comparisons between observations and simulations. We use a subsample of eighteen cosmological zoom-in simulations from the NIHAO project to derive a robust method for defining stellar kinematic discs in galaxies. Our method uses Gaussian Mixture Models in a 3D space of dynamical variables. The NIHAO galaxies have the right stellar mass for their halo mass, and their angular momenta and S\\'ersic indices match observations. While the photometric disc-to-total ratios are close to 1 for all the simulated galaxies, the kinematic ratios are around ~0.5. Thus, exponential structure does not imply a cold kinematic disc. Above log(M*)~9.5, the decomposition leads to thin discs and spheroids that have clearly different properties, in terms of angular momentum, rotational support, ellipticity, [Fe/H] and [O/Fe]. At log(M*)<9.5, the decomposition selects discs and sph...

  18. Kinematics of dwarf galaxies in gas-rich groups, and the survival and detectability of tidal dwarf galaxies

    CERN Document Server

    Sweet, Sarah M; Meurer, Gerhardt; Kilborn, Virginia; Audcent-Ross, Fiona; Baumgardt, Holger; Bekki, Kenji

    2015-01-01

    We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$\\pm0.39M_\\odot/L_\\odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$\\alpha$ emission. When the tidal radius i...

  19. Infrared Observations of Star-Forming Dwarf Galaxies with Spitzer

    Science.gov (United States)

    Rosenberg, J. L.; Ashby, M. L. N.; Salzer, J. J.

    2004-12-01

    We present a study of the infrared properties of a sample of actively star-forming dwarf galaxies (MB >-18) drawn from the KPNO International Spectroscopic Survey. Nearby actively star-forming dwarf galaxies are possible analogs to the high redshift star-forming systems that serve as galactic building blocks in hierarchical galaxy formation scenarios. These galaxies are gas-rich, metal-poor systems undergoing bursts of star formation in the local universe. A subset of such objects from the line-flux limited objective-prism survey of Salzer et al. (2001) lie in the NOAO Bootes field, and have therefore been observed by Spitzer as part of the IRAC Shallow Survey. We use the IRAC data to measure the stellar mass in these galaxies. In addition, we examine whether these metal-poor dwarf galaxies show warm dust emission, and examine whether it traces the star formation as it does in normal disk galaxies. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support of this work. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA.

  20. The effect of environment on the structure of disc galaxies

    Science.gov (United States)

    Pranger, Florian; Trujillo, Ignacio; Kelvin, Lee S.; Cebrián, María

    2017-05-01

    We study the influence of environment on the structure of disc galaxies, using imfit to measure the g- and r-band structural parameters of the surface-brightness profiles for ˜700 low-redshift (z Digital Sky Survey, DR7. Based on this measurement, we assign each galaxy to a surface-brightness profile type (Type I ≡ single-exponential, Type II ≡ truncated, Type III ≡ antitruncated). In addition, we measure (g - r) rest frame colour for disc regions separated by the break radius. Cluster disc galaxies (at the same stellar mass) have redder (g - r) colour by ˜0.2 mag than field galaxies. This reddening is slightly more pronounced outside the break radius. Cluster disc galaxies also show larger global Sérsic-indices and are more compact than field discs, both by ˜15 per cent. This change is connected to a flattening of the (outer) surface-brightness profile of Type I and - more significantly - of Type III galaxies by ˜8 per cent and ˜16 per cent, respectively, in the cluster environment compared to the field. We find fractions of Type I, Type II and Type III of (6 ± 2) per cent, (66 ± 4) per cent and (29 ± 4) per cent in the field and (15_{-4}^{+7}) per cent, (56 ± 7) per cent and (29 ± 7) per cent in the cluster environment, respectively. We suggest that the larger abundance of Type I galaxies in clusters (matched by a corresponding decrease in the Type II fraction) could be the signature of a transition between Type II and Type I galaxies produced/enhanced by environment-driven mechanisms.

  1. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Teresa L.; Holtzman, Jon [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Saha, Abhijit [NOAO, 950 Cherry Avenue, Tucson, AZ 85726-6732 (United States); Anthony-Twarog, Barbara J., E-mail: rosst@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: bjat@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-7582 (United States)

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  2. Exploring the Interstellar Media of Optically Compact Dwarf Galaxies

    CERN Document Server

    Most, Hans P; Salzer, John J; Rosenberg, Jessica J; Engstrom, Eric; Fliss, Palmer

    2013-01-01

    We present new Very Large Array HI spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii less than 1 kpc). These systems have faint blue absolute magnitudes (M_B >= -17), ongoing star formation (based on emission-line selection by the H alpha or [OIII] lines), and are nearby (mean velocity = 3315 km/s = 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an HI halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have HI radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the HI disk in the "giant disk" dwarf galaxy ADBS 113845+2008 appears to be unusual as compared to similarly compact stellar populations.

  3. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia 35 Stirling Highway, Crawley Western Australia, 6009 (Australia)

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  4. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    CERN Document Server

    Dooley, Gregory A; Yang, Tianyi; Willman, Beth; Griffen, Brendan F; Frebel, Anna

    2016-01-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, $10^3\\, \\mathrm{M_{\\odot}}99\\%$ chance that at least one satellite with stellar mass $M_*> 10^5 \\, \\mathrm{M_{\\odot}}$ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with $M_*> 10^4 \\, \\mathrm{M_{\\odot}}$, we predict a combined $5-25$ satellites for the five largest field dwarfs, and $10-50$ for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance matc...

  5. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumptio

  6. The Dwarf Galaxy Population in Nearby Groups. The data

    CERN Document Server

    Carrasco, E R; Infante, L; Carrasco, Eleazar R.; Oliveira, Claudia M. de; Infante, Leopoldo

    2006-01-01

    We used V and I CCD photometry to search for low-surface brightness dwarf galaxies (LSBD) in the central ( 22.5 V mag/arcsec^2, h > 1.5 arcsec, and diameters larger than 1.2 h^-1 kpc. Twenty of the eighty galaxies are extended LSB galaxies that were detected only on smoothed images, after masking all high surface brightness objects. The completeness in the detection is ~80% for galaxies with V<=20 and 22.5galaxies in smoothed images instead. The detected LSBD galaxies are highly concentrated towards the center of the four groups in the inner 250 h^-1 kpc. The best fit power-law slope of the surface density distribution is, on average, beta ~ -1.5 (R < 250 h^-1 kpc), in agreement with the values found for satellites dwarfs around isolated E/S0 galaxies and in X-ray groups. The LSBD galaxies in the Mv-mu0 plane does not show a clear c...

  7. Metallicity gradients of disc stars for a cosmologically simulated galaxy

    Science.gov (United States)

    Rahimi, Awat; Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Gibson, Brad K.; Kiessling, Alina

    2011-08-01

    We analyse for the first time the radial abundance gradients of the disc stars of a disc galaxy simulated with our three-dimensional, fully cosmological chemodynamical galaxy evolution code GCD+. We study how [Fe/H], [N/O], [O/Fe], [Mg/Fe] and [Si/Fe] vary with galactocentric radius. For the young stars of the disc, we found a negative slope for [Fe/H] and [N/O] but a positive [O/Fe], [Mg/Fe] and [Si/Fe] slope with radius. By analysing the star formation rate at different radii, we found that the simulated disc contains a greater fraction of young stars in the outer regions, while the old stars tend to be concentrated in the inner parts of the disc. This can explain the positive [α/Fe] gradient as well as the negative [N/O] gradient with radius. This radial trend is a natural outcome of an inside-out formation of the disc, regardless of its size and can thus explain the recently observed positive [α/Fe] gradients in the Milky Way disc open clusters.

  8. Metallicity gradients of disc stars for a cosmologically simulated galaxy

    CERN Document Server

    Rahimi, Awat; Prieto, Carlos Allende; Brook, Chris B; Gibson, Brad K; Kiessling, Alina

    2011-01-01

    We analyse for the first time the radial abundance gradients of the disc stars of a disc galaxy simulated with our three dimensional, fully cosmological chemodynamical galaxy evolution code GCD+. We study how [Fe/H], [N/O], [O/Fe], [Mg/Fe] and [Si/Fe] vary with galactocentric radius. For the young stars of the disc, we found a negative slope for [Fe/H] and [N/O] but a positive [O/Fe], [Mg/Fe] and [Si/Fe] slope with radius. By analysing the star formation rate (SFR) at different radii, we found that the simulated disc contains a greater fraction of young stars in the outer regions, while the old stars tend to be concentrated in the inner parts of the disc. This can explain the positive [alpha/Fe] gradient as well as the negative [N/O] gradient with radius. This radial trend is a natural outcome of an inside-out formation of the disc, regardless of its size and can thus explain the recently observed positive [alpha/Fe] gradients in the Milky Way disc open clusters.

  9. The Horizontal Branch of the Sculptor Dwarf galaxy

    NARCIS (Netherlands)

    Salaris, Maurizio; Boer, Thomas de; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch

  10. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different a

  11. Fast radio burst tied to distant dwarf galaxy (Image 2)

    National Science Foundation

    2017-06-07

    Full Text Available Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  12. Disc Frequencies for Brown Dwarfs in the Upper Scorpius OB Association: Implications for Brown Dwarf Formation Theories

    CERN Document Server

    Riaz, B; Goodwin, S; Stamatellos, D; Thompson, M

    2011-01-01

    We have investigated the brown dwarf (BD) and stellar disc fractions in the Upper Scorpius OB Association (USco) and compared them with several other young regions. We have compiled the most complete sample of of all spectroscopically confirmed BDs in USco, and have made use of the WISE catalog to identify the disc candidates. We report on the discovery of 12 new BD discs in USco, with spectral type (SpT) between M6 and M8.5. The WISE colors for the new discs are similar to the primordial (transition) discs earlier detected in USco. Combining with previous surveys, we find the lowest inner disc fractions (~20-25%) for a wide range in stellar masses (~0.01-4.0 Msun) in the USco association. The low disc fractions for high-mass stars in USco (and the other clusters) are consistent with an evolutionary decline in inner disc frequency with age. However, BD disc fractions are higher than those for the stars in 1-3 Myr clusters, but very low in the ~5 Myr old USco. Also, primordial BD discs are still visible in the...

  13. The environment of nearby Blue Compact Dwarf Galaxies

    CERN Document Server

    Lopez-Sanchez, Angel R; van Eymeren, Janine; Esteban, Cesar; Popping, Attila; Hibbard, John

    2009-01-01

    We are obtaining deep multiwavelength data of a sample of nearby blue compact dwarf galaxies (BCDGs) combining broad-band optical/NIR and H$\\alpha$ photometry, optical spectroscopy and 21-cm radio observations. Here we present HI results obtained with the Australia Telescope Compact Array for some BCDGs, all showing evident interaction features in their neutral gas component despite the environment in which they reside. Our analysis strongly suggests that interactions with or between low-luminosity dwarf galaxies or HI clouds are the main trigger mechanism of the star-forming bursts in BCDGs; however these dwarf objects are only detected when deep optical images and complementary HI observations are performed. Are therefore BCDGs real isolated systems?

  14. Origin of Disc Lopsidedness in the Eridanus Group of Galaxies

    CERN Document Server

    Angiras, R A; Omar, A; Dwarakanath, K S

    2006-01-01

    The HI surface density maps for a sample of 18 galaxies in the Eridanus group are Fourier analysed. This analysis gives the radial variation of the lopsidedness in the HI spatial distribution. The lopsidedness is quantified by the Fourier amplitude $A_1$ of the $m=1$ component normalized to the average value. It is also shown that in the radial region where the stellar disc and HI overlap, their $A_1$ coefficients are comparable. All the galaxies studied show significant lopsidedness in HI. The mean value of $A_1$ in the inner regions of the galaxies (1.5 - 2.5 scale lengths) is $\\geq 0.2$. This value of $A_1$ is twice the average value seen in the field galaxies. Also, the lopsidedness is found to be smaller for late-type galaxies, this is opposite to the trend seen in the field galaxies. These two results indicate a different physical origin for disc lopsidedness in galaxies in a group environment compared to the field galaxies. Further, a large fraction ($\\sim$ 30%) shows a higher degree of lopsidedness ($...

  15. Galaxy Zoo and ALFALFA: Atomic Gas and the Regulation of Star Formation in Barred Disc Galaxies

    CERN Document Server

    Masters, Karen L; Haynes, Martha P; Keel, William C; Lintott, Chris; Simmons, Brooke; Skibba, Ramin; Bamford, Steven; Giovanelli, Riccardo; Schawinski, Kevin

    2012-01-01

    We study the observed correlation between atomic gas content and the likelihood of hosting a large scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies' HI content from the ALFALFA blind HI survey. Our main result is that the bar fraction is significantly lower among gas rich disc galaxies than gas poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation, and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangu...

  16. The Local Tully–Fisher Relation for Dwarf Galaxies

    Science.gov (United States)

    Karachentsev, Igor D.; Kaisina, Elena I.; Kashibadze (Nasonova, Olga G.

    2017-01-01

    We study different incarnations of the Tully–Fisher (TF) relation for the Local Volume (LV) galaxies taken from Updated Nearby Galaxy Catalog. The UNGC sample contains 656 galaxies with W50 H i-line-width estimates, mostly belonging to low-mass dwarfs. Of them, 296 objects have distances measured with accuracies better than 10%. For the sample of 331 LV galaxies having baryonic masses {log}{M}{bar}> 5.8{log} {M}ȯ , we obtain a relation {log}{M}{bar}=2.49{log}{W}50+3.97 with an observed scatter of 0.38 dex. The largest factors affecting the scatter are observational errors in K-band magnitudes and W50 line widths for the tiny dwarfs, as well as uncertainty of their inclinations. We find that accounting for the surface brightness of the LV galaxies or their gas fraction, specific star-formation rate, or isolation index does not essentially reduce the observed scatter on the baryonic TF diagram. We also notice that a sample of 71 dSph satellites of the Milky Way and M31 with a known stellar velocity dispersion σ* tends to follow nearly the same bTF relation, having slightly lower masses than that of late-type dwarfs.

  17. Dwarf Galaxy Starburst Statistics in the Local Volume

    CERN Document Server

    Lee, Janice C; Funes, José G S J; Shoko Sakai; Akiyama, Sanae

    2008-01-01

    An unresolved question in galaxy evolution is whether the star formation histories of low mass systems are preferentially dominated by starbursts or modes that are more quiescent and continuous. Here, we quantify the prevalence of global starbursts in dwarf galaxies at the present epoch, and infer their characteristic durations and amplitudes. The analysis is based on the H-alpha component of the 11 Mpc H-alpha UV Galaxy Survey (11HUGS), which is providing H-alpha and GALEX UV imaging for an approximately volume-limited sample of ~300 star-forming galaxies within 11 Mpc. We first examine the completeness properties of the sample, and then directly tally the number of bursting dwarfs and compute the fraction of star formation that is concentrated in such systems. Our results are consistent with a picture where dwarfs that are currently experiencing massive global bursts are just the ~6% tip of a low-mass galaxy iceberg. Moreover, bursts are only responsible for about a quarter of the total star formation in th...

  18. THE PRIMEVAL POPULATIONS OF THE ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C., E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu, E-mail: jkalirai@stsci.edu, E-mail: avila@stsci.edu, E-mail: ferguson@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-01

    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter-dominated, and least chemically evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within {approx}1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.

  19. Suppression of dwarf galaxy formation by cosmic reionization.

    Science.gov (United States)

    Wyithe, J Stuart B; Loeb, Abraham

    2006-05-18

    A large number of faint galaxies, born less than a billion years after the Big Bang, have recently been discovered. Fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of megaparsecs, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star-formation rate. Here we report evidence for this suppression. We show that the post-reionization galaxies that produced most of the ionizing radiation at a redshift z approximately 5.5 must have had a mass in excess of approximately 10(10.9 +/- 0.5) solar masses (M(o)) or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (approximately 10(8) M(o)). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, before the epoch of dwarf galaxy suppression.

  20. Cosmological Simulations of Dwarf Galaxies with Cosmic Ray Feedback

    CERN Document Server

    Chen, Jingjing; Salem, Munier

    2016-01-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic-rays generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain cosmic ray parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8-30 $\\times 10^{10}$ Msun. We find that including cosmic ray feedback (with diffusion) consistently leads to disk dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  1. Disc instabilities and semi-analytic modelling of galaxy formation

    CERN Document Server

    Athanassoula, E

    2008-01-01

    The Efstathiou, Lake and Negroponte (1982) criterion can not distinguish bar stable from bar unstable discs and thus should not be used in semi-analytic galaxy formation simulations. I discuss the reasons for this, illustrate it with examples and point out shortcomings in the recipes used for spheroid formation. I propose an alternative, although much less straightforward, possibility.

  2. New Ultra-Compact Dwarf Galaxies in Clusters

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  3. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    CERN Document Server

    Sanchez-Conde, Miguel A; Zandanel, F; Gomez, Mario E; Prada, F

    2011-01-01

    In the last few years, most of the attention in gamma-ray dark matter (DM) searches has been devoted to neutralino annihilations in nearby dwarf galaxies. However, massive galaxy clusters in the local Universe may constitute very good targets as well. The main aim of this work is to compare both dwarf galaxies and local galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies and galaxy clusters, and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman~1 appears as the best candidate in the sample and, given the morphology of its annihilation signal, it is also one of the objects more readily observable by IACTs. As for galaxy clusters, Virgo represents the one with the hi...

  4. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  5. The Evolution of Nearby Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, E.; Koleva, M; Prugniel, P; Vauglin,

    2011-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Colour-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach has benefit

  6. Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Bruzual, GA; Charlot, S

    2010-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Color-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach received a s

  7. Elliptical Galaxies and Bulges of Disc Galaxies: Summary of Progress and Outstanding Issues

    Science.gov (United States)

    Kormendy, John

    Bulge components of disc galaxies are the high-density centers interior to their outer discs. Once thought to be equivalent to elliptical galaxies, their observed properties and formation histories turn out to be richer and more varied than those of ellipticals. This book reviews progress in many areas of bulge studies. Two advances deserve emphasis: (1) Observations divide bulges into "classical bulges" that look indistinguishable from ellipticals and "pseudobulges" that are discier and (except in S0s) more actively star-forming than are ellipticals. Classical bulges and ellipticals are thought to form by major galaxy mergers. Discy pseudobulges are a product of the slow ("secular") evolution of galaxy discs. Nonaxisymmetries such as bars and oval distortions transport some disc gas toward the center, where it starbursts and builds a dense central component that is discier in structure than are classical bulges. Secular evolution explains many regular structures (e.g., rings) seen in galaxy discs. It is a new area of galaxy evolution work that complements hierarchical clustering. (2) Studies of high-redshift galaxies reveal that their discs are so gas-rich that they are violently unstable to the formation of mass clumps that sink to the center and merge. This is an alternative channel for the formation of classical bulges. This chapter summarizes big-picture successes and unsolved problems in the formation of bulges and ellipticals and their coevolution (or not) with supermassive black holes. I present an observer's perspective on simulations of cold dark matter galaxy formation including baryonic physics. Our picture of the quenching of star formation is becoming general and secure at redshifts z 1000 in mass but that differ from each other as we observe over that whole range. A related difficulty is how hierarchical clustering makes so many giant, bulgeless galaxies in field but not cluster environments. I present arguments that we rely too much on star

  8. Gas, Stars and Star Formation in ALFALFA Dwarf Galaxies

    CERN Document Server

    Huang, S; Giovanelli, R; Brinchmann, J; Stierwalt, S; Neff, S G

    2012-01-01

    We examine the global properties of the stellar and HI components of 229 low HI mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with HI masses < 10^{7.7} M_sun and HI line widths < 80 km s^{-1}. SDSS data are combined with photometric properties derived from GALEX to derive stellar masses (M_*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs) and estimates of their SFRs and M_* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M_* < 10^8 M_sun is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of t...

  9. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    Science.gov (United States)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  10. Structure and kinematics of edge-on galaxy discs - IV. The kinematics of the stellar discs

    NARCIS (Netherlands)

    Kregel, M; van der Kruit, PC

    2005-01-01

    The stellar disc kinematics in a sample of 15 intermediate- to late-type edge-on spiral galaxies are studied using a dynamical modelling technique. The sample covers a substantial range in maximum rotation velocity and deprojected face-on surface brightness and contains seven spirals with either a b

  11. Galaxy and Mass Assembly (GAMA): the stellar mass budget of galaxy spheroids and discs

    OpenAIRE

    Moffett, Amanda J.; Lange, Rebecca; Driver, Simon P.; Robotham, Aaron S G; Kelvin, Lee S; Alpaslan, Mehmet; Andrews, Stephen K.; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle E.; Colless, Matthew; Davies, Luke J. M.; Holwerda, Benne W.; Hopkins, Andrew M; Kafle, Prajwal R.

    2016-01-01

    We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disc component populations down to a lower mass limit of log(M*/M⊙) = 8. We find that the spheroid/disc mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (ρspheroid = 1.24 ± 0.49 × 108 M...

  12. Effects of supernova feedback on the formation of galaxy discs

    Science.gov (United States)

    Scannapieco, Cecilia; Tissera, Patricia B.; White, Simon D. M.; Springel, Volker

    2008-09-01

    We use cosmological simulations in order to study the effects of supernova (SN) feedback on the formation of a Milky Way-type galaxy of virial mass ~1012h-1Msolar. We analyse a set of simulations run with the code described by Scannapieco et al., where we have tested our star formation and feedback prescription using isolated galaxy models. Here, we extend this work by simulating the formation of a galaxy in its proper cosmological framework, focusing on the ability of the model to form a disc-like structure in rotational support. We find that SN feedback plays a fundamental role in the evolution of the simulated galaxy, efficiently regulating the star-formation activity, pressurizing the gas and generating mass-loaded galactic winds. These processes affect several galactic properties such as final stellar mass, morphology, angular momentum, chemical properties, and final gas and baryon fractions. In particular, we find that our model is able to reproduce extended disc components with high specific angular momentum and a significant fraction of young stars. The galaxies are also found to have significant spheroids composed almost entirely of stars formed at early times. We find that most combinations of the input parameters yield disc-like components, although with different sizes and thicknesses, indicating that the code can form discs without fine-tuning the implemented physics. We also show how our model scales to smaller systems. By analysing simulations of virial masses 109 and 1010h-1Msolar, we find that the smaller the galaxy, the stronger the SN feedback effects.

  13. X-ray coronae in simulations of disc galaxy formation

    Science.gov (United States)

    Crain, Robert A.; McCarthy, Ian G.; Frenk, Carlos S.; Theuns, Tom; Schaye, Joop

    2010-09-01

    The existence of X-ray luminous gaseous coronae around massive disc galaxies is a long-standing prediction of galaxy formation theory in the cold dark matter cosmogony. This prediction has garnered little observational support, with non-detections commonplace and detections for only a relatively small number of galaxies which are much less luminous than expected. We investigate the coronal properties of a large sample of bright, disc-dominated galaxies extracted from the GIMIC suite of cosmological hydrodynamic simulations recently presented by Crain et al. Remarkably, the simulations reproduce the observed scalings of X-ray luminosity with K-band luminosity and star formation rate (SFR) and, when account is taken of the density structure of the halo, with disc rotation velocity as well. Most of the star formation in the simulated galaxies (which have realistic stellar mass fractions) is fuelled by gas cooling from a quasi-hydrostatic hot corona. However, these coronae are more diffuse, and of a lower luminosity, than predicted by the analytic models of White & Frenk because of a substantial increase in entropy at z ~ 1-3. Both the removal of low entropy gas by star formation and energy injection from supernovae contribute to this increase in entropy, but the latter is dominant for halo masses M200 <~ 1012.5Msolar. Only a small fraction of the mass of the hot gas is outflowing as a wind but, because of its high density and metallicity, it contributes disproportionally to the X-ray emission. The bulk of the X-ray emission, however, comes from the diffuse quasi-hydrostatic corona which supplies the fuel for ongoing star formation in discs today. Future deep X-ray observations with high spectral resolution (e.g. with NeXT/ASTRO-H or IXO) should be able to map the velocity structure of the hot gas and test this fundamental prediction of current galaxy formation theory.

  14. The unexpected diversity of dwarf galaxy rotation curves

    CERN Document Server

    Oman, Kyle A; Fattahi, Azadeh; Frenk, Carlos S; Sawala, Till; White, Simon D M; Bower, Richard; Crain, Robert A; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2015-01-01

    We examine the circular velocity profiles of galaxies in {\\Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a con...

  15. The distribution of alpha elements in Andromeda dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Luis C.; Geha, Marla C.; Tollerud, Erik J., E-mail: luis.vargas@yale.edu [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States)

    2014-07-20

    We present alpha to iron abundance ratios for 226 individual red giant branch stars in nine dwarf galaxies of the Andromeda (M31) satellite system. The abundances are measured from the combined signal of Mg, Si, Ca, and Ti lines in Keck/DEIMOS medium-resolution spectra. This constitutes the first large sample of alpha abundance ratios measured in the M31 satellite system. The dwarf galaxies in our sample exhibit a variety of alpha abundance ratios, with the average values in each galaxy ranging from approximately solar ([α/Fe] ∼ + 0.0) to alpha-enhanced ([α/Fe] ∼ + 0.5). These variations do not show a correlation with internal kinematics, environment, or stellar density. We confirm radial gradients in the iron abundance of two galaxies out of the five with sufficient data (NGC 185 and And II). There is only tentative evidence for an alpha abundance radial gradient in NGC 185. We homogeneously compare our results to the Milky Way classical dwarf spheroidals, finding evidence for wider variation in average alpha abundance. In the absence of chemical abundances for the M31 stellar halo, we compare to the Milky Way stellar halo. A stellar halo comprised of disrupted M31 satellites is too metal-rich and inconsistent with the Milky Way halo alpha abundance distribution even if considering only satellites with predominantly old stellar populations. The M31 satellite population provides a second system in which to study chemical abundances of dwarf galaxies and reveals a wider variety of abundance patterns than the Milky Way.

  16. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    CERN Document Server

    Slater, Colin T

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...

  17. Stellar Population gradients in galaxy discs from the CALIFA survey

    CERN Document Server

    Sanchez-Blazquez, P; Mendez-Abreu, J; Perez, I; Sanchez, S F; Zibetti, S; Aguerri, A; Bland-Hawthorn, J; Catalan, C; Fernandes, R Cid; de Amorim, A; de Lorenzo-Caceres, A; Falcon-Barroso, J; Galazzi, A; Benito, R Garcia; de Paz, A Gil; Delgado, R Gonzalez; Husemann, B; Iglesias-Paramo, Jorge; Jungwiert, B; Marino, R A; Marquez, I; Mast, D; Mendoza, M A; Molla, M; Papaderos, P; Ruiz-Lara, T; van de Ven, G; Walcher, C J; Wisotzki, L

    2014-01-01

    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at $\\sim$2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than...

  18. Dwarf galaxies in the dynamically evolved NGC 1407 Group

    Science.gov (United States)

    Trentham, Neil; Tully, R. Brent; Mahdavi, Andisheh

    2006-07-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4m differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate-luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching MR = -12) is α = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 × 1013Msolar and M/LR = 340Msolar/Lsolar. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km s-1 with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  19. Dwarf galaxies in the Dynamically Evolved NGC 1407 Group

    CERN Document Server

    Trentham, N; Tully, R B; Mahdavi, Andisheh; Trentham, Neil

    2006-01-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4 magnitude differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching M_R = -12) is alpha = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 X 10^13 M_sun and M/L_R = 340. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km/s with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  20. Dynamical mass modeling of dispersion-supported dwarf galaxies

    Science.gov (United States)

    Wolf, Joseph

    The currently favored cold dark matter cosmology (LCDM) has had much success in reproducing the large scale structure of the universe. However, on smaller scales there are some possible discrepancies when attempting to match galactic observations with properties of halos in dissipationless LCDM simulations. One advantageous method to test small scale simulations with observations is through dynamical mass modeling of nearby dwarf spheroidal galaxies (dSphs). The stellar tracers of dSphs are dispersion-supported, which poses a significant challenge in accurately deriving mass profiles. Unlike rotationally-supported galaxies, the dynamics of which can be well-approximated by one-dimensional physics, modeling dispersion-supported systems given only line-of-sight data results in a well-known degeneracy between the mass profile and the velocity dispersion anisotropy. The core of this dissertation is rooted in a new advancement which we have discovered: the range of solutions allowed by the mass-anisotropy degeneracy varies as a function of radius, with a considerable minimal near the deprojected half-light radius of almost all observed dispersion-supported galaxies. This finding allows for a wide range of applications in galaxy formation scenarios to be explored in an attempt to address, amongst other hypotheses, whether the LCDM framework needs to be modified in order to reproduce observations on the small scale. This thesis is comprised of both the derivation of this finding, and its applicability to all dispersion-supported systems, ranging from dwarfs galaxies consisting of a few hundred stars to systems of 'intracluster light', containing over a trillion stars. Rarely does one have the privilege of working with systems that span such a large range in luminosity (or any intrinsic property) in a short graduate career. Although the large applicability of this scale-free finding allows for discussion in many subfields, this thesis will mainly focus on one topic: dwarf

  1. Solo Dwarfs I: Survey introduction and first results for the Sagittarius Dwarf Irregular Galaxy

    CERN Document Server

    Higgs, C R; Irwin, M; Bate, N F; Lewis, G F; Walker, M G; Cote, P; Venn, K; Battaglia, G

    2016-01-01

    We introduce the Solitary Local Dwarfs Survey (Solo), a wide field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multi-band imaging from CFHT/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than Mv = -18 situated beyond the nominal virial radius of the Milky Way and M31 (>300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius Dwarf Irregular Galaxy (Sag DIG), one of the most isolated, low mass galaxies, located at the edge of the Local Group. We analyze its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag./sq.arcsec. Sag DIG is well described by a highly elliptical (disk-like) system following a single component...

  2. Indirect dark matter detection for flattened dwarf galaxies

    Science.gov (United States)

    Sanders, Jason L.; Evans, N. Wyn; Geringer-Sameth, Alex; Dehnen, Walter

    2016-09-01

    Gamma-ray experiments seeking to detect evidence of dark matter annihilation in dwarf spheroidal galaxies require knowledge of the distribution of dark matter within these systems. We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulas and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulas are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are all prolate or all oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered (typical correction factors for an ellipticity of 0.4 are 0.75 for the oblate case and 1.6 for the prolate case). We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables for all the dwarf spheroidals (for example, +10 per cent/-3 per cent for a typical ellipticity of 0.4). We conclude by investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the J-factors for the dwarf spheroidals using different physically motivated assumptions for their intrinsic shape and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the observed ellipticity and, in general, introduces

  3. Dark Matter Identification with Gamma Rays from Dwarf Galaxies

    CERN Document Server

    Perelstein, Maxim

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, FERMI and HESS are due to dark matter annihilation into lepton-rich final states, the accompanying final state radiation (FSR) photons may be detected by ground-based atmospheric Cherenkov telescopes (ACTs). Satellite dwarf galaxies in the vicinity of the Milky Way are particularly promising targets for this search. We find that current and near-future ACTs have an excellent potential for discovering the FSR photons from dwarfs, although a discovery cannot be guaranteed due to large uncertainties in the fluxes resulting from lack of precise knowledge of dark matter distribution within the dwarfs. We also investigate the possibility of discriminating between different dark matter models based on the measured FSR photon spectrum. For typical parameters, we find that the ACTs can reliably distinguish models predicting dark matter annihilation into two-lepton final states from those favoring four-lepton final states...

  4. HST detection of spiral structure in two Coma Cluster dwarf galaxies

    CERN Document Server

    Graham, A W; Guzmán, R; Graham, Alister W.; Jerjen, Helmut; Guzman, Rafael

    2003-01-01

    We report the discovery of (stellar) spiral-like structure in Hubble Space Telescope images of two dwarf galaxies (GMP 3292 and GMP 3629) belonging to the Coma cluster. GMP 3629 is the faintest such galaxy detected in a cluster environment, and it is the first such galaxy observed in the dense Coma cluster. The large bulge and the faintness of the broad spiral-like pattern in GMP 3629 suggests that its disk may have been largely depleted. >We may therefore have found an example of the ``missing link'' in theories of galaxy evolution which have predicted that dwarf spiral galaxies, particularly in clusters, evolve into dwarf elliptical galaxies.

  5. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    CERN Document Server

    McQuinn, Kristen B W; Dolphin, Andrew E; Mitchell, Noah P

    2015-01-01

    Integrating our knowledge of star formation traced by observations at different wavelengths is essential for correctly interpreting and comparing star formation activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The datasets are from the panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, HST optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near UV fluxes predicted from the CMD-based SFRs - using four different models - agree with the measured, extinction corrected, integrated near UV fluxes from GALEX images, but the far UV predicted fluxes do not. Further, we find a systematic deviation between the SFRs based on integrated far U...

  6. Constraints on mass loss of globular clusters in dwarf galaxies

    CERN Document Server

    Larsen, S S; Brodie, J P

    2013-01-01

    The Fornax dwarf spheroidal galaxy is well known for its very high globular cluster specific frequency, SN=26. Furthermore, while the field star metallicity distribution peaks at [Fe/H]=-1, four of the five GCs have [Fe/H]<-2. Only about 5 percent of the field stars have such low metallicities. Hence, a very large fraction of about 1/5-1/4 of the most metal-poor stars belong to the four most metal-poor GCs. This implies that these clusters could, at most, have been a factor of 4-5 more massive initially. A second, even more extreme case may be the IKN dwarf galaxy where SN=124. Although metallicities are not accurately known, the GCs account for about 13 percent of the total V-band luminosity of IKN.

  7. The local Tully-Fisher relation for dwarf galaxies

    CERN Document Server

    Karachentsev, Igor D; Kashibadze, Olga G

    2016-01-01

    We study different incarnations of the Tully-Fisher (TF) relation for the Local Volume (LV) galaxies taken from Updated Nearby Galaxy Catalog. The UNGC sample contains 656 galaxies with $W_{50}$ HI-line-width estimates, mostly belonging to low mass dwarfs. Of them, 296 objects have distances measured with accuracy better than 10%. For the sample of 331 LV galaxies having baryonic masses $\\log M_{bar} > 5.8 \\log M_\\odot$ we obtain a relation $\\log M_{bar}= 2.49 \\log W_{50} + 3.97$ with observed scatter of 0.38 dex. The largest factors affecting the scatter are observational errors in $K$-band magnitudes and $W_{50}$ line widths for the tiny dwarfs, as well as uncertainty of their inclinations. We find that accounting for the surface brightness of the LV galaxies, or their gas fraction, or specific star formation rate, or the isolation index do not reduce essentially the observed scatter on the baryonic TF-diagram. We also notice that a sample of 71 dSph satellites of the Milky Way and M31 with known stellar ve...

  8. New dwarf galaxy candidates in the Centaurus group

    CERN Document Server

    Müller, Oliver; Binggeli, Bruno

    2015-01-01

    Recent studies of the distribution and kinematics of the Milky Way and Andromeda satellite galaxy systems have confirmed the existence of coplanar, corotating structures of galaxies. In addition to the 'missing satellite problem', these structures pose a major challenge to the standard $\\Lambda$CDM scenario of structure formation. We complement the efforts made by the dwarf galaxy community to extend these studies to other nearby galaxy groups by systematically searching for faint, unresolved dwarf members with a low surface brightness in the Southern Centaurus group of galaxies. The aim is to determine whether these coplanar, corotating structures are a universal phenomenon. We imaged an area of 60 square degrees (0.3 Mpc$^2$) around the M83 subgroup with the wide-field Dark Energy Camera (DECam) at the CTIO 4 m Blanco telescope in $g$ and $r$ down to a limiting surface brightness of $\\mu_r\\approx 30$ mag arcsec$^{-2}$. Various image-filtering techniques were applied to the DECam data to enhance the visibili...

  9. Ultra-diffuse galaxies: the high-spin tail of the abundant dwarf galaxy population

    CERN Document Server

    Amorisco, N C

    2016-01-01

    Recent observations have revealed the existence of an abundant population of faint, low surface brightness (SB) galaxies, which appear to be numerous and ubiquitous in nearby galaxy clusters, including the Virgo, Coma and Fornax clusters. With median stellar masses of dwarf galaxies, these ultra-diffuse galaxies (UDGs) have unexpectedly large sizes, corresponding to a mean SB of $24\\lesssim\\langle\\mu_e\\rangle_r\\ {\\rm mag}^{-1} {\\rm arcsec}^2\\lesssim27$ within the effective radius. We show that the UDG population represents the tail of galaxies formed in dwarf-sized haloes with higher-than-average angular momentum at collapse. By adopting the standard model of disk formation -- in which the size of galaxies is set by the spin of the halo -- we recover both the abundance of UDGs as a function of the host cluster mass and the distribution of sizes within the UDG population. According to this model, UDGs are not failed $L_*$ galaxies, but genuine dwarfs, and their low SB is not uniquely connected to the harsh clu...

  10. Dwarf galaxies: quantity and varietyÂ

    Science.gov (United States)

    Cellone, S. A.; Buzzoni, A.

    The structural properties and stellar populations of 79 low- and intermediate-luminosity galaxies in the NGC5044 Group are analized. The galaxies in the sample are re-classified into different morphological subgroups, with emphasis on the identification of objects showing a bulge+disk structure. The behaviour of their properties against their (projected) position within the group is addressed, looking for evidences for possible environmental effects. The observations were obtained at ESO (1999-2000) and CASLEO (1996-1999). Nearly 50% of the data presented here are new. FULL TEXT IN SPANISH

  11. Proceedings of the Bonn/Bochum-Graduiertenkolleg Workshop 'The Magellanic Clouds and Other Dwarf Galaxies'

    OpenAIRE

    Richtler, Tom; Braun, Jochen M.

    1998-01-01

    The Workshop 'The Magellanic Clouds and Other Dwarf Galaxies' was held at the Physikzentrum Bad Honnef in January 1998. The proceedings comprise 79 contributions. About 1/3 of the 352 pages contain the following Reviews: The Violent Interstellar Medium in Dwarf Galaxies: Atomic Gas (Elias Brinks and Fabian Walter), Hot Gas in the Large Magellanic Cloud (You-Hua Chu), Astrophysics of Dwarf Galaxies: Structures and Stellar Populations (John S. Gallagher), Star-forming regions and ionized gas in...

  12. The diverse formation histories of simulated disc galaxies

    CERN Document Server

    Aumer, Michael; Naab, Thorsten

    2014-01-01

    We analyze the formation histories of 19 galaxies from cosmological smoothed particle hydrodynamics zoom-in resimulations. We construct mock three-colour images and show that the models reproduce observed trends in the evolution of galaxy colours and morphologies. However, only a small fraction of galaxies contains bars. Many galaxies go through phases of central mass growth by in-situ star formation driven by gas-rich mergers or misaligned gas infall. These events lead to accretion of low-angular momentum gas to the centres and leave imprints on the distributions of z=0 stellar circularities, radii and metallicities as functions of age. Observations of the evolution of structural properties of samples of disc galaxies at z=2.5-0.0 infer continuous mass assembly at all radii. Our simulations can only explain this if there is a significant contribution from mergers or misaligned infall, as expected in a LambdaCDM universe. Quiescent merger histories lead to high kinematic disc fractions and inside-out growth, ...

  13. 2D velocity fields of simulated interacting disc galaxies

    CERN Document Server

    Kronberger, T; Schindler, S; Ziegler, B L

    2007-01-01

    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for...

  14. VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Decerprit, G; Dickherber, R; Dumm, J; Errando, M; Falcone, A; Feng, Q; Ferrer, F; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G D; Skole, C; Smith, A W; Staszak, D; Telezhinsky, I; Tesic, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Zitzer, B

    2012-01-01

    The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant $\\gamma$-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are $\\mathrm{^{95% CL} \\lesssim 10^{-23} cm^{3} s^{-1}}$, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of two for dark matter particle masses $\\mathrm{m_{\\chi}\\gtrsim 300 GeV}$. The lower limits on the decay lifetime are at the level of $\\mathrm{\\tau^{95% CL} \\gtrsim 10^{24} s}$. Finally, we address the inte...

  15. Faint Dwarf Galaxies in Hickson Compact Group 90

    CERN Document Server

    Ordenes-Briceño, Yasna; Puzia, Thomas H; Muñoz, Roberto P; Eigenthaler, Paul; Georgiev, Iskren Y; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W; Peng, Eric W; Sánchez-Janssen, Rubén

    2016-01-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range $0.7\\!\\lesssim\\! r_{\\rm eff}/{\\rm kpc}\\! \\lesssim\\! 1.5$ with luminosities of $-11.65\\!\\lesssim\\! M_U\\! \\lesssim\\! -9.42$ and $-12.79\\!\\lesssim\\! M_I\\! \\lesssim\\! -10.58$ mag, corresponding to a color range of $(U\\!-\\!I)_0\\!\\simeq\\!1.1\\!-\\!2.2$ mag and surface brightness levels of $\\mu_U\\!\\simeq\\!28.1\\,{\\rm mag/arcsec^2}$ and $\\mu_I\\!\\simeq\\!27.4\\,{\\rm mag/arcsec^2}$. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z$_\\odot$ metallicities we obtain stellar masses in the range $M_*|_{Z_\\odot} \\simeq 10^{5.7-6.3} M_{\\odot}$ and $M_*|_{0.02\\,Z_\\odot}\\!\\simeq\\!10^{6.3-8}\\,M_{\\odot}$. Three dwarfs are ol...

  16. Dwarf Galaxies, MOND, and Relativistic Gravitation

    Directory of Open Access Journals (Sweden)

    Arthur Kosowsky

    2010-01-01

    Certain limits of these theories can also give the accelerating expansion of the Universe. The standard dark matter cosmology boasts numerous manifest triumphs; however, alternatives should also be pursued as long as outstanding observational issues remain unresolved, including the empirical successes of MOND on galaxy scales and the phenomenology of dark energy.

  17. Testing Hydrodynamics Schemes in Galaxy Disc Simulations

    CERN Document Server

    Few, C G; Pettitt, A; Konstandin, L

    2016-01-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (sphNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the sphNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the sphNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans' length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful i...

  18. HERSCHEL SPECTROSCOPIC OBSERVATIONS OF LITTLE THINGS DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cigan, Phil; Young, Lisa [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Cormier, Diane [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Lebouteiller, Vianney; Madden, Suzanne [Laboratoire AIM, CEA/DSM—CNRS—Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Hunter, Deidre [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Elmegreen, Bruce [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598 (United States); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Heesen, Volker, E-mail: pcigan@alumni.nmt.edu [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Collaboration: LITTLE THINGS Team

    2016-01-15

    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 μm, [O i] 63 μm, [O iii] 88 μm, and [N ii] 122 μm emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budget—higher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 μm/100 μm, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.

  19. Chemodynamical analysis of bulge stars for simulated disc galaxies

    Science.gov (United States)

    Rahimi, A.; Kawata, D.; Brook, Chris B.; Gibson, Brad K.

    2010-01-01

    We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First, we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside the bulge are accreted into it early in its formation within 3 Gyr so that these stars have high [α/Fe] as well as a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [α/Fe] is sensitive to the first few Gyr of star formation history, stars that formed during mergers at different epochs show different [α/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.

  20. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated dIrrs? Can the bursty star formation that created a dark matter core also match observed stellar gradients in low mass galaxies? Comparisons between our simulations and observed dwarfs should provide an important benchmark for this question going forward.

  1. Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2017-02-01

    Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.

  2. Viscous evolution of accretion discs in the quiescence of dwarf novae

    Energy Technology Data Exchange (ETDEWEB)

    Mineshige, Shin (Texas Univ., Austin, TX (USA). Dept. of Astronomy); Wood, J.H. (Texas Univ., Austin, TX (USA). Dept. of Astronomy Cambridge Univ. (UK). Inst. of Astronomy)

    1989-11-15

    Viscous evolution of accretion discs in the quiescence of dwarf novae is investigated semi-analytically. There are two key factors: the inward flow of the initial mass in the disc and the diffusion of the material added into the disc. The results are compared with the brightness temperature distributions obtained by the eclipse mapping of Z Cha and OY Car. The functional form of the viscosity parameter, its values, the types of outbursts, and the application to soft X-ray transients are discussed. (author).

  3. HI Gas in Disk and Dwarf Galaxies in the Semi-analytic Models of Galaxy Formation†

    Science.gov (United States)

    Fu, Jian; Wang, Jing; Luo, Yu

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models run on the halo outputs of ΛCDM cosmology N-body simulation. Our models can reproduce varies observations of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We also give the physical origin of HI size-mass relation. Based on our model results for local dwarf galaxies, we show that the ``missing satellite problem'' also exists in the HI component, i.e., the models over-predict dwarf galaxies with low HI mass around the Milky Way. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in local dwarf galaxies (e.g. MeerKAT, SKA & FAST) can help to verify the nature of dark matter (cold or warm).

  4. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    Science.gov (United States)

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  5. The SAMI Galaxy Survey: The discovery of a luminous, low-metallicity H II complex in the dwarf galaxy GAMA J141103.98-003242.3

    CERN Document Server

    Richards, S N; Lopez-Sanchez, A R; Croom, S M; Bryant, J J; Sweet, S M; Konstantopoulos, I S; Allen, J T; Bland-Hawthorn, J; Bloom, J V; Brough, S; Fogarty, L M R; Goodwin, M; Green, A W; Ho, I -T; Kewley, L J; Koribalski, B S; Lawrence, J S; Owers, M S; Sadler, E M; Sharp, R

    2014-01-01

    We present the discovery of a luminous unresolved H II complex on the edge of dwarf galaxy GAMA J141103.98-003242.3 using data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. This dwarf galaxy is situated at a distance of ~100 Mpc and contains an unresolved region of H II emission that contributes ~70 per cent of the galaxy's H_alpha luminosity, located at the top end of established H II region luminosity functions. For the H II complex, we measure a star-formation rate of 0.147\\pm0.041 M_solar yr^-1 and a metallicity of 12+log(O/H) = 8.01\\pm0.05 that is lower than the rest of the galaxy by ~0.2 dex. Data from the H I Parkes All-Sky Survey (HIPASS) indicate the likely presence of neutral hydrogen in the galaxy to potentially fuel ongoing and future star-forming events. We discuss various triggering mechanisms for the intense star-formation activity of this H II complex, where the kinematics of the ionised gas are well described by a rotating disc and do not show any features...

  6. Andromeda IV, a solitary gas-rich dwarf galaxy

    CERN Document Server

    Karachentsev, I D; Tully, R B; Makarova, L N; Sharina, M E; Begum, A; Rizzi, L

    2015-01-01

    Observations are presented of the isolated dwarf irregular galaxy And IV made with the Hubble Space Telescope Advanced Camera for Surveys and the Giant Metrewave Radio Telescope in the 21 cm HI line. We determine the galaxy distance of $7.17\\pm0.31$ Mpc using the Tip of Red Giant Branch method. The galaxy has a total blue absolute magnitude of -12.81 mag, linear Holmberg diameter of 1.88 kpc and an HI-disk extending to 8.4 times the optical Holmberg radius. The HI mass-to-blue luminosity ratio for And IV amounts $12.9~M_{\\odot}/L_{\\odot}$. From the GMRT data we derive the rotation curve for the HI and fit it with different mass models. We find that the data are significantly better fit with an iso-thermal dark matter halo, than by an NFW halo. We also find that MOND rotation curve provides a very poor fit to the data. The fact that the iso-thermal dark matter halo provides the best fit to the data supports models in which star formation feedback results in the formation of a dark matter core in dwarf galaxies...

  7. The universal rotation curve of dwarf disk galaxies

    CERN Document Server

    Karukes, Ekaterina V

    2016-01-01

    We use the concept of the spiral rotation curves universality (see Parsic et al. 1996) to investigate the luminous and dark matter properties of the dwarf disk galaxies in the local volume (size $\\sim11$ Mpc). Our sample includes 36 objects with rotation curves carefully selected from the literature. We find that, despite the large variations of our sample in luminosities ($\\sim$ 2 of dex), the rotation curves in specifically normalized units, look all alike and lead to the lower-mass version of the universal rotation curve of spiral galaxies found in Parsic et al. 1996. We mass model $V(R/R_{opt})/V_{opt}$, the double normalized universal rotation curve of dwarf disk galaxies: the results show that these systems are totally dominated by dark matter whose density shows a core size between 2 and 3 stellar disk scale lengths. Similar to galaxies of different Hubble types and luminosities, the core radius $r_0$ and the central density $\\rho_0$ of the dark matter halo of these objects are related by $ \\rho_0 r_0 ...

  8. Structure and Kinematics of the Nearby Dwarf Galaxy UGCA 105

    CERN Document Server

    Schmidt, Philip; Gentile, Gianfranco; Oh, Se-Heon; Schuberth, Ylva; Bekhti, Nadya Ben; Winkel, Benjamin; Klein, Uli

    2013-01-01

    Owing to their shallow stellar potential, dwarf galaxies possess thick gas disks, which makes them good candidates for studies of the galactic vertical kinematical structure. We present 21 cm line observations of the isolated nearby dwarf irregular galaxy UGCA 105, taken with the Westerbork Synthesis Radio Telescope (WSRT), and analyse the geometry of its neutral hydrogen (HI) disk and its kinematics. The galaxy shows a fragmented HI distribution. It is more extended than the optical disk, and hence allows one to determine its kinematics out to very large galacto-centric distances. The HI kinematics and morphology are well-ordered and symmetric for an irregular galaxy. The HI is sufficiently extended to observe a substantial amount of differential rotation. Moreover, UGCA 105 shows strong signatures for the presence of a kinematically anomalous gas component. Performing tilted-ring modelling by use of the least-squares fitting routine TiRiFiC, we found that the HI disk of UGCA 105 has a moderately warped and ...

  9. Structural analysis of the Sextans dwarf spheroidal galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Da Costa, G. S.; Mackey, A. D.

    2016-07-01

    We present wide-field g- and i-band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius (rh = 695 pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco telescope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of 82 arcmin (2 kpc) from its centre. We perform a statistical analysis of the overdensities and find three distinct features, as well as an extended halo-like structure, to be significant at the 99.7 per cent confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the overdensities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King model to the radial distribution of Sextans stars yields a tidal radius rt = 83.2 arcmin ± 7.1 arcmin (2.08 ± 0.18 kpc), which implies the majority of detected substructure is gravitationally bound to the galaxy. This finding suggests that Sextans is not undergoing significant tidal disruption from the Milky Way, supporting the scenario in which the orbit of Sextans has a low eccentricity.

  10. How Typical Are The Local Group Dwarf Galaxies?

    CERN Document Server

    Weisz, Daniel R; Dalcanton, Julianne J; Skillman, Evan D; Holtzman, Jon; Williams, Benjamin F; Gilbert, Karoline M; Seth, Anil C; Cole, Andrew; Gogarten, Stephanie M; Rosema, Keith; Karachentsev, Igor D; McQuinn, Kristen B W; Zaritsky, Dennis

    2011-01-01

    We compare the star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D~4Mpc). The SFHs were derived in a uniform manner from high quality optical color-magnitude diagrams constructed from HST imaging. The mean cumulative SFHs of the LG and ANGST dwarf galaxies are all very similar for the three different morphological types (dSph/dE, dI, dI/dSph). The star formation rates (SFRs) at earliest times are measurably higher than the average lifetime SFRs, while SFRs are lower at later times. We find that the systematic uncertainties, due to varying photometric depths and uncertainties in the stellar models, are similar to any differences between the mean cumulative SFHs of the LG and ANGST samples, indicating consistency between the samples. As for the ANGST galaxies alone, we find the combined LG and ANGST samples, are generally consistent with the cosmic SFH and that the mean cumulative SFHs are not well described by s...

  11. Comparison of Alternative Gravity Models in Dwarf Galaxy Rotation Curves

    Science.gov (United States)

    Harrington, Justin; Saintable, Taylor; O'Brien, James

    2017-01-01

    Galactic rotation curves have proven to be the testing ground for dark matter bounds in spiral galaxies of all morphologies. Dwarf Galaxies serve as an increasingly interesting testing ground of rotation curve dynamics due to their increased stellar formation and typically rising rotation curve. These galaxies usually are not dominated by typical stellar structure and mostly terminate at small radial distances. This, coupled with the fact that Cold Dark Matter theories such as NFW (∧ CDM) struggle with the universality of galactic rotation curves, allow for exclusive features of alternative gravitational models to be analyzed. Here, we present a thorough application of alternative gravitational models (conformal gravity and MOND) to a 2010 dwarf galaxy sample from Swaters et al. An analysis and discussion of the results of the fitting procedure of the two alternative gravitational models are explored. We posit here that both the Conformal Gravity and MOND can provide an accurate description of the galactic dynamics without the need for copious dark matter.

  12. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  13. Chemical Abundance Patterns and the Early Environment of Dwarf Galaxies

    CERN Document Server

    Corlies, Lauren; Tumlinson, Jason; Bryan, Greg

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z=10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can ...

  14. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    2003-01-01

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  15. Search for Blue Compact Dwarf Galaxies During Quiescence

    CERN Document Server

    Almeida, J Sanchez; Amorin, R; Aguerri, J A; Sanchez-Janssen, R; Tenorio-Tagle, G

    2008-01-01

    Blue Compact Dwarf (BCD) galaxies are metal poor systems going through a major starburst that cannot last for long. We have identified galaxies which may be BCDs during quiescence (QBCD), i.e., before the characteristic starburst sets in or when it has faded away. These QBCD galaxies are assumed to be like the BCD host galaxies. The SDSS/DR6 database provides ~21500 QBCD candidates. We also select from SDSS/DR6 a complete sample of BCD galaxies to serve as reference. The properties of these two galaxy sets have been computed and compared. The QBCD candidates are thirty times more abundant than the BCDs, with their luminosity functions being very similar except for the scaling factor, and the expected luminosity dimming associated with the end of the starburst. QBCDs are redder than BCDs, and they have larger HII region based oxygen abundance. QBCDs also have lower surface brightness. The BCD candidates turn out to be the QBCD candidates with the largest specific star formation rate (actually, with the largest...

  16. Snap, crackle, pop: sub-grid supernova feedback in AMR simulations of disc galaxies

    Science.gov (United States)

    Rosdahl, Joakim; Schaye, Joop; Dubois, Yohan; Kimm, Taysun; Teyssier, Romain

    2017-04-01

    We compare five sub-grid models for supernova (SN) feedback in adaptive mesh refinement (AMR) simulations of isolated dwarf and L-star disc galaxies with 20-40 pc resolution. The models are thermal dump, stochastic thermal, 'mechanical' (injecting energy or momentum depending on the resolution), kinetic and delayed cooling feedback. We focus on the ability of each model to suppress star formation and generate outflows. Our highest resolution runs marginally resolve the adiabatic phase of the feedback events, which correspond to 40 SN explosions, and the first three models yield nearly identical results, possibly indicating that kinetic and delayed cooling feedback converge to wrong results. At lower resolution all models differ, with thermal dump feedback becoming inefficient. Thermal dump, stochastic and mechanical feedback generate multiphase outflows with mass loading factors β ≪ 1, which is much lower than observed. For the case of stochastic feedback, we compare to published SPH simulations, and find much lower outflow rates. Kinetic feedback yields fast, hot outflows with β ∼ 1, but only if the wind is in effect hydrodynamically decoupled from the disc using a large bubble radius. Delayed cooling generates cold, dense and slow winds with β > 1, but large amounts of gas occupy regions of temperature-density space with short cooling times. We conclude that either our resolution is too low to warrant physically motivated models for SN feedback, that feedback mechanisms other than SNe are important or that other aspects of galaxy evolution, such as star formation, require better treatment.

  17. A WISE-based search for debris discs amongst M dwarfs in nearby, young, moving groups

    Science.gov (United States)

    Binks, A. S.; Jeffries, R. D.

    2017-07-01

    We present a search for debris discs amongst M-dwarf members of nearby, young (5-150 Myr) moving groups (MGs) using infrared (IR) photometry, primarily from the Wide Infrared Survey Explorer (WISE). A catalogue of 100 MG M dwarfs that have suitable WISE data is compiled, and 19 of these are found to have significant IR excess emission at 22 μm. Our search is likely to be complete for discs where the ratio of flux from the disc to flux from the star fd/f* > 10-3. The spectral energy distributions are supplemented with Two-Micron All-Sky Survey (2MASS) photometry and data at longer wavelengths, and fitted with simple disc models to characterize the IR excesses. There is a bimodal distribution - 12 targets have W1 - W4 > 3, corresponding to fd/f* > 0.02, and are likely to be gas-rich, primordial discs. The remaining seven targets have W1 - W4 < 1 (fd/f* ≲ 10-3) and include three objects with previously known or suspected debris discs and four new debris disc candidates that are all members of the Beta Pic MG. All of the IR excesses are identified in stars that are likely members of MGs with age <30 Myr. The detected debris disc frequency falls from 13 ± 5 per cent to <7 per cent (at 95 per cent confidence) for objects younger or older than 30 Myr, respectively. This provides evidence for the evolution of debris discs on this time-scale and does not support models where the maximum of debris disc emission occurs much later in lower mass stars.

  18. Accretion-disc model spectra for dwarf-nova stars

    OpenAIRE

    Idan, Irit; Lasota, Jean-Pierre; Hameury, Jean-Marie; Shaviv, Giora

    2008-01-01

    Radiation from accretion discs in cataclysmic variable stars (CVs) provides fundamental information about the properties of these close binary systems and about the physics of accretion in general. The detailed diagnostics of accretion disc structure can be achieved by including in its description all the relevant heating and cooling physical mechanism, in particular the convective energy transport that, although dominant at temperatures less than about 10 000 K, is usually not taken into acc...

  19. Indirect Dark Matter Detection for Flattened Dwarf Galaxies

    CERN Document Server

    Sanders, Jason L; Geringer-Sameth, Alex; Dehnen, Walter

    2016-01-01

    We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulae and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulae are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are prolate or oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered. We demonstrate that spherical ...

  20. The gas metallicity gradient and the star formation activity of disc galaxies

    CERN Document Server

    Tissera, Patricia B; Sillero, Emanuel; Vilchez, Jose M

    2015-01-01

    We study oxygen abundance profiles of the gaseous disc components in simulated galaxies in a hierarchical universe. We analyse the disc metallicity gradients in relation to the stellar masses and star formation rates of the simulated galaxies. We find a trend for galaxies with low stellar masses to have steeper metallicity gradients than galaxies with high stellar masses at z ~0. We also detect that the gas-phase metallicity slopes and the specific star formation rate (sSFR) of our simulated disc galaxies are consistent with recently reported observations at z ~0. Simulated galaxies with high stellar masses reproduce the observed relationship at all analysed redshifts and have an increasing contribution of discs with positive metallicity slopes with increasing redshift. Simulated galaxies with low stellar masses a have larger fraction of negative metallicity gradients with increasing redshift. Simulated galaxies with positive or very negative metallicity slopes exhibit disturbed morphologies and/or have a clo...

  1. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  2. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Conde, Miguel A. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cannoni, Mirco; Gómez, Mario E. [Dpto. Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Zandanel, Fabio; Prada, Francisco, E-mail: masc@stanford.edu, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: fabio@iaa.es, E-mail: mario.gomez@dfa.uhu.es, E-mail: fprada@iaa.es [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain)

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  3. Herschel Spectroscopic Observations of LITTLE THINGS Dwarf Galaxies

    CERN Document Server

    Cigan, Phil; Cormier, Diane; Lebouteiller, Vianney; Madden, Suzanne; Hunter, Deidre; Brinks, Elias; Elmegreen, Bruce; Schruba, Andreas; Heesen, Volker

    2015-01-01

    We present far-infrared spectral line observations of five galaxies from the LITTLE THINGS sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [CII] 158um, [OI] 63um, [OIII] 88um, and NII 122um emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the far-infrared properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate PDRs in some of the regions we observed. Our systems have widespread [CII] emission that is bright relative to continuum, averaging near 0.5% of the total infrared budget - higher than in solar-metallicity galaxi...

  4. Candidate tidal dwarf galaxies associated with the Stephan's Quintet

    CERN Document Server

    De Oliveira, C M; Amram, P; Balkowski, C; Bolte, M

    2001-01-01

    We present kinematic and photometric evidence for the presence of seven candidate tidal dwarf galaxies in Stephan's quintet. The central regions of the two most probable parent galaxies, N7319 and N7318B, contain little or no gas whereas the intragroup medium, and particularly the optical tails that seem to be associated with N7318B are rich in cold and ionized gas. Two tidal-dwarf candidates may be located at the edge of a tidal tail, one within a tail and for four others there is no obvious stellar/gaseous bridge between them and the parent galaxy. Two of the candidates are associated with HI clouds, one of which is, in addition, associated with a CO cloud. All seven regions have low continuum fluxes and high H$\\alpha$ luminosity densities (F(H$\\alpha$) = 1 -- 60 $\\times$ 10$^{-14}$ erg s$^{-1}$ cm$^{-2}$). Their magnitudes (M$_B =$ --16.1 to --12.6), sizes ($\\sim$ 3.5 h$_{75}^{-1}$ kpc), colors (typically $B-R = 0.7$) and gas velocity gradients ($\\sim$ 8 -- 26 h$_{75}$ km s$^{-1}$ kpc$^{-1}$) are typical f...

  5. Metallicity Distribution Functions of Four Local Group dwarf galaxies

    CERN Document Server

    Ross, Teresa L; Saha, Abhijit; Anthony-Twarog, Barbara J

    2015-01-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 (WFC3) instrument aboard the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, 1) matching stars to isochrones in color-color diagrams, and 2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter, and produces MDFs 30-50 % narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEM) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spher...

  6. Why stellar feedback promotes disc formation in simulated galaxies

    CERN Document Server

    Übler, Hannah; Oser, Ludwig; Aumer, Michael; Sales, Laura V; White, Simon

    2014-01-01

    We study how feedback influences baryon infall onto galaxies using cosmological, zoom-in simulations of haloes with present mass $\\mathrm{M}_{\\mathrm{vir}}=6.9\\times10^{11} \\mathrm{M}_{\\odot}$ to $1.7\\times10^{12} \\mathrm{M}_{\\odot}$. Starting at $z=4$ from identical initial conditions, implementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because $50\\%$ of the stars form ${\\it in}$ ${\\it situ}$ from recycled disc gas with angular momentum only weakly related to that of the $z=0$ dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because $25-30\\%$ of the total accreted gas is ejected entirely ...

  7. Dark Matter Identification using Gamma Rays from Dwarf Galaxies

    CERN Document Server

    Shakya, Bibhushan

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, Fermi and HESS have a dark matter origin, final state radiation (FSR) photons from dark matter annihilation into lepton-rich final states may be detected with observations of satellite dwarf galaxies of the Milky Way by ground-based atmospheric Cherenkov telescopes (ACTs). We find that current and near-future ACTs have excellent potential for such detection, although a discovery cannot be guaranteed due to large uncertainties in the distribution of dark matter within the dwarfs. We find that models predicting dark matter annihilation into two-lepton final states and those favoring four-lepton final states (as in, for example, "axion portal" models) can be reliably distinguished using the FSR photon spectrum once measured, and the dark matter particle mass can also be accurately determined.

  8. A VIRIAL CORE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; Evans, N. W., E-mail: aagnello@ast.cam.ac.uk, E-mail: nwe@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-08-01

    The projected virial theorem is applied to the case of multiple stellar populations in the nearby dwarf spheroidal galaxies. As each population must reside in the same gravitational potential, this provides strong constraints on the nature of the dark matter halo. We derive necessary conditions for two populations with Plummer or exponential surface brightnesses to reside in a cusped Navarro-Frenk-White (NFW) halo. We apply our methods to the Sculptor dwarf spheroidal, and show that there is no NFW halo compatible with the energetics of the two populations. The dark halo must possess a core radius of {approx}120 pc for the virial solutions for the two populations to be consistent. This conclusion remains true, even if the effects of flattening or self-gravity of the stellar populations are included.

  9. Stellar Populations in Galaxies: Progress on The Milky Way, on Dwarf Irregulars, and on Elliptical Galaxies

    Directory of Open Access Journals (Sweden)

    Dante Minniti

    2001-01-01

    Full Text Available I discuss specific topics of stellar populations where major progress is occurring. Large surveys like the MACHO Project are contributing to our understanding of the inner structure of our Galaxy. Towards these inner regions , different components (bulge, inner halo, and inner thin and thick disks overlap. We can learn much about these stellar populations using the MACHO database. We expect major progress in the study of the outer Milky Way halo in following years from the SDSS database. Very distant BHB stars located in the outskirts of the halo would be identified. I also describe recent observations of nearby dwarf irregular galaxies, and discuss what they tell us about their stellar content, and about the way these galaxies form. It is now possible to construct deep luminosity functions and color-magnitude diagrams for galaxies beyond the Local Group. I finally review recent work on the resolved stellar populations of the giant early type galaxy NGC~5128.

  10. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  11. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    2011-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  12. Effects of Tides on Milky Way Dwarf Satellite Galaxies

    Science.gov (United States)

    Wang, Mei-Yu; Strigari, Louis; Fattahi, Azadeh; Frenk, Carlos S.; Cooper, Andrew; Lovell, Mark; Navarro, Julio F.; Sawala, Till; Zentner, Andrew

    2017-01-01

    Using detailed observations of the Local Group to study wide-ranging questions in galaxy formation and dark matter physics - has become a rich field over the past decade. In this talk, I will present frameworks that address some of these questions by combining high-precision stellar kinematic measurements with state-of-art cosmological hydrodynamical N-body simulations. I will demonstrate that the properties of dark matter subhalo of individual satellite galaxies implied by stellar kinematic data can be linked to the galaxy evolution mechanisms such as infall time and the gravitational tidal interaction with Milky Way potential. In the cold dark matter (CDM) scenario, some dwarf galaxies explicitly require to be shaped under significant gravitational tidal forces, which will leave imprints on their stellar distribution and kinematics. I will discuss how these features could serve as a test to the nature of dark matter or stellar feedback strength. I will also discuss how we can study the tidally “disturbed” or even “destroyed” satellite galaxies as building blocks to our Milky Way stellar halo by understanding the properties of their progenitors and observation limit imposed by current and future surveys.

  13. Globular clusters indicate ultra diffuse galaxies are dwarfs

    CERN Document Server

    Beasley, Michael A

    2016-01-01

    We present an analysis of archival {\\it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$\\sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $32\\pm6$ and a $V$-band specific frequency, $S_N=33\\pm6$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $\\sim1.0\\times10^{11}$~\\msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}\\sim 1300$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magel...

  14. Black Holes at the Centers of Nearby Dwarf Galaxies

    CERN Document Server

    Moran, Edward C; Sugarman, Hannah R; Velez, Darik O; Eracleous, Michael

    2014-01-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d < 80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with M_BH < 1e6 M_sun. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. The host galaxies in our sample are thus the least massive objects in the very local universe certain to contain central black holes. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O III] lambda5007 luminosities of...

  15. Dissipative dark matter and the rotation curves of dwarf galaxies

    Science.gov (United States)

    Foot, R.

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and Hα fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  16. The evolutionary history of low-luminosity local group dwarf galaxies

    Science.gov (United States)

    van den Bergh, Sidney

    1994-06-01

    The stellar content of Local Group dwarfs fainter than MV = -14.0 is found to correlate with distance from the Galaxy (or M31). Dwarf spheroidals located close to the Galaxy, such as Ursa Minor and Draco, only experienced star formation early in their lifetimes. Dwarf spheroidals at intermediate distances, like Leo I, Fornax, and Carina, underwent significant star formation more recently. Finally, star formation is presently still going on in distant dwarfs such as DDO 210 and Phoenix. Leo II and Tucana are, however, dwarfs that do not conform to this pattern. It is tentatively suggested that ram pressure stripping, strong supernova-driven winds, or a high UV flux form the protoGalaxy (or proto-M31) might have removed gas from dwarf galaxies at small galactocentric distances.

  17. Chemical enrichment in Ultra-Faint Dwarf galaxies

    Science.gov (United States)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  18. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    Men-Quan Liu; Jie Zhang

    2014-09-01

    Based on an improved model, more reasonable nucleosyn-thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main observation ofMn abundance for tens stars in those dSphs, and give some constraints to the nucleosynthesis and explosion ratio of different types of supernovae and Star Formation Rates (SFR) in those dSphs.

  19. Globular Clusters Indicate That Ultra-diffuse Galaxies Are Dwarfs

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio

    2016-10-01

    We present an analysis of archival HST/ACS imaging in the F475W (g 475), F606W (V 606), and F814W (I 814) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5σ completeness limit of the imaging (I 814 = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V-band specific frequency S N = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ˜9.0 × 1010 M ⊙ and a dark-to-stellar mass ratio M vir/M star ˜ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g 475-I 814 = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  20. Abundances as Tracers of the Formation and Evolution of (Dwarf) Galaxies

    CERN Document Server

    Tolstoy, E

    2004-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES to obtain spectra of large samples of individual stars in nearby dwarf spheroidal galaxies and determine accurate abundances and kinematics. These results can be used to trace the formation and evolution of nearby galaxies from the earliest times to the present.

  1. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  2. The Horizontal Branch of the Sculptor Dwarf galaxy

    CERN Document Server

    Salaris, Maurizio; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques,taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic horizontal branch models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observations. We find that the metallicity range covered by the star formation history, as constrained by observations, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition the number count distribution along the observed horizontal branch, can be also reproduced, provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion ...

  3. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  4. The dynamics of Andromeda's dwarf galaxies and stellar streams

    CERN Document Server

    Collins, Michelle L M; Ibata, Rodrigo A; Martin, Nicolas F; Preston, Janet

    2016-01-01

    As part of the Z-PAndAS Keck II DEIMOS survey of resolved stars in our neighboring galaxy, Andromeda (M31), we have built up a unique data set of measured velocities and chemistries for thousands of stars in the Andromeda stellar halo, particularly probing its rich and complex substructure. In this contribution, we will discuss the structural, dynamical and chemical properties of Andromeda's dwarf spheroidal galaxies, and how there is no observational evidence for a difference in the evolutionary histories of those found on and off M31's vast plane of satellites. We will also discuss a possible extension to the most significant merger event in M31 - the Giant Southern Stream - and how we can use this feature to refine our understanding of M31's mass profile, and its complex evolution.

  5. Cusp-core transformations in dwarf galaxies: observational predictions

    CERN Document Server

    Teyssier, Romain; Dubois, Yohan; Read, Justin

    2012-01-01

    The presence of a dark matter core in the central kiloparsec of many dwarf galaxies has been a long standing problem in galaxy formation theories based on the standard cold dark matter paradigm. Recent cosmological simulations, based on Smooth Particle Hydrodynamics and rather strong feedback recipes have shown that it was indeed possible to form extended dark matter cores using baryonic processes related to a more realistic treatment of the interstellar medium. Using adaptive mesh refinement, together with a new, stronger supernovae feedback scheme that we have recently implemented in the RAMSES code, we show that it is also possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 10 billion solar masses dark matter halo. Although our numerical experiment is idealized, it allows a clean and unambiguous identification of the dark matter core formation process. Our dark matter inner profile is well fitted by a pseudo-isothermal profile with a core radi...

  6. Dwarfs and Giants in the local flows of galaxies.

    Science.gov (United States)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  7. The Mid-Infrared Properties of Blue Compact Dwarf Galaxies

    CERN Document Server

    Yanling Wu; Houck, J R; Bernasrd-Salas, J; Lebouteiller, V

    2008-01-01

    The unprecedented sensitivity of the Spitzer Space Telescope has enabled us for the first time to detect a large sample of Blue Compact Dwarf galaxies (BCDs), which are intrinsically faint in the infrared. In the present paper we present a summary of our findings which providing essential information on the presence/absence of the Polycyclic Aromatic Hydrocarbon features in metal-poor environments. In addition, using Spitzer/IRS high-resolution spectroscopy, we study the elemental abundances of neon and sulfur in BCDs and compare with the results from optical studies. Finally, we present an analysis of the mid- and far-infrared to radio correlation in low luminosity low metallicity galaxies.

  8. Dynamical cooling of galactic discs by molecular cloud collisions - origin of giant clumps in gas-rich galaxy discs

    Science.gov (United States)

    Li, Guang-Xing

    2017-10-01

    Different from Milky Way-like galaxies, discs of gas-rich galaxies are clumpy. It is believed that the clumps form because of gravitational instability. However, a necessary condition for gravitational instability to develop is that the disc must dissipate its kinetic energy effectively, this energy dissipation (also called cooling) is not well understood. We propose that collisions (coagulation) between molecular clouds dissipate the kinetic energy of the discs, which leads to a dynamical cooling. The effectiveness of this dynamical cooling is quantified by the dissipation parameter D, which is the ratio between the free-fall time t_ff≈ 1/ √{G ρ _{disc}} and the cooling time determined by the cloud collision process tcool. This ratio is related to the ratio between the mean surface density of the disc Σdisc and the mean surface density of molecular clouds in the disc Σcloud. When D cloud), cloud collision cooling is inefficient, and fragmentation is suppressed. When D > 1/3 (which roughly corresponds to Σdisc > 1/3Σcloud), cloud-cloud collisions lead to a rapid cooling through which clumps form. On smaller scales, cloud-cloud collisions can drive molecular cloud turbulence. This dynamical cooling process can be taken into account in numerical simulations as a sub-grid model to simulate the global evolution of disc galaxies.

  9. Hunting for Infrared Signatures of Supermassive Black Hole Activity in Dwarf Galaxies

    Science.gov (United States)

    Hainline, Kevin; Reines, Amy; Greene, Jenny; Stern, Daniel

    2016-08-01

    In order to explore the origin of the relationship between the growth of a galaxy and its central supermassive black hole, evidence must be found for black holes in galaxies at a wide range in masses. Searching for supermassive black holes in dwarf galaxies is especially important as these objects have less complicated merger histories, and they may host black holes that are similar to early proposed ``seed'' black holes. However, this selection is complicated by the fact that star formation in these dwarf galaxies can often mask the optical signatures of supermassive black hole growth and active galactic nucleus (AGN) activity in these objects. The all-sky infrared coverage offered by the Wide-field Infrared Survey Explorer (WISE) has been used to great success to select AGNs in more massive galaxies, but great care must be used when using infrared selection techniques on samples of dwarf galaxies. In particular, compact, highly star-forming dwarf galaxies can have infrared colors that may lead them to be erroneously selected as AGNs. In this talk, I will discuss recent work exploring infrared selection of AGN candidates in dwarf galaxies, and present a set of potential IR dwarf-galaxy AGN candidates. I will also outline the importance in these results with respect to future selection of AGNs in low-metallicity galaxies at high-redshift.

  10. Delayed Star Formation in Isolated Dwarf Galaxies: HST Star Formation History of the Aquarius Dwarf Irregular

    CERN Document Server

    Cole, Andrew A; Dolphin, Andrew E; Skillman, Evan D; McConnachie, Alan W; Brooks, Alyson M; Leaman, Ryan

    2014-01-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CD...

  11. A Study of Dwarf Galaxies in Five Rich Clusters I: Abell 1689 and Abell 1703

    Science.gov (United States)

    Bruursema, Justice; Riley, S.; Ford, H. C.; Zekser, K. C.; Infante, L.; Postman, M.

    2008-05-01

    Dwarf galaxies play an important role in understanding galactic formation, cluster dynamics, and large scale structure. Although local dwarf populations have been well studied, dwarf galaxies outside the local supercluster remain relatively unexamined. Using ACS Investigation Definition Team data, we examine the dwarf galaxy populations of A1689 (z=0.1832), A1703 (z=0.2580), A2218 (z=0.1756), CL0024+16 (z=0.395), and MS1358+62 (z=0.328). We have modeled and subtracted the light from the brighter elliptical galaxies using the XVISTA subroutine SNUC. An assumption of concentric elliptical isophotes is made and the position angle, ellipticity, and brightness are fit using a nonlinear least-squares algorithm. The subtraction of the models reveals a population of dwarf galaxies usually hidden by the light of bright ellipticals. SExtractor and Bayesian Photometric Redshifts (BPZ) are used in order to identify cluster members. With the 0.05" per pixel resolution of ACS and a completeness of mF625 = 28 we are able to identify approximately 1000 dwarf galaxies candidates, defined as MF625 > -18, in all five clusters combined. We will discuss the results of this research including, but not limited to, dwarf galaxy luminosity functions, radial distribution, and the characteristics of dwarfs compared to those in other well studied clusters. ACS was developed under NASA contract NAS5-32865, and this research was supported by NASA grant NAG5-7697.

  12. TiNy Titans: The Role of Dwarf-Dwarf Interactions in the Evolution of Low Mass Galaxies

    CERN Document Server

    Stierwalt, S; Patton, D; Johnson, K; Kallivayalil, N; Putman, M; Privon, G; Ross, G

    2014-01-01

    We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the SDSS and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M1/M2 100 A, occur in 20% of TNT dwarf pairs, regardless of environment, compared to only 6-8% of matched unpaired dwarfs. Starbursts can be triggered throughout the merger (out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs. Thus, there may be significant reservoirs of diffuse, non-starforming gas surrounding the dwarf pairs or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (fgas <0.4) and...

  13. A Forming Pair of Dwarf Galaxies and Its DM Halo

    Science.gov (United States)

    Pustilnik, S. A.; Brinks, E.; Thuan, T. X.; Izotov, Yu.; Lipovetsky, V.

    SBS 0335-052 and its companion 0335-052W are shown to be a unique pair of currently forming dwarf galaxies associated with a huge HI cloud (Izotov et al. 1997, Lipovetsky et al. 1997, Thuan et al. 1997, Pustilnik et al. 1997). We present the analysis of the velocity field of this HI cloud, obtained with the VLA, and the model of its rotation curve to derive the total mass distribution in this system. We argue that this gas cloud is rotationally supported in the gravitational potential of a massive DM halo, and discuss the implications of this fact for galaxy formation and evolution scenarios. This unique system apparently preserves the original unperturbed structure of its DM halo and is thus very valuable to confront halo properties with model predictions. The parameters of the DM halo and neutral gas set limits, based on observational evidence, to the range of physical conditions under which a pristine hydrogen cloud can survive as a stable object over cosmlogical time scales. We discuss the possible effect of the massive spiral galaxy at the projected distance of about 100/h kpc to these forming galaxies.

  14. The Correlation Dimension of Young Stars in Dwarf Galaxies

    CERN Document Server

    Odekon, M C

    2006-01-01

    We present the correlation dimension of resolved young stars in four actively star-forming dwarf galaxies that are sufficiently resolved and transparent to be modeled as projections of three-dimensional point distributions. We use data in the Hubble Space Telescope archive; photometry for one of them, UGCA 292, is presented here for the first time. We find that there are statistically distinguishable differences in the nature of stellar clustering among the sample galaxies. The young stars of VII Zw 403, the brightest galaxy in the sample, have the highest value for the correlation dimension and also the most dramatic decrease with logarithmic scale, falling from $1.68\\pm0.14$ to $0.10\\pm0.05$ over less than a factor of ten in $r$. This decrease is consistent with the edge effect produced by a projected Poisson distribution within a 2:2:1 ellipsoid. The young stars in UGC 4483, the faintest galaxy in the sample, exhibit very different behavior, with a constant value of about 0.5 over this same range in $r$, e...

  15. Integral Field Spectroscopy of Blue Compact Dwarf Galaxies

    CERN Document Server

    Garcia-Lorenzo, Begona; Caon, Nicola; Monreal-Ibero, Ana; Kehrig, Carolina

    2008-01-01

    We present results on integral-field optical spectroscopy of five luminous Blue Compact Dwarf galaxies. The data were obtained using the fiber system INTEGRAL attached at the William Herschel telescope. The galaxies Mrk 370, Mrk 35, Mrk 297, Mrk 314 and III Zw 102 were observed. The central 33"x29" regions of the galaxies were mapped with a spatial resolution of 2"/spaxel, except for Mrk 314, in which we observed the central 16"x12" region with a resolution of 0.9"/spaxel$. We use high-resolution optical images to isolate the star-forming knots in the objects; line ratios, electron densities and oxygen abundances in each of these regions are computed. We build continuum and emission-line intensity maps as well as maps of the most relevant line ratios: [OIII]5007\\Hb, [NII]6584\\Ha, and Ha\\Hb, which allow us to obtain spatial information on the ionization structure and mechanisms. We also derive the gas velocity field from the Ha and [OIII]5007 emission lines. We find that all the five galaxies are in the high e...

  16. Galactic winds and circulation of the ISM in dwarf galaxies

    CERN Document Server

    D'Ercole, A

    1999-01-01

    We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disk and a spherical dark halo. The starburst is assumed to occur in a small volume in the center of the galaxy, and it generates a mechanical power of 3.8e39 erg/s or 3.8e40 erg/s for 30 Myr. We found, consistently with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal rich stellar ejecta, instead, may be efficiently expelled from the galaxy and dispersed in the intergalactic medium. Moreover, we found that the central region of the galaxy is always replenished with cold and dense gas after a few 100 Myr from the starbust, achieving the requisite for a new star formation event in 0.5-1 Gyr. The hydrodynamical evolution of galactic winds is thus co...

  17. Stellar Substructures Around the Hercules Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Mackey, A. D.; Da Costa, G. S.

    2015-05-01

    We present deep g and i band Dark Energy Camera stellar photometry of the Hercules Milky Way satellite galaxy, and its surrounding field, out to a radial distance of 5.4 times the tidal radius. We have identified nine extended stellar substructures associated with the dwarf; preferentially distributed along the major axis of the galaxy. Two significant over-densities lie outside the 95% confidence band for the likely orbital path of the galaxy and appear to be free-floating tidal debris. We estimate the luminosity of the new stellar substructures, and find that approximately the same amount of stellar flux is lying in these extended structures as inside the main body of Hercules. We also analyze the distribution of candidate blue-horizontal-branch stars and find agreement with the alignment of the substructures at a confidence level greater than 98%. Our analysis provides a quantitative demonstration that Hercules is a strongly tidally disrupted system, with noticeable stellar features at least 1.9 kpc away from the galaxy.

  18. On the unification of dwarf and giant elliptical galaxies

    CERN Document Server

    Graham, Alister W

    2008-01-01

    The near orthogonal distributions of dwarf elliptical (dE) and giant elliptical (E) galaxies in the mu_e-Mag and mu_e-log(R_e) diagrams have been interpreted as evidence for two distinct galaxy formation processes. However, continuous, linear relationships across the alleged dE/E boundary at M_B = -18 mag - such as those between central surface brightness (mu_0) and (i) galaxy magnitude and (ii) light-profile shape (n) - suggest a similar, governing formation mechanism. Here we explain how these latter two linear trends necessitate a different behavior for dE and E galaxies, exactly as observed, in diagrams involving mu_e (and also _e). A natural consequence is that the distribution of dEs and Es in Fundamental Plane type analyses that use the associated intensity I_e, or _e, are expected to appear different. Together with other linear trends across the alleged dE/E boundary, such as those between luminosity and color, metallicity, and velocity dispersion, it appears that the dEs form a continuous extension t...

  19. Evolution of dwarf galaxies simulated in the cosmological LCDM scenario

    Science.gov (United States)

    Gonzalez-Samaniego, Alejandro; Colin, Pedro; Avila-Reese, Vladimir; Rodriguez-Puebla, Aldo; Valenzuela, Octavio

    2014-03-01

    We present results from numerical simulations of low-mass galaxies with the aim to explore the way their stellar masses are assembled. We analyze how the mass assembly histories of the parent halo determine the growth of their host galaxy and its implications on the current paradigm of formation and evolution of low-mass structures in the LCDM scenario. We have found that low-mass galaxies simulated in this scenario assemble their stellar masses following roughly the dark matter halo assembly, which seems to be in tension with the downsizing trend suggested by current observational inferences. We show that there is no more room to increase the strength of feedback from astrophysical processes in order to deviate strongly the stellar mass assembly from the dark halo one, as has been recently invoked to solve some of the potential issues faced by CDM-based simulations of dwarf galaxies. Alejandro González acknowledges finacial support from UNAM, Fundacion UNAM, and the APS to attend this meeting.

  20. The Origin of Dwarf Early-Type Galaxies

    CERN Document Server

    Toloba, Elisa

    2012-01-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both...

  1. Formation of galaxies in {\\Lambda}CDM cosmologies. I. The fine structure of disc galaxies

    CERN Document Server

    Doménech-Moral, Mariola; Domínguez-Tenreiro, Rosa; Serna, Arturo

    2012-01-01

    We present a detailed analysis of the global and fine structure of four middle-mass disc galaxies obtained from simulations in a $\\Lambda$CDM scenario. These objects have photometric D/T ratios in good agreement with those observed for late-type spirals, as well as kinematic properties in agreement with the observational Tully-Fisher relation. We identify the different dynamical components at z=0 on the basis of both orbital parameters and the binding energy of stars in the galaxy. In this way, we recognize a slowly rotating centrally concentrated spheroid, and two disc components supported by rotation: a thin disc with stars in nearly circular orbits, and a thick disc with orbital parameters transitional between the thin disc and the spheroid. The spheroidal component is composed mainly by old, metal-poor and {\\alpha}-enhanced stars. The distribution of metals in this component shows, however, a clear bimodality with a low-metallicity peak, which could be related to a classical bulge, and a high-metallicity ...

  2. Estimating gas accretion in disc galaxies using the Kennicutt-Schmidt law

    NARCIS (Netherlands)

    Fraternali, Filippo; Tomassetti, Matteo

    2012-01-01

    We show how the existence of a relation between the star formation rate (SFR) and the gas density, i.e. the KennicuttSchmidt law, implies a continuous accretion of fresh gas from the environment into the discs of spiral galaxies. We present a method to derive the gas infall rate in a galaxy disc as

  3. The Dearth of Neutral Hydrogen in Galactic Dwarf Spheroidal Galaxies

    CERN Document Server

    Spekkens, K; Mason, B S; Willman, B; Aguirre, J E

    2014-01-01

    We present new upper limits on the neutral hydrogen (HI) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA (ALFALFA) survey and Galactic All-Sky Survey (GASS) data. All of the limits Mlim are more stringent than previously reported values, and those from the GBT improve upon contraints in the literature by a median factor of 23. Normalizing by V-band luminosity Lv and dynamical mass Mdyn, we find Mlim/Lv ~ 10^{-3} Mo/Lo and Mlim/Mdyn ~ 5 x 10^{-5}, irrespective of location in the Galactic halo. Comparing these relative HI contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our HI upper limits therefore provide the clearest picture yet of the environmental dependence of the HI content in Local Volume dwarfs. If ram pressure stripping explains the dearth of HI in these ...

  4. Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies

    Science.gov (United States)

    Williamson, David; Martel, Hugo; Kawata, Daisuke

    2016-05-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  5. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nicolas F.; Laevens, Benjamin P. M. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Schlafly, Edward F.; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bernard, Edouard J.; Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Draper, Peter W.; Metcalfe, Nigel [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, Paul A., E-mail: nicolas.martin@astro.unistra.fr [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others

    2013-12-10

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374{sub −10}{sup +14} kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M{sub V} = –10.3 ± 0.7), with an exponential half-light radius of r{sub h} = 1.7 ± 0.4 arcmin or r{sub h}=400{sub −85}{sup +105} pc at this distance, and a moderate ellipticity (ϵ=0.43{sub −0.17}{sup +0.15}). The late discovery of Perseus I is due to its fairly low surface brightness (μ{sub 0}=25.7{sub −0.9}{sup +1.0} mag arcsec{sup –2}), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  6. Using M Dwarfs to Map Extinction in the Local Galaxy

    Science.gov (United States)

    Jones, David; West, A. A.; Foster, J.

    2011-01-01

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from low-extinction lines of sight as determined by Schlegel, Finkbeiner, & Davis to other SDSS spectra in order to derive improved distances and accurate extinctions for the stars in the SDSS data release 7 M dwarf sample. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the entire spectral range from 5700 to 9200 angstroms for every star in our sample. Our result is an extinction map that extends from a few tens of pc to approximately 2 kpc from the Sun. We also use a similar technique to create a map of Rv values within approximately 1 kpc of the Sun and find that they are roughly consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local galaxy of 176 ± 15 parsecs.

  7. New low surface brightness dwarf galaxies in the Centaurus group

    CERN Document Server

    Müller, Oliver; Binggeli, Bruno

    2016-01-01

    We conducted an extensive CCD search for faint, unresolved dwarf galaxies of very low surface brightness in the whole Centaurus group region encompassing the Cen A and M 83 subgroups lying at a distance of roughly 4 and 5 Mpc, respectively. The aim is to significantly increase the sample of known Centaurus group members down to a fainter level of completeness, serving as a basis for future studies of the 3D structure of the group. Following our previous survey of 60 square degrees covering the M 83 subgroup, we extended and completed our survey of the Centaurus group region by imaging another 500 square degrees area in the g and r bands with the wide-field Dark Energy Survey Camera at the 4m Blanco telescope at CTIO. The limiting central surface brightness reached for suspected Centaurus members is $\\mu_r \\approx 29$ mag arcsec$^{-2}$, corresponding to an absolute magnitude $M_r \\approx -9.5$. The images were enhanced using different filtering techniques. We found 41 new dwarf galaxy candidates, which togethe...

  8. Dwarf Galaxies in the Coma Cluster: I. Velocity Dispersion Measurements

    CERN Document Server

    Kourkchi, E; Carter, D; Karick, A M; Mármol-Queraltó, E; Chiboucas, K; Tully, R B; Mobasher, B; Guzmán, R; Matković, A; Gruel, N

    2011-01-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21

  9. Perseus I: A distant satellite dwarf galaxy of Andromeda

    CERN Document Server

    Martin, Nicolas F; Slater, Colin T; Bernard, Edouard J; Rix, Hans-Walter; Bell, Eric F; Ferguson, Annette M N; Finkbeiner, Douglas P; Laevens, Benjamin P M; Burgett, William S; Chambers, Kenneth C; Draper, Peter W; Hodapp, Klaus W; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A; Metcalfe, Nigel; Morgan, Jeffrey S; Price, Paul A; Tonry, John L; Wainscoat, Richard J; Waters, Christopher

    2013-01-01

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3{\\pi} survey. Located 27.9{\\deg} away from M31, Perseus I has a heliocentric distance of 785 +/- 65 kpc, compatible with it being a satellite of M31 at 374 +14/-10 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M_V = -10.3 +/- 0.7), with an exponential half-light radius of r_h = 1.7 +/- 0.4 arcminutes or r_h = 400 +105/-85 pc at this distance, and a moderate ellipticity (\\epsilon = 0.43 +0.15/-0.17). The late discovery of Perseus I is due to its fairly low surface brightness (\\mu_0=25.7 +1.0/-0.9 mag/arcsec^2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  10. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Jahnke, K. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, S. L.; Salmon, B. W. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Koekemoer, A. M.; Ferguson, H. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Weiner, B. J. [Steward Observatory, 933 N. Cherry St., University of Arizona, Tucson, AZ 85721 (United States); Wuyts, S. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Faber, S. M.; Trump, J. R.; Koo, D. C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. S.E. Minneapolis, MN 55455 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); De Mello, D. F., E-mail: vdwel@mpia.de [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  11. Age velocity dispersion relations and heating histories in disc galaxies

    CERN Document Server

    Aumer, Michael; Schönrich, Ralph

    2016-01-01

    We analyse the heating of stellar discs by non axisymmetric structures and giant molecular clouds (GMCs) in N-body simulations of growing disc galaxies. The analysis resolves long-standing discrepancies between models and data by demonstrating the importance of distinguishing between measured age-velocity dispersion relations (AVRs) and the heating histories of the stars that make up the AVR. We fit both AVRs and heating histories with formulae proportional to t^beta and determine the exponents beta_R and beta_z derived from in-plane and vertical AVRs and ~beta_R and ~beta_z from heating histories. Values of beta_z are in almost all simulations larger than values of ~beta_z, whereas values of beta_R are similar to or mildly larger than values of ~beta_R. Moreover, values of beta_z (~beta_z) are generally larger than values of beta_R (~beta_R). The dominant cause of these relations is the decline over the life of the disc in importance of GMCs as heating agents relative to spiral structure and the bar. We exam...

  12. The faint outer regions of the Pegasus Dwarf Irregular galaxy: a much larger and undisturbed galaxy

    CERN Document Server

    Kniazev, Alexei; Hoffman, G Lyle; Grebel, Eva K; Zucker, Daniel B; Pustilnik, Simon A

    2009-01-01

    We investigate the spatial extent and structure of the Pegasus dwarf irregular galaxy using deep, wide-field, multicolour CCD photometry from the Sloan Digital Sky Survey (SDSS) and new deep HI observations. We study an area of ~0.6 square degrees centred on the Pegasus dwarf that was imaged by SDSS. Using effective filtering in colour-magnitude space we reduce the contamination by foreground Galactic field stars and increase significantly the contrast in the outer regions of the Pegasus dwarf. Our extended surface photometry, reaches down to a surface brightness magnitude mu_r~32 mag/sq.arcsec. It reveals a stellar body with a diameter of ~8 kpc that follows a Sersic surface brightness distribution law, which is composed of a significantly older stellar population than that observed in the ~2 kpc main body. The galaxy is at least five times more extended than listed in NED. The faint extensions of the galaxy are not equally distributed around its circumference; the north-west end is more jagged than the sout...

  13. Cusp-core transformations in dwarf galaxies: observational predictions

    Science.gov (United States)

    Teyssier, Romain; Pontzen, Andrew; Dubois, Yohan; Read, Justin I.

    2013-03-01

    The presence of a dark matter core in the central kiloparsec of many dwarf galaxies has been a long-standing problem in galaxy formation theories based on the standard cold dark matter paradigm. Recent simulations, based on smooth particle hydrodynamics and rather strong feedback recipes, have shown that it was indeed possible to form extended dark matter cores using baryonic processes related to a more realistic treatment of the interstellar medium. Using adaptive mesh refinement, together with a new, stronger supernova feedback scheme that we have recently implemented in the RAMSES code, we show that it is also possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 1010 M⊙ dark matter halo. Although our numerical experiment is idealized, it allows a clean and unambiguous identification of the dark matter core formation process. Our dark matter inner profile is well fitted by a pseudo-isothermal profile with a core radius of 800 pc. The core formation mechanism is consistent with the one proposed by Pontzen & Governato. We highlight two key observational predictions of all simulations that find cusp-core transformations: (i) a bursty star formation history with a peak-to-trough ratio of 5 to 10 and a duty cycle comparable to the local dynamical time and (ii) a stellar distribution that is hot with v/σ ˜ 1. We compare the observational properties of our model galaxy with recent measurements of the isolated dwarf Wolf-Lundmark-Mellote (WLM). We show that the spatial and kinematical distribution of stars and H I gas are in striking agreement with observations, supporting the fundamental role played by stellar feedback in shaping both the stellar and dark matter distribution.

  14. The origin of prolate rotation in dwarf spheroidal galaxies formed by mergers of disky dwarfs

    CERN Document Server

    Ebrova, Ivana

    2015-01-01

    Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study the origin of this type of streaming motion via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. We also detect significant figure rotation resulting from the tidal distortion of the dis...

  15. Anomalous evolution of the dwarf galaxy HIPASS J1321-31

    NARCIS (Netherlands)

    Pritzl, BJ; Knezek, PM; Gallagher, JS; Grossi, M; Disney, MJ; Minchin, RF; Freeman, KC; Tolstoy, E; Saha, A

    2003-01-01

    We present Hubble Space Telescope/WFPC2 observations of the dwarf galaxy HIPASS J1321-31. This unusual galaxy lies in the direction of the Centaurus A group of galaxies and has a color-magnitude diagram with a distinctive red plume of luminous stars. This feature could arise from (1) a red giant bra

  16. Alignment of Red-Sequence Cluster Dwarf Galaxies: From the Frontier Fields to the Local Universe

    Science.gov (United States)

    Barkhouse, Wayne Alan; Archer, Haylee; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-08-01

    Galaxy clusters are the largest virialized structures in the universe. Due to their high density and mass, they are an excellent laboratory for studying the environmental effects on galaxy evolution. Numerical simulations have predicted that tidal torques acting on dwarf galaxies as they fall into the cluster environment will cause the major axis of the galaxies to align with their radial position vector (a line that extends from the cluster center to the galaxy's center). We have undertaken a study to measure the redshift evolution of the alignment of red-sequence cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope, and 64 clusters from the WINGS dataset. To supplement our low-redshift sample, we have included galaxies selected from the Hubble Space Telescope Frontier fields. Leveraging the HST data allows us to look for evolutionary changes in the alignment of red-sequence cluster dwarf galaxies over a redshift range of 0 < z < 0.35. The alignment of the major axis of the dwarf galaxies is measured by fitting a Sersic function to each red-sequence galaxy using GALFIT. The quality of each model is checked visually after subtracting the model from the galaxy. The cluster sample is then combined by scaling each cluster by r200. We present our preliminary results based on the alignment of the red-sequence dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by the position of cluster members, and 3) a radius vector pointing from the cluster center to individual dwarf galaxies. Our combined cluster sample is sub-divided into different radial regions and redshift bins.

  17. The observed properties of dwarf galaxies in and around the Local Group

    CERN Document Server

    McConnachie, Alan W

    2012-01-01

    Positional, structural and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates placing them within 3Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, suc...

  18. Thresholds on star formation and the chemical evolution of galactic discs cosmochronology and the age of the galaxy

    CERN Document Server

    Chamcham, K

    1995-01-01

    In this paper we analyse different chronometers based on the models of chemical evolution developed in Chamcham, Pitts \\& Tayler (1993; hereafter CPT) and Chamcham \\& Tayler (1994; hereafter CT). In those papers we discussed the ability of our models to reproduce the observed G-dwarf distribution in the solar neighbourhood, age-metallicity relation and radial chemical abundance gradients. We now examine their response to the predictions of cosmochronology. We use the recent production ratios of the actinide pairs ^{235}U/^{238}U and ^{232}Th/^{238}U provided by Cowan, Thielemann \\& Truran (1991) and the observed abundance ratios from Anders \\& Grevesse (1989) to determine the duration of nucleosynthesis in the solar neighbourhood, and thus to determine maximum likelihood estimates and confidence intervals for the infall parameter, \\beta, which controls the growth rate of the disc in our models. We compare our predictions for the age of the disc with the age of the galaxy estimated from models ...

  19. The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at z < 3

    CERN Document Server

    Margalef-Bentabol, Berta; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C; Koekemoer, Anton M; Dekel, Avishai; Primack, Joel R

    2016-01-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single S\\'ersic fit, as well as with a combination of exponential and S\\'ersic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the RFF) to separate our sample into 1-component galaxies (disc/spheroids-like galaxies) and 2-component galaxies (galaxies formed by an 'inner part' or bulge and an 'outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as 2-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a fa...

  20. Episodic model for star formation history and chemical abundances in giant and dwarf galaxies

    Science.gov (United States)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-11-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  1. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups

    Science.gov (United States)

    Stierwalt, S.; Liss, S. E.; Johnson, K. E.; Patton, D. R.; Privon, G. C.; Besla, G.; Kallivayalil, N.; Putman, M.

    2017-01-01

    The demographics of dwarf galaxy populations have long been in tension with predictions from the Λ cold dark matter (ΛCDM) paradigm 1-4 . If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark-matter subhaloes 5 , the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as sate­llites of more massive galaxies 6-9 , and there is observational 10 and theoretical 11 evidence to suggest that these satellites at redshift z = 0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment 12-14 , making these satellite groups imperfect probes of ΛCDM in the low-mass regime. Here we report one of the clearest examples yet of hierarchical structure formation at low masses: using deep multi-wavelength data, we identify seven isolated, spectroscopically confirmed groups of only dwarf galaxies. Each group hosts three to five known members, has a baryonic mass of ~4.4 × 109 to 2 × 1010 solar masses (M ⊙), and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch, and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.

  2. Radio continuum JVLA observations of the dwarf galaxy Sextans A

    Science.gov (United States)

    Monkiewicz, Jacqueline A.; Powell, Devon; Dettmar, Ralf-Juergen; Bomans, Dominik; Bowman, Judd D.; Scannapieco, Evan

    2017-06-01

    We present 20-cm Jansky Very Large Array (JVLA) observations of the star-forming dwarf galaxy Sextans A. Located at the outer edge of the Local Group, with an oxygen abundance of less than one-tenth of the Solar abundance (12+log O/H = 7.49), Sextans A provides a nearby laboratory for the study of low-metallicity star formation processes. This galaxy is a weak source in the infrared, but exhibits evidence for vigorous star formation-powered outflows in ionized gas, including large-scale H-alpha shells and filaments up to a kpc in length. Sextans A has not previously been detected in radio continuum. The upgraded JVLA and WIDAR correlator provide enhanced sensitivity over previous studies. We resolve a 3.0 mJy (+/- 0.3 mJy) continuum source centered on the brightest star formation region in Sextans A. Using two relatively interference-free windows at 1.4 GHz and 1.85 GHz, we are able to measure the spectral slope of the detected emission. We estimate the non-thermal contribution and the strength of the galaxy's magnetic field. We discuss the impact of low metallicity on the reliability of the IR/radio relation.

  3. The structure of Andromeda II dwarf spheroidal galaxy

    CERN Document Server

    del Pino, Andrés; Hidalgo, Sebastian L; Fouquet, Sylvain

    2016-01-01

    We analyze in detail the spatial distribution and kinematic properties of two different stellar populations in Andromeda II (And II) dwarf spheroidal galaxy. We obtained their detailed surface density maps, together with their radial density profiles. The two populations differ not only in age and metallicity, but also in their spatial distribution and kinematics. Old stars ($\\gtrsim 11$ Gyr) follow a round distribution well fitted by truncated density profiles. These stars rotate around the projected optical major axis of the galaxy with line-of-sight velocities $v_{los}(r_h) = 16 \\pm 3$ km s$^{-1}$ and a velocity gradient of $2.06 \\pm 0.21$ km s$^{-1}$ arcmin$^{-1}$. Intermediate-age stars ($\\lesssim 9$ Gyr) concentrate in the centre of the galaxy and form an elongated structure extending along the projected optical major axis. This structure appears to rotate with a steeper velocity gradient, $2.24 \\pm 0.22$ km s$^{-1}$ arcmin$^{-1}$, and around the optical minor axis. The centres of rotation and kinetic p...

  4. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    CERN Document Server

    Gonzáles-Morales, Alma X; Peñarrubia, Jorge; Ureña-López, Luis

    2016-01-01

    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with $m_a\\sim 10^{-22}\\text{eV}$ are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSph's to show that the "mass-anisotropy degeneracy" in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with ...

  5. In-spiraling Clumps in Blue Compact Dwarf Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Hunter, Deidre

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the BCD phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived....

  6. On the Fate of Processed Matter in Dwarf Galaxies

    CERN Document Server

    Silich, S A; Silich, Sergey A.; Tenorio-Tagle, Guillermo

    1998-01-01

    Two dimensional calculations of the evolution of remnants generated by the strong mechanical energy deposited by stellar clusters in dwarf galaxies (M \\si $10^9 - 10^{10}$ \\msun) are presented. The evolution is followed for times longer than both the blowout time and the presumed span of energy injection generated by a coeval massive stellar cluster. The remnants are shown to end up wrapping around the central region of the host galaxy, while growing to kpc-scale dimensions. Properties of the remnants such as luminosity, size, swept up mass, and expansion speed are given as a function of time for all calculated cases. The final fate of the swept-up galactic gas and of the matter processed by the central starburst is shown to be highly-dependent on the properties of the low density galactic halo. Superbubbles powered by star clusters, with properties similar to those inferred from the observations, slow down in the presence of an extended halo to expansion speeds smaller than the host galaxy escape velocity. V...

  7. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

    CERN Document Server

    Revaz, Y; Sawala, T; Hill, V; Letarte, B; Irwin, M; Battaglia, G; Helmi, A; Shetrone, M D; Tolstoy, E; Venn, K A

    2009-01-01

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the s...

  8. Dwarf galaxy formation with H2-regulated star formation

    CERN Document Server

    Kuhlen, M; Madau, P; Smith, B; Wise, J

    2011-01-01

    We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h 4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with "supernova feedback". We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transi...

  9. Kinematic modelling of disc galaxies using graphics processing units

    Science.gov (United States)

    Bekiaris, G.; Glazebrook, K.; Fluke, C. J.; Abraham, R.

    2016-01-01

    With large-scale integral field spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the graphics processing unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and nested sampling algorithms, but also a naive brute-force approach based on nested grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ˜100 when compared to a single-threaded CPU, and up to a factor of ˜10 when compared to a multithreaded dual CPU configuration. Our method's accuracy, precision and robustness are assessed by successfully recovering the kinematic properties of simulated data, and also by verifying the kinematic modelling results of galaxies from the GHASP and DYNAMO surveys as found in the literature. The resulting GBKFIT code is available for download from: http://supercomputing.swin.edu.au/gbkfit.

  10. The Molecular ISM of Dwarf Galaxies on Kiloparsec Scales: A New Survey for CO in Northern, IRAS-detected Dwarf Galaxies

    CERN Document Server

    Leroy, A; Simon, J D; Blitz, L; Leroy, Adam; Bolatto, Alberto D.; Simon, Joshua D.; Blitz, Leo

    2005-01-01

    We present a new survey for CO in dwarf galaxies using the Kitt Peak 12m telescope. We observed the central regions of 121 northern dwarfs with IRAS detections and no known CO emission. We detect CO in 28 of these galaxies and marginally detect another 16, increasing by about 50% the number of such galaxies known to have significant CO emission. The galaxies we detect are comparable in mass to the LMC, although somewhat brighter in CO and fainter in the FIR. Within dwarfs, we find that the CO luminosity, L_CO, is most strongly correlated with the K-band and the far infrared luminosities. There are also strong correlations with the radio continuum and B-band luminosities, and linear diameter. We suggest that L_CO and L_K correlate well because the stellar component of a galaxy dominates the midplane gravitational field and thus sets the pressure of the atomic gas, which controls the formation of H_2 from HI. We compare our sample with more massive galaxies and find that dwarfs and large galaxies obey the same ...

  11. The Origin of Dwarf Galaxies in Clusters: The Faint-End Slope of Abell 85 Galaxy Luminosity Function

    Science.gov (United States)

    Agulli, I.; Aguerri, J. A. L.; Barrena, R.; Diaferio, A.; Sánchez-Janssen, R.

    2016-10-01

    Dwarf galaxies (Mb>-18) are important because of their cosmological interest as tests of hierarchical theories. The formation of these galaxies is still an open question but red dwarf galaxies are preferentially located in high density environments, indicating that they are end-products of galaxy transformations in clusters. Deep spectroscopic studies of galaxy clusters are needed to put some constraints on dwarf galaxy formation and evolution. We have observed and analyzed Abell 85, a nearby (z = 0.055) and massive cluster down to M*+6, using the MOS instruments VIMOS@VLT and AF2@WHT. The first and powerful tool to study the characteristics of galaxies and compare with different density environments is the galaxy luminosity function. The comparison of the results for Abell 85 with literature outcomes for clusters and field, allows us to conclude that, at least for this cluster, the environment plays a major role in the nature of the faint-end galaxies, transforming blue dwarfs in the field into red ones in the cluster, but not in the formation of the luminosity function slope.

  12. Kinematic properties as probes of the evolution of dwarf galaxies in the Virgo cluster

    CERN Document Server

    Toloba, E; Gorgas, J; Peletier, R F; Cenarro, A J; Gadotti, D A; de Paz, A Gil; Pedraz, S; Yildiz, U

    2009-01-01

    We present new observational results on the kinematical, morphological, and stellar population properties of a sample of 21 dEs located both in the Virgo cluster and in the field, which show that 52% of the dEs i) are rotationally supported, ii) exhibit structural signs of typical rotating systems such as discs, bars or spiral arms, iii) are younger (~3 Gyr) than non-rotating dEs, and iv) are preferentially located either in the outskirts of Virgo or in the field. This evidence is consistent with the idea that rotationally supported dwarfs are late type spirals or irregulars that recently entered the cluster and lost their gas through a ram pressure stripping event, quenching their star formation and becoming dEs through passive evolution. We also find that all, but one, galaxies without photometric hints for hosting discs are pressure supported and are all situated in the inner regions of the cluster. This suggests a different evolution from the rotationally supported systems. Three different scenarios for t...

  13. Dwarf galaxy planes: the discovery of symmetric structures in the Local Group

    Science.gov (United States)

    Pawlowski, Marcel S.; Kroupa, Pavel; Jerjen, Helmut

    2013-11-01

    Both major galaxies in the Local Group (LG) are surrounded by thin planes of mostly co-orbiting satellite galaxies, the vast polar structure (VPOS) around the Milky Way (MW) and the Great Plane of Andromeda (GPoA) around M31. We summarize the current knowledge concerning these structures and compare their relative orientations by re-determining their properties in a common coordinate system. The existence of similar, coherent structures around both major LG galaxies motivates an investigation of the distribution of the more distant non-satellite galaxies in the LG. This results in the discovery of two planes (diameters of 1-2 Mpc) which contain almost all nearby non-satellite galaxies. The two LG planes are surprisingly symmetric. They are inclined by only 20° relative to the galactic disc of M31, are similarly thin (heights of ≈60 kpc) and have near-to-identical offsets from the MW and from M31. They are inclined relative to each other by 35°. Comparing the plane orientations with each other and with additional features reveals indications for an intimate connection between the VPOS and the GPoA. They are both polar with respect to the MW, have similar orbital directions and are inclined by about 45°±7° relative to each other. The Magellanic Stream approximately aligns with the VPOS and the GPoA, but also shares its projected position and line-of-sight velocity trend with a part of the dominating structure of non-satellite dwarf galaxies. In addition, the recent proper motion measurement of M31 indicates a prograde orbit of the MW-M31 system, the VPOS and the GPoA. The alignment with other features such as the Supergalactic Plane and the overdensity in hypervelocity stars are discussed as well. We end with a short summary of the currently proposed scenarios trying to explain the LG galaxy structures as either originating from cosmological structures or from tidal debris of a past galaxy encounter. We emphasize that there currently exists no full detailed

  14. Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

    Science.gov (United States)

    Klimentowski, Jarosław; Łokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.

    2007-06-01

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal (dSph) galaxies. For this purpose we have run a high-resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disc and it has a NFW-like dark matter (DM) halo. After 10 Gyr of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated DM haloes. We model the cleaned-up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio (M/L) and velocity anisotropy parameter. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and M/L of the dwarf with accuracy typically better than 25 per cent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy. We show that after careful removal of interlopers the velocity dispersion profile of Fornax can be reproduced by a model in which mass traces light with a M/L of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of

  15. The Arecibo Galaxy Environment Survey VIII : Discovery of an Isolated Dwarf Galaxy in the Local Volume

    CERN Document Server

    Taylor, R; Herbst, H; Smith, R

    2014-01-01

    The Arecibo Galaxy Environment Survey (AGES) has detected a nearby HI source at a heliocentric velocity of +363 km/s . The object was detected through its neutral hydrogen emission and has an obvious possible optical counterpart in Sloan Digital Sky Survey (SDSS) data (though it does not have an optical redshift measurement). We discuss three possible scenarios for the object : 1) It is within the Local Group, in which case its HI properties are comparable with recently discovered ultra-compact high velocity clouds; 2) It is just behind the Local Group, in which case its optical characteristics are similar to the newly discovered Leo P galaxy; 3) It is a blue compact dwarf galaxy within the local volume but not associated with the Local Group. We find the third possibility to be the most likely, based on distance estimates from the Tully-Fisher relation and its velocity relative to the Local Group.

  16. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  17. Abundant Molecular Gas in Tidal Dwarf Galaxies On-going Galaxy Formation

    CERN Document Server

    Braine, J; Lisenfeld, U; Charmandaris, V; Vallejo, O; Leon, S; Brinks, E

    2001-01-01

    [Abridged...] We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (two of them have already been published in Braine et al. 2000), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 10^8 M_sun. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the tran...

  18. Metal diffusion in smoothed particle hydrodynamics simulations of dwarf galaxies

    CERN Document Server

    Williamson, David John; Kawata, Daisuke

    2016-01-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows, and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths, by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas, and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between "metal mass-loading" (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even...

  19. Dark Matter in $\\gamma$ lines: Galactic Center vs dwarf galaxies

    CERN Document Server

    Lefranc, Valentin; Panci, Paolo; Sala, Filippo; Silk, Joseph

    2016-01-01

    We provide CTA sensitivities to Dark Matter (DM) annihilation in $\\gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.

  20. The Intrinsic Shapes of Low-Surface-Brightness Dwarf Irregular Galaxies and Comparison to Other Types of Dwarf Galaxies

    CERN Document Server

    Sung, E C; Ryden, S; Patterson, J; Chun, M S; Kim, H I; Lee, W B; Sung, Eon-Chang; Han, Cheongho; Chun, Moon-Suk; Kim, Ho-Il; Lee, Woo-Baik

    1998-01-01

    In this paper, we measure the ellipticities of 30 LSB dI galaxies and compare the ellipticity distribution with that of 80 dEs (Ryden & Terndrup 1994; Ryden et al. 1998) and 62 BCDs (Sung et al. 1998). We find that the ellipticity distribution of LSB dIs is very similar to that of BCDs, and marginally different from that of dEs. We then determine the distribution of intrinsic shapes of dI galaxies and compare to those of other type dwarf galaxies under various assumptions. First, we assume that LSB dIs are either all oblate or all prolate, and use non-parametric analysis to find the best-fitting distribution of intrinsic shapes. With this assumption, we find that the scarcity of nearly circular LSB dIs implies, at the 99% confidence level, that they cannot be a population of randomly oriented oblate or prolate objects. Next, we assume that dIs are triaxial, and use parametric analysis to find permissible distributions of intrinsic shapes. We find that if the intrinsic axis ratios, $\\beta$ and parameters f...

  1. A Picture-perfect Pure-disc Galaxy

    Science.gov (United States)

    2011-02-01

    The bright galaxy NGC 3621, captured here using the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, appears to be a fine example of a classical spiral. But it is in fact rather unusual: it does not have a central bulge and is therefore described as a pure-disc galaxy. NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fifth in the competition. This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face with another galaxy as such a galactic collision would have disturbed the thin disc of stars, creating a small bulge in its centre. Most astronomers think that galaxies grow by merging with other galaxies, in a process called hierarchical galaxy formation. Over time, this should create large bulges in the centres of spirals. Recent research, however, has suggested that bulgeless, or pure-disc, spiral galaxies like NGC 3621 are actually fairly common. This galaxy is of further interest to astronomers because its relative proximity allows them to study a wide range of astronomical objects within it, including stellar nurseries, dust clouds, and pulsating stars called Cepheid variables, which astronomers use as distance markers in the Universe [2]. In the late 1990s, NGC 3621 was one of 18 galaxies selected for a Key Project of the Hubble Space Telescope: to observe Cepheid variables and measure the rate of expansion of the Universe to a higher accuracy than had been possible before. In the successful project, 69 Cepheid variables were observed in this galaxy alone. Multiple monochrome images taken through

  2. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, Kristine; Urbancic, Natasha [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario K7K 7B4 (Canada); Mason, Brian S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Willman, Beth [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Aguirre, James E., E-mail: kristine.spekkens@rmc.ca [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  3. The same with less: The cosmic web of warm versus cold dark matter dwarf galaxies

    CERN Document Server

    Reed, Darren S; Smith, Robert E; Potter, Doug; Stadel, Joachim; Moore, Ben

    2014-01-01

    We explore fundamental properties of the distribution of low mass dark matter halos within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self abundance-matched mock galaxy catalogs, we show that the distribution of dwarf galaxies in a WDM universe, wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low mass CDM halos would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider--the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the PDF ...

  4. First Stellar Abundances in the Dwarf Irregular Galaxy IC 1613

    Science.gov (United States)

    Tautvaišienė, Gražina; Geisler, Doug; Wallerstein, George; Borissova, Jura; Bizyaev, Dmitry; Pagel, Bernard E. J.; Charbonnel, Corinne; Smith, Verne

    2007-12-01

    Chemical abundances in three M supergiants in the Local Group dwarf irregular galaxy IC 1613 have been determined using high-resolution spectra obtained with the UVES spectrograph on the ESO 8.2 m Kueyen telescope. A detailed synthetic-spectrum analysis has been used to determine the atmospheric parameters and abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Fe, Co, Ni, La, and Eu. We find the overall metallicity of the stars to be [Fe/H] = -0.67 ± 0.09 and the age 9-13 Myr, which is in excellent agreement with the present-day values in the age-metallicity relationship model of IC 1613 by Skillman et al. We have found that the three supergiants investigated have a mean [α/Fe] equal to about -0.1, which is lower than seen in Galactic stars at the same metallicity and is in agreement with the results obtained in other dwarf irregular galaxies. The oxygen abundances are in agreement with the upper values of the nebular oxygen determinations in IC 1613. The abundance ratios of s- and r-process elements to iron are enhanced relative to solar by about 0.3 dex. The abundance pattern of the elements studied is similar to that of the Small Magellanic Cloud, except for Co and Ni, which are underabundant in the SMC. The observed elemental abundances are generally in very good agreement with the recent chemical evolution model of Yuk and Lee. Based on observations collected with the Very Large Telescope and the 2.2 m Telescope of the European Southern Observatory within the Observing Programs 70.B-0361(A) and 072.D-0113(D).

  5. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  6. The early days of the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Jablonka, P; Mashonkina, L; Hill, V; Revaz, Y; Shetrone, M; Starkenburg, E; Irwin, M; Tolstoy, E; Battaglia, G; Venn, K; Helmi, A; Primas, F; Francois, P

    2015-01-01

    We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggesti...

  7. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time

    CERN Document Server

    Grand, Robert J J; Marinacci, Federico; Pakmor, Ruediger; Springel, Volker; Campbell, David J R; Frenk, Carlos S; Jenkins, Adrian; White, Simon D M

    2016-01-01

    We introduce a suite of thirty cosmological magneto-hydrodynamical zoom simulations of the formation of Milky Way-like galaxies and their dark haloes. These were carried out with the moving mesh code \\textlcsc{AREPO}, together with a comprehensive model for galaxy formation physics, including AGN feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of observables, in particular, two component disc dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present day disc sizes/scale lengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the hal...

  8. Disc colours in field and cluster spiral galaxies at 0.5 < z < 0.8

    CERN Document Server

    Cantale, Nicolas; Courbin, Frederic; Rudnick, Gregory; Zaritsky, Dennis; Meylan, Georges; Desai, Vandana; De Lucia, Gabriella; Aragon-Salamanca, Alfonso; Poggianti, Bianca M; Finn, Rose; Simard, Luc

    2016-01-01

    We present a detailed study of the colours in late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 < z < 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolve their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V-I colours of the discs. We find that 50% of cluster spiral galaxies have disc V-I colours redder by more than 1 sigma of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cor...

  9. Star Cluster Luminosity Functions and Cluster Formation Efficiencies in LEGUS Dwarf Galaxies

    Science.gov (United States)

    Cook, David O.; Lee, Janice C.; Adamo, Angela; Kim, Hwiyun; Ryon, Jenna E.; LEGUS Team

    2017-01-01

    We present preliminary results of star cluster luminosity functions (LFs) and cluster formation efficiencies (Γ) in the LEGUS dwarf galaxy sub-sample. We have used a combination of automated and visual identification techniques to allow us to construct a more complete sample of clusters in these low-mass, low-SFR environments compared to previous studies of dwarf galaxies. Cluster properties are derived from fitting UV and optical (NUV-I) HST photometry to both deterministic and stochastic single-aged stellar populations models. We compare the cluster formation efficiencies and LF slopes to those of previous studies in both dwarf and massive spiral galaxy environments. Recent studies have found that both the LF slope and Γ form trends with galaxy environment. Our LF slope and Γ measurements in the LEGUS dwarfs will allow us to test these trends in the extreme, low-SFR regime and provide a better understanding of the star formation process.

  10. NGC 5044-N50: a link between blue compact galaxies and dwarf ellipticals

    Science.gov (United States)

    Cellone, Sergio A.; Buzzoni, Alberto

    We present new optical observations of the dwarf galaxy N50 in the NGC 5044 Group, showing that this object is probably at an intermediate BCD→dE evolutionary stage, after a realtively recent burst of star formation.

  11. Non-LTE models for the gaseous metal component of circumstellar discs around white dwarfs

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2011-01-01

    Gaseous metal discs around single white dwarfs have been discovered recently. They are thought to develop from disrupted planetary bodies. Spectroscopic analyses will allow us to study the composition of extrasolar planetary material. We investigate in detail the first object for which a gas disc was discovered (SDSS J122859.93+104032.9). Therefor we perform non-LTE modelling of viscous gas discs by computing the detailed vertical structure and line spectra. The models are composed of carbon, oxygen, magnesium, silicon, calcium, and hydrogen with chemical abundances typical for Solar System asteroids. Line asymmetries are modelled by assuming spiral-arm and eccentric disc structures as suggested by hydrodynamical simulations. The observed infrared Ca II emission triplet can be modelled with a hydrogen-deficient metal gas disc located inside of the tidal disruption radius, with an effective temperature of about 6000 K and a surface mass density of 0.3 g/cm^2. The inner radius is well constrained at about 0.64 ...

  12. Influence of galaxy stellar mass and observed wavelength on disc breaks in S4G, NIRS0S, and SDSS data

    Science.gov (United States)

    Laine, Jarkko; Laurikainen, Eija; Salo, Heikki

    2016-11-01

    bluer wavelengths, possibly due to stellar radial migration populating the outer discs with older stars. In Type III profiles ho are larger in the u-band, hinting to the presence of young stellar population in the outer disc. While the observed wavelength affects the disc parameters, it does not significantly affect the profile type classification in our sample. Our results indicate that the observed wavelength is a significant factor when determining the profile types in very low mass dwarf galaxies, for which more Type II profiles have been previously found using optical data. Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A25

  13. The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; François, P.; Irwin, M. J.; Boschman, L.; Venn, K. A.; de Boer, T. J. L.; Lemasle, B.; Jablonka, P.; Battaglia, G.; Groot, P.; Kaper, L.

    2013-01-01

    We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the dwarf abundances and radial velocities team (DART) using the lates

  14. Dwarf spheroidal galaxies as degenerate gas of free fermions

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie; Urbano, Alfredo, E-mail: valerie.domcke@sissa.it, E-mail: alfredo.urbano@sissa.it [SISSA - International School for Advanced Studies, via Bonomea 256, Trieste, 34136 Italy (Italy)

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  15. The effect of tides on the Fornax dwarf spheroidal galaxy

    CERN Document Server

    Battaglia, Giuseppina; Nipoti, Carlo

    2015-01-01

    Estimates of the mass distribution and dark-matter (DM) content of dwarf spheroidal galaxies (dSphs) are usually derived under the assumption that the effect of the tidal field of the host galaxy is negligible over the radial extent probed by kinematic data-sets. We assess the implications of this assumption in the specific case of the Fornax dSph by means of N-body simulations of a satellite orbiting around the Milky Way. We consider observationally-motivated orbits and we tailor the initial distributions of the satellite's stars and DM to match, at the end of the simulations, the observed structure and kinematics of Fornax. In all our simulations the present-day observable properties of Fornax are not significantly influenced by tidal effects. The DM component is altered by the interaction with the Galactic field (up to 20% of the DM mass within 1.6 kpc is lost), but the structure and kinematics of the stellar component are only mildly affected even in the more eccentric orbit (more than 99% of the stellar ...

  16. The far-infrared - radio correlation in dwarf galaxies

    CERN Document Server

    Schleicher, Dominik R G

    2016-01-01

    The far-infrared - radio correlation connects star formation and magnetic fields in galaxies, and has been confirmed over a large range of far-infrared luminosities. Recent investigations indicate that it may even hold in the regime of local dwarf galaxies, and we explore here the expected behavior in the regime of star formation surface densities below 0.1 M_sun kpc^{-2} yr^{-1}. We derive two conditions that can be particularly relevant for inducing a change in the expected correlation: a critical star formation surface density to maintain the correlation between star formation rate and the magnetic field, and a critical star formation surface density below which cosmic ray diffusion losses dominate over their injection via supernova explosions. For rotation periods shorter than 1.5x10^7 (H/kpc)^2 yrs, with H the scale height of the disk, the first correlation will break down before diffusion losses are relevant, as higher star formation rates are required to maintain the correlation between star formation ...

  17. Metals Removed by Outflows from Milky Way Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Finlator, Kristian

    2011-01-01

    The stars in the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are significantly more metal-poor than would be expected from a closed box model of chemical evolution. Gas outflows likely carried away most of the metals produced by the dSphs. Based on previous Keck/DEIMOS observations and models, we calculate the mass in Mg, Si, Ca, and Fe expelled from each of eight dSphs. Essentially, these masses are the differences between the observed amount of metals present in the dSphs' stars today and the inferred amount of metals produced by supernovae. We conclude that the dSphs lost 96% to >99% of the metals their stars manufactured. We apply the observed mass function of Milky Way dSphs to the ejected mass function to determine that a single large dSph, like Fornax, lost more metals over 10 Gyr than all smaller dSphs combined. Therefore, small galaxies like dSphs are not significant contributors to the metal content of the intergalactic medium. Finally, we compare our ejected mass function to previo...

  18. Carbon and Oxygen Abundances in Low Metallicity Dwarf Galaxies

    CERN Document Server

    Berg, Danielle A; Henry, Richard B C; Erb, Dawn K; Carigi, Leticia

    2016-01-01

    The study of carbon and oxygen abundances yields information on the time evolution and nucleosynthetic origins of these elements, yet remains relatively unexplored. At low metallicities (12+log(O/H) < 8.0), nebular carbon measurements are limited to rest-frame UV collisionally excited emission lines. Therefore, we present UV spectrophotometry of 12 nearby, low-metallicity, high-ionization HII regions in dwarf galaxies obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We present the first analysis of the C/O ratio in local galaxies based solely on simultaneous significant detections of the UV O^+2 and C^+2 collisionally excited lines in seven of our targets and five objects from the literature, to create a final sample of 12 significant detections. Our sample is complemented by optical SDSS spectra, from which we measured the nebular physical conditions and oxygen abundances using the direct method. At low metallicity (12+log(O/H) < 8.0), no clear trend is evident in C/O vs. O/...

  19. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro

    2017-08-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  20. Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter

    CERN Document Server

    Chen, Shu-Rong; Chiueh, Tzihong

    2016-01-01

    Observations suggest that dwarf spheroidal (dSph) galaxies exhibit large constant-density cores in the centers, which can hardly be explained by dissipationless cold dark matter simulations. Wave dark matter (${\\psi {\\rm DM}}$), characterized by a single parameter, the dark matter particle mass $m_{\\psi}$, predicts a central soliton core in every galaxy arising from quantum pressure against gravity. Here we apply Jeans analysis to the kinematic data of eight classical dSphs so as to constrain $m_{\\psi}$, and obtain $m_{\\psi}=1.18_{-0.24}^{+0.28}\\times10^{-22}{\\,\\rm eV}$ and $m_{\\psi}=1.79_{-0.33}^{+0.35}\\times10^{-22}{\\,\\rm eV}~(2\\sigma)$ using the observational data sets of Walker et al. (2007) and Walker et al. (2009b), respectively. We show that the estimate of $m_{\\psi}$ is sensitive to the dSphs kinematic data sets and is robust to various models of stellar density profile. We also consider multiple stellar subpopulations in dSphs and find consistent results. This mass range of $m_{\\psi}$ is in good agre...

  1. A Star Formation Law for Dwarf Irregular Galaxies

    CERN Document Server

    Elmegreen, Bruce G

    2015-01-01

    The radial profiles of gas, stars, and far ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time give the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed HI surface densities and calculated scale heights. The radial profiles of the star formation rates are equal to about 1% of the HI surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxi...

  2. Multiple stellar population in the Sextans dwarf spheroidal galaxy?

    CERN Document Server

    Bellazzini, M; Pancino, E

    2001-01-01

    We present wide field (33 X 34 arcmin^2) multiband (BVI) CCD photometry (down to I <= 20.5) of the very low surface brightness dwarf Spheroidal (dSph) galaxy Sextans. In the derived Color Magnitude Diagrams we have found evidences suggesting the presence of multiple stellar populations in this dSph. In particular we discovered: {\\it (i)} a Blue Horizontal Branch (HB) tail that appears to lie on a brighter sequence with respect to the prominent Red HB and the RR Lyrae stars, very similar to what found by Majewski et al. (1999) for the Sculptor dSph; {\\it (ii)} hints of a bimodal distribution in color of the RGB stars; {\\it (iii)} a double RGB-bump. All these features suggest that (at least) two components are present in the old stellar population of this galaxy: a main one with [Fe/H]~ -1.8 and a minor component around [Fe/H]<~ -2.3. The similarity with the Sculptor case may indicate that multiple star formation episodes are common also in the most nearby dSphs that ceased their star formation activity a...

  3. NGC 55: a disc galaxy with flat abundance gradients

    CERN Document Server

    Magrini, Laura; Vajgel, Bruna

    2016-01-01

    We present new spectroscopic observations obtained with GMOS@Gemini-S of a sample of 25 hii regions located in NGC 55, a late-type galaxy in the nearby Sculptor group. We derive physical conditions and chemical composition through the te-method for 18 hii regions, and strong-line abundances for 22 hii regions. We provide abundances of He, O, N, Ne, S, Ar, finding a substantially homogenous composition in the ionised gas of the disc of NGC 55, with no trace of radial gradients. The oxygen abundances, both derived with \\te- and strong-line methods, have similar mean values and similarly small dispersion: 12+$\\log$(O/H)=8.13$\\pm$0.18~dex with the former and 12+$\\log$(O/H)=8.17$\\pm$0.13~dex with the latter. The average metallicities and the flat gradients agree with previous studies of smaller samples of \\hii\\ regions and there is a qualitative agreement with the blue supergiant radial gradient as well. We investigate the origin of such flat gradients comparing NGC 55 with NGC 300, its companion galaxy, which is ...

  4. Kinematic Modelling of Disc Galaxies using Graphics Processing Units

    CERN Document Server

    Bekiaris, Georgios; Fluke, Christopher J; Abraham, Roberto

    2015-01-01

    With large-scale Integral Field Spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the Graphics Processing Unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and Nested Sampling algorithms, but also a naive brute-force approach based on Nested Grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ~100 when compared to a single-threaded CPU, and up to a factor of ~10 when compared to a multi-threaded dual CPU configuration. Our method's accuracy, precision and robustness a...

  5. Building disc structure and galaxy properties through angular momentum: the DARK SAGE semi-analytic model

    Science.gov (United States)

    Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.

    2016-09-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find that the discs naturally build a pseudo-bulge-like component. Our main results are focused on predictions relating to the integrated mass-specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequence and find they are crucial for regulating both the mass and spin of discs. Without instabilities, high-mass discs would be systematically deficient in specific angular momentum by a factor of ˜2.5, with increased scatter. Instabilities also appear to drive the direction in which the mass-spin sequence of spiral galaxy discs evolves. With them, we find galaxies of fixed mass have higher specific angular momentum at later epochs.

  6. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time

    Science.gov (United States)

    Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; White, Simon D. M.

    2017-01-01

    We introduce a suite of thirty cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes. These were carried out with the moving mesh code AREPO, together with a comprehensive model for galaxy formation physics, including AGN feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of present-day observables, in particular, two component disc dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present-day disc sizes/scale lengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the halo. More violent mergers and strong AGN feedback play roles in limiting disc size by destroying pre-existing discs and by suppressing gas accretion onto the outer disc, respectively. The most important factor that leads to compact discs, however, is simply a low angular momentum for the halo. In these cases, AGN feedback plays an important role in limiting central star formation and the formation of a massive bulge.

  7. Galaxy And Mass Assembly (GAMA): The unimodal nature of the dwarf galaxy population

    CERN Document Server

    Mahajan, Smriti; Driver, S; Kelvin, Lee S; Hopkins, A M; Baldry, I; Phillipps, S; Bland-Hawthorn, J; Brough, S; Loveday, J; Penny, Samantha J; Robotham, A S G

    2014-01-01

    In this paper we aim to (i) test the number of statistically distinct classes required to classify the local galaxy population, and, (ii) identify the differences in the physical and star formation properties of visually-distinct galaxies. To accomplish this, we analyse the structural parameters (effective radius r_e, effective surface brightness within r_e (mu_e), central surface brightness (mu_0), and S'ersic index (n)), obtained by fitting the light profile of 432 galaxies (0.002dwarf galaxies (irregulars, blue spheroids and low surface brightness galaxies) form a unimodal population in a parameter space mapped by mu_e, mu_0, n, r_e, SFR, sSFR, M*, M_{dust} and (g-i). The SFR and sSFR distribution of passively evolving ...

  8. Identifying old Tidal Dwarf Galaxies in Simulations and in the Nearby Universe

    CERN Document Server

    Duc, P A; Masset, F; Bournaud, Frederic; Duc, Pierre-Alain; Masset, Frederic

    2004-01-01

    Most Tidal Dwarf Galaxies (TDGs) so-far discussed in the literature may be considered as young ones or even newborns, as they are still physically linked to their parent galaxies by an umbilical cord: the tidal tail at the tip of which they are usually observed. Old Tidal Dwarf Galaxies, completely detached from their progenitors, are still to be found. Using N--body numerical simulations, we have shown that tidal objects as massive as 10^9 solar masses may be formed in interacting systems and survive for more than one Gyr. Old TDGs should hence exist in the Universe. They may be identified looking at a peculiarity of their "genetic identity card": a relatively high abundance in heavy elements, inherited from their parent galaxies. Finally, using this technique, we revisit the dwarf galaxies in the local Universe trying to find arguments pro and con a tidal origin.

  9. VizieR Online Data Catalog: Tucana dwarf galaxy VI photometry (Castellani+, 1996)

    Science.gov (United States)

    Castellani, M.; Marconi, G.; Buonanno, R.

    2000-11-01

    We present deep CCD photometry for the dwarf galaxy in Tucana (l=323, b=-47.4). The data indicate that the galaxy is dominated by an intermediate/old stellar population with metallicity similar to that of the galactic globular clusters NGC 6752 and NGC 7089 (M2) (we find [Fe/H]=~-1.56). The distance modulus we derived, (m-M)V=~24.72+/-0.2, makes clear that this galaxy belongs to the Local Gro up. Tucana is clearly different from other dwarf galaxies, such as Leo I (Lee et al., 1993AJ....106.1420L), or Phoenix (Ortolani and Gratton, 1988PASP..100.1405O), because there is no evidence of a young stellar population (t<=5Gyrs) We suggest that the Tucana Galaxy is a genuine dwarf spheroidal in which no recent burst of star formation occurred. (1 data file).

  10. Star Formation in NGC4532/DDO 137'S Tidal Dwarf Galaxies and 500 KPC HI Stream

    Science.gov (United States)

    Higdon, Sarah

    Mergers and close-passages between gas rich galaxies can result in the formation of long HI/stellar streams. The tidally induced star formation and gas concentrations can result in the creation of tidal dwarf galaxies (TDGs). TDGs may contribute significantly to the dwarf galaxy population, by far the most common galaxy type in the current epoch. We have discovered one of the longest known tidal streams (500 kpc) in the NGC 4535/DDO 137 system. We propose 3 ksec FUV/NUV images centered on the stream and its five TDGs. We will readily detect faint/low mass star forming regions (~2E-17 erg s-1 cm-2 A-1) to 5-sigma. The GALEX observations are a unique opportunity to undertake a sensitive and comprehensive study of tidally induced star formation, dwarf galaxy formation and inter-galactic enrichment in this system.

  11. The role of environment on the star formation history of disc galaxies

    Science.gov (United States)

    Kang, Xiaoyu; Zhang, Fenghui; Chang, Ruixiang

    2017-08-01

    NGC 2403, NGC 300 and M33 are three nearby pure-disc galaxies with similar stellar mass in different environments; they are benchmarks for understanding late-type spiral galaxies in different environments. The chemical evolution and growth of their discs are investigated by using the simple chemical evolution model, in which their discs are assumed to originate and grow through the accretion of the primordial gas, and the gas outflow process is also taken into account. Through a comparative study of the best-fitting model-predicted star formation histories for them, we hope to derive a picture of the local environment on the evolution and star formation histories of galaxies and whether or not the isolated galaxies follow similar evolution history. Our results show that these three galaxies accumulated more than 50 per cent of their stellar mass at z experience similar chemical evolutionary histories. The principal epoch of star formation on the discs of NGC 2403 and NGC 300 is earlier than that on the disc of M33, and the mean age of stellar populations along the discs of both NGC 2403 and NGC 300 is larger than that of M33. Our results indicate that the evolution and star formation history of a galaxy indeed depend on its local environment, at least for galaxies with stellar mass of 10^{9.2}-10^{9.7} M_{⊙}.

  12. The formation of disc galaxies in a ΛCDM universe

    Science.gov (United States)

    Agertz, Oscar; Teyssier, Romain; Moore, Ben

    2011-01-01

    We study the formation of disc galaxies in a fully cosmological framework using adaptive mesh refinement simulations. We perform an extensive parameter study of the main subgrid processes that control how gas is converted into stars and the coupled effect of supernovae feedback. We argue that previous attempts to form disc galaxies have been unsuccessful because of the universal adoption of strong feedback combined with high star formation efficiencies. Unless extreme amounts of energy are injected into the interstellar medium during supernovae events, these star formation parameters result in bulge-dominated S0/Sa galaxies as star formation is too efficient at z˜ 3. We show that a low efficiency of star formation more closely models the subparsec physical processes, especially at high redshift. We highlight the successful formation of extended disc galaxies with scalelengths rd= 4-5 kpc, flat rotation curves and bulge-to-disc ratios of B/D ˜ 1/4. Not only do we resolve the formation of a Milky Way-like spiral galaxy, we also observe the secular evolution of the disc as it forms a pseudo-bulge. The disc properties agree well with observations and are compatible with the photometric and baryonic Tully-Fisher relations, the ΣSFR-Σgas (Kennicutt-Schmidt) relation and the observed angular momentum content of spiral galaxies. We conclude that the underlying small-scale star formation physics plays a greater role than previously considered in simulations of galaxy formation.

  13. TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B

    Energy Technology Data Exchange (ETDEWEB)

    Tollerud, Erik J.; Geha, Marla C. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06510 (United States); Grcevich, Jana [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Putman, Mary E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Stern, Daniel, E-mail: erik.tollerud@yale.edu, E-mail: marla.geha@yale.edu, E-mail: jgrcevich@amnh.org, E-mail: mputman@astro.columbia.edu, E-mail: daniel.k.stern@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States)

    2015-01-01

    We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimates comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.

  14. The frequency and infrared brightness of circumstellar discs at white dwarfs

    CERN Document Server

    Rocchetto, M; Gaensicke, B T; Bergfors, C

    2014-01-01

    White dwarfs whose atmospheres are polluted by terrestrial-like planetary debris have become a powerful and unique tool to study evolved planetary systems. This paper presents results for an unbiased Spitzer IRAC search for circumstellar dust orbiting a homogeneous and well-defined sample of 134 single white dwarfs. The stars were selected without regard to atmospheric metal content but were chosen to have 1) hydrogen rich atmospheres, 2) 17 000 K < T_eff < 25 000 K and correspondingly young post main-sequence ages of 15-270Myr, and 3) sufficient far-ultraviolet brightness for a corresponding Hubble Space Telescope COS Snapshot. Five white dwarfs were found to host an infrared bright dust disc, three previously known, and two reported here for the first time, yielding a nominal 3.7% of white dwarfs in this post-main sequence age range with detectable circumstellar dust. Remarkably, complementary HST observations indicate that a fraction of 27% show metals in their photosphere that can only be explained ...

  15. Large-scale environmental dependence of gas-phase metallicity in dwarf galaxies

    CERN Document Server

    Douglass, Kelly A

    2016-01-01

    We study how the cosmic environment affects galaxy evolution in the Universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [OIII] and [SII] transitions, provide estimates of a region's electron temperature and number density. From these two quantities and the emission line fluxes [OII] 3727, [OIII] 4363, and [OIII] 4959,5007, we estimate the abundance of oxygen with the Direct Te method. We estimate the metallicity of 37 void dwarf galaxies and 75 dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as re-processed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are equally abundant in both voids...

  16. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    CERN Document Server

    Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel

    2016-01-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...

  17. Multi-stage Three Dimensional Sweeping and Annealing of Disc Galaxies in Clusters

    CERN Document Server

    Schulz, S E; Schulz, Steven; Struck, Curtis

    2001-01-01

    We present new three dimensional, hydrodynamic simulations of the ram pressure stripping of disc galaxies via interaction with an hot intracluster medium (ICM). The simulations were carried with the smoothed-particle hydrodynamics, adaptive mesh 'Hydra' code (SPH-A$P^3$M), with model galaxies consisting of dark halo, and gas and stellar disc components. The simulations also include radiative cooling, which is important for keeping the warm, diffuse gas of moderate density from being unrealistically heated by the ICM. We examine the role that wind velocity, density and galaxy tilt play in gas stripping. The onset of the ICM wind has a profound effect on the disc gas that is not immediately stripped. This remnant disc is displaced relative to the halo center and compressed. This can trigger gravitational instability and the formation of numerous flocculent spirals. These waves transport angular momentum outward, resulting in further compression of the inner disc and the formation of a prominent gas ring. This '...

  18. The stellar metallicity gradients in galaxy discs in a cosmological scenario

    CERN Document Server

    Tissera, Patricia B; Sánchez-Blázquez, Patricia; Pedrosa, Susana E; Sánchez, Sebastián F; Snaith, Owain N; Vilchez, José M

    2016-01-01

    The stellar metallicity gradients of disc galaxies provide information on the disc assembly, star formation processes and chemical evolution. They also might store information on dynamical processes which could affect the distribution of chemical elements in the gas-phase and the stellar components. We studied the stellar metallicity gradients of stellar discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and the size and mass of the stellar discs. We used galaxies selected from a cosmological hydrodynamical simulation performed including a physically-motivated Supernova feedback and chemical evolution. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the CALIFA Survey. The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar-mass galaxies tend to have a larger variety of metallicity slopes. When norma...

  19. Building disc structure and galaxy properties through angular momentum: The DARK SAGE semi-analytic model

    CERN Document Server

    Stevens, Adam R H; Mutch, Simon J

    2016-01-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find the discs naturally build a pseduobulge-like component. Our main results are focussed on predictions relating to the integrated mass--specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequenc...

  20. Young tidal dwarf galaxies cannot be used to probe dark matter in galaxies

    CERN Document Server

    Flores, H; Fouquet, S; Puech, M; Kroupa, P; Yang, Y; Pawlowski, M

    2015-01-01

    The location of dark-matter free, tidal dwarf galaxies (TDGs) in the baryonic Tully Fisher (bTF) diagram has been used to test cosmological scenarios, leading to various and controversial results. Using new high-resolution 3D spectroscopic data, we re-investigate the morpho-kinematics of these galaxies to verify whether or not they can be used for such a purpose. We find that the three observed TDGs are kinematically not virialized and show complex morphologies and kinematics, leading to considerable uncertainties about their intrinsic rotation velocities and their locations on the bTF. Only one TDG can be identify as a (perturbed) rotation disk that it is indeed a sub-component of NGC5291N and that lies at $<$1$\\sigma$ from the local bTF relation. It results that the presently studied TDGs are young, dynamically forming objects, which are not enough virialized to robustly challenge cosmological scenarios.

  1. The impact of bulges on the radial distribution of supernovae in disc galaxies

    CERN Document Server

    Hakobyan, A A; Barkhudaryan, L V; Mamon, G A; Kunth, D; Petrosian, A R; Adibekyan, V; Aramyan, L S; Turatto, M

    2016-01-01

    We present an analysis of the impact of bulges on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We find that in Sa-Sm galaxies, all core-collapse (CC) and vast majority of SNe Ia belong to the disc, rather than the bulge component. The radial distribution of SNe Ia in S0-S0/a galaxies is inconsistent with their distribution in Sa-Sm hosts, which is probably due to the contribution of the outer bulge SNe Ia in S0-S0/a galaxies. The radial distributions of both types of SNe are similar in all the subsamples of Sa-Sbc and Sc-Sm galaxies. These results confirm that the old bulges of Sa-Sm galaxies are not significant producers of Type Ia SNe, while the bulge populations are significant for SNe Ia only in S0-S0/a galaxies.

  2. Chandra Survey of Nearby Highly Inclined Disc Galaxies - III: Comparison with Hydrodynamical Simulations of Circumgalactic Coronae

    CERN Document Server

    Li, Jiang-Tao; Wang, Q Daniel

    2014-01-01

    X-ray observations of circumgalactic coronae provide a valuable means by which to test galaxy formation theories. Two primary mechanisms are thought to be responsible for the establishment of such coronae: accretion of intergalactic gas (IGM) and/or galactic feedback. In this paper, we first compare our Chandra sample of galactic coronae of 53 nearby highly-inclined disc galaxies to an analytical model considering only the accretion of IGM. We confirm the existing conclusion that this pure accretion model substantially over-predicts the coronal emission. We then select 30 field galaxies from our original sample, and correct their coronal luminosities to uniformly compare them to deep X-ray measurements of several massive disc galaxies from the literature, as well as to a comparable sample of simulated galaxies drawn from the Galaxies-Intergalactic Medium Interaction Calculation (GIMIC). These simulations explicitly model both accretion and SNe feedback and yield galaxies exhibit X-ray properties in broad agre...

  3. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.; Sales, L. V.

    2016-01-01

    Context. It has been proposed that mergers induce starbursts and lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model.

  4. Mass-to-Light versus Color Relations for Dwarf Irregular Galaxies

    Science.gov (United States)

    Herrmann, Kimberly A.; Hunter, Deidre Ann; Zhang, Hong-Xin; Elmegreen, Bruce; LITTLE THINGS

    2017-01-01

    We have determined new relations between UBV colors and mass-to-light (M/L) ratios for dwarf irregular galaxies, as well as for transformed g‧ - r‧. These M/L to color relations (MLCRs) are based on stellar mass density profiles determined for 34 LITTLE THINGS dwarfs from spectral energy distribution fitting to multi-wavelength surface photometry in passbands from the FUV to the NIR. These relations can be used to determine stellar masses in dwarf irregular galaxies for situations where other determinations of stellar mass are not possible. Our MLCRs are shallower than comparable MLCRs in the literature determined for spiral galaxies. We divided our dwarf data into four metallicity bins and found indications of a steepening of the MLCR with increased oxygen abundance, perhaps due to more line blanketing occurring at higher metallicity.

  5. Unveiling a Rich System of Faint Dwarf Galaxies in the Next Generation Fornax Survey

    CERN Document Server

    Munoz, Roberto P; Puzia, Thomas H; Taylor, Matthew A; Ordenes-Briceno, Yasna; Alamo-Martinez, Karla; Ribbeck, Karen X; Angel, Simon; Capaccioli, Massimo; Cote, Patrick; Ferrarese, Laura; Galaz, Gaspar; Hempel, Maren; Hilker, Michael; Jordan, Andres; Lancon, Ariane; Mieske, Steffen; Paolillo, Maurizio; Richtler, Tom; Sanchez-Janssen, Ruben; Zhang, Hongxin

    2015-01-01

    We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded $u, g$ and $i$-band image obtained with the DECam wide-field camera mounted on the 4-meter Blanco telescope at the Cerro Tololo Interamerican Observatory as part of the {\\it Next Generation Fornax Survey} (NGFS). The new dwarf galaxies have quasi-exponential light profiles, effective radii $0.1\\!\\!75\\%$ at luminosities brighter than $M_i\\!\\simeq\\!-15.0$ mag to $0\\%$ at luminosities fainter than $M_i\\!\\simeq\\!-10.0$ mag. The two-point correlation function analysis of the NGFS dwarf sample shows an excess on length scales below $\\sim\\!100$ kpc, pointing to the clustering of dwarf galaxies in the Fornax cluster core.

  6. Surveying for Dwarf Galaxies Within Voids FN2 and FN8

    Science.gov (United States)

    McNeil, Stephen; Draper, Chris; Moody, J. Ward

    2016-10-01

    The presence or absence of dwarf galaxies with Mr' > -14 in low-density volumes correlates with dark matter halos and how they affect galaxy formation. We are conducting a redshifted Hα imaging survey for dwarf galaxies with Mr' > -13 in the heart of the well-defined voids FN2 and FN8 using the KPNO 4m Mayall telescope and Mosaic Imager. These data have furnished over 600 strong candidates in a four square degree area. Follow-up spectra finding none of these candidates to be within the void volumes will constrain the dwarf population there to be 2 to 8% of the cosmic mean. Conversely, finding even one Hα dwarf in the void heart will challenge several otherwise successful theories of large-scale structure formation.

  7. VLT\\/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies II. Implications for Understanding Galaxy Evolution

    CERN Document Server

    Tolstoy, E; Shetrone, M; Primas, F; Hill, V; Szeifert, A K T; Tolstoy, Eline

    2003-01-01

    We have used UVES on VLT-UT2 to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies: Sculptor, Fornax, Carina and Leo I. We measure the abundance variations of numerous elements in these low mass stars with a range of ages (1-15Gyr old). This means that we can effectively measure the chemical evolution of these galaxies WITH TIME. Our results show a significant spread in metallicity with age, but an overall trend consistent with what might be expected from a closed (or perhaps leaky) box chemical evolution scenario over the last 10-15Gyr. We notice that each of these galaxies show broadly similar abundance patterns for all elements measured. This suggests a fairly uniform progression of chemical evolution with time, despite quite a large range of star formation histories. It seems likely that these galaxies had similar initial conditions, and evolve in a similar manner with star formation occurring at a uniformly low rate, even if at different times. With our ...

  8. VIMOS Integral Field Spectroscopy of Gaseous Nebulae in Local Group Dwarf Galaxies

    Science.gov (United States)

    Held, E. V.; Gullieuszik, M.; Saviane, I.; Sabbadin, F.; Momany, Y.; Rizzi, L.; Bresolin, F.

    The study of very metal-poor dwarf irregular (dIrr) galaxies is fundamental to test the cosmological scenarios of galaxy formation. Among Local Group galaxies, Leo A and SagDIG are probably the most metal-poor dwarfs, as suggested by estimates of their nebular abundances based on the empirical method [I. Saviane, L. Rizzi, E.V. Held, F. Bresolin, Y. Momany in Astron. Astrophys. 390, 59 (2002); E.D. Skillman, R. Terlevich, J. Melnick in Mon. Not. R. Astron. Soc. 240, 563 (1989); L. van Zee, E.D. Skillman, M.P. Haynes in Astrophys. J. 637, 269 (2006)].

  9. The effect of disc inclination on the main sequence of star-forming galaxies

    Science.gov (United States)

    Morselli, L.; Renzini, A.; Popesso, P.; Erfanianfar, G.

    2016-11-01

    We use the Sloan Digital Sky Survey (York et al.) data base to explore the effect of the disc inclination angle on the derived star formation rate (SFR), hence on the slope and width of the main-sequence (MS) relation for star-forming galaxies. We find that SFRs for nearly edge-on discs are underestimated by factors ranging from ˜0.2 dex for low-mass galaxies up to ˜0.4 dex for high-mass galaxies. This results in a substantially flatter MS relation for high-inclination discs compared to that for less inclined ones, though the global effect over the whole sample of star-forming galaxies is relatively minor, given the small fraction of high-inclination discs. However, we also find that galaxies with high-inclination discs represent a non-negligible fraction of galaxies populating the so-called green valley, with derived SFRs intermediate between the MS and those of quenched, passively evolving galaxies.

  10. Suppression of star formation in dwarf galaxies by grain photoelectric feedback

    CERN Document Server

    Forbes, John C; Goldbaum, Nathan J; Dekel, Avishai

    2016-01-01

    Photoelectric heating has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies found some indication that photoelectric heating could suppress star formation. However, simulations that include photoelectric heating have typically found that it has little effect on the rate of star formation in either spiral galaxies or dwarfs suggesting that supernovae and not photoelectric heating are responsible for setting the star formation law in galaxies. This result is in tension with recent work indicating that a star formation law that depends on galaxy metallicity, as expected for photoelectric heating but not for supernovae, reproduces the present-day galaxy population better than a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, where the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating, and we resolve...

  11. Kinematic Constraints on Evolutionary Scenarios for Blue Compact Dwarf Galaxies I. Neutral Gas Dynamics

    CERN Document Server

    Van Zee, L; Skillman, E D; Zee, Liese van; Salzer, John J.; Skillman, Evan D.

    2001-01-01

    We present the results of high spatial resolution HI synthesis observations of six blue compact dwarf (BCD) galaxies. Optically, the selected galaxies have smooth, symmetric isophotes, and thus are the most likely of the BCD class to fade into an object morphologically similar to a dwarf elliptical when the current starburst ends. The neutral gas in all six galaxies appears to be rotationally supported, however, indicating that true morphological transformation from a BCD to a dE will require significant loss of angular momentum. Based on the observed neutral gas dynamics of these and other BCDs, it is unlikely that present-day BCDs will evolve directly into dwarf ellipticals after a starburst phase. We discuss alternative evolutionary scenarios for BCDs and place them within the larger context of galaxy formation and evolution models.

  12. Galaxy And Mass Assembly (GAMA): Understanding the wavelength dependence of galaxy structure with bulge-disc decompositions

    CERN Document Server

    Kennedy, Rebecca; Häußler, Boris; Baldry, Ivan; Bremer, Malcolm; Brough, Sarah; Brown, Michael J I; Driver, Simon; Duncan, Kenneth; Graham, Alister W; Holwerda, Benne W; Hopkins, Andrew M; Kelvin, Lee S; Lange, Rebecca; Phillipps, Steven; Vika, Marina; Vulcani, Benedetta

    2016-01-01

    With a large sample of bright, low-redshift galaxies with optical$-$near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behavior of single-S\\'ersic structural measurements. We denote the variation in single-S\\'ersic index with wavelength as $\\mathcal{N}$, likewise for effective radius we use $\\mathcal{R}$. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of $\\mathcal{N}$. The increase in S\\'ersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of $\\mathcal{R}$ ($<$ 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies wi...

  13. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    Science.gov (United States)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (M(sub B) greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 10(exp 7)-10(exp 8) yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  14. Stellar Populations and Chemical Evolution of Late--Type Dwarf Galaxies

    CERN Document Server

    Tosi, M P

    2001-01-01

    Some aspects of the chemical evolution of late-type dwarf galaxies are reviewed, together with their implications on three issues of cosmological relevance: similarity to primeval galaxies, derivation of the primordial helium abundance, contribution to the excess of faint blue galaxies. A more detailed approach to model their evolution is suggested. The importance of deriving the star formation history in these systems by studying their resolved stellar populations is emphasized.

  15. THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?

    Energy Technology Data Exchange (ETDEWEB)

    Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Battaglia, Giuseppina; Drozdovsky, Igor; Hidalgo, Sebastian L. [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Mayer, Lucio [Institut für Theoretische Physik, University of Zurich, Zürich (Switzerland); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7005 (Australia); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada); Salvadori, Stefania [Kapteyn Astronomical Institute, Landleven 12, NL-9747 AD Groningen (Netherlands); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN (United States); Stetson, Peter B. [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Weisz, Daniel R., E-mail: monelli@iac.es [Astronomy Department, University of Washington, Box 351580, Seattle, WA (United States)

    2015-10-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.

  16. Comptonization of cosmic microwave background photons in dwarf spheroidal galaxies

    Science.gov (United States)

    Culverhouse, Thomas L.; Evans, N. Wyn; Colafrancesco, S.

    2006-05-01

    We present theoretical modelling of the electron distribution produced by annihilating neutralino dark matter in dwarf spheroidal galaxies (dSphs). In particular, we follow up the idea of Colafrancesco and find that such electrons distort the cosmic microwave background (CMB) by the Sunyaev-Zeldovich (SZ) effect. For an assumed neutralino mass of 10 GeV and beam size of 1 arcsec, the SZ temperature decrement is of the order of nano-Kelvin for dSph models with a soft core. By contrast, it is of the order of micro-Kelvin for the strongly cusped dSph models favoured by some cosmological simulations. Although this is out of reach of current instruments, it may well be detectable by future mm telescopes, such as the Atacama Large Millimetre Array. We also show that the upscattered CMB photons have energies within reach of upcoming X-ray observatories, but that the flux of such photons is too small to be detectable now. None the less, we conclude that searching for the dark matter induced SZ effect is a promising way of constraining the dark distribution in dSphs, especially if the particles are light.

  17. Comptonisation of Cosmic Microwave Background Photons in Dwarf Spheroidal Galaxies

    CERN Document Server

    Culverhouse, T L; Colafrancesco, S; Culverhouse, Thomas L.

    2006-01-01

    We present theoretical modelling of the electron distribution produced by annihilating neutralino dark matter in dwarf spheroidal galaxies (dSphs). In particular, we follow up the idea of Colafrancesco (2004) and find that such electrons distort the cosmic microwave background (CMB) by the Sunyaev-Zeldovich effect. For an assumed neutralino mass of 10 GeV and beam size of 1'', the SZ temperature decrement is of the order of nano-Kelvin for dSph models with a soft core. By contrast, it is of the order of micro-Kelvin for the strongly cusped dSph models favoured by some cosmological simulations. Although this is out of reach of current instruments, it may well be detectable by future mm telescopes, such as ALMA. We also show that the upscattered CMB photons have energies within reach of upcoming X-ray observatories, but that the flux of such photons is too small to be detectable soon. Nonetheless, we conclude that searching for the dark matter induced Sunyaev-Zeldovich effect is a promising way of constraining ...

  18. Dwarf spheroidal galaxies as degenerate gas of free fermions

    CERN Document Server

    Domcke, Valerie

    2014-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass $m_f$. We assume that on galactic scales these fermions are capable to form a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting configuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to $m_f$. After reviewing the basic formalism, we test this scenario against experimental data describing the dispersion velocity of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit of the data and realistic predictions for the size of DM halos providing that $m_f \\simeq 200$ eV. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance...

  19. Ultrafaint Dwarf Galaxies - the lowest mass relics from before reionization

    CERN Document Server

    Bland-Hawthorn, Joss; Webster, David

    2015-01-01

    New observations indicate that ultrafaint dwarf galaxies (UFD) -- the least luminous systems bound by dark matter halos (<10^5 Lsun) -- may have formed before reionization. The extrapolated virial masses today are uncertain with estimates ranging from 10^8 Msun to 10^9 Msun. We show that the progenitor halo masses of UFDs can be as low as Mvir = 10^7 Msun. Under the right conditions, such a halo can survive the energy input of a supernova and its radiative progenitor. A clumpy medium is much less susceptible to both internal and external injections of energy. It is less prone to SN sweeping because the coupling efficiency of the explosive energy is much lower than for a diffuse ISM. With the aid of the 3D hydro/ionization code Fyris, we show that sufficient baryons are retained to form stars following a single supernova event in dark matter halos down to Mvir ~ 10^7 Msun with radiative cooling. The gas survives the SN explosion, is enriched with the abundance yields of the discrete events, and reaches surf...

  20. Kinematic sub-populations in dwarf spheroidal galaxies

    CERN Document Server

    Ural, Ugur; Koch, Andreas; Gilmore, Gerard; Beers, Timothy C; Belokurov, Vasily; Evans, N Wyn; Grebel, Eva K; Vidrih, Simon; Zucker, Daniel B

    2008-01-01

    We present new spectroscopic data for twenty six stars in the recently-discovered Canes Venatici I (CVnI) dwarf spheroidal galaxy. We use these data to investigate the recent claim of the presence of two dynamically inconsistent stellar populations in this system (Ibata et al., 2006). We do not find evidence for kinematically distinct populations in our sample and we are able to obtain a mass estimate for CVnI that is consistent with all available data, including previously published data. We discuss possible differences between our sample and the earlier data set and study the general detectability of sub-populations in small kinematic samples. We conclude that in the absence of supporting observational evidence (for example, metallicity gradients), sub-populations in small kinematic samples (typically fewer than 100 stars) should be treated with extreme caution, as their detection depends on multiple parameters and rarely produces a signal at the 3sigma confidence level. It is therefore essential to determi...

  1. The star formation history of the Sculptor Dwarf Irregular Galaxy

    CERN Document Server

    Lianou, Sophia

    2012-01-01

    [abridged] We study the resolved stellar populations and derive the SFH of the SDIG, a gas-rich dwarf galaxy member of the NGC7793 subgroup in the Sculptor group. We construct a CMD using archival HST observations and examine its stellar content. We derive its SFH using a maximum-likelihood fit to the CMD. The CMD shows that SDIG contains stars from 10Myr to several Gyr old, as revealed from the MS, BL, luminous AGB, and RGB stars. The young stars with ages less than ~250Myr show a spatial distribution confined to its central regions, and additionally the young MS stars exhibit an off-center density peak. The intermediate-age and older stars are more spatially extended. SDIG is dominated by intermediate-age stars with an average age of 6.4Gyr. The average metallicity inferred is [M/H]\\approx -1.5dex. Its SFH is consistent with a constant SFR, except for ages younger than ~200Myr. The lifetime average SFR is 1.3x10^{-3} Mo/yr. More recently than 100Myr, there has been a burst of SF at a rate ~2-3 times higher ...

  2. Bubble-Induced Star Formation in Dwarf Irregular Galaxies

    CERN Document Server

    Kawata, Daisuke; Barnes, David J; Grand, Robert J J; Rahimi, Awat

    2013-01-01

    To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM. We use the new version of our original N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae (SNe) feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor inter-stellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from lar...

  3. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Yuan, Zhen; Jing, Y P

    2015-01-01

    Fornax is the brightest Milky Way (MW) dwarf spheroidal galaxy and its star formation history (SFH) has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH using a simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe) as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass M_x of the gas to mix with the ejecta from each SN. The choice of M_x depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = t_sat . Our results indicate that due to the global gas outflow at t > t_sat , part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  4. On the R-Process Enrichment of Dwarf Spheroidal Galaxies

    CERN Document Server

    Bramante, Joseph

    2016-01-01

    Recent observations of Reticulum II have uncovered an overabundance of r-process elements, compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r-process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS-NS or NS-black hole mergers, and these kicks would efficiently remove compact binary systems from the weak gravitational potentials of UFDs. We examine alternative mechanisms for the production of r-process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter density implode after accumulating a black-hole-forming mass of dark matter. We find that r-process proto-material ejection by tidal forces, when a single neutron star implodes ...

  5. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Sonbas, E. [University of Adiyaman, Department of Physics, 02040 Adiyaman (Turkey); Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I., E-mail: edasonbas@yahoo.com [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  6. FUSE observations of the Blue Compact Dwarf Galaxy Mrk 59

    CERN Document Server

    Thuan, T X; Izotov, Yu I

    2001-01-01

    New FUSE far-UV spectroscopy of the nearby metal-deficient (Zsun/8) cometary Blue Compact Dwarf (BCD) galaxy Markarian (Mrk) 59 is discussed. The data are used to investigate element abundances in its interstellar medium. The H I absorption lines are characterized by narrow cores which are interstellar in origin and by broad wings which are stellar in origin. The mean interstellar H I column density is ~ 7x10E20 cm-2 in Mrk 59. No H2 lines are seen and N(H2) is < 10E15 cm-2 at the 10 sigma level. The lack of diffuse H2 is due to the combined effect of a strong UV radiation field which destroys the H2 molecules and a low metallicity which leads to a scarcity of dust grains necessary for H2 formation. P-Cygni profiles of the S VI 933.4, 944.5 A and O VI 1031.9, 1037.6 A lines are seen, indicating the presence of very hot O stars and a stellar wind terminal velocity of ~ 1000 km/s. By fitting the line profiles with multiple components having each a velocity dispersion b = 7 km/s and spanning a radial velocity...

  7. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  8. Revealing The Assembly History Of Discs In Galaxies Through High-Order Stellar Kinematics With Sami

    Science.gov (United States)

    van de Sande, Jesse

    2016-09-01

    Fast-rotating galaxies which host stellar discs show a strong anti-correlation between the higher-order Gauss-Hermite spectral moment h3 (skewness of the line) and the anisotropy parameter v/sigma. Recent cosmological hydrodynamical simulations suggest that these discs could only have formed through gas-rich mergers (Naab et al. 2014); in gas-poor mergers no discs are formed due to the absence of a dissipative gas component. With integral field spectrographs such as SAMI it is now possible to assess these results by classifying galaxies based on their higher-order stellar kinematics signatures alone. In this talk, I will present the stellar kinematic measurements from the SAMI galaxy survey and a first observational attempt to connect the higher-order stellar kinematic moments in galaxies to their cosmological assembly history.I will show the higher-order kinematic classes that we find within the SAMI galaxy survey, and compare how our new classes correlate with other global galaxy properties. Finally, I will show that our new way of classifying galaxies from their higher-order stellar kinematics signatures shows great potential for revealing possible hidden discs and bars in galaxies.

  9. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  10. Fall of associations of dwarf galaxies into the Milky Way halo

    Science.gov (United States)

    Benavides, J.; Casas Miranda, R. A.

    2017-07-01

    Inside the Local Group, the satellite galaxies of the Milky Way don't have an isotropic distribution, instead most of them lie on structure almost perpendicular to the plane of the disk of the galaxy, called VPOS. At present there is not a theoretical model that correctly explain both the abundance and spatial distribution of these objects within the Local Group. This work presents a study, using Newtonian N-body numerical simulations, on the formation of disk satellites of the Milky Way (DoS) from accretion of dwarf galaxies that fall into the dark matter halo of the Milky Way following parabolic orbits with initial distances of 4, 2 and 1 Mpc. We analysed the morphological properties of dwarfs after 10 Gy of fall proposed for interaction with the Milky Way, the obtained spatial distributions about the plane of the host galaxy and the radial distances at which they are located. We found that, after 10 Gy of fall, the structures remain compact while keeping its spherical profile. Only associations of dwarf galaxies at distances of 1 Mpc manage to enter the halo of the Galaxy and could be considered as progenitors of DoS. This is supported by the fact that these closest associations are those that had precipitated into the halo of the Galaxy, and there are not observed associations of dwarfs at these distances, being the association 14+12 the closest to the Milky Way at 1.37 Mpc.

  11. Testing MOG, non-local gravity and MOND with rotation curves of dwarf galaxies

    Science.gov (United States)

    Zhoolideh Haghighi, M. H.; Rahvar, S.

    2017-07-01

    Modified gravity (MOG) and non-local gravity (NLG) are two alternative theories to general relativity. They are able to explain the rotation curves of spiral galaxies and clusters of galaxies without including dark matter. In the weak-field approximation, these two theories have similar forms, with an effective gravitational potential that has two components: (i) Newtonian gravity with the gravitational constant enhanced by a factor (1 + α) and (ii) a Yukawa-type potential that produces a repulsive force with length-scale 1/μ. In this work, we compare the rotation curves of dwarf galaxies in the LITTLE THINGS catalogue with predictions of MOG, NLG and modified Newtonian dynamics (MOND). We find that the universal parameters of the MOG and NLG theories can fit the rotation curves of dwarf galaxies only at the expense of systematically high stellar mass-to-light ratios at 3.6 μm. For instance, in MOG, half of the galaxies have best-fitting stellar M/L ratios larger than 10. It seems that such a big stellar mass-to-light ratio is in contradiction with observations of nearby stars in the Milky Way and with stellar population synthesis models; however, the stellar mass-to-light ratio of dwarf galaxies is not observed directly by the astrophysical methods. Future observations of binary stars in the dwarf galaxies will identify M/L and consequently examine different modified gravity models.

  12. Mid-Infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    CERN Document Server

    Hainline, Kevin N; Greene, Jenny E; Stern, Daniel

    2016-01-01

    Searching for active galactic nuclei (AGN) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early Universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ~18,000 nearby dwarf galaxies (M*< 3 x 10^9 Msun, $z<0.055$) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically-selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically-selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages and large specific star formation rates. These results indicate that great care must be tak...

  13. High-resolution mass models of dwarf galaxies from LITTLE THINGS

    CERN Document Server

    Oh, Se-Heon; Brinks, Elias; Elmegreen, Bruce G; Schruba, Andreas; Walter, Fabian; Rupen, Michael P; Young, Lisa M; Simpson, Caroline E; Johnson, Megan; Herrmann, Kimberly A; Ficut-Vicas, Dana; Cigan, Phil; Heesen, Volker; Ashley, Trisha; Zhang, Hong-Xin

    2015-01-01

    We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 2...

  14. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    Energy Technology Data Exchange (ETDEWEB)

    López-Corredoira, Martín [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2016-01-20

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.

  15. Tidal Interaction as the origin of early-type dwarf galaxies in group environment

    CERN Document Server

    Paudel, Sanjaya

    2014-01-01

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal force of nearby massive galaxies. Analysing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a `smoking gun' example of the formation of early-type dwarf galaxies (dEs) in the galaxy group environment through the tidal stirring. Inner cores of these galaxies are fairly intact and the observed light profiles are well fitted with the Sersic functions, while the tidally stretched stellar halos are prominent in the outer parts. They are all located within the 50 kpc sky-projected distance from the center of host galaxies and no dwarf galaxies have relative line-of-sight velocity larger than 205 km/s to their hosts. We derive the Composite Stellar Population (CSP) properties these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate ...

  16. The number of tidal dwarf satellite galaxies in dependence of bulge index

    CERN Document Server

    Lopez-Corredoira, Martin

    2015-01-01

    We show that a significant correlation (up to 5sigma) emerges between the bulge index, defined to be larger for larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of SDSS and the number of tidal-dwarf galaxies in the catalogue by Kaviraj et al. (2012). In the standard cold or warm dark-matter cosmological models the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized-gravity models without cold or warm dark matter such a correlation does not exist, because host galaxies cannot capture in-falling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models a correlation is expected to exist between the bulge mass and the number of satellite galaxies, because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher b...

  17. The ACS Nearby Galaxy Survey Treasury VIII. The Global Star Formation Histories of 60 Dwarf Galaxies in the Local Volume

    CERN Document Server

    Weisz, Daniel R; Williams, Benjamin F; Gilbert, Karoline M; Skillman, Evan D; Seth, Anil C; Dolphin, Andrew E; McQuinn, Kristen B W; Gogarten, Stephanie M; Holtzman, Jon; Rosema, Keith; Cole, Andrew; Karachentsev, Igor D; Zaritsky, Dennis

    2011-01-01

    We present uniformly measured star formation histories (SFHs) of 60 nearby (D~4Mpc) dwarf galaxies based on CMDs of resolved stellar populations from images taken with HST as part of the ACS Nearby Galaxy Survey Treasury program (ANGST). This volume-limited sample contains 12 dSph/dE, 5 dwarf spiral, 28 dI, 12 transition, and 3 tidal dwarf galaxies. From the best fit SFHs we find three significant results: (1) the average dwarf galaxy formed >50% of its stars by z~2 and 60% of its stars by z~1, regardless of current morphological type; (2) the mean SFHs of dIs, dTrans, and dSphs are similar over most of cosmic time, with the clearest differences appearing during the most recent 1 Gyr; and (3) the mean values are inconsistent with simple SFH models, e.g., exponentially declining SFRs. The mean SFHs are in general agreement with the cosmic SFH, although we observe offsets near z~1 that could be evidence that low mass systems experienced delayed star formation relative to more massive galaxies. The sample shows ...

  18. Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations

    Science.gov (United States)

    Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana

    2016-11-01

    We study the shapes and intrinsic alignments of discs and elliptical galaxies in the MassiveBlack-II (MBII) and Illustris cosmological hydrodynamic simulations, with volumes of (100 h-1 Mpc)3 and (75 h-1 Mpc)3, respectively. We find that simulated disc galaxies are more oblate in shape and more misaligned with the shape of their host dark matter subhalo when compared with ellipticals. The disc major axis is found to be oriented towards the location of nearby elliptical galaxies. We also find that the discs are thinner in MBII and misalignments with dark matter halo orientations are smaller in both discs and ellipticals when compared with Illustris. As a result, the intrinsic alignment correlation functions at fixed mass have a higher amplitude in MBII than in Illustris. Finally, at scales above ˜0.1 h-1 Mpc, the intrinsic alignment two-point correlation functions for disc galaxies in both simulations are consistent with a null detection, unlike those for ellipticals. Despite significant differences in the treatments of hydrodynamics and baryonic physics in the simulations, we find that the wδ + correlation function scales similarly with transverse separation. However, the less massive galaxies show different scale dependence in the ellipticity-direction correlation. This result indicates that, while hydrodynamic simulations are a promising tool to study intrinsic alignments, further study is needed to understand the impact of differences in the implementations of hydrodynamics and baryonic feedback.

  19. Effect of the disc on the rotation curves of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Salucci, Paolo; Frenk, C.S.

    1989-03-01

    We discuss the role of the galactic disc in the interpretation of the circular velocities of spiral galaxies at large galactocentric radii. The fractional amount of mass in the disc can be shown to be an increasing function of the luminosity. As a result, the shape of the rotation curve near the edge of the optical disc is expected to vary systematically with luminosity. Using a simple disc/halo model we find that in bright, disc-dominated galaxies the rotation curve should drop by a few tens of km s/sup -1/ immediately outside the disc, even in the presence of an extended dark halo. Only in faint, halo-dominated galaxies, do we expect the rotation curve to remain flat or even to rise beyond the optical radius. We find evidence for this behaviour in several published rotation curves. In the case of the Milky Way we show that if the disc dominates the gravitational potential in the inner regions, then the low mass estimated from the dynamics of the outer satellites is consistent with a dark halo that extends beyond the region sampled. This and other available data are well fit by a model in which the luminous component of the Galaxy contributes /similar to/ 70 per cent of the mass at 12 kpc from the centre and the mass at large radii increases in proportion to the radius.

  20. On the Assembly of Dwarf Galaxies in Clusters and their Efficient Formation of Globular Clusters

    CERN Document Server

    Mistani, Pouria A; Pillepich, Annalisa; Sanchez-Janssen, Ruben; Vogelsberger, Mark; Nelson, Dylan; Rodriguez-Gomez, Vicente; Torrey, Paul; Hernquist, Lars

    2015-01-01

    Galaxy clusters contain a large population of low mass dwarf elliptical galaxies whose exact origin is unclear: their colors, structural properties and kinematics differ substantially from those of dwarf irregulars in the field. We use the Illustris cosmological simulation to study differences in the assembly paths of dwarf galaxies (3e8 < M_*/M_sun < 1e10) according to their environment. We find that cluster dwarfs achieve their maximum total and stellar mass on average ~ 8 and ~ 4.5 Gyr ago, respectively, around the time of infall into the clusters. In contrast, field dwarfs not subjected to environmental stripping, reach their maximum mass at redshift z = 0. This different assembly history naturally produces a color bimodality, with blue isolated dwarfs and redder cluster dwarfs exhibiting negligible star-formation today. The cessation of star formation happens over median times 3.5-5 Gyr depending on stellar mass, and shows a large scatter (~ 1-8 Gyr), with the lower values associated with starburst...

  1. VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. II. (Herrmann+, 2016)

    Science.gov (United States)

    Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.

    2016-07-01

    Our galaxy sample (see Table1) is derived from the survey of nearby (>30Mpc) late-type galaxies conducted by Hunter & Elmegreen 2006 (cat. J/ApJS/162/49). The full survey includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms). The 141 dwarf sample presented in the first paper of the present series (Paper I; Herrmann et al. 2013, Cat. J/AJ/146/104) contains one fewer Sm galaxy and two additional dIm systems than the original survey. A multi-wavelength data set has been assembled for these galaxies. The data include Hα images (129 galaxies with detections) to trace star formation over the past 10Myr (Hunter & Elmegreen 2004, Cat. J/AJ/128/2170) and satellite UV images (61 galaxies observed) obtained with the Galaxy Evolution Explorer (GALEX) to trace star formation over the past ~200Myr. The GALEX data include images from two passbands with effective wavelengths of 1516Å (FUV) and 2267Å (NUV) and resolutions of 4'' and 5.6'', respectively. Three of the galaxies in our sample with NUV data do not have FUV data. To trace older stars we have UBV images, which are sensitive to stars formed over the past 1Gyr for on-going star formation, and images in at least one band of JHK for 40 galaxies in the sample, which integrates the star formation over the galaxy's lifetime. Note that nine dwarfs are missing UB data and three more are missing U-band data. In addition we made use of 3.6μm images (39 galaxies) obtained with the Infrared Array Camera (IRAC) in the Spitzer archives also to probe old stars. (3 data files).

  2. Dust origin in late-type dwarf galaxies: ISM growth vs. type II supernovae

    CERN Document Server

    Zhukovska, Svitlana

    2014-01-01

    We re-evaluate the roles of different dust sources in dust production as a function of metallicity in late-type dwarf galaxies, with the goal of understanding the relation between dust content and metallicity. The dust content ol late-type dwarf galaxies with episodic star formation is studied with a multicomponent model of dust evolution, which includes dust input from AGB stars, type II SNe and dust growth by accretion of atoms in the ISM. Dust growth in the ISM becomes an important dust source in dwarf galaxies, on the timescale of 0.1 - a few Gyrs. It increases the dust-to-gas ratio (DGR) during post-burst evolution, unlike type II SNe, which eject grains to the ISM only during starbursts. Before the dust growth in the ISM overtakes the dust production, AGB stars can be major sources of dust in metal-poor dwarf galaxies. Our models reproduce the relation between the DGR and oxygen abundance, derived from observations of a large sample of dwarf galaxies. The steep decrease in the DGR at low O values is exp...

  3. On the origin of bursts in blue compact dwarf galaxies: clues from kinematics and stellar populations

    CERN Document Server

    Koleva, M; Zeilinger, W W; Verbeke, R; Schroyen, J; Vermeylen, L

    2014-01-01

    Blue compact dwarf galaxies (BCDs) form stars at, for their sizes, extraordinarily high rates. In this paper, we study what triggers this starburst and what is the fate of the galaxy once its gas fuel is exhausted. We select four BCDs with smooth outer regions, indicating them as possible progenitors of dwarf elliptical galaxies. We have obtained photometric and spectroscopic data with the FORS and ISAAC instruments on the VLT. We analyse their infra-red spectra using a full spectrum fitting technique which yields the kinematics of their stars and ionized gas together with their stellar population characteristics. We find that the_stellar_ velocity to velocity dispersion ratio (v/sigma) of our BCDs is of the order of 1.5, similar to that of dwarf elliptical galaxies. Thus, those objects do not require significant (if any) loss of angular momentum to fade into early type dwarfs. This finding is in discordance with previous studies, which however compared the stellar kinematics of dwarf elliptical galaxies with...

  4. Variable Emission from a Gaseous Disc around a Metal-Polluted White Dwarf

    CERN Document Server

    Wilson, David J; Koester, Detlev; Raddi, Roberto; Breedt, Elmé; Southworth, John; Parsons, Steven G

    2014-01-01

    We present the discovery of strongly variable emission lines from a gaseous disc around the DA white dwarf SDSS J1617+1620, a star previously found to have an infrared excess indicative of a dusty debris disc formed by the tidal disruption of a rocky planetary body. Time-series spectroscopy obtained during the period 2006-2014 has shown the appearance of strong double-peaked Ca II emission lines in 2008. The lines were weak, at best, during earlier observations, and monotonically faded through the remainder of our monitoring. Our observations represent unambiguous evidence for short-term variability in the debris environment of evolved planetary systems. Possible explanations for this extraordinary variability include the impact onto the dusty disc of either a single small rocky planetesimal, or of material from a highly eccentric debris tail. The increase in flux from the emission lines is sufficient that similar events could be detected in the broadband photometry of ongoing and future large-area time domai...

  5. MOND predictions of 'halo' phenomenology in disc galaxies

    NARCIS (Netherlands)

    Milgrom, M; Sanders, RH

    2005-01-01

    We examine two corollaries of MOND pertaining to properties of the equivalent dark matter halo. MOND predicts for pure exponential discs a tight relation involving the halo and disc scalelengths and the mean acceleration in the disc, which we find to test favourably against the Verheijen sample of

  6. The environmental dependence of the structure of outer galactic discs in STAGES spiral galaxies

    CERN Document Server

    Maltby, David T; Aragón-Salamanca, Alfonso; Wolf, Christian; Bell, Eric F; Jogee, Shardha; Haeussler, Boris; Barazza, Fabio D; Boehm, Asmus; Jahnke, Knud

    2011-01-01

    We present an analysis of V-band radial surface brightness profiles for spiral galaxies from the field and cluster environments using Hubble Space Telescope/Advanced Camera for Surveys imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). We use a large sample of ~330 face-on to intermediately inclined spiral galaxies and assess the effect of the galaxy environment on the azimuthally averaged radial surface brightness mu profiles for each galaxy in the outer stellar disc (24 < mu < 26.5 mag per sq arcsec). For galaxies with a purely exponential outer disc (~50 per cent), we determine the significance of an environmental dependence on the outer disc scalelength h_out. For galaxies with a broken exponential in their outer disc, either down-bending (truncation, ~10 per cent) or up-bending (anti-truncation, ~40 per cent), we measure the strength T (outer-to-inner scalelength ratio, log_10(h_out/h_in) of the mu breaks and determine the significance of an environmental dependence ...

  7. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Science.gov (United States)

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  8. Stellar Populations in Dwarf Galaxies A Review of the Contribution of HST to our Understanding of the Nearby Universe

    CERN Document Server

    Tolstoy, E

    2000-01-01

    This review aims to give an overview of the contribution of the Hubble Space Telescope to our understanding of the detailed properties of Local Group dwarf galaxies and their older stellar populations. The exquisite stable high spatial resolution combined with photometric accuracy of images from the Hubble Space Telescope have allowed us to probe further back into the history of star formation of a large variety of different galaxy types with widely differing star formation properties. We have learnt several important things about dwarf galaxy evolution from these studies. Firstly we have found that no two galaxies have identical star formation histories; some galaxies may superficially look the same today, but they have invariably followed different paths to this point. Now that we have managed to probe deep into the star formation history of dwarf irregular galaxies in the Local Group it is obvious that there are a number of similarities with the global properties of dwarf elliptical/spheroidal type galaxie...

  9. The Low-luminosity Galaxy Population in the NGC 5044 Group

    Science.gov (United States)

    Cellone, S. A.; Buzzoni, A.

    Detailed surface photometry for 79 (mostly dwarf) galaxies in the NGC5044 Group area is analysed, revealing the existence of different morphologies among objects originally classified as early-type dwarfs. Particularly, a significant fraction of bright dwarf "ellipticals" show a distinct bulge+disc structure; we thus re-classify these objects as dwarf lenticulars (dS0).

  10. Observational Constraints on the Molecular Gas Content in Nearby Starburst Dwarf Galaxies

    CERN Document Server

    McQuinn, Kristen B W; Dalcanton, Julianne J; Dolphin, Andrew E; Cannon, John M; Holtzman, Jon; Weisz, Daniel R; Williams, Benjamin F

    2012-01-01

    Using star formation histories derived from optically resolved stellar populations in nineteen nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming a SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high HI surface densities (~10^2-10^3 Msun pc^-2), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H_2 in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in HI surface densities higher than observed in 10 galaxies. Thus, these observations app...

  11. Interstellar Medium Oxygen Abundances of Dwarf Irregular Galaxies in Centaurus A and Nearby Groups

    CERN Document Server

    Lee, Henry; Grebel, E K; 10.1111/j.1365-2966.2007.11481.x

    2008-01-01

    We present results of optical spectroscopy of 35 H II regions from eight dwarf galaxies in the Centaurus A group. [O III]4363 A is detected in ESO272-G025 and ESO324-G024, and direct oxygen abundances of 12+log(O/H) = 7.76 +/- 0.09 and 7.94 +/- 0.11 are derived, respectively. For the remaining galaxies, abundances are derived using common bright-line methods. To compare the influence of group environments on dwarf galaxies, we have also gathered data for additional dwarf irregular galaxies from the Cen A and the Sculptor groups from the literature. We have examined possible relationships between oxygen abundance, gas fraction, effective chemical yield, and tidal indices. Despite large positive tidal indices for a number of Cen A dwarfs in the present sample, there is no clear separation between galaxies with positive tidal indices and galaxies with negative tidal indices in the luminosity-metallicity, metallicity-gas fraction, and metallicity-tidal index diagrams. The H I surface mass density decreases with i...

  12. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    Science.gov (United States)

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  13. A WISE-based search for debris discs amongst M-dwarfs in nearby, young, moving groups

    CERN Document Server

    Binks, Alex S

    2016-01-01

    We present a search for debris discs amongst M-dwarf members of nearby, young (5-150 Myr) moving groups (MGs) using infrared (IR) photometry, primarily from the Wide Infrared Survey Explorer (WISE). A catalogue of 100 MG M-dwarfs that have suitable WISE data is compiled and 19 of these are found to have significant IR excess emission at 22$\\mu$m. Our search is likely to be complete for discs where the ratio of flux from the disc to flux from the star $f_{\\rm d}/f_{*} > 10^{-3}$. The spectral energy distributions are supplemented with 2MASS photometry and data at longer wavelengths and fitted with simple disc models to characterise the IR excesses. There is a bimodal distribution -- twelve targets have $W1-W4 > 3$, corresponding to $f_{\\rm d}/f_{*} > 0.02$ and are likely to be gas-rich, primordial discs. The remaining seven targets have $W1-W4 < 1$ ($f_{\\rm d}/f_{*} \\lesssim 10^{-3}$) and include three objects with previously known or suspected debris discs and four new debris disc candidates that are all m...

  14. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback

    Science.gov (United States)

    Forbes, John C.; Krumholz, Mark R.; Goldbaum, Nathan J.; Dekel, Avishai

    2016-07-01

    Photoelectric heating—heating of dust grains by far-ultraviolet photons—has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity—as is expected with photoelectric heating, but not with supernovae—reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time, suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  15. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    Science.gov (United States)

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  16. Extended stellar substructure surrounding the Boötes I dwarf spheroidal galaxy

    Science.gov (United States)

    Roderick, T. A.; Mackey, A. D.; Jerjen, H.; Da Costa, G. S.

    2016-10-01

    We present deep stellar photometry of the Boötes I dwarf spheroidal galaxy in g- and i-band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct overdensity encroaching on its tidal radius. A radial profile of the Boötes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Boötes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Boötes I dwarf spheroidal galaxy.

  17. Extended stellar substructure surrounding the Bo\\"otes I dwarf spheroidal galaxy

    CERN Document Server

    Roderick, T A; Jerjen, H; Da Costa, G S

    2016-01-01

    We present deep stellar photometry of the Bo\\"otes I dwarf spheroidal galaxy in g and i band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct over-density encroaching on its tidal radius. A radial profile of the Bo\\"otes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Bo\\"otes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Bo\\"otes I dwarf spheroidal galaxy.

  18. Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches

    CERN Document Server

    Klop, Niki; Hayashi, Kohei; Ando, Shin'ichiro

    2016-01-01

    Dwarf spheroidals are low-luminosity satellite galaxies of the Milky Way highly dominated by dark matter. Therefore, they are prime targets to search for signals from dark matter annihilation using gamma-ray observations. We analyse about 7 years of PASS8 Fermi data for seven classical dwarf galaxies, including Draco, adopting both the widely used Navarro-Frenk-White (NFW) profile and observationally motivated axisymmetric density profiles. For four of the selected dwarfs (Sextans, Carina, Sculptor and Fornax) axisymmetric mass models suggest a cored density profile rather than the commonly adopted cusped profile. We found that upper limits on the annihilation cross section for some of these dwarfs are significantly higher than the ones achieved using an NFW profile. Therefore, upper limits in the literature obtained using cusped profiles like the NFW might have been overestimated. Our results eventually show that it is extremely important to use observationally motivated density profiles going beyond the usu...

  19. Andromeda XXVIII: A Dwarf Galaxy More Than 350 kpc from Andromeda

    CERN Document Server

    Slater, Colin T; Martin, Nicolas F

    2011-01-01

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently-released SDSS DR8. The galaxy is a likely satellite of Andromeda, and, at a separation of $365^{+17}_{-1}$ kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is $650^{+150}_{-80}$ kpc, and analysis of its structure and luminosity show that it has an absolute magnitude of $M_V = -8.5^{+0.4}_{-1.0}$ and half-light radius of $r_h = 210^{+60}_{-50}$ pc, similar to many other faint Local Group dwarfs. With presently-available imaging we are unable to determine if there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or dwarf irregular.

  20. ANDROMEDA XXVIII: A DWARF GALAXY MORE THAN 350 kpc FROM ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Martin, Nicolas F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2011-11-20

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently released Sloan Digital Sky Survey Data Release 8. The galaxy is a likely satellite of Andromeda, and, at a separation of 365{sup +17}{sub -1} kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is 650{sup +150}{sub -80} kpc, and analysis of its structure and luminosity shows that it has an absolute magnitude of M{sub V} = -8.5{sup +0.4}{sub -1.0} and half-light radius of r{sub h} = 210{sup +60}{sub -50} pc, similar to many other faint Local Group dwarfs. With presently available imaging we are unable to determine whether there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or a dwarf irregular.

  1. The ACS LCID Project: On the Origin of Dwarf Galaxy Types—A Manifestation of the Halo Assembly Bias?

    NARCIS (Netherlands)

    Gallart, Carme; Monelli, Matteo; Mayer, Lucio; Aparicio, Antonio; Battaglia, Giuseppina; Bernard, Edouard J.; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Navarro, Julio F.; Salvadori, Stefania; Skillman, Evan D.; Stetson, Peter B.; Weisz, Daniel R.

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than onl

  2. The ACS LCID Project: On the Origin of Dwarf Galaxy Types—A Manifestation of the Halo Assembly Bias?

    NARCIS (Netherlands)

    Gallart, Carme; Monelli, Matteo; Mayer, Lucio; Aparicio, Antonio; Battaglia, Giuseppina; Bernard, Edouard J.; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Navarro, Julio F.; Salvadori, Stefania; Skillman, Evan D.; Stetson, Peter B.; Weisz, Daniel R.

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than

  3. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Holtzman, Jon, E-mail: kmcquinn@astro.umn.edu [Department of Astronomy, New Mexico State University, Box 30001, Department 4500, 1320 Frenger Street, Las Cruces, NM 88003 (United States)

    2012-06-01

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities ({approx}10{sup 2}-10{sup 3} M{sub Sun} pc{sup -2}), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H{sub 2} in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10{sup 19}-10{sup 21} cm{sup -2} for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO-H{sub 2} conversion factor (X{sub CO}) in the range >(3-80) Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, or up to 40 Multiplication-Sign greater than Galactic X{sub CO} values.

  4. DRIVERS OF H I TURBULENCE IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Warren, Steven R. [Department of Astronomy, University of Maryland, CSS Building, Room 1024, Stadium Drive, College Park, MD 20742-2421 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2013-08-20

    Neutral hydrogen (H I) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation, recent studies have shown that this driving mechanism may not be dominant in regions of low star formation surface density ({Sigma}{sub SFR}), such those as found in dwarf galaxies or the outer regions of spirals. We have generated average H I line profiles in a number of nearby dwarfs and low-mass spirals by co-adding H I spectra in subregions with either a common radius or {Sigma}{sub SFR}. We find that the individual spatially resolved ''superprofiles'' are composed of a central narrow peak ({approx}5-15 km s{sup -1}) with higher velocity wings to either side, similar to their global counterparts as calculated for the galaxy as a whole. Under the assumption that the central peak reflects the H I turbulent velocity dispersion, we compare measures of H I kinematics determined from the superprofiles to local ISM properties, including surface mass densities and measures of star formation. The shape of the wings of the superprofiles do not show any correlation with local ISM properties, which indicates that they may be an intrinsic feature of H I line-of-sight spectra. On the other hand, the H I velocity dispersion is correlated most strongly with baryonic and H I surface mass density, which points toward a gravitational origin for turbulence, but it is unclear which, if any, gravitational instabilities are able to operate efficiently in these systems. Star formation energy is typically produced at a level sufficient to drive H I turbulent motions at realistic coupling efficiencies in regimes where {Sigma}{sub SFR} {approx}> 10{sup -4} M{sub Sun} yr{sup -1} kpc{sup -2}, as is typically found in inner spiral disks. At low star formation intensities, on the other hand, star formation cannot supply enough energy to drive the observed turbulence, nor does it uniquely

  5. The Nature of the Low-Metallicity ISM in the Dwarf Galaxy NGC 1569

    CERN Document Server

    Galliano, F; Jones, A P; Wilson, C D; Bernard, J P; Le Peintre, F

    2002-01-01

    We are modeling the spectra of dwarf galaxies from infrared to submillimeter wavelengths to understand the nature of the various dust components in low-metallicity environments, which may be comparable to the ISM of galaxies in their early evolutionary state. The overall nature of the dust in these environments appears to differ from those of higher metallicity starbursting systems. Here, we present a study of one of our sample of dwarf galaxies, NGC 1569, which is a nearby, well-studied starbursting dwarf. Using ISOCAM, IRAS, ISOPHOT and SCUBA data with the Desert et al. (1990) model, we find consistency with little contribution from PAHs and Very Small Grains and a relative abundance of bigger colder grains, which dominate the FIR and submillimeter wavelengths. We are compelled to use 4 dust components, adding a very cold dust component, to reproduce the submillimetre excess of our observations.

  6. Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix

    Science.gov (United States)

    Kacharov, Nikolay; Battaglia, Giuseppina; Rejkuba, Marina; Cole, Andrew A.; Carrera, Ricardo; Fraternali, Filippo; Wilkinson, Mark I.; Gallart, Carme G.; Irwin, Mike; Tolstoy, Eline

    2017-04-01

    Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of different dwarf morphological types. Here we present results from a spectroscopic survey of ∼200 individual red giant branch stars in the Phoenix dwarf, the closest transition type with a comparable luminosity to 'classical' dwarf galaxies. We measure a systemic heliocentric velocity Vhelio = -21.2 ± 1.0 km s-1. Our survey reveals the clear presence of prolate rotation that is aligned with the peculiar spatial distribution of the youngest stars in Phoenix. We speculate that both features might have arisen from the same event, possibly an accretion of a smaller system. The evolved stellar population of Phoenix is relatively metal-poor ( = -1.49 ± 0.04 dex) and shows a large metallicity spread (σ[Fe/H] = 0.51 ± 0.04 dex), with a pronounced metallicity gradient of -0.13 ± 0.01 dex arcmin-1 similar to luminous, passive dwarf galaxies. We also report a discovery of an extremely metal-poor star candidate in Phoenix and discuss the importance of correcting for spatial sampling when interpreting the chemical properties of galaxies with metallicity gradients. This study presents a major leap forward in our knowledge of the internal kinematics of the Phoenix transition type dwarf galaxy and the first wide area spectroscopic survey of its metallicity properties. A table containing the measured velocities, metallicities, and CaT equivalent widths of all spectroscopic targets is available online at the CDS.

  7. On the fragility of nuclear stellar discs against galaxy mergers: surviving photometric and kinematic signatures of nuclear discs

    CERN Document Server

    Sarzi, M; Dotti, M

    2015-01-01

    Nuclear stellar discs (NSDs) can help to constrain the assembly history of their host galaxies, as long as we can assume them to be fragile structures that are disrupted during merger events. In this work we investigate the fragility of NSDs by means of N-body simulations reproducing the last phases of a galaxy encounter, when the nuclear regions of the two galaxies merge. For this, we exposed a NSD set in the gravitational potential of the bulge and supermassive black hole of a primary galaxy to the impact of the supermassive black hole from a secondary galaxy. We explored merger events of different mass ratios, from major mergers with a 1:1 mass ratio to intermediate and minor interactions with 1:5 and 1:10 ratios, while considering various impact geometries. We analyse the end results of such mergers from different viewing angles and looked for possible photometric and kinematic signatures of the presence of a disc in the remnant surface density and velocity maps, while adopting detection limits from real ...

  8. The structural evolution of galaxies with both thin and thick discs

    Science.gov (United States)

    Aumer, Michael; Binney, James

    2017-09-01

    We perform controlled N-body simulations of disc galaxies growing within live dark matter (DM) haloes to present-day galaxies that contain both thin and thick discs. We consider two types of models: (a) thick-disc initial conditions to which stars on near-circular orbits are continuously added over ∼10 Gyr, and (b) models in which the birth velocity dispersion of stars decreases continuously over the same time-scale. We show that both schemes produce double-exponential vertical profiles similar to that of the Milky Way (MW). We indicate how the spatial age structure of galaxies can be used to discriminate between scenarios. We show that the presence of a thick disc significantly alters and delays bar formation and thus makes possible models with a realistic bar and a high baryon-to-DM mass ratio in the central regions, as required by microlensing constraints. We examine how the radial mass distribution in stars and DM is affected by disc growth and non-axisymmetries. We discuss how bar buckling shapes the vertical age distribution of thin- and thick-disc stars in the bar region. The extent to which the combination of observationally motivated inside-out growth histories and cosmologically motivated dark halo properties leads to the spontaneous formation of non-axisymmetries that steer the models towards present-day MW-like galaxies is noteworthy.

  9. The young nuclear stellar disc in the SB0 galaxy NGC 1023

    CERN Document Server

    Corsini, E M; Pastorello, N; Bontà, E Dalla; Pizzella, A; Portaluri, E

    2015-01-01

    Small kinematically-decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic cen...

  10. Globular Clusters, Ultracompact Dwarfs, and Dwarf Galaxies in Abell 2744 at the Redshift of 0.308

    CERN Document Server

    Lee, Myung Gyoon

    2016-01-01

    We report a photometric study of globular clusters (GCs), ultracompact dwarfs (UCDs), and dwarf galaxies in the giant merging galaxy cluster Abell 2744 at z = 0.308. Color-magnitude diagrams of the point sources derived from deep F814W (restframe r') and F105W (restframe I) images of Abell 2744 in the Hubble Space Telescope Frontier Field show a rich population of point sources whose colors are similar to those of typical GCs. These sources are as bright as -14.9 < M_r' < -11.4 (26.0 < F814W < 29.5) mag, being mostly UCDs and bright GCs in Abell 2744. The luminosity function (LF) of these sources shows a break at M_r' ~ -12.9 (F814W ~ 28.0) mag, indicating a boundary between UCDs and bright GCs. The numbers of GCs and UCDs are estimated to be N_GC = 385,000+-24,000, and 147 +- 26, respectively. The clustercentric radial number density profiles of the UCDs and bright GCs show similar slopes, but these profiles are much steeper than that of the dwarf galaxies and the mass density profile based on gr...

  11. Implications for the origin of early-type dwarf galaxies - the discovery of rotation in isolated, low-mass early-type galaxies

    Science.gov (United States)

    Janz, Joachim; Penny, Samantha J.; Graham, Alister W.; Forbes, Duncan A.; Davies, Roger L.

    2017-07-01

    We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and transformed into early-type galaxies. Our search of the Sloan Digital Sky Survey data within the Local Volume (z half-light radius Re in the best cases, and beyond Re/2 for all. They reveal a variety of behaviours similar to those of a comparison sample of early-type dwarf galaxies in the Virgo cluster observed by Toloba et al. Both samples have similar frequencies of slow and fast rotators, as well as kinematically decoupled cores. This, and especially the finding of rotating quenched low-mass galaxies in isolation, reveals that the early-type dwarfs in galaxy clusters need not be harassed or tidally stirred spiral galaxies.

  12. Cores in dwarf galaxies from dark matter with a Yukawa potential.

    Science.gov (United States)

    Loeb, Abraham; Weiner, Neal

    2011-04-29

    We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.

  13. Gas-Bearing Early-Type Dwarf Galaxies in Virgo: Evidence for Recent Accretion

    CERN Document Server

    Hallenbeck, Gregory; Huang, Shan; Haynes, Martha P; Giovanelli, Riccardo; Boselli, Alessandro; Boissier, Samuel; Heinis, Sebastien; Cortese, Luca; Fabello, Silvia

    2012-01-01

    We investigate the dwarf (M_B> -16) galaxies in the Virgo cluster in the radio, optical, and ultraviolet regimes. Of the 365 galaxies in this sample, 80 have been detected in HI by the Arecibo Legacy Fast ALFA survey. These detections include 12 early-type dwarfs which have HI and stellar masses similar to the cluster dwarf irregulars and BCDs. In this sample of 12, half have star-formation properties similar to late type dwarfs, while the other half are quiescent like typical early-type dwarfs. We also discuss three possible mechanisms for their evolution: that they are infalling field galaxies that have been or are currently being evolved by the cluster, that they are stripped objects whose gas is recycled, and that the observed HI has been recently reaccreted. Evolution by the cluster adequately explains the star-forming half of the sample, but the quiescent class of early-type dwarfs is most consistent with having recently reaccreted their gas.

  14. A VLT/FORS2 spectroscopic survey of individual stars in a transforming dwarf galaxy

    CERN Document Server

    Battaglia, G; Rejkuba, M

    2016-01-01

    Understanding the properties of dwarf galaxies is important not only to put them in their proper cosmological context, but also to understand the formation and evolution of the most common type of galaxies. Dwarf galaxies are divided into two main classes, dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs), which differ from each other mainly because the former are gas-rich objects currently forming stars, while the latter are gas-deficient with no on-going star formation. Transition types (dT) are thought to represent dIs in the process of losing their gas, and can therefore shed light into the possible process of dwarf irregulars (dIrrs) becoming gas-deficient, passively evolving galaxies. Here we present preliminary results from our wide-area VLT/FORS2 MXU spectroscopic survey of the Phoenix dT, from which we obtained line-of-sight velocities and metallicities from the nIR Ca II triplet lines for a large sample of individual Red Giant Branch stars.

  15. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor

    CERN Document Server

    Frebel, Anna; Simon, Joshua D

    2009-01-01

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. However, verification of the iron-deficiency and measurements of additional elements, such as the alpha-element Mg, are mandatory for demonstrating that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming the iron abundance of less than 1/4000th that of the Sun, and showing that the overall abundance pattern mirrors th...

  16. Chemical Abundances of Seven Irregular and Three Tidal Dwarf Galaxies in the M81 Group

    CERN Document Server

    Croxall, Kevin V; Lee, Henry; Skillman, Evan D; Lee, Janice C; Côté, Stéphanie; Kennicutt, Robert C; Miller, Bryan W; 10.1088/0004-637X/705/1/723

    2009-01-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H \\ii regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H \\ii region had a detection of the temperature sensitive [OIII] $\\lambda$4363 line, allowing a "direct" determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies and the observed oxygen abundances are typically in agreement with the well known metallicity-luminosity relation. However, three candidate "tidal dwarf" galaxies lie well off this relation, UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sigh...

  17. The influence of the merger history of dwarf galaxies in a reionized universe

    Science.gov (United States)

    Verbeke, Robbert; Vandenbroucke, Bert; De Rijcke, Sven; Koleva, Mina

    2015-08-01

    In the ΛCDM model, cosmic structure forms in a hierarchical fashion. According to this paradigm, even low-mass dwarf galaxies grow via smooth accretion and mergers. Given the low masses of dwarf galaxies and their even smaller progenitors, the UV background is expected to have a significant influence on their gas content and, consequently, their star formation histories. Generally, cosmological simulations predict that most dwarf systems with circular velocities below ~30 km/s should not be able to form significant amounts of stars or contain gas and be, in effect, "dark" galaxies (Sawala et al. 2013, 2014; Hopkins et al. 2014; Shen et al. 2014). This is in contradiction with the recent discovery of low-mass yet gas-rich dwarf galaxies, such as Leo P (Skillman et al. 2013), Pisces A (Tollerud et al. 2014), and SECCO 1 (Bellazzini et al. 2015). Moreover, Tollerud et al. (2014) point out that most isolated dark-matter halos down to circular velocities of ~15 km/s contain neutral gas, in contradiction with the predictions of current simulations.Based on a suite of simulations of the formation and evolution of dwarf galaxies we show that, by reducing the first peak of star formation by including Pop-III stars in the simulations, the resulting dwarf galaxies have severely suppressed SFRs and can hold on to their gas reservoirs. Moreover, we show that the majority of the zero-metallicity stars are ejected during mergers, resulting in an extended, low-metallicity stellar halo. This results in a marked difference between a galaxy's "total" star-formation history and the one read from the stars in the center of the galaxy at z=0. This mechanism leads to the formation of realistic low-mass, gas-rich dwarfs with a broad range of SFHs and which adhere to the observed scaling relations, such as the baryonic Tully-Fisher relation.In short, the simulations presented here are for the first time able to reproduce the observed properties of low-mass, gas-rich dwarfs such as DDO 210

  18. Formation of emission line dots and extremely metal-deficient dwarfs from almost dark galaxies

    CERN Document Server

    Bekki, Kenji

    2015-01-01

    Recent observations have discovered a number of extremely gas-rich very faint dwarf galaxies possibly embedded in low-mass dark matter halos. We investigate star formation histories of these gas-rich dwarf ("almost dark") galaxies both for isolated and interacting/merging cases. We find that although star formation rates (SFRs) are very low (<10^-5 M_sun/yr) in the simulated dwarfs in isolation for the total halo masses (M_h) of 10^8-10^9 M_sun, they can be dramatically increased to be ~ 10^{-4} M_sun/yr when they interact or merge with other dwarfs. These interacting faint dwarfs with central compact HII regions can be identified as isolated emission line dots ("ELdots") owing to their very low surface brightness envelopes of old stars. The remnant of these interacting and merging dwarfs can finally develop central compact stellar systems with very low metallicities (Z/Z_sun<0.1), which can be identified as extremely metal-deficient ("XMD") dwarfs. These results imply that although there would exist ma...

  19. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  20. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Science.gov (United States)

    Privon, G. C.; Stierwalt, S.; Patton, D. R.; Besla, G.; Pearson, S.; Putman, M.; Johnson, K. E.; Kallivayalil, N.; Liss, S.; Titans, TiNy

    2017-09-01

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Hα emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M ⊙ yr‑1, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

  1. R-process enrichment from a single event in an ancient dwarf galaxy.

    Science.gov (United States)

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  2. Bulges and discs in the local Universe. Linking the galaxy structure to star formation activity

    Science.gov (United States)

    Morselli, L.; Popesso, P.; Erfanianfar, G.; Concas, A.

    2017-01-01

    We use a sample built on the SDSS DR7 catalogue and the bulge-disc decomposition of Simard et al. (2011, ApJS, 196, 11) to study how the bulge and disc components contribute to the parent galaxy's star formation activity, by determining its position in the star formation rate (SFR) - stellar mass (M⋆) plane at 0.02 age or metallicity content, suggesting different evolutionary paths for bulges on the MS and green valley with respect to those in the quiescence region. The disc g-r colour anti-correlates at any mass with the distance from the MS, getting redder when approaching the MS lower envelope and the quiescence region. The anti-correlation flattens as a function of the stellar mass, likely due to a higher level of dust obscuration in massive SF galaxies. We conclude that the position of a galaxy in the Log SFR - Log M⋆ plane depends on the star formation activity of its components: above the MS both bulge and disc are actively star forming. The nuclear activity is the first to be suppressed, moving the galaxies on the MS. Once the disc stops forming stars as well, the galaxy moves below the MS and eventually to the quiescence region. This is confirmed by a significant percentage ( 45%) of passive galaxies with a secure two component morphology, coexisting with a population of pure spheroidals. Our findings are qualitatively in agreement with the compaction-depletion scenario, in which subsequent phases of gas inflow in the centre of a galaxy and depletion due to high star formation activity move the galaxy across the MS before the final quenching episode takes place.

  3. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michelle L. M.; Martin, Nicolas F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ibata, Rodrigo A. [Observatoire de Strasbourg, 11, Rue de l' Université, F-67000 Strasbourg (France); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H1A6 (Canada); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, British Columbia, Victoria V9E 2E7 (Canada); Ferguson, Annette M. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Irwin, Michael J. [Institute of Astronomy, Madingley Rise, Cambridge CB3 0HA (United Kingdom); Lewis, Geraint F., E-mail: michelle.collins@yale.edu [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia)

    2015-01-20

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  4. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281, S9, 9000 Gent (Belgium)

    2015-12-20

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.

  5. The Evolutionary Status of Isolated Dwarf Irregular Galaxies II. Star Formation Histories and Gas Depletion

    CERN Document Server

    Van Zee, L

    2001-01-01

    The results of UBV and H alpha imaging of a large sample of isolated dwarf irregular galaxies are interpreted in the context of composite stellar population models. The observed optical colors are best fit by composite stellar populations which have had approximately constant star formation rates for at least 10 Gyr. The galaxies span a range of central surface brightness, from 20.5 to 25.0 mag arcsec^{-2}; there is no correlation between surface brightness and star formation history. Although the current star formation rates are low, it is possible to reproduce the observed luminosities without a major starburst episode. The derived gas depletion timescales are long, typically ~20 Gyr. These results indicate that dwarf irregular galaxies will be able to continue with their slow, but constant, star formation activity for at least another Hubble time. The sample of isolated dIs is compared to a sample of star bursting dwarf galaxies taken from the literature. The star bursting dwarf galaxies have many similar ...

  6. Probing the Low Surface Brightness Dwarf Galaxy Population of the Virgo Cluster

    CERN Document Server

    Davies, J I; Keenan, O C

    2015-01-01

    We have used public data from the Next Generation Virgo Survey (NGVS) to investigate the dwarf galaxy population of the Virgo cluster beyond what has previously been discovered. We initially mask and smooth the data, and then use the object detection algorithm Sextractor to make our initial dwarf galaxy selection. All candidates are then visually inspected to remove artefacts and duplicates. We derive Sextractor parameters to best select low surface brightness galaxies using g band central surface brightness values of 22.5 to 26.0 mag sq arc sec and exponential scale lengths of 3.0 - 10.0 arc sec to identify 443 cluster dwarf galaxies - 303 of which are new detections. These new detections have a surface density that decreases with radius from the cluster centre. We also apply our selection algorithm to 'background', non-cluster, fields and find zero detections. In combination, this leads us to believe that we have isolated a cluster dwarf galaxy population. The range of objects we are able to detect is limit...

  7. Towards a Phylogenetic Analysis of Galaxy Evolution a Case Study with the Dwarf Galaxies of the Local Group

    CERN Document Server

    Fraix-Burnet, D; Douzery, E J P; Fraix-Burnet, Didier; Choler, Philippe; Douzery, Emmanuel J.P.

    2006-01-01

    Context: The Hubble tuning fork diagram has always been the preferred scheme for classification of galaxies. It is based on morphology only. At the opposite, biologists have long taken into account the genealogical relatedness of living entities for classification purposes. Aims: Assuming branching evolution of galaxies as a 'descent with modification', we show here that the concepts and tools of phylogenetic systematics widely used in biology can be heuristically transposed to the case of galaxies. Methods: This approach that we call "astrocladistics" is applied to Dwarf Galaxies of the Local Group and provides the first evolutionary tree for real galaxies. Results: The trees that we present here are sufficiently solid to support the existence of a hierarchical organization in the diversity of dwarf galaxies of the Local Group. This also shows that these galaxies all derive from a common ancestral kind of objects. We find that some kinds of dIrrs are progenitors of both dSphs and other kinds of dIrrs.We also...

  8. Surface Brightness Profiles of Dwarf Galaxies. II. Color Trends and Mass Profiles

    Science.gov (United States)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2016-06-01

    In this second paper of a series, we explore the B - V, U - B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ˜1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (-9 > MB > -14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (-14 > MB > -19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1-2 M⊙ pc-2 for Type II dwarfs but higher at 5.9 M⊙ pc-2 or 27 M⊙ pc-2 for Type III BCDs and dIms, respectively.

  9. Made-to-Measure Dark Matter Haloes, Elliptical Galaxies and Dwarf Galaxies in Action Coordinates

    CERN Document Server

    Williams, A A

    2014-01-01

    We provide a family of action-based distribution functions (DFs) for the double-power law family of densities often used to model galaxies. The DF itself is a double-power law in combinations of the actions, and reduces to the known limits in the case of a pure power-law at small and large radii. Our method enables the velocity anisotropy of the model to be tuned, and so the anisotropy in the inner and outer parts can be specified for the application in hand. We provide self-consistent DFs for the Hernquist and Jaffe models - both with everywhere isotropic velocity dispersions, and with kinematics that gradually becomes more radially anisotropic on moving outwards. We also carry out this exercise for a cored dark-matter model. These are tailored to represent dark haloes and elliptical galaxies respectively with kinematic properties inferred from simulations or observational data. Finally, we relax a cored luminous component within a dark matter halo to provide a self-consistent model of a dwarf spheroidal emb...

  10. Flickering of accreting white dwarfs: the remarkable amplitude - flux relation and disc viscocity

    CERN Document Server

    Zamanov, R K; Latev, G; Sokoloski, J L; Stoyanov, K A; Genkov, V; Tsvetkova, S V; Tomov, T; Antov, A; Bode, M F

    2015-01-01

    We analyze optical photometric data of short term variability (flickering) of accreting white dwarfs in cataclysmic variables (KR Aur, MV Lyr, V794 Aql, TT Ari, V425 Cas), recurrent novae (RS Oph and T CrB) and jet-ejecting symbiotic stars (CH Cyg and MWC 560). We find that the amplitude-flux relationship is visible over four orders of magnitude, in the range of fluxes from $10^{29}$ to $10^{33}$ erg s$^{-1}$ \\AA$^{-1}$, as a "statistically perfect" correlation with correlation coefficient 0.96 and p-value $ \\sim 10^{-28}$. In the above range, the amplitude of variability for any of our 9 objects is proportional to the flux level with (almost) one and the same factor of proportionality for all 9 accreting white dwarfs with $\\Delta F = 0.36 (\\pm 0.05) F_{av}$, $\\sigma_{rms} = 0.086(\\pm 0.011) F_{av}$, and $\\sigma_{rms} / \\Delta F = 0.24 \\pm 0.02$. Over all, our results indicate that the viscosity in the accretion discs is practically the same for all 9 objects in our sample, in the mass accretion rate range $2...

  11. Environmental effects on stellar populations of star clusters and dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2017-03-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of gravitationally bound systems in an external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance. The developed theoretical framework has direct applications to the cases of massive star clusters, dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  12. Searching for neutrinos from dark matter annihilations in (dwarf) galaxies and clusters with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    With, Meike de [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-12489 Berlin (Germany); Bernardini, Elisa [DESY, D-15735 Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    In many models, the self-annihilation of dark matter particles will create neutrinos which can be detected on Earth. An excess flux of these neutrinos is expected from regions of increased dark matter density, like (dwarf) galaxies and galaxy clusters. The IceCube neutrino observatory, a cubic-kilometer neutrino detector at the South Pole, is capable of detecting neutrinos down to energies of few 10 GeV and is therefore able to constrain the self-annihilation cross section as a function of the mass of the dark matter particle. In this talk, the current status of the search for neutrinos from dark matter annihilations in (dwarf) galaxies and galaxy clusters with IceCube is discussed.

  13. Specific Angular Momentum Distribution of Disc Galaxies Formed in Preheated Intergalactic Media

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-Jian; FU Li-Ping; SHU Cheng-Gang

    2004-01-01

    Assuming that baryons within a galactic halo have the same specific angular momentum as the dark matter where they locate initially and a disc forms due to the gas cooling and condensation with the conservation of angular momentum, we investigate the angular momentum distribution in a resulting galactic disc under the new preheated galaxy formation model suggested by Mo and Mao (Mon. Not. R. Astron. Soc. 333 (2002) 768).Compared with the observational results, it can be concluded that the preheated galaxy formation model can match current observations. This model can be a good approach to solve the problems of both the angular momentum catastrophe and the mismatch of angular-momentum profiles in current disc galaxy formation models.

  14. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    OpenAIRE

    Vivas, A. Katherina; Mateo, Mario

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (

  15. Galaxy Zoo: the effect of bar-driven fueling on the presence of an active galactic nucleus in disc galaxies

    CERN Document Server

    Galloway, Melanie A; Fortson, Lucy F; Cardamone, Carolin N; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J; Masters, Karen L; Melvin, Thomas; Simmons, Brooke D

    2015-01-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19,756 disc galaxies at $0.01galaxies have a higher overall percentage of bars (51.8%) than inactive galaxies exhibiting central star formation (37.1%). This difference is primarily due to known effects; that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16% of the average barred AGN fraction. Using the $L_{\\rm...

  16. HST Imaging of the Local Volume Dwarf Galaxies Pisces A&B: Prototypes for Local Group Dwarfs

    CERN Document Server

    Tollerud, Erik J; Grcevich, Jana; Putman, Mary E; Weisz, Daniel R; Dolphin, Andrew E

    2016-01-01

    We present observations of the Pisces A and B galaxies with the Advanced Camera for Surveys on the Hubble Space Telescope. Photometry from these images clearly resolve a Red Giant Branch for both objects, demonstrating that they are nearby dwarf galaxies. We describe a Bayesian inferential approach to determining the distance to these galaxies using the magnitude of the tip of the RGB, and then apply this approach to these galaxies. We also provide the full probability distributions for parameters derived using this approach. This reveals the distance to these galaxies as $5.64^{+0.13}_{-0.15} \\, {\\rm Mpc}$ and $8.89^{+0.75}_{-0.85} \\, {\\rm Mpc}$ for Pisces A and B, respectively, placing both within the Local Volume but not the Local Group. We estimate the star formation histories of these galaxies, which suggests that they have recently undergone an increase in their star formation rates. Together these yield luminosities for Pisces A and B of $M_V=-11.57^{+0.06}_{-0.05}$ and $-12.9 \\pm 0.2$, respectively, a...

  17. Nuclear stellar discs in low-luminosity elliptical galaxies: NGC 4458 and NGC 4478

    CERN Document Server

    Morelli, L; Corsini, E M; Pizzella, A; Thomas, D; Saglia, R P; Davies, R L; Bender, R; Birkinshaw, M; Bertola, F

    2004-01-01

    We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ell...

  18. Spectroscopic bulge-disc decomposition: a new method to study the evolution of lenticular galaxies

    CERN Document Server

    Johnston, E J; Merrifield, M R; Bedregal, A G

    2012-01-01

    A new method for spectroscopic bulge-disc decomposition is presented, in which the spatial light profile in a two-dimensional spectrum is decomposed wavelength-by-wavelength into bulge and disc components, allowing separate one-dimensional spectra for each component to be constructed. This method has been applied to observations of a sample of nine S0s in the Fornax Cluster in order to obtain clean high-quality spectra of their individual bulge and disc components. So far this decomposition has only been fully successful when applied to galaxies with clean light profiles, consequently limiting the number of galaxies that could be separated into bulge and disc components. Lick index stellar population analysis of the component spectra reveals that in those galaxies where the bulge and disc could be distinguished, the bulges have systematically higher metallicities and younger stellar populations than the discs. This correlation is consistent with a picture in which S0 formation comprises the shutting down of s...

  19. VCC 2062: an old Tidal Dwarf Galaxy in the Virgo Cluster?

    CERN Document Server

    Duc, Pierre-Alain; Lisenfeld, Ute; Brinks, Elias; Boquien, Mederic

    2007-01-01

    Numerical simulations predict the existence of old Tidal Dwarf Galaxies (TDGs) that would have survived several Gyr after the collision lying at their origin. Such survivors, which would by now have become independent relaxed galaxies, would be ideal laboratories, if nearby enough, to tackle a number of topical issues, including the distribution of Dark Matter in and around galaxies. However finding old dwarf galaxies with a confirmed tidal origin is an observational challenge. A dwarf galaxy in the Virgo Cluster, VCC 2062, exhibits several unusual properties that are typical of a galaxy made out of recycled material. We discuss whether it may indeed be a TDG. We analysed multi-wavelength observations of VCC 2062, including an IRAM CO map, an optical spectrum of its HII regions, GALEX ultraviolet and archival broad-band and narrow-band optical images as well as a VLA HI datacube, originally obtained as part of the VIVA project. VCC 2062 appears to be the optical, low surface brightness counterpart of a kinema...

  20. Semi-analytic models for HI gas in disk and local dwarf galaxies

    Science.gov (United States)

    Fu, Jian

    2015-08-01

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models adopt the ΛCDM cosmology simulation Millennium, Millennium II and Aquarius. Our models can reproduce varies properties of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We can also give some physical origins of HI size mass relation in many observations.Based on our model results for local dwarf galaxies, we show that the "missing satellite problem" also exists in the HI component, i.e., the models over predict dwarf galaxies with low HI mass. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in dwarf galaxies (e.g. SKA or FAST) in local group can help to verify the correctness of cold dark matter.

  1. X-ray and Ultraviolet Properties of AGN in Nearby Dwarf Galaxies

    CERN Document Server

    Baldassare, Vivienne F; Gallo, Elena; Greene, Jenny E

    2016-01-01

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line AGN candidates in nearby dwarf galaxies ($z<0.055$). Including archival Chandra observations of three additional sources, our sample contains all ten galaxies from Reines et al. (2013) with both broad H$\\alpha$ emission and narrow-line AGN ratios (6 AGNs, 4 Composites), as well as one low-metallicity dwarf galaxy with broad H$\\alpha$ and narrow-line ratios characteristic of star formation. All eleven galaxies are detected in X-rays. Nuclear X-ray luminosities range from $L_{0.5-7 \\rm{keV}}\\approx5\\times10^{39}$ to $1\\times10^{42}$ $\\rm{erg}\\rm{s^{-1}}$. In all cases except for the star forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGN and composite dwarf galaxies do indeed host actively accreting BHs. Using our estimated BH masses (which range from $\\sim7\\times10^{4}-1\\times10^{6}~M_{\\...

  2. An X-ray Selected Sample of Candidate Black Holes in Dwarf Galaxies

    CERN Document Server

    Lemons, Sean; Plotkin, Richard; Gallo, Elena; Greene, Jenny

    2015-01-01

    We present a sample of hard X-ray selected candidate black holes (BHs) in 19 dwarf galaxies. BH candidates are identified by cross-matching a parent sample of ~44,000 local dwarf galaxies (M_stellar < 3 x 10^9 Msun, z<0.055) with the Chandra Source Catalog, and subsequently analyzing the original X-ray data products for matched sources. Of the 19 dwarf galaxies in our sample, 8 have X-ray detections reported here for the first time. We find a total of 43 point-like hard X-ray sources with individual luminosities L(2-10 keV) ~ 10^37 - 10^40 erg/s. Hard X-ray luminosities in this range can be attained by stellar-mass X-ray binaries (XRBs), and by massive BHs accreting at low Eddington ratio. We place an upper limit of 53% (10/19) on the fraction of galaxies in our sample hosting a detectable hard X-ray source consistent with the optical nucleus, although the galaxy center is poorly defined in many of our objects. We also find that 42% (8/19) of the galaxies in our sample exhibit statistically significant ...

  3. Finding gas-rich dwarf galaxies betrayed by their ultraviolet emission

    CERN Document Server

    Meyer, Jennifer Donovan; Putman, Mary; Grcevich, Jana

    2015-01-01

    We present ultraviolet (UV) follow-up of a sample of potential dwarf galaxy candidates selected for their neutral hydrogen (HI) properties, taking advantage of the low UV background seen by the GALEX satellite and its large and publicly available imaging footprint. The HI clouds, which are drawn from published GALFA-HI and ALFALFA HI survey compact cloud catalogs, are selected to be galaxy candidates based on their spatial compactness and non-association with known high-velocity cloud complexes or Galactic HI emission. Based on a comparison of their UV characteristics to those of known dwarf galaxies, half (48%) of the compact HI clouds have at least one potential stellar counterpart with UV properties similar to those of nearby dwarf galaxies. If galaxies, the star formation rates, HI masses, and star formation efficiencies of these systems follow the trends seen for much larger galaxies. The presence of UV emission is an efficient method to identify the best targets for spectroscopic follow-up, which is nec...

  4. Dwarf Galaxies in the Coma Cluster: II. Spectroscopic and Photometric Fundamental Planes

    CERN Document Server

    Kourkchi, E; Carter, D; Mobasher, B

    2011-01-01

    We present a study of the fundamental plane, FP, for a sample of 71 dwarf galaxies in the core of Coma cluster in magnitude range $-21 < M_I <-15$. Taking advantage of high resolution DEIMOS spectrograph on Keck II for measuring the internal velocity dispersion of galaxies and high resolution imaging of HST/ACS, which allows an accurate surface brightness modeling, we extend the fundamental plane (FP) of galaxies to $\\sim$1 magnitude fainter luminosities than all the previous studies of the FP in Coma cluster. We find that, the scatter about the FP depends on the faint-end luminosity cutoff, such that the scatter increases for fainter galaxies. The residual from the FP correlates with the galaxy colour, with bluer galaxies showing larger residuals from FP. We find $M/L \\propto M^{-0.15\\pm0.22}$ in F814W-band indicating that in faint dwarf ellipticals, the $M/L$ ratio is insensitive to the mass. We find that less massive dwarf ellipticals are bluer than their brighter counterparts, possibly indicating on...

  5. Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Center for Particle Astrophysics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Linden, Tim [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics

    2015-03-01

    The Fermi-LAT Collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95σ local excess (p-value=0.003), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS>8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2σ(p-value=0.027). We argue that these TS>8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and star-forming galaxies, and show that multiwavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking regions of the sky that lie within 1° of sources contained in the BZCAT or CRATES catalogs reduce the fraction of blank sky locations with TS>8.7 by more than a factor of 2. Taking such multiwavelength information into account can enable experiments such as Fermi to better characterize their backgrounds and increase their sensitivity to dark matter in dwarf galaxies, the most important of which remain largely uncontaminated by unresolved point sources. We also note that for the range of dark matter masses and annihilation cross sections currently being tested by studies of dwarf spheroidal galaxies, simulations predict that Fermi should be able to detect a significant number of dark matter subhalos. These subhalos constitute a population of subthreshold gamma-ray point sources and represent an irreducible background for searches for dark matter annihilation in dwarf galaxies.

  6. Photometric Properties of Six Local Volume Dwarf Galaxies from Deep Near-Infrared Observations

    CERN Document Server

    de Swardt, B; Jerjen, H

    2010-01-01

    We have obtained deep near-infrared $J$- (1.25 $\\mu$m), $H$- (1.65$ \\mu$m) and $K_s$-band (2.15 $\\mu$m) imaging for a sample of six dwarf galaxies ($M_B\\ga-17$ mag) in the Local Volume (LV, $D\\la10$ Mpc). The sample consists mainly of early-type dwarf galaxies found in various environments in the LV. Two galaxies (LEDA 166099 and UGCA 200) in the sample are detected in the near-infrared for the first time. The deep near-infrared images allow for a detailed study of the photometric and structural properties of each galaxy. The surface brightness profiles of the galaxies are detected down to the ~$24 mag arcsec^{-2}$ isophote in the $J$- and $H$-bands, and $23 mag arcsec^{-2}$ in the $K_s$-band. The total magnitudes of the galaxies are derived in the three wavelength bands. For the brightest galaxies ($M_B\\la-15.5$ mag) in the sample, we find that the Two Micron All Sky Survey (2MASS) underestimates the total magnitudes of these systems by up to $\\la0.5$ mag. The radial surface brightness profiles of the galaxi...

  7. The no-spin zone: rotation vs dispersion support in observed and simulated dwarf galaxies

    CERN Document Server

    Wheeler, Coral; Bullock, James S; Boylan-Kolchin, Michael; Onorbe, Jose; Fitts, Alex; Hopkins, Philip F; Keres, Dusan

    2015-01-01

    We perform a systematic Bayesian analysis of rotation vs. dispersion support ($v_{\\rm rot} / \\sigma$) in $40$ dwarf galaxies throughout the Local Volume (LV) over a stellar mass range $10^{3.5} M_{\\rm \\odot} < M_{\\star} < 10^8 M_{\\rm \\odot}$. We find that the stars in $\\sim 90\\%$ of the LV dwarf galaxies studied -- both satellites and isolated systems -- are dispersion-supported. In particular, we show that $7/10$ *isolated* dwarfs in our sample have stellar populations with $v_{\\rm rot} / \\sigma < 0.6$. All have $v_{\\rm rot} / \\sigma \\lesssim 2$. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally-supported stellar disks, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between $v_{\\rm rot} / \\sigma$ and distance to the closest $\\rm L_{\\star}$ galaxy, nor between $v_{\\rm rot} / \\sigma$ and $M_{\\star}$ within our mass range. We apply the sam...

  8. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases to...

  9. Surface Brightness Profiles of Dwarf Galaxies: II. Color Trends and Mass Profiles

    CERN Document Server

    Herrmann, Kimberly A; Elmegreen, Bruce G

    2016-01-01

    In this second paper of a series, we explore the B-V, U-B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that colors of (1) Type I dwarfs generally become redder with increasing radius unlike spirals that have a blueing trend that flattens beyond ~1.5 disk scale lengths, (2) Type II dwarfs come in six different "flavors," one of which mimics the "U" shape of spirals, and (3) Type III dwarfs have a stretched "S" shape where central colors are flattish, become steeply redder to the surface brightness break, then remain roughly constant beyond, similar to spiral TypeIII color profiles, but without the central outward bluing. Faint (-9 > M_B > -14) Type II dwarfs tend to have continuously red or "U" shaped colors and steeper color slopes than bright (-14...

  10. Antlia B: A faint dwarf galaxy member of the NGC 3109 association

    CERN Document Server

    Sand, D J; Crnojević, D; Hargis, J R; Willman, B; Strader, J; Grillmair, C J

    2015-01-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of $\\sim$72 kpc from NGC 3109 ($M_{V}$$\\sim$$-$15 mag), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is $D$=1.29$\\pm$0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal poor red giant branch ($\\gtrsim$10 Gyr, [Fe/H]$\\sim$$-$2), and a younger blue population with an age of $\\sim$200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has \\ion{H}{1} gas at a velocity of $v_{helio,HI}$=376 km s$^{-1}$, confirming the association with NGC 3109 ($v_{helio}$=403 km s$^{-1}$). The HI gas mass (M$_{HI}$=2.8$\\pm$0.2$\\times$10$^{5}$ M$_{\\odot}$), stellar luminosity ($M_{V}$=$-$9.7$\\pm$0.6 mag) and half light radius ($r_{h}$=273$\\pm$29 pc) are all consistent with the properties of dwarf irregular and dwarf ...

  11. The mass donor star and the accretion disc of the dwarf nova V2051 Ophiuchi in the infrared

    Science.gov (United States)

    Wojcikiewicz, Eduardo; Baptista, Raymundo; Ribeiro, Tiago

    2016-07-01

    We report the analysis of infrared JHK_s high speed photometry of the dwarf nova V2051 Oph in quiescence. We model the ellipsoidal variations in the light curve to measure the fluxes of the mass donor star. Its colors are consistent with an M8 ± 1 spectral type with an equivalent blackbody temperature of T_{bb}= (2700± 300) K, in agreement with spectroscopic measurements and with theoretical expectation for donor stars at the same orbital period. We use the mass donor star fluxes and the Barnes & Evans relation to find a photometric parallax distance of (102 ± 16) pc to the binary. At this distance the outbursts of V2051 Oph occur at disc temperatures everywhere lower than the minimum/critical temperature predicted by the disc instability model, underscoring previous suggestions that they are powered by mass transfer bursts. We subtract the contribution of the mass donor star and apply eclipse mapping techniques to the remaining light curve in order to investigate the structure and emission of its accretion disc. The infrared accretion disc is bright and 'blue' in the inner regions and becomes progressively fainter and redder with increasing radii, indicating that the disc temperature decreases with radius. Bulges in the eclipse shape, more prominent in the H and K_s bands, lead to asymmetric arcs in the eclipse maps reminiscent of the spiral arms found in disc maps of outbursting dwarf novae. The arcs show an azimuthal extent of ˜90^o, extend from the intermediate to the outer disc regions (0.3-0.4 R_{L1}, where R_{L1} is the distance from disc center to the inner lagrangian point), and account for ≃ 30 per cent of the total flux in the H and K_s bands.

  12. A supermassive black hole in an ultra-compact dwarf galaxy.

    Science.gov (United States)

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  13. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. I. Nucleosynthesis and abundance ratios

    NARCIS (Netherlands)

    Shetrone, M; Venn, KA; Tolstoy, E; Primas, F; Hill, [No Value; Kaufer, A

    2003-01-01

    We have used the Ultraviolet Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giants in the Sculptor, Fornax, Carina, and Leo I dwarf spheroidal galaxies (dSph's). We measure the abundances of alpha-, iron peak, first s-process, second s-pr

  14. Ultra-faint dwarfs: The living fossils of the first galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania

    2012-01-01

    The nature of the faintest dwarf galaxies and their connection with the recently discovered very metal-poor Damped Lyα Absorption systems (DLAs) is investigate in the context of the Milky Way formation. By using a cosmological model I will discuss the theoretical implications of the observed Fe-Lumi

  15. Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K.

    2011-01-01

    Carina is a small and faint classical dwarf spheroidal galaxy in the halo of the Milky Way with a highly episodic star formation history (e.g., Hurley-Keller et al. 1998). Using VLT/FLAMES in high resolution mode, we significantly increase the sample of stars with abundance determinations in Carina,

  16. Nucleosynthesis and the Inhomogeneous Chemical Evolution of the Carina Dwarf Galaxy

    NARCIS (Netherlands)

    Venn, Kim A.; Shetrone, Matthew D.; Irwin, Mike J.; Hill, Vanessa; Jablonka, Pascale; Tolstoy, Eline; Lemasle, Bertrand; Divell, Mike; Starkenburg, Else; Letarte, Bruno; Baldner, Charles; Battaglia, Giuseppina; Helmi, Amina; Kaufer, Andreas; Primas, Francesca

    2012-01-01

    The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using stand

  17. r-process Production Sites as inferred from Eu Abundances in Dwarf Galaxies

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    Recent observations of $r$-process material in ultra-faint dwarf galaxies (UFDs) shed light on the sources of these elements. Strong upper limits on the Eu mass in some UFDs combined with detections of much larger masses in a UFD, Reticulum II, and other dwarf galaxies imply that Eu production is dominated by rare events, and that the minimal Eu mass observed in any UFD is approximately the amount of Eu mass produced per event. This is consistent with other independent observations in the Galaxy. We estimate, using a model independent likelihood analysis, the rate and Eu (Fe) mass produced per $r$-process (Fe production) event in dwarf galaxies including classical dwarfs and UFDs. The mass and rate of the Fe production events are consistent with the normal core-collapse supernova~(ccSN) scenario. The Eu mass per event is $3\\times 10^{-5}M_{\\odot}<\\tilde{m}_{\\rm Eu}<2\\times 10^{-4}M_{\\odot}$, corresponding to a total $r$-process mass per event of $6\\times 10^{-3}M_{\\odot}<\\tilde{m}_{r-process}<4\\ti...

  18. Dark influences II: gas and star formation in minor mergers of dwarf galaxies with dark satellites

    CERN Document Server

    Starkenburg, Tjitske K; Sales, Laura V

    2015-01-01

    Mergers have been proposed to induce starbursts and to lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model. Notably, because of their low mass, most of their interactions will be with dark satellites. In this paper we follow the evolution of gas-rich disky dwarf galaxies as they experience a minor merger with a dark satellite. We aim to characterize the effects of such an interaction on the dwarf's star formation, morphology and kinematical properties. We perform a suite of carefully set-up hydrodynamical simulations of dwarf galaxies that include dark matter, gas, and stars, merging with a satellite consisting solely of dark matter. For the host system we vary the gas fraction, disk size and thickness, halo mass and concentration, while for the satellite we explore different masses, concentrations and orbits. We find that the inter...

  19. The kinematic properties of dwarf early-type galaxies in the Virgo cluster

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Peletier, R. F.; Gorgas, J.; Zapatero Osorio, M.R.; Gorgas, J.; Maíz Apellániz, J.; Pardo, J.R.; Gil de Paz, A.

    2011-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster. These data are used to study the origin of dEs inhabiting clusters. Within them we detect two populations: half of the sample (52%) are rotationally supported and the other

  20. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    CERN Document Server

    Gioannini, Lorenzo; Vladilo, Giovanni; Calura, Francesco

    2016-01-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by AGB stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to Damped Lyman-Alpha systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are: i) we can reproduce the observed gas to dust ratio in dwarf galaxies. ii) We find that the process of dust accretion plays a fundamental role in the evolution of du...

  1. The Origin of Dwarf Early-Type Galaxies in the Virgo Cluster

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Peletier, R. F.; Gorgas, J.

    2011-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster. These data are used to study the origin of the dE population inhabiting rich clusters. Within them we detect two different subpopulations: half of the sample (52%) are rota

  2. A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709

    Energy Technology Data Exchange (ETDEWEB)

    Reines, Amy E.; Condon, James J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Plotkin, Richard M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Russell, Thomas D. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Mezcua, Mar [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Sivakoff, Gregory R. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada); Johnson, Kelsey E., E-mail: areines@nrao.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M {sub BH} ∼ 10{sup 5-7} M {sub ☉}). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M {sub *} ∼ 2.5 × 10{sup 9} M {sub ☉} and M {sub *} ∼ 1.1 × 10{sup 9} M {sub ☉} for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ∼10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  3. The relation between stellar populations, structure and environment for dwarf elliptical galaxies from the MAGPOP-ITP

    NARCIS (Netherlands)

    Michielsen, D.; Boselli, A.; Conselice, C. J.; Toloba, E.; Whiley, I. M.; Aragon-Salamanca, A.; Balcells, M.; Cardiel, N.; Cenarro, A. J.; Gorgas, J.; Peletier, R. F.; Vazdekis, A.

    2008-01-01

    Dwarf galaxies, as the most numerous type of galaxy, offer the potential to study galaxy formation and evolution in detail in the nearby universe. Although they seem to be simple systems at first view, they remain poorly understood. In an attempt to alleviate this situation, the MAGPOP EU Research a

  4. Photometric scaling relations of antitruncated stellar discs in S0-Scd galaxies

    CERN Document Server

    Eliche-Moral, M Carmen; Beckman, John E; Gutierrez, Leonel

    2015-01-01

    It has been recently found that the characteristic photometric parameters of antitruncated discs in S0 galaxies follow tight scaling relations. We investigate if similar scaling relations are satisfied by galaxies of other morphological types. We have analysed the trends in several photometric planes relating the characteristic surface brightness and scalelengths of the breaks and the inner and outer discs of local antitruncated S0-Scd galaxies, using published data and fits performed to the surface brightness profiles of two samples of Type-III galaxies in the R and Spitzer 3.6 microns bands. We have performed linear fits to the correlations followed by different galaxy types in each plane, as well as several statistical tests to determine their significance. We have found that: 1) the antitruncated discs of all galaxy types from Sa to Scd obey tight scaling relations both in R and 3.6 microns, as observed in S0s; 2) the majority of these correlations are significant accounting for the numbers of the availab...

  5. Explaining the reportedly over-massive black holes in early-type galaxies with intermediate-scale discs

    CERN Document Server

    Savorgnan, Giulia A D

    2015-01-01

    The classification "early-type" galaxy includes both elliptically- and lenticular-shaped galaxies. Theoretically, the spheroid-to-disc flux ratio of an early-type galaxy can assume any positive value, but in practice studies often consider only spheroid/disc decompositions in which the disc neatly dominates over the spheroid at large galaxy radii, creating an inner "bulge" as observed in most spiral galaxies. Here we show that decompositions in which the disc remains embedded within the spheroid, labelled by some as "unphysical", correctly reproduce both the photometric and kinematic properties of early-type galaxies with intermediate-scale discs. Intermediate-scale discs have often been confused with large-scale discs and incorrectly modelled as such; when this happens, the spheroid luminosity is considerably underestimated. This has recently led to some surprising conclusions, such as the claim that a number of galaxies with intermediate-scale discs (Mrk 1216, NGC 1277, NGC 1271, and NGC 1332) host a centra...

  6. Predicting the Velocity Dispersions of the Dwarf Satellite Galaxies of Andromeda

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-05-01

    Dwarf Spheroidal galaxies in the Local Group are the faintest and most diffuse stellar systems known. They exhibit large mass discrepancies, making them popular laboratories for studying the missing mass problem. The PANDAS survey of M31 revealed dozens of new examples of such dwarfs. As these systems were discovered, it was possible to use the observed photometric properties to predict their stellar velocity dispersions with the modified gravity theory MOND. These predictions, made in advance of the observations, have since been largely confirmed. A unique feature of MOND is that a structurally identical dwarf will behave differently when it is or is not subject to the external field of a massive host like Andromeda. The role of this "external field effect" is critical in correctly predicting the velocity dispersions of dwarfs that deviate from empirical scaling relations. With continued improvement in the observational data, these systems could provide a test of the strong equivalence principle.

  7. HI Observations of two New Dwarf Galaxies: Pisces A & B with the SKA Pathfinder KAT-7

    CERN Document Server

    Carignan, C; Lucero, D M; Randriamampandry, T H; Jarrett, T H; Oosterloo, T A; Tollerud, E J

    2016-01-01

    Context. Pisces A & Pisces B are the only two galaxies found via optical imaging and spectroscopy out of 22 HI clouds identified in the GALFAHI survey as dwarf galaxy candidates. Aims. Derive the HI content and kinematics of Pisces A & B. Methods. Aperture synthesis HI observations using the seven dish Karoo Array Telescope (KAT-7), which is a pathfinder instrument for MeerKAT, the South African precursor to the mid-frequency Square Kilometre Array (SKA-MID). Results. The small rotation velocities detected of ~5 km/sec and ~10 km/sec in Pisces A & B respectively, and their HI content show that they are really dwarf irregular galaxies (dIrr). Despite that small rotation component, it is more the random motions ~9-11 km/sec that provide most of the gravitational support, especially in the outer parts. The study of their kinematics, especially the strong gradients of random motions, suggest that those two dwarf galaxies are not yet in equilibrium. Conclusions. These HI rich galaxies may be indicative...

  8. The Illusive ISM of Dwarf Galaxies: Excess Submillimetre Emission and CO-Dark Molecular Gas

    CERN Document Server

    Madden, Suzanne C; Cormier, Diane; Lebouteiller, Vianney; Galliano, Frederic; Hony, Sacha; Remy, Aurelie; Sauvage, Marc; Contursi, Alessandra; Sturm, Eckhard; Poglitsch, Albrecht; Pohlen, Michael; Smith, M W L; Bendo, George; O'Halloran, Brian; 2, The SPIRE SAG; consortia., PACS

    2011-01-01

    The Herschel Dwarf Galaxy Survey investigates the interplay of star formation activity and the the metal-poor gas and dust of dwarf galaxies using FIR and submillimetre imaging spectroscopic and photometric observations in the 50 to 550mu window of the Herschel Space Observatory. The dust SEDs are well constrained with the new Herschel and MIR Spitzer data. A submillimetre excess is often found in low metallicity galaxies, which,if tracing very cold dust, would highlight large dust masses not easily reconciled in some cases, given the low metallicities and expected gas-to-dust mass ratios. The galaxies are also mapped in the FIR fine-structure lines (63 and 145mu OI, 158mu CII, 122 and 205mu NII, 88mu OIII) probing the low density ionised gas, the HII regions and photodissociation regions. While still early in the Herschel mission we can already see, along with earlier studies, that line ratios in the metal-poor ISM differ remarkably from those in the metal-rich starburst environments. In dwarf galaxies, L[CI...

  9. Abundance ratios of red giants in low mass ultra faint dwarf spheroidal galaxies

    CERN Document Server

    François, P; Bonifacio, P; Bidin, C Moni; Geisler, D; Sbordone, L

    2015-01-01

    Low mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. We report on the analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT. Medium resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Considering all the stars as representative of the same population of low mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the metallicity of the star increases in a way similar to what is found for the population of stars belonging to dwarf spheroidal galaxies. The main difference is that the solar [alpha/Fe] is reached at a much lower metallicity for the UfDSph than the ...

  10. PAndAS' progeny: extending the M31 dwarf galaxy cabal

    CERN Document Server

    Richardson, Jenny C; McConnachie, Alan W; Martin, Nicolas F; Dotter, Aaron; Ferguson, Annette M N; Ibata, Rodrigo A; Chapman, Scott; Lewis, Geraint F; Tanvir, Nial R; Rich, R Michael

    2011-01-01

    We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were found in the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS) of the M31/M33 subgroup. This survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of ~150 kpc. The metal-poor stellar density map for this whole region serves, not only as an illustration of the discovery space for satellite galaxies, but also gives a birds-eye view of the ongoing assembly process of an L* disk galaxy. Four of the new dwarfs appear as well-defined spatial over-densities of stars lying on the expected locus of metal-poor red giant branch stars at the distance of M31. The fifth over-density, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. All five satellites have metallicities and luminosities typical of dwarf spheroidal galaxies and continue the trend wh...

  11. VLA-ANGST: A high-resolution HI Survey of Nearby Dwarf Galaxies

    CERN Document Server

    Ott, Juergen; Warren, Steven R; Skillman, Evan D; Dalcanton, Julianne J; Walter, Fabian; de Blok, W J G; Koribalski, Baerbel; West, Andrew A

    2012-01-01

    We present the "Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST)." VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km/s) and spatial (~6") resolution observations of neutral, atomic hydrogen (HI) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic HST survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D\\lesssim4 Mpc). VLA-ANGST provides VLA HI observations of the sub-sample of ANGST galaxies with recent star formation that are observable from the northern hemisphere and that were not observed in the "The HI Nearby Galaxy Survey" (THINGS). The overarching scientific goal of VLA-ANGST is to investigate fundamental characteristics of the neutral interstellar medium (ISM) of dwarf galaxies. Here we describe the VLA observations, the data reduction, and the final VLA-ANGST data products. We pre...

  12. The early-type dwarf galaxy population of the Centaurus cluster

    CERN Document Server

    Misgeld, I; Mieske, S

    2009-01-01

    We present a photometric study of the early-type dwarf galaxy population of the Centaurus cluster, aiming at investigating the galaxy luminosity function (LF) and galaxy scaling relations down to the regime of galaxies with M_V~-10 mag. On deep VLT/FORS1 V- and I-band images of the central part of the cluster, we identify cluster dwarf-galaxy candidates using both morphological and surface brightness selection criteria. Photometric and structural parameters of the candidates are derived from analysis of their surface brightness profiles. Fundamental scaling relations, such as the colour-magnitude and the magnitude-surface brightness relation, are used to distinguish the cluster from the background. We find a flat LF with a slope of \\alpha = -1.14 \\pm 0.12 for M_V>-14 mag, when fitting a power law to the completeness-corrected galaxy number counts. When plotting the central surface brightness of a Sersic model vs. the galaxy magnitude, we find a continuous relation for magnitudes -20

  13. The extended structure of the dwarf irregular galaxies Sextans A and Sextans B. Signatures of tidal distortion in the outskirts of the Local Group

    CERN Document Server

    Bellazzini, M; Fraternali, F; Oosterloo, T A; Sollima, A; Testa, V; Galleti, S; Perina, S; Faccini, M; Cusano, F

    2014-01-01

    We present a detailed study of the stellar and HI structure of the dwarf irregular galaxies SextansA and SextansB, members of the NGC3109 association. We use newly obtained deep (r~26.5) and wide field g,r photometry to extend the Surface Brightness (SB) profiles of the two galaxies down to mu_V~ 31.0 mag/arcsec^2. We find that both galaxies are significantly more extended than what previously traced with surface photometry, out to ~4 kpc from their centers along their major axis. Older stars are found to have more extended distribution with respect to younger populations. We obtain the first estimate of the mean metallicity for the old stars in SexB, from the color distribution of the Red Giant Branch, =-1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sersic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the HI discs display solid-body rotation with maximum amplitude of ~50 km/s (albeit with significant uncertainty...

  14. Metallicity Distribution Functions of Dwarf Galaxies: A Probe of Star Formation History and Baryonic Physics

    Science.gov (United States)

    Escala, Ivanna; Kirby, Evan N.; Wetzel, Andrew R.; Hopkins, Philip F.

    2016-06-01

    We examine the metallicity distribution functions (MDFs) of simulated, isolated dwarf galaxies (M_{star} = 4 × 10^{4} - 3 × 10^{8} M_{⊙}) from the Feedback in Realistic Environments (FIRE) project to quantify the impact of star formation history (SFH) and baryonic physics. These high-resolution cosmological simulations include realistic treatments of stellar evolution and complex gas dynamics and do not require the usual approximations (e.g., instantaneous recycling and instantaneous mixing) of analytic chemical evolution models. The evolution of the MDF with redshift informs which processes drive the dominant contributions to the distribution at z = 0, thus enabling a reconstruction of the SFH and gas loss/accretion history. We then compare the theoretical MDFs to the observed MDFs of Local Group dwarf galaxies to infer plausible SFHs for each matched galaxy.

  15. The Sagittarius Dwarf Galaxy Tidal Debris in the south Galactic Cap

    Science.gov (United States)

    Thompson, Jeffery; Newby, M.; Newberg, H. J.; Desell, T.

    2014-01-01

    We characterize the spatial properties of the Sagittarius dwarf galaxy tidal debris, both primary and secondary (bifurcated) tidal tails, in the south Galactic cap. The Sagittarius dwarf galaxy is currently being ripped apart by tidal forces from the Milky Way galaxy. The spatial density of turnoff stars from the Sloan Digital Sky Survey Data Release 8 are fit using statistical photometric parallax with half a petaFLOPS of computing power from the MilkyWay@home volunteer computing platform. The secondary tail appears to be significantly wider than the originally detected primary tail. These results are compared with the leading tidal tail stream density measured in the north Galactic cap. This research was funded by NSF grant AST 10-09670.

  16. A low pre-infall mass for the Carina dwarf galaxy from disequilibrium modelling

    CERN Document Server

    Ural, Uğur; Read, Justin I; Walker, Matthew G

    2015-01-01

    Dark matter only simulations of galaxy formation predict many more subhalos around a Milky Way like galaxy than the number of observed satellites. Proposed solutions require the satellites to inhabit dark matter halos with masses between one to ten billion solar masses at the time they fell into the Milky Way. Here we use a modelling approach, independent of cosmological simulations, to obtain a preinfall mass of 360 (+380,-230) million solar masses for one of the Milky Way's satellites: Carina. This determination of a low halo mass for Carina can be accommodated within the standard model only if galaxy formation becomes stochastic in halos below ten billion solar masses. Otherwise Carina, the eighth most luminous Milky Way dwarf, would be expected to inhabit a significantly more massive halo. The implication of this is that a population of "dark dwarfs" should orbit the Milky Way: halos devoid of stars and yet more massive than many of their visible counterparts.

  17. Dense Cloud Cores revealed by ALMA CO observations in the low metallicity dwarf galaxy WLM

    Science.gov (United States)

    Rubio, M.; Elmegreen, B.; Hunter, D.; Cortes, J.; Brinks, E.; Cigan, P.

    2017-03-01

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations, they are molecular with H2 the dominant species and CO the best available. When the abundances of carbon and oxygen are low compared to hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies CO forms slowly and is easily destroyed, so it cannot accumulate inside dense clouds. Then we lose our ability to trace the gas in regions of star formation and we lose critical information on the temperatures, densities, and velocities of the material that collapses. I will report on high resolution observations with ALMA of CO clouds in the local group dwarf irregular galaxy WLM, which has a metallicity that is 13% of the solar value and 50% lower than the previous CO detection threshold and the properties derived of very small dense CO clouds mapped..

  18. How the first stars shaped the faintest gas-dominated dwarf galaxies

    Science.gov (United States)

    Verbeke, Robbert; Vandenbroucke, Bert; de Rijcke, Sven

    2016-08-01

    Cosmological simulations predict that dark matter halos with circular velocities lower than 30 km/s should have lost most of their neutral gas by heating of the ultra-violet background. This is in stark contrast with gas-rich galaxies such as e.g. Leo T, Leo P and Pisces A, which all have circular velocities of ~15 km/s (Ryan-Weber et al. 2008, Bernstein-Cooper et al. 2014, Tollerud et al. 2015). We show that when we include feedback from the first stars into our models, simulated dwarfs have very different properties at redshift 0 than when this form of feedback is not included. Including this Population-III feedback leads to galaxies that lie on the baryonic Tully-Fisher relation over the entire mass range of star forming dwarf galaxies, as well as reproducing a broad range of other observational properties.

  19. NIHAO XIII: Clumpy discs or clumpy light in high-redshift galaxies?

    Science.gov (United States)

    Buck, Tobias; Macciò, Andrea V.; Obreja, Aura; Dutton, Aaron A.; Domínguez-Tenreiro, Rosa; Granato, Gian Luigi

    2017-07-01

    Many massive star-forming disc galaxies in the redshift range 3-0.5 are observed to have a clumpy morphology showing giant clumps of size ˜1 kpc and masses of about 107-1010 M⊙. The nature and fate of these giant clumps are still under debate. In this work, we use 19 high-resolution simulations of disc galaxies from the Numerical Investigations of Hundred Astrophysical Objects (NIHAO) sample to study the formation and evolution of clumps in the discs of high-redshift galaxies. We use mock Hubble Space Telescope-CANDELS observations created with the radiative transfer code grasil-3d to carry out, for the first time, a quantitative comparison of the observed fraction of clumpy galaxies and its evolution with redshift with simulations. We find a good agreement between the observed clumpy fraction and the one of the NIHAO galaxies. We find that dust attenuation can suppress intrinsically bright clumps and enhance less luminous ones. In our galaxy sample, we find clumps only in light (U band) from young stars but not in stellar mass surface density maps. This means that the NIHAO sample does not show clumpy stellar discs but rather a clumpy light distribution originating from clumpy star formation events. The clumps found in the NIHAO sample match observed age/colour gradients as a function of distance from the galaxy centre, but they show no sign of inward migration. Clumps in our simulations disperse on time-scales of about a hundred Myr and their contribution to bulge growth is negligible.

  20. NoSOCS in SDSS. V. Red Disc and Blue Bulge Galaxies Across Different Environments

    CERN Document Server

    Lopes, P A A; Ribeiro, A L B; Nascimento, R S; Vajgel, B

    2016-01-01

    We investigated the typical environment and physical properties of "red discs" and "blue bulges", comparing those to the "normal" objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at $z \\le 0.1$, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where "blue discs" are transformed into "red discs" as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time scale of $\\sim $ 2$-$3 Gyr. We also...

  1. The evolution of disc galaxies with and without classical bulges since z~1

    CERN Document Server

    Sachdeva, Sonali; Saha, Kanak; Singh, Harinder P

    2015-01-01

    Establishing the relative role of internally and externally driven mechanisms responsible for disc and bulge growth is essential to understand the evolution of disc galaxies. In this context, we have studied the physical properties of disc galaxies without classical bulges in comparison to those with classical bulges since z~0.9. Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry. We find that both disc galaxies with and without classical bulges have gained more than 50% of their present stellar mass over the last ~8 Gyrs. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z~0.9 to z~0, the average effective radius undergoes a marginal increase in comparison. Additionally, increase in the density of the inner region is evident through the evolutio...

  2. The imprint of satellite accretion on the chemical and dynamical properties of disc galaxies

    Science.gov (United States)

    Ruiz-Lara, T.; Few, C. G.; Gibson, B. K.; Pérez, I.; Florido, E.; Minchev, I.; Sánchez-Blázquez, P.

    2016-02-01

    Aims: We study the effects of the cosmological assembly history on the chemical and dynamical properties of the discs of spiral galaxies as a function of radius. Methods: We made use of the simulated Milky Way mass, fully-cosmological discs from Ramses Disc Environment Study (RaDES). We analysed their assembly history by examining the proximity of satellites to the galactic disc, instead of their merger trees, to better gauge which satellites impact the disc. We presented stellar age and metallicity profiles, age-metallicity relation (AMR), age-velocity dispersion relation (AVR), and stellar age distribution (SAD) in several radial bins for the simulated galaxies. Results: Assembly histories can be divided into three different stages: i) a merger dominated phase, when a large number of mergers with mass ratios of ~1:1 take place (lasting ~3.2 ± 0.4 Gyr on average); ii) a quieter phase, when ~1:10 mergers take place (lasting ~4.4 ± 2.0 Gyr); and iii) a secular phase where the few mergers that take place have mass ratios below 1:100, which do not affect the disc properties (lasting ~5.5 ± 2.0 Gyr). The first two phases are able to kinematically heat the disc and produce a disc that is chemically mixed over its entire radial extension. Phase 2 ends with a final merger event (at time tjump) marking the onset of important radial differences in the AMR, AVR, and SAD. Conclusions: Inverted AMR trends in the outer parts of discs, for stars younger than tjump, are found as the combined effect of radial motions and star formation in satellites temporarily located in these outer parts. U-shaped stellar age profiles change to an old plateau (~10 Gyr) in the outer discs for the entire RaDES sample. This shape is a consequence of inside-out growth of the disc, radial motions of disc stars (inwards and outwards), and the accretion of old stars from satellites. We see comparable age profiles even when ignoring the influence of stellar migration due to the presence of early in

  3. A novel method to bracket the corotation radius in galaxy discs: vertex deviation maps

    NARCIS (Netherlands)

    Roca-Fàbrega, Santi; Antoja, Teresa; Figueras, Francesca; Valenzuela, Octavio; Romero-Gómez, Mercè; Pichardo, Bárbara

    2014-01-01

    We map the kinematics of stars in simulated galaxy discs with spiral arms using the velocity ellipsoid vertex deviation (l_v). We use test particle simulations, and for the first time, fully self-consistent high-resolution N-body models. We compare our maps with the tight winding approximation model

  4. The role of gas infall in the evolution of disc galaxies

    Science.gov (United States)

    Mollá, Mercedes; Díaz, Ángeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2016-10-01

    Spiral galaxies are thought to acquire their gas through a protracted infall phase resulting in the inside-out growth of their associated discs. For field spirals, this infall occurs in the lower density environments of the cosmic web. The overall infall rate, as well as the galactocentric radius at which this infall is incorporated into the star-forming disc, plays a pivotal role in shaping the characteristics observed today. Indeed, characterizing the functional form of this spatio-temporal infall in situ is exceedingly difficult, and one is forced to constrain these forms using the present day state of galaxies with model or simulation predictions. We present the infall rates used as input to a grid of chemical evolution models spanning the mass spectrum of discs observed today. We provide a systematic comparison with alternate analytical infall schemes in the literature, including a first comparison with cosmological simulations. Identifying the degeneracies associated with the adopted infall rate prescriptions in galaxy models is an important step in the development of a consistent picture of disc galaxy formation and evolution.

  5. The ACS Nearby Galaxy Survey Treasury. X. Quantifying the Star Cluster Formation Efficiency of Nearby Dwarf Galaxies

    CERN Document Server

    Cook, David O; Dale, Daniel A; Johnson, L Clifton; Weisz, Daniel R; Fouesneau, Morgan; Olsen, Knut A G; Engelbracht, Charles W; Dalcanton, Julianne J

    2012-01-01

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t_age < 100Myr) cluster sample. Our data provides the first constraints on two proposed relationships between the star formation rate of galaxies and the properties of their cluster systems in the low star formation rate regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data suggesting there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample gala...

  6. ALFALFA Discovery of the Nearby Gas-Rich Dwarf Galaxy Leo~P. III. An Extremely Metal Deficient Galaxy

    CERN Document Server

    Skillman, Evan D; Berg, Danielle A; Pogge, Richard W; Haurberg, Nathalie C; Cannon, John M; Aver, Erik; Olive, Keith A; Giovanelli, Riccardo; Haynes, Martha P; Adams, Elizabeth A K; McQuinn, Kristen B W; Rhode, Katherine L

    2013-01-01

    We present KPNO 4-m and LBT/MODS spectroscopic observations of an HII region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] 4363 Angstrom line and determine a "direct" oxygen abundance of 12 + log(O/H) = 7.17 +/- 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal alpha element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the "delayed release" hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509 +0.0184 -0.0123 which compares well with the WMAP + BBN prediction of 0.2483 +/- 0.0002 for the primordial helium abundance. We suggest that surve...

  7. Chemistry and Kinematics of the Late-forming Dwarf Irregular Galaxies Leo A, Aquarius, and Sagittarius DIG

    Science.gov (United States)

    Kirby, Evan N.; Rizzi, Luca; Held, Enrico V.; Cohen, Judith G.; Cole, Andrew A.; Manning, Ellen M.; Skillman, Evan D.; Weisz, Daniel R.

    2017-01-01

    We present Keck/DEIMOS spectroscopy of individual stars in the relatively isolated Local Group dwarf galaxies Leo A, Aquarius, and the Sagittarius dwarf irregular galaxy. The three galaxies—but especially Leo A and Aquarius—share in common delayed star formation histories (SFHs) relative to many other isolated dwarf galaxies. The stars in all three galaxies are supported by dispersion. We found no evidence of stellar velocity structure, even for Aquarius, which has rotating H i gas. The velocity dispersions indicate that all three galaxies are dark-matter-dominated, with dark-to-baryonic mass ratios ranging from {4.4}-0.8+1.0 (SagDIG) to {9.6}-1.8+2.5 (Aquarius). Leo A and SagDIG have lower stellar metallicities than Aquarius, and they also have higher gas fractions, both of which would be expected if Aquarius were further along in its chemical evolution. The metallicity distribution of Leo A is inconsistent with a closed or leaky box model of chemical evolution, suggesting that the galaxy was pre-enriched or acquired external gas during star formation. The metallicities of stars increased steadily for all three galaxies, but possibly at different rates. The [α/Fe] ratios at a given [Fe/H] are lower than that of the Sculptor dwarf spheroidal galaxy, which indicates more extended SFHs than Sculptor, consistent with photometrically derived SFHs. Overall, the bulk kinematic and chemical properties for the late-forming dwarf galaxies do not diverge significantly from those of less delayed dwarf galaxies, including dwarf spheroidal galaxies. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM

    Science.gov (United States)

    Read, J. I.; Iorio, G.; Agertz, O.; Fraternali, F.

    2016-11-01

    The shape and diversity of dwarf galaxy rotation curves is at apparent odds with dark matter halos in a Λ Cold Dark Matter (ΛCDM) cosmology. We use mock data from isolated dwarf galaxy simulations to show that this owes to three main effects. Firstly, stellar feedback heats dark matter, leading to a `CORENFW' dark matter density profile with a slowly rising rotation curve. Secondly, if close to a recent starburst, large H I bubbles push the rotation curve out of equilibrium, deforming the rotation curve shape. Thirdly, when galaxies are viewed near face-on, their best fit inclination is biased high. This can lead to a very shallow rotation curve that falsely implies a large dark matter core. All three problems can be avoided, however, by a combination of improved mass models and a careful selection of target galaxies. Fitting our CORENFW model to mock rotation curve data, we show that we can recover the rotation curve shape, dark matter halo mass M200 and concentration parameter c within our quoted uncertainties. We fit our CORENFW model to real data for four isolated dwarf irregulars, chosen to span a wide range of rotation curve shapes. We obtain an excellent fit for NGC 6822 and WLM, with tight constraints on M200, and c consistent with ΛCDM. However, IC 1613 and DDO 101 give a poor fit. For IC 1613, we show that this owes to disequilibria and its uncertain inclination i; for DDO 101, it owes to its uncertain distance D. If we assume iIC1613 ˜ 15° and DDDO101 ˜ 12 Mpc, consistent with current uncertainties, we are able to fit both galaxies very well. We conclude that ΛCDM appears to give an excellent match to dwarf galaxy rotation curves.

  9. Constraining ultra-compact dwarf galaxy formation with galaxy clusters in the local universe

    CERN Document Server

    Pfeffer, Joel; Baumgardt, Holger; Griffen, Brendan F

    2016-01-01

    We compare the predictions of a semi-analytic model for ultra-compact dwarf galaxy (UCD) formation by tidal stripping to the observed properties of globular clusters (GCs) and UCDs in the Fornax and Virgo clusters. For Fornax we find the predicted number of stripped nuclei agrees very well with the excess number of GCs$+$UCDs above the GC luminosity function. GCs$+$UCDs with masses $>10^{7.3}$ M$_\\odot$ are consistent with being entirely formed by tidal stripping. Stripped nuclei can also account for Virgo UCDs with masses $>10^{7.3}$ M$_\\odot$ where numbers are complete by mass. For both Fornax and Virgo, the predicted velocity dispersions and radial distributions of stripped nuclei are consistent with that of UCDs within $\\sim$50-100 kpc but disagree at larger distances where dispersions are too high and radial distributions too extended. Stripped nuclei are predicted to have radially biased anisotropies at all radii, agreeing with Virgo UCDs at clustercentric distances larger than 50 kpc. However, ongoing ...

  10. The role of gas infall in the evolution of disc galaxies

    CERN Document Server

    Mollá, Mercedes; Gibson, Brad K; Cavichia, Oscar; López-Sánchez, Ángel R

    2016-01-01

    Spiral galaxies are thought to acquire their gas through a protracted infall phase resulting in the inside-out growth of their associated discs. For field spirals, this infall occurs in the lower density environments of the cosmic web. The overall infall rate, as well as the galactocentric radius at which this infall is incorporated into the star-forming disc, plays a pivotal role in shaping the characteristics observed today. Indeed, characterising the functional form of this spatio-temporal infall in-situ is exceedingly difficult, and one is forced to constrain these forms using the present day state of galaxies with model or simulation predictions. We present the infall rates used as input to a grid of chemical evolution models spanning the mass spectrum of discs observed today. We provide a systematic comparison with alternate analytical infall schemes in the literature, including a first comparison with cosmological simulations. Identifying the degeneracies associated with the adopted infall rate prescri...

  11. Reconstructing the velocity dispersion profiles from the line-of-sight kinematic data in disc galaxies

    Science.gov (United States)

    Marchuk, A. A.; Sotnikova, N. Y.

    2017-03-01

    We present a modification of the method for reconstructing the stellar velocity ellipsoid (SVE) in disc galaxies. Our version does not need any parametrization of the velocity dispersion profiles and uses only one assumption that the ratio σz/σR remains constant along the profile or along several pieces of the profile. The method was tested on two galaxies from the sample of other authors and for the first time applied to three lenticular galaxies NGC 1167, NGC 3245 and NGC 4150, as well as to one Sab galaxy NGC 338. We found that for galaxies with a high inclination (i >55° - 60°) it is difficult or rather impossible to extract the information about SVE, while for galaxies at an intermediate inclination the procedure of extracting is successful. For NGC 1167 we managed to reconstruct SVE, provided that the value of σz/σR is piecewise constant. We found σz/σR = 0.7 for the inner parts of the disc and σz/σR = 0.3 for the outskirts. We also obtained a rigid constraint on the value of the radial velocity dispersion σR for highly inclined galaxies, and tested the result using the asymmetric-drift equation, provided that the gas rotation curve is available.

  12. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kormendy, John [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Mail Stop C1400, Austin, TX 78712-1205 (United States); Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au [Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.

  13. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  14. Star formation history and evolution of gas-rich dwarf galaxies in the Centaurus A group

    CERN Document Server

    Grossi, M; Pritzl, B J; Knezek, P M; Gallagher, J S; Minchin, R F; Freeman, K C

    2006-01-01

    We analyse the properties of three unusual dwarf galaxies in the Centaurus A group discovered with the HIPASS survey. From their optical morphology they appear to be low surface brightness dwarf spheroidals, yet they are gas-rich (M_{HI}/L_{B} > 1) with gas-mass-to-stellar light ratios larger than typical dwarf irregular galaxies. Therefore these systems appear different from any dwarfs of the Local Group. They should be favoured hosts for starburst, whereas we find a faint star formation region in only one object. We have obtained 21-cm data and Hubble Space Telescope photometry in V and I bands, and have constructed Colour Magnitude Diagrams (CMDs) to investigate their stellar populations and to set a constraint on their age. From the comparison of the observed and model CMDs we infer that all three galaxies are at least older than 2 Gyr (possibly even as old as 10 Gyr) and remain gas-rich because their star formation rates (SFRs) have been very low (< 10^{-3} M_{sun}/yr) throughout. In such systems, sta...

  15. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    Science.gov (United States)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O iii]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O ii]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  16. The effect of bar-driven gas inflow on the AGN triggering in SDSS disc galaxies

    Science.gov (United States)

    Kim, Minbae; Choi, Youn-Young; Kim, Sungsoo S.

    2017-06-01

    We explore the role of bars in AGN activities using a volume-limited face-on disc galaxy sample with M_rprobability defined as the ratio of the probability of AGN triggering in barred galaxies to the probability of the AGN triggering in a comparison, non-barred galaxies, for fixed central SFR (central gas fuel) and velocity dispersion of galaxies (black hole mass). We find that bars are one of the mechanisms that trigger AGN, and the effect is pronounced in less massive and lasts even in galaxies with little central gas. We also suggest a concentrated bulge as a morphology that contributes to the AGN triggering although the effect is not as great as bars.

  17. How to make an ultra-faint dwarf spheroidal galaxy: tidal stirring of disky dwarfs with shallow dark matter density profiles

    CERN Document Server

    Lokas, Ewa L; Mayer, Lucio

    2012-01-01

    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) in the vicinity of the Milky Way (MW) whose origin is still a puzzle. Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10^9 M_sun dark matter (DM) halos. We explore a wide variety of inner density slopes \\rho \\propto r^{-\\alpha} for the dwarf DM halos, ranging from core-like (\\alpha = 0.2) to cuspy (\\alpha = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via the tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z~1, and with intermediate values for the halo inner density slopes (\\rho ...

  18. NoSOCS in SDSS - V. Red disc and blue bulge galaxies across different environments

    Science.gov (United States)

    Lopes, P. A. A.; Rembold, S. B.; Ribeiro, A. L. B.; Nascimento, R. S.; Vajgel, B.

    2016-09-01

    We investigated the typical environment and physical properties of `red discs' and `blue bulges', comparing those to the `normal' objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at z ≤ 0.1, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where `blue discs' are transformed into `red discs' as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time-scale of ˜2-3 Gyr. We also find from the sSFR-M* plane that `red discs' gradually change as they move into clusters. The `blue bulges' have many similar properties than `blue discs', but some of the former show strong signs of asymmetry. The high asymmetry `blue bulges' display enhanced recent star formation compared to their regular counterparts. That indicates some of these systems may have increased their star formation due to mergers. None the less, there may not be a single evolutionary path for these blue early-type objects.

  19. A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    CERN Document Server

    Sand, D J; Bennet, P; Willman, B; Hargis, J; Strader, J; Olszewski, E; Tollerud, E J; Simon, J D; Caldwell, N; Guhathakurta, P; James, B L; Koposov, S; McLeod, B; Morrell, N; Peacock, M; Salinas, R; Seth, A C; Stark, D P; Toloba, E

    2015-01-01

    We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{sta...

  20. The distribution of mass components in simulated disc galaxies

    CERN Document Server

    Santos-Santos, Isabel M; Stinson, Greg; Di Cintio, Arianna; Wadsley, James; Domínguez-Tenreiro, Rosa; Gottlöber, Stefan; Yepes, Gustavo

    2015-01-01

    Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed "mass discrepancy--acceleration" relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{\\rm flat}$ < 222 km/s where V$_{\\rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.

  1. Testing MOG/Non-local/MOND gravity with rotation curve of dwarf galaxies

    CERN Document Server

    Haghighi, M H Zhoolideh

    2016-01-01

    The MOdified Gravity (MOG) and Non-local Gravity are two different alternative theories to General Relativity where in the limit of weak filed approximation behave almost in similarly way and are able to play the role of dark matter and explain the rotation curve of spiral galaxies and cluster of galaxies (Moffat & Rahvar 2013, 2014, Rahvar & Mashhoon 2014). The effective gravitational potential in these theories compose of two terms, (i) Newtonian gravity with an enhanced gravitational constant and (ii) the second term with Yukawa type repulsive force which is defined with the length scale of $1/\\mu$. In this work we analysis the rotation curve of dwarf galaxies in the LITTLE THINGS catalog and compare them with MOG/Non-local gravity and Modified Newtonian Dynamics (MOND). We obtain almost the same $\\alpha$ factor as in our analysis of the spiral galaxy and cluster of galaxies, however we need a smaller length scale of ${\\mu} =2.77 kpc^{-1}$ to describe the rotation curve of dwarf galaxies compare to...

  2. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    CERN Document Server

    Toloba, E; Cenarro, A J; Peletier, R F; Gorgas, J; de Paz, A Gil; Munoz-Mateos, J C

    2010-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving the...

  3. Local Group Dwarf Galaxies and the Star Formation Law at High Redshift

    CERN Document Server

    Gnedin, N Yu

    2000-01-01

    I show how the existing observational data on Local Group dwarf galaxies can be used to estimate the average star formation law during the first 3 Gyr of the history of the universe. I find that the observational data are consistent with the orthodox Schmidt law with a star formation efficiency of about 4 percent if the star formation is continuous (during the first 3 Gyr). The efficiency is proportionally higher if most of the gas in the dwarfs was consumed (and never replenished) in a short time interval well before the universe turned 3 Gyr.

  4. The stellar metallicity gradients in galaxy discs in a cosmological scenario

    Science.gov (United States)

    Tissera, Patricia B.; Machado, Rubens E. G.; Sanchez-Blazquez, Patricia; Pedrosa, Susana E.; Sánchez, Sebastián F.; Snaith, Owain; Vilchez, Jose

    2016-08-01

    Context. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims: We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods: We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results: The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses o f around 1010M⊙ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions: Our results suggest that inside

  5. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    CERN Document Server

    Kirby, Evan N; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S; Gallazzi, Anna

    2013-01-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* ~ M_*^(0.30 +/- 0.02). The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M_* = 10^12 M_sun. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the s...

  6. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    CERN Document Server

    Vivas, A Katherina

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxy's tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a dist...

  7. H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, M. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Magrini, L. [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Mucciarelli, A.; Fraternali, F. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat, 6/2, I-40127 Bologna (Italy); Beccari, G. [European Southern Observatory, Alonso de Cordova 3107, Vitacura Santiago (Chile); Ibata, R.; Martin, N. [Obs. astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Battaglia, G. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Testa, V. [INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (Italy); Fumana, M.; Marchetti, A. [INAF—IASF, via E. Bassini 15, I-20133, Milano (Italy); Correnti, M., E-mail: michele.bellazzini@oabo.inaf.it [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2015-02-10

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of M{sub H} {sub I}/L{sub V}≳20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model.

  8. Chemical composition and constraints on mass loss for globular clusters in dwarf galaxies: WLM and IKN

    CERN Document Server

    Larsen, S S; Forbes, D A; Strader, J

    2014-01-01

    We determine the metallicities for globular clusters (GCs) in the WLM and IKN dwarf galaxies, using VLT/UVES and Keck/ESI spectroscopy. For the WLM GC we also measure detailed abundance ratios for a number of light, alpha, Fe-peak and n-capture elements. We find low metallicities of [Fe/H]=-2.0 and -2.1 for the WLM GC and the GC IKN-5, respectively. We estimate that 17%-31% of the metal-poor stars in WLM belong to the GC, and IKN-5 may even contain a similar number of metal-poor stars as the whole of the IKN dwarf itself. These high ratios of metal-poor GCs to field stars are in tension with GC formation scenarios that require GCs to have lost a very large fraction of their initial mass. The GCs in the WLM and IKN dwarf galaxies resemble those in the Fornax dSph by being significantly more metal-poor than a typical halo GC in the Milky Way and other large galaxies. They are also substantially more metal-poor than the bulk of the field stars in their parent galaxies. The overall abundance patterns in the WLM G...

  9. Young star clusters in the outer disks of LITTLE THINGS dwarf irregular galaxies

    CERN Document Server

    Hunter, Deidre A; Gehret, Elizabeth

    2016-01-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf (BCD) galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1 to 8 disk scale lengths and have ages of <20 Myrs and masses of 20 to 1E5 Msolar. The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the HI surface density is ~1 Msolar per pc2, although both the HI and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the ave...

  10. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    CERN Document Server

    Drzazga, R T; Heald, G H; Elstner, D; Gallagher, J S

    2016-01-01

    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as we...

  11. The Rise of Dwarfs and the Fall of Giants: Galaxy Formation Feedback Signatures in the Halo Satellite Luminosity Function

    Science.gov (United States)

    Cooray, Asantha; Cen, Renyue

    2005-11-01

    The observed luminosity function (LF) of satellite galaxies shows several interesting features that require a better understanding of gas-thermodynamic processes and feedback effects related to reionization and galaxy formation. In galaxy clusters, the abundance of dwarf galaxies is consistent with the expectation based on the subhalo mass function, whereas in galaxy groups, a relatively small abundance of dwarfs is expected based on models of photoionization. In all halo systems, however, there is a dip in the abundance of galaxies with luminosities in the range ~2×108 Lsolar to 1010 Lsolar, corresponding to subhalo mass scales between ~5×1010 Msolar and a few times 1011 Msolar. Photoionization from reionization has been used to explain statistics of the dwarf population, with larger systems forming prior to, and smaller systems forming subsequent to, reionization. The observed dip in the LF is an imprint of small dwarf galaxies (powered by supernovae in these dwarf galaxies propagate energy and metals to large distances such that the intergalactic medium is uniformly enriched to a level of 10-3 Zsolar. The associated energy raises the intergalactic medium temperature and the Jeans mass to a range 1010-1011 Msolar at z~3.4-6.0. Because the epoch of nonlinearity for halos in this mass range is at z>=3.4-4.4, their gas content, hence star formation, is greatly suppressed on average and leads to the observed dip in the observed LF at z=0.

  12. Tidally Induced Bars in Dwarf Galaxies on Different Orbits around a Milky Way-like Host

    Science.gov (United States)

    Gajda, Grzegorz; Łokas, Ewa L.; Athanassoula, E.

    2017-06-01

    Bars in galaxies may develop through a global instability or as a result of an interaction with another system. We study bar formation in disky dwarf galaxies orbiting a Milky Way-like galaxy. We employ N-body simulations to study the impact of the initial orbital parameters: the size of the dwarf galaxy orbit, and the inclination of its disk with respect to the orbital plane. In all cases, a bar develops in the center of the dwarf during the first pericenter on its orbit around the host. Between subsequent pericenter passages, the bars are stable, but at the pericenters, they are usually weakened and shortened. The initial properties and details of the further evolution of the bars depend heavily on the orbital configuration. We find that for the exactly prograde orientation, the strongest bar is formed for the intermediate-sized orbit. On the tighter orbit, the disk is too disturbed and stripped to form a strong bar. On the wider orbit, the tidal interaction is too weak. The dependence on the disk inclination is such that weaker bars form in more inclined disks. The bars experience either a very weak buckling or none at all. We do not observe any secular evolution, possibly because the dwarfs are perturbed at each pericenter passage. The rotation speed of the bars can be classified as slow (R CR/l bar ˜ 2-3). We attribute this to the loss of a significant fraction of the disk rotation during the encounter with the host galaxy.

  13. Neutral interstellar medium phases and star formation tracers in dwarf galaxies

    Science.gov (United States)

    Cigan, Phillip Johnathan

    Dwarf galaxies present interesting observational challenges for the studies of various galaxy properties: despite their abundance and proximity to the Milky Way, they typically have very low surface brightnesses and small physical sizes. Until now, only the extreme variety of dwarfs --- those undergoing strong bouts of star formation --- have been observed in the FIR, due to observational difficulties. However, this population does not represent the majority of dwarfs, which have only moderate star formation rates and extremely low metallicity (the fraction of heavy elements to hydrogen). The advent of the Herschel Space Telescope, with its superior resolution and sensitivity over previous generations of telescopes, has made it possible to measure FIR spectral lines and broadband continuum in normal dwarf galaxies, expanding the scope of studies beyond the brighter, but more extreme, varieties. The general goal of my research was to study the conditions in the interstellar media (ISM) of typical dwarf galaxies. The LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, TheHI Nearby Galaxy Survey) project aims to unravel many mysteries of nearby dwarfs using a suite of multi-wavelength data, and the new additions from Herschel help provide insight into the physics of these systems. I reduced and analyzed FIR fine-structure spectral line data for the LITTLE THINGS sample to study the different phases of the ISM, as well as FIR photometry data to access the dust properties and infrared continuum emission in these systems. The FIR spectral lines are diagnostics for the conditions in the ISM of galaxies, telling us about heating efficiency, the fraction of gas that resides in photodissociation regions (PDRs), abundance of highly ionized gas from massive stars, and other physical descriptions. The photometric continuum observations enable the modeling of interstellar dust properties -- dust plays an important role in shielding and cooling molecular clouds which

  14. Field #3 of the Palomar-Groningen Survey; 1, Variable stars at the edge of the Sagittarius dwarf galaxy

    CERN Document Server

    Ng, Y K

    1996-01-01

    A catalogue is presented with variable (RR Lyrae, semiregular and Mira) stars located inside field #3 of the Palomar-Groningen Survey, at the outer edge of the Sagittarius dwarf galaxy. One of the semiregular variables is a carbon star, comparable with those found by Azzopardi et al. (1991). Serendipity provides the suggestion, that their carbon stars might not be located inside, but behind the bulge in the Sagittarius dwarf galaxy.

  15. The ACS LCID Project: On the origin of dwarf galaxy types: a manifestation of the halo assembly bias?

    CERN Document Server

    Gallart, C; Mayer, L; Aparicio, A; Battaglia, G; Bernard, E J; Cassisi, S; Cole, A A; Dolphin, A E; Drozdovsky, I; HIdalgo, S L; Navarro, J F; Salvadori, S; Skillman, E D; Stetson, P B; Weisz, D R

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than being only the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from colour-magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event, and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal vs dwarf irregular). Slow and fast dwarfs also differ in their ...

  16. Mining the Treasuries: Dwarf Galaxies at 0.5 < z < 1 as Lynchpins for Galaxy Formation and Feedback

    Science.gov (United States)

    Guo, Yicheng

    2014-10-01

    Distant dwarf galaxies {DGs}, with stellar masses 100-1000 times less than that of our Milky Way, are lynchpins for understanding galaxy formation and feedback. Like gems, they are small, hard-to-find, but precious by being the most sensitive probes of both the macro-physics of dark matter halos and the micro-physics of the feedback and regulation of star formation. We propose to undertake a comprehensive study of dwarf galaxies at 0.5mining the archived HST broad-band photometry and grism spectroscopy, mainly from two Treasury Programs {CANDELS and 3D-HST}. Our study will yield {1} reliable stellar mass function of DGs via high-quality photometric and grism redshifts and stellar masses of 15,000 DGs, {2} gas-phase metallicities for 1,700 DGs {over 50x current samples} from grism data, and {3} distributions of and correlations with stellar sizes, profiles, and shapes for 15,000 DGs. We compare these measurements to predictions from the most advanced galaxy formation models to trace the stellar mass-halo mass relation, test viable feedback mechanisms, and track star formation and assembly histories of DGs.

  17. Reconciling dwarf galaxies with LCDM cosmology: Simulating a realistic population of satellites around a Milky Way-mass galaxy

    CERN Document Server

    Wetzel, Andrew R; Kim, Ji-hoon; Faucher-Giguere, Claude-Andre; Keres, Dusan; Quataert, Eliot

    2016-01-01

    Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present the first results from the Latte Project: the Milky Way on FIRE (Feedback in Realistic Environments). This simulation models the formation of a MW-mass galaxy to z = 0 within LCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon mass of 7070 M_sun at spatial resolution down to 1 pc. Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the internal structure of dwarf galaxies that form around a MW-mass host down to M_star > 10^5 M_sun. Latte's population of ...

  18. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    Science.gov (United States)

    Galloway, Melanie A.; Willett, Kyle W.; Fortson, Lucy F.; Cardamone, Carolin N.; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J.; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke D.

    2015-04-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19 756 disc galaxies at 0.01 < z < 0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L_{[O III]}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbations.

  19. Supermassive Black Holes and Kinematics of Disc Galaxies

    CERN Document Server

    Zasov, A V; Katkov, I Yu

    2011-01-01

    The statistical relations between the masses of supermassive black holes (SMBHs) in disk galaxies and the kinematic properties of their host galaxies are analyzed. We use the radial velocity profiles for several galaxies obtained earlier at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences parallel with the data for other galaxies taken from the literature. We demonstrate that the SMBH masses correlate well with the velocities of rotation of disks at a fixed distance R \\approx 1 kpc (V1), which characterize the mean density of the central region of the galaxy. The SMBH masses correlate appreciably weaker with the asymptotic velocity at large distances from the center and with the angular velocity at the optical radius R_{25}. We suggest that the growth of the SMBH occurs inside of the forming "classical" bulge during a monolithic collapse of gas in the central kpc-size region of the protogalaxy. We have also found a correlation between the SMBH mass and the total (i...

  20. Ram pressure stripping of disc galaxies orbiting in clusters. II. Galactic wakes

    CERN Document Server

    Roediger, E

    2007-01-01

    We present 3D hydrodynamical simulations of ram pressure stripping of a disc galaxy orbiting in a galaxy cluster. In this paper, we focus on the properties of the galaxies' tails of stripped gas. The galactic wakes show a flaring width, where the flaring angle depends on the gas disc's cross-section with respect to the galaxy's direction of motion. The velocity in the wakes shows a significant turbulent component of a few 100 km/s. The stripped gas is deposited in the cluster rather locally, i.e. within ~150 kpc from where it was stripped. We demonstrate that the most important quantity governing the tail density, length and gas mass distribution along the orbit is the galaxy's mass loss per orbital length. This in turn depends on the ram pressure as well as the galaxy's orbital velocity. For a sensitivity limit of ~10^19 cm^-2 in projected gas density, we find typical tail lengths of 40 kpc. Such long tails are seen even at large distances (0.5 to 1 Mpc) from the cluster centre. At this sensitivity limit, th...