WorldWideScience

Sample records for dwarf binaries iii

  1. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  2. What fraction of white dwarfs are members of binary systems?

    International Nuclear Information System (INIS)

    Holberg, J B

    2009-01-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  3. Project DWARF - using eclipsing binaries for searching for exoplanets and brown dwarfs

    Science.gov (United States)

    Kudak, V.; Parimucha, Š.

    2016-12-01

    Project DWARF is a long-term observation campaign for about 60 selected eclipsing binaries aimed for detection of exoplanets or other objects (brown dwarfs) in low-mass detached binaries of different types (low-mass eclipsing binaries with M and K components, short-period binaries with sdB or sdO component, post-common-envelope systems containing a white dwarf). Existence of other bodies in systems are determined by analysing of O-C diagrams, constructed from observed minima times of binaries. Objects are selected with intention to determine minima with high precision. About 40 observatories are involved into the network at present time, mostly situated in Europe. The observations are made by small or middle class telescopes with apertures of 20-200 cm. In this contribution we give information about current status of the project, we present main goals and results of 4 years observations.

  4. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  5. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    International Nuclear Information System (INIS)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-01-01

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the Hα absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M 1 = 0.283 ± 0.064 M sun and M 2 = 0.274 ± 0.034 M sun , making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  6. THE CLOSE BINARY FRACTION OF DWARF M STARS

    International Nuclear Information System (INIS)

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-01

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ∼17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  7. THE CLOSE BINARY FRACTION OF DWARF M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Benjamin M. [Penn Manor High School, 100 East Cottage Avenue, Millersville, PA 17551 (United States); Blake, Cullen H.; Knapp, Gillian R. [Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  8. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    International Nuclear Information System (INIS)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-01-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.

  9. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Morgan, Dylan P.; West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA, 30303 (United States); Thorstensen, John R., E-mail: jskinner@bu.edu [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States)

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.

  10. WHITE-DWARF-MAIN-SEQUENCE BINARIES IDENTIFIED FROM THE LAMOST PILOT SURVEY

    International Nuclear Information System (INIS)

    Ren Juanjuan; Luo Ali; Li Yinbi; Wei Peng; Zhao Jingkun; Zhao Yongheng; Song Yihan; Zhao Gang

    2013-01-01

    We present a set of white-dwarf-main-sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3σ radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample

  11. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  12. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  13. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  14. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Willems, B.; Deloye, C. J.; Kalogera, V.

    2010-01-01

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  15. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    Science.gov (United States)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-03-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  16. SpeX Spectroscopy of Unresolved Very Low-Mass Binaries. I. Identification of Seventeen Candidate Binaries Straddling the L Dwarf/T Dwarf Transition

    OpenAIRE

    Burgasser, Adam J.; Cruz, Kelle L.; Cushing, Michael C.; Gelino, Christopher R.; Looper, Dagny L.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Reid, I. Neill

    2009-01-01

    We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13581 pairs of absolute flux-ca...

  17. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  18. THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS

    International Nuclear Information System (INIS)

    Faherty, Jacqueline K.; Shara, Michael M.; Cruz, Kelle L.; Burgasser, Adam J.; Walter, Frederick M.; Van der Bliek, Nicole; West, Andrew A.; Vrba, Frederick J.; Anglada-Escudé, Guillem

    2012-01-01

    We report parallax measurements for 70 ultracool dwarfs (UCDs) including 11 late-M, 32 L, and 27 T dwarfs. In this sample, 14 M and L dwarfs exhibit low surface gravity features, 6 are close binary systems, and 2 are metal-poor subdwarfs. We combined our new measurements with 114 previously published UCD parallaxes and optical-mid-IR photometry to examine trends in spectral-type/absolute magnitude, and color-color diagrams. We report new polynomial relations between spectral type and M JHK . Including resolved L/T transition binaries in the relations, we find no reason to differentiate between a 'bright' (unresolved binary) and a 'faint' (single source) sample across the L/T boundary. Isolating early T dwarfs, we find that the brightening of T0-T4 sources is prominent in M J where there is a [1.2-1.4] mag difference. A similar yet dampened brightening of [0.3-0.5] mag happens at M H and a plateau or dimming of [–0.2 to –0.3] mag is seen in M K . Comparison with evolutionary models that vary gravity, metallicity, and cloud thickness verifies that for L into T dwarfs, decreasing cloud thickness reproduces brown dwarf near-IR color-magnitude diagrams. However we find that a near constant temperature of 1200 ±100 K along a narrow spectral subtype of T0-T4 is required to account for the brightening and color-magnitude diagram of the L-dwarf/T-dwarf transition. There is a significant population of both L and T dwarfs which are red or potentially 'ultra-cloudy' compared to the models, many of which are known to be young indicating a correlation between enhanced photospheric dust and youth. For the low surface gravity or young companion L dwarfs we find that 8 out of 10 are at least [0.2-1.0] mag underluminous in M JH and/or M K compared to equivalent spectral type objects. We speculate that this is a consequence of increased dust opacity and conclude that low surface gravity L dwarfs require a completely new spectral-type/absolute magnitude polynomial for analysis.

  19. THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Faherty, Jacqueline K.; Shara, Michael M.; Cruz, Kelle L. [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States); Burgasser, Adam J. [Center of Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, CA 92093 (United States); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Van der Bliek, Nicole [CTIO/National Optical Astronomy Observatory (Chile); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Ave Boston, MA 02215 (United States); Vrba, Frederick J. [US Naval Observatory, Flagstaff Station, P.O. Box 1149, Flagstaff, AZ 86002 (United States); Anglada-Escude, Guillem, E-mail: jfaherty@amnh.org [Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2012-06-10

    We report parallax measurements for 70 ultracool dwarfs (UCDs) including 11 late-M, 32 L, and 27 T dwarfs. In this sample, 14 M and L dwarfs exhibit low surface gravity features, 6 are close binary systems, and 2 are metal-poor subdwarfs. We combined our new measurements with 114 previously published UCD parallaxes and optical-mid-IR photometry to examine trends in spectral-type/absolute magnitude, and color-color diagrams. We report new polynomial relations between spectral type and M{sub JHK}. Including resolved L/T transition binaries in the relations, we find no reason to differentiate between a 'bright' (unresolved binary) and a 'faint' (single source) sample across the L/T boundary. Isolating early T dwarfs, we find that the brightening of T0-T4 sources is prominent in M{sub J} where there is a [1.2-1.4] mag difference. A similar yet dampened brightening of [0.3-0.5] mag happens at M{sub H} and a plateau or dimming of [-0.2 to -0.3] mag is seen in M{sub K} . Comparison with evolutionary models that vary gravity, metallicity, and cloud thickness verifies that for L into T dwarfs, decreasing cloud thickness reproduces brown dwarf near-IR color-magnitude diagrams. However we find that a near constant temperature of 1200 {+-}100 K along a narrow spectral subtype of T0-T4 is required to account for the brightening and color-magnitude diagram of the L-dwarf/T-dwarf transition. There is a significant population of both L and T dwarfs which are red or potentially 'ultra-cloudy' compared to the models, many of which are known to be young indicating a correlation between enhanced photospheric dust and youth. For the low surface gravity or young companion L dwarfs we find that 8 out of 10 are at least [0.2-1.0] mag underluminous in M{sub JH} and/or M{sub K} compared to equivalent spectral type objects. We speculate that this is a consequence of increased dust opacity and conclude that low surface gravity L dwarfs require a completely new

  20. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    International Nuclear Information System (INIS)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.; Sweet, Sarah; Gelino, Christopher R.; Kirkpatrick, J. Davy

    2016-01-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10 42 erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs

  1. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  2. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  3. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia

  4. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); García-Berro, Enrique; Aznar-Siguán, Gabriela [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Ji, Suoqing [Department of Physics, Broida Hall, University of California Santa Barbara, Santa Barbara, CA 93106–9530 (United States); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  5. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    International Nuclear Information System (INIS)

    Hermes, J. J.; Brown, Warren R.; Kilic, Mukremin; Gianninas, A.; Chote, Paul; Sullivan, D. J.; Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H.; Mason, Paul A.

    2014-01-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M ☉ ) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  6. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Chote, Paul; Sullivan, D. J. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Mason, Paul A., E-mail: j.j.hermes@warwick.ac.uk [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2014-09-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M {sub ☉}) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  7. IUE spectrophotometry of the DA4 primary in the short-period white dwarf-red dwarf spectroscopic binary Case 1

    Science.gov (United States)

    Sion, E. M.; Guinan, E. F.; Wesemael, F.

    1984-01-01

    Low-resolution ultraviolet International Ultraviolet Explorer spectra of the DA white dwarf Case 1 are presented. The spectra show the presence of the 1400 A feature, already discovered in several other DA stars, and of a shallower trough in the 1550-1700 A range. A model atmosphere analysis of the ultraviolet energy distribution of the Ly-alpha red wing yields T(e) = 13,000 + or - 500 K. Possible interpretations of the 1400 A feature are reviewed. Case 1 is the coolest white dwarf found in a short-period, detached white dwarf-red dwarf binary, and its cooling time is consistent with estimates of the efficiency of angular momentum removal mechanisms in the phases subsequent to common envelope binary evolution.

  8. THE INITIAL-FINAL MASS RELATION AMONG WHITE DWARFS IN WIDE BINARIES

    International Nuclear Information System (INIS)

    Zhao, J. K.; Oswalt, T. D.; Willson, L. A.; Wang, Q.; Zhao, G.

    2012-01-01

    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main-sequence star and a white dwarf. The temperature and gravity of each white dwarf were measured by fitting theoretical model atmospheres to the observed spectrum using a χ 2 fitting algorithm. The cooling time and mass were obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main-sequence component to an uncertainty of about 0.17 dex in log t. The difference between the total age and white dwarf cooling time is taken as the main-sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main-sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 and 2 M ☉ . Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences—at least among progenitors with masses in the range of 1-2 M ☉ . A comparison of our observations to theoretical models suggests that low-mass stars preferentially lose mass on the red giant branch.

  9. THE BINARY FRACTION OF LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Justin M.; Kilic, Mukremin; Brown, Warren R.; Kenyon, Scott J.

    2011-01-01

    We describe spectroscopic observations of 21 low-mass (≤0.45 M sun ) white dwarfs (WDs) from the Palomar-Green survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is ≤30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus, additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.

  10. Tidal interaction and coalescence of close binary white dwarfs

    International Nuclear Information System (INIS)

    Webbink, R.F.; Iben, I. Jr.

    1987-01-01

    The physical processes which govern the interaction and final coalescence of close binary white dwarfs are examined. During the approach to mass transfer, the rate of accumulation of rotational energy by a white dwarf can exceed 10 to the 37th erg/s, raising the possibility that the initial phases of mass transfer are strongly influenced by tidal heating of the donor star. The potential energy released by accretion is incapable of removing more than a minor fraction of this material from the system, and numerical simulations show that the accreted envelope engulfs the donor star, leading to formation of common envelope binary before carbon can be ignited at the base of the accreted envelope. Unless shocks can lift the degeneracy of the donor core, a core mass exceeding the Chandrasekhar limit can be created, leading directly to core collapse and a supernova explosion, regardless of whether or not carbon is ignited in the nondegenerate envelope. It is plausible that most of the mass of the donor white dwarf is assimilated in a degenerate state by the accretor. 32 references

  11. Collapse of white dwarfs in low mass binary systems

    International Nuclear Information System (INIS)

    Isern, J.; Canal, R.; Garcia-Berro, E.; Hernanz, M.; Labay, J.

    1987-01-01

    Low-mass binary X-ray sources and cataclysmic variables are composed of a compact star plus a non-degenerate star with a mass of the order of 1 M sun . In the first case, the degenerate star is a neutron star. In the second case, the star is a white dwarf. The similarities of both systems are so high that it is worthwhile to look for the possibility of obtaining a neutron star from the collapse of a white dwarf that accretes matter. The present work shows that massive, initially cold white dwarfs can collapse non-explosively if they accrete mass at a rate greater than 1.0E-7 M sun per year. (Author)

  12. A CROSS-MATCH OF 2MASS AND SDSS. II. PECULIAR L DWARFS, UNRESOLVED BINARIES, AND THE SPACE DENSITY OF T DWARF SECONDARIES

    International Nuclear Information System (INIS)

    Geissler, Kerstin; Metchev, Stanimir; Kirkpatrick, J. Davy; Berriman, G. Bruce; Looper, Dagny

    2011-01-01

    We present the completion of a program to cross-correlate the Sloan Digital Sky Survey Data Release 1 (SDSS DR1) and Two-Micron All-Sky Survey (2MASS) Point Source Catalog in search for extremely red L and T dwarfs. The program was initiated by Metchev and collaborators, who presented the findings on all newly identified T dwarfs in SDSS DR1 and estimated the space density of isolated T0-T8 dwarfs in the solar neighborhood. In the current work, we present most of the L dwarf discoveries. Our red-sensitive (z - J ≥ 2.75 mag) cross-match proves to be efficient in detecting peculiarly red L dwarfs, adding two new ones, including one of the reddest known L dwarfs. Our search also nets a new peculiarly blue L7 dwarf and, surprisingly, two M8 dwarfs. We further broaden our analysis to detect unresolved binary L or T dwarfs through spectral template fitting to all L and T dwarfs presented here and in the earlier work by Metchev and collaborators. We identify nine probable binaries, six of which are new and eight harbor likely T dwarf secondaries. We combine this result with current knowledge of the mass ratio distribution and frequency of substellar companions to estimate an overall space density of 0.005-0.05 pc -3 for individual T0-T8 dwarfs.

  13. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos

    2013-01-01

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ≤ 1 day) binaries. Our sample includes four objects with remarkable log g ≅ 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M ☉ companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  14. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  15. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    International Nuclear Information System (INIS)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P.; Gelino, Christopher R.; Looper, Dagny L.; Schmidt, Sarah J.; Cruz, Kelle; West, Andrew A.; Gizis, John E.; Metchev, Stanimir

    2014-01-01

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  16. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  17. DISCOVERY OF A WIDE BINARY BROWN DWARF BORN IN ISOLATION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Mamajek, E. E.; Muench, A. A.; Finkbeiner, D. P.

    2009-01-01

    During a survey for stars with disks in the Taurus star-forming region using the Spitzer Space Telescope, we have discovered a pair of young brown dwarfs, FU Tau A and B, in the Barnard 215 dark cloud. They have a projected angular separation of 5.''7, corresponding to 800 AU at the distance of Taurus. To assess the nature of these two objects, we have obtained spectra of them and constructed spectral energy distributions. Both sources are young (∼1 Myr) according to their Hα emission, gravity-sensitive spectral features, and mid-infrared excess emission. The proper motion of FU Tau A provides additional evidence of its membership in Taurus. We measure spectral types of M7.25 and M9.25 for FU Tau A and B, respectively, which correspond to masses of ∼0.05 and ∼0.015 M sun according to the evolutionary models of Chabrier and Baraffe. FU Tau A is significantly overluminous relative to an isochrone passing through FU Tau B and relative to other members of Taurus near its spectral type, which may indicate that it is an unresolved binary. FU Tau A and B are likely to be components of a binary system based on the low probability (∼3 x 10 -4 ) that Taurus would produce two unrelated brown dwarfs with a projected separation of a ≤ 6''. Barnard 215 contains only one other young star and is in a remote area of Taurus, making FU Tau A and B the first spectroscopically confirmed brown dwarfs discovered forming in isolation rather than in a stellar cluster or aggregate. Because they were born in isolation and comprise a weakly bound binary, dynamical interactions with stars could not have played a role in their formation, and thus are not essential for the birth of brown dwarfs.

  18. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  19. The Binary Dwarf Carbon Star SDSS J125017.90+252427.6

    Science.gov (United States)

    Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.

    2018-03-01

    Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.

  20. HUBBLE SPACE TELESCOPE IMAGING AND SPECTRAL ANALYSIS OF TWO BROWN DWARF BINARIES AT THE L DWARF/T DWARF TRANSITION

    International Nuclear Information System (INIS)

    Burgasser, Adam J.; Bardalez-Gagliuffi, Daniella C.; Gizis, John E.

    2011-01-01

    We present a detailed examination of the brown dwarf multiples 2MASS J08503593+1057156 and 2MASS J17281150+3948593, both suspected of harboring components that straddle the L dwarf/T dwarf transition. Resolved photometry from Hubble Space Telescope/NICMOS shows opposite trends in the relative colors of the components, with the secondary of 2MASS J0850+1057 being redder than its primary, while that of 2MASS J1728+3948 is bluer. We determine near-infrared component types by matching combined-light, near-infrared spectral data to binary templates, with component spectra scaled to resolved NICMOS and K p photometry. Combinations of L7 + L6 for 2MASS J0850+1057 and L5 + L6.5 for 2MASS J1728+3948 are inferred. Remarkably, the primary of 2MASS J0850+1057 appears to have a later-type classification compared to its secondary, despite being 0.8-1.2 mag brighter in the near-infrared, while the primary of 2MASS J1728+3948 is unusually early for its combined-light optical classification. Comparison to absolute magnitude/spectral type trends also distinguishes these components, with 2MASS J0850+1057A being ∼1 mag brighter and 2MASS J1728+3948A ∼ 0.5 mag fainter than equivalently classified field counterparts. We deduce that thick condensate clouds are likely responsible for the unusual properties of 2MASS J1728+3948A, while 2MASS J0850+1057A is either an inflated young brown dwarf or a tight unresolved binary, making it potentially part of a wide, low-mass, hierarchical quintuple system.

  1. SDSS J001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernández Lajús, E. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Insititude of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-01-10

    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ∼8 s yr{sup −1}. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O–C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ∼ 0.14 M {sub ☉}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  2. The Brown Dwarf Kinematics Project (BDKP. III. Parallaxes for 70 Ultracool Dwarfs

    Science.gov (United States)

    2012-06-10

    a low surface gravity dwarf, Cal is a calibrator ultracool dwarf, SD is an ultracool subdwarf, B is a tight binary unresolved in 2MASS . d F indicates...procedure described in Vrba et al. (2004), we obtained 2MASS photometry for all reference stars. We com- pared with the intrinsic colors described in...140.5 ± 5.8 38.44 ± 2.83 −1191.00 ± 13.00 −115.00 ± 13.00 A 1 2MASS J0746+2000 86.2 ± 4.6 −355.9 ± 5.1 −63.7 ± 5.2 81.90 ± 0.30 −374.04 ± 0.31 −57.91

  3. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  4. A Multi-wavelength Study of the Close M-dwarf Eclipsing Binary System BX Tri

    Science.gov (United States)

    Perdelwitz, V.; Czesla, S.; Robrade, J.; Schmitt, J. H. M. M.

    2015-01-01

    We present the first detailed X-ray study of the close dMe binary system BX Tri, whose optical variation has been continously monitored in the frame of the DWARF project (Pribulla et al.(2012)). We observed BX Tri with XMM-Newton for two full orbital periods and confirm that the system is an ultra-active M-dwarf binary showing frequent flares and an X-ray luminosity close to the saturation limit. The strong magnetic activity could have influenced the angular momentum evolution of the system via magnetic braking.

  5. Gravitational waves from double white dwarfs and AM CVn binaries

    International Nuclear Information System (INIS)

    Nelemans, Gijs

    2003-01-01

    I give a brief overview of our model for the galactic population of compact binaries that is used to predict the low-frequency gravitational wave signal from the galaxy, and discuss recent observational developments that will enable us to test and improve this model. The SPY project will discover some 150 new close double white dwarfs and, recently, two ROSAT sources turned out to be new AM CVn candidates, one with an orbital period of only 5 min. I give an update on the expected binaries that will be resolved by LISA and discuss what we can learn about the galactic population of compact binaries once LISA gives her first results

  6. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    Science.gov (United States)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  7. Testing the white dwarf mass-radius relationship with eclipsing binaries

    Science.gov (United States)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.

    2017-10-01

    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.

  8. THE VERY SHORT PERIOD M DWARF BINARY SDSS J001641-000925

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Becker, Andrew C.; Hawley, Suzanne L.; Gunning, Heather C.; Munshi, Ferah A.; Albright, Meagan [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); West, Andrew A. [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Bochanski, John J. [Astronomy and Astrophysics Department, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, Las Cruces, NM 88003 (United States); Hilton, Eric J., E-mail: jrad@astro.washington.edu [Department of Geology and Geophysics and Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-02-10

    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov Chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M {sub 1} = 0.54 {+-} 0.07 M {sub Sun} and M {sub 2} = 0.34 {+-} 0.04 M {sub Sun }, and radii of R {sub 1} = 0.68 {+-} 0.03 R {sub Sun} and R {sub 2} = 0.58 {+-} 0.03 R {sub Sun }, respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over nine years, and we find strong evidence for period decay at the rate of P-dot {approx} 8 s yr{sup -1}. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study of SDSS J001641-000925 is ongoing to verify the nature of the system, which may prove to be a unique astrophysical laboratory.

  9. Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    OpenAIRE

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon-oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, ther...

  10. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Zejda, M. [Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, CZ-611 37 Brno (Czech Republic); Michel, R., E-mail: qsb@ynao.ac.cn [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, México (Mexico)

    2017-10-20

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  11. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    Science.gov (United States)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.

    2017-10-01

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  12. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    International Nuclear Information System (INIS)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.; Zejda, M.; Michel, R.

    2017-01-01

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  13. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  14. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  15. BINARIES DISCOVERED BY THE MUCHFUSS PROJECT: SDSS J08205+0008-AN ECLIPSING SUBDWARF B BINARY WITH A BROWN DWARF COMPANION

    International Nuclear Information System (INIS)

    Geier, S.; Schaffenroth, V.; Drechsel, H.; Heber, U.; Kupfer, T.; Tillich, A.; Oestensen, R. H.; Smolders, K.; Degroote, P.; Maxted, P. F. L.; Barlow, B. N.; Gaensicke, B. T.; Marsh, T. R.; Napiwotzki, R.

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object (≅0.068 M sun ) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.

  16. Accreting Double White Dwarf Binaries: Implications for LISA

    International Nuclear Information System (INIS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr −2 by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  17. Accreting Double White Dwarf Binaries: Implications for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki, E-mail: kremer@u.northwestern.edu, E-mail: katelyn.breivik@northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: s.larson@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University 2145 Sheridan Road, Evanston, IL 60201 (United States)

    2017-09-10

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  18. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  19. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  20. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-01-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  1. A Double-line M-dwarf Eclipsing Binary from CSS × SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Hsiu, E-mail: leech@naoj.org [Subaru Telescope, NAOJ, 650 N Aohoku Place, Hilo, HI 96720 (United States)

    2017-03-01

    Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period ( P  = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determine the mass, radius, and temperature of the primary and secondary component to be M {sub 1} = 0.47 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, M {sub 2} = 0.46 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, R {sub 1} = 0.52 ± 0.08(statistic) ± 0.07(systematic) R {sub ⊙}, R {sub 2} =0.60 ± 0.08(statistic) ± 0.08(systematic) R {sub ⊙}, T {sub 1} = 3560 ± 100 K, and T {sub 2} = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.

  2. A Double-line M-dwarf Eclipsing Binary from CSS × SDSS

    International Nuclear Information System (INIS)

    Lee, Chien-Hsiu

    2017-01-01

    Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period ( P  = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determine the mass, radius, and temperature of the primary and secondary component to be M 1  = 0.47 ± 0.03(statistic) ± 0.03(systematic) M ⊙ , M 2  = 0.46 ± 0.03(statistic) ± 0.03(systematic) M ⊙ , R 1  = 0.52 ± 0.08(statistic) ± 0.07(systematic) R ⊙ , R 2  =0.60 ± 0.08(statistic) ± 0.08(systematic) R ⊙ , T 1  = 3560 ± 100 K, and T 2  = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.

  3. The Young L Dwarf 2MASS J11193254-1137466 Is a Planetary-mass Binary

    Science.gov (United States)

    Best, William M. J.; Liu, Michael C.; Dupuy, Trent J.; Magnier, Eugene A.

    2017-07-01

    We have discovered that the extremely red, low-gravity L7 dwarf 2MASS J11193254-1137466 is a 0.″14 (3.6 au) binary using Keck laser guide star adaptive optics imaging. 2MASS J11193254-1137466 has previously been identified as a likely member of the TW Hydrae Association (TWA). Using our updated photometric distance and proper motion, a kinematic analysis based on the BANYAN II model gives an 82% probability of TWA membership. At TWA’s 10 ± 3 Myr age and using hot-start evolutionary models, 2MASS J11193254-1137466AB is a pair of {3.7}-0.9+1.2 {M}{Jup} brown dwarfs, making it the lowest-mass binary discovered to date. We estimate an orbital period of {90}-50+80 years. One component is marginally brighter in K band but fainter in J band, making this a probable flux-reversal binary, the first discovered with such a young age. We also imaged the spectrally similar TWA L7 dwarf WISEA J114724.10-204021.3 with Keck and found no sign of binarity. Our evolutionary model-derived {T}{eff} estimate for WISEA J114724.10-204021.3 is ≈230 K higher than for 2MASS J11193254-1137466AB, at odds with the spectral similarity of the two objects. This discrepancy suggests that WISEA J114724.10-204021.3 may actually be a tight binary with masses and temperatures very similar to 2MASS J11193254-1137466AB, or further supporting the idea that near-infrared spectra of young ultracool dwarfs are shaped by factors other than temperature and gravity. 2MASS J11193254-1137466AB will be an essential benchmark for testing evolutionary and atmospheric models in the young planetary-mass regime.

  4. Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400

    Science.gov (United States)

    Vennes, Stephane

    We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.

  5. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  6. REFINED METALLICITY INDICES FOR M DWARFS USING THE SLoWPoKES CATALOG OF WIDE, LOW-MASS BINARIES

    International Nuclear Information System (INIS)

    Dhital, Saurav; Stassun, Keivan G.; Bastien, Fabienne A.; West, Andrew A.; Massey, Angela P.; Bochanski, John J.

    2012-01-01

    We report the results from spectroscopic observations of 113 ultra-wide, low-mass binary systems, largely composed of M0-M3 dwarfs, from the SLoWPoKES catalog of common proper motion pairs identified in the Sloan Digital Sky Survey. Radial velocities of each binary member were used to confirm that they are comoving and, consequently, to further validate the high fidelity of the SLoWPoKES catalog. Ten stars appear to be spectroscopic binaries based on broad or split spectral features, supporting previous findings that wide binaries are likely to be hierarchical systems. We measured the Hα equivalent width of the stars in our sample and found that components of 81% of the observed pairs have similar Hα levels. The difference in Hα equivalent width among components with similar masses was smaller than the range of Hα variability for individual objects. We confirm that the Lépine et al. ζ-index traces iso-metallicity loci for most of our sample of M dwarfs. However, we find a small systematic bias in ζ, especially in the early-type M dwarfs. We use our sample to recalibrate the definition of ζ. While representing a small change in the definition, the new ζ is a significantly better predictor of iso-metallicity for the higher-mass M dwarfs.

  7. A young contracting white dwarf in the peculiar binary HD 49798/RX J0648.0-4418?

    Science.gov (United States)

    Popov, S. B.; Mereghetti, S.; Blinnikov, S. I.; Kuranov, A. G.; Yungelson, L. R.

    2018-02-01

    HD 49798/RX J0648.0-4418 is a peculiar X-ray binary with a hot subdwarf (sdO) mass donor. The nature of the accreting compact object is not known, but its spin period P = 13.2 s and \\dot{P} =-2.15 × 10^{-15} s s-1 proves that it can be only either a white dwarf or a neutron star. The spin-up has been very stable for more than 20 yr. We demonstrate that the continuous stable spin-up of the compact companion of HD 49798 can be best explained by contraction of a young white dwarf with an age ˜2 Myr. This allows us to interpret all the basic parameters of the system in the framework of an accreting white dwarf. We present examples of binary evolution, which result in such systems. If correct, this is the first direct evidence for a white dwarf contraction in early evolutionary stages.

  8. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    International Nuclear Information System (INIS)

    Ji Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-01-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ∼2 × 10 8 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs

  9. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    Science.gov (United States)

    Ji, Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 108 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  10. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Ji Suoqing; Fisher, Robert T. [University of Massachusetts Dartmouth, Department of Physics, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Garcia-Berro, Enrique [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Tzeferacos, Petros; Jordan, George; Lee, Dongwook [Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, IL 60637 (United States); Loren-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cremer, Pascal [Bethe Center for Theoretical Physics, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Behrends, Jan [Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany)

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  11. A strange dwarf scenario for the formation of the peculiar double white dwarf binary SDSS J125733.63+542850.5

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2018-05-01

    The Hubble Space Telescope observation of the double white dwarf (WD) binary SDSS J125733.63+542850.5 reveals that the massive WD has a surface gravity log g1 ˜ 8.7 (which implies a mass of M1 ˜ 1.06 M⊙) and an effective temperature T1 ˜ 13 000 K, while the effective temperature of the low-mass WD (M2 dwarf (SD) scenario to explain the formation of this double WD binary. We assume that the massive WD is a SD originating from a phase transition (PT) in a ˜1.1 M⊙ WD, which has experienced accretion and spin-down processes. Its high effective temperature could arise from the heating process during the PT. Our simulations suggest that the progenitor of SDSS J125733.63+542850.5 can be a binary system consisting of a 0.65 M⊙ WD and a 1.5 M⊙ main-sequence star in a 1.492 d orbit. Especially, the secondary star (i.e. the progenitor of the low-mass WD) is likely to have an ultra-low metallicity of Z = 0.0001.

  12. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Science.gov (United States)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  13. TWO EXTRAORDINARY SUBSTELLAR BINARIES AT THE T/Y TRANSITION AND THE Y-BAND FLUXES OF THE COOLEST BROWN DWARFS {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Michael C.; Bowler, Brendan P.; Best, William M. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Leggett, S. K. [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States)

    2012-10-10

    Using Keck laser guide star adaptive optics imaging, we have found that the T9 dwarf WISE J1217+1626 and T8 dwarf WISE J1711+3500 are exceptional binaries, with unusually wide separations ( Almost-Equal-To 0.''8, 8-15 AU), large near-IR flux ratios ( Almost-Equal-To 2-3 mag), and small mass ratios ( Almost-Equal-To 0.5) compared to previously known field ultracool binaries. Keck/NIRSPEC H-band spectra give a spectral type of Y0 for WISE J1217+1626B, and photometric estimates suggest T9.5 for WISE J1711+3500B. The WISE J1217+1626AB system is very similar to the T9+Y0 binary CFBDSIR J1458+1013AB; these two systems are the coldest known substellar multiples, having secondary components of Almost-Equal-To 400 K and being planetary-mass binaries if their ages are {approx}<1 Gyr. Both WISE J1217+1626B and CFBDSIR J1458+1013B have strikingly blue Y - J colors compared to previously known T dwarfs, including their T9 primaries. Combining all available data, we find that Y - J color drops precipitously between the very latest T dwarfs and the Y dwarfs. The fact that this is seen in (coeval, mono-metallicity) binaries demonstrates that the color drop arises from a change in temperature, not surface gravity or metallicity variations among the field population. Thus, the T/Y transition established by near-IR spectra coincides with a significant change in the Almost-Equal-To 1 {mu}m fluxes of ultracool photospheres. One explanation is the depletion of potassium, whose broad absorption wings dominate the far-red optical spectra of T dwarfs. This large color change suggests that far-red data may be valuable for classifying objects of {approx}<500 K.

  14. Constraining the Statistics of Population III Binaries

    Science.gov (United States)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  15. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    Science.gov (United States)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  16. The binary fraction of stars in dwarf galaxies: the case of Leo II

    OpenAIRE

    Spencer, Meghin; Mateo, Mario; Walker, Matthew; Olszewski, Edward; McConnachie, Alan; Kirby, Evan; Koch, Andreas

    2017-01-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determ...

  17. The Dwarf Spheroidal Companions to M31: WFPC2 Observations of Andromeda III

    OpenAIRE

    Da Costa, G. S.; Armandroff, T. E.; Caldwell, Nelson

    2002-01-01

    The Hubble Space Telescope WFPC2 camera has been used to image Andromeda III, a dwarf spheroidal companion (dSph) to M31. The resulting color-magnitude (c-m) diagrams reveal the morphology of the horizontal branch (HB) in this dwarf galaxy. We find that like Andromeda I and Andromeda II, and like most of the Galactic dSph companions, the HB morphology of And III is predominantly red, redder than that of both And I and And II despite And III having a lower mean metallicity. We interpret this r...

  18. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  19. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  20. The Very Short Period M Dwarf Binary SDSS J001641-000925

    Science.gov (United States)

    Davenport, James R. A.; Becker, Andrew C.; West, Andrew A.; Bochanski, John J.; Hawley, Suzanne L.; Holtzman, Jon; Gunning, Heather C.; Hilton, Eric J.; Munshi, Ferah A.; Albright, Meagan

    2013-02-01

    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov Chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M 1 = 0.54 ± 0.07 M ⊙ and M 2 = 0.34 ± 0.04 M ⊙, and radii of R 1 = 0.68 ± 0.03 R ⊙ and R 2 = 0.58 ± 0.03 R ⊙, respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over nine years, and we find strong evidence for period decay at the rate of \\dot{P}\\sim 8 s yr-1. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study of SDSS J001641-000925 is ongoing to verify the nature of the system, which may prove to be a unique astrophysical laboratory. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Support for the design and construction of the Magellan Echellette Spectrograph was received from the Observatories of the Carnegie Institution of Washington, the

  1. Properties of an eclipsing double white dwarf binary NLTT 11748

    International Nuclear Information System (INIS)

    Kaplan, David L.; Walker, Arielle N.; Marsh, Thomas R.; Bours, Madelon C. P.; Breedt, Elmé; Bildsten, Lars; Copperwheat, Chris M.; Dhillon, Vik S.; Littlefair, Stuart P.; Howell, Steve B.; Shporer, Avi; Steinfadt, Justin D. R.

    2014-01-01

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M ☉ ) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M ☉ ) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R ☉ ) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10 –5 . Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

  2. THE ELM SURVEY. II. TWELVE BINARY WHITE DWARF MERGER SYSTEMS

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Prieto, Carlos Allende; Agueeros, M. A.; Heinke, Craig

    2011-01-01

    We describe new radial velocity and X-ray observations of extremely low-mass white dwarfs (ELM WDs, ∼0.2 M sun ) in the Sloan Digital Sky Survey Data Release 4 and the MMT Hypervelocity Star survey. We identify four new short period binaries, including two merger systems. These observations bring the total number of short period binary systems identified in our survey to 20. No main-sequence or neutron star companions are visible in the available optical photometry, radio, and X-ray data. Thus, the companions are most likely WDs. Twelve of these systems will merge within a Hubble time due to gravitational wave radiation. We have now tripled the number of known merging WD systems. We discuss the characteristics of this merger sample and potential links to underluminous supernovae, extreme helium stars, AM CVn systems, and other merger products. We provide new observational tests of the WD mass-period distribution and cooling models for ELM WDs. We also find evidence for a new formation channel for single low-mass WDs through binary mergers of two lower mass objects.

  3. Formation of luminous contact binaries by rapid accretion onto white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.; Nariai, K.; Sugimoto, D.

    1980-01-01

    During the evolution of a close binary system, there is a phase of mass exchange between its component stars. The authors investigate what happens in the case of extremely rapid accretion onto a white dwarf. They have computed the whole processes of mass accretion starting from its onset through the shell flash and further mass accumulation. Throughout the computation the effect of gravitational energy release has been correctly taken into account. (Auth.)

  4. WISE BROWN DWARF BINARIES: THE DISCOVERY OF A T5+T5 AND A T8.5+T9 SYSTEM

    International Nuclear Information System (INIS)

    Gelino, Christopher R.; Kirkpatrick, J. Davy; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Skrutskie, Michael F.; Wright, Edward L.

    2011-01-01

    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9.

  5. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  6. Properties of an eclipsing double white dwarf binary NLTT 11748

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L.; Walker, Arielle N. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Marsh, Thomas R.; Bours, Madelon C. P.; Breedt, Elmé [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Copperwheat, Chris M. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Dhillon, Vik S.; Littlefair, Stuart P. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Shporer, Avi [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2014-01-10

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M {sub ☉}) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M {sub ☉}) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R {sub ☉}) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10{sup –5}. Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

  7. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  8. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Blake, C. H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Carlberg, J. K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Zasowski, G.; Hearty, F. [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Crepp, J. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rajpurohit, A. S.; Reylé, C. [Institut UTINAM, CNRS UMR 6213, Observatoire des Sciences de l' Univers THETA Franche-Comt é-Bourgogne, Université de Franche Comté, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Prieto, C. Allende; Hernández, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ebelke, G. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Frinchaboy, P. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Ge, J. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ∼2 km s{sup –1} and a measurement floor at vsin i = 4 km s{sup –1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ∼100-200 m s{sup –1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we

  9. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-01-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  10. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2017-09-20

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  11. New neighbours. III. 21 new companions to nearby dwarfs, discovered with adaptive optics

    Science.gov (United States)

    Beuzit, J.-L.; Ségransan, D.; Forveille, T.; Udry, S.; Delfosse, X.; Mayor, M.; Perrier, C.; Hainaut, M.-C.; Roddier, C.; Roddier, F.; Martín, E. L.

    2004-10-01

    We present some results of a CFHT adaptive optics search for companions to nearby dwarfs. We identify 21 new components in solar neighbourhood systems, of which 13 were found while surveying a volume-limited sample of M dwarfs within 12 pc. We are obtaining complete observations for this subsample, to derive unbiased multiplicity statistics for the very-low-mass disk population. Additionally, we resolve for the first time 6 known spectroscopic or astrometric binaries, for a total of 27 newly resolved companions. A significant fraction of the new binaries has favourable parameters for accurate mass determinations. The newly resolved companion of Gl 120.1C was thought to have a spectroscopic minimum mass in the brown-dwarf range (Duquennoy & Mayor \\cite{duquennoy91}), and it contributed to the statistical evidence that a few percent of solar-type stars might have close-in brown-dwarf companions. We find that Gl 120.1C actually is an unrecognised double-lined spectroscopic pair. Its radial-velocity amplitude had therefore been strongly underestimated by Duquennoy & Mayor (\\cite{duquennoy91}), and it does not truly belong to their sample of single-lined systems with minimum spectroscopic mass below the substellar limit. We also present the first direct detection of Gl 494B, an astrometric brown-dwarf candidate. Its luminosity straddles the substellar limit, and it is a brown dwarf if its age is less than ˜300 Myr. A few more years of observations will ascertain its mass and status from first principles. Based on observations made at Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The

  12. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    International Nuclear Information System (INIS)

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-01-01

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T eff ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  13. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Dufour, P.; Bergeron, P. [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Hermes, J. J., E-mail: alexg@nhn.ou.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  14. A PRECISE PHYSICAL ORBIT FOR THE M-DWARF BINARY GLIESE 268

    Energy Technology Data Exchange (ETDEWEB)

    Barry, R. K.; Danchi, W. C. [NASA Goddard Space Flight Center, Laboratory for Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Demory, B.-O.; Segransan, D.; Di Folco, E.; Queloz, D.; Udry, S. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Forveille, T.; Delfosse, X.; Mayor, M.; Perrier, C. [Geneva Observatory, Geneva University, 51 Ch.des Maillettes, CH-1290 Versoix (Switzerland); Spooner, H. R. [University of Maryland, College Park, MD 20742 (United States); Torres, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02136 (United States); Traub, W. A., E-mail: Richard.K.Barry@nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-11-20

    We report high-precision interferometric and radial velocity (RV) observations of the M-dwarf binary Gl 268. Combining measurements conducted using the IOTA interferometer and the ELODIE and Harvard Center for Astrophysics RV instruments leads to a mass of 0.22596 {+-} 0.00084 M {sub Sun} for component A and 0.19230 {+-} 0.00071 M {sub Sun} for component B. The system parallax as determined by these observations is 0.1560 {+-} 0.0030 arcsec-a measurement with 1.9% uncertainty in excellent agreement with Hipparcos (0.1572 {+-} 0.0033). The absolute H-band magnitudes of the component stars are not well constrained by these measurements; however, we can place an approximate upper limit of 7.95 and 8.1 for Gl 268A and B, respectively. We test these physical parameters against the predictions of theoretical models that combine stellar evolution with high fidelity, non-gray atmospheric models. Measured and predicted values are compatible within 2{sigma}. These results are among the most precise masses measured for visual binaries and compete with the best adaptive optics and eclipsing binary results.

  15. The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and Its Effect in the Measured Velocity Dispersions of Dwarf Spheroidal Galaxies

    OpenAIRE

    Olszewski, E.; Pryor, C.; Armandroff, T.

    1995-01-01

    We use a large set of radial velocities in the Ursa Minor and Draco dwarf spheroidal galaxies to search for binary stars and to infer the binary frequency. Of the 118 stars in our sample with multiple observations, six are velocity variables with $\\chi^2$ probabilities below 0.001. We use Monte Carlo simulations that mimic our observations to determine the efficiency with which our observations find binary stars. Our best, though significantly uncertain, estimate of the binary frequency for s...

  16. Constraints on the binary properties of mid- to late T dwarfs from Hubble space telescope WFC3 observations

    International Nuclear Information System (INIS)

    Aberasturi, M.; Solano, E.; Burgasser, A. J.; Mora, A.; Martín, E. L.; Reid, I. N.; Looper, D.

    2014-01-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (≤20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition.

  17. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Gray, R. O.; McGahee, C. E.; Griffin, R. E. M.; Corbally, C. J.

    2011-01-01

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  18. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  19. Searching for benchmark systems containing ultra-cool dwarfs and white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2013-04-01

    Full Text Available We have used the 2MASS all-sky survey and WISE to look for ultracool dwarfs that are part of multiple systems containing main sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. We consider the binary fraction for L dwarfs and main sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves. We have also identified a sample of common proper motion systems in which a main sequence star has a white dwarf as wide companion. These systems can help explore key issues in star evolution theory, as the initial-final mass relationship of white dwarfs, or the chromospheric activity-age relationship for stars still in the main sequence. Spectroscopy for 50 white dwarf candidates, selected from the SuperCOSMOS Science Archive, was obtained. We have also observed 6 of the main sequence star companions, and have estimated their effective temperatures, rotational and microturbulent velocities and metallicities.

  20. The white dwarf binary pathways survey - II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4

    Science.gov (United States)

    Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.

    2017-12-01

    We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.

  1. A Precise Physical Orbit For The M-Dwarf Binary Gliese 268

    Science.gov (United States)

    Barry, R. K.; Demory, B. -O.; Segransan, D.; Forveille, T.; Danchi, W. C.; Di Folco, E.; Queloz, D.; Spooner, H. R.; Torres, G.; Traub, W. A.; hide

    2012-01-01

    We report high-precision interferometric and radial velocity (RV) observations of the M-dwarf binary Gl 268. Combining measurements conducted using the IOTA interferometer and the ELODIE and Harvard Center for Astrophysics RV instruments leads to a mass of 0.22596 plus-minus 0.00084 Mass compared to the sun for component A and 0.19230 plus-minus 0.00071 Mass compared to the sun for component B. The system parallax as determined by these observations is 0.1560 plus-minus 0.0030 arcsec - a measurement with 1.9% uncertainty in excellent agreement with Hipparcos (0.1572 plus-minus 0.0033). The absolute H-band magnitudes of the component stars are not well constrained by these measurements; however, we can place an approximate upper limit of 7.95 and 8.1 for Gl 268A and B, respectively.We test these physical parameters against the predictions of theoretical models that combine stellar evolution with high fidelity, non-gray atmospheric models. Measured and predicted values are compatible within 2sigma. These results are among the most precise masses measured for visual binaries and compete with the best adaptive optics and eclipsing binary results.

  2. COMMON PROPER-MOTION WIDE WHITE DWARF BINARIES SELECTED FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Andrews, Jeff J.; Agüeros, Marcel A.; Belczynski, Krzysztof; Dhital, Saurav; Kleinman, S. J.; West, Andrew A.

    2012-01-01

    Wide binaries made up of two white dwarfs (WDs) receive far less attention than their tight counterparts. However, our tests using the binary population synthesis code StarTrack indicate that, for any set of reasonable initial conditions, there exists a significant observable population of double white dwarfs (WDWDs) with orbital separations of 10 2 -10 5 AU. We adapt the technique of Dhital et al. to search for candidate common proper-motion WD companions separated by 12,000 spectroscopically confirmed hydrogen-atmosphere WDs recently identified in the Sloan Digital Sky Survey. Using two techniques to separate random alignments from high-confidence pairs, we find nine new high-probability wide WDWDs and confirm three previously identified candidate wide WDWDs. This brings the number of known wide WDWDs to 45; our new pairs are a significant addition to the sample, especially at small proper motions ( –1 ) and large angular separations (>10''). Spectroscopic follow-up and an extension of this method to a larger, photometrically selected set of SDSS WDs may eventually produce a large enough dataset for WDWDs to realize their full potential as testbeds for theories of stellar evolution.

  3. A simulation of the laser interferometer space antenna data stream from galactic white dwarf binaries

    International Nuclear Information System (INIS)

    Benacquista, M J; DeGoes, J; Lunder, D

    2004-01-01

    Gravitational radiation from the galactic population of white dwarf binaries is expected to produce a background signal in the laser interferometer space antenna (LISA) frequency band. At frequencies below 1 mHz, this signal is expected to be confusion limited and has been approximated as Gaussian noise. At frequencies above about 5 mHz, the signal will consist of separable individual sources. We have produced a simulation of the LISA data stream from a population of 90k galactic binaries in the frequency range between 1 and 5 mHz. This signal is compared with the simulated signal from globular cluster populations of binaries. Notable features of the simulation as well as potential data analysis schemes for extracting information are presented

  4. White dwarfs in the WTS: Eclipsing binaries

    Directory of Open Access Journals (Sweden)

    Burleigh M.R.

    2013-04-01

    Full Text Available We have identified photometric white dwarf candidates in the WFCAM transit survey through a reduced proper motion versus colour approach. Box-fitting with parameters adjusted to detect the unique signature of a white dwarf + planet/brown dwarf transit/eclipse event was performed, as well as looking for variability due to the irradiation of the companions atmosphere by the white dwarf's high UV flux. We have also performed a simple sensitivity analysis in order to assess the ability of the survey to detect companions to white dwarfs via the transit method.

  5. The Shortest Period sdB Plus White Dwarf Binary CD-30 11223 (GALEX J1411-3053)

    Czech Academy of Sciences Publication Activity Database

    Vennes, Stephane; Kawka, Adela; O'Toole, S.J.; Németh, Péter; Burton, T.

    2012-01-01

    Roč. 759, č. 1 (2012), L25/1-L25/5 ISSN 2041-8205 R&D Projects: GA ČR GAP209/10/0967 Institutional support: RVO:67985815 Keywords : close binaries * white dwarf s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.345, year: 2012

  6. Detection of Double White Dwarf Binaries with Gaia, LSST and eLISA

    Science.gov (United States)

    Korol, V.; Rossi, E. M.; Groot, P. J.

    2017-03-01

    According to simulations around 108 double degenerate white dwarf binaries are expected to be present in the Milky Way. Due to their intrinsic faintness, the detection of these systems is a challenge, and the total number of detected sources so far amounts only to a few tens. This will change in the next two decades with the advent of Gaia, the LSST and eLISA. We present an estimation of how many compact DWDs with orbital periods less than a few hours we will be able to detect 1) through electromagnetic radiation with Gaia and LSST and 2) through gravitational wave radiation with eLISA. We find that the sample of simultaneous electromagnetic and gravitational waves detections is expected to be substantial, and will provide us a powerful tool for probing the white dwarf astrophysics and the structure of the Milky Way, letting us into the era of multi-messenger astronomy for these sources.

  7. COMMON PROPER-MOTION WIDE WHITE DWARF BINARIES SELECTED FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Jeff J.; Agueeros, Marcel A. [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Belczynski, Krzysztof [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Dhital, Saurav [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Kleinman, S. J. [Gemini Observatory, Northern Operations Center, Hilo, HI 96720 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States)

    2012-10-01

    Wide binaries made up of two white dwarfs (WDs) receive far less attention than their tight counterparts. However, our tests using the binary population synthesis code StarTrack indicate that, for any set of reasonable initial conditions, there exists a significant observable population of double white dwarfs (WDWDs) with orbital separations of 10{sup 2}-10{sup 5} AU. We adapt the technique of Dhital et al. to search for candidate common proper-motion WD companions separated by <10' around the >12,000 spectroscopically confirmed hydrogen-atmosphere WDs recently identified in the Sloan Digital Sky Survey. Using two techniques to separate random alignments from high-confidence pairs, we find nine new high-probability wide WDWDs and confirm three previously identified candidate wide WDWDs. This brings the number of known wide WDWDs to 45; our new pairs are a significant addition to the sample, especially at small proper motions (<200 mas yr{sup -1}) and large angular separations (>10''). Spectroscopic follow-up and an extension of this method to a larger, photometrically selected set of SDSS WDs may eventually produce a large enough dataset for WDWDs to realize their full potential as testbeds for theories of stellar evolution.

  8. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Wheeler, J. Craig

    2012-01-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M V ∼> 8.4 on the SN Ia in SNR 0509-67.5 and M V ∼> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  9. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    International Nuclear Information System (INIS)

    Kalomeni, B.; Rappaport, S.; Molnar, M.; Nelson, L.; Quintin, J.; Yakut, K.

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M ⊙ ), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P orb – M don ) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb ( M wd ) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb – M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  10. On the likelihood of detecting gravitational waves from Population III compact object binaries

    Science.gov (United States)

    Belczynski, Krzysztof; Ryu, Taeho; Perna, Rosalba; Berti, Emanuele; Tanaka, Takamitsu L.; Bulik, Tomasz

    2017-11-01

    We study the contribution of binary black hole (BH-BH) mergers from the first, metal-free stars in the Universe (Pop III) to gravitational wave detection rates. Our study combines initial conditions for the formation of Pop III stars based on N-body simulations of binary formation (including rates, binary fraction, initial mass function, orbital separation and eccentricity distributions) with an updated model of stellar evolution specific for Pop III stars. We find that the merger rate of these Pop III BH-BH systems is relatively small (≲ 0.1 Gpc-3 yr-1) at low redshifts (z 1 per cent) contribution of these stars to low-redshift BH-BH mergers. However, it remains to be tested whether (and at what level) rapidly spinning Pop III stars in the homogeneous evolution scenario can contribute to BH-BH mergers in the local Universe.

  11. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  12. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-09-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  13. Discovery of A Young L Dwarf Binary, SDSS J224953.47+004404.6AB

    Science.gov (United States)

    Allers, K. N.; Liu, Michael C.; Dupuy, Trent J.; Cushing, Michael C.

    2010-05-01

    We report discovery of a young 0farcs32 L dwarf binary, SDSS J2249+0044AB, found as the result of a Keck laser guide star adaptive optics imaging survey of young field brown dwarfs. Weak K I, Na I, and FeH features as well as strong VO absorption in the integrated-light J-band spectrum indicate a low surface gravity and hence young age for the system. From spatially resolved K-band spectra we determine spectral types of L3 ± 0.5 and L5 ± 1 for components A and B, respectively. SDSS J2249+0044A is spectrally very similar to G196-3B, an L3 companion to a young M2.5 field dwarf. Thus, we adopt 100 Myr (the age estimate of the G196-3 system) as the age of SDSS J2249+0044AB, but ages of 12-790 Myr are possible. By comparing our photometry to the absolute magnitudes of G196-3B, we estimate a distance to SDSS J2249+0044AB of 54 ± 16 pc and infer a projected separation of 17 ± 5 AU for the binary. Comparison of the luminosities to evolutionary models at an age of 100 Myr yields masses of 0.029 ± 0.006 and 0.022+0.006 -0.009 M sun for SDSS J2249+0044A and B, respectively. Over the possible ages of the system (12-790 Myr), the mass of SDSS J2249+0044A could range from 0.011 to 0.070 M sun and the mass of SDSS J2249+0044B could range from 0.009 to 0.065 M sun. Evolutionary models predict that either component could be burning deuterium, which could result in a mass ratio as low as 0.4, or alternatively, a reversal in the luminosities of the binary. We find a likely proper motion companion, GSC 00568-01752, which lies 48farcs9 away (a projected separation of 2600 AU) and has Sloan Digital Sky Survey and Two Micron All Sky Survey colors consistent with an early M dwarf. We calculate a photometric distance to GSC 00568-01752 of 53 ± 15 pc, in good agreement with our distance estimate for SDSS J2249+0044AB. The space motion of SDSS J2249+0044AB shows no obvious coincidence with known young moving groups, though radial velocity and parallax measurements are necessary to

  14. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    masses of the brown dwarf companions are 0.02 ± 0.01 M⊙ and 0.019 ± 0.002 M⊙ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events...

  15. Mid-Infrared Observations of the White Dwarf Brown Dwarf Binary GD 1400

    OpenAIRE

    Farihi, J.; Zuckerman, B.; Becklin, E. E.

    2005-01-01

    Fluxes are measured for the DA white dwarf plus brown dwarf pair GD 1400 with the Infrared Array Camera on the {\\em Spitzer Space Telescope}. GD 1400 displays an infrared excess over the entire $3-8\\mu$m region consistent with the presence of a mid- to late-type L dwarf companion. A discussion is given regarding current knowledge of this unique system.

  16. THE ELM SURVEY. III. A SUCCESSFUL TARGETED SURVEY FOR EXTREMELY LOW MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Allende Prieto, Carlos

    2012-01-01

    Extremely low mass (ELM) white dwarfs (WDs) with masses ☉ are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the seven ELM WDs with follow-up observations, six are short-period binaries and four have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or an Ia progenitor. The overall ELM survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.

  17. The double helium-white dwarf channel for the formation of AM CVn binaries

    Science.gov (United States)

    Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan

    2018-01-01

    Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation. However, a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer. Such stable mass transfer between two helium white dwarfs (HeWDs) provides one channel for the production of AM CVn binary stars. In previous calculations of double HeWD progenitors, the accreting HeWD was treated as a point mass. We have computed the evolution of 16 double HeWD models in order to investigate the consequences of treating the evolution of both components in detail. We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach. By comparing with observed periods and mass ratios, we redetermine masses of eight known AM CVn stars by our double HeWDs channel, i.e. HM Cnc, AM CVn, V406 Hya, J0926, J1240, GP Com, Gaia14aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240, GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double HeWD channel. The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna (LISA) project.

  18. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kalomeni, B.; Rappaport, S.; Molnar, M. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson, L. [Department of Physics, Bishop’s University, 2600 College St., Sherbrooke, Quebec, QC J1M 1Z7 (Canada); Quintin, J. [Department of Physics, McGill University, Montréal, QC H3A 2T8 (Canada); Yakut, K., E-mail: kalomeni@mit.edu, E-mail: sar@mit.edu, E-mail: momchil.molnar@gmail.com, E-mail: belinda.kalomeni@ege.edu.tr, E-mail: kadri.yakut@ege.edu.tr, E-mail: lnelson@ubishops.ca, E-mail: jquintin@physics.mcgill.ca [Department of Astronomy and Space Sciences, Ege University, 35100, İzmir (Turkey)

    2016-12-10

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  19. A systematic search for brown dwarfs orbiting nearby stars

    International Nuclear Information System (INIS)

    Henry, T.J.; Mccarthy, D.W. Jr.

    1990-01-01

    Survey data for brown dwarf and stellar companions relative to known M dwarf stars within 5 pc north of -30 deg are analyzed. A region 0.2 to 5 arcsec in radius around 27 stars at the IR H and K bands are examined using IR speckle interferometry. The frequency of binary versus single M dwarfs in the solar neighborhood is examined. The IR mass-magnitude relations and mass-luminosity-age relation are studied. The data reveal that there are 19 single M dwarfs, 8 M dwarf binaries, 1 M dwarf triple system, and 1 M dwarf in a triple system for M dwarfs within 5 pc north of -30 deg. Also of the 27 M dwarfs studied none was found to have a brown dwarf companion. 64 refs

  20. Constraining parameters of white-dwarf binaries using gravitational-wave and electromagnetic observations

    International Nuclear Information System (INIS)

    Shah, Sweta; Nelemans, Gijs

    2014-01-01

    The space-based gravitational wave (GW) detector, evolved Laser Interferometer Space Antenna (eLISA) is expected to observe millions of compact Galactic binaries that populate our Milky Way. GW measurements obtained from the eLISA detector are in many cases complimentary to possible electromagnetic (EM) data. In our previous papers, we have shown that the EM data can significantly enhance our knowledge of the astrophysically relevant GW parameters of Galactic binaries, such as the amplitude and inclination. This is possible due to the presence of some strong correlations between GW parameters that are measurable by both EM and GW observations, for example, the inclination and sky position. In this paper, we quantify the constraints in the physical parameters of the white-dwarf binaries, i.e., the individual masses, chirp mass, and the distance to the source that can be obtained by combining the full set of EM measurements such as the inclination, radial velocities, distances, and/or individual masses with the GW measurements. We find the following 2σ fractional uncertainties in the parameters of interest. The EM observations of distance constrain the chirp mass to ∼15%-25%, whereas EM data of a single-lined spectroscopic binary constrain the secondary mass and the distance with factors of two to ∼40%. The single-line spectroscopic data complemented with distance constrains the secondary mass to ∼25%-30%. Finally, EM data on double-lined spectroscopic binary constrain the distance to ∼30%. All of these constraints depend on the inclination and the signal strength of the binary systems. We also find that the EM information on distance and/or the radial velocity are the most useful in improving the estimate of the secondary mass, inclination, and/or distance.

  1. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  2. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  3. THE ELM SURVEY. III. A SUCCESSFUL TARGETED SURVEY FOR EXTREMELY LOW MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2012-01-10

    Extremely low mass (ELM) white dwarfs (WDs) with masses < 0.25 M{sub Sun} are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the seven ELM WDs with follow-up observations, six are short-period binaries and four have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or an Ia progenitor. The overall ELM survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.

  4. LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF BINARIES ACCRETING THROUGH DIRECT IMPACT

    International Nuclear Information System (INIS)

    Kremer, Kyle; Kalogera, Vassiliki; Sepinsky, Jeremy

    2015-01-01

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or SNe Ia. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters, which were found in previous studies. Removing these oscillations can reduce the peak mass transfer rate in some systems, keeping them from entering an unstable mass transfer phase

  5. CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA

    International Nuclear Information System (INIS)

    Maoz, Dan; Badenes, Carles; Bickerton, Steven J.

    2012-01-01

    We present a method to characterize statistically the parameters of a detached binary sample—binary fraction, separation distribution, and mass-ratio distribution—using noisy radial velocity data with as few as two, randomly spaced, epochs per object. To do this, we analyze the distribution of ΔRV max , the maximum radial velocity difference between any two epochs for the same object. At low values, the core of this distribution is dominated by measurement errors, but for large enough samples there is a high-velocity tail that can effectively constrain the parameters of the binary population. We discuss our approach for the case of a population of detached white dwarf (WD) binaries with separations that are decaying via gravitational wave emission. We derive analytic expressions for the present-day distribution of separations, integrated over the star formation history of the Galaxy, for parameterized initial WD separation distributions at the end of the common-envelope phase. We use Monte Carlo techniques to produce grids of simulated ΔRV max distributions with specific binary population parameters, and the same sampling cadences and radial velocity errors as the observations, and we compare them to the real ΔRV max distribution to constrain the properties of the binary population. We illustrate the sensitivity of the method to both the model and observational parameters. In the particular case of binary WDs, every model population predicts a merger rate per star which can easily be compared to specific Type Ia supernova rates. In a companion paper, we apply the method to a sample of ∼4000 WDs from the Sloan Digital Sky Survey. The binary fractions and separation distribution parameters allowed by the data indicate a rate of WD-WD mergers per unit stellar mass in the Galactic disk, ∼1 × 10 –13 mergers yr –1 M –1 ☉ , remarkably similar to the rate per unit mass of Type Ia supernovae in Milky Way like galaxies.

  6. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  7. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  8. Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC

    Science.gov (United States)

    Mason, Brian D.; Hartkopf, William I.; Miles, Korie N.

    2017-11-01

    A new relative orbit solution with new dynamical masses is determined for the nearby white dwarf-red dwarf pair 40 Eri BC. The period is 230.09 ± 0.68 years. It is predicted to close slowly over the next half-century, getting as close as 1.″32 in early 2066. We determine masses of 0.575 ± 0.018 {{ M }}⊙ for the white dwarf and 0.2041 ± 0.0064 {{ M }}⊙ for the red dwarf companion. The inconsistency of the masses determined by gravitational redshift and dynamical techniques, due to a premature orbit calculation, no longer exists.

  9. Dynamical Masses of Cool White Dwarfs in Double-Degenerate Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Nelan, E. P.; Schaefer, G.

    2014-01-01

    The cool white dwarfs (WDs) WD 1639+153 and WD 1818+126 were originally resolved into close visual binaries containing two WDs each during a survey with the Hubble Space Telescope (HST) and its Fine Guidance Sensors (FGS). Follow up FGS observations of these two double-degenerate (DD) systems, along with the previously known DD G 107-70, have yielded the orbital elements of all three visual binaries. We find orbital periods of 3.88 yr, 12.19 yr, and 18.84 yr for WD 1639+153, WD 1818+126, and G 107-70, respectively. Moreover, for each of the systems we have been observing nearby field stars with FGS1r in POS mode to determine the local inertial reference frame, from which we obtain the parallax and proper motion of the DD, along with the motion of each WD about its system barycenter. This leads directly to a dynamical mass for each WD. We have also used HST STIS observations to obtain individual spectra of each of the six WDs, which provide the effective temperature and subclass of each WD. This provides insight into the cooling age of each star. From the cooling ages and dynamical masses, we obtain constraints on the initial-mass/final-mass relation for WD stars.

  10. THE NIRSPEC ULTRACOOL DWARF RADIAL VELOCITY SURVEY

    International Nuclear Information System (INIS)

    Blake, Cullen H.; Charbonneau, David; White, Russel J.

    2010-01-01

    We report the results of an infrared Doppler survey designed to detect brown dwarf and giant planetary companions to a magnitude-limited sample of ultracool dwarfs. Using the NIRSPEC spectrograph on the Keck II telescope, we obtained approximately 600 radial velocity (RV) measurements over a period of six years of a sample of 59 late-M and L dwarfs spanning spectral types M8/L0 to L6. A subsample of 46 of our targets has been observed on three or more epochs. We rely on telluric CH 4 absorption features in Earth's atmosphere as a simultaneous wavelength reference and exploit the rich set of CO absorption features found in the K-band spectra of cool stars and brown dwarfs to measure RVs and projected rotational velocities. For a bright, slowly rotating M dwarf standard we demonstrate an RV precision of 50 m s -1 and for slowly rotating L dwarfs we achieve a typical RV precision of approximately 200 m s -1 . This precision is sufficient for the detection of close-in giant planetary companions to mid-L dwarfs as well as more equal mass spectroscopic binary systems with small separations (a +0.7 -0.6 Gyr, similar to that of nearby sun-like stars. We simulate the efficiency with which we detect spectroscopic binaries and find that the rate of tight (a +8.6 -1.6 %, consistent with recent estimates in the literature of a tight binary fraction of 3%-4%.

  11. A CAUTIONARY TALE: MARVELS BROWN DWARF CANDIDATE REVEALS ITSELF TO BE A VERY LONG PERIOD, HIGHLY ECCENTRIC SPECTROSCOPIC STELLAR BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Claude E. III; Stassun, Keivan G.; De Lee, Nathan [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ge, Jian; Fleming, Scott W. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL, 32611-2055 (United States); Deshpande, Rohit; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Gaudi, B. Scott; Eastman, Jason; Beatty, Thomas G. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Observatorio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Gonzalez Hernandez, Jonay I.; Femenia, Bruno; Mata Sanchez, Daniel [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ferreira, Leticia; Porto de Mello, Gustavo [Laboratorio Interinstitucional de e-Astronomia-LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Agol, Eric [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bizyaev, Dmitry, E-mail: claude.e.mack@vanderbilt.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-05-15

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R {approx}< 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i {approx} 50 M{sub Jup}) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e {approx} 0.8), its relatively long period (P {approx} 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight ({omega} {approx} 189 Degree-Sign ). As a result of these properties, for {approx}95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e {approx} 0.3). Only during the {approx}5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of {approx}15 km s{sup -1} reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  12. Conditions for accretion-induced collapse of white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, Kenichi; Kondo, Yoji

    1991-01-01

    Recent discovery of an unexpectedly large number of low-mass binary pulsars (LMBPs) in globular clusters has instigated active discussions on the evolutionary origin of binary pulsars. Prompted by the possibility that at least some of LMBPs originate from accretion-induced collapse (AIC) of white dwarfs, a reexamination is conducted as to whether or not AIC occurs for the new models of O + Ne + Mg white dwarfs and solid C + O white dwarfs that can ignite explosive nuclear burning at significantly lower central densities than in the previous models. Even with low critical densities, AIC is still much more likely than explosion for both types of white dwarfs. Possible regions for AIC are presented in a diagram of mass accretion rate vs initial mass of the white dwarfs. 42 refs

  13. Probing M Dwarf Model-Data Discrepancies via Precise, Empirical Characterization of a Long-Period F+M Binary

    Science.gov (United States)

    Stevens, Daniel; Gaudi, Scott; Beatty, Thomas; Siverd, Robert

    2018-05-01

    Double-lined eclipsing binaries (EBs) have been the gold standard for direct, precise (less than a few percent), and accurate measurements of stellar masses and radii. However, with the availability of Gaia parallaxes and nearly complete spectral energy distributions (SEDs) of millions of stars, it will soon be possible to make such measurements for the much larger number of single-lined EBs such as high mass-ratio systems and transiting planets, both of which are routinely found by transit surveys. Combining high-precision eclipse photometry and radial velocity (RV) observations of the primary star enables measurements of the primary star's density, the ratio of stellar radii, and a combination of the stars' masses. Broad-band photometry from the ultraviolet to the infrared plus a Gaia parallax and an effective temperature of the primary from either the SED or high-resolution spectra, allow one to measure the radius (and mass via the density) of the primary. The radius and mass of the secondary can then be determined in the usual way with the radius ratio and RVs, and the companion's effective temperature can be determined from a secondary eclipse measurement and the primary star's effective temperature. For single-lined EBs, the precision of ingress/egress duration measurements dominates the error budget of the masses and companion radius. We propose to observe one primary and secondary eclipse of the F+M binary TYC 4223-1012-1, an M dwarf on a 16.5-day orbit around an F dwarf. Ground-based data poorly constrain TYC 4223-1012-1's masses due to the near-impossibility of observing the full 10-hr eclipse from the ground. By combining extant RV and SED data with the Spitzer data, we expect to measure the mass, radius, and effective temperature of the M dwarf to a few percent. This is comparable to the precision of the best-characterized literature M dwarfs, but at an orbital period far beyond the majority of such systems, where tidal effects should be negligible.

  14. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-01-01

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M · ), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  15. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    Science.gov (United States)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  16. Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data

    Science.gov (United States)

    Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.

    2018-02-01

    Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.

  17. COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Mészáros, Peter; Ioka, Kunihito

    2013-01-01

    Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ∼10 4 sky –1 day –1 , the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs

  18. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    Science.gov (United States)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  19. Stark Broadening of Cr III Spectral Lines: DO White Dwarfs

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2018-04-01

    Full Text Available Using the modified semiempirical method of Dimitrijević and Konjević, Stark widths have been calculated for six Cr III transitions, for an electron density of 10 17 cm ‒ 3 and for temperatures from 5000–80,000 K. Results have been used for the investigation of the influence of Stark broadening on spectral lines in cool DO white dwarf atmospheres. Calculated Stark widths will be implemented in the STARK-B database, which is also a part of the Virtual Atomic and Molecular Data Center (VAMDC.

  20. Detecting white dwarf binaries in Mock LISA Data Challenge 3

    International Nuclear Information System (INIS)

    Blaut, A; Krolak, A; Babak, S

    2009-01-01

    We present a strategy for detecting gravitational wave signals from the Galactic white dwarf binaries in the Mock LISA Data Challenge 3 (MLDC3) and estimate their parameters. Our method is based on the matched filtering in the form of the F-statistic. We perform the search on three-dimensional space (sky coordinate and frequency of gravitational wave) below 3 mHz and include the fourth parameter (frequency derivative) at high frequencies. A template bank is used to search for the strongest signal in the data, then we remove it and repeat the search until we do not have signals in the data above a preselected threshold. For the template bank, we construct an optimal grid that realizes the best lattice covering with a constraint such that the nodes of the grid coincide with the Fourier frequencies. This enables the use of the fast Fourier transform algorithm to calculate the F-statistic.

  1. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  2. CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System

    Science.gov (United States)

    Liu, Michael C.; Delorme, Philippe; Dupuy, Trent J.; Bowler, Brendan P.; Albert, Loic; Artigau, Etienne; Reylé, Celine; Forveille, Thierry; Delfosse, Xavier

    2011-10-01

    We have identified CFBDSIR J1458+1013 as a 0farcs11 (2.6 AU) physical binary using Keck laser guide star adaptive optics imaging and have measured a distance of 23.1 ± 2.4 pc to the system based on near-IR parallax data from the Canada-France-Hawaii Telescope. The integrated-light near-IR spectrum indicates a spectral type of T9.5, and model atmospheres suggest a slightly higher temperature and surface gravity than the T10 dwarf UGPS J0722-05. Thus, CFBDSIR J1458+1013AB is the coolest brown dwarf binary found to date. Its secondary component has an absolute H-band magnitude that is 1.9 ± 0.3 mag fainter than UGPS J0722-05, giving an inferred spectral type of >T10. The secondary's bolometric luminosity of ~2 × 10-7 L sun makes it the least luminous known brown dwarf by a factor of 4-5. By comparing to evolutionary models and T9-T10 objects, we estimate a temperature of 370 ± 40 K and a mass of 6-15 M Jup for CFBDSIR J1458+1013B. At such extremes, atmospheric models predict the onset of novel photospheric processes, namely, the appearance of water clouds and the removal of strong alkali lines, but their impact on the emergent spectrum is highly uncertain. Our photometry shows that strong CH4 absorption persists in the H band, the J - K color is bluer than the latest known T dwarfs but not as blue as predicted by current models, and the J - H color delineates a possible inflection in the blueward trend for the latest T dwarfs. Given its low luminosity, atypical colors, and cold temperature, CFBDSIR J1458+1013B is a promising candidate for the hypothesized Y spectral class. However, regardless of its ultimate classification, CFBDSIR J1458+1013AB provides a new benchmark for measuring the properties of brown dwarfs and gas-giant planets, testing substellar models, and constraining the low-mass limit for star formation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  3. White dwarf models of supernovae and cataclysmic variables

    International Nuclear Information System (INIS)

    Nomoto, K.; Hashimoto, M.

    1986-01-01

    If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e,. composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period x-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae. 61 refs., 14 figs

  4. The Orbit of the L Dwarf + T Dwarf Spectral Binary SDSS J080531.84+481233.0

    Science.gov (United States)

    Burgasser, Adam J.; Blake, Cullen H.; Gelino, Christopher R.; Sahlmann, Johannes; Bardalez Gagliuffi, Daniella

    2016-08-01

    SDSS J080531.84+481233.0 is a closely separated, very-low-mass (VLM) binary identified through combined-light spectroscopy and confirmed as an astrometric variable. Here we report four years of radial velocity monitoring observations of the system that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02 ± 0.03 years, a semimajor axis of 0.76{}-0.06+0.05 au, and an eccenticity of 0.46 ± 0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4 ± 0.7 and T5.5 ± 1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90° ± 19°), and deduce a large system mass ratio (M 2/M 1 = {0.86}-0.12+0.10), substellar components (M 1 = {0.057}-0.014+0.016 M ⊙, M 2 = {0.048}-0.010+0.008 M ⊙), and a relatively old system age (minimum age = {4.0}-1.2+1.9 Gyr). The measured projected rotational velocity of the primary ({V}{rot}\\sin I = 34.1 ± 0.7 km s-1) implies that this inactive source is a rapid rotator (period ≲ 3 hr) and a viable system for testing spin-orbit alignment in VLM multiples. Robust model-independent constraints on the component masses may be possible through measurement of the reflex motion of the secondary at wavelengths in which it contributes a greater proportion of the combined luminence, while the system may also be resolvable through sparse-aperature mask interferometry with adaptive optics. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  5. THE SEARCH FOR PLANETARY MASS COMPANIONS TO FIELD BROWN DWARFS WITH HST/NICMOS

    International Nuclear Information System (INIS)

    Stumpf, M. B.; Brandner, W.; Joergens, V.; Henning, Th.; Bouy, H.; Koehler, R.; Kasper, M.

    2010-01-01

    We present the results of a high-resolution spectral differential imaging survey of 12 nearby, relatively young field L dwarfs (≤1 Gyr) carried out with the Hubble Space Telescope/NICMOS to search for planetary mass companions at small physical separations from their host. The survey resolved two brown dwarf binaries: the L dwarf system Kelu-1 AB and the newly discovered L/T transition system 2MASS 031059+164815 AB. For both systems, common proper motion has already been confirmed in follow-up observations which have been published elsewhere. The derived separations of the binaries are smaller than 6 AU and consistent with previous brown dwarf binary statistics. Their mass ratios of q ≥ 0.8 confirm the preference for equal-mass systems similar to a large number of other surveys. Furthermore, we found tentative evidence for a companion to the L4 dwarf 2MASSW 033703-175807, straddling the brown dwarf/planetary mass boundary and revealing an uncommonly low-mass ratio system (q ∼ 0.2) compared to the vast majority of previously found brown dwarf binaries. With a derived minimum mass of 10-15 M Jup a planetary nature of the secondary cannot be ruled out yet. However, it seems more likely to be a very low mass brown dwarf secondary at the border of the spectral T/Y transition regime, primarily due to its similarities to recently found very cool T dwarfs. This would make it one of the closest resolved brown dwarf binaries (0.''087 ± 0.''015, corresponding to 2.52 ± 0.44 AU at a distance of 29 pc) with the coolest (T eff ∼ 600-630 K) and least massive companion to any L or T dwarf.

  6. White-dwarf-white-dwarf galactic background in the LISA data

    International Nuclear Information System (INIS)

    Edlund, Jeffrey A.; Tinto, Massimo; Krolak, Andrzej; Nelemans, Gijs

    2005-01-01

    LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own Galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. Our approach relies on entirely analytic expressions of the LISA time-delay interferometric responses to the gravitational radiation emitted by such systems, which allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. This suggests that, during this time period, LISA could search for other gravitational wave signals incoming from directions that are away from the galactic plane. Since the galactic white-dwarf background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of 1 yr, we summarize the theory of cyclostationary random processes, present the corresponding generalized spectral method needed to characterize such process, and make a comparison between our analytic results and those obtained by applying our method to the simulated data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our Galaxy

  7. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  8. ACCURATE MASSES FOR THE PRIMARY AND SECONDARY IN THE ECLIPSING WHITE DWARF BINARY NLTT 11748

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Allende Prieto, Carlos; Agueeros, M. A.; Camilo, Fernando

    2010-01-01

    We measure the radial velocity curve of the eclipsing detached white dwarf binary NLTT 11748. The primary exhibits velocity variations with a semi-amplitude of 273 km s -1 and an orbital period of 5.641 hr. We do not detect any spectral features from the secondary star or any spectral changes during the secondary eclipse. We use our composite spectrum to constrain the temperature and surface gravity of the primary to be T eff = 8690 ± 140 K and log g = 6.54 ± 0.05, which correspond to a mass of 0.18 M sun . For an inclination angle of 89. 0 9 derived from the eclipse modeling, the mass function requires a 0.76 M sun companion. The merger time for the system is 7.2 Gyr. However, due to the extreme mass ratio of 0.24, the binary will most likely create an AM CVn system instead of a merger.

  9. Binary and ternary chelates of scandium (III), Yttrium (III) and lanthanum (III) with ethyleneglycol-bis(. beta. -aminoethylether)-tetraacetic acid as primary and substituted salicylic acids as secondary ligands

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A K; Chandra, M; Agarwala, B V; Dey, A K [Allahabad Univ. (India). Chemical Labs.

    1980-01-01

    Formation constants of binary and ternary complexes of the systems of the type: M-L and M-egta-L (M = scandium(III), yttrium(III) and lanthanum(III), egta = ethylene glycol-bis(..beta..-aminoethylether)-tetra acetic acid, L = o-cresotic acid (o-ca), m-cresotic acid (m-ca), 5-chlorosalicyclic acid(csa), and 3,5-dibromosalicylic acid (dbsa)) have been determined pH-metrically at 25deg and ..mu.. = 0.1M (KNO/sub 3/) in 50% (v/v) aqueous-ethanol medium. The order of stabilities of ternary complexes has been compared with those of corresponding binary complexes, and results discussed on the basis of coulombic interactions.

  10. Hubble Space Telescope Imaging and Spectral Analysis of Two Brown Dwarf Binaries at the L Dwarf/T Dwarf Transition

    OpenAIRE

    Burgasser, Adam J.; Gagliuffi, Daniella C. Bardalez; Gizis, John E.

    2010-01-01

    We present a detailed examination of the brown dwarf multiples 2MASS J08503593+1057156 and 2MASS J17281150+3948593, both suspected of harboring components that straddle the L dwarf/T dwarf transition. Resolved photometry from Hubble Space Telescope/NICMOS show opposite trends in the relative colors of the components, with the secondary of 2MASS J0850+1057 being redder than its primary, while that of 2MASS J1728+3948 is bluer. We determine near-infrared component types by matching combined-lig...

  11. The brown dwarf kinematics project

    Science.gov (United States)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  12. White dwarfs - the once and future suns

    International Nuclear Information System (INIS)

    Trimble, V.

    1986-01-01

    The history and properties of white dwarfs (Bessel's conclusion that Sirius and Procyon have invisible companions, Clark's discovery of Sirius B, Adams and Russell's study of white dwarf spectra, Chandrasekhar's explanation of white dwarf structure by equations incorporating quantum mechanics and relativity) are treated. Formation of white dwarfs, degeneracy, binary white dwarfs (and novae and supernovae) are explained. A mystery nearly 50 years old regarding the spectrum of the star Greenwich +70 degrees-8247 has been solved: it involves a stationary line phenomenon and a magnetic field of 300-500 million gauss. Processes being studied in white dwarfs and white dwarf models include gravitational settling, accretion, dredge-up, radiation pressure, and diffusive hydrogen burning

  13. USING CLOSE WHITE DWARF + M DWARF STELLAR PAIRS TO CONSTRAIN THE FLARE RATES IN CLOSE STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dylan P.; West, Andrew A. [Astronomy Department, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Becker, Andrew C., E-mail: dpmorg@bu.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing H α in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz -bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  14. Double Degenerates among DA white dwarfs

    International Nuclear Information System (INIS)

    Bragaglia, A.; Greggio, L.; Renzini, A.; D'odorico, S.

    1990-01-01

    The results of a spectroscopic survey of catalog white dwarfs in search of radial velocity variations indicative of a binary motion are reported. In a sample of 54 DA white dwarfs, one Double Degenerate (DD) system with a period of 1.15 days (the shortest period DD system yet discovered) is found. Two other excellent and two good DD candidates, and two white dwarf + red dwarf pairs were also found. If all the candidates should be confirmed, this would indicate a frequency of about 13 percent of interacting binaries in an unbiased sample of evolved stars, with a DD frequency of about 10 percent. These results suggest fairly large values for the common-envelope parameter alpha, implying that a source of energy other than orbital may be required to eject the envelope during common-envelope events. Finally, in combination with previous evidence our result implies that DDs with WD components of the DA variety are unlikely to be the precursors of Type I supernovae, but DDs with non-DA components remain very attractive candidates. 20 refs

  15. On the masses of the white dwarfs in cataclysmic variables

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The question of the masses of the white dwarfs in cataclysmic binaries is examined. It is shown that selection effects can explain an overabundance of massive white dwarfs in novae but not in dwarf novae. It is proposed that the spiralling-in process in the common envelope favours the formation of more massive white dwarfs A number of simplified spiralling-in calculations are performed. The calculations demonstrate that the probability of coalescence of the secondary with the primary core, or secondary dissipation, is higher in the case of a giant envelope than in the case of a super giant envelope. Consequently, binaries with primary core masses greater than approx. 0.7 Msolar masses (and thus massive white dwarf remnants), have a better chance of surviving common envelope evolution and are therefore better candidates for the formation of cataclysmic variables. (author)

  16. MONTE CARLO POPULATION SYNTHESIS OF POST-COMMON-ENVELOPE WHITE DWARF BINARIES AND TYPE Ia SUPERNOVA RATE

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2016-07-20

    Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering both gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower

  17. Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies

    Science.gov (United States)

    Zhang, Yimiao; Keres, Dusan; FIRE Team

    2018-01-01

    We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.

  18. Searching for Exoplanets around X-Ray Binaries with Accreting White Dwarfs, Neutron Stars, and Black Holes

    Science.gov (United States)

    Imara, Nia; Di Stefano, Rosanne

    2018-05-01

    We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.

  19. The Role of Binarity in the Angular Momentum Evolution of M Dwarfs

    Science.gov (United States)

    Stauffer, John; Rebull, Luisa; K2 clusters team

    2018-01-01

    We have analysed K2 light curves for of order a thousand low mass stars in each of the 8 Myr old Upper Sco association, the 125 Myr age Pleiades open cluster and the ~700 Myr old Praesepe cluster. A very large fraction of these stars show well-determined rotation periods with K2, and where the star is a binary, we usually are able to determine periods for both stars. In Upper Sco, where there are ~150 M dwarf binaries with K2 light curves, the binary stars have periods that are much shorter on average and much closer to each other than would be true if drawn at random from the Upper Sco M dwarf single stars. The same is true in the Pleiades,though the size of the differences from the single M dwarf population is smaller. By Praesepe age, the M dwarf binaries are still somewhat rapidly rotating but their period differences are not significantly different from what would be true if drawn by chance from the singles.

  20. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-01-01

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  1. A Catalog of Spectroscopically Selected Close Binary Systems from the Sloan Digital Sky Survey Data Release Four

    National Research Council Canada - National Science Library

    Silvestri, Nicole M; Eisenstein, Daniel J; McGehee, Peregrine; Smith, J. A; Harris, Hugh C; Kleinman, Scot J; Krzesinski, Jurek; Neilsen, Jr., Eric H; Schneider, Donald P

    2006-01-01

    .... We have estimated the distances for each of the white dwarf main-sequence star binaries and used white dwarf evolutionary grids to establish the age of each binary system from the white dwarf cooling times...

  2. Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics

    Science.gov (United States)

    Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan

    2018-06-01

    Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.

  3. Optical observations of close binaries with the Mark III Stellar Interferometer

    International Nuclear Information System (INIS)

    Pan, X.P.; Shao, M.; Colavita, M.M.; Armstrong, T.; Mozurkewich, D.

    1990-01-01

    For the first time, four spectroscopic binaries have been directly resolved with the Mark III Stellar Interferometer. Observations in 1988 and 1989 were analyzed, and visual orbits for four binaries have been determined. The semimajor axes for Beta Tri, Alpha Equ, Alpha And and Beta Ari are approximately 0.008 arcsec, 0.012 arcsec, 0.024 arcsec and 0.037 arcsec, respectively. The magnitude differences between two components are 0.5, 0.7, 1.8 and 2.6 mag, respectively. All of the orbital elements for Alpha And and Beta Ari were determined from interferometric data only, and agree well with spectroscopic observations. Predictions of relative position between the two components for these binaries are consistent with the measurements to less than 0.001 arcsec. Combined with data from spectroscopy, masses and distance for the double-lined spectroscopic binary Beta Ari are derived, and the results indicate that both components of Beta Ari agree well with the empirical mass-luminosity relation. 12 refs

  4. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  5. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  6. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  7. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700

    Directory of Open Access Journals (Sweden)

    Bogensberger David

    2017-12-01

    Full Text Available Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40 M⊙, an elliptical orbit with an eccentricity of 0.376(98 and an orbital period of 11.77(67 years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  8. A 12 MINUTE ORBITAL PERIOD DETACHED WHITE DWARF ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Hermes, J. J.; Winget, D. E.; Prieto, Carlos Allende

    2011-01-01

    We have discovered a detached pair of white dwarfs (WDs) with a 12.75 minute orbital period and a 1315 km s -1 radial velocity amplitude. We measure the full orbital parameters of the system using its light curve, which shows ellipsoidal variations, Doppler boosting, and primary and secondary eclipses. The primary is a 0.25 M sun tidally distorted helium WD, only the second tidally distorted WD known. The unseen secondary is a 0.55 M sun carbon-oxygen WD. The two WDs will come into contact in 0.9 Myr due to loss of energy and angular momentum via gravitational wave radiation. Upon contact the systems may merge (yielding a rapidly spinning massive WD), form a stable interacting binary, or possibly explode as an underluminous Type Ia supernova. The system currently has a gravitational wave strain of 10 -22 , about 10,000 times larger than the Hulse-Taylor pulsar; this system would be detected by the proposed Laser Interferometer Space Antenna gravitational wave mission in the first week of operation. This system's rapid change in orbital period will provide a fundamental test of general relativity.

  9. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS

    International Nuclear Information System (INIS)

    Dieterich, Sergio B.; Henry, Todd J.; Golimowski, David A.; Krist, John E.; Tanner, Angelle M.

    2012-01-01

    We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within ∼10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel –1 , NICMOS can easily resolve binaries with subarcsecond separations in the 19.''5×19.''5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during the second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. We calculate a multiplicity fraction of 0.0 +3.5 –0.0 % for L companions to M dwarfs in the separation range of 5-70 AU, and 2.3 +5.0 –0.7 % for L and T companions to M dwarfs in the separation range of 10-70 AU. We also discuss trends in the color-magnitude diagrams using various color combinations and present astrometry for 19 multiple systems in our sample. Considering these results and results from several other studies, we argue that the so-called brown dwarf desert extends to binary systems with low-mass primaries and is largely independent of primary mass, mass ratio, and separations. While focusing on companion properties, we discuss how the qualitative agreement between observed companion mass functions and initial mass functions suggests that the paucity of brown dwarfs in either population may be due to a common cause and not due to binary formation mechanisms.

  10. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Dieterich, Sergio B.; Henry, Todd J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106 (United States); Golimowski, David A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Krist, John E. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Tanner, Angelle M., E-mail: dieterich@chara.gsu.edu [Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39762 (United States)

    2012-08-15

    We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within {approx}10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel{sup -1}, NICMOS can easily resolve binaries with subarcsecond separations in the 19.''5 Multiplication-Sign 19.''5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during the second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. We calculate a multiplicity fraction of 0.0{sup +3.5}{sub -0.0}% for L companions to M dwarfs in the separation range of 5-70 AU, and 2.3{sup +5.0}{sub -0.7}% for L and T companions to M dwarfs in the separation range of 10-70 AU. We also discuss trends in the color-magnitude diagrams using various color combinations and present astrometry for 19 multiple systems in our sample. Considering these results and results from several other studies, we argue that the so-called brown dwarf desert extends to binary systems with low-mass primaries and is largely independent of primary mass, mass ratio, and separations. While focusing on companion properties, we discuss how the qualitative agreement between observed companion mass functions and initial mass functions suggests that the paucity of brown dwarfs in either population may be due to a common cause and not due to binary formation mechanisms.

  11. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  12. Studies of Binary Complexes of Tripodal Ligand cis,cis-1,3,5-tris(methylaminocyclohexane with Cr(III and Fe(III

    Directory of Open Access Journals (Sweden)

    S. Esakki Muthu

    2005-01-01

    Full Text Available The formation of binary complexes of Cr(III and Fe(III with a tripodal ligand cis,cis-1,3,5-tris(methylaminocyclohexane (tmach (L has been investigated in solution. The overall stability constants of tmach with Cr(III and Fe(III were determined by potentiometric method at an ionic strength of 0.1 M NaClO4 at 25±1°C in aqueous medium. The formation of species like MLH25+, MLH4+, ML3+, ML(OH2+ and ML(OH3 were observed. Fe(III was found to form more stable complexes than Cr(III. Molecular mechanics calculations were performed to explain the mode of coordination in solution.

  13. Luminescence study on solvation of americium(III), curium(III) and several lanthanide(III) ions in nonaqueous and binary mixed solvents

    International Nuclear Information System (INIS)

    Kimura, T.; Nagaishi, R.; Kato, Y.; Yoshida, Z.

    2001-01-01

    The luminescence lifetimes of An(III) and Ln(III) ions [An=Am and Cm; Ln=Nd, Sm, Eu, Tb and Dy] were measured in dimethyl sulfoxide(DMSO), N,N-dimethylformamide(DMF), methanol(MeOH), water and their perdeuterated solvents. Nonradiative decay rates of the ions were in the order of H 2 O > MeOH > DMF > DMSO, indicating that O-H vibration is more effective quencher than C-H, C=O, and S=O vibrations in the solvent molecules. Maximal lifetime ratios τ D /τ H were observed for Eu(III) in H 2 O, for Sm(III) in MeOH and DMF, and for Sm(III) and Dy(III) in DMSO. The solvent composition in the first coordination sphere of Cm(III) and Ln(III) in binary mixed solvents was also studied by measuring the luminescence lifetime. Cm(III) and Ln(III) were preferentially solvated by DMSO in DMSO-H 2 O, by DMF in DMF-H 2 O, and by H 2 O in MeOH-H 2 O over the whole range of the solvent composition. The order of the preferential solvation, i.e., DMSO > DMF > H 2 O > MeOH, correlates with the relative basicity of these solvents. The Gibbs free energy of transfer of ions from water to nonaqueous solvents was further estimated from the degree of the preferential solvation. (orig.)

  14. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Allende Prieto, Carlos; Cabrera-Lavers, Antonio [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Mukadam, Anjum S., E-mail: jjhermes@astro.as.utexas.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2012-10-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (- 9.8 {+-} 2.8) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.31 {+-} 0.09 ms yr{sup -1}). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M{sub 1} = 0.26 {+-} 0.04 M{sub Sun} and M{sub 2} = 0.50 {+-} 0.04 M{sub Sun }. General relativity predicts orbital decay due to gravitational wave radiation of (- 8.2 {+-} 1.7) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.26 {+-} 0.05 ms yr{sup -1}). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  15. LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3π PAN-STARRS1 SURVEY

    International Nuclear Information System (INIS)

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Morganson, Eric; Rix, Hans-Walter; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Wainscoat, Richard J.; Price, Paul A.

    2013-01-01

    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r P1 - and i P1 -band imaging data. Both are luminous systems (M V ∼ –12) located at projected distances of 20.°3 and 10.°5 from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756 +44 -28 kpc and 772 +61 -56 kpc, respectively, and corresponding M31-centric distances of 275 ± 7 kpc and 144 +6 -4 kpc. The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r h = 4.2 +0.4 -0.5 arcmin or 912 +124 -93 pc for Lac I; r h = 6.5 +1.2 -1.0 arcmin or 1456 ± 267 pc for Cas III) and consequently low surface brightness (μ 0 ∼ 26.0 mag arcsec –2 ), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3π Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.

  16. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  17. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2013-01-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with M B extend to spirals. However, the V-band break surface brightness is independent of break type, M B , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms

  18. Formation of Extremely Low-mass White Dwarf Binaries

    Science.gov (United States)

    Sun, M.; Arras, P.

    2018-05-01

    Motivated by the discovery of several pulsating, extremely low-mass white dwarfs (ELM WDs, mass M ≲ 0.18 M ⊙) that likely have WD companions, this paper discusses binary formation models for these systems. ELM WDs are formed using angular momentum losses by magnetic braking. Evolutionary models are constructed using the Modules for Experiments in Stellar Astrophysics (MESA), with ELM WD progenitors in the range 1.0 ≲ M d/M ⊙ ≲ 1.5 and WD companions in the range 0.4 ≲ M a/M ⊙ ≲ 0.9. A prescription to reduce magnetic braking for thin surface convection zones is included. Upon the thinning of the evolved donor envelope, the donor star shrinks out of contact and mass transfer (MT) ceases, revealing the ELM WD. Systems with low masses have previously been suggested as possible AM CVNs. Systems with high masses, up to the limit M ≃ 0.18 M ⊙ at which shell flashes occur on the WD cooling track, tend to expand out to orbital periods P orb ≳ 15 hr. In between this range, ELM WDs may become pulsators both as pre-WDs and on the WD cooling track. Brickhill’s criterion for convective mode driving is used to estimate the location of the blue edge of the g-mode instability strip. In the appendix, we show that the formation of an ELM WD by unstable MT or a common-envelope event is unlikely. Stable Roche-lobe overflow with conservative MT produces only M ≳ 0.2 M ⊙.

  19. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  20. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    Science.gov (United States)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  1. Characterizing the Resolved M6 Dwarf Twin LP 318-218AB

    Science.gov (United States)

    Moreno Hilario, Elizabeth; Burgasser, Adam J.; Bardalez Gagliuffi, Daniella; Tamiya, Tomoki

    2017-01-01

    The lowest-mass stars and brown dwarfs are among the most common objects in the Milky Way Galaxy, but theories of their formation and evolution remain poorly constrained. Binary systems are important for understanding the formation of these objects and for making direct orbit and mass measurements to validate evolutionary theories. We report the discovery of LP 318-218, a high proper motion late M dwarf, as a near equal-brightness binary system with a separation of 0.72 arcseconds. Resolved near-infrared spectroscopy confirms the components as nearly identical M6 twins. We using our resolved photometry and spectroscopy to estimate the distance, projected separation and tangential velocity of the system, and confirm common proper motion. We also perform atmosphere model fits to the resolved spectra to assess their physical properties. We place LP 318-218 in context with other widely-separated late M dwarf binaries.

  2. Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets

    International Nuclear Information System (INIS)

    Stroeer, Alexander; Veitch, John; Roever, Christian; Bloomer, Ed; Clark, James; Christensen, Nelson; Hendry, Martin; Messenger, Chris; Meyer, Renate; Pitkin, Matthew; Toher, Jennifer; Umstaetter, Richard; Vecchio, Alberto; Woan, Graham

    2007-01-01

    We report on the analysis of selected single source data sets from the first round of the mock LISA data challenges (MLDC) for white dwarf binaries. We implemented an end-to-end pipeline consisting of a grid-based coherent pre-processing unit for signal detection and an automatic Markov Chain Monte Carlo (MCMC) post-processing unit for signal evaluation. We demonstrate that signal detection with our coherent approach is secure and accurate, and is increased in accuracy and supplemented with additional information on the signal parameters by our Markov Chain Monte Carlo approach. We also demonstrate that the Markov Chain Monte Carlo routine is additionally able to determine accurately the noise level in the frequency window of interest

  3. High-dispersion observations of H-alpha in the suspected brown dwarf, white dwarf binary system G29-38

    International Nuclear Information System (INIS)

    Liebert, J.; Saffer, R.A.; Pilachowski, C.A.

    1989-01-01

    High-dispersion spectroscopy of the H-alpha absorption line of the cool DA white dwarf G29-38 is reported. This is the star for which a recently detected IR excess has been suggested to be due to a possible brown dwarf companion. Three echelle spectra show no evidence for radial-velocity variations larger than about 1.1 + or - 8.7 km/s and are used to derive a weighted heliocentric radial velocity of 33.7 + or - 4.3 kms/s for the white dwarf. The observations of a sharp absorption-line core restricts the possible rotation of the white dwarf to 40 km/s or less and ensures that any surface magnetic field has a strength of 100,000 G or less. These results make it unlikely that the DA white dwarf has previously been in a cataclysmic variable accretion phase. 18 references

  4. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  5. The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Martínez-Vázquez, Clara E.; Monelli, Matteo; Bernard, Edouard J.; Gallart, Carme; Stetson, Peter B.; Skillman, Evan D.; Bono, Giuseppe; Cassisi, Santi; Fiorentino, Giuliana; McQuinn, Kristen B. W.; Cole, Andrew A.; McConnachie, Alan W.; Martin, Nicolas F.; Dolphin, Andrew E.; Boylan-Kolchin, Michael; Aparicio, Antonio; Hidalgo, Sebastian L.; Weisz, Daniel R.

    2017-12-01

    We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), and XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three eclipsing binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit (I, B-I) relations published by Marconi et al., we obtain distance moduli of μ 0 = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties <0.11 mag. We have considered an enlarged sample of 16 M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods and amplitudes) with those of 15 Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13028 and 13739.

  6. Survival of a brown dwarf after engulfment by a red giant star.

    Science.gov (United States)

    Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R

    2006-08-03

    Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.

  7. On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V

    Science.gov (United States)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-01-01

    We use deep Gemini/GMOS-S g, r photometry to study the three ultra-faint dwarf galaxy candidates DES1, Eridanus III (Eri III), and Tucana V (Tuc V). Their total luminosities, M V (DES1) = ‑1.42 ± 0.50 and M V (Eri III) = ‑2.07 ± 0.50, and mean metallicities, [{Fe}/{{H}}]=-{2.38}-0.19+0.21 and [{Fe}/{{H}}]=-{2.40}-0.12+0.19, are consistent with them being ultra-faint dwarf galaxies, as they fall just outside the 1σ confidence band of the luminosity–metallicity relation for Milky Way satellite galaxies. However, their positions in the size–luminosity relation suggest that they are star clusters. Interestingly, DES1 and Eri III are at relatively large Galactocentric distances, with DES1 located at {D}{GC}=74+/- 4 {kpc} and Eri III at {D}{GC}=91+/- 4 {kpc}. In projection, both objects are in the tail of gaseous filaments trailing the Magellanic Clouds and have similar 3D separations from the Small Magellanic Cloud (SMC): {{Δ }}{D}{SMC,{DES}1}=31.7 kpc and {{Δ }}{D}{SMC,{Eri}{III}}=41.0 kpc, respectively. It is plausible that these stellar systems are metal-poor SMC satellites. Tuc V represents an interesting phenomenon in its own right. Our deep photometry at the nominal position of Tuc V reveals a low-level excess of stars at various locations across the GMOS field without a well-defined center. An SMC Northern Overdensity–like isochrone would be an adequate match to the Tuc V color–magnitude diagram, and the proximity to the SMC (12.°1 {{Δ }}{D}{SMC,{Tuc}{{V}}}=13 kpc) suggests that Tuc V is either a chance grouping of stars related to the SMC halo or a star cluster in an advanced stage of dissolution.

  8. The DWARF project

    Science.gov (United States)

    Christopoulou, P. E.

    2013-09-01

    In the era of staggering Kepler data and sophisticated approach of the automatic analysis, how obsolete are the traditional object-by-object multiwavelength photometric observations? Can we apply the new tools of classification, light curve modeling and timing analysis to study the newly detected or/and most interesting Eclipsing Binaries or to detect circumbinary bodies? In this talk, I will discuss developments in this area in the light of the recent DWARF project that promises additional useful science of binary stars within an extensive network of relatively small to medium-size telescopes with apertures of ~20-200 cm.

  9. The White-Dwarf Mass-Radius Relation from 40 Eridani B and Other Nearby Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bedard, A.

    2018-01-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD's mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M⊙. We have used model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then comparethese results with WD interior models.Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star's location in the mass-radius plane. This consistency is, however, achieved only if we assume a "thin'' outer hydrogen layer, with qH = MH/MWD ∼ 10–10.We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of expectation from canonical stellar-evolution theory of "thick'' H layers with qH ∼ 10–4 . The cooling age of 40 Eri B is ~122 Myr, and its total age is ~1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observation is excellent in all cases.However, astrophysical puzzles remain. The eccentricity of the BC orbit has remained high (0.43), even though the progenitor of B ought to have interacted tidally with C when it was an AGB star. This puzzle exists also for the Sirius and Procyon systems. If thin hydrogen layers are common among WDs, the mass scale will need to be shifted downwards by a few hundredths of a solar mass.

  10. Binary White Dwarfs in the Galactic Halo

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Helmi, Amina; Starkenburg, Else; Pols, Onno; Brown, Anthony G. A.

    We use the stellar population synthesis code SeBa (Portegies Zwart & Verbunt (1996), Toonen, Nelemans & Portegies Zwart (2012)) to study the halo white dwarf population. Here we assume a Kroupa initial mass function and compare 4 models, varying two parameters: the star formation (SF) history of the

  11. The mass and radius of the M dwarf companion to GD 448

    OpenAIRE

    Maxted, P. F. L.; Marsh, T. R.; Moran, C.; Dhillon, V. S.; Hilditch, R. W.

    1998-01-01

    We present spectroscopy and photometry of GD 448, a detached white dwarf - M dwarf binary with a period of 2.47h. We find that the NaI 8200A feature is composed of narrow emission lines due to irradiation of the M dwarf by the white dwarf within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational red shift measurement from spectra of the H-alpha line, we are able to derive masses for the white dwarf and M dwarf dir...

  12. Discovery of a Highly Unequal-mass Binary T Dwarf with Keck Laser Guide Star Adaptive Optics: A Coevality Test of Substellar Theoretical Models and Effective Temperatures

    Science.gov (United States)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K.

    2010-10-01

    Highly unequal-mass ratio binaries are rare among field brown dwarfs, with the mass ratio distribution of the known census described by q (4.9±0.7). However, such systems enable a unique test of the joint accuracy of evolutionary and atmospheric models, under the constraint of coevality for the individual components (the "isochrone test"). We carry out this test using two of the most extreme field substellar binaries currently known, the T1 + T6 epsilon Ind Bab binary and a newly discovered 0farcs14 T2.0 + T7.5 binary, 2MASS J12095613-1004008AB, identified with Keck laser guide star adaptive optics. The latter is the most extreme tight binary resolved to date (q ≈ 0.5). Based on the locations of the binary components on the Hertzsprung-Russell (H-R) diagram, current models successfully indicate that these two systems are coeval, with internal age differences of log(age) = -0.8 ± 1.3(-1.0+1.2 -1.3) dex and 0.5+0.4 -0.3(0.3+0.3 -0.4) dex for 2MASS J1209-1004AB and epsilon Ind Bab, respectively, as inferred from the Lyon (Tucson) models. However, the total mass of epsilon Ind Bab derived from the H-R diagram (≈ 80 M Jup using the Lyon models) is strongly discrepant with the reported dynamical mass. This problem, which is independent of the assumed age of the epsilon Ind Bab system, can be explained by a ≈ 50-100 K systematic error in the model atmosphere fitting, indicating slightly warmer temperatures for both components; bringing the mass determinations from the H-R diagram and the visual orbit into consistency leads to an inferred age of ≈ 6 Gyr for epsilon Ind Bab, older than previously assumed. Overall, the two T dwarf binaries studied here, along with recent results from T dwarfs in age and mass benchmark systems, yield evidence for small (≈100 K) errors in the evolutionary models and/or model atmospheres, but not significantly larger. Future parallax, resolved spectroscopy, and dynamical mass measurements for 2MASS J1209-1004AB will enable a more

  13. NEW PRECISION ORBITS OF BRIGHT DOUBLE-LINED SPECTROSCOPIC BINARIES. III. HD 82191, ω DRACONIS, AND 108 HERCULIS

    International Nuclear Information System (INIS)

    Fekel, Francis C.; Williamson, Michael H.; Tomkin, Jocelyn

    2009-01-01

    We have determined improved spectroscopic orbits for three double-lined binaries, HD 82191 (Am), ω Dra (F5 V), and 108 Her (Am), using radial velocities from the 2.1 m telescope at McDonald Observatory, the coude feed telescope at Kitt Peak National Observatory, and 2 m telescope at Fairborn Observatory. The orbital periods range from 5.28 to 9.01 days, and all three systems have circular orbits. The new orbital dimensions (a 1 sin i and a 2 sin i) and minimum masses (m 1 sin 3 i and m 2 sin 3 i) have accuracies of 0.2% or better. Our improved results confirm the large minimum masses of HD 82191 and also agree with the values previously found for ω Dra. However, for the components of 108 Her our minimum masses are about 20% larger than the previous best values. We conclude that both components of HD 82191 as well as the primary of 108 Her are Am stars. However, the A9 secondary of 108 Her has normal abundances. We estimate spectral types of F4 dwarf and G0 dwarf for the components of ω Dra. The primaries of the three binaries are synchronously rotating as is the secondary of 108 Her. The secondaries of HD 82191 and ω Dra are possibly synchronously rotating.

  14. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  15. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. SPITZER SPECTROSCOPY OF THE CIRCUMPRIMARY DISK IN THE BINARY BROWN DWARF 2MASS J04414489+2301513

    International Nuclear Information System (INIS)

    Adame, Lucia; Calvet, Nuria; McClure, M. K.; Hartmann, Lee; Luhman, K. L.; D'Alessio, Paola; Furlan, Elise; Forrest, William J.; Watson, Dan M.

    2011-01-01

    Using the Spitzer Infrared Spectrograph, we have performed mid-infrared spectroscopy on the young binary brown dwarf 2MASS J04414489+2301513 (15 AU) in the Taurus star-forming region. The spectrum exhibits excess continuum emission that likely arises from a circumstellar disk around the primary. Silicate emission is not detected in these data, indicating the presence of significant grain growth. This is one of the few brown dwarf disks at such a young age (∼1 Myr) that has been found to lack silicate emission. To quantitatively constrain the properties of the disk, we have compared the spectral energy distribution of 2MASS J04414489+2301513 to the predictions of our vertical structure codes for irradiated accretion disks. Our models suggest that the remaining atmospheric grains of moderately depleted layers may have grown to a size of ∼>5 μm. In addition, our model fits indicate an outer radius of 0.2-0.3 AU for the disk. The small size of this circumprimary disk could be due to truncation by the secondary. The absence of an outer disk containing a reservoir of small, primordial grains, combined with a weak turbulent mechanism, may be responsible for the advanced grain growth in this disk.

  17. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    International Nuclear Information System (INIS)

    Hermes, J. J.; Winget, D. E.; Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J.; Brown, Warren R.; Allende Prieto, Carlos; Cabrera-Lavers, Antonio; Mukadam, Anjum S.

    2012-01-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (– 9.8 ± 2.8) × 10 –12 s s –1 (or –0.31 ± 0.09 ms yr –1 ). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M 1 = 0.26 ± 0.04 M ☉ and M 2 = 0.50 ± 0.04 M ☉ . General relativity predicts orbital decay due to gravitational wave radiation of (– 8.2 ± 1.7) × 10 –12 s s –1 (or –0.26 ± 0.05 ms yr –1 ). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  18. A visible and infrared study of the eclipsing dwarf nova OY Carinae

    International Nuclear Information System (INIS)

    Berriman, G.

    1984-01-01

    This paper presents four visible light curves of the highly inclined, short-period cataclysmic binary star OY Carinae in quiescence. These light curves show that the red dwarf eclipses both its white dwarf companion and the accretion disc and hotspot, which originate from material transferred from the red dwarf to the white dwarf. The consequences of the findings are discussed in the light of current ideas about the evolution of cataclysmic variable stars. (author)

  19. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  20. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    International Nuclear Information System (INIS)

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garcés, Ane; Catalán, Silvia; Silvestri, Nicole M.

    2012-01-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types ≤ M7. Our results show that early-type M dwarfs (≤M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  1. A wave model for dwarf novae

    International Nuclear Information System (INIS)

    Sparks, W.M.; Kutter, G.S.

    1980-01-01

    The rapid coherent oscillation during a dwarf nova outburst is attributed to an accretion-driven wave going around the white dwarf component of the binary system. The increase and decrease in the period of this oscillation is due to the change in the velocity of the wave as it is first being driven and then damped. Qualitatively, a large number of observations can be explained with such a model. The beginnings of a mathematical representation of this model are developed. (orig.)

  2. A Very Cool Pair of Brown Dwarfs

    Science.gov (United States)

    2011-03-01

    Observations with the European Southern Observatory's Very Large Telescope, along with two other telescopes, have shown that there is a new candidate for the coldest known star: a brown dwarf in a double system with about the same temperature as a freshly made cup of tea - hot in human terms, but extraordinarily cold for the surface of a star. This object is cool enough to begin crossing the blurred line dividing small cold stars from big hot planets. Brown dwarfs are essentially failed stars: they lack enough mass for gravity to trigger the nuclear reactions that make stars shine. The newly discovered brown dwarf, identified as CFBDSIR 1458+10B, is the dimmer member of a binary brown dwarf system located just 75 light-years from Earth [1]. The powerful X-shooter spectrograph on ESO's Very Large Telescope (VLT) was used to show that the composite object was very cool by brown dwarf standards. "We were very excited to see that this object had such a low temperature, but we couldn't have guessed that it would turn out to be a double system and have an even more interesting, even colder component," said Philippe Delorme of the Institut de planétologie et d'astrophysique de Grenoble (CNRS/Université Joseph Fourier), a co-author of the paper. CFBDSIR 1458+10 is the coolest brown dwarf binary found to date. The dimmer of the two dwarfs has now been found to have a temperature of about 100 degrees Celsius - the boiling point of water, and not much different from the temperature inside a sauna [2]. "At such temperatures we expect the brown dwarf to have properties that are different from previously known brown dwarfs and much closer to those of giant exoplanets - it could even have water clouds in its atmosphere," said Michael Liu of the University of Hawaii's Institute for Astronomy, who is lead author of the paper describing this new work. "In fact, once we start taking images of gas-giant planets around Sun-like stars in the near future, I expect that many of them

  3. Rotation of the accreting white dwarfs and diversity of type Ia supernovae

    International Nuclear Information System (INIS)

    Uenishi, Tatsuhiro; Nomoto, Kenichi; Hachisu, Izumi

    2003-01-01

    We consider rotation of progenitor white dwarfs for a possible source of the diversity of Type Ia supernovae (SNe Ia). Hydrostatic structure of rotating white dwarfs with different masses are calculated. Evolutionary sequences of white dwarfs are explored and the effect of 'supercritical' rotation in binary system is examined. Possible effects of rotation to cause diversity of SNe Ia are discussed

  4. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    Science.gov (United States)

    Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Weisz, D. R.; Baruffolo, A.; Bechtold, J.; Burwitz, V.; De Santis, C.; Gallozzi, S.; Garnavich, P. M.; Giallongo, E.; Hill, J. M.; Pogge, R. W.; Ragazzoni, R.; Speziali, R.; Thompson, D. J.; Wagner, R. M.

    2008-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ - 7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 271 days, and the light curve is well fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed of two yellow supergiants (V - Isimeq 1 mag, Teffsimeq 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however, note a second example. The SMC F0 supergiant R47 is a bright (MV ~ - 7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage. We also discuss the possibility of this variable being a long-period Cepheid. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  5. Detection of a white dwarf companion to the Hyades stars HD 27483

    Science.gov (United States)

    Boehm-Vitense, Erika

    1993-01-01

    We observed with IUE a white dwarf (WD) companion to the Hyades F6 V binary stars HD 27483. This system is known to be a close binary of two nearly equal stars with an orbital period of 3.05 days. Our IUE observations revealed the presence of a third star, a white dwarf with an effective temperature of 23,000 +/- 1000 K and a mass of approximately 0.6 solar mass. Its presence in the Hyades cluster with a known age permits me to derive the mass of its progenitor, which must have been about 2.3 solar masses. The presence of the white dwarf in a binary system opens the possibility that some of the envelope material, which was expelled by the WD progenitor, may have been collected by the F6 stars. We may thus be able to study abundance anomalies of the WD progenitor with known mass on the surface of the F6 companions.

  6. Mass-Accretion effects on white dwarf interiors

    International Nuclear Information System (INIS)

    Canal, R.; Hernanz, M.; Isern, J.; Labay, J.; Mochkovitch, R.

    1986-01-01

    There is observational evidence of the presence of young neutron stars in old binary systems. A likely explanation is that those neutron stars were produced in the collapse of old C+O white dwarfs. Old white dwarfs being cold and at least partially solid, accretion-induced mass growth should finally lead in a number of cases, to their collapse rather than to their explosion. We show in detail how mass accretion on initially solid white dwarfs can leave central solid cores when dynamical instability sets in. We also study the different effects of the existence of such cores on the outcome of the competition between thermonuclear explosion and gravitational collapse

  7. Localized thermonuclear runaways and volcanoes on degenerate dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Shara, M.M.

    1982-10-15

    Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.

  8. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    Science.gov (United States)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  9. A NEUTRON STAR–WHITE DWARF BINARY MODEL FOR REPEATING FAST RADIO BURST 121102

    International Nuclear Information System (INIS)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  10. A NEUTRON STAR–WHITE DWARF BINARY MODEL FOR REPEATING FAST RADIO BURST 121102

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng, E-mail: guwm@xmu.edu.cn [Department of Astronomy, Xiamen University, Xiamen, Fujian 361005 (China)

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  11. Fundamental Stellar Parameters with HST/FGS Dynamical Masses and HST/STIS Spectroscopy of M Dwarf Binaries

    Science.gov (United States)

    Dieterich, Sergio; Henry, Todd J.; Benedict, George Fritz; Jao, Wei-Chun; White, Russel; RECONS Team

    2017-01-01

    Mass is the most fundamental stellar parameter, and yet model independent dynamical masses can only be obtained for a small subset of closely separated binaries. The high angular resolution needed to characterize individual components of those systems means that little is known about the details of their atmospheric properties. We discuss the results of HST/STIS observations yielding spatially resolved optical spectra for six closely separated M dwarf systems, all of which have HST/FGS precision dynamical masses for the individual components ranging from 0.4 to 0.076 MSol. We assume coevality and equal metallicity for the components of each system and use those constraints to perform stringent tests of the leading atmospheric and evolutionary model families throughout the M dwarf mass range. We find the latest models to be in good agreement with observations. We discuss specific spectral diagnostic features such as the well-known gravity sensitive Na and K lines and address ways to break the temperature-metallicity-gravity degeneracy that often hinders the interpretation of these features. We single out a comparison between the systems GJ 469 AB and G 250-29 AB, which have nearly identical mass configurations but different metallicities, thus causing marked differences in atmospheric properties and overall luminosities.This work is funded by NASA grant HST-GO-12938. and By the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through NSF grant AST-1400680.

  12. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  13. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. II. COLOR TRENDS AND MASS PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2016-06-01

    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  14. The 25 parsec local white dwarf population

    Science.gov (United States)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  15. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Karovska, Margarita, E-mail: brian.wood@nrl.navy.mil [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  16. The Coronal Abundance Anomalies of M Dwarfs

    Science.gov (United States)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  17. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-01-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  18. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  19. Comments on the evolution and origin of cataclysmic binaries

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1980-01-01

    Aspects of the observational data on cataclysmic binaries are discussed and possible correlations between type of behaviour and binary period are noted. A gap between 2 and 3 hr in binary periods is judged to be real. A simple numerical procedure for evolving Roche-lobe-filling stars is described, and applied to white dwarf-red dwarf binaries for various mass loss and angular momentum loss mechanisms, and initial conditions. The results, in which the short-time-scale behaviour of the systems is ignored, are classified into four modes of evolution: normal, nuclear evolution dominated, angular momentum loss dominated and hydrodynamical. The clustering below 2 hr is interpreted in terms of evolution following the hydrodynamical mode, and it is suggested that both stars in such systems are of low mass. This may be the commonest type of cataclysmic binary. A possible explanation for the apparent clustering of classical novae to periods of 3 to 5 hr is given, and evolutionary schemes for cataclysmic binaries outlined. It is suggested that the short-period systems (approximately < 2 hr) arise mainly from late case B mass transfer in the original binary and the longer period systems mainly from case C. (author)

  20. Magnetic white dwarfs: Observations, theory and future prospects

    Science.gov (United States)

    García-Berro, Enrique; Kilic, Mukremin; Kepler, Souza Oliveira

    2016-01-01

    Isolated magnetic white dwarfs have field strengths ranging from 103G to 109G, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work, we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.

  1. SPECTROSCOPY OF PUTATIVE BROWN DWARFS IN TAURUS

    International Nuclear Information System (INIS)

    Luhman, K. L.; Mamajek, E. E.

    2010-01-01

    Quanz and coworkers have reported the discovery of the coolest known member of the Taurus star-forming complex (L2 ± 0.5), and Barrado and coworkers have identified a possible protostellar binary brown dwarf in the same region. We have performed infrared spectroscopy on the former and the brighter component of the latter to verify their substellar nature. The resulting spectra do not exhibit the strong steam absorption bands that are expected for cool objects, demonstrating that they are not young brown dwarfs. The optical magnitudes and colors for these sources are also indicative of background stars rather than members of Taurus. Although the fainter component of the candidate protostellar binary lacks spectroscopy, we conclude that it is a galaxy rather than a substellar member of Taurus based on its colors and the constraints on its proper motion.

  2. Long-term activity of dwarf novae and variations of the recurrence time of their outbursts

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    2004-01-01

    Roč. 13, č. 1 (2004), s. 101-108 ISSN 1392-0049 Institutional research plan: CEZ:AV0Z1003909 Keywords : dwarf novae * white dwarf s * close binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. L' AND M' Photometry Of Ultracool Dwarfs

    National Research Council Canada - National Science Library

    Marley, M

    2004-01-01

    We have compiled L' (3.4-4.1 microns) and M' (4.6-4.8 microns) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set...

  4. A SEARCH FOR PHOTOMETRIC VARIABILITY IN L- AND T-TYPE BROWN DWARF ATMOSPHERES

    International Nuclear Information System (INIS)

    Khandrika, Harish; Burgasser, Adam J.; Melis, Carl; Luk, Christopher; Bowsher, Emily; Swift, Brandon

    2013-01-01

    Using the Gemini infrared camera on the 3 m Shane telescope at Lick Observatory, we have searched for broadband J and K' photometric variability for a sample of 15 L- and T-type brown dwarfs, including 7 suspected spectral binaries. Four of the dwarfs—2MASS J0939–2448, 2MASS J1416+1348A, 2MASS J1711+2232, and 2MASS J2139+0220—exhibit statistically significant variations over timescales ranging from ∼0.5 hr to 6 days. Our detection of variability in 2MASS J2139+0220 confirms that reported by Radigan et al., and periodogram and phase dispersion minimization analysis also confirms a variability period of approximately 7.6 ± 0.2 hr. Remarkably, two of the four variables are known or candidate binary systems, including 2MASS J2139+0220, for which we find only marginal evidence of radial velocity variation over the course of a year. This result suggests that some spectral binary candidates may appear as such due to the blending of cloudy and non-cloudy regions in a single ''patchy'' atmosphere. Our results are consistent with an overall variability fraction of 35% ± 5%, with no clear evidence of greater variability among brown dwarfs at the L dwarf/T dwarf transition.

  5. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    Science.gov (United States)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  6. A NEARLY VOLUME-COMPLETE SPECTROSCOPIC SURVEY OF THE CLOSESTMID-TO-LATE M DWARFS

    Science.gov (United States)

    Winters, Jennifer; Irwin, Jonathan; Newton, Elisabeth; Charbonneau, David; Latham, David W.; Mink, Jessica; Esquerdo, Gil; Berlind, Perry; Calkins, Mike

    2018-01-01

    Recent results from Kepler estimate that M dwarfs harbor 2.5 planets per star. Yet, we will understand our exoplanet discoveries only as well as we understand their host stars, and much remains unknown about our low-mass stellar neighbors, such as their kinematics, ages, and multiplicity. A nearly volume-complete sample of M dwarfs lies within 15 pc of the Sun, and it is only for planets orbiting these nearest and smallest stars that thorough follow-up work for characterization will be possible. Unfortunately, more than half of this sample have only low-resolution (R SMARTS) 1.5m. We present here results from year one of our TRES survey. We have measured radial velocities, rotational broadening, and H-alpha equivalent widths for 305 mid-to-late M dwarfs. We have discovered five new spectroscopic binaries, one of which is a rare M dwarf - (likely) brown dwarf binary within 10 pc, for which we have determined the orbit.Our survey more than doubles the number of mid-M dwarfs within 15 pc with complete high-resolution spectroscopic and trigonometric characterization. We hope to provide a legacy dataset for the use of future generations of astronomers.This work is being supported by grants from the National Science Foundation and the John Templeton Foundation.

  7. A BROWN DWARF CENSUS FROM THE SIMP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Jasmin; Gagné, Jonathan; Artigau, Étienne; Lafrenière, David; Nadeau, Daniel; Doyon, René; Malo, Lison; Albert, Loïc; Simard, Corinne [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Gagliuffi, Daniella C. Bardalez; Burgasser, Adam J., E-mail: jasmin@astro.umontreal.ca [Center for Astrophysics and Space Sciences, University of California San Diego, 9500 Gilman Dr., Mail Code 0424, La Jolla, CA 92093 (United States)

    2016-10-20

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre, in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging ∼28% of the sky with the Caméra PAnoramique Proche-InfraRouge both in the southern hemisphere at the Cerro Tololo Inter-American Observatory 1.5 m telescope, and in the northern hemisphere at the Observatoire du Mont-Mégantic 1.6 m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. We present the results of an NIR spectroscopic follow-up of 169 M, L, and T dwarfs. Among the sources discovered are 2 young field brown dwarfs, 6 unusually red M and L dwarfs, 25 unusually blue M and L dwarfs, 2 candidate unresolved L+T binaries, and 24 peculiar UCDs. Additionally, we add 9 L/T transition dwarfs (L6–T4.5) to the already known objects.

  8. A BROWN DWARF CENSUS FROM THE SIMP SURVEY

    International Nuclear Information System (INIS)

    Robert, Jasmin; Gagné, Jonathan; Artigau, Étienne; Lafrenière, David; Nadeau, Daniel; Doyon, René; Malo, Lison; Albert, Loïc; Simard, Corinne; Gagliuffi, Daniella C. Bardalez; Burgasser, Adam J.

    2016-01-01

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre, in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging ∼28% of the sky with the Caméra PAnoramique Proche-InfraRouge both in the southern hemisphere at the Cerro Tololo Inter-American Observatory 1.5 m telescope, and in the northern hemisphere at the Observatoire du Mont-Mégantic 1.6 m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. We present the results of an NIR spectroscopic follow-up of 169 M, L, and T dwarfs. Among the sources discovered are 2 young field brown dwarfs, 6 unusually red M and L dwarfs, 25 unusually blue M and L dwarfs, 2 candidate unresolved L+T binaries, and 24 peculiar UCDs. Additionally, we add 9 L/T transition dwarfs (L6–T4.5) to the already known objects.

  9. THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE LASER INTERFEROMETER SPACE ANTENNA SIGNAL

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew; Holley-Bockelmann, Kelly

    2009-01-01

    Galactic double white dwarfs were postulated as a source of confusion limited noise for the Laser Interferometer Space Antenna (LISA), the future space-based gravitational wave observatory. Until very recently, the Galactic population consisted of a relatively well-studied disk population, a somewhat studied smaller bulge population and a mostly unknown, but potentially large halo population. It has been argued that the halo population may produce a signal that is much stronger (factor of ∼5 in spectral amplitude) than the disk population. However, this surprising result was not based on an actual calculation of a halo white dwarf population, but was derived on (1) the assumption that one can extrapolate the halo population properties from those of the disk population and (2) the postulated (unrealistically) high number of white dwarfs in the halo. We perform the first calculation of a halo white dwarf population using population synthesis models. Our comparison with the signal arising from double white dwarfs in the Galactic disk+bulge clearly shows that it is impossible for the double white dwarf halo signal to exceed that of the rest of the Galaxy. Using microlensing results to give an upper limit on the content of white dwarfs in the halo (∼30% baryonic mass in white dwarfs), our predicted halo signal is a factor of 10 lower than the disk+bulge signal. Even in the implausible case, where all of the baryonic halo mass is found in white dwarfs, the halo signal does not become comparable to that of the disk+bulge, and thus would still have a negligible effect on the detection of other LISA sources.

  10. ON THE BINARY FREQUENCY OF THE LOWEST MASS MEMBERS OF THE PLEIADES WITH HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    International Nuclear Information System (INIS)

    Garcia, E. V.; Dupuy, Trent J.; Allers, Katelyn N.; Liu, Michael C.; Deacon, Niall R.

    2015-01-01

    We present the results of a Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging survey of 11 of the lowest mass brown dwarfs in the Pleiades known (25–40 M Jup ). These objects represent the predecessors to T dwarfs in the field. Using a semi-empirical binary point-spread function (PSF)-fitting technique, we are able to probe to 0.″ 03 (0.75 pixel), better than 2x the WFC3/UVIS diffraction limit. We did not find any companions to our targets. From extensive testing of our PSF-fitting method on simulated binaries, we compute detection limits which rule out companions to our targets with mass ratios of ≳0.7 and separations ≳4 AU. Thus, our survey is the first to attain the high angular resolution needed to resolve brown dwarf binaries in the Pleiades at separations that are most common in the field population. We constrain the binary frequency over this range of separation and mass ratio of 25–40 M Jup Pleiades brown dwarfs to be <11% for 1σ (<26% at 2σ). This binary frequency is consistent with both younger and older brown dwarfs in this mass range

  11. HD 30187 B and HD 39927 B: Two suspected nearby hot subdwarfs in resolved binaries (based on observations made with the ESA Hipparcos satellite)

    DEFF Research Database (Denmark)

    Makarov, V.V.; Fabricius, C.

    1999-01-01

    Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual......Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual...

  12. Constraints on the brown dwarf mass function from optical and infrared searches

    International Nuclear Information System (INIS)

    Probst, R.G.

    1986-01-01

    Photometric surveys of faint proper motion stars and searches for infrared binary companions have identified a few very low luminosity objects. The author considers how these searches may constrain the brown dwarf mass function. An astrophysically plausible brown dwarf population is defined which yields a dark mass density = 0.5 x the observed density. Using the sensitivity and other limits of various surveys, the expected numbers of observable brown dwarfs are obtained from the model population for comparison with actual results. Reasonable improvement in search protocol could yield statistically significant tests of the brown dwarf mass function. (author)

  13. K2 Ultracool Dwarfs Survey. III. White Light Flares Are Ubiquitous in M6-L0 Dwarfs

    Science.gov (United States)

    Paudel, Rishi R.; Gizis, John E.; Mullan, D. J.; Schmidt, Sarah J.; Burgasser, Adam J.; Williams, Peter K. G.; Berger, Edo

    2018-05-01

    We report the white light flare rates for 10 ultracool dwarfs using Kepler K2 short-cadence data. Among our sample stars, two have spectral type M6, three are M7, three are M8, and two are L0. Most of our targets are old low-mass stars. We identify a total of 283 flares in all of the stars in our sample, with Kepler energies in the range log E Kp ∼ (29–33.5) erg. Using the maximum-likelihood method of line fitting, we find that the flare frequency distribution (FFD) for each star in our sample follows a power law with slope ‑α in the range ‑(1.3–2.0). We find that cooler objects tend to have shallower slopes. For some of our targets, the FFD follows either a broken power law, or a power law with an exponential cutoff. For the L0 dwarf 2MASS J12321827-0951502, we find a very shallow slope (‑α = ‑1.3) in the Kepler energy range (0.82–130) × 1030 erg: this L0 dwarf has flare rates which are comparable to those of high-energy flares in stars of earlier spectral types. In addition, we report photometry of two superflares: one on the L0 dwarf 2MASS J12321827-0951502 and another on the M7 dwarf 2MASS J08352366+1029318. In the case of 2MASS J12321827-0951502, we report a flare brightening by a factor of ∼144 relative to the quiescent photospheric level. Likewise, for 2MASS J08352366+1029318, we report a flare brightening by a factor of ∼60 relative to the quiescent photospheric level. These two superflares have bolometric (ultraviolet/optical/infrared) energies 3.6 × 1033 erg and 8.9 × 1033 erg respectively, while the full width half maximum timescales are very short, ∼2 min. We find that the M8 star TRAPPIST-1 is more active than the M8.5 dwarf 2M03264453+1919309, but less active than another M8 dwarf (2M12215066-0843197).

  14. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    OpenAIRE

    Kepler, S. O.; Pelisoli, Ingrid; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J.; Eisenstein, Daniel J.; Valois, A. Dean M.; Amaral, Larissa A.

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmospherewhite dwarf stars (DAs) and helium atmospherewhite dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra (DQs). We found one central star of a planetary nebula, one ultracompact helium binary (AM ...

  15. He stars and He-accreting CO white dwarfs

    International Nuclear Information System (INIS)

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  16. PREFACE: 16th European White Dwarfs Workshop

    Science.gov (United States)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  17. The Dwarf Project: Vidojevica

    Science.gov (United States)

    Vince, O.

    2013-05-01

    The DWARF project is an important international project for observing eclipsing binary stars and searching for third companion which orbit around both stars. Recently, a group of researchers at the Astronomical Observatory of Belgrade joined this project using the 60 cm telescope at the Astronomical Station Vidojevica for observations. All the equipment and the human potential involved with this project from Serbia will be described in this paper.

  18. A Candidate Wide Brown Dwarf Binary in the Argus Association: 2MASS J14504216–7841413 and 2MASS J14504113–7841383

    OpenAIRE

    Burgasser, Adam J.; Looper, Dagny L.; Kirkpatrick, J. Davy

    2017-01-01

    Widely-separated (≳100 au) multiples are rare among the lowest mass stars and brown dwarfs (Caballero 2007; Kraus & Hillenbrand 2009), and often (but not exclusively) associated with young (≾100 Myr), nearby stellar associations (e.g., Close et al. 2007). We report the discovery of a wide, very low mass, and potentially young binary, 2MASS J14504216–7841413 and 2MASS J14504113–7841383 (hereafter 2MASS J1450–7841AB). The primary was initially identified in the DENIS (Epchtein et al. 1997) and ...

  19. Brown dwarfs: at last filling the gap between stars and planets.

    Science.gov (United States)

    Zuckerman, B

    2000-02-01

    Until the mid-1990s a person could not point to any celestial object and say with assurance that "here is a brown dwarf." Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.

  20. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  1. A CAUTIONARY TALE: MARVELS BROWN DWARF CANDIDATE REVEALS ITSELF TO BE A VERY LONG PERIOD, HIGHLY ECCENTRIC SPECTROSCOPIC STELLAR BINARY

    International Nuclear Information System (INIS)

    Mack, Claude E. III; Stassun, Keivan G.; De Lee, Nathan; Ge, Jian; Fleming, Scott W.; Deshpande, Rohit; Mahadevan, Suvrath; Wisniewski, John P.; Gaudi, B. Scott; Eastman, Jason; Beatty, Thomas G.; Ghezzi, Luan; González Hernández, Jonay I.; Femenía, Bruno; Mata Sánchez, Daniel; Ferreira, Letícia; Porto de Mello, Gustavo; Crepp, Justin R.; Agol, Eric; Bizyaev, Dmitry

    2013-01-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ∼ Jup ) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e ∼ 0.8), its relatively long period (P ∼ 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (ω ∼ 189°). As a result of these properties, for ∼95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e ∼ 0.3). Only during the ∼5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ∼15 km s –1 reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  2. Binary system containing the pulsar PSR 1913 + 16 and ultra-violet and x-radiation from accreting magnetic white dwarfs

    International Nuclear Information System (INIS)

    Masters, A.R.

    1978-01-01

    Part I of the thesis deals with the binary system containing the pulsar PSR 1913 + 16. The system has been touted as a laboratory for testing relativistic theories of gravity, and is also a challenge for theories of stellar evolution. However, proposed uses of the system rely on assumptions about the nature of the pulsar's unobserved companion. Ways of determining the nature of the companion from observation of the pulsar are discussed. Geometrical constraints on the size of the pulsar's orbit and the observed slow rate of the orbit's precession require that the companion be a black hole, a neutron star, a white dwarf or a helium main-sequence star. Observable second-order relativistic effects may or may not further restrict the list of candidates. The discussion summarizes Masters and Roberts, 1975 Ap.J. (Letters), 195, L107, and Roberts, Masters and Arnett, 1976, Ap. J., 203, 196. Part II of the thesis treats ultra-violet and X-radiation from accreting magnetic white dwarfs. Matter from a companion star falling onto a white dwarf is shock-heated near the stellar surface and radiatively cooled. The post-shock region is approximated by a uniform, geometrically thin slab and determine the physical conditions behind the shock and the emitted spectrum for a range of stellar masses, magnetic fields and accretion rates. At low magnetic fields and high accretion rates, bremsstrahlung is the dominant cooling mechanism and the post-shock material is a single fluid (the electrons and ions have a common temperature). As the magnetic field increases or the accretion rate decreases, cyclotron emission becomes more important than bremsstrahlung

  3. Brown dwarfs forming in discs: Where to look for them?

    Directory of Open Access Journals (Sweden)

    Stamatellos D.

    2011-07-01

    Full Text Available A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation for the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100–5000 AU around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  4. WD0837+185: THE FORMATION AND EVOLUTION OF AN EXTREME MASS-RATIO WHITE-DWARF-BROWN-DWARF BINARY IN PRAESEPE

    International Nuclear Information System (INIS)

    Casewell, S. L.; Burleigh, M. R.; Wynn, G. A.; Alexander, R. D.; Lawrie, K. A.; Jameson, R. F.; Napiwotzki, R.; Dobbie, P. D.; Hodgkin, S. T.

    2012-01-01

    There is a striking and unexplained dearth of brown dwarf companions in close orbits ( ☉ (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was ∼2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency (α) and binding energy parameters (λ) for the AGB star to αλ ∼ 3. We examine the various formation scenarios and conclude that the substellar object was most likely captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.

  5. New Brown Dwarf Discs in Upper Scorpius Observed with WISE

    Science.gov (United States)

    Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.; Marsh, K. A.; Padgett, D.; Ressler, M. E.

    2013-01-01

    We present a census of the disc population for UKIDSS selected brown dwarfs in the 5-10 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour magnitude and colour colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 microns and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars.We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5 10 Myr and a disc clearing time-scale significantly shorter than 1 Myr.

  6. The little-studied cluster Berkeley 90. I. LS III +46 11: a very massive O3.5 If* + O3.5 If* binary

    Science.gov (United States)

    Maíz Apellániz, J.; Negueruela, I.; Barbá, R. H.; Walborn, N. R.; Pellerin, A.; Simón-Díaz, S.; Sota, A.; Marco, A.; Alonso-Santiago, J.; Sanchez Bermudez, J.; Gamen, R. C.; Lorenzo, J.

    2015-07-01

    Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims: We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods: Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results: LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.

  7. A visible and infrared study of the eclipsing dwarf nova Oy Carinae

    International Nuclear Information System (INIS)

    Berriman, G.

    1984-01-01

    This paper presents three simultaneous visible (V) and infrared (J,H,K) light curves of the eclipsing dwarf nova binary system OY Carinae in quiescence. The infrared light curves show a secondary minimum, not seen in the visible, which is the ellipsoidal variations of the red dwarf and its eclipse by the accretion disc surrounding the white dwarf companion. The red star, an M dwarf, supplies between 30 and 60 per cent of the total light at J,H and K. This requires that the system is between 100 and 300 pc away. The infrared continuum of the accretion disc around the white dwarf companion comes largely from the optically thin gas giving rise to the emission lines seen in the visible and ultraviolet. (author)

  8. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  9. The Continuing Search for Variability Among Cool White Dwarfs

    Science.gov (United States)

    Schaefer, J. J.; Oswalt, T. D.; Johnston, K. B.; Rudkin, M.; Heinz, T.

    2002-12-01

    The Continuing Search for Variability Among Cool White Dwarfs Justin J. Schaefer University of Wyoming Department of Physics and Astronomy P.O. Box 3905 Laramie, Wyoming 82071 USA (schaefju@uwyo.edu) Terry D. Oswalt, Kyle Johnston, Merissa Rudkin, Tamalyn Heinz Florida Institute of Technology and the SARA Observatory Department of Physics & Space Sciences 150 West University Boulevard Melbourne, Florida 32901 USA (oswalt@luyten.astro.fit.edu, kyjohnst@fit.edu, mrudkin@astro.fit.edu, theinz@fit.edu) ABSTRACT We present BVRI photometry of eleven binaries with white dwarf (WD) components. The observations were obtained at the SARA 0.9-meter telescope on Kitt Peak during the summer of 2002. Standard system (B-V), (V-R) and (R-I) color indices of four white dwarfs were determined. This data will be used to estimate the WD cooling ages in wide WD+dM binaries, as part of our ongoing research program to determine the chromospheric activity-age relation for M dwarf stars. Time-series differential photometry was also collected for eight cool white dwarfs as part of a program to explore the variability in the low luminosity, low temperature regime of the WD cooling track. We failed to detect any variability greater than ~0.04 magnitudes in these stars. Several nights of differential photometry data were collected on the DAO WD + K dwarf short-period variable HS1136+6646. From the light variations we determined a likely orbital period of 0.825 +/-0.009 days. Strong evidence is presented for two other possible periods within this light curve, possibly indicative of rotational modulation by the WD component. We gratefully acknowledge support from the National Science Foundation, which funds the SARA Research Experiences for Undergraduates program via grant AST-0097616 to Florida Tech. One of us (TDO) also acknowledges partial support for this work from NASA (subcontract Y701296) and the NSF (AST 0206115).

  10. Mechanical properties of some binary, ternary and quaternary III-V compound semiconductor alloys

    International Nuclear Information System (INIS)

    Navamathavan, R.; Arivuoli, D.; Attolini, G.; Pelosi, C.; Choi, Chi Kyu

    2007-01-01

    Vicker's microindentation tests have been carried out on InP/InP, GaAs/InP, InGaAs/InP and InGaAsP/InP III-V compound semiconductor alloys. The detailed mechanical properties of these binary, ternary and quaternary epilayers were determined from the indentation experiments. Microindentation studies of (1 1 1) GaAs/InP both A and B faces show that the hardness value increases with load and attains a constant for further increase in load and the microhardness values were found to lie between 3.5 and 4.0 GPa. The microhardness values of InGaAs/InP epilayers with different thickness were found to lie between 3.93 and 4.312 GPa. The microhardness values of InGaAsP/InP with different elemental composition were found to lie between 5.08 and 5.73 GPa. The results show that the hardness of the quaternary alloy drastically increases, the reason may be that the increase in As concentration hardens the lattice when phosphorous concentration is less and hardness decreases when phosphorous is increased. It was interestingly observed that the hardness value increases as we proceed from binary to quaternary III-V compound semiconductor alloys

  11. New Evidence for a Substellar Luminosity Problem: Dynamical Mass for the Brown Dwarf Binary Gl 417BC

    Science.gov (United States)

    Dupuy, Trent J.; Liu, Michael C.; Ireland, Michael J.

    2014-08-01

    We present new evidence for a problem with cooling rates predicted by substellar evolutionary models that implies that model-derived masses in the literature for brown dwarfs and directly imaged planets may be too high. Based on our dynamical mass for Gl 417BC (L4.5+L6) and a gyrochronology system age from its young, solar-type host star, commonly used models predict luminosities 0.2-0.4 dex lower than we observe. This corroborates a similar luminosity-age discrepancy identified in our previous work on the L4+L4 binary HD 130948BC, which coincidentally has nearly identical component masses (≈50-55 M Jup) and age (≈800 Myr) as Gl 417BC. Such a luminosity offset would cause systematic errors of 15%-25% in model-derived masses at this age. After comparing different models, including cloudless models that should not be appropriate for mid-L dwarfs like Gl 417BC and HD 130948BC but actually match their luminosities better, we speculate the observed overluminosity could be caused by opacity holes (i.e., patchy clouds) in these objects. Moreover, from hybrid substellar evolutionary models that account for cloud disappearance, we infer the corresponding phase of overluminosity may extend from a few hundred million years up to a few gigayears and cause masses to be overestimated by up to 25%, even well after clouds disappear from view entirely. Thus, the range of ages and spectral types affected by this potential systematic shift in luminosity evolution would encompass most known directly imaged gas-giants and field brown dwarfs. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. The not-so-extreme white dwarf of the CV GD 552

    International Nuclear Information System (INIS)

    Unda-Sanzana, E; Hinojosa-Goni; Marsh, T R; Gaensicke, B T; Maxted, P F L; Morales-Rueda, L; Dhillon, V S; Thoroughgood, T D; Watson, C A; Tremou, E

    2009-01-01

    GD 552 is a cataclysmic binary which was previously believed to be composed of an M-star and a white dwarf, the latter having an extreme mass of 1.4 solar masses. In a recent paper we showed that this is not compatible with new observational evidence and presented an alternative model in which the white dwarf has a typical mass and the companion is a brown dwarf, making the system a likely member of the elusive group of CVs which have already evolved through minimum orbital period. Here we present additional spectroscopical evidence supporting this conclusion by means of skew mapping.

  13. Fluorescence Resonance Energy Transfer of the Tb(III)-Nd(III) Binary System in Molten LiCl-KCl Eutectic Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, J. I. [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The lanthanides act as a neutron poison in nuclear reactor with large neutron absorption cross section. For that reason, very low amount of lanthanides is required in the recovered U/TRU ingot product from pyrochemical process. In view of that, the investigation of thermodynamic properties and chemical behaviors of lanthanides in molten chloride salt are necessary to estimate the performance efficiency of pyrochemical process. However, there are uncertainties about knowledge and understanding of basic mechanisms in pyrochemical process, such as chemical speciation and redox behaviors due to the lack of in-situ monitoring methods for high temperature molten salt. The spectroscopic analysis is one of the probable techniques for in-situ qualitative and quantitative analysis. Recently, a few fluorescence spectroscopic measurements on single lanthanide element in molten LiCl-KCl eutectic have been investigated. The fluorescence intensity and the fluorescence lifetime of Tb(III) were decreased as increasing the concentration of Nd(III), demonstrating collisional quenching between donor ions and acceptor ions. The Forster distance (..0) of Tb(III)-Nd(III) binary system in molten LiCl-KCl eutectic was determined in the specific range of .... (0.1-1.0) and .. (1.387-1.496)

  14. Ultracompact X-ray binary stars

    NARCIS (Netherlands)

    Haaften, L.M. van

    2013-01-01

    Ultracompact X-ray binary stars usually consist of a neutron star and a white dwarf, two stars bound together by their strong gravity and orbiting each other very rapidly, completing one orbit in less than one hour. Neutron stars are extremely compact remnants of the collapsed cores of massive stars

  15. NEAR-INFRARED LIGHT CURVES OF THE BROWN DWARF ECLIPSING BINARY 2MASS J05352184-0546085: CAN SPOTS EXPLAIN THE TEMPERATURE REVERSAL?

    International Nuclear Information System (INIS)

    Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Prsa, Andrej; Mathieu, Robert D.

    2009-01-01

    We present near-infrared JHK S light curves for the double-lined eclipsing binary system Two Micron All Sky Survey J05352184 - 0546085, in which both components have been shown to be brown dwarfs with an age of ∼1 Myr. We analyze these light curves together with the previously published I C -band light curve and radial velocities to provide refined measurements of the system's physical parameters. The component masses and radii are here determined with an accuracy of ∼6.5% and ∼1.5%, respectively. In addition, we confirm the previous surprising finding that the primary brown dwarf has a cooler effective temperature than its lower mass companion. Next, we perform a detailed study of the residual variations in the out-of-eclipse phases of the light curves to ascertain the properties of any inhomogeneities (e.g., spots) on the surfaces of the brown dwarfs. Our analysis reveals two low-amplitude (∼0.02 mag) periodic signals, one attributable to the rotation of the primary with a period of 3.293 ± 0.001 d and the other to the rotation of the secondary with a period of 14.05 ± 0.05 d. Both periods are consistent with the measured vsin i and radii. Finally, we explore the effects on the derived physical parameters of the system when spots are included in the modeling of the light curves. The observed low-amplitude rotational modulations are well fitted by cool spots covering a small fraction (∼<10%) of the brown dwarfs' surfaces. Such small spots negligibly affect the physical properties of the brown dwarfs, and thus by themselves cannot explain the primary's unexpectedly low surface temperature. To mimic the observed ∼200 K suppression of the primary's temperature, our model requires that the primary possesses a very large spot coverage fraction of ∼65%. These spots must in addition be symmetrically distributed on the primary's surface so as not to produce photometric variations larger than observed. Altogether, a spot configuration in which the primary

  16. A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass-Radius Relationship for M Dwarfs

    Science.gov (United States)

    Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme

    2017-08-01

    We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.

  17. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra; Cunningham, Emily C.; Toloba, Elisa [Department of Astronomy and Astrophysics and University of California Observatories, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Munn, Jeffrey A., E-mail: kaplant@ucsc.edu [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States)

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.

  18. PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i, 1680 East-West Road, Honolulu, HI 96822 (United States); Lepine, Sebastien [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2013-02-01

    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful

  19. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  20. Non explosive collapse of white dwarfs

    International Nuclear Information System (INIS)

    Canal, R.; Schatzmann, E.

    1976-01-01

    We show that if a sufficiently cold carbon-oxygen white dwarf, close to the critical mass, accretes matter from a companion in a binary system, the time scale of collapse is long enough to allow neutronization before the onset of pycnonuclear reactions. This can possibly lead to the formation of X-ray sources by a non explosive collapse. (orig.) [de

  1. The closest M-dwarf quadruple system to the Sun

    International Nuclear Information System (INIS)

    Davison, Cassy L.; White, R. J.; Jao, W.-C.; Henry, T. J.; Quinn, S. N.; Cantrell, J. R.; Winters, J. G.; Bailey, J. I. III; Riedel, A. R.; Subasavage, J. P.; Crockett, C. J.

    2014-01-01

    We report new infrared radial velocity measurements obtained with CSHELL at NASA's Infrared Telescope Facility that reveal the M3.5 dwarf GJ 867B to be a single-lined spectroscopic binary with a period of 1.795 ± 0.017 days. Its velocity semi-amplitude of 21.4 ± 0.5 km s –1 corresponds to a minimum mass of 61 ± 7 M JUP ; the new companion, which we call GJ 867D, could be a brown dwarf. Stable astrometric measurements of GJ 867BD obtained with CTIO's 0.9 m telescope over the last decade exclude the presence of any massive planetary companions (7-18 M JUP ) with longer orbital periods (2-10 yr) for the majority of orientations. These complementary observations are also used to determine the trigonometric distance and proper motion of GJ 867BD; the measurements are consistent with the HIPPARCOS measured values of the M2 dwarf GJ 867AC, which is itself a 4.1 day double-lined spectroscopic binary at a projected separation of 24.''5 (216 AU) from GJ 867BD. These new measurements strengthen the case that GJ 867AC and GJ 867BD are physically associated, making the GJ 867 system one of only four quadruple systems within 10 pc of the Sun (d = 8.82 ± 0.08 pc) and the only among these with all M-dwarf (or cooler) components.

  2. An Extremely Red and Two Other Nearby L Dwarf Candidates Previously Overlooked in 2MASS, WISE, and Other Surveys

    Science.gov (United States)

    Scholz, Ralf-Dieter; Bell, Cameron P. M.

    2018-02-01

    We present three new nearby L dwarf candidates, found in a continued combined color/proper motion search using WISE, 2MASS, and other survey data, where we included extended WISE sources and looked closer to the Galactic plane region. Their spectral types and distances were estimated from photometric comparisons to well-known L dwarfs with trigonometric parallaxes. The first object, 2MASS J07555430-3259589, is an extremely red L7.5p dwarf candidate at a photometric distance of about 16 pc. Its position, proper motion and distance are consistent with membership in the Carina-Near young moving group. The second one, 2MASS J07414279-0506464, is resolved in Gaia DR1 as a close binary (separation 0.3 arcsec), and we classify it as a equal-mass binary candidate consisting of two L5 dwarfs at 19 pc. Our nearest new neighbor, 2MASS J19251275+0700362, is an L7 dwarf candidate at 10 pc.

  3. THE DISCOVERY OF BINARY WHITE DWARFS THAT WILL MERGE WITHIN 500 Myr

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Allende Prieto, Carlos; Panei, J. A.

    2010-01-01

    We present radial velocity observations of four extremely low-mass (0.2 M sun ) white dwarfs (WDs). All four stars show peak-to-peak radial velocity variations of 540-710 km s -1 with 1.0-5.9 hr periods. The optical photometry rules out main-sequence companions. In addition, no millisecond pulsar companions are detected in radio observations. Thus, the invisible companions are most likely WDs. Two of the systems are the shortest period binary WDs yet discovered. Due to the loss of angular momentum through gravitational radiation, three of the systems will merge within 500 Myr. The remaining system will merge within a Hubble time. The mass functions for three of the systems imply companions more massive than 0.46 M sun ; thus, those are carbon/oxygen core WDs. The unknown inclination angles prohibit a definitive conclusion about the future of these systems. However, the chance of a supernova Ia event is only 1%-5%. These systems are likely to form single R Coronae Borealis stars, providing evidence for a WD + WD merger mechanism for these unusual objects. One of the systems, SDSS J105353.89+520031.0, has a 70% chance of having a low-mass WD companion. This system will probably form a single helium-enriched subdwarf O star. All four WD systems have unusual mass ratios of ≤0.2-0.8 that may also lead to the formation of AM CVn systems.

  4. Measuring Atmospheric Abundances and Rotation of a Brown Dwarf with a Measured Mass and Radius

    Science.gov (United States)

    Birkby, Jayne

    2015-08-01

    There are no cool brown dwarfs with both a well-characterized atmosphere and a measured mass and radius. LHS 6343, a brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to tie theoretical atmospheric models to the observed brown dwarf mass-radius diagram. We propose four half-nights of observations with NIRSPAO in 2015B to measure spectral features in LHS 6343 C by detecting the relative motions of absorption features during the system's orbit. In addition to abundances, we will directly measure the brown dwarf's projected rotational velocity and mass.

  5. KOI 1224: A FOURTH BLOATED HOT WHITE DWARF COMPANION FOUND WITH KEPLER

    International Nuclear Information System (INIS)

    Breton, R. P.; Van Kerkwijk, M. H.; Rappaport, S. A.; Carter, J. A.

    2012-01-01

    We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal star of spectral class A or F. As we show, KOI 1224 contains a white dwarf with T eff = 14, 700 ± 1000 K, mass = 0.22 ± 0.02 M ☉ , and radius = 0.103 ± 0.002 R ☉ , and an F-star companion of mass 1.59 ± 0.06 M ☉ that is somewhat beyond its terminal-age main sequence. The orbital period is quite short at 2.69802 days. The ingredients that are used in the analysis are the Kepler binary light curve, including the detection of the Doppler boosting effect; the NUV and FUV fluxes from the GALEX images of this object; an estimate of the spectral type of the F-star companion; and evolutionary models of the companion designed to match its effective temperature and mean density. The light curve is modeled with a new code named Icarus which we describe in detail. Its features include the full treatment of orbital phase-resolved spectroscopy, Doppler boosting, irradiation effects, and transits/eclipses, which are particularly suited to irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its likely evolutionary history. We infer that this type of system, containing a bloated hot white dwarf, is the direct descendant of an Algol-type binary. In spite of this basic understanding of the origin of KOI 1224, we discuss a number of problems associated with producing a system with an orbital period this short.

  6. Binaries discovered by the SPY project V. GD 687 - a massive double degenerate binary progenitor that will merge within a Hubble time

    OpenAIRE

    Geier, S.; Heber, U.; Kupfer, T.; Napiwotzki, R.

    2010-01-01

    Aims. The ESO SN Ia Progenitor Survey (SPY) aims at finding merging double degenerate binaries as candidates for supernova type Ia (SN Ia) explosions. A white dwarf merger has also been suggested to explain the formation of rare types of stars like R CrB, extreme helium or He sdO stars. Here we present the hot subdwarf B binary GD 687, which will merge in less than a Hubble time. Methods. The orbital parameters of the close binary have been determined from time resolved spectroscopy. Since GD...

  7. Physical Structure of Four Symbiotic Binaries

    Science.gov (United States)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the

  8. Statistical analysis of dwarf nova outbursts

    International Nuclear Information System (INIS)

    Gicger, A.

    1987-01-01

    Correlation between maximum brightness, outburst width, lengths of preceding and following intervals has been studied for 14 dwarf novae (mostly from southern sky). Significant correlations (ρ ≥ 0.4) occur only in 16 per cent of cases, what confirms earlier results of Szkody and Mattei (1984). Global correlations have also been studied between mean photometric parameters and binary system parameters using a sample including over 30 objects. The most interesting result is the strong correlation (ρ = +0.94) between the orbital period and the outburst duration. It implies that the quantity α(z 0 /r) 2 is approximately constant for all dwarf novae. Using typical estimates for z 0 /r we get α = 0.2. 30 refs., 1 figs., 2 tabs. (author)

  9. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Douglass, Kelly A.; Vogeley, Michael S.

    2017-01-01

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T e  method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.

  10. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    Science.gov (United States)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  11. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    OpenAIRE

    Montet, B.T.; Johnson, J.A.; Fortney, J.J.; Desert, J.-M.

    2016-01-01

    © 2016. The American Astronomical Society. All rights reserved.. There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmospher...

  12. The solar neighborhood. XXXI. Discovery of an unusual red+white dwarf binary at ∼25 pc via astrometry and UV imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jao, Wei-Chun; Henry, Todd J.; Winters, Jennifer G.; Gies, Douglas R. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Subasavage, John P. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Riedel, Adric R. [Department of Physics and Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065 (United States); Ianna, Philip A., E-mail: jao@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: winters@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jsubasavage@nofs.navy.mil, E-mail: ar494@hunter.cuny.edu, E-mail: philianna3@gmail.com [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2014-01-01

    We report the discovery of a nearby M5.0V dwarf at 24.6 pc, SCR 1848–6855, that is orbited by an unusual companion causing an astrometric perturbation of more than 200 mas. This is by far the largest perturbation found to date among more than 700 targets observed during our long-term astrometry/photometry program at the CTIO 0.9 m telescope. We present here a suite of astrometric, photometric, and spectroscopic observations of this high proper motion (∼1.''3 yr{sup –1}) system in an effort to reveal the nature of this unusual binary. The measured near-UV and optical U band fluxes exceed those expected for comparable M5.0V stars, and excess flux is also detected in the spectral range 4000-7000 Å. The elusive companion has been detected in HST-STIS+MAMA images at 1820 Å and 2700 Å, and our analysis shows that it is probably a rare, cool, white dwarf with T = 4600-5500 K. Given the long-term astrometric coverage, the prospects for an accurate mass determination are excellent, although as yet we can only provide limits on the unusual companion's mass.

  13. BVRcIc OBSERVATIONS AND ANALYSES OF THE DWARF DETACHED BINARY V1043 CASSIOPEIA AND A COMMENT ON PRECONTACT W UMa'S

    International Nuclear Information System (INIS)

    Samec, R. G.; Smith, P. M.; Chamberlain, H.; Faulkner, D. R.; Van Hamme, W.

    2013-01-01

    Complete Bessel BVR c I c light curves of V1043 Cassiopeia [2MASS J00371195+5301324, Mis V1292, USNO–A2.0 1425–00875743, α(2000) = 00 h 37 m 11. s 95, δ(2000) = +53°01'32.''5] are analyzed. The system is a member of the small group of pre-contact W UMa binaries (PCWBs). Its light curve has the appearance of an Algol (EA) light curve, however it is made up of dwarf solar type components in a detached mode with a period of only 0.6616 days. The analysis includes a period study, an improved ephemeris, a mass ratio search, and a simultaneous BVR c I c Wilson-Devinney solution. We document about 20 other PCWBs given in the literature. Several have RS CVn-like properties.

  14. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Saurav [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States); West, Andrew A.; Schluns, Kyle J.; Massey, Angela P. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Stassun, Keivan G., E-mail: dhitals@erau.edu [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235 (United States)

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  15. TWO NEW LONG-PERIOD HOT SUBDWARF BINARIES WITH DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Brad N.; Wade, Richard A. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Liss, Sandra E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Green, Elizabeth M., E-mail: bbarlow@psu.edu [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-07-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk.

  16. TWO NEW LONG-PERIOD HOT SUBDWARF BINARIES WITH DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E.; Green, Elizabeth M.

    2013-01-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk.

  17. The white dwarf in dwarf nova SDSS J080434.20+510349.2: Entering the instability strip?

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, E, E-mail: pavlenko@crao.crimea.u [Crimean astrophysical observatory, Crimea 98409 (Ukraine)

    2009-06-01

    SDSS J080434.20+510349.2 is a WZ Sge type binary that displayed a rare outburst in 2006 (Pavlenko et al. 2007). During the long-lasting tail of the late stage of the outburst, the binary showed a two-humped or four-humped profile of the orbital light modulation. The amplitude of the orbital light curve decreased while the mean brightness decreased; moreover, that occurred approx 10 times faster during the fast outburst decline with respect to the late quiet state of slow outburst fading. There were no white dwarf pulsations detected in this system, neither 1 - 1.5 months prior to the outburst, nor in 1.5 - 2 months after the 2006 outburst. However, strong non-radial pulsations with period 12.6 minutes and a mean amplitude of 0.05m were first detected in the V band with the 2.6-m Shajn mirror telescope of the Crimean astrophysical observatory, approx 8 months after the outburst. The evolution of pulsations over two years, in 2006 - 2008, is considered. It is supposed that pulsations first appeared when the cooling white dwarf (after the outburst) entered the instability strip, although the possibility of temporary lack of pulsations at some occasions could not be excluded.

  18. Distances of Dwarf Carbon Stars

    Science.gov (United States)

    Harris, Hugh C.; Dahn, Conard C.; Subasavage, John P.; Munn, Jeffrey A.; Canzian, Blaise J.; Levine, Stephen E.; Monet, Alice B.; Pier, Jeffrey R.; Stone, Ronald C.; Tilleman, Trudy M.; Hartkopf, William I.

    2018-06-01

    Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1–3 au, consistent with the size of an AGB mass-transfer donor star.

  19. Do some x-ray stars have white dwarf companions

    Science.gov (United States)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  20. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  1. Identification and characterization of low mass stars and brown dwarfs using Virtual Observatory tools

    Science.gov (United States)

    Aberasturi, Miriam

    2015-11-01

    conducted an all-sky photometric search by cross correlating the Carlsberg Meridian Catalogue (CMC14) and the 2MASS Point Source Catalogue with the aim of increasing the number of known, nearby M dwarfs that could be used as targets for exoplanet searches in general and CARMENES in particular. This VO search was combined with low-resolution spectroscopic followup of 27 objects using the IDS spectrograph at the Isaac Newton telescope at La Palma, as well as with an astrometric and photometric study. In the third paper we attempted to refine the multiplicity properties of T dwarfs studying the largest sample so far observed with high angular resolution imaging. We undertook two parallel programs using the Wide Field Camera 3 (WFC3) installed on the Hubble Space Telescope (HST). We used a PSF-fitting subtraction technique to reveal the presence of any close companion to the sources in our sample. Monte Carlo simulations were carried out to estimate the capability of WFC3 to detect close binaries in terms of angular separation and magnitude difference. Simulations were also used to determine the fraction of binaries that would have been detected around each source based on assumed separations, mass ratio distributions and orientations of the systems. Results: The main conclusion from this dissertation is that the Virtual Observatory has proved to be an excellent research methodology in the field of low mass stars and brown dwarfs. In particular, it allowed an efficient management of the queries to different catalogues and archives as well as the estimation of physical parameters through VO-tools. In the first publication we present the identification of 31 brown dwarf (25 known and 6 strong candidates not previously reported in the literature) identified in the sky area in common toWISE, 2MASS and SDSS. This is a remarkable number considering that 2MASS has been extensively searched for ultracool dwarfs and clearly show how new surveys and the use of VO tools can help to mine

  2. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    Science.gov (United States)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  3. Spectroscopic analysis of DA white dwarfs from the McCook and Sion catalog

    International Nuclear Information System (INIS)

    Gianninas, A; Bergeron, P; Ruiz, M T

    2009-01-01

    For some years now, we have been gathering optical spectra of DA white dwarfs in an effort to study and define the empirical ZZ Ceti instability strip. However, we have recently expanded this survey to include all the DA white dwarfs in the McCook and Sion catalog down to a limiting visual magnitude of V = 17.5. We present here a spectroscopic analysis of over 1000 DA white dwarfs from this ongoing survey. We have several specific areas of interest most notably the hot DAO white dwarfs, the ZZ Ceti instability strip, and the DA+dM binary systems. Furthermore, we present a comparison of the ensemble properties of our sample with those of other large surveys of DA white dwarfs, paying particular attention to the distribution of mass as a function of effective temperature.

  4. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    International Nuclear Information System (INIS)

    Heinze, Aren N.; Metchev, Stanimir; Kellogg, Kendra

    2015-01-01

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution

  5. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  6. QCD matter in white dwarfs and supernova collapse

    International Nuclear Information System (INIS)

    Mathews, Grant J.; Meixner, M.; Lan, N.Q.; Suh, I.-S.

    2010-01-01

    The search for astrophysical evidence for a transition to QCD matter is an important goal. Although much effort has gone into searching for neutron star candidates, here we describe the exploration of two other possible signatures. One is the search for strange dwarfs. Masses and radii for a large number of white dwarfs have been deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. Some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equation of state. We argue that there is marginal evidence for bimodality in the radius distribution. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify eight nearby white dwarfs that are possible candidates for strange matter cores and suggest observational tests of this hypothesis. We also review the current status of core-collapse supernova research, and in particular, the effects on the explosion of a QCD phase transition in the proto-neutron-star core. We describe how a first order transition could enhance the explosion and lead to observable effects in the emergent neutrino light curve. (author)

  7. Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs

    Science.gov (United States)

    Raddi, R.; Gentile Fusillo, N. P.; Pala, A. F.; Hermes, J. J.; Gänsicke, B. T.; Chote, P.; Hollands, M. A.; Henden, A.; Catalán, S.; Geier, S.; Koester, D.; Munari, U.; Napiwotzki, R.; Tremblay, P.-E.

    2017-12-01

    The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological studies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterization of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.

  8. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Logsdon, Sarah E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Gagné, Jonathan [Institute for Research on Exoplanets (iREx), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Bochanski, John J. [Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 (United States); Faherty, Jaqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue Boston, MA 02215 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Schmidt, Sarah J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Cruz, Kelle L., E-mail: aburgasser@ucsd.edu [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States)

    2015-09-15

    Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfs (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.

  9. Evolution of tidal capture X-ray binaries - 4U 2127+12 (M15) to 4U 1820-30 (NGC 6624)

    International Nuclear Information System (INIS)

    Bailyn, C.D.; Grindlay, J.E.

    1987-01-01

    A new evolutionary scenario for X-ray binaries in globular clusters, which begins with a tidal capture of a main-sequence star by a neutron star and ends with a white dwarf-neutron star system, is presented. For tidal captures of main-sequence stars into orbits too wide to begin mass transfer immediately, the subsequent evolution of the secondary can lead to a common envelope binary similar to what the 9 hr X-ray binary 4U 2127+12 in M15 is suspected to be. If the common envelope is thick enough, it may cause the neutron star and the white dwarf core of the secondary to spiral in, producing a detached white dwarf-neutron star system. Subsequently, gravitational radiation losses may evolve this into the configuration seen in the 11 minute X-ray binary 4U 1820-30 in NGC 6624. This model appears more likely on statistical grounds than formation by collision of a neutron star and a red giant. In some circumstances, the latter process may result in unstable mass transfer, which would result in coalescence rather than a binary system like 4U 1820-30. 34 references

  10. Pruning The ELM Survey: Characterizing Candidate Low-mass White Dwarfs through Photometric Variability

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Keaton J.; Winget, D. E.; Montgomery, M. H.; Castanheira, B. G.; Vanderbosch, Z.; Winget, K. I. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Hermes, J. J. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Brown, Warren R., E-mail: keatonb@astro.as.utexas.edu [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States)

    2017-02-01

    We assess the photometric variability of nine stars with spectroscopic T {sub eff} and log g values from the ELM Survey that locates them near the empirical extremely low-mass (ELM) white dwarf instability strip. We discover three new pulsating stars: SDSS J135512.34+195645.4, SDSS J173521.69+213440.6, and SDSS J213907.42+222708.9. However, these are among the few ELM Survey objects that do not show radial velocity (RV) variations that confirm the binary nature expected of helium-core white dwarfs. The dominant 4.31 hr pulsation in SDSS J135512.34+195645.4 far exceeds the theoretical cut-off for surface reflection in a white dwarf, and this target is likely a high-amplitude δ Scuti pulsator with an overestimated surface gravity. We estimate the probability to be less than 0.0008 that the lack of measured RV variations in four of eight other pulsating candidate ELM white dwarfs could be due to low orbital inclination. Two other targets exhibit variability as photometric binaries. Partial coverage of the 19.342 hr orbit of WD J030818.19+514011.5 reveals deep eclipses that imply a primary radius >0.4 R {sub ⊙}—too large to be consistent with an ELM white dwarf. The only object for which our time series photometry adds support to ELM white dwarf classification is SDSS J105435.78−212155.9, which has consistent signatures of Doppler beaming and ellipsoidal variations. We conclude that the ELM Survey contains multiple false positives from another stellar population at T {sub eff}≲9000 K, possibly related to the sdA stars recently reported from SDSS spectra.

  11. Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs

    Directory of Open Access Journals (Sweden)

    Isakova Polina

    2014-01-01

    Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.

  12. Genesis of magnetic fields in isolated white dwarfs

    Science.gov (United States)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-05-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  13. Thirty New Low-mass Spectroscopic Binaries

    Science.gov (United States)

    Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew

    2010-06-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada

  14. Orbital circularisation of white dwarfs and the formation of gravitational radiation sources in star clusters containing an intermediate mass black hole

    OpenAIRE

    Ivanov, P. B.; Papaloizou, J. C. B.

    2007-01-01

    (abbreviated) We consider how tight binaries consisting of a super-massive black hole of mass $M=10^{3}-10^{4}M_{\\odot}$ and a white dwarf can be formed in a globular cluster. We point out that a major fraction of white dwarfs tidally captured by the black hole may be destroyed by tidal inflation during ongoing circularisation, and the formation of tight binaries is inhibited. However, some stars may survive being spun up to high rotation rates. Then the energy loss through gravitational wave...

  15. Dynamic mass exchange in doubly degenerate binaries. I - 0.9 and 1.2 solar mass stars

    International Nuclear Information System (INIS)

    Benz, W.; Cameron, A.G.W.; Press, W.H.; Bowers, R.L.

    1990-01-01

    The dynamic mass exchange process in doubly degenerate binaries was investigated using a three-dimensional numerical simulation of the evolution of a doubly degenerate binary system in which the primary is a 1.2-solar-mass white dwarf and the Roche lobe filling secondary is a 0.9-solar-mass dwarf. The results show that, in a little more than two orbital periods, the secondary is completely destroyed and transformed into a thick disk orbiting about the primary. Since only a very small fraction of the mass (0.0063 solar mass) escapes the system, the evolution of the binary results in the formation of a massive object. This object is composed of three parts, the initial white dwarf primary, a very hot pressure-supported spherical envelope, and a rotationally supported outer disk. The evolution of the system can be understood in terms of a simple analytical model where it is shown that the angular momentum carried by the mass during the transfer and stored in the disk determines the evolution of the system. 34 refs

  16. Classification of Metal-Deficient Dwarfs in the Vilnius Photometric System

    Directory of Open Access Journals (Sweden)

    Lazauskaitė R.

    2003-12-01

    Full Text Available Methods used for the quantitative classification of metal-deficient stars in the Vilnius photometric system are reviewed. We present a new calibration of absolute magnitudes for dwarfs and subdwarfs, based on Hipparcos parallaxes. The new classification scheme is applied to a sample of Population II visual binaries.

  17. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  18. Two New Long-period Hot Subdwarf Binaries with Dwarf Companions

    Science.gov (United States)

    Barlow, Brad N.; Liss, Sandra E.; Wade, Richard A.; Green, Elizabeth M.

    2013-07-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  19. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, the Weizmann Institute (Israel); Hung, L.-W. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Janczak, J. [Department of Physics, Ohio State University, 191 W. Woodruff, Columbus, OH 43210 (United States); Kaspi, S. [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  20. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  1. Finding binaries from phase modulation of pulsating stars with Kepler

    Science.gov (United States)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  2. Looking for the Coldest Atmospheres: a Search for Planetary Mass Companions around T and Y Brown Dwarfs

    Science.gov (United States)

    Fontanive, Clemence

    2017-08-01

    We propose to obtain WFC3/IR imaging of the very coolest brown dwarfs (T planetary-mass companions to these objects. Companions discovered by this program would likely be analogues of the 250 K brown dwarf WISE 0855 and would provide vital benchmark objects for theoretical models, closing the gap in mass and temperature between brown dwarfs and planets. Finding such an object as a member of a binary system would be even more valuable as it would allow for the measurement of dynamical masses. We recently placed the first constraints to date on the binary frequency for brown dwarfs with spectral types >T8. This program will triple our current sample size, a requirement in order to confirm our current results and compare substellar binary properties for various spectral type and age populations. The WFC3/IR plate will allow us to probe near equal-mass binaries down to separations of 0.2 (2-3 AU for the typical distances of our targets). True cool companions should show strong absorption around 1.4 um as a result of the deep water absorption band observed at that wavelength in substellar spectra. We therefore propose observations in the WFC3 F127M and F139M filters which will allow us to robustly identify bona fide candidates and distinguish them from background stars based on this spectral feature. Most of our targets lack suitable NGS AO guide stars or LGS AO tip-tilt stars to be observed with ground-based telescopes, and the 1.4 um water band is often unobservable from the ground due to telluric water absorption. WFC3 on HST is thus the only instrument suitable for these observations.

  3. Periodic optical variability of radio-detected ultracool dwarfs

    International Nuclear Information System (INIS)

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F.; Hallinan, G.; Boyle, R. P.; Zavala, R. T.

    2013-01-01

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  4. Periodic optical variability of radio-detected ultracool dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F. [Centre for Astronomy, National University of Ireland, Galway, University Road, Galway (Ireland); Hallinan, G. [Cahill Center for Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Boyle, R. P. [Vatican Observatory Research Group, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Zavala, R. T., E-mail: lkh@astro.caltech.edu [United States Naval Observatory, Flagstaff Station, Flagstaff, AZ 86001 (United States)

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  5. White dwarfs and revelations

    Science.gov (United States)

    Saltas, Ippocratis D.; Sawicki, Ignacy; Lopes, Ilidio

    2018-05-01

    We use the most recent, complete and independent measurements of masses and radii of white dwarfs in binaries to bound the class of non-trivial modified gravity theories, viable after GW170817/GRB170817, using its effect on the mass-radius relation of the stars. We show that the uncertainty in the latest data is sufficiently small that residual evolutionary effects, most notably the effect of core composition, finite temperature and envelope structure, must now accounted for if correct conclusions about the nature of gravity are to be made. We model corrections resulting from finite temperature and envelopes to a base Hamada-Salpeter cold equation of state and derive consistent bounds on the possible modifications of gravity in the stars' interiors, finding that the parameter quantifying the strength of the modification Y< 0.14 at 95% confidence, an improvement of a factor of three with respect to previous bounds. Finally, our analysis reveals some fundamental degeneracies between the theory of gravity and the precise chemical makeup of white dwarfs.

  6. Binary Star Fractions from the LAMOST DR4

    Science.gov (United States)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  7. Semi-dwarf cereal mutants and their use in cross-breeding III

    International Nuclear Information System (INIS)

    1988-03-01

    A Co-ordinated Research Programme on the ''Evaluation of semi-dwarf mutants as cross-breeding material in cereals'' was initiated in 1980, with the main objective to provide cereal breeders with new, alternative sources of genes for semi-dwarf, lodging resistant plant types. The present publication includes papers presented at the final Research Co-ordination Meeting. Papers presented by participants in the Co-ordinated Research Programme demonstrate that these objectives were successfully achieved. As an additional result of this programme more improved genotypes of cereals with other desirable characters as earliness, better harvest index and improved plant architecture have become available for practical breeding. Refs, figs, tabs

  8. A Common Origin of Magnetism from Planets to White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Isern, Jordi; Külebi, Baybars [Institut de Ciències de l’Espai (CSIC), Campus UAB, 08193 Cerdanyola (Spain); García-Berro, Enrique [Institut d’Estudis Espacials de Catalunya, Ed. Nexus-201, c/Gran Capità 2-4, E-08034 Barcelona (Spain); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-02-20

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, {sup 12}C and {sup 16}O, and of the impurities left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.

  9. Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation

    Energy Technology Data Exchange (ETDEWEB)

    Bédard, A.; Bergeron, P.; Fontaine, G., E-mail: bedard@astro.umontreal.ca, E-mail: bergeron@astro.umontreal.ca, E-mail: fontaine@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada)

    2017-10-10

    We present a detailed spectroscopic and photometric analysis of 219 DA and DB white dwarfs for which trigonometric parallax measurements are available. Our aim is to compare the physical parameters derived from the spectroscopic and photometric techniques, and then to test the theoretical mass–radius relation for white dwarfs using these results. The agreement between spectroscopic and photometric parameters is found to be excellent, especially for effective temperatures, showing that our model atmospheres and fitting procedures provide an accurate, internally consistent analysis. The values of surface gravity and solid angle obtained, respectively, from spectroscopy and photometry, are combined with parallax measurements in various ways to study the validity of the mass–radius relation from an empirical point of view. After a thorough examination of our results, we find that 73% and 92% of the white dwarfs are consistent within 1 σ and 2 σ confidence levels, respectively, with the predictions of the mass–radius relation, thus providing strong support to the theory of stellar degeneracy. Our analysis also allows us to identify 15 stars that are better interpreted in terms of unresolved double degenerate binaries. Atmospheric parameters for both components in these binary systems are obtained using a novel approach. We further identify a few white dwarfs that are possibly composed of an iron core rather than a carbon/oxygen core, since they are consistent with Fe-core evolutionary models.

  10. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    International Nuclear Information System (INIS)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David; Wehinger, Peter; Martin, Christopher D.; Neill, James D.; Forster, Karl; Seibert, Mark

    2012-01-01

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf nova AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of ∼5 × 10 –5 M ☉ , typical of classical novae.

  11. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Wehinger, Peter [Steward Observatory, the University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Martin, Christopher D.; Neill, James D.; Forster, Karl [Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125 (United States); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-10-20

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf nova AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.

  12. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known....... The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M ☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries....

  13. A STUDY OF THE DIVERSE T DWARF POPULATION REVEALED BY WISE

    International Nuclear Information System (INIS)

    Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Mix, Katholeen; Beichman, Charles A.; Lowrance, Patrick J.; Cushing, Michael C.; Skrutskie, Michael F.; Marsh, Kenneth A.; Eisenhardt, Peter R.; Thompson, Maggie A.; Bailey, Vanessa; Hinz, Philip M.; Knox, Russell P.; Bloom, Joshua S.; Burgasser, Adam J.; Fortney, Jonathan J.

    2013-01-01

    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and 3 brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7 ± 1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and 4 photometrically selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two young stellar objects and two active galactic nuclei. The substantial increase in the number of known late-type T dwarfs provides a population that will be used to test models of cold atmospheres and star formation. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.

  14. Comparative study of binary and ternary complexes of some rare earths

    International Nuclear Information System (INIS)

    Makhijani, S.D.; Sangal, S.P.

    1978-01-01

    Modified form of Irving and Rossotti's pH titration technique has been used to evaluate and compare the stability constants of the binary and ternary complexes of Sc(III), Y(III), La(III), Pr(III), Nd(III) and Sm(III) at 30 0 at an ionic strength of 0.2M NaClO 4 . For the study of ternary complexes, nitrilotriacetic acid has been used as a primary ligand and polyhydroxy phenols i.e. pyrocatechol (PYC), pyrogallol (PYG) and gallic acid (GA) as secondary ligands. The stability constants of the binary complexes were found to be more than those of the corresponding ternary complexes which can reasonably be explained on the basis of electrostatic force between primary complex (metal in the case of binary complex) and secondary ligand, and space available to accommodate the secondary ligand. The stability decreases with the increase in ionic radii, i.e. Sc(III)>Y(III)>Sm(III)>Nd(III)>Pr(III)>La(III). In terms of secondary ligand, it follows the order PYC>GA>PYG. Rare earths form only 1:1 binary complex, and 1:1:1 mixed ligand complex in all the cases. (author)

  15. A VERY BRIGHT, VERY HOT, AND VERY LONG FLARING EVENT FROM THE M DWARF BINARY SYSTEM DG CVn

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Rachel A. [Space Telescope Science Institute (United States); Kowalski, Adam [U. Md/GSFC (United States); Drake, Stephen A. [USRA/CRESST and NASA/GSFC (United States); Krimm, Hans [USRA/CRESST (United States); Page, Kim [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Gazeas, Kosmas [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR-15784 Zografos, Athens (Greece); Kennea, Jamie [Penn State (United States); Oates, Samantha [Instituto de Astrofsica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Page, Mathew [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); De Miguel, Enrique [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Novák, Rudolf [Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Apeltauer, Tomas [Brno University of Technology, Faculty of Civil Engineering, Veveri 331/95, 602 00 Brno (Czech Republic); Gehrels, Neil, E-mail: osten@stsci.edu [NASA/GSFC (United States)

    2016-12-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3–100 keV bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T{sub X} of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be >10{sup 20} cm{sup 2}, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T  ∼ 10{sup 4} K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3–10 keV bandpass of 4 × 10{sup 35} and 9 × 10{sup 35} erg, and optical flare energies at E{sub V} of 2.8 × 10{sup 34} and 5.2 × 10{sup 34} erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  16. A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

    Science.gov (United States)

    Osten, Rachel A.; Kowalski, Adam; Drake, Stephen; Krimm, Hans; Page, Kim; Gazeas, Kosmas; Page, Mathew; Miguel, Enrique De; Novak, Rudolf; Gehrels, Cornelis

    2016-01-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3100 kiloelectron volts bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T(sub x) of 290 megakelvin. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be greater than 10(exp 20) sq cm, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T approximately 10(exp 4) K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3-10 kiloelectron volts bandpass of 4 x 10(exp 35) and 9 x 10(exp 35) erg, and optical flare energies at E(sub V) of 2.8 x 10(exp 34) and 5.2 x 10(exp 34) erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  17. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  18. An estimate of the system parameters in the dwarf nova IP Peg

    International Nuclear Information System (INIS)

    Wood, Janet; Crawford, C.S.

    1986-01-01

    High-speed photometry of the eclipsing dwarf nova IP Peg is used to estimate the geometry of the binary system and the masses of its components. A white dwarf eclipse width between 0.0863 and 0.0918, is found and hence constraints on the mass ratio, q, of 0.35#lt#q#lt#0.49 and on the inclination, i, of 80 0 .9#lt#i#lt#90 0 . The white dwarf is surrounded by an extended boundary layer and has a mass of at least Msub(WD) approx.0.3 solar mass, probably much greater, depending on the thickness of the boundary layer and the orbital inclination. Its mass could be as high as 0.9 solar mass for an inclination of 80 0 .9. The mass of the secondary star is greater than 0.09 solar mass probably a lot higher. IP Peg could be earlier in the evolutionary sequence of dwarf novae than the ultra-short-period system (P#lt#2hr). (author)

  19. Outcome of mass transfer in a carbon-oxygen white dwarf binary system

    International Nuclear Information System (INIS)

    Khokhlov, A.M.

    1985-01-01

    The hydrostatic evolution of a carbon-oxygen white dwarf (COWD) experiencing accretion of matter from its companion, a second COWD, is calculated for accretion rates ranging from 10 to the -8th to 10 to the -5th solar masses per year. It is shown that, for accretion rates less than (3.3 + or - 1.5) x 10 to the -6th M/yr, the accretion of a C+O mixture by a COWD will ultimately lead to ignition of carbon at the center of the star, producing a thermonuclear explosion. For accretion rates greater than that value, the C-12 can be ignited near the white dwarf surface, followed by propagation of the thermonuclear burning front toward the center. It is concluded that a COWD accreting a C+O mixture is a highly plausible candidate for a type I presupernova. 18 references

  20. On type Ia supernovae and the formation of single low-mass white dwarfs

    OpenAIRE

    Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Han, Zhanwen

    2008-01-01

    There is still considerable debate over the progenitors of type Ia supernovae (SNe Ia). Likewise, it is not agreed how single white dwarfs with masses less than ~0.5 Msun can be formed in the field, even though they are known to exist. We consider whether single low-mass white dwarfs (LMWDs) could have been formed in binary systems where their companions have exploded as a SN Ia. In this model, the observed single LMWDs are the remnants of giant-branch donor stars whose envelopes have been st...

  1. Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845

    International Nuclear Information System (INIS)

    Brown, Alexander; Ayres, Thomas R.; Neff, James E.; Wells, Mark A.; Kowalski, Adam; Hawley, Suzanne; Berdyugina, Svetlana; Harper, Graham M.; Korhonen, Heidi; Piskunov, Nikolai; Saar, Steven; Walkowicz, Lucianne

    2015-01-01

    The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4 year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.

  2. Helium flashes on accreting white dwarfs: consequences for type 1 supernova and nova abundances

    International Nuclear Information System (INIS)

    Hillebrandt, W.; Ziegert, W.; Thielemann, F.K.

    1986-01-01

    Helium flashes on an accreting 1 Solar mass carbon-oxygen white dwarf are investigated. It is demonstrated that the outer layers of a white dwarf growing towards the Chandrasekhar limit will be significantly enriched in elements like Mg, Al, Si and S provided the mass accretion rate is of the order of a few times 10 -8 to 10 -7 Solar mass per year. Since these stars are believed to explode as type I supernovae the abundances being ejected will depend also upon the accretion history of the white dwarfs. In addition this matter will have a rather non-solar isotopic composition. Finally, our results may help to explain abundances of heavy elements observed in certain novae if the white dwarf in those binary systems has gone through a high accretion rate phase once in the past before becoming a normal cataclysmic variable

  3. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence

    CERN Document Server

    Colpi, Monica; Gorini, Vittorio; Moschella, Ugo; Possenti, Andrea

    2009-01-01

    This book provides a comprehensive, authoritative and timely review of the astrophysical approach to the investigation of gravity theories. Particular attention is paid to strong-field tests of general relativity and alternative theories of gravity, performed using collapsed objects (neutron stars, black holes and white dwarfs) in relativistic binaries as laboratories. The book starts with an introduction which gives the background linking experimental gravity in cosmic laboratories to astrophysics and fundamental physics. Subsequent chapters cover observational and theoretical aspects of the following topics: from binaries as test-beds of gravity theories to binary pulsars as cosmic laboratories; from binary star evolution to the formation of relativistic binaries; from short gamma-ray bursts to low mass X-ray binaries; from stellar-mass black hole binaries to coalescing super-massive black holes in galaxy mergers. The book will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology, ...

  4. EXOSAT observations of V471 Tauri - a 9.25 minute white dwarf pulsation and orbital phase dependent X-ray dips

    International Nuclear Information System (INIS)

    Jensen, K.A.; Swank, J.H.; Petre, P.; Guinan, E.F.; Sion, E.M.; Navy, E. O. Hulburt Center for Space Research, Washington, DC; Villanova Univ., PA)

    1986-01-01

    New results obtained from a 28 hr continuous observation of V471 Tauri with the EXOSAT satellite are reported. The detection of soft X-ray fluxes from both the white dwarf and the K dwarf, the discovery of a 9.25 minute pulsation from the white dwarf, and the discovery of orbital phase-related soft X-ray dips are discussed. The dips may be correlated with the triangular Lagrangian points of the binary orbit. The X-ray flux from the white dwarf is consistent with thermal models for a white dwarf photosphere with T(eff) of about 35,000 K, log g = 8.0-8.5, and log N(H) = 18.65 + or - 0.2. 25 references

  5. Mass loss from interacting close binary systems

    Science.gov (United States)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  6. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  7. Tidal effects in twin-degenerate binaries

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1984-01-01

    The tidal velocity field is calculated for an initially non-rotating low mass white dwarf secondary in a twin-degenerate binary. These motions are used to find the tidal torque on the secondary, to first order in the orbital frequency, and an expression is derived for the synchronization time. For a lobe-filling secondary the synchronization time has a weak dependence on the mass and luminosity of the star, and for the binary G61-29 is found to be of the same order as the estimated lifetime of the system. It is emphasized, however, that tidal excitation of non-radial oscillatory modes in the secondary may significantly shorten the synchronization time. (author)

  8. Calibrating the metallicity of M dwarfs in wide physical binaries with F-, G-, and K- primaries - I: High-resolution spectroscopy with HERMES: stellar parameters, abundances, and kinematics

    Science.gov (United States)

    Montes, D.; González-Peinado, R.; Tabernero, H. M.; Caballero, J. A.; Marfil, E.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González Hernández, J. I.; Klutsch, A.; Moreno-Jódar, C.

    2018-05-01

    We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions. With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high-resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic STEPAR code for deriving precise stellar atmospheric parameters: Teff, log g, ξ, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.

  9. IDENTIFICATION OF A WIDE, LOW-MASS MULTIPLE SYSTEM CONTAINING THE BROWN DWARF 2MASS J0850359+105716

    International Nuclear Information System (INIS)

    Faherty, Jacqueline K.; Burgasser, Adam J.; Bochanski, John J.; Looper, Dagny L.; West, Andrew A.; Van der Bliek, Nicole S.

    2011-01-01

    We report our discovery of NLTT 20346 as an M5+M6 companion system to the tight binary (or triple) L dwarf 2MASS J0850359+105716. This nearby (∼31 pc), widely separated (∼7700 AU) quadruple system was identified through a cross-match of proper motion catalogs. Follow-up imaging and spectroscopy of NLTT 20346 revealed it to be a magnetically active M5+M6 binary with components separated by ∼2'' (50-80 AU). Optical spectroscopy of the components shows only moderate Hα emission corresponding to a statistical age of ∼5-7 Gyr for both M dwarfs. However, NLTT 20346 is associated with the XMM-Newton source J085018.9+105644, and based on X-ray activity the age of NLTT 20346 is between 250 and 450 Myr. Strong Li absorption in the optical spectrum of 2MASS J0850+1057 indicates an upper age limit of 0.8-1.5 Gyr, favoring the younger age for the primary. Using evolutionary models in combination with an adopted system age of 0.25-1.5 Gyr indicates a total mass for 2MASS J0850+1057 of 0.07 ± 0.02 M sun , if it is a binary. NLTT 20346/2MASS J0850+1057 joins a growing list of hierarchical systems containing brown dwarf binaries and is among the lowest binding energy associations found in the field. Formation simulations via gravitational fragmentation of massive extended disks have successfully produced a specific analog to this system.

  10. The distribution of masses and radii of white-dwarf stars

    International Nuclear Information System (INIS)

    Shipman, H.L.

    1978-01-01

    The status of determinations of white dwarf radii by model atmosphere methods is reviewed. The results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R(Sun); (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R(Sun), indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R(Sun). (Auth.)

  11. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    International Nuclear Information System (INIS)

    Bagchi, Manjari; Torres, Diego F.

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  12. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms

    International Nuclear Information System (INIS)

    Nomoto, K.

    1982-01-01

    The evolution of carbon-oxygen white dwarfs accreting helium in binary systems has been investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs as a plausible explosion model for a Type I supernova. Although the accreted material has been assumed to be helium, our results should also be applicable to the more general case of accretion of hydrogen-rich material, since hydrogen shell burning leads to the development of a helium zone. Several cases with different accretion rates of helium and different initial masses of the white dwarf have been studied. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates, or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case for the slow accretion since, in this case, the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail

  13. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  14. X-Ray and Optical Observations of the Unique Binary System HD 49798/RX J0648.0-4418

    Science.gov (United States)

    Mereghetti, S.; La Palombara, N.; Tiengo, A.; Pizzolato, F.; Esposito, P.; Woudt, P. A.; Israel, G. L.; Stella, L.

    2011-08-01

    We report the results of XMM-Newton observations of HD 49798/RX J0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P = 13.2 s) and has a dynamically measured mass of 1.28 ± 0.05 M sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT BB ~ 40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~1032 erg s-1 is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass loss. A search for optical pulsations at the South African Astronomical Observatory 1.9 m telescope gave negative results. X-rays were also detected during the white dwarf eclipse. This emission, with luminosity 2 × 1030 erg s-1, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD 49798/RX J0648.0-4418 is a post-common-envelope binary which most likely originated from a pair of stars with masses ~8-10 M sun. After the current He-burning phase, HD 49798 will expand and reach the Roche lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.

  15. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    Science.gov (United States)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    ía-Berro et al., 2014). In this thesis we investigate different properties of single and binary white dwarf populations in the Galactic disk and halo. We first study the effect of progenitor metallicity on the thin disk white dwarf luminosity function. Stellar metallicity is an important parameter in computing both main-sequence evolutionary sequences and white dwarf cooling tracks. At the same, studies of the metallicity distribution function for the Galactic disk have shown that both high and low-metallicity stars can be found throughout the entire mass range, although a clear dependence between age and metallicity has yet to be proven and more recent findings actually show little correlation. With this in mind, we test two different age-metallicity relations, one assuming a Gaussian distribution of metallicity around the Solar value, the other one a decreasing relation between age and metallicity. We take into account the influence of metallicity on both main sequence lifetimes and white dwarf s! tellar parameters. Finally, we compute the theoretical white dwarf luminosity function applying the observational selection criteria of two different surveys, the Sloan Digital Sky Survey (SDSS) and the Supercosmos Sky Survey (SSS). Next, we compute the white dwarf luminosity, mass and cumulative age functions derived from a sample of DA white dwarfs obtained from the LAMOST Spectroscopic Survey of the Galactic anti-center (LSS-GAC). We also derive the local space density and the formation rate for DA white dwarf. Given that both the observed mass distribution obtained from this sample and that derived from the local sample of white dwarfs present an apparent excess of massive white dwarfs, we investigate the possibility of accounting for this excess by reproducing the white dwarf population of the thin disk under different sets of initial assumptions, accounting also for selection criteria and observational biases. Another issue that we investigate is the robustness of the halo

  16. DISCOVERY OF A POSSIBLE COOL WHITE DWARF COMPANION FROM THE AllWISE MOTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo-Acosta, Sergio B.; Kirkpatrick, J. Davy; Gelino, Christopher R. [IPAC, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Schneider, Adam C.; Cushing, Michael C. [University of Toledo, 2801 W. Bancroft Street, MS 113, Toledo, OH 43606 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 169-221, Pasadena, CA 91109 (United States); Bardalez-Gagliuffi, Daniella C. [University of California at San Diego, 9450 Gillman Drive # 40282, La Jolla, CA 92092 (United States); Kellogg, Kendra [Western University, 226-376-3530, 454 Castlegrove Boulevard, London, ON N6G 1K8 (Canada); Wright, Edward L., E-mail: fajardo@ipac.caltech.edu, E-mail: davy@ipac.caltech.edu, E-mail: cgelino@ipac.caltech.edu, E-mail: aschneid10@gmail.com, E-mail: michael.cushing@utoledo.edu, E-mail: daniel.k.stern@jpl.nasa.gov, E-mail: daniella@physics.ucsd.edu, E-mail: kkellog@uwo.ca, E-mail: wright@astro.ucla.edu [University of California at Los Angeles, Department of Physics and Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-11-20

    We present optical and near-infrared spectroscopy of WISEA J061543.91-124726.8, which we rediscovered as a high motion object in the AllWISE survey. The spectra of this object are unusual; while the red optical ( λ > 7000 Å) and near-infrared spectra exhibit characteristic TiO, VO, and H{sub 2}O bands of a late-M dwarf, the blue portion of its optical spectrum shows a significant excess of emission relative to late-M-type templates. The excess emission is relatively featureless, with the exception of a prominent and very broad Na i D doublet. We find that no single, ordinary star can reproduce these spectral characteristics. The most likely explanation is an unresolved binary system of an M7 dwarf and a cool white dwarf. The flux of a cool white dwarf drops in the optical red and near-infrared, due to collision-induced absorption, thus allowing the flux of a late-M dwarf to show through. This scenario, however, does not explain the Na D feature, which is unlike that of any known white dwarf, but which could perhaps be explained via unusual abundance or pressure conditions.

  17. Observations and light curve solutions of four ultrashort-period binaries

    Directory of Open Access Journals (Sweden)

    Kjurkchieva D.

    2016-01-01

    Full Text Available The paper presents light curve solutions of our observations of four new ultrashort-period eclipsing binaries with MS components. Two of them have periods almost at the upper limit (0.22 days of the ultrashort-period binaries, while the periods of around 0.18 days of CSS J171508.5+350658 and CSS J214633.8+120016 are amongst the shortest known orbital periods. CSS J171410.0+ 445850, CSS J214633.8+120016 and CSS J224326.0+154532 are over contact binaries with fill out factors around 0.25 while CSS J171508.5+350658 is a semidetached system. The two targets with shortest periods consist of M dwarfs.

  18. DETECTION OF WHITE DWARF COMPANIONS TO BLUE STRAGGLERS IN THE OPEN CLUSTER NGC 188: DIRECT EVIDENCE FOR RECENT MASS TRANSFER

    Energy Technology Data Exchange (ETDEWEB)

    Gosnell, Natalie M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin - Madison, 475 N. Charter St., Madison, WI 53706 (United States); Geller, Aaron M. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208 (United States); Sills, Alison [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1 (Canada); Leigh, Nathan [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Knigge, Christian, E-mail: gosnell@astro.wisc.edu [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 IBJ (United Kingdom)

    2014-03-01

    Several possible formation pathways for blue straggler stars have been developed recently, but no one pathway has yet been observationally confirmed for a specific blue straggler. Here we report the first findings from a Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel far-UV photometric program to search for white dwarf companions to blue straggler stars. We find three hot and young white dwarf companions to blue straggler stars in the 7 Gyr open cluster NGC 188, indicating that mass transfer in these systems ended less than 300 Myr ago. These companions are direct and secure observational evidence that these blue straggler stars were formed through mass transfer in binary stars. Their existence in a well-studied cluster environment allows for observational constraints of both the current binary system and the progenitor binary system, mapping the entire mass transfer history.

  19. Infrared photometry of the dwarf nova V2051 Ophiuchi - I. The mass-donor star and the distance

    Science.gov (United States)

    Wojcikiewicz, Eduardo; Baptista, Raymundo; Ribeiro, Tiago

    2018-04-01

    We report the analysis of time series of infrared JHKs photometry of the dwarf nova V2051 Oph in quiescence. We modelled the ellipsoidal variations caused by the distorted mass-donor star to infer its JHKs fluxes. From its infrared colours, we estimate a spectral type of M(8.0 ± 1.5) and an equivalent blackbody temperature of TBB = (2700 ± 270) K. We used the Barnes & Evans relation to infer a photometric parallax distance of dBE = (102 ± 16) pc to the binary. At this short distance, the corresponding accretion disc temperatures in outburst are too low to be explained by the disc-instability model for dwarf nova outbursts, underscoring a previous suggestion that the outbursts of this binary are powered by mass-transfer bursts.

  20. Formation and Evolution of Contact Binaries

    Directory of Open Access Journals (Sweden)

    Peter P. Eggleton

    2012-06-01

    Full Text Available describe a series of processes, including hierarchical fragmentation, gravitational scattering, Kozai cycles within triple systems, tidal friction and magnetic braking, that I believe are responsible for producing the modest but significant fraction of stars that are observed as contact binaries. I also discuss further processes, namely heat transport, mass transport, nuclear evolution, thermal relaxation oscillations, and further magnetic braking with tidal friction, that influence the evolution during contact. The endpoint, for contact, is that the two components merge into a single star, as recently was observed in the remarkable system V1309 Sco. The single star probably throws off some mass and rotates rapidly at first, and then slows by magnetic braking to become a rather inconspicuous but normal dwarf or subgiant. If however the contact binary was part of a triple system originally–as I suggested above was rather likely–then the result could be a widish binary with apparently non-coeval components. There are several such known.

  1. Unmasking the hidden NGTS-3Ab: a hot Jupiter in an unresolved binary system

    Science.gov (United States)

    Günther, Maximilian N.; Queloz, Didier; Gillen, Edward; Delrez, Laetitia; Bouchy, François; McCormac, James; Smalley, Barry; Almleaky, Yaseen; Armstrong, David J.; Bayliss, Daniel; Burdanov, Artem; Burleigh, Matthew; Cabrera, Juan; Casewell, Sarah L.; Cooke, Benjamin F.; Csizmadia, Szilárd; Ducrot, Elsa; Eigmüller, Philipp; Erikson, Anders; Gänsicke, Boris T.; Gibson, Neale P.; Gillon, Michaël; Goad, Michael R.; Jehin, Emmanuël; Jenkins, James S.; Louden, Tom; Moyano, Maximiliano; Murray, Catriona; Pollacco, Don; Poppenhaeger, Katja; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Sohy, Sandrine; Thompson, Samantha J.; Udry, Stéphane; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    We present the discovery of NGTS-3Ab, a hot Jupiter found transiting the primary star of an unresolved binary system. We develop a joint analysis of multi-colour photometry, centroids, radial velocity (RV) cross-correlation function (CCF) profiles and their bisector inverse slopes (BIS) to disentangle this three-body system. Data from the Next Generation Transit Survey (NGTS), SPECULOOS and HARPS are analysed and modelled with our new BLENDFITTER software. We find that the binary consists of NGTS-3A (G6V-dwarf) and NGTS-3B (K1V-dwarf) at 5") and are prone to contamination by blended objects. With TESS on the horizon, it is pivotal for the candidate vetting to incorporate all available follow-up information from multi-colour photometry and RV CCF profiles.

  2. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  3. Properties of high-density binary mixtures and the age of the Universe from white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Berro, E.; Hernanz, M.; Isern, J.; Mochkovitch, R.

    1988-06-16

    The luminosity of white dwarf stars can be attributed to the cooling process of their degenerate cores. The simple relationship existing between their luminosity and their age, together with the lack of white dwarfs fainter than log (L/L solar mass) approx -4.5, provides a method of measuring the age of the disk and consequently that of the Universe. Values of the age of the galactic disk and Universe depend on the assumption that completely ionized carbon and oxygen are miscible in solid phase. It is possible, however, that completely ionized carbon and oxygen separate during the process of crystallization. Here, we attempt to show that a galactic disk age of 15 Gyr cannot be excluded by the white dwarf observations if carbon and oxygen are immiscible in solid phase.

  4. Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Johnson, W Thomas; Rakoczy, Sharlene G

    2012-02-01

    Reduced signaling of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway is associated with extended life span in several species. Ames dwarf mice are GH-deficient and live >50% longer than wild-type littermates. Previously, we have shown that tissues from Ames mice exhibit elevated levels of antioxidative enzymes, less H(2)O(2) production, and lower oxidative damage suggesting that mitochondrial function may differ between genotypes. To explore the relationship between hormone deficiency and mitochondria in mice with extended longevity, we evaluated activity, protein, and gene expression of oxidative phosphorylation components in dwarf and wild-type mice at varying ages. Liver complex I + III activity was higher in dwarf mice compared to wild-type mice. The activity of I + III decreased between 3 and 20 months of age in both genotypes with greater declines in wild-type mice in liver and skeletal muscle. Complex IV activities in the kidney were elevated in 3- and 20-month-old dwarf mice relative to wild-type mice. In Ames mice, protein levels of the 39 kDa complex I subunit were elevated at 20 months of age when compared to wild-type mouse mitochondria for every tissue examined. Kidney and liver mitochondria from 20-month-old dwarf mice had elevated levels of both mitochondrially-encoded and nuclear-encoded complex IV proteins compared to wild-type mice (p dwarf mice. Overall, we found that several components of the oxidative phosphorylation (OXPHOS) system were elevated in Ames mice. Mitochondrial to nuclear DNA ratios were not different between genotypes despite the marked increase in PGC-1α levels in dwarf mice. The increased OXPHOS activities, along with lower ROS production in dwarf mice, predict enhanced mitochondrial function and efficiency, two factors likely contributing to long-life in Ames mice.

  5. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    Science.gov (United States)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  6. Gravitational wave emission from the coalescence of white dwarfs

    International Nuclear Information System (INIS)

    Garcia-Berro, E; Loren-Aguilar, P; Isern, J; Pedemonte, A G; Guerrero, J; Lobo, J A

    2005-01-01

    We have computed the gravitational wave emission arising from the coalescence of several close white dwarf binary systems. In order to do so, we have followed the evolution of such systems using a smoothed particle hydrodynamics code. Here we present some of the results obtained so far, paying special attention to the detectability of the emitted gravitational waves. Within this context, we show which could be the impact of individual merging episodes for LISA

  7. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  8. Absolute dimensions of solar-type eclipsing binaries III. EW orionis

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Bruntt, H.; Olsen, E. H.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb.......stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb....

  9. PG 0308 + 096 and PG 1026 + 002 - Two new short period binary stars resulting from common-envelope evolution

    Science.gov (United States)

    Saffer, Rex A.; Wade, Richard A.; Liebert, James; Green, Richard F.; Sion, Edward M.; Bechtold, J.; Foss, Diana; Kidder, K.

    1993-01-01

    Ultraviolet spectroscopy, optical spectroscopy, and spectrophotometry have been used to study the excess UV stars PG 0308 + 096 and PG 1026 + 002. Both objects are short-period binary systems, each containing a DA white dwarf star and a dM star. Orbital periods of approximately 0.284 day for PG 0308 + 096, and aproximately 0.597 day for PG 1026, have been found by spectroscopic analysis of the H-alpha emission line. Ly-alpha and Balmer line profile fitting were used to estimate the mass of white dwarf stars; mass estimates for the dM stars are based on their spectral types. The orbital inclinations are derived from these masses, the periods, and amplitudes of the H-alpha radial velocity curves. The equivalent width of the H-alpha emission line, in each binary system, varies with the orbital phase in such a manner as to imply that it arises, in large part at least, from the hemisphere of the M star that faces the white dwarf star.

  10. First Detection of Krypton and Xenon in a White Dwarf

    Science.gov (United States)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  11. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  12. Characterizing Accreting Double White Dwarf Binaries with the Laser Interferometer Space Antenna and Gaia

    Science.gov (United States)

    Breivik, Katelyn; Kremer, Kyle; Bueno, Michael; Larson, Shane L.; Coughlin, Scott; Kalogera, Vassiliki

    2018-02-01

    We demonstrate a method to fully characterize mass-transferring double white dwarf (DWD) systems with a helium-rich (He) white dwarf (WD) donor based on the mass–radius (M–R) relationship for He WDs. Using a simulated Galactic population of DWDs, we show that donor and accretor masses can be inferred for up to ∼60 systems observed by both Laser Interferometer Space Antenna (LISA) and Gaia. Half of these systems will have mass constraints {{Δ }} {M}{{D}} ≲ 0.2 {M}ȯ and {{Δ }} {M}{{A}} ≲ 2.3 {M}ȯ . We also show how the orbital frequency evolution due to astrophysical processes and gravitational radiation can be decoupled from the total orbital frequency evolution for up to ∼50 of these systems.

  13. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  14. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  15. Searching for galactic white-dwarf binaries in mock LISA data using an F-statistic template bank

    International Nuclear Information System (INIS)

    Whelan, John T; Prix, Reinhard; Khurana, Deepak

    2010-01-01

    We describe an F-statistic search for continuous gravitational waves from galactic white-dwarf binaries in simulated LISA data. Our search method employs a hierarchical template-grid-based exploration of the parameter space. In the first stage, candidate sources are identified in searches using different simulated laser signal combinations (known as TDI variables). Since each source generates a primary maximum near its true 'Doppler parameters' (intrinsic frequency and sky position) as well as numerous secondary maxima of the F-statistic in Doppler parameter space, a search for multiple sources needs to distinguish between true signals and secondary maxima associated with other 'louder' signals. Our method does this by applying a coincidence test to reject candidates which are not found at nearby parameter space positions in searches using each of the three TDI variables. For signals surviving the coincidence test, we perform a fully coherent search over a refined parameter grid to provide an accurate parameter estimation for the final candidates. Suitably tuned, the pipeline is able to extract 1989 true signals with only 5 false alarms. The use of the rigid adiabatic approximation allows recovery of signal parameters with errors comparable to statistical expectations, although there is still some systematic excess with respect to statistical errors expected from Gaussian noise. An experimental iterative pipeline with seven rounds of signal subtraction and reanalysis of the residuals allows us to increase the number of signals recovered to a total of 3419 with 29 false alarms.

  16. Searching for galactic white-dwarf binaries in mock LISA data using an F-statistic template bank

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, John T [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 (United States); Prix, Reinhard [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover (Germany); Khurana, Deepak, E-mail: john.whelan@astro.rit.ed, E-mail: reinhard.prix@aei.mpg.d [Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)

    2010-03-07

    We describe an F-statistic search for continuous gravitational waves from galactic white-dwarf binaries in simulated LISA data. Our search method employs a hierarchical template-grid-based exploration of the parameter space. In the first stage, candidate sources are identified in searches using different simulated laser signal combinations (known as TDI variables). Since each source generates a primary maximum near its true 'Doppler parameters' (intrinsic frequency and sky position) as well as numerous secondary maxima of the F-statistic in Doppler parameter space, a search for multiple sources needs to distinguish between true signals and secondary maxima associated with other 'louder' signals. Our method does this by applying a coincidence test to reject candidates which are not found at nearby parameter space positions in searches using each of the three TDI variables. For signals surviving the coincidence test, we perform a fully coherent search over a refined parameter grid to provide an accurate parameter estimation for the final candidates. Suitably tuned, the pipeline is able to extract 1989 true signals with only 5 false alarms. The use of the rigid adiabatic approximation allows recovery of signal parameters with errors comparable to statistical expectations, although there is still some systematic excess with respect to statistical errors expected from Gaussian noise. An experimental iterative pipeline with seven rounds of signal subtraction and reanalysis of the residuals allows us to increase the number of signals recovered to a total of 3419 with 29 false alarms.

  17. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    International Nuclear Information System (INIS)

    Lurie, John C.; Henry, Todd J.; Ianna, Philip A.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P.

    2014-01-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M Jup for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  18. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, John C. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, Todd J.; Ianna, Philip A. [RECONS Institute, Chambersburg, PA 17201 (United States); Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Koerner, David W. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Riedel, Adric R. [Department of Astrophysics, American Museum of Natural History, New York, NY 10034 (United States); Subasavage, John P., E-mail: lurie@uw.edu [United States Naval Observatory, Flagstaff, AZ 86001 (United States)

    2014-11-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M{sub Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  19. EX-111 thermal emission from hot white dwarfs: the suggested He abundance-temperature correlation. EX-112: the unique emission line white dwarf star GD 356. Semiannnual status report, 1 December 1985-1 June 1986

    International Nuclear Information System (INIS)

    Shipman, H.L.

    1986-08-01

    Progress in the EXOSAT data analysis program is reported. EXOSAT observations for four white dwarfs (WD1031-115, WD0004+330, WD1615-154, and WD0109-264) were obtained. Counting rates were unexpectedly low, indicating that these objects have a substantial amount of x-ray absorbing matter in their photosheres. In addition, soft x-ray pulsations characterized by a 9.25 minute cycle were discovered in the DA white dwarf V471 Tauri. A residual x-ray flux from the K dwarf companion can be seen during the white dwarf eclipse at orbital phase 0.0. Pronounced dips in the soft x-ray light curve occur at orbital phases 0.15, 0.18, and 0.85. The dips may be correlated with the triangular Lagrangian points of the binary orbit. Smaller dips at phases near the eclipse may be associated with cool loops in the K star corona. Data for the white dwarf H1504+65 was also analyzed. This object is particularly unusual in that its photoshere is devoid of hydrogen and helium. Finally, existing data on the white dwarf Sirius B were analyzed to see what constraints from other data can be placed on the properties of this star. Interrelationships between radius, rotational velocity, and effective temperature were derived

  20. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    Science.gov (United States)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  1. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    International Nuclear Information System (INIS)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M star > 10 6 M ☉ that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  2. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  3. Close visual binaries. III. Parameters and evolutionary status

    International Nuclear Information System (INIS)

    Corbally, C.J.

    1984-01-01

    New Yale isochrones, which have been tested for accuracy (Paper II), provide the means to investigate interesting visual binaries, especially those whose classifications and photometry do not match well (Paper I). Various parameters are deduced for those binaries which fitted the isochrones (e.g., ages, metal abundances, luminosities of peculiar stars); various solutions are systematically developed for those which did not fit, and a likely status of evolution proposed (e.g., duplicity of the components, pre-main-sequence, blue straggler, horizontal branch, optical pair, data inaccuracies). Evolution around the helium flash and diffusion theory are briefly considered. These parameters and statuses provide a wealth of new stellar data and suggestions for further investigation

  4. Close visual binaries. III. Parameters and evolutionary status

    Energy Technology Data Exchange (ETDEWEB)

    Corbally, C.J.

    1984-12-01

    New Yale isochrones, which have been tested for accuracy (Paper II), provide the means to investigate interesting visual binaries, especially those whose classifications and photometry do not match well (Paper I). Various parameters are deduced for those binaries which fitted the isochrones (e.g., ages, metal abundances, luminosities of peculiar stars); various solutions are systematically developed for those which did not fit, and a likely status of evolution proposed (e.g., duplicity of the components, pre-main-sequence, blue straggler, horizontal branch, optical pair, data inaccuracies). Evolution around the helium flash and diffusion theory are briefly considered. These parameters and statuses provide a wealth of new stellar data and suggestions for further investigation.

  5. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA (United States); Wetzel, Andrew [TAPIR, California Institute of Technology, Pasadena, CA (United States); Garrison-Kimmel, Shea, E-mail: alis@ucolick.org [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA (United States)

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  6. CHARACTERIZATION OF THE NEARBY L/T BINARY BROWN DWARF WISE J104915.57–531906.1 AT 2 pc FROM THE SUN

    International Nuclear Information System (INIS)

    Kniazev, A. Y.; Vaisanen, P.; Potter, S. B.; Crawford, S.; Gulbis, A. A. S.; Mužić, K.; Mehner, A.; Boffin, H. M. J.; Melo, C.; Ivanov, V. D.; Girard, J.; Mawet, D.; Schmidtobreick, L.; Kurtev, R.; Borissova, J.; Huelamo, N.; Minniti, D.; Ishibashi, K.; Beletsky, Y.; Buckley, D. A. H.

    2013-01-01

    WISE J104915.57–531906.1 is a L/T brown dwarf binary located 2 pc from the Sun. The pair contains the closest known brown dwarfs and is the third closest known system, stellar or sub-stellar. We report comprehensive follow-up observations of this newly uncovered system. We have determined the spectral types of both components (L8 ± 1, for the primary, agreeing with the discovery paper; T1.5 ± 2 for the secondary, which was lacking spectroscopic type determination in the discovery paper) and, for the first time, their radial velocities (V rad ∼ 23.1, 19.5 km s –1 ) using optical spectra obtained at the Southern African Large Telescope and other facilities located at the South African Astronomical Observatory (SAAO). The relative radial velocity of the two components is smaller than the range of orbital velocities for theoretically predicted masses, implying that they form a gravitationally bound system. We report resolved near-infrared JHK S photometry from the Infrared Survey Facility telescope at the SAAO which yields colors consistent with the spectroscopically derived spectral types. The available kinematic and photometric information excludes the possibility that the object belongs to any of the known nearby young moving groups or associations. Simultaneous optical polarimetry observations taken at the SAAO 1.9 m give a non-detection with an upper limit of 0.07%. For the given spectral types and absolute magnitudes, 1 Gyr theoretical models predict masses of 0.04-0.05 M ☉ for the primary, and 0.03-0.05 M ☉ for the secondary.

  7. THE FORNAX DWARF GALAXY AS A REMNANT OF RECENT DWARF-DWARF MERGING IN THE LOCAL GROUP

    International Nuclear Information System (INIS)

    Yozin, C.; Bekki, K.

    2012-01-01

    We present results from the first numerical analysis to support the hypothesis, first proposed in Coleman et al., that the Fornax dwarf galaxy was formed from the minor merging of two dwarfs about 2 Gyr ago. Using orbits for the Fornax dwarf that are consistent with the latest proper motion measurements, our dynamical evolution models show that the observed asymmetric shell-like substructures can be formed from the remnant of a smaller dwarf during minor merging. These models also predict the formation of diffuse stellar streams. We discuss how these stellar substructures depend on model parameters of dwarf-dwarf merging, and how the intermediate-age subpopulations found in the vicinity of these substructures may be formed from gas accretion in past merger events. We also suggest that one of Fornax's globular clusters originates from a merged dwarf companion, and demonstrate where as yet undetected tidal streams or H I gas formed from the dwarf merging may be found in the outer halo of the Galaxy.

  8. DISCOVERY OF A BRIGHT, EXTREMELY LOW MASS WHITE DWARF IN A CLOSE DOUBLE DEGENERATE SYSTEM

    International Nuclear Information System (INIS)

    Vennes, S.; Kawka, A.; Nemeth, P.; Thorstensen, J. R.; Skinner, J. N.; Pigulski, A.; Steslicki, M.; Kolaczkowski, Z.; Srodka, P.

    2011-01-01

    We report the discovery of a bright (V ∼ 13.7), extremely low mass white dwarf in a close double degenerate system. We originally selected GALEX J171708.5+675712 for spectroscopic follow-up among a group of white dwarf candidates in an ultraviolet-optical reduced proper-motion diagram. The new white dwarf has a mass of 0.18 M sun and is the primary component of a close double degenerate system (P = 0.246137 days, K 1 = 288 km s -1 ) comprising a fainter white dwarf secondary with M 2 ∼ 0.9 M sun . Light curves phased with the orbital ephemeris show evidence of relativistic beaming and weaker ellipsoidal variations. The light curves also reveal secondary eclipses (depth ∼8 mmag) while the primary eclipses appear partially compensated by the secondary gravitational deflection and are below detection limits. Photospheric abundance measurements show a nearly solar composition of Si, Ca, and Fe (0.1-1 sun), while the normal kinematics suggest a relatively recent formation history. Close binary evolutionary scenarios suggest that extremely low mass white dwarfs form via a common-envelope phase and possible Roche lobe overflow.

  9. High-velocity winds from a dwarf nova during outburst

    Science.gov (United States)

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  10. Can physical stellar collisions explain the blue stragglers in the dwarf spheroidal galaxies?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.

    1993-01-01

    The hypothesis that the blue stragglers in the dwarf spheroidal galaxie have a collisional origin is considered. If all of the dark matter in these galaxies is in the form of low-mass stars and the binary frequency is ≅ 50%, then it is quite possible that ≅ 10% to 20% of their blue stragglers have been produced by physical stellar collisions

  11. Separation of uranium(V I) from binary solution mixtures with thorium(IV), zirconium(IV) and cerium(III) by foaming

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Benyamin, K.

    1992-01-01

    Foam separation has been investigated for the removal of uranium(V I), thorium(IV), zirconium(IV) and cerium(III) from dilute aqueous solutions at pH values ranging from about I to about II. Sodium laurel sulphate (Na L S) and acetyl trimethyl ammonium bromide (CTAB), being a strong anionic and a strong cationic surfactants, were used as collectors. The results indicate that Na L S can efficiently remove thorium(IV), zirconium(IV) and cerium(III) but not uranium(V I). CTAB, on the other hand, can successfully float only uranium(V I) and zirconium(IV). These differences in flotation properties of the different cations could be used to establish methods for the separation of uranium(V I) from binary mixtures with thorium(IV), zirconium(IV) or cerium(III). The results are discussed in terms of the hydrolytic behaviour of the tested cations and properties of used collectors.2 fig., 1 tab

  12. The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters

    Science.gov (United States)

    Triaud, Amaury H. M. J.; Martin, David V.; Ségransan, Damien; Smalley, Barry; Maxted, Pierre F. L.; Anderson, David R.; Bouchy, François; Collier Cameron, Andrew; Faedi, Francesca; Gómez Maqueo Chew, Yilen; Hebb, Leslie; Hellier, Coel; Marmier, Maxime; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Udry, Stéphane; West, Richard

    2017-12-01

    We present 2271 radial velocity measurements taken on 118 single-line binary stars, taken over eight years with the CORALIE spectrograph. The binaries consist of F/G/K primaries and M dwarf secondaries. They were initially discovered photometrically by the WASP planet survey, as their shallow eclipses mimic a hot Jupiter transit. The observations we present permit a precise characterisation of the binary orbital elements and mass function. With modelling of the primary star, this mass function is converted to a mass of the secondary star. In the future, this spectroscopic work will be combined with precise photometric eclipses to draw an empirical mass/radius relation for the bottom of the mass sequence. This has applications in both stellar astrophysics and the growing number of exoplanet surveys around M dwarfs. In particular, we have discovered 34 systems with a secondary mass below 0.2 M⊙, and so we will ultimately double the number of known very low-mass stars with well-characterised masses and radii. The quality of our data combined with the amplitude of the Doppler variations mean that we are able to detect eccentricities as small as 0.001 and orbital periods to sub-second precision. Our sample can revisit some earlier work on the tidal evolution of close binaries, extending it to low mass ratios. We find some exceptional binary systems that are eccentric at orbital periods below three days, while our longest circular orbit has a period of 10.4 days. Amongst our systems, we note one remarkable architecture in J1146-42 that boasts three stars within one astronomical unit. By collating the EBLM binaries with published WASP planets and brown dwarfs, we derive a mass spectrum with twice the resolution of previous work. We compare the WASP/EBLM sample of tightly bound orbits with work in the literature on more distant companions up to 10 AU. We note that the brown dwarf desert appears wider, as it carves into the planetary domain for our short-period orbits

  13. Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [School of Earth and Space Exploration, Arizona State University, Tempe AZ 85287 (United States); Marley, Mark S.; Freedman, Richard [NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Burningham, Ben [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Morley, Caroline V. [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States); Hinkel, Natalie R. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Teske, Johanna [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana, E-mail: mrline@asu.edu [BAER Institute/NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States)

    2017-10-20

    Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late-T dwarf (600–800 K) near-infrared (1–2.5 μ m) spectra. With these spectra we are able to directly constrain the molecular abundances for the first time of H{sub 2}O, CH{sub 4}, CO, CO{sub 2}, NH{sub 3}, H{sub 2}S, and Na+K, surface gravity, effective temperature, thermal structure, photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and that their abundances are well constrained in all 11 objects. We find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong (>25 σ ) decreasing trend in the alkali metal abundances with decreasing effective temperature, indicative of alkali rainout. As expected from previous work, we also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample that metallicities are typically subsolar (−0.4 < [ M /H] < 0.1 dex) and carbon-to-oxygen ratios are somewhat supersolar (0.4 < C/O < 1.2), different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that some of our radii are larger than expectations from evolutionary models, possibly indicative of unresolved binaries. This investigation and method represent a new and powerful paradigm for using spectra to determine the fundamental chemical and physical processes governing cool brown dwarf atmospheres.

  14. DOUBLE-LINED SPECTROSCOPIC BINARY STARS IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Munari, U.; Siviero, A.; Bienayme, O.; Siebert, A.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Steinmetz, M.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Watson, F. G.

    2010-01-01

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ∼80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

  15. The SDSS-III DR12 MARVELS radial velocity data release: the first data release from the multiple object Doppler exoplanet survey

    Science.gov (United States)

    Ge, Jian; Thomas, Neil B.; Li, Rui; Senan Seieroe Grieves, Nolan; Ma, Bo; de Lee, Nathan M.; Lee, Brian C.; Liu, Jian; Bolton, Adam S.; Thakar, Aniruddha R.; Weaver, Benjamin; SDSS-Iii Marvels Team

    2015-01-01

    We present the first data release from the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) through the SDSS-III DR12. The data include 181,198 radial velocity (RV) measurements for a total of 5520 different FGK stars with V~7.6-12, of which more than 80% are dwarfs and subdwarfs while remainders are GK giants, among a total of 92 fields nearly randomly spread out over the entire northern sky taken with a 60-object MARVELS dispersed fixed-delay interferometer instrument over four years (2008-2012). There were 55 fields with a total of 3300 FGK stars which had 14 or more observations over about 2-year survey window. The median number of observations for these plates is 27 RV measurements. This represents the largest homogeneous sample of precision RV measurements of relatively bright stars. In this first released data, a total of 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries with additional 96 targets having RV variability indicative of a giant planet companion are reported. The released data were produced by the MARVELS finalized 1D pipeline. We will also report preliminary statistical results from the MARVELS 2D data pipeline which has produced a median RV precision of ~30 m/s for stable stars.

  16. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    Science.gov (United States)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  17. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    International Nuclear Information System (INIS)

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R.; Lorén-Aguilar, P.; Külebi, B.; Aznar-Siguán, G.; García-Berro, E.

    2013-01-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M ☉ white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M ☉ and 1.0 M ☉ . Finally, we infer a post-merging age τ WD ≈ 64 kyr and a magnetic field B ≈ 2 × 10 8 G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at ≈10 15 Hz in the spectrum of 4U 0142+61

  18. A 3D Search for Companions to 12 Nearby M Dwarfs

    Science.gov (United States)

    2015-02-19

    mid M-dwarf binaries9 within the distance and declination range of this sample are listed in Table 2. Also listed are 2MASS coordinates, parallaxes...spectral types, absolute V magnitudes, V, R, I apparent magnitudes, near-infrared photometry from 2MASS (J, H, Ks apparent magnitudes), and the...from the 2MASS All Sky Catalog of point sources from Skrutskie et al. (2006). d vsini references: (1) Mohanty & Basri (2003), (2) Browning et al

  19. Throwing Icebergs at White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B., E-mail: alexpstephan@astro.ucla.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2017-08-01

    White dwarfs (WDs) have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all WDs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper belt analog objects, are also viable sources of pollution. The commonly accepted pollution mechanisms, namely scattering interactions between planetary bodies orbiting the WDs, can hardly account for pollution by objects with large masses or long-period orbits. Here we report on a mechanism that naturally leads to the emergence of massive body and icy and volatile material pollution. This mechanism occurs in wide binary stellar systems, where the mass loss of the planets’ host stars during post main sequence stellar evolution can trigger the Eccentric Kozai–Lidov mechanism. This mechanism leads to large eccentricity excitations, which can bring massive and long-period objects close enough to the WDs to be accreted. We find that this mechanism readily explains and is consistent with observations.

  20. First light - II. Emission line extinction, population III stars, and X-ray binaries

    Science.gov (United States)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  1. Flaring red dwarf stars: news from Crimea

    International Nuclear Information System (INIS)

    Gershberg, Roald E

    1998-01-01

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium λ 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  2. Flaring red dwarf stars: news from Crimea

    Energy Technology Data Exchange (ETDEWEB)

    Gershberg, Roald E [Crimean Astrophysical Observatory, Nauchnyi, Crimea (Ukraine)

    1998-08-31

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium {lambda} 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  3. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    Science.gov (United States)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  4. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  5. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  6. THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III

    International Nuclear Information System (INIS)

    Ruan, John J.; Anderson, Scott F.; Davenport, James R. A.; Green, Paul J.; Morganson, Eric; Eracleous, Michael; Brandt, William N.; Myers, Adam D.; Badenes, Carles; Bershady, Matthew A.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Dawson, Kyle S.; Heckman, Timothy M.; Isler, Jedidah C.; Kneib, Jean-Paul; MacLeod, Chelsea L.; Ross, Nicholas P.; Paris, Isabelle

    2016-01-01

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ∼220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ∼320 deg 2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their H α emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ∼15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  7. A comparative study of ion exchange properties of antimony (III) tungstoselenite with those of antimony (III) tungstate and antimony (III) selenite

    International Nuclear Information System (INIS)

    Janardanan, C.; Nair, S.M.K.

    1996-01-01

    A new inorganic ion exchanger, antimony (III) tungstoselenite, has been prepared and characterised. Its exchange capacity and distribution coefficients for various metal ions and the effects of temperature and electrolyte concentrations on ion exchange capacity have been compared with antimony (III) tungstate and antimony (III) selenite. Six binary separations using the exchanger have been carried out. (author). 7 refs., 1 tab

  8. The Core Composition of a White Dwarf in a Close Double-degenerate System

    Czech Academy of Sciences Publication Activity Database

    Vennes, Stephane; Kawka, Adela

    2012-01-01

    Roč. 745, č. 1 (2012), L12/1-L12/5 ISSN 2041-8205 R&D Projects: GA ČR GAP209/10/0967; GA AV ČR(CZ) IAA300030908; GA AV ČR IAA301630901 Institutional research plan: CEZ:AV0Z10030501 Keywords : close binaries * white dwarf s * NLTT 16249 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.345, year: 2012

  9. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  10. Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment

    Science.gov (United States)

    Lee, Youngdae; Park, Hong Soo; Kim, Sang Chul; Moon, Dae-Sik; Lee, Jae-Joon; Kim, Dong-Jin; Cha, Sang-Mok

    2018-05-01

    We investigate surface brightness profiles (SBPs) of dwarf galaxies in field, group, and cluster environments. With deep BV I images from the Korea Microlensing Telescope Network Supernova Program, SBPs of 38 dwarfs in the NGC 2784 group are fitted by a single-exponential or double-exponential model. We find that 53% of the dwarfs are fitted with single-exponential profiles (“Type I”), while 47% of the dwarfs show double-exponential profiles; 37% of all dwarfs have smaller sizes for the outer part than the inner part (“Type II”), while 10% have a larger outer than inner part (“Type III”). We compare these results with those in the field and in the Virgo cluster, where the SBP types of 102 field dwarfs are compiled from a previous study and the SBP types of 375 cluster dwarfs are measured using SDSS r-band images. As a result, the distributions of SBP types are different in the three environments. Common SBP types for the field, the NGC 2784 group, and the Virgo cluster are Type II, Type I and II, and Type I and III profiles, respectively. After comparing the sizes of dwarfs in different environments, we suggest that since the sizes of some dwarfs are changed due to environmental effects, SBP types are capable of being transformed and the distributions of SBP types in the three environments are different. We discuss possible environmental mechanisms for the transformation of SBP types. Based on data collected at KMTNet Telescopes and SDSS.

  11. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    Science.gov (United States)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  12. Microwave emission from the coronae of late-type dwarf stars

    Science.gov (United States)

    Linsky, J. L.; Gary, D. E.

    1983-01-01

    VLA microwave observations of 14 late-type dwarf and subgiant stars and binary systems are examined. In this extensive set of observations, four sources at 6 cm (Chi-1 Ori, UV Cet, YY Gem, and Wolf 630AB) were detected and low upper limits for the remaining stars were found. The microwave luminosities of the nondetected F-K dwarfs are as small as 0.01 those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiraling in magnetic fields of about 300 gauss if the source sizes are as large as R/R(asterisk) = 3-4. This would correspond to magnetic fields that are probably in the range 0.001-0.0001 gauss at the photospheric level. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons with effective temperature.

  13. Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope

    Science.gov (United States)

    Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff

    2018-01-01

    HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.

  14. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    Energy Technology Data Exchange (ETDEWEB)

    Iben, I. Jr.; Tutukov, A.V. (Illinois Univ., Urbana (USA); Astronomicheskii Sovet, Moscow (USSR))

    1989-07-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs.

  15. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1989-01-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs

  16. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  17. What does an erupting nova do to its red dwarf companion?

    International Nuclear Information System (INIS)

    Kovetz, A.; Prialnik, D.; Shara, M.M.

    1988-01-01

    During nova eruptions and for decades afterward, the red dwards in cataclysmic binaries are irradiated with hundreds of times more luminosity than they themselves produce. Simulations of the time-dependent irradiation of three red dwarf models (0.25, 0.50, and 0.75 solar mass) are presented. The mass transfer rates forced by irradiation after nova eruption are found to be enhanced by two orders of magnitude because of the irradiation. The time scale for irradiation to become unimportant is that of the white dwarf cooling time scale, a few centuries. These two results support the hibernation scenario of novae, which suggests that novae remain bright for a few centuries after eruption because of irradiation-induced mass transfer. After irradiation decreases mass transfer slows, and some very old novae may then become extremely faint. 26 references

  18. The Masses and Evolutionary State of the Stars in the Dwarf Nova SS Cygni

    Science.gov (United States)

    Bitner, Martin A.; Robinson, Edward L.; Behr, Bradford B.

    2007-06-01

    The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg. Fits of synthetic spectra for Roche lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K star's radial velocity curve and the mass ratio, KK=162.5+/-1.0 km s-1 and q=MK/MWD=0.685+/-0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f=0.535+/-0.075 of the total flux at 5500 Å. Taking the weighted average of our results with previously published results obtained using similar techniques, we find =163.7+/-0.7 km s-1 and =0.683+/-0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations, we limit the orbital inclination to the range 45degAustin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  19. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  20. LASIP-III, a generalized processor for standard interface files

    International Nuclear Information System (INIS)

    Bosler, G.E.; O'Dell, R.D.; Resnik, W.M.

    1976-03-01

    The LASIP-III code was developed for processing Version III standard interface data files which have been specified by the Committee on Computer Code Coordination. This processor performs two distinct tasks, namely, transforming free-field format, BCD data into well-defined binary files and providing for printing and punching data in the binary files. While LASIP-III is exported as a complete free-standing code package, techniques are described for easily separating the processor into two modules, viz., one for creating the binary files and one for printing the files. The two modules can be separated into free-standing codes or they can be incorporated into other codes. Also, the LASIP-III code can be easily expanded for processing additional files, and procedures are described for such an expansion. 2 figures, 8 tables

  1. Temperatures and luminosities of white dwarfs in dwarf novae

    International Nuclear Information System (INIS)

    Smak, J.

    1984-01-01

    Far ultraviolet radiation observed in dwarf novae at minimum can only be attributed to their white dwarfs. In three systems white dwarfs are detected directly through their eclipses. These data are used to determine the effective temperatures and luminosities of white dwarfs. The resulting temperatures range from about logT e = 4.1 to about 4.9, with typical values of about 4.5. The luminosities range from about logL 1 = 31.0 to about 33.5 and show correlation with the average accretion rates. Radiation from white dwarfs is likely to be the source of excitation of the emission lines from disks. It is also argued that the heating by the white dwarf can significantly modify the structure of the innermost parts of the disk and, particularly, inhibit the incidence of thermal instability in that region. 26 refs., 2 figs., 1 tab. (author)

  2. THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew; Williams, Gabriel; Larson, Shane L.

    2010-01-01

    Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength of the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number (∼11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.

  3. Binary nucleation kinetics. III. Transient behavior and time lags

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.

    1996-01-01

    Transient binary nucleation is more complex than unary because of the bidimensionality of the cluster formation kinetics. To investigate this problem qualitatively and quantitatively, we numerically solved the birth-death equations for vapor-to-liquid phase transitions. Our previous work showed that the customary saddle point and growth path approximations are almost always valid in steady state gas phase nucleation and only fail if the nucleated solution phase is significantly nonideal. Now, we demonstrate that in its early transient stages, binary nucleation rarely, if ever, occurs via the saddle point. This affects not only the number of particles forming but their composition and may be important for nucleation in glasses and other condensed mixtures for which time scales are very long. Before reaching the state of saddle point nucleation, most binary systems pass through a temporary stage in which the region of maximum flux extends over a ridge on the free energy surface. When ridge crossing nucleation is the steady state solution, it thus arises quite naturally as an arrested intermediate state that normally occurs in the development of saddle point nucleation. While the time dependent and steady state distributions of the fluxes and concentrations for each binary system are strongly influenced by the gas composition and species impingement rates, the ratio of nonequilibrium to equilibrium concentrations has a quasiuniversal behavior that is determined primarily by the thermodynamic properties of the liquid mixture. To test our quantitive results of the transient behavior, we directly calculated the time lag for the saddle point flux and compared it with the available analytical predictions. Although the analytical results overestimate the time lag by factors of 1.2-5, they should be adequate for purposes of planning experiments. We also found that the behavior of the saddle point time lag can indicate when steady state ridge crossing nucleation will occur

  4. BVR{sub c}I{sub c} OBSERVATIONS AND ANALYSES OF THE DWARF DETACHED BINARY V1043 CASSIOPEIA AND A COMMENT ON PRECONTACT W UMa'S

    Energy Technology Data Exchange (ETDEWEB)

    Samec, R. G.; Smith, P. M.; Chamberlain, H. [Astronomy Group, Physics and Engineering Department, Bob Jones University, 1700 Wade Hampton Boulevard, Greenville, SC 29614 (United States); Faulkner, D. R. [Division of Math, Science, Nursing and Public Health, University of South Carolina, Lancaster, 476 Hubbard Drive, Lancaster, SC 29720 (United States); Van Hamme, W. [Physics Department, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States)

    2013-01-01

    Complete Bessel BVR{sub c}I{sub c} light curves of V1043 Cassiopeia [2MASS J00371195+5301324, Mis V1292, USNO-A2.0 1425-00875743, {alpha}(2000) = 00{sup h}37{sup m}11.{sup s}95, {delta}(2000) = +53 Degree-Sign 01'32.''5] are analyzed. The system is a member of the small group of pre-contact W UMa binaries (PCWBs). Its light curve has the appearance of an Algol (EA) light curve, however it is made up of dwarf solar type components in a detached mode with a period of only 0.6616 days. The analysis includes a period study, an improved ephemeris, a mass ratio search, and a simultaneous BVR{sub c}I{sub c} Wilson-Devinney solution. We document about 20 other PCWBs given in the literature. Several have RS CVn-like properties.

  5. Stellar Archeology: What White Dwarf Stars Tell Us About the History of the Galaxy

    Directory of Open Access Journals (Sweden)

    Terry D. Oswalt

    2012-06-01

    Full Text Available White dwarf stars have played important roles in rather diverse areas of astrophysics. This paper outlines how these stellar remnants, especially those in widely separated “fragile” binaries, have provided unique leverage on difficult astrophysical problems such as the ages of stars, the structure and evolution of the Galaxy, the nature of dark matter and even the discovery of dark energy.

  6. UNUSUALLY WIDE BINARIES: ARE THEY WIDE OR UNUSUAL?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2009-01-01

    We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found 15 new binary systems (three in Taurus and 12 in Upper Sco) with separations of 3''-30'' (500-5000 AU) among all of the known members with masses of 2.5-0.012 M sun . The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the initial mass function or the field G-dwarf distribution. The maximum separation also shows no evidence of a limit at ∼ sun . We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and undergo significant dynamical evolution. In summary, only wide binary systems with total masses ∼ sun appear to be 'unusually wide'.

  7. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  8. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    International Nuclear Information System (INIS)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel; Davison, Cassy L.; Malo, Lison; Reylé, Céline

    2015-01-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3

  9. Exploring Substellar Evolution with the Coldest Brown Dwarfs

    Science.gov (United States)

    Dupuy, Trent J.

    2017-01-01

    The coldest brown dwarfs are our best analogs to extrasolar gas-giant planets, representing the lowest mass products of star formation. Our view of such objects has been transformed over the last few years as new observations have revealed that the solar neighborhood is populated by much colder objects than previously recognized. At the center of efforts to discover and characterize these coldest substellar objects have been observations from NASA missions (WISE, Spitzer, HST) and the Keck Telescopes. I will review the tremendous progress made in this field over just the last few years thanks to major community efforts to overcome observational challenges in obtaining spectroscopy, photometry, and astrometry of these infrared-faint, optically invisible objects. Spectra from HST and Keck were key in establishing the much anticipated "Y" spectral type, extending the classic stellar classification scheme to atmospheres as cool as 300-400 K. Parallaxes and photometry from Spitzer and Keck have provided absolute fluxes, enabling robust temperature determinations and critical tests of model atmopheres. High-resolution imaging with Keck laser guide star adaptive optics (LGS AO) has been the most prolific resource for revealing tight companions among the coldest brown dwarfs. In fact, with continued orbit monitoring with Keck LGS AO and HST, these binary systems will ultimately provide dynamical masses that will allow the strongest tests of models and reveal if the coldest brown dwarfs are indeed "planetary mass" (less than about 13 Jupiter masses) as is currently thought.

  10. CIRCUMSTELLAR ENVIRONMENT AND EFFECTIVE TEMPERATURE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS J05352184-0546085

    International Nuclear Information System (INIS)

    Mohanty, Subhanjoy; Stassun, Keivan G.; Mathieu, Robert D.

    2009-01-01

    We present new Spitzer IRAC/PU/MIPS photometry from 3.6 to 24 μm, and new Gemini GMOS photometry at 0.48 μm, of the young brown dwarf eclipsing binary 2MASS J05352184-0546085, located in the Orion Nebula Cluster. No excess disk emission is detected. The measured fluxes at λ ≤ 8 μm are within 1σ (∼ -10 M sun ) if it extends in to within ∼0.1 AU of the binary (the approximate tidal truncation radius), or it must be optically thick with a large inner hole, >0.6-10 AU in radius depending on degree of flaring. The consequence in all cases is that disk accretion is likely to be negligible or absent. This supports the recent proposal that the strong Hα emission in the primary (more massive) brown dwarf results from chromospheric activity, and thereby bolsters the hypothesis that the surprising T eff inversion observed between the components is due to strong magnetic fields on the primary. Our data also set constraints on the T eff of the components independent of spectral type, and thereby on models of the aforementioned magnetic field effects. We discuss the consequences for the derived fundamental properties of young brown dwarfs and very low mass stars in general. Specifically, if very active isolated young brown dwarfs and very low mass stars suffer the same activity/field related effects as the 2M0535-05 primary, the low-mass stellar/substellar initial mass function currently derived from standard evolutionary tracks may be substantially in error.

  11. THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Davenport, James R. A. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J.; Morganson, Eric [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Eracleous, Michael; Brandt, William N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Myers, Adam D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Heckman, Timothy M. [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Isler, Jedidah C. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Kneib, Jean-Paul [Laboratoire d’astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); MacLeod, Chelsea L.; Ross, Nicholas P. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Paris, Isabelle, E-mail: jruan@astro.washington.edu [INAF—Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); and others

    2016-07-10

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ∼220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ∼320 deg{sup 2} of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their H α emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ∼15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  12. An unsuccessful search for brown dwarf companions to white dwarf stars

    Science.gov (United States)

    Shipman, Harry L.

    1986-01-01

    The results of a survey to detect excess infrared emission from white dwarf stars which would be attributable to a low mass companion are reviewed. Neither a simple comparison of spectroscopically identified white dwarf stars with the IRAS Point Source Catalog nor the coadding of IRAS survey data resulted in a detection of a brown dwarf. The seven nearest stars where the most stringent limits to the presence of a brown dwarf were obtained are listed, and an effort to detect brown dwarfs in the solar neighborhood is discussed.

  13. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  14. UBVRc Ic ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    International Nuclear Information System (INIS)

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-01-01

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A v ∼ 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of ∼50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  15. PHYSICAL PROPERTIES OF THE CURRENT CENSUS OF NORTHERN WHITE DWARFS WITHIN 40 pc OF THE SUN

    International Nuclear Information System (INIS)

    Limoges, M.-M.; Bergeron, P.; Lépine, S.

    2015-01-01

    We present a detailed description of the physical properties of our current census of white dwarfs within 40 pc of the Sun, based on an exhaustive spectroscopic survey of northern hemisphere candidates from the SUPERBLINK proper motion database. Our method for selecting white dwarf candidates is based on a combination of theoretical color–magnitude relations and reduced proper motion diagrams. We reported in an earlier publication the discovery of nearly 200 new white dwarfs, and we present here the discovery of an additional 133 new white dwarfs, among which we identify 96 DA, 3 DB, 24 DC, 3 DQ, and 7 DZ stars. We further identify 178 white dwarfs that lie within 40 pc of the Sun, representing a 40% increase of the current census, which now includes 492 objects. We estimate the completeness of our survey at between 66% and 78%, allowing for uncertainties in the distance estimates. We also perform a homogeneous model atmosphere analysis of this 40 pc sample and find a large fraction of massive white dwarfs, indicating that we are successfully recovering the more massive, and less luminous objects often missed in other surveys. We also show that the 40 pc sample is dominated by cool and old white dwarfs, which populate the faint end of the luminosity function, although trigonometric parallaxes will be needed to shape this part of the luminosity function more accurately. Finally, we identify 4 probable members of the 20 pc sample, 4 suspected double degenerate binaries, and we also report the discovery of two new ZZ Ceti pulsators

  16. White dwarf radii and boundary-layer constraints in three dwarf novae

    International Nuclear Information System (INIS)

    Wood, J.H.

    1990-01-01

    The structure of the boundary layer between the accretion disc and white dwarf in three quiescent dwarf novae is explored with high signal-to-noise eclipse light curves obtained by phase folding 12-20 eclipses. Models of the eclipse shapes of various white dwarf/boundary layer configurations that might be at the centres of the accretion discs are calculated and compared with observations of the eclipses in Z Cha, OY Car and HT Cas. Possible models for the central objects are found to be a white dwarf with or without its lower hemisphere occulted by the disc, or a white dwarf with an optically thick boundary layer significantly extended in latitude up and down its sides. The most likely of these models for each system is an unocculted white dwarf with no boundary layer contributing significantly to the optical flux, or a white dwarf totally covered by an optically thick boundary layer. (author)

  17. Quasi-periodic oscillations in accreting magnetic white dwarfs. II. The asset of numerical modelling for interpreting observations

    Science.gov (United States)

    Busschaert, C.; Falize, É.; Michaut, C.; Bonnet-Bidaud, J.-M.; Mouchet, M.

    2015-07-01

    Context. Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. The high magnetic field strength leads to the formation of an accretion column instead of an accretion disk. High-energy radiation coming from those objects is emitted from the column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. Aims: We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. Methods: The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. Synthetic light curves and X-ray spectra were extracted from numerical simulations. A fast Fourier analysis was performed on the simulated light curves. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. Results: The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling instability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation

  18. SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS

    OpenAIRE

    Deason, A; Wetzel, A; Garrison-Kimmel, S

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  19. Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il [Department of Physics, Technion (Israel)

    2017-11-01

    Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, or moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.

  20. A compact planetary nebula around the hot white dwarf EGB 6/PG 0950 + 139

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, J.; Green, R.; Bond, H.E.; Holberg, J.B.; Wesemael, F. (Steward Observatory, Tucson, AZ (USA) Mount Wilson and Las Campanas Observatories, Pasadena, CA (USA) Kitt Peak National Observatory, Tucson, AZ (USA) Space Telescope Science Institute, Baltimore, MD (USA) Arizona Univ., Tucson (USA) Montreal Universite, Montreal (Canada))

    1989-11-01

    The remarkable central star (0950 + 139), a very hot DA/DAO white dwarf, of the planetary nebula EGB 6 is described. Follow-up observations relevant to the analyses of both the nebula and the stellar photosphere are presented. Three kinds of scenarios are discussed to account for the existence of this peculiar nebula, but none appears very promising. The first consideration is that the nebula was ejected from the white dwarf as a discret event. This hypothesis is heavily constrained by the nebular size, density, and expansion rate; by the low luminosity and radius of the star; and by the absence of evidence for variation in density-sensitive forbidden lines from 1978 to 1987. No plausible mechanism can cause the observed amount of mass to be lost directly from a white dwarf in a steady or sporadic wind, at outflow velocities orders of magnitude below the escape velocity. Final consideration is given to the possibility that the gas is lost from a close companion star, but there is no evidence that this is a close binary system. 45 refs.

  1. A compact planetary nebula around the hot white dwarf EGB 6/PG 0950 + 139

    Science.gov (United States)

    Liebert, James; Green, Richard; Bond, Howard E.; Holberg, J. B.; Wesemael, F.

    1989-01-01

    The remarkable central star (0950 + 139), a very hot DA/DAO white dwarf, of the planetary nebula EGB 6 is described. Follow-up observations relevant to the analyses of both the nebula and the stellar photosphere are presented. Three kinds of scenarios are discussed to account for the existence of this peculiar nebula, but none appears very promising. The first consideration is that the nebula was ejected from the white dwarf as a discret event. This hypothesis is heavily constrained by the nebular size, density, and expansion rate; by the low luminosity and radius of the star; and by the absence of evidence for variation in density-sensitive forbidden lines from 1978 to 1987. No plausible mechanism can cause the observed amount of mass to be lost directly from a white dwarf in a steady or sporadic wind, at outflow velocities orders of magnitude below the escape velocity. Final consideration is given to the possibility that the gas is lost from a close companion star, but there is no evidence that this is a close binary system.

  2. A compact planetary nebula around the hot white dwarf EGB 6/PG 0950 + 139

    International Nuclear Information System (INIS)

    Liebert, J.; Green, R.; Bond, H.E.; Holberg, J.B.; Wesemael, F.

    1989-01-01

    The remarkable central star (0950 + 139), a very hot DA/DAO white dwarf, of the planetary nebula EGB 6 is described. Follow-up observations relevant to the analyses of both the nebula and the stellar photosphere are presented. Three kinds of scenarios are discussed to account for the existence of this peculiar nebula, but none appears very promising. The first consideration is that the nebula was ejected from the white dwarf as a discret event. This hypothesis is heavily constrained by the nebular size, density, and expansion rate; by the low luminosity and radius of the star; and by the absence of evidence for variation in density-sensitive forbidden lines from 1978 to 1987. No plausible mechanism can cause the observed amount of mass to be lost directly from a white dwarf in a steady or sporadic wind, at outflow velocities orders of magnitude below the escape velocity. Final consideration is given to the possibility that the gas is lost from a close companion star, but there is no evidence that this is a close binary system. 45 refs

  3. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    Science.gov (United States)

    Montet, Benjamin T.; Johnson, John Asher; Fortney, Jonathan J.; Desert, Jean-Michel

    2016-05-01

    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 ± 0.21 ppt at 3.6 μm and 2.09 ± 0.08 ppt at 4.5 μm, corresponding to brightness temperatures of 1026 ± 57 K and 1249 ± 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity {log}({L}\\star /{L}⊙ )=-5.16+/- 0.04. Given the known physical properties of the brown dwarf and the two M dwarfs in the LHS 6343 system, these depths are consistent with models of a 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 ± 130 K. We investigate the possibility that the orbit of LHS 6343 C has been altered by the Kozai-Lidov mechanism and propose additional astrometric or Rossiter-McLaughlin measurements of the system to probe the dynamical history of the system.

  4. Discovery of a visual T-dwarf triple system and binarity at the L/T transition

    Energy Technology Data Exchange (ETDEWEB)

    Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jayawardhana, Ray [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Lafrenière, David [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Scholz, Alexander, E-mail: radigan@stsci.edu [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY169SS (United Kingdom)

    2013-11-20

    We present new high contrast imaging of eight L/T transition brown dwarfs (BDs) using the NIRC2 camera on the Keck II telescope. One of our targets, the T3.5 dwarf 2MASS J08381155+1511155, was resolved into a hierarchal triple with projected separations of 2.5 ± 0.5 AU and 27 ± 5 AU for the BC and A(BC) components, respectively. Resolved OSIRIS spectroscopy of the A(BC) components confirms that all system members are T dwarfs. The system therefore constitutes the first triple T-dwarf system ever reported. Using resolved photometry to model the integrated-light spectrum, we infer spectral types of T3 ± 1, T3 ± 1, and T4.5 ± 1 for the A, B, and C components, respectively. The uniformly brighter primary has a bluer J – K{sub s} color than the next faintest component, which may reflect a sensitive dependence of the L/T transition temperature on gravity, or alternatively divergent cloud properties among components. Relying on empirical trends and evolutionary models we infer a total system mass of 0.034-0.104 M {sub ☉} for the BC components at ages of 0.3-3 Gyr, which would imply a period of 12-21 yr assuming the system semimajor axis to be similar to its projection. We also infer differences in effective temperatures and surface gravities between components of no more than ∼150 K and ∼0.1 dex. Given the similar physical properties of the components, the 2M0838+15 system provides a controlled sample for constraining the relative roles of effective temperature, surface gravity, and dust clouds in the poorly understood L/T transition regime. For an age of 3 Gyr we estimate a binding energy of ∼20 × 10{sup 41} erg for the wide A(BC) pair, which falls above the empirical minimum found for typical BD binaries, and suggests that the system may have been able to survive a dynamical ejection during formation. Combining our imaging survey results with previous work we find an observed binary fraction of 4/18 or 22{sub −8}{sup +10}% for unresolved spectral types

  5. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  6. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  7. White dwarf heating and the ultraviolet flux in dwarf novae

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1988-01-01

    An investigation is made of the heating of the outer layers of the white dwarf which is likely to occur during a dwarf nova outburst. It is shown that the decline in IUE flux, observed during quiescent intervals in the dwarf novae VW Hydri and WX Hydri, may be due to the outer layers cooling off once the heat source is removed. The calculations here assume uniformity of the heat source over the white dwarf surface. This is unlikely to be realized from disc accretion, and we discuss that further calculations are required. (author)

  8. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Science.gov (United States)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  9. NO NEUTRON STAR COMPANION TO THE LOWEST MASS SDSS WHITE DWARF

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Camilo, Fernando; Heinke, Craig; Kilic, Mukremin; Anderson, Scott F.; Silvestri, Nicole M.; Freire, Paulo; Kleinman, Scot J.; Liebert, James W.

    2009-01-01

    SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 ± 0.05 (M ∼ 0.17 M sun ). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638's companion showed that it must be a compact object with a mass ≥0.28 M sun . Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638's companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.

  10. LOW-MASS VISUAL COMPANIONS TO NEARBY G-DWARFS

    International Nuclear Information System (INIS)

    Tokovinin, Andrei

    2011-01-01

    A complete census of wide visual companions to nearby G-dwarf stars can be achieved by selecting candidates from the Two Micron All Sky Survey (2MASS) Point-Source Catalog and checking their status by second-epoch imaging. Such data are obtained for 124 candidates with separations up to 20'', 47 of which are shown to be new physical low-mass stellar companions. A list of visual binaries with G-dwarf primaries is produced by combining newly found companions with historical data. Maximum likelihood analysis leads to a companion frequency of 0.13 ± 0.015 per decade of separation. The mass ratio is distributed almost uniformly, with a power-law index between -0.4 and 0. The remaining uncertainty in the index is related to modeling of the companion detection threshold in 2MASS. These findings are confirmed by an alternative analysis of wider companions in 2MASS, removing the contamination by background stars statistically. Extension of this work will lead to a complete detection of visual companions-a necessary step toward reaching unbiased multiplicity statistics over the full range of orbital periods and, eventually, understanding the origin of multiple systems.

  11. MagAO IMAGING OF LONG-PERIOD OBJECTS (MILO). II. A PUZZLING WHITE DWARF AROUND THE SUN-LIKE STAR HD 11112

    International Nuclear Information System (INIS)

    Rodigas, Timothy J.; Arriagada, Pamela; Faherty, Jacqueline K.; Weinberger, Alycia; Butler, R. Paul; Bergeron, P.; Simon, Amélie; Anglada-Escudé, Guillem; Mamajek, Eric E.; Males, Jared R.; Morzinski, Katie; Close, Laird M.; Hinz, Philip M.; Bailey, Jeremy; Tinney, C. G.; Wittenmyer, Rob; Carter, Brad; Jenkins, James S.; Jones, Hugh; O’Toole, Simon

    2016-01-01

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6–4 μ m and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9–1.1 M ⊙ , which corresponds to very high eccentricity, near edge-on orbits from a Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2 σ , which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.

  12. MagAO IMAGING OF LONG-PERIOD OBJECTS (MILO). II. A PUZZLING WHITE DWARF AROUND THE SUN-LIKE STAR HD 11112

    Energy Technology Data Exchange (ETDEWEB)

    Rodigas, Timothy J.; Arriagada, Pamela; Faherty, Jacqueline K.; Weinberger, Alycia; Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Bergeron, P.; Simon, Amélie [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Anglada-Escudé, Guillem [School of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London (United Kingdom); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Males, Jared R.; Morzinski, Katie; Close, Laird M.; Hinz, Philip M. [Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Bailey, Jeremy; Tinney, C. G.; Wittenmyer, Rob [Exoplanetary Science at UNSW, School of Physics, UNSW Australia, Sydney, NSW 2052 (Australia); Carter, Brad [Computational Engineering and Science Research Centre, University of Southern Queensland, Springfield, QLD 4300 (Australia); Jenkins, James S. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Las Condes, Santiago (Chile); Jones, Hugh [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB (United Kingdom); O’Toole, Simon, E-mail: trodigas@carnegiescience.edu [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); and others

    2016-11-10

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6–4 μ m and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9–1.1 M {sub ⊙}, which corresponds to very high eccentricity, near edge-on orbits from a Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2 σ , which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.

  13. Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs

    International Nuclear Information System (INIS)

    MacDonald, James; Mullan, D. J.

    2014-01-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  14. Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2014-05-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  15. HAT-TR-318-007: A Double-lined M Dwarf Binary with Total Secondary Eclipses Discovered by HATNet and Observed by K2

    Science.gov (United States)

    Hartman, J. D.; Quinn, S. N.; Bakos, G. Á.; Torres, G.; Kovács, G.; Latham, D. W.; Noyes, R. W.; Shporer, A.; Fulton, B. J.; Esquerdo, G. A.; Everett, M. E.; Penev, K.; Bhatti, W.; Csubry, Z.

    2018-03-01

    We report the discovery by the HATNet survey of HAT-TR-318-007, a P=3.34395390+/- 0.00000020 day period detached double-lined M dwarf binary with total secondary eclipses. We combine radial velocity (RV) measurements from TRES/FLWO 1.5 m and time-series photometry from HATNet, FLWO 1.2 m, BOS 0.8 m, and NASA K2 Campaign 5, to determine the masses and radii of the component stars: MA=0.448+/-0.011 M⊙N, MB=0.2721-0.0042+0.0041 M⊙N, RA=0.4548-0.0036+0.0035 R⊙N, and RB=0.2913-0.0024+0.0023 R⊙N. We obtained a FIRE/Magellan near-infrared spectrum of the primary star during a total secondary eclipse, and we use this to obtain disentangled spectra of both components. We determine spectral types of STA=M 3.71+/- 0.69 and STB=M 5.01+/- 0.73 and effective temperatures of Teff, A= 3190+/-110 K and Teff, B=3100+/- 110 K for the primary and secondary star, respectively. We also measure a metallicity of [Fe/H] = +0.298+/- 0.080 for the system. We find that the system has a small, but significant, nonzero eccentricity of 0.0136+/- 0.0026. The K2 light curve shows a coherent variation at a period of 3.41315-0.00032+0.00030 days, which is slightly longer than the orbital period, and which we demonstrate comes from the primary star. We interpret this as the rotation period of the primary. We perform a quantitative comparison between the Dartmouth stellar evolution models and the seven systems, including HAT-TR-318-007, that contain M dwarfs with 0.2 M⊙N< M< 0.5 M⊙N, have metallicity measurements, and have masses and radii determined to better than 5% precision. Discrepancies between the predicted and observed masses and radii are found for three of the systems.

  16. HERSCHEL SPECTROSCOPIC OBSERVATIONS OF LITTLE THINGS DWARF GALAXIES

    International Nuclear Information System (INIS)

    Cigan, Phil; Young, Lisa; Cormier, Diane; Lebouteiller, Vianney; Madden, Suzanne; Hunter, Deidre; Brinks, Elias; Elmegreen, Bruce; Schruba, Andreas; Heesen, Volker

    2016-01-01

    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 μm, [O i] 63 μm, [O iii] 88 μm, and [N ii] 122 μm emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budget—higher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 μm/100 μm, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals

  17. HERSCHEL SPECTROSCOPIC OBSERVATIONS OF LITTLE THINGS DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cigan, Phil; Young, Lisa [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Cormier, Diane [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Lebouteiller, Vianney; Madden, Suzanne [Laboratoire AIM, CEA/DSM—CNRS—Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Hunter, Deidre [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Elmegreen, Bruce [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598 (United States); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Heesen, Volker, E-mail: pcigan@alumni.nmt.edu [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Collaboration: LITTLE THINGS Team

    2016-01-15

    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 μm, [O i] 63 μm, [O iii] 88 μm, and [N ii] 122 μm emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budget—higher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 μm/100 μm, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.

  18. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation.

    Science.gov (United States)

    Chang, Fangfang; Qu, Jiuhui; Liu, Huijuan; Liu, Ruiping; Zhao, Xu

    2009-10-15

    Fe-Mn binary oxide incorporated into diatomite (FMBO-diatomite) was prepared by a simple coating method, and exhibited high oxidation and adsorption ability for arsenite [As(III)]. After being incorporated by Fe-Mn binary oxide, the surface area of diatomite increased 36%, and the pore volume increased five times. The pHzpc of FMBO-diatomite was determined to be 8.1. These characteristics are responsible for the increased As(III) adsorption efficiency. The adsorption equilibria of As(III) on FMBO-diatomite were described well by a Langmuir isotherm model due to the homogeneous distribution of Fe-Mn binary oxide on a diatomite surface. As(III) was oxidized into As(V), and then adsorbed by FMBO-diatomite. The oxidation and adsorption efficiencies for As(III) depended deeply on the pH of solution. When the pH was raised to 8.1, the As(III) adsorption efficiency of FMBO-diatomite was almost equal to the As(III) oxidation efficiency. Silicate and phosphate had negative effects on As(III) adsorption. Also the influence of silicate and phosphate with the pH variation was different.

  19. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M C , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M C are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10 6 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  20. A model for the massive binary V340 Muscae

    Science.gov (United States)

    Hauck, Norbert

    2016-02-01

    A synthetic light curve has been fitted to photometric data from the ASAS-3 database. The parameters of the best solution are well consistent with those derived from stellar models for both components for an initial metallicity Z=0.020 and a common age of 5 Myr. Therefore, we can reliably estimate the absolute dimensions of this close eclipsing binary system. Apparently, the O-type primary star has a mass of about 22.65 Msun and a radius of 10.35 Rsun. For the secondary star, likely a late B-type dwarf, we obtain about 3.1 Msun and 2.1 Rsun. Their mass ratio of about 0.138 might be the lowest found so far in O-type binaries. [English and German online-version of this paper available under www.bav-astro.eu/rb/rb2016-2/1.html].

  1. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  2. Radiation of dwarf novae

    International Nuclear Information System (INIS)

    Bruch, A.

    1987-01-01

    The nature of dwarf novae with their components white dwarf star, cool star, accretion disk, boundary layer and hot spot is investigated. It is shown that very different physical states and processes occur in the components of dwarf novae. Spectroscopical and photometrical observations are carried out. For better understanding the radiation portions of the single dwarf novae components are separated from the total electromagnetic spectrum recieved from the dwarf novae. The model assumptions are compared with the observations and verified

  3. Near-infrared metallicities, radial velocities, and spectral types for 447 nearby M dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Berta-Thompson, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rojas-Ayala, Barbara [Centro de Astrofsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Covey, Kevin [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Lloyd, James P., E-mail: enewton@cfa.harvard.edu [Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853 (United States)

    2014-01-01

    We present metallicities, radial velocities, and near-infrared (NIR) spectral types for 447 M dwarfs determined from moderate resolution (R ≈ 2000) NIR spectra obtained with the NASA Infrared Telescope Facility (IRTF)/SpeX. These M dwarfs are primarily targets of the MEarth Survey, a transiting planet survey searching for super Earths around mid-to-late M dwarfs within 33 pc. We present NIR spectral types for each star and new spectral templates for the IRTF in the Y, J, H, and K-bands, created using M dwarfs with near-solar metallicities. We developed two spectroscopic distance calibrations that use NIR spectral type or an index based on the curvature of the K-band continuum. Our distance calibration has a scatter of 14%. We searched 27 NIR spectral lines and 10 spectral indices for metallicity sensitive features, taking into account correlated noise in our estimates of the errors on these parameters. We calibrated our relation using 36 M dwarfs in common proper pairs with an F-, G-, or K-type star of known metallicity. We validated the physical association of these pairs using proper motions, radial velocities, and spectroscopic distance estimates. Our resulting metallicity calibration uses the sodium doublet at 2.2 μm as the sole indicator for metallicity. It has an accuracy of 0.12 dex inferred from the scatter between the metallicities of the primaries and the estimated metallicities of the secondaries. Our relation is valid for NIR spectral types from M1V to M5V and for –1.0 dex < [Fe/H] < +0.35 dex. We present a new color-color metallicity relation using J – H and J – K colors that directly relates two observables: the distance from the M dwarf main sequence and equivalent width of the sodium line at 2.2 μm. We used radial velocities of M dwarf binaries, observations at different epochs, and comparison between our measurements and precisely measured radial velocities to demonstrate a 4 km s{sup –1} accuracy.

  4. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  5. A RADIO SEARCH FOR PULSAR COMPANIONS TO SLOAN DIGITAL SKY SURVEY LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Camilo, Fernando; Silvestri, Nicole M.; Anderson, Scott F.; Kleinman, S. J.; Liebert, James W.

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M sun ) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive white dwarf (WD) or a neutron star (NS) as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs, suggesting that the SDSS LMWDs may have NS companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al., who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as 'ordinary' WDs). We discuss the constraints our nondetections place on the probability P MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P MSP +4 -2 %.

  6. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  7. The separation distribution and merger rate of double white dwarfs: improved constraints

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama; Badenes, Carles

    2018-05-01

    We obtain new and precise information on the double white dwarf (DWD) population and on its gravitational-wave-driven merger rate by combining the constraints on the DWD population from two previous studies on radial velocity variation. One of the studies is based on a sample of white dwarfs (WDs) from the Sloan Digital Sky Survey (SDSS, which with its low spectral resolution probes systems at separations a distribution of initial WD separations (at the start of solely gravitational-wave-driven binary evolution), N(a)da ∝ aαda, is α = -1.30 ± 0.15 (1σ) +0.05 (systematic). The Galactic WD merger rate per WD is Rmerge = (9.7 ± 1.1) × 10-12 yr-1. Integrated over the Galaxy lifetime, this implies that 8.5-11 per cent of all WDs ever formed have merged with another WD. If most DWD mergers end as more-massive WDs, then some 10 per cent of WDs are DWD-merger products, consistent with the observed fraction of WDs in a `high-mass bump' in the WD mass function. The DWD merger rate is 4.5-7 times the Milky Way's specific Type Ia supernova (SN Ia) rate. If most SN Ia explosions stem from the mergers of some DWDs (say, those with massive-enough binary components) then ˜15 per cent of all WD mergers must lead to a SN Ia.

  8. Discovery of Nearest Known Brown Dwarf

    Science.gov (United States)

    2003-01-01

    Bright Southern Star Epsilon Indi Has Cool, Substellar Companion [1] Summary A team of European astronomers [2] has discovered a Brown Dwarf object (a 'failed' star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi (now "Epsilon Indi A"), previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys (SSS) and confirmed using data from the Two Micron All Sky Survey (2MASS). Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties. Epsilon Indi B has a mass just 45 times that of Jupiter, the largest planet in the Solar System, and a surface temperature of only 1000 °C. It belongs to the so-called 'T dwarf' category of objects which straddle the domain between stars and giant planets. Epsilon Indi B is the nearest and brightest T dwarf known. Future studies of the new object promise to provide astronomers with important new clues as to the formation and evolution of these exotic celestial bodies, at the same time yielding interesting insights into the border zone between planets and stars. TINY MOVING NEEDLES IN GIANT HAYSTACKS ESO PR Photo 03a/03 ESO PR Photo 03a/03 [Preview - JPEG: 400 x 605 pix - 92k [Normal - JPEG: 1200 x 1815 pix - 1.0M] Caption: PR Photo 03a/03 shows Epsilon Indi A (the bright star at far right) and its newly discovered brown dwarf companion Epsilon Indi B (circled). The upper image comes from one of the SuperCOSMOS Sky

  9. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    Science.gov (United States)

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-05

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The G+M eclipsing binary v530 orionis

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H Sandberg; Pavlovski, Krešimir

    2014-01-01

    We report extensive photometric and spectroscopic observations of the 6.1 day period, G+M-type detached double-lined eclipsing binary V530 Ori, an important new benchmark system for testing stellar evolution models for low-mass stars. We determine accurate masses and radii for the components...... in the primary spectrum shows the system to have a slightly subsolar abundance, with [Fe/H] = –0.12 ± 0.08. A comparison with theory reveals that standard models underpredict the radius and overpredict the temperature of the secondary, as has been found previously for other M dwarfs. On the other hand, models...

  11. Double white dwarfs as progenitors of R coronae borealis stars and type I supernovae

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1984-01-01

    Close double white dwarfs should arise from the second phase of mass exchagne in close binaries which first encountered mass exchange while the more massive star was crossing the Hertzprung gap. Tidal mass transfer in these double degenerate systems is explored. The sequence of double white dwarf divides naturally into three segments. (1) Low-mass helium/helium pairs are unstable to dynamical time-scale mass transfer and probably coalesce to form helium-burning sdO stars. (2) In helium/carbon-oxygen pairs, mass transfer occurs on the time scale for gravitational radiation losses (approx.10 -4 M/sub sun/ yr -1 ); the accreted helium is quickly ignited, and the accretor expands to dimensions characteristic of R CrB stars, engulfing its companion star. (3) Carbon-oxygen/carbon-oxygen pairs are again unstable to dynamical time-scale mass transfer and, since their total masses exceed the Chandrasekhar limit, are destined to become supernovae. Inactive lifetimes in these latter systems between creation and interaction can exceed 10 10 years. Birthrates of R CrB stars and Type I supernovae by evolution of double white dwarfs are in reasonable agreement with observational estimates

  12. On the consequences of low-mass white dwarf mergers

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1990-01-01

    The theory of binary star evolution suggests that about 10 percent of all main-sequence binary systems should evolve into a close pair of light white dwarfs which merge within a Hubble time. This paper explores the consequences of such mergers on the assumption that a merger can be approximated by a mass-transfer event which occurs on a time scale shorter than that given by the Eddington accretion limit. The evolution of He + He mergers and of CO + He and of hybrid + He mergers are discussed. The birthrate of helium degenerate pairs which merge in less than a Hubble time is estimated, and the space density of low-luminosity merger products currently present in the Galaxy is predicted. It is shown that the evolutionary tracks of models of simulated mergers pass through the region in the H-R diagram occupied by subdwarfs, but that the predicted space density of merger products exceeds by over a factor of three the space density of subdwarf estimated form the known sample of such stars. 61 refs

  13. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  14. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3

    Science.gov (United States)

    Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric

    2015-01-01

    Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846

  15. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z ⊙ ). We also find that the remnants of these mergers can have rather high mass densities (10 4 M ⊙ pc −3 ) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs

  16. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia 35 Stirling Highway, Crawley Western Australia, 6009 (Australia)

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  17. Formation constants of binary complexes of lanthanides with 2-hydroxymethyl-benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Nagendram, A; Omprakash, K L; Chandra Pal, A V; Reddy, M L.N.

    1988-03-01

    Proton-ligand and metal-ligand formation constants of binary complexes of La(III), Pr(III), Nd(III), Gd(III), Dy(III) and Y(III) with 2-hydroxymethylbenzimidazole have been determined pH-metrically in 50 per cent v/v aq dioxane medium at 30deg, 40deg and 50degC and I=0.1 M (NaClO/sub 4/). The theromdynamic parameters of complex formation have been evaluated. Stabilities (log ..beta../sub 2/ values) of the chelates increase with decrease in ionic radius of the metal (Dy(III) > Gd(III) > Y(III) > Nd(III) > Pr(III) > La(III)). (author). 7 refs.

  18. New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Dwarfs

    CERN Document Server

    Reid, I. Neill

    2005-01-01

    There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs a...

  19. The crowded magnetosphere of the post common envelope binary QS Virginis

    OpenAIRE

    Parsons, S. G.; Hill, C. A.; Marsh, T. R.; Gansicke, B. T.; Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Schreiber, M. R.; Zorotovic, M.

    2016-01-01

    We present high-speed photometry and high-resolution spectroscopy of the eclipsing post-common-envelope binary QS Virginis (QS Vir). Our Ultraviolet and Visual Echelle Spectrograph (UVES) spectra span multiple orbits over more than a year and reveal the presence of several large prominences passing in front of both the M star and its white dwarf companion, allowing us to triangulate their positions. Despite showing small variations on a time-scale of days, they persist for more than a year an...

  20. Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations

    Science.gov (United States)

    Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael

    2017-06-01

    Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.

  1. Mass loss, levitation, accretion, and the sharp-lined features in hot white dwarfs

    International Nuclear Information System (INIS)

    Bruhweiler, F.C.; Kondo, Y.

    1983-01-01

    We have studied eight white dwarfs, seven DA and one He-rich types, observed at a high resolution (lambda/Δlambdaroughly-equal10 4 ) with the International Ultraviolet Explorer (IUE). Of the seven DA white dwarfs, three show spectral signatures of ionized heavy elements, such as Si II, SI III, C IV, Si IV, and N V, arising in the immediate environment of these stars. The shortward-shifted lines in two (G191--B2B and 2111+49) of the three DA types showing metallic lines are tentatively interpreted as an indication of mass loss from these stars. The He-rich white dwarf shows the features due to C cV and He II, which also arise in the immediate environment of that star. Although the statistical sample presented here is limited, we tentatively suggest a temperature and effective gravity range (T/sub eff/> or approx. =20,000 K and log (g) < or approx. =8.0) in DA white dwarfs within which metallic lines are present either in the photosphere or in the halo of the stars. We examine the physical processes relevant to the appearance of such metallic lines. We tentatively propose that radiative levitation can explain the appearance of the observed lines in the hot DA white dwarfs, although the role of radiation forces in mass loss is not clear

  2. Discovery of a Bright, Extremely Low Mass White Dwarf in a Close Double Degenerate System

    Czech Academy of Sciences Publication Activity Database

    Vennes, Stephane; Thorstensen, J.R.; Kawka, Adela; Németh, Péter; Skinner, J.N.; Pigulski, A.; Stęslicki, M.; Kolaczkowski, Z.; Srodka, P.

    2011-01-01

    Roč. 737, č. 1 (2011), L16/1-L16/6 ISSN 2041-8205 R&D Projects: GA AV ČR(CZ) IAA300030908; GA AV ČR IAA301630901; GA ČR GAP209/10/0967; GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : close binaries stars * individual star GALEX J171708.5+675712 * white dwarf s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.526, year: 2011

  3. OGLE-2013-BLG-0102LA,B: MICROLENSING BINARY WITH COMPONENTS AT STAR/BROWN DWARF AND BROWN DWARF/PLANET BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. K.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Skowron, J.; Kozłowski, S.; Poleski, R.; Wyrzykowski, Ł.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Pietrukowicz, P.; Mróz, P.; Kubiak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Abe, F. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Botzler, C. S., E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Collaboration: OGLE Collaboration; MOA Collaboration; μFUN Collaboration; and others

    2015-01-10

    We present an analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification A {sub max} ∼ 1.5. It is found that the event was produced by a binary lens with a mass ratio between the components of q = 0.13 and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. Based on the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, we determine the physical parameters of the lens system. The measured masses of the lens components are M {sub 1} = 0.096 ± 0.013 M {sub ☉} and M {sub 2} = 0.012 ± 0.002 M {sub ☉}, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is 3.04 ± 0.31 kpc and the projected separation between the lens components is 0.80 ± 0.08 AU.

  4. A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND WISE. II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES

    International Nuclear Information System (INIS)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Deacon, Niall R.; Redstone, Joshua; Burgett, W. S.; Draper, P.; Metcalfe, N.

    2015-01-01

    The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched ≈28,000 deg 2 using the Pan-STARRS1 and Wide-field Infrared Survey Explorer surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances ≈9–130 pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6–T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9–T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the “L/T gap,” a deficit of objects with (J − K) MKO  ≈ 0.0–0.5 mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth, including 10 with vl-g or int-g gravity classifications and another 13 with indications of low gravity whose spectral types or modest spectral signal-to-noise ratio do not allow us to assign formal classifications. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7–T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members and would

  5. Transient Processes in a Binary System with a White Dwarf

    Directory of Open Access Journals (Sweden)

    D. A. Kononov

    2015-02-01

    Full Text Available Using the results of 3D gas dynamic numerical simulations we propose a mechanism that can explain the quiescent multihumped shape of light curves of WZ Sge short-period cataclysmic variable stars. Analysis of the obtained solutions shows that in the modeled system an accretion disk forms. In the outer regions of the disk four shock waves occur: two arms of the spiral tidal shock; “hot line”, a shock wave caused by the interaction of the circum-disk halo and the stream from the inner Lagrangian point; and the bow-shock forming due to the supersonic motion of the accretor and disk in the gas of the circum-binary envelope. In addition, in our solutions we observe a spiral precessional density wave in the disk. This wave propagates from inside the disk down to its outer regions and almost rests in the laboratory frame in one orbital period. As a results every next orbital period each shock wave passes through the outer part of the density wave. Supplying these shocks with extra-density the precessional density wave amplifies them, which leads to enhanced energy release at each shock and may be observed as a brightening (or hump in the light curve. Since the velocity of the retrograde precession is a little lower that the orbital velocity of the system, the same shock wave at every next orbital cycle interacts with the density wave later than at the previous cycle. This causes the observed shift of the humps over binary phases. The number of the shock waves, interacting with the density wave determines the largest number of humps that may be observed in one orbital period of a WZ Sge type star.

  6. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  7. The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs

    Science.gov (United States)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2018-05-01

    We are conducting a proper-motion survey for young brown dwarfs in the Taurus-Auriga molecular cloud based on the Pan-STARRS1 3π Survey. Our search uses multi-band photometry and astrometry to select candidates, and is wider (370 deg2) and deeper (down to ≈3 M Jup) than previous searches. We present here our search methods and spectroscopic follow-up of our high-priority candidates. Since extinction complicates spectral classification, we have developed a new approach using low-resolution (R ≈ 100) near-infrared spectra to quantify reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≲100–3 M Jup in Taurus). We have discovered 25 low-gravity (VL-G) and the first 11 intermediate-gravity (INT-G) substellar (M6–L1) members of Taurus, constituting the largest single increase of Taurus brown dwarfs to date. We have also discovered 1 new Pleiades member and 13 new members of the Perseus OB2 association, including a candidate very wide separation (58 kau) binary. We homogeneously reclassify the spectral types and extinctions of all previously known Taurus brown dwarfs. Altogether our discoveries have thus far increased the substellar census in Taurus by ≈40% and added three more L-type members (≲5–10 M Jup). Most notably, our discoveries reveal an older (>10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. The mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes.

  8. 37 NEW T-TYPE BROWN DWARFS IN THE CANADA-FRANCE BROWN DWARFS SURVEY

    International Nuclear Information System (INIS)

    Albert, Loic; Artigau, Etienne; Delorme, Philippe; Reyle, Celine; Forveille, Thierry; Delfosse, Xavier; Willott, Chris J.

    2011-01-01

    The Canada-France Brown Dwarfs Survey is an i'- and z'-band survey realized with MegaCam at the Canada-France-Hawaii Telescope that covers a surface area of 780 deg 2 . Image analysis is now completed while J-band follow-up campaigns are ∼90% done. The survey identified about 70 T dwarf candidates, of which 43 now have near-infrared spectra obtained with NIRI and GNIRS at Gemini and ISAAC at the Very Large Telescope. Six of these were previously published and we present here the 37 new discoveries, all T dwarfs. They range from T0 to T8.5 with four being of type T7 or later. Both newly identified T8 dwarfs are possibly high log (g) massive brown dwarfs of thin disk age. One T4.5 dwarf shows signs of sub-metallicity. We present proper motions and near-infrared photometry, and discuss about the most peculiar/interesting objects in some details.

  9. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  10. Stark Broadening and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Dimitrijević Milan S.

    2011-12-01

    Full Text Available White dwarf and pre-white dwarfs are the best types of stars for the application of Stark broadening research results in astrophysics, since in the atmospheres of these stars physical conditions are very favorable for this line broadening mechanism - in hot hydrogen-deficient white dwarfs and pre-white dwarfs Teff = 75 000–180 000 K and log g = 5.5–8 [cgs]. Even for much cooler DA and DB white dwarfs with the typical effective temperatures 10 000-20 000 K, Stark broadening is usually the dominant broadening mechanism. In this review, Stark broadening in white dwarf spectra is considered, and the attention is drawn to the STARK-B database (http://stark-b.obspm.fr/, containing the parameters needed for analysis and synthesis of white dwarf spectra, as well as for the collective efforts to develop the Virtual Atomic and Molecular Data Center.

  11. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  12. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    Science.gov (United States)

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  13. Analysis of the southern pre-contact W UMa binary ZZ Eridani: A 34 year period study yields a possible low-mass companion

    Energy Technology Data Exchange (ETDEWEB)

    Samec, R. G. [Faculty Research Associate, Pisgah Astronomical Research Institute, One Pari Drive, Rosman, NC 28772 (United States); Clark, J. D. [Astronomy Group, Physics and Engineering Department, Bob Jones University, 1700 Wade Hampton Boulevard, Greenville, SC 29614 (United States); Hamme, W. Van [Physics Department, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Faulkner, D. R. [University of South Carolina, Lancaster, 476 Hubbard Drive Lancaster, SC 29720 (United States)

    2015-02-01

    Complete Bessel BVRI light curves of ZZ Eridani [2MASS J04130109-1044545, HV 6280, NSVS 14888164 α(2000) = 04{sup h}13{sup m}1{sub ·}{sup s}10, δ(2000) = −10°44′54{sub ·}{sup ″}5 (ICRS), V = 13.9-14.4-15.0] are observed and analyzed. The system is a southern pre-contact W UMa binary. Its light curve has the appearance of an Algol (EA) light curve, however, it is made up of dwarf solar-type components with a period of only 0.4521 days. Our 34 year period study yields a sinusoidal fit or an increasing quadratic fit. The sinusoid may indicate that a third body is orbiting the close binary. The lower-limit mass of the third body is near that of the brown dwarf limit (0.095 M α). Also included is an improved ephemeris, a mass ratio search, and a simultaneous BVRI Wilson–Devinney solution.

  14. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  15. Sorption of Hg(II and Pb(II Ions on Chitosan-Iron(III from Aqueous Solutions: Single and Binary Systems

    Directory of Open Access Journals (Sweden)

    Byron Lapo

    2018-03-01

    Full Text Available The present work describes the study of mercury Hg(II and lead Pb(II removal in single and binary component systems into easily prepared chitosan-iron(III bio-composite beads. Scanning electron microscopy and energy-dispersive X-ray (SEM-EDX analysis, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA and point of zero charge (pHpzc analysis were carried out. The experimental set covered pH study, single and competitive equilibrium, kinetics, chloride and sulfate effects as well as sorption–desorption cycles. In single systems, the Langmuir nonlinear model fitted the experimental data better than the Freundlich and Sips equations. The sorbent material has more affinity to Hg(II rather than Pb(II ions, the maximum sorption capacities were 1.8 mmol·g−1 and 0.56 mmol·g−1 for Hg(II and Pb(II, respectively. The binary systems data were adjusted with competitive Langmuir isotherm model. The presence of sulfate ions in the multicomponent system [Hg(II-Pb(II] had a lesser impact on the sorption efficiency than did chloride ions, however, the presence of chloride ions improves the selectivity towards Hg(II ions. The bio-based material showed good recovery performance of metal ions along three sorption–desorption cycles.

  16. Dwarf Mice and Aging.

    Science.gov (United States)

    Masternak, Michal M; Darcy, Justin; Victoria, Berta; Bartke, Andrzej

    2018-01-01

    Dwarf mice have been studied for many decades, however, the focus of these studies shifted in 1996 when it was shown by Brown-Borg and her coworkers that Ames dwarf (Prop1 df ) mice are exceptionally long-lived. Since then, Snell dwarf (Pit1 dw ) and growth hormone receptor knockout (GHR-KO, a.k.a. Laron dwarf) mice were also shown to be exceptionally long-lived, presumably due to their growth hormone (GH)-deficiency or -resistance, respectively. What is of equal importance in these dwarf mice is their extended health span, that is, these animals have a longer period of life lived free of frailty and age-related diseases. This review article focuses on recent studies conducted in these dwarf mice, which concerned brown and white adipose tissue biology, microRNA (miRNA) profiling, as well as early-life dietary and hormonal interventions. Results of these studies identify novel mechanisms linking reduced GH action with extensions of both life span and health span. Copyright © 2017. Published by Elsevier Inc.

  17. ESO 439-162/163 - a common proper motion binary formed by a magnetic DQ and a DC type white dwarf

    International Nuclear Information System (INIS)

    Ruiz, M.T.; Maza, J.

    1988-01-01

    In the course of a search for faint large proper motion stars, a common proper motion pair was identified having a mu = 0.38 + or - 0.03 arcsec/yr in the direction theta = 233 deg. The stars are separated by 23 arcsec and have apparent visual magnitudes 18.77 and 19.84, respectively. Spectrophotometry of the stars established that the fainter component is a cold DC white dwarf, while the brighter one is a magnetic white dwarf with strong Swan bands of C2 shifted and broadened by an about 10 to the 8th G magnetic field. 6 references

  18. Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe

    Science.gov (United States)

    Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John

    2018-05-01

    We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.

  19. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  20. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  1. A Survey for Spectroscopic Binaries in a Large Sample of G Dwarfs

    Science.gov (United States)

    Udry, S.; Mayor, M.; Latham, D. W.; Stefanik, R. P.; Torres, G.; Mazeh, T.; Goldberg, D.; Andersen, J.; Nordstrom, B.

    For more than 5 years now, the radial velocities for a large sample of G dwarfs (3,347 stars) have been monitored in order to obtain an unequaled set of orbital parameters for solar-type stars (~400 orbits, up to now). This survey provides a considerable improvement on the classical systematic study by Duquennoy and Mayor (1991; DM91). The observational part of the survey has been carried out in the context of a collaboration between the Geneva Observatory on the two coravel spectrometers for the southern sky and CfA at Oakridge and Whipple Observatories for the northern sky. As a first glance at these new results, we will address in this contribution a special aspect of the orbital eccentricity distribution, namely the disappearance of the void observed in DM91 for quasi-circular orbits with periods larger than 10 days.

  2. Microwave emission from the coronae of late-type dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Linsky, J.L.; Gary, D.E.

    1983-11-15

    We present VLA microwave observatios of 14 late-type dwarf and subgiant stars ad binary systems. In this extensive set of observations we detected four sources at 6 cm (chi/sup 1/ Ori, UV Cet, YY Gem, and Wolf 630AB) and found low upper limits for the remaining stars. The microwave luminosities of the nondetected F--K dwarfs are as small as 10/sup -2/ those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiralig in magnetic fields of about 300 gauss if the source sizes are as large as R/R/sub asterisk/roughly-equal3--4. This would correspond to magnetic fields that are probably in the range 10/sup 3/--10/sup 4/ gauss at the photospheric level. These photospheric field strengths are somewhat larger than have been observed so far in G--K dwarfs. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons (only 10/sup -3/ the number of ambient electrons) with effective temperature, T/sub eff/>10/sup 8/ K. This mechanism is consistent with much smaller and presumably more realistic source sizes. Observations of YY gem dMle+dMle) at a number of phase are consistent with maximum but variable microwave flux at the same phase as miximum plage and central meridian passage of a large starspot of the secondary star. If confirmed by subsequent observations, this provides the first direct evidence that the emission process is magnetic in character on dMe stars.

  3. Search for bright nearby M dwarfs with virtual observatory tools

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Caballero, J. A.; Montesinos, B.; Gálvez-Ortiz, M. C.; Solano, E.; Martín, E. L. [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain)

    2014-08-01

    Using Virtual Observatory tools, we cross-matched the Carlsberg Meridian 14 and the 2MASS Point Source catalogs to select candidate nearby bright M dwarfs distributed over ∼25,000 deg{sup 2}. Here, we present reconnaissance low-resolution optical spectra for 27 candidates that were observed with the Intermediate Dispersion Spectrograph at the 2.5 m Isaac Newton Telescope (R≈ 1600). We derived spectral types from a new spectral index, R, which measures the ratio of fluxes at 7485-7015 Å and 7120-7150 Å. We also used VOSA, a Virtual Observatory tool for spectral energy distribution fitting, to derive effective temperatures and surface gravities for each candidate. The resulting 27 targets were M dwarfs brighter than J = 10.5 mag, 16 of which were completely new in the Northern hemisphere and 7 of which were located at less than 15 pc. For all of them, we also measured Hα and Na I pseudo-equivalent widths, determined photometric distances, and identified the most active stars. The targets with the weakest sodium absorption, namely, J0422+2439 (with X-ray and strong Hα emissions), J0435+2523, and J0439+2333, are new members in the young Taurus-Auriga star-forming region based on proper motion, spatial distribution, and location in the color-magnitude diagram, which reopens the discussion on the deficit of M2-4 Taurus stars. Finally, based on proper motion diagrams, we report on a new wide M dwarf binary system in the field, LSPM J0326+3929EW.

  4. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    Science.gov (United States)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  5. Ultraviolet and optical observations of the dwarf novae VW and WX Hydri during outburst

    International Nuclear Information System (INIS)

    Hassall, B.J.M.; Pringle, J.E.; Schwarzenberge-Czerny, A.; Wade, R.A.; Whelan, J.A.J.; Hill, P.W.

    1983-01-01

    Simultaneous spectrophotometry in the range 1200-7000 A, of the dwarf novae at quiescence and maximum is presented. The continuum spectra are compared with the standard model disc spectrum and, with one exception, the fit is poor. The assumptions that the disc is both steady-state and blackbody are reconsidered and it is pointed out that a νsup(1/3) spectrum is not to be expected from a disc sufficiently small to be accommodated within these short binary period systems. On the rise to outburst the UV flux in VW Hydri is observed to lag at least one day behind the optical, supporting the mass accretion event explanation of dwarf nova outbursts. The behaviour of the UV and optical line features during outbursts is described, in particular, the P Cygni features observed in a super-outburst of WX Hydri, from which a mass loss rate is estimated, small compared with the mass transfer rate from the secondary star. (author)

  6. A SEARCH FOR L/T TRANSITION DWARFS WITH Pan-STARRS1 AND WISE: DISCOVERY OF SEVEN NEARBY OBJECTS INCLUDING TWO CANDIDATE SPECTROSCOPIC VARIABLES

    International Nuclear Information System (INIS)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Deacon, Niall R.; Dupuy, Trent J.; Redstone, Joshua; Price, P. A.

    2013-01-01

    We present initial results from a wide-field (30,000 deg 2 ) search for L/T transition brown dwarfs within 25 pc using the Pan-STARRS1 and Wide-field Infrared Survey Explorer (WISE) surveys. Previous large-area searches have been incomplete for L/T transition dwarfs, because these objects are faint in optical bands and have near-infrared (near-IR) colors that are difficult to distinguish from background stars. To overcome these obstacles, we have cross-matched the Pan-STARRS1 (optical) and WISE (mid-IR) catalogs to produce a unique multi-wavelength database for finding ultracool dwarfs. As part of our initial discoveries, we have identified seven brown dwarfs in the L/T transition within 9-15 pc of the Sun. The L9.5 dwarf PSO J140.2308+45.6487 and the T1.5 dwarf PSO J307.6784+07.8263 (both independently discovered by Mace et al.) show possible spectroscopic variability at the Y and J bands. Two more objects in our sample show evidence of photometric J-band variability, and two others are candidate unresolved binaries based on their spectra. We expect our full search to yield a well-defined, volume-limited sample of L/T transition dwarfs that will include many new targets for study of this complex regime. PSO J307.6784+07.8263 in particular may be an excellent candidate for in-depth study of variability, given its brightness (J = 14.2 mag) and proximity (11 pc)

  7. The extent of chemically enriched gas around star-forming dwarf galaxies

    Science.gov (United States)

    Johnson, Sean

    2018-01-01

    Supernovae driven winds are often invoked to remove chemically enriched gas from galaxies to match the low metallicities of dwarf galaxies. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circum-galactic medium or CGM) and pollute the intergalactic medium (IGM). I will present a survey of the CGM and IGM around 18 star-forming field dwarf galaxies with stellar masses of log M*/M⊙ ≈ 8 ‑ 9 at z ≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than the host virial radius, Rh. Ten are probed at d/Rh = 1 ‑ 3 to study the surrounding IGM. The absorption measurements include neutral hydrogen (H I), the dominant silicon ions for diffuse cool gas (T ∼ 104 K; Si II, Si III, and Si IV), more highly ionized carbon (C IV), and highly ionized oxygen (O VI). The metal absorption from the CGM of the dwarf galaxies is less common and ≈ 4× weaker compared to massive star-forming galaxies though O VI absorption is still common. None of the dwarfs probed at d/Rh = 1 ‑ 3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM accounts for only 2 ‑ 6% of the expected silicon budget. CGM absorption from O VI can account for ≈ 8% of the expected oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of 0.2, this highly ionized phase of the CGM may represent a significant metal reservoir even for dwarf galaxies not expected to maintain gravitationally shock heated hot halos.

  8. From strange stars to strange dwarfs

    International Nuclear Information System (INIS)

    Glendenning, N.K.; Kettner, C.; Weber, F.

    1995-01-01

    We determine all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from massive strange stars to strange white dwarf endash like objects (strange dwarfs). The properties of such stars are compared with those of their nonstrange counterparts emdash neutron stars and ordinary white dwarfs. The main emphasis of this paper is on strange dwarfs, which we divide into two distinct categories. The first one consists of a core of strange matter enveloped within ordinary white dwarf matter. Such stars are hydrostatically stable with or without the strange core and are therefore referred to as open-quote open-quote trivial close-quote close-quote strange dwarfs. This is different for the second category which forms an entirely new class of dwarf stars that contain nuclear material up to 4x10 4 times denser than in ordinary white dwarfs of average mass, M∼0.6 M circle-dot , and still about 400 times denser than in the densest white dwarfs. The entire family of such dwarfs, denoted dense strange dwarfs, owes its hydrostatic stability to the strange core. A striking features of strange dwarfs is that the entire sequence from the maximum-mass strange star to the maximum-mass strange dwarf is stable to radial oscillations. The minimum-mass star is only conditionally stable, and the sequences on both sides are stable. Such a stable, continuous connection does not exist between ordinary white dwarfs and neutron stars, which are known to be separated by a broad range of unstable stars. We find an expansive range of very low mass (planetary-like) strange-matter stars (masses even below 10 -4 M circle-dot are possible) that arise as natural dark-matter candidates, which if abundant enough in our Galaxy, should be seen in the gravitational microlensing searches that are presently being performed. copyright 1995 The American Astronomical Society

  9. VizieR Online Data Catalog: CONCH-SHELL catalog of nearby M dwarfs (Gaidos+, 2014)

    Science.gov (United States)

    Gaidos, E.; Mann, A. W.; Lepine, S.; Buccino, A.; James, D.; Ansdell, M.; Petrucci, R.; Mauas, P.; Hilton, E. J.

    2015-04-01

    Lepinet et al. 2011 (J/AJ/142/138) selected candidate M dwarfs as stars that were (i) bright (J2.7), (iii) had absolute magnitudes or reduced proper motions, proxies for absolute magnitudes, consistent with the main sequence and (iv) infrared Two Micron All-Sky Survey (2MASS; Skrutskie et al. 2006, Cat. II/246) JHKS colours that are consistent with M dwarfs. In this work, we constructed a revised catalogue of JMark III spectrograph and Boller & Chivens CCDS spectrograph (CCDS) on the 1.3m McGraw-Hill telescope at the MDM Observatory on Kitt Peak, Arizona, the REOSC spectrograph on the 2.15m Jorge Sahade telescope at the Complejo Astronomico El Leoncito Observatory (CASLEO), Argentina, and the RC spectrograph on the 1.9m Radcliffe telescope at the South African Astronomical Observatory. We obtained a total of 3071 spectra of 2583 stars or 86% of the catalog over the span 2002-2014 of more than 11 years. 425 stars were observed twice, 14 stars were observed thrice, and 6 stars had more than four observations. (2 data files).

  10. Cataloging the Praesepe Cluster: Identifying Interlopers and Binary Systems

    Science.gov (United States)

    Lucey, Madeline R.; Gosnell, Natalie M.; Mann, Andrew; Douglas, Stephanie

    2018-01-01

    We present radial velocity measurements from an ongoing survey of the Praesepe open cluster using the WIYN 3.5m Telescope. Our target stars include 229 early-K to mid-M dwarfs with proper motion memberships that have been observed by the repurposed Kepler mission, K2. With this survey, we will provide a well-constrained membership list of the cluster. By removing interloping stars and determining the cluster binary frequency we can avoid systematic errors in our analysis of the K2 findings and more accurately determine exoplanet properties in the Praesepe cluster. Obtaining accurate exoplanet parameters in open clusters allows us to study the temporal dimension of exoplanet parameter space. We find Praesepe to have a mean radial velocity of 34.09 km/s and a velocity dispersion of 1.13 km/s, which is consistent with previous studies. We derive radial velocity membership probabilities for stars with ≥3 radial velocity measurements and compare against published membership probabilities. We also identify radial velocity variables and potential double-lined spectroscopic binaries. We plan to obtain more observations to determine the radial velocity membership of all the stars in our sample, as well as follow up on radial velocity variables to determine binary orbital solutions.

  11. The Nature of Double-peaked [O III] Active Galactic Nuclei

    Science.gov (United States)

    Fu, Hai; Yan, Lin; Myers, Adam D.; Stockton, Alan; Djorgovski, S. G.; Aldering, G.; Rich, Jeffrey A.

    2012-01-01

    Active galactic nuclei (AGNs) with double-peaked [O III] lines are suspected to be sub-kpc or kpc-scale binary AGNs. However, pure gas kinematics can produce the same double-peaked line profile in spatially integrated spectra. Here we combine integral-field spectroscopy and high-resolution imaging of 42 double-peaked [O III] AGNs from the Sloan Digital Sky Survey to investigate the constituents of the population. We find two binary AGNs where the line splitting is driven by the orbital motion of the merging nuclei. Such objects account for only ~2% of the double-peaked AGNs. Almost all (~98%) of the double-peaked AGNs were selected because of gas kinematics; and half of those show spatially resolved narrow-line regions that extend 4-20 kpc from the nuclei. Serendipitously, we find two spectrally unresolved binary AGNs where gas kinematics produced the double-peaked [O III] lines. The relatively frequent serendipitous discoveries indicate that only ~1% of binary AGNs would appear double-peaked in Sloan spectra and 2.2+2.5 -0.8% of all Sloan AGNs are binary AGNs. Therefore, the double-peaked sample does not offer much advantage over any other AGN samples in finding binary AGNs. The binary AGN fraction implies an elevated AGN duty cycle (8+8 -3%), suggesting galaxy interactions enhance nuclear accretion. We illustrate that integral-field spectroscopy is crucial for identifying binary AGNs: several objects previously classified as "binary AGNs" with long-slit spectra are most likely single AGNs with extended narrow-line regions (ENLRs). The formation of ENLRs driven by radiation pressure is also discussed. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Brown dwarfs as dark galactic halos

    International Nuclear Information System (INIS)

    Adams, F.C.; Walker, T.P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs

  13. PG 1316+678: A young pre-cataclysmic binary with weak reflection effects

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Shimanskaya, N. N.; Spiridonova, O. I.; Irtuganov, E. N.

    2013-03-01

    The PG 1316+678 star is classified as a pre-cataclysmic binary, as is evidenced by its photometric and spectroscopic observations. Its orbital period is determined to be P orb = 3.3803d, which coincides with the photometric period. The intensities of the emission HI and HeI lines are shown to vary synchronously with the brightness of the object (Δ m V = 0.065 m , Δ m R = 0.08 m ). These variations arise as the UV radiation from the DAO white dwarf is reflected from the surface of the cold companion. The parameters of the binary are estimated and the time of its evolution after the common-envelope phase is determined to be t ≈ 240 000 years. Thus, PG 1316+678 is a young pre-cataclysmic NN Ser variable with the smallest known photometric reflection effect.

  14. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. III. A FAINT WHITE DWARF COMPANION ORBITING HD 114174

    International Nuclear Information System (INIS)

    Crepp, Justin R.; Johnson, John Asher; Howard, Andrew W.; Marcy, Geoffrey W.; Gianninas, Alexandros; Kilic, Mukremin; Wright, Jason T.

    2013-01-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the ''trend''. HD 114174 B has a projected separation of 692 ± 9 mas (18.1 AU) and is 10.75 ± 0.12 mag (contrast of 5 × 10 –5 ) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 yr demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M J = 13.97 ± 0.11, and colors, J – K = 0.12 ± 0.16 mag. These characteristics are consistent with an ≈T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of 0.260 ± 0.010 M ☉ . We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature T eff = 8200 ± 4000 K, surface gravity log g = 8.90 ± 0.02, and cooling age of t c ≈ 3.4 Gyr, which is consistent with the 4.7 +2.3 -2.6 Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only 26.14 ± 0.37 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors

  15. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. III. A FAINT WHITE DWARF COMPANION ORBITING HD 114174

    Energy Technology Data Exchange (ETDEWEB)

    Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Johnson, John Asher [Department of Planetary Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gianninas, Alexandros; Kilic, Mukremin [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Wright, Jason T., E-mail: jcrepp@nd.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-09-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the ''trend''. HD 114174 B has a projected separation of 692 {+-} 9 mas (18.1 AU) and is 10.75 {+-} 0.12 mag (contrast of 5 Multiplication-Sign 10{sup -5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 yr demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M{sub J} = 13.97 {+-} 0.11, and colors, J - K = 0.12 {+-} 0.16 mag. These characteristics are consistent with an Almost-Equal-To T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of 0.260 {+-} 0.010 M{sub Sun }. We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature T{sub eff} = 8200 {+-} 4000 K, surface gravity log g = 8.90 {+-} 0.02, and cooling age of t{sub c} Almost-Equal-To 3.4 Gyr, which is consistent with the 4.7{sup +2.3}{sub -2.6} Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only 26.14 {+-} 0.37 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors.

  16. Mass-accreting white dwarfs and type Ia supernovae

    Science.gov (United States)

    Wang, Bo

    2018-05-01

    Type Ia supernovae (SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs (CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H- and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model (including the WD+MS channel, the WD+RG channel and the WD+He star channel), the double-degenerate model (including the violent merger scenario) and the sub-Chandrasekhar mass model. Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.

  17. Testing Gravity Using Dwarf Stars

    OpenAIRE

    Sakstein, Jeremy

    2015-01-01

    Generic scalar-tensor theories of gravity predict deviations from Newtonian physics inside astrophysical bodies. In this paper, we point out that low mass stellar objects, red and brown dwarf stars, are excellent probes of these theories. We calculate two important and potentially observable quantities: the radius of brown dwarfs and the minimum mass for hydrogen burning in red dwarfs. The brown dwarf radius can differ significantly from the GR prediction and upcoming surveys that probe the m...

  18. TWO NEW TIDALLY DISTORTED WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: jjhermes@astro.as.utexas.edu [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States)

    2012-04-10

    We identify two new tidally distorted white dwarfs (WDs), SDSS J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both stars are extremely low mass (ELM, {<=} 0.2 M{sub Sun }) WDs in short-period, detached binary systems. High-speed photometric observations obtained at the McDonald Observatory reveal ellipsoidal variations and Doppler beaming in both systems; J1741, with a minimum companion mass of 1.1 M{sub Sun }, has one of the strongest Doppler beaming signals ever observed in a binary system (0.59% {+-} 0.06% amplitude). We use the observed ellipsoidal variations to constrain the radius of each WD. For J1741, the star's radius must exceed 0.074 R{sub Sun }. For J2119, the radius exceeds 0.10 R{sub Sun }. These indirect radius measurements are comparable to the radius measurements for the bloated WD companions to A-stars found by the Kepler spacecraft, and they constitute some of the largest radii inferred for any WD. Surprisingly, J1741 also appears to show a 0.23% {+-} 0.06% reflection effect, and we discuss possible sources for this excess heating. Both J1741 and J2119 are strong gravitational wave sources, and the time-of-minimum of the ellipsoidal variations can be used to detect the orbital period decay. This may be possible on a timescale of a decade or less.

  19. The galactic population of white dwarfs

    International Nuclear Information System (INIS)

    Napiwotzki, Ralf

    2009-01-01

    The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial- mass- function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.

  20. Dwarfs in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.