WorldWideScience

Sample records for dwarf binaries iii

  1. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  2. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  3. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing...... masses of the brown dwarf companions are 0.02 ± 0.01 M⊙ and 0.019 ± 0.002 M⊙ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events...

  4. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  5. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  6. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  7. The M Dwarf Eclipsing Binary CU Cancri

    Science.gov (United States)

    Wilson, R. E.; Pilachowski, C. A.; Terrell, Dirk

    2017-02-01

    Spectral features, radial velocities, elemental abundance estimates, other spectral data, and BVIC light curves are reported for the double-M dwarf eclipsing binary CU Cancri—a good target for a radius check versus the Zero Age Main Sequence (ZAMS) due to the low component masses and corresponding very slow evolutionary expansion. The estimate of [Fe/H] is about 0.4, although continuum placement and other difficulties due to line crowding introduce the usual uncertainties for red dwarfs. Detection of the Li i λ6707 line was attempted, with an estimated upper limit of 50 mÅ. Spectral and photometric indicators of stellar activity are described and illustrated. Other objectives were to measure the stellar radii via simultaneous velocity and light-curve solutions of earlier and new data while also improving the ephemeris by filling gaps in timewise coverage with the new velocities and eclipse data from the new light curves. The radii from our solutions agree within about 2% with those from Ribas, being slightly larger than expected for most estimates of the ZAMS. Some aspects of the red dwarf radius anomaly are briefly discussed. Evolution tracks show only very slight age-related expansion for masses near those in CU Cnc. Such expansion could be significant if CU Cnc were similar in age to the Galaxy, but then its Galactic velocity components should be representative of Population II, and they are not.

  8. Follow-up Observations of SPY White Dwarf + M-Dwarf Binaries

    NARCIS (Netherlands)

    Maxted, P.F.L.; Napiwotzki, R.; Marsh, T.R.; Burleigh, M.R.; Dobbie, P.D.; Hogan, E.; Nelemans, G.A.

    2007-01-01

    We present the results of follow-up observations of white-dwarf + M-dwarf binaries identified using spectra obtained as part of the SPY survey. Spectra of the Halpha region were obtained with the SPIRAL spectrograph on the AAT telescope. Of the eleven stars observed, seven are binaries with periods

  9. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  10. Most Double Degenerate Low Mass White Dwarf Binaries Merge

    CERN Document Server

    Brown, Warren R; Kenyon, Scott J; Gianninas, A

    2016-01-01

    We estimate the merger rate of double degenerate binaries containing extremely low mass (ELM) <0.3 Msun white dwarfs in the Galaxy. Such white dwarfs are detectable for timescales of 0.1 Gyr -- 1 Gyr in the ELM Survey; the binaries they reside in have gravitational wave merger times of 0.001 Gyr -- 100 Gyr. To explain the observed distribution requires that most ELM white dwarf binary progenitors detach from the common envelope phase with <1 hr orbital periods. We calculate the local space density of ELM white dwarf binaries and estimate a merger rate of 3e-3/yr over the entire disk of the Milky Way; the merger rate in the halo is 10 times smaller. The ELM white dwarf binary merger rate exceeds by a factor of 40 the formation rate of stable mass transfer AM CVn binaries, marginally exceeds the rate of underluminous supernovae, and is identical to the formation rate of R CrB stars. On this basis, we conclude that ELM white dwarf binaries can be the progenitors of all observed AM CVn and possibly underlum...

  11. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim [Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Dr. Suite 102, Santa Barbara, CA 93117 (United States); Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Burse, Mahesh P.; Das, H. K. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune-411007 (India); Kasliwal, Mansi M. [Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  12. Binary white dwarfs in the halo of the Milky Way

    CERN Document Server

    van Oirschot, Pim; Toonen, Silvia; Pols, Onno; Brown, Anthony G A; Helmi, Amina; Zwart, Simon Portegies

    2014-01-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~ 3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference w...

  13. Binary white dwarfs in the halo of the Milky Way

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-01-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolut

  14. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  15. Binary white dwarfs in the halo of the Milky Way

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  16. Shaping the Brown Dwarf Desert: Predicting the Primordial Brown Dwarf Binary Distributions from Turbulent Fragmentation

    CERN Document Server

    Jumper, Peter H

    2013-01-01

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ($\\leq 5$ AU) brown dwarf companions to solar-mass stars, known as the brown dwarf desert, as well as the tendency for low-mass binary systems to be more tightly-bound than stellar binaries, have been cited as evidence for distinct formation mechanisms for brown dwarfs and stars. In this paper, we explore the implications of the minimal hypothesis that brown dwarfs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the brown dwarf desert, as well as wide brown-dwarf binary systems. Further, we demonstrate analytically that the turbulent core fragmentation model also naturally predicts that very low-mass (VLM) binary and BD/BD systems are more tightly-bound than stellar systems. In addit...

  17. A wide binary trigger for white dwarf pollution

    CERN Document Server

    Bonsor, Amy

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals onto star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few percent of an observed sample of white dwarfs with wide binary compan...

  18. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  19. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  20. M-dwarf binaries as tracers of star and brown dwarf formation

    CERN Document Server

    Marks, Michael; Kroupa, Pavel; Leigh, Nathan; Thies, Ingo

    2015-01-01

    The separation distribution for M-dwarf binaries in the ASTRALUX survey is narrower and peaking at smaller separations than the distribution for solar-type binaries. This is often interpreted to mean that M-dwarfs constitute a continuous transition from brown dwarfs (BDs) to stars. Here a prediction for the M-dwarf separation distribution is presented, using a dynamical population synthesis (DPS) model in which "star-like" binaries with late-type primaries ($\\lesssim1.5 M_{\\rm sun}$) follow universal initial distribution functions and are dynamically processed in their birth embedded clusters. A separate "BD-like" population has both its own distribution functions for binaries and initial mass function (IMF), which overlaps in mass with the IMF for stars. Combining these two formation modes results in a peak on top of a wider separation distribution for late M-dwarfs consistent with the late ASTRALUX sample. The DPS separation distribution for early M-dwarfs shows no such peak and is in agreement with the M-d...

  1. A radio-pulsing white dwarf binary star

    Science.gov (United States)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  2. LISA Astronomy of Double White Dwarf Binary Systems

    NARCIS (Netherlands)

    Stroeer, A.; Vecchio, A.; Nelemans, G.A.

    2005-01-01

    The Laser Interferometer Space Antenna (LISA) will provide us with the largest observational sample of (interacting) double white dwarf binaries, whose evolution is driven by the radiation reaction and other effects, such as tides and mass transfer. We show that, depending on the actual physical par

  3. Elucidating the True Binary Fraction of VLM Stars and Brown Dwarfs with Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Gelino, Christopher R.; SAHLMANN, JOHANNES; Schmidt, Sarah J.; Gagne, Jonathan; Skrzypek, Nathalie

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs are found in abundance in nearly all Galactic environments, yet their formation mechanism(s) remain an open question. One means of testing current formation theories is to use multiplicity statistics. The majority of VLM binaries have been discovered through direct imaging, and current angular resolution limits (0.05”-0.1") are coincident with the 1-4 AU peak in the projected separation distribution of known systems, suggesting an observational bias. I have developed a separation-independent method to detect T dwarf companions to late-M/early-L dwarfs by identifying methane absorption in their unresolved, low-resolution, near-infrared spectra using spectral indices and template fitting. Over 60 spectral binary candidates have been identified with this and comparable methods. I discuss follow-up observations, including laser-guide star adaptive optics imaging with Keck/NIRC2, which have confirmed 9 systems; and radial velocity and astrometric monitoring observations that have confirmed 7 others. The direct imaging results indicate a resolved binary fraction of 18%, coincident with current estimates of the VLM binary fraction; however, our sample contained 5 previously confirmed binaries, raising its true binary fraction to 47%. To more accurately measure the true VLM binary fraction, I describe the construction of an unbiased, volume-limited, near-infrared spectral sample of M7-L5 dwarfs within 25 pc, of which 4 (1%) are found to be spectral binary candidates. I model the complex selection biases of this method through a population simulation, set constraints on the true binary fraction as traced by these systems, and compare to the predictions of current formation theories. I also describe how this method may be applied to conduct a separation-unbiased search for giant exoplanets orbiting young VLM stars and brown dwarfs.

  4. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  5. Brown Dwarf Binaries from Disintegrating Triple Systems

    CERN Document Server

    Reipurth, Bo

    2015-01-01

    We have carried out 200,000 N-body simulations of three identical stellar embryos with masses from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. To illustrate the simulations we introduce the 'triple diagnostic diagram', which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations. The separation distribution function is in good correspondence with...

  6. The White Dwarf Binary Pathways Survey I: A sample of FGK stars with white dwarf companions

    CERN Document Server

    Parsons, S G; Schreiber, M R; Gansicke, B T; Zorotovic, M; Ren, J J

    2016-01-01

    The number of white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one ...

  7. Microlensing Discovery of a Population of Very Tight, Very Low-mass Binary Brown Dwarfs

    CERN Document Server

    Choi, J -Y; Udalski, A; Sumi, T; Gaudi, B S; Gould, A; Bennett, D P; Dominik, M; Beaulieu, J -P; Tsapras, Y; Bozza, V; Abe, F; Bond, I A; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Furusawa, K; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Suzuki, K; Sweatman, W L; Suzuki, D; Takino, S; Tristram, P J; Wada, K; Yock, P C M; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Skowron, J; Kozłowski, S; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Almeida, L A; DePoy, D L; Dong, Subo; Gorbikov, E; Jablonski, F; Henderson, C B; Hwang, K -H; Janczak, J; Jung, Y -K; Kaspi, S; Lee, C -U; Malamud, U; Maoz, D; McGregor, D; Munoz, J A; Park, B -G; Park, H; Pogge, R W; Shvartzvald, Y; Shin, I -G; Yee, J C; Alsubai, K A; Browne, P; Burgdorf, M J; Novati, S Calchi; Dodds, P; Fang, X -S; Finet, F; Glitrup, M; Grundahl, F; Gu, S -H; Hardis, S; Harpsøe, K; Hinse, T C; Hornstrup, A; Hundertmark, M; Jessen-Hansen, J; Jørgensen, U G; Kains, N; Kerins, E; Liebig, C; Lund, M N; Lundkvist, M; Maier, G; Mancini, L; Mathiasen, M; Penny, M T; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Snodgrass, C; Southworth, J; Surdej, J; Tregloan-Reed, J; Wambsganss, J; Wertz, O; Zimmer, F; Albrow, M D; Bachelet, E; Batista, V; Brillant, S; Cassan, A; Cole, A A; Coutures, C; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Kubas, D; Marquette, J -B; Menzies, J W; Sahu, K C; Zub, M; Bramich, D M; Horne, K; Steele, I A; Street, R A

    2013-01-01

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs are poorly understood. The multiplicity properties and minimum mass of the brown-dwarf mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low-mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 Msun and 0.034 Msun, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field brown-dwarf binaries known. The discovery of a population of such binaries indicates that brown dwarf binaries can robustly form at least down to masses of ~0.02 Msun. Future microlensing surveys will measure a mass-selected sample of brown-dwarf binary systems, which can then be directly compared to similar samples of stellar binaries.

  8. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    Science.gov (United States)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  9. The evolutionary state of short period magnetic white dwarf binaries

    CERN Document Server

    Breedt, E; Girven, J; Drake, A J; Copperwheat, C M; Parsons, S G; Marsh, T R

    2012-01-01

    We present phase-resolved spectroscopy of two new short period low accretion rate magnetic binaries, SDSSJ125044.42+154957.3 (Porb = 86 min) and SDSSJ151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable H_alpha emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSSJ121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary,...

  10. SHAPING THE BROWN DWARF DESERT: PREDICTING THE PRIMORDIAL BROWN DWARF BINARY DISTRIBUTIONS FROM TURBULENT FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu [University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, MA 02747-2300 (United States)

    2013-05-20

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.

  11. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr‑2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  12. Dynamical Tides in Compact White Dwarf Binaries: Influence of Rotation

    CERN Document Server

    Fuller, Jim

    2014-01-01

    Tidal interactions play an important role in the evolution and ultimate fate of compact white dwarf (WD) binaries. Not only do tides affect the pre-merger state (such as temperature and rotation rate) of the WDs, but they may also determine which systems merge and which undergo stable mass transfer. In this paper, we attempt to quantify the effects of rotation on tidal angular momentum transport in binary stars, with specific calculations applied to WD stellar models. We incorporate the effect of rotation using the traditional approximation, in which the dynamically excited gravity waves within the WDs are transformed into gravito-inertial Hough waves. The Coriolis force has only a minor effect on prograde gravity waves, and previous results predicting the tidal spin-up and heating of inspiraling WDs are not significantly modified. However, rotation strongly alters retrograde gravity waves and inertial waves, with important consequences for the tidal spin-down of accreting WDs. We identify new dynamical tidal...

  13. The ELM Survey. VII. Orbital Properties of Low Mass White Dwarf Binaries

    CERN Document Server

    Brown, Warren R; Kilic, Mukremin; Kenyon, Scott J; Prieto, Carlos Allende

    2016-01-01

    We present the discovery of 15 extremely low mass (5 < log{g} < 7) white dwarf candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted ELM Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 Msun mean and 0.25 Msun dispersion. Thus extremely low mass white dwarfs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the white dwarf binaries have a total mass below the Chandrasekhar mass and thus are not Type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive white dwarfs and stable mass transfer AM CVn binaries.

  14. Constraining the Statistics of Population III Binaries

    Science.gov (United States)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  15. Constraining White Dwarf Masses Via Apsidal Precession in Eccentric Double White Dwarf Binaries

    CERN Document Server

    Valsecchi, Francesca; Willems, Bart; Deloye, Christopher J; Kalogera, Vicky

    2011-01-01

    Galactic short period double white dwarfs (DWD) are guaranteed gravitational wave (GW) sources for the next generation of space-based interferometers sensitive to low-frequency GWs (10^{-4}- 1 Hz). Here we investigate the possibility of constraining the white dwarf (WD) properties through measurements of apsidal precession in eccentric binaries. We analyze the general relativistic (GR), tidal, and rotational contributions to apsidal precession by using detailed He WD models. We find that apsidal precession can lead to a detectable shift in the emitted GW signal, the effect being stronger (weaker) for binaries hosting hot (cool) WDs. We find that in hot (cool) DWDs tides dominate the precession at orbital frequencies above ~0.01 mHz (~1 mHz). Analyzing the apsidal precession of these sources only accounting for GR would potentially lead to an extreme overestimate of the component masses. Finally, we derive a relation that ties the radius and apsidal precession constant of cool WD components to their masses, th...

  16. White dwarf-main sequence binaries from LAMOST: the DR1 catalogue

    CERN Document Server

    Ren, Juanjuan; Luo, Ali; Zhao, Yongheng; Xiang, Maosheng; Liu, Xiaowei; Zhao, Gang; Jin, Ge; Zhang, Yong

    2014-01-01

    Context. White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. Aims. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. However, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented.Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. Methods. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to...

  17. Superhumps in Cataclysmic Binaries. XXIV. Twenty More Dwarf Novae

    CERN Document Server

    Patterson, J; Kemp, J; Skillman, D R; Vanmunster, T; Harvey, D; Fried, R E; Jensen, L; Cook, L; Rea, R; Monard, B; McCormick, J; Velthuis, F; Walker, S; Martin, B; Bolt, G; Pavlenko, E P; O'Donoghue, D; Gunn, J; Novak, R; Masi, G; Garradd, G; Butterworth, N D; Krajci, T; Foote, J; Beshore, E

    2003-01-01

    We report precise measures of the orbital and superhump period in twenty more dwarf novae. For ten stars, we report new and confirmed spectroscopic periods - signifying the orbital period P_o - as well as the superhump period P_sh. These are GX Cas, HO Del, HS Vir, BC UMa, RZ Leo, KV Dra, KS UMa, TU Crt, QW Ser, and RZ Sge. For the remaining ten, we report a medley of P_o and P_sh measurements from photometry; most are new, with some confirmations of previous values. These are KV And, LL And, WX Cet, MM Hya, AO Oct, V2051 Oph, NY Ser, KK Tel, HV Vir, and RX J1155.4-5641. Periods, as usual, can be measured to high accuracy, and these are of special interest since they carry dynamical information about the binary. We still have not quite learned how to read the music, but a few things are clear. The fractional superhump excess epsilon [=(P_sh-P_o)/P_o] varies smoothly with P_o. The scatter of the points about that smooth curve is quite low, and can be used to limit the intrinsic scatter in M_1, the white dwarf ...

  18. Models of Vortices and Spirals in White Dwarf's Accretion Binaries

    Science.gov (United States)

    Boneva, Daniela

    2010-11-01

    The main aim in the current survey is to suggest models of the development of structures, such as vortices and spirals, in accretion white dwarf's binaries. On the base of hydrodynamical analytical considerations it is applied numerical methods and simulations. It is suggested in the theoretical model the perturbation's parameters of the accretion flow, caused by the influences of the tidal wave over the flux of accretion matter around the secondary star. To examine such disturbed flow, the numerical code has involved in the calculations. The results reveal us an appearing of structure with spiral shape due to the tidal interaction in the close binaries. Our further simulations give the solution, which expresses the formation of vortical configurations in the accretion disc's zone. The evolution of vortices in areas of the flow's interaction is explored using single vortex and composite vortex models. Gas in the disc matter is considered to be compressible and non-ideal. The longevity of all these structures is different and each depends of time period of the rotation, density and velocity of the accretion matter.

  19. Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter

    CERN Document Server

    Manjavacas, E; Alcalá, J M; Zapatero-Osorio, M R; Béjar, V J S; Homeier, D; Bonnefoy, M; Smart, R L; Henning, T; Allard, F

    2015-01-01

    The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the VLT. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral ...

  20. The minimum mass for star formation, and the origin of binary brown dwarfs

    CERN Document Server

    Stamatellos, A P W D

    2006-01-01

    Our first aim is to calculate the minimum mass for Primary Fragmentation in a variety of potential star-formation scenarios, i.e. (i) hierarchical fragmentation of a 3-D medium; (ii) one-shot, 2-D fragmentation of a shock-compressed layer; (iii) fragmentation of a circumstellar disc. Our second aim is to evaluate the role of H2 dissociation in facilitating Secondary Fragmentation and thereby producing close, low-mass binaries. Results: (i)For contemporary, local star formation, the minimum mass for Primary Fragmentation is in the range 0.001-0.004Msun, irrespective of the scenario considered. (ii)Circumstellar discs are only able to radiate fast enough to undergo Primary Fragmentation in their cool outer parts (R>100AU). Therefore brown dwarfs (BDs) should have difficulty forming by Primary Fragmentation at R100AU could be the source of brown dwarfs in wide orbits, and could explain why massive discs with Rd>100AU are rarely seen.(iii)H2 dissociation can lead to collapse and Secondary Fragmentation, thereby c...

  1. Interactions between brown-dwarf binaries and Sun-like stars

    CERN Document Server

    Kaplan, M; Whitworth, A P

    2012-01-01

    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, $a\\ga 100\\,{\\rm AU}$ (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close ($a\\la 10\\,{\\rm AU}$) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulatio...

  2. Three New Eclipsing White-dwarf - M-dwarf Binaries Discovered in a Search for Transiting Planets Around M-dwarfs

    CERN Document Server

    Law, Nicholas M; Street, Rachel; Fulton, Benjamin J; Hillenbrand, Lynne A; Shporer, Avi; Lister, Tim; Baranec, Christoph; Bloom, Joshua S; Bui, Khanh; Burse, Mahesh P; Cenko, S Bradley; Das, H K; Davis, Jack T C; Dekany, Richard G; Filippenko, Alexei V; Kasliwal, Mansi M; Kulkarni, S R; Nugent, Peter; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Ramaprakash, A N; Riddle, Reed; Silverman, Jeffrey M; Sivanandam, Suresh; Tendulkar, Shriharsh

    2011-01-01

    We present three new eclipsing white-dwarf / M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a Graphics Processing Unit (GPU)-based box-least-squares search for transits that runs approximately 8X faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 solar radi...

  3. White dwarf pollution by planets in stellar binaries

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-10-01

    Approximately 0.2 ± 0.2 of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass-loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between ˜0.01 and 1 MMars, although non-gravitational effects may already be important for masses ≲0.3 MMars. The fraction of polluted WDs in our simulations, ˜0.05, is consistent with observations of WDs with intermediate cooling times between ˜0.1 and 1 Gyr. For cooling times ≲0.1 Gyr and ≳1 Gyr, our scenario cannot explain the high observed pollution fractions of up to 0.7. Nevertheless, our results motivate searches for companions around polluted WDs.

  4. White dwarf pollution by planets in stellar binaries

    CERN Document Server

    Hamers, Adrian S

    2016-01-01

    Approximately $0.2 \\pm 0.2$ of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between $\\sim 0.01$ and $1\\,M_\\mathrm{Mars}$, although nongravitational effects may already be important for masses $\\lesssim 0.3 \\, M_\\mathrm{Mars}$. The fraction of polluted WDs in our simulations, $\\sim 0.05$, is consistent with observations of WDs with intermediate cooling times between $\\sim 0.1$ and 1 Gyr. For cooling times $\\lesssim 0.1$ Gyr and $\\gtrsim 1$ Gyr, our scenario cannot explain the high observed pollution fractions of up to 0....

  5. Discovery of ZZ Cetis in detached white dwarf plus main-sequence binaries

    CERN Document Server

    Pyrzas, S; Hermes, J J; Copperwheat, C M; Rebassa-Mansergas, A; Dhillon, V S; Littlefair, S P; Marsh, T R; Parsons, S G; Savoury, C D J; Schreiber, M R; Barros, S C C; Bento, J; Breedt, E; Kerry, P

    2014-01-01

    We present the first results of a dedicated search for pulsating white dwarfs (WDs) in detached white dwarf plus main-sequence binaries. Candidate systems were selected from a catalogue of WD+MS binaries, based on the surface gravities and effective temperatures of the WDs. We observed a total of 26 systems using ULTRACAM mounted on ESO's 3.5m New Technology Telescope (NTT) at La Silla. Our photometric observations reveal pulsations in seven WDs of our sample, including the first pulsating white dwarf with a main-sequence companion in a post common envelope binary, SDSSJ1136+0409. Asteroseismology of these new pulsating systems will provide crucial insight into how binary interactions, particularly the common envelope phase, affect the internal structure and evolution of WDs. In addition, our observations have revealed the partially eclipsing nature of one of our targets, SDSSJ1223-0056.

  6. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Daniela; Tinney, C. G. [School of Physics, University of New South Wales, NSW 2052 (Australia); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Sweet, Sarah [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gelino, Christopher R.; Kirkpatrick, J. Davy, E-mail: daniela.opitz@student.unsw.edu.au [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-03-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.

  7. A stellar prominence in the white dwarf/red dwarf binary QS Vir: evidence for a detached system

    CERN Document Server

    Parsons, S G; Gänsicke, B T; Tappert, C

    2010-01-01

    Using high resolution UVES spectra of the eclipsing Post Common Envelope Binary QS Vir we detect material along the line of sight to the white dwarf at orbital phase $\\phi=0.16$. We ascribe this to a stellar prominence originating from the M dwarf secondary star which passes in front of the white dwarf at this phase. This creates sharp absorption features in the hydrogen Balmer series and Ca II H and K lines. The small size of the white dwarf allows us to place tight constraints on the column density of hydrogen in the n=2 level of log_(10)(N_2) = 14.10 +/- 0.03 cm^(-2) and, assuming local thermodynamical equilibrium, the temperature of the prominence material of ~9000K. The prominence material is at least 1.5 stellar radii from the surface of the M dwarf. The location of the prominence is consistent with emission features previously interpreted as evidence for Roche lobe overflow in the system. We also detect Mg II 4481A absorption from the white dwarf. The width of the Mg II line indicates that the white dw...

  8. Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    CERN Document Server

    Kashyap, Rahul; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon-oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems which give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel, in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model which yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  9. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  10. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  11. MICROLENSING DISCOVERY OF A POPULATION OF VERY TIGHT, VERY LOW MASS BINARY BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gaudi, B. S.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Beaulieu, J.-P. [Institut dAstrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, F-75014 Paris (France); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Drive, Goleta, CA 93117 (United States); Bozza, V. [INFN, Sezione di Napoli, I-80126 Napoli (Italy); Abe, F.; Furusawa, K.; Itow, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; muFUN Collaboration; MiNDSTEp Consortium; PLANET Collaboration; RoboNet Collaboration; and others

    2013-05-10

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M{sub Sun} and 0.034 M{sub Sun }, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of {approx}0.02 M{sub Sun }. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries.

  12. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    Science.gov (United States)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R∼ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_ȯ and 0.29-0.67R_ȯ, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  13. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  14. Detection of a white dwarf in a visual binary system

    Science.gov (United States)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  15. A Search for Fine Wines: Discovering Close Red Dwarf-White Dwarf Binaries

    Science.gov (United States)

    Boyd, Mark; Finch, C. T.; Hambly, N. C.; Henry, T. J.; Jao, W.; Riedel, A. R.; Subasavage, J. P.; Winters, J. G.; RECONS

    2012-01-01

    Like fine wines, stars come in both red and white varieties. Here we present initial results of the Fine Wines Project that targets red dwarf-white dwarf pairs. The two scientific goals of Fine Wines are (1) to develop methods to estimate ages for red dwarfs based on the cooling ages of the white dwarfs, and (2) to identify suitable pairs for dynamical mass determinations of white dwarfs to probe their interior structures. Here we focus on the search for Fine Wines, including sample selection, elimination of false positives, and initial reconnaissance. The sample was extracted via color-color plots from a pool of more than 30,000 proper motion systems examined during the SuperCOSMOS-RECONS (SCR) and UCAC3 Proper Motion (UPM) surveys. The initial sample of 75 best candidates is being observed for BVRI photometry and 3500-9500 A spectroscopy to confirm whether or not the systems are red dwarf-white dwarf pairs. Early results indicate that roughly 50% of the candidates selected are indeed Fine Wine systems. This effort is supported by the NSF through grant AST 09-08402 and via observations made possible by the SMARTS Consortium.

  16. Kelu-1 is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics

    CERN Document Server

    Liu, M C; Liu, Michael C.; Leggett, Sandy K.

    2005-01-01

    (Abridged) We present near-IR imaging of the nearby L dwarf Kelu-1 obtained with the Keck sodium laser guide star adaptive optics (LGS AO) system as part of a high angular resolution survey for substellar binaries. Kelu-1 was one of the first free-floating L dwarfs identified, and the origin of its overluminosity compared to other similar objects has been a long-standing question. Our images clearly resolve Kelu-1 into a 0.29'' (5.4 AU) binary, and a previous non-detection by HST demonstrates that the system is a true physical pair. Binarity explains the properties of Kelu-1 that were previously noted to be anomalous compared to other early-L dwarfs. We estimate spectral types of L1.5-L3 and L3-L4.5 for the two components, giving model-derived masses of 0.05-0.07 Msun and 0.045-0.065 Msun for an estimated age of 0.3-0.8 Gyr. More distant companions are not detected to a limit of 5-9 Mjup. The presence of lithium absorption indicates that both components are substellar, but the weakness of this feature relativ...

  17. Dissecting accretion and outflows in accreting white dwarf binaries

    CERN Document Server

    de Martino, D; Balman, S; Bernardini, F; Bianchini, A; Bode, M; Bonnet-Bidaud, J -M; Falanga, M; Greiner, J; Groot, P; Hernanz, M; Israel, G; Jose, J; Motch, C; Mouchet, M; Norton, A J; Nucita, A; Orio, M; Osborne, J; Ramsay, G; Rodriguez-Gil, P; Scaringi, S; Schwope, A; Traulsen, I; Tamburini, F

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of accreting white dwarfs. For a summary, we refer to the paper.

  18. HR2875 Spectroscopic discovery of the first B star + white dwarf binary

    CERN Document Server

    Burleigh, M R; Burleigh, Matt; Barstow, Martin

    1998-01-01

    We report the discovery, in an Extreme Ultraviolet Explorer (EUVE) short wavelength spectrum, of an unresolved hot white dwarf companion to the 5th-magnitude B5Vp star HR2875. This is the first time that a non-interacting white dwarf$+$ B star binary has been discovered; previously, the the earliest type star known with a white dwarf companion was Sirius (A1V). Since the white dwarf must have evolved from a main sequence progenitor with a mass greater than that of a B5V star ($\\geq$6.0M$_\\odot$), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial-final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39,000K and 49,000K. We also argue that this degenerate star is likely to have mass significantly greater than the mean mass for white dwarf stars ($\\approx$0.55M$_\\odot$). Finally, we suggest that other bright B stars (e.g.\\ Field Camera and EUVE may a...

  19. The Merger Rate of Binary White Dwarfs in the Galactic Disk

    CERN Document Server

    Badenes, Carles

    2012-01-01

    We use multi-epoch spectroscopy of about 4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of DRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, fbin, and the power-law index in the separation distribution at the end of the common envelope phase, alpha. Although there is some degeneracy between fbin and alpha, the data constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4(+3.4,-1.0)e-13 /yr/Msun (1-sigma limits). This is remarkably similar to the measured rate of Type Ia supernovae per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0(+1.6,-0.6)e-14 /yr/Msun. We conclude that there are not enough close binary white dwarf systems to reproduce the obse...

  20. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

    CERN Document Server

    Willems, B; Kalogera, V

    2009-01-01

    We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational ...

  1. The (Double) White Dwarf Binary SDSS 1257+5428

    CERN Document Server

    Kulkarni, S R

    2010-01-01

    SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white-dwarf neutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass, and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than two orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period i...

  2. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael [Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  3. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    CERN Document Server

    Morgan, Dylan P; Becker, Andrew C

    2016-01-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations < 1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing H{\\alpha} in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. (2012) observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overa...

  4. The mass and radius of the M-dwarf in the short-period eclipsing binary RR Caeli

    NARCIS (Netherlands)

    Maxted, P.F.L.; O'Donoghue, D.; Morales-Rueda, L.; Napiwotzki, R.; Smalley, B.

    2007-01-01

    We present new photometry and spectroscopy of the eclipsing white dwarf-M-dwarf binary star RR Cae. We use timings of the primary eclipse from white-light photo-electric photometry to derive a new ephemeris for the eclipses. We find no evidence for any period change greater than over a time-scale of

  5. Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work

    CERN Document Server

    Bours, M C P; Parsons, S G; Dhillon, V S; Ashley, R P; Bento, J P; Breedt, E; Butterley, T; Caceres, C; Copperwheat, C M; Hardy, L K; Hermes, J J; Irawati, P; Kerry, P; Kilkenny, D; Littlefair, S P; McAllister, M J; Rattanasoon, S; Sahman, D I; Vuckovic, M; Wilson, R W

    2016-01-01

    We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yrs, with secondaries of spectral type K2 -- M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yrs, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with t...

  6. Constraining white dwarf viscosity through tidal heating in detached binary systems

    CERN Document Server

    Dall'Osso, Simone

    2013-01-01

    Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short period (< 1 hr), detached white dwarf binaries, such as the newly discovered ~12.8 min system. These binaries are wide enough that mass transfer has not yet started but close enough that the least massive component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity within the deformed star. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of asynchronism (ratio of stellar to orbital spin) as a function of the viscous time. Specializing our calculations to J0651, we find that the discrepancy between the measured radius of the secondary star and He white dwarf model p...

  7. Hystereses in dwarf nova outbursts and low-mass X-ray binaries

    Science.gov (United States)

    Hameury, J.-M.; Lasota, J.-P.; Knigge, C.; Körding, E. G.

    2017-04-01

    Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star, or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries, which contain neutron-star or black-hole accretors, exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV, and X-ray fluxes. Aims: We examine the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods: We used our disc evolution code for modelling dwarf nova outbursts, and constructed the hardness intensity diagram as predicted by the disc instability model. Results: We show explicitly that the standard DIM, modified only to account for disc truncation, can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions: The spectral evidence for the existence of different accretion regimes or components (disc, corona, jets, etc.) should only be based on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays; this task is difficult because of interstellar absorption. The existing data, however, indicate that a hysteresis is in the EUV - X-ray domain is present in SS Cyg.

  8. Binaries discovered by the MUCHFUSS project SDSS J08205+0008 - An eclipsing subdwarf B binary with brown dwarf companion

    CERN Document Server

    Geier, S; Drechsel, H; Heber, U; Kupfer, T; Tillich, A; Oestensen, R H; Smolders, K; Degroote, P; Maxted, P F L; Barlow, B N; Gaensicke, B T; Marsh, T R; Napiwotzki, R

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object ($\\simeq0.068\\,M_{\\rm \\odot}$) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelo...

  9. Magnetized Moving Mesh Merger of a Carbon-Oxygen White Dwarf Binary

    CERN Document Server

    Zhu, Chenchong; van Kerkwijk, Marten H; Chang, Philip

    2015-01-01

    White dwarf binary mergers are possible progenitors to a number of unusual stars and transient phenomena, including type Ia supernovae. To date, simulations of mergers have not included magnetic fields, even though they are believed to play a significant role in the evolution of the merger remnant. We simulated a 0.625 - 0.65 $M_{\\odot}$ carbon-oxygen white dwarf binary merger in the magnetohydrodynamic moving mesh code Arepo. Each white dwarf was given an initial dipole field with a surface value of $\\sim10^3$ G. As in simulations of merging double neutron star binaries, we find exponential field growth within Kelvin-Helmholtz instability-generated vortices during the coalescence of the two stars. The final field has complex geometry, and a strength $>10^{10}$ G at the center of the merger remnant. Its energy is $\\sim2\\times10^{47}$ ergs, $\\sim0.2$% of the remnant's total energy. The strong field likely influences further evolution of the merger remnant by providing a mechanism for angular momentum transfer ...

  10. Evolution of Cataclysmic Variables and Related Binaries Containing a White-Dwarf

    CERN Document Server

    Kalomeni, B; Rappaport, S; Molnar, M; Quintin, J; Yakut, K

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources, and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that ZACVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 white dwarf accretor masses, 43 donor-star masses ($0.1-4.7$ $M_{\\odot}$), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ($P_{\\rm orb}-M_{\\rm don}$) plane in terms of evolution dwell times, masses of the white dwarf accretor, accretion rate, and chemical composition of the center and surface of the donor s...

  11. A Double-line M-dwarf Eclipsing Binary from CSS x SDSS

    Science.gov (United States)

    Lee, Chien-Hsiu

    2017-03-01

    Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period (P = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determine the mass, radius, and temperature of the primary and secondary component to be M 1 = 0.47 ± 0.03(statistic) ± 0.03(systematic) M ⊙, M 2 = 0.46 ± 0.03(statistic) ± 0.03(systematic) M ⊙, R 1 = 0.52 ± 0.08(statistic) ± 0.07(systematic) R ⊙, R 2 =0.60 ± 0.08(statistic) ± 0.08(systematic) R ⊙, T 1 = 3560 ± 100 K, and T 2 = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.

  12. A new detached K7 dwarf eclipsing binary system

    CERN Document Server

    Young, T B; Webb, J K; Ashley, M C B; Christiansen, J L; Derekas, A; Nutto, C

    2006-01-01

    We present an analysis of a new, detached, double-lined eclipsing binary system with K7 Ve components, discovered as part of the University of New South Wales Extrasolar Planet Search. The object is significant in that only 6 other binary systems are known with comparable or lower mass. Such systems offer important tests of mass-radius theoretical models. Follow-up photometry and spectroscopy were obtained with the 40-inch and 2.3m telescopes at SSO respectively. An estimate of the radial velocity amplitude from spectral absorption features, combined with the orbital inclination (83.5 deg) estimated from lightcurve fitting, yielded a total mass of M=(1.041 +/- 0.06)M_sun and component masses of M_A=(0.529 +/- 0.035)M_sun and M_B=(0.512 +/- 0.035)M_sun. The radial velocity amplitude estimated from absorption features (167 +/- 3)kmps was found to be less than the estimate from the H_alpha emission lines (175 +/- 1.5)kmps. The lightcurve fit produced radii of R_A=(0.641 +/- 0.05)R_sun and R_B=(0.608 +/- 0.06)R_s...

  13. Discovery of a Wide Binary Brown Dwarf Born in Isolation

    CERN Document Server

    Luhman, K L; Allen, P R; Muench, A A; Finkbeiner, D P

    2009-01-01

    During a survey for stars with disks in the Taurus star-forming region using the Spitzer Space Telescope, we have discovered a pair of young brown dwarfs, FU Tau A and B, in the Barnard 215 dark cloud. They have a projected angular separation of 5.7", corresponding to 800 AU at the distance of Taurus. To assess the nature of these two objects, we have obtained spectra of them and have constructed their spectral energy distributions. Both sources are young (~1 Myr) according to their Halpha emission, gravity-sensitive spectral features, and mid-IR excess emission. The proper motion of FU Tau A provides additional evidence of its membership in Taurus. We measure spectral types of M7.25 and M9.25 for FU Tau A and B, respectively, which correspond to masses of ~0.05 and ~0.015 Msun according to the evolutionary models of Chabrier and Baraffe. FU Tau A is significantly overluminous relative to an isochrone passing through FU Tau B and relative to other members of Taurus near its spectral type, which may indicate t...

  14. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries

    CERN Document Server

    Jiang, Long; Dey, Jishnu; Dey, Mira

    2015-01-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during the binary evolution, as observed in most of the binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are PSRs J2234$+$06, J1946$+$3417 and J1950$+$2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive white dwarfs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from neutron stars to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitati...

  15. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  16. Component masses of young, wide, non-magnetic white dwarf binaries in the SDSS DR7

    CERN Document Server

    Baxter, R B; Parker, Q A; Casewell, S L; Lodieu, N; Burleigh, M R; Lawrie, K A; Kulebi, B; Koester, D; Holland, B R

    2014-01-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA+DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M~0.6 Msun. We identify an excess of ultra-massive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final sta...

  17. Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries

    CERN Document Server

    Sravan, Niharika; Kalogera, Vassiliki; Althaus, Leandro G

    2014-01-01

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational wave sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to gravitational-wave observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. We find that the contribution from tides should not be neglected when analyzing periastron precession signatures in gravitational-wave signals: not accounting for tides can produce errors as high as a factor of 80 in the WD...

  18. The effects of close binaries on the magnetic activity of M dwarfs as probed using close white dwarf companions

    Science.gov (United States)

    Morgan, D. P.

    2017-01-01

    I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I constructed a sample of 1756 WD+dM high-quality pairs. I show that early-type dMs (M4), where stars become fully convective, the activity fraction and activity lifetimes of WD+dM binary systems become more comparable to those of the field dMs. The implications of having a close binary companion may include: increased stellar rotation through disk disruption, tidal effects, and/or angular momentum exchange. Thus, the similarity in activity between late-type field dMs and late-type dMs with close companions is likely due to the mechanism generating magnetic fields being less sensitive to the effects caused by a close companion; namely, increased stellar rotation. Using a subset of 181 close WD+dM pairs, matched to the time-domain SDSS Stripe 82 catalog, I show that enhanced magnetic activity extends to the flaring behavior of dMs in close binaries. Specifically, early spectral type dMs (M0-M4), in close WD+dM pairs, are two orders of magnitude more likely to flare than field dMs, whereas late-type dMs (M4-M6) in close WD+dM pairs flare as frequently or less than the late-type field dM sample. To test whether the presence of a close companion leads to star-star interactions, I searched for correlations between the WD occultations and flares from the dM member in KOI-256, an eclipsing WD+dM system. I find no correlations between the flaring activity of the dM and the WD occultations, indicating the there are no obvious signs of star-star interactions at work. In addition, the dM member of KOI-256 flares more than any other dM observed by Kepler and shows evidence for solar-like magnetic activity cycles, a feature not seen in many dMs to date.

  19. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Blake, C. H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Carlberg, J. K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Zasowski, G.; Hearty, F. [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Crepp, J. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rajpurohit, A. S.; Reylé, C. [Institut UTINAM, CNRS UMR 6213, Observatoire des Sciences de l' Univers THETA Franche-Comt é-Bourgogne, Université de Franche Comté, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Prieto, C. Allende; Hernández, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ebelke, G. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Frinchaboy, P. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Ge, J. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ∼2 km s{sup –1} and a measurement floor at vsin i = 4 km s{sup –1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ∼100-200 m s{sup –1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we

  20. THE VERY SHORT PERIOD M DWARF BINARY SDSS J001641-000925

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Becker, Andrew C.; Hawley, Suzanne L.; Gunning, Heather C.; Munshi, Ferah A.; Albright, Meagan [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); West, Andrew A. [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Bochanski, John J. [Astronomy and Astrophysics Department, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, Las Cruces, NM 88003 (United States); Hilton, Eric J., E-mail: jrad@astro.washington.edu [Department of Geology and Geophysics and Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-02-10

    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov Chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M {sub 1} = 0.54 {+-} 0.07 M {sub Sun} and M {sub 2} = 0.34 {+-} 0.04 M {sub Sun }, and radii of R {sub 1} = 0.68 {+-} 0.03 R {sub Sun} and R {sub 2} = 0.58 {+-} 0.03 R {sub Sun }, respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over nine years, and we find strong evidence for period decay at the rate of P-dot {approx} 8 s yr{sup -1}. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study of SDSS J001641-000925 is ongoing to verify the nature of the system, which may prove to be a unique astrophysical laboratory.

  1. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    Energy Technology Data Exchange (ETDEWEB)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, Mail Code 0424, La Jolla, CA 92093 (United States); Gelino, Christopher R. [NASA Exoplanet Science Institute, Mail Code 100-22, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Looper, Dagny L. [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Schmidt, Sarah J. [Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065 (United States); Cruz, Kelle [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); West, Andrew A. [Department of Physics and Astronomy, University of Delaware, 104 The Green, Newark, DE 19716 (United States); Gizis, John E. [Department of Physics and Astronomy, Western University, London, ON N6A 3K7 (Canada); Metchev, Stanimir, E-mail: daniella@physics.ucsd.edu [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-10-20

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  2. A Binary Scenario for the Formation of Strongly Magnetized White Dwarfs

    CERN Document Server

    Nordhaus, J

    2011-01-01

    Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $\\sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primary's expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre...

  3. Characterization of close visual binaries from the AstraLux Large M Dwarf Survey

    Science.gov (United States)

    Bergfors, C.; Brandner, W.; Bonnefoy, M.; Schlieder, J.; Janson, M.; Henning, Th.; Chauvin, G.

    2016-03-01

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) J, H + K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within ±1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with the Fiberfed Extended Range Optical Spectrograph (FEROS) at the European Southern Observatory (ESO)-Max-Planck-Gesellschaft (MPG) 2.2 m telescope. The equivalent width of the absorption suggests an age consistent with the β Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dynamical masses and thus calibration of evolutionary models for low mass stars.

  4. Characterisation of close visual binaries from the AstraLux Large M Dwarf Survey

    CERN Document Server

    Bergfors, C; Bonnefoy, M; Schlieder, J; Janson, M; Henning, Th; Chauvin, G

    2015-01-01

    We present VLT/SINFONI J, H+K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within 1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with FEROS at the ESO-MPG 2.2m telescope. The equivalent width of the absorption suggests an age consistent with the beta Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dy...

  5. What Simulations Tell Us About White Dwarf Evolution in AM CVn Close Binaries

    Science.gov (United States)

    Montgomery, M. M.

    2017-03-01

    In this work, we review the three most likely evolutionary channels that may result in AM CVn close binaries leading to white dwarf supernovae as evolutionary endpoints. To determine the likely evolutionary path for an AM CVn system, masses are needed. To find the secondary-to-primary mass ratio, a recent hypothesis suggests using the positive superhump period from Stage A of the superoutburst light curve rather than Stage B. To determine the most likely evolutionary track for this system, we compare observational data with values from three 3D SPH numerical simulations, one simulation for each of the potential evolutionary channels for AM CVn system SDSS J090221.35+38941.9. In this work, we explain why the white dwarf channel may be eliminated for this system. As for the other two channels, we find that the simulated parameters for the CV channel looks most promising for the primary white dwarf J0902 to reach supernova type Ia. However, a comparison of simulated and observed positive superhump period excess values suggests that the helium star channel is more likely, although the results do not support a supernova as the white dwarf primary's endpoint.

  6. Black Holes, Neutron Stars and White Dwarf Candidates from Microlensing with OGLE-III

    CERN Document Server

    Wyrzykowski, L; Skowron, J; Rybicki, K A; Mroz, P; Kozlowski, S; Udalski, A; Szymanski, M K; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Pietrukowicz, P; Poleski, R; Pawlak, M; Ilkiewicz, K; Rattenbury, N J

    2015-01-01

    Most stellar remnants so far have been found in binary systems, where they interact with matter from their companions. Isolated neutron stars and black holes are difficult to find as they are dark, yet they are predicted to exist in our Galaxy in vast numbers. We explored the OGLE-III database of 150 million objects observed in years 2001-2009 and found 59 microlensing events exhibiting a parallax effect due to the Earth's motion around the Sun. Combining parallax and brightness measurements from microlensing light curves with expected proper motions in the Milky Way, we identified 15 microlensing events which are consistent with having a white dwarf, neutron star or a black hole lens and we estimated their masses and distances. The most massive of our black hole candidates has 8.3 M_Sun and is at a distance of 2.4 kpc. The distribution of masses of our candidates indicates a continuum in mass distribution with no mass gap between neutron stars and black holes. We also present predictions on how such events w...

  7. Hubble Space Telescope astrometry of the closest brown dwarf binary system - I. Overview and improved orbit★

    Science.gov (United States)

    Bedin, L. R.; Pourbaix, D.; Apai, D.; Burgasser, A. J.; Buenzli, E.; Boffin, H. M. J.; Libralato, M.

    2017-09-01

    Located at 2 pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman 16 AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series - based on a multicycle Hubble Space Telescope (HST) program - we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5 ± 0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.

  8. Physical properties and evolution of the two white dwarfs in the Sanduleak-Pesch binary

    Science.gov (United States)

    Greenstein, J. L.; Dolez, N.; Vauclair, G.

    1983-10-01

    An important new binary white dwarf has been found by Sanduleak and Pesch. The stars are analyzed with the data from the Palomar double CCD spectrograph, using continuum fluxes, lines profiles, and Balmer decrements. They have hydrogen atmospheres, are young Population I, age ≈5×108 yr, temperatures of 12500K and 9500K, and the same visual magnitude. The cooler and less luminous star, B, has the larger radius and lower mass; B started its degenerate cooling, more recently, as the brighter of the pair. The estimated cooling times differ by approximately 108 yr. The white dwarfs, with masses 0.80 and 0.43 m_sun;, are descended from progenitors of 8 and 4 m_sun; (or 5 and 3.5 m_sun;).

  9. The First Proto-Brown Dwarf Binary Candidate Identified through Dynamics of Jets

    Science.gov (United States)

    Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud; Wyrowski, Friedrich

    The formation mechanism of brown dwarfs (BDs) is one of the long-standing problems in star formation because the typical Jeans mass in molecular clouds is too large to form these substellar objects. To answer this question, it is crucial to study a BD at the embedded phase (proto-brown dwarf). IRAS16253 is classified as a Very Low Luminosity Object (VeLLO, L int pattern in the position-velocity diagrams of the jets. Assuming that this pattern is due to the orbital motion of a binary system, we obtain the current mass of the binary is ~0.026 M ⊙. Together with the low parent core mass, IRAS16253 will likely form one or two proto-BD in the future. This is the first time that the current mass of a proto-BD binary system is identified through the dynamics of the jets. Since IRAS16253 is located in an isolated environment, we suggest that BDs can form through fragmentation and collapse like low mass stars.

  10. Dancing in the Dark: New Brown Dwarf Binaries from Kernel Phase Interferometry

    CERN Document Server

    Pope, Benjamin; Tuthill, Peter

    2013-01-01

    This paper revisits a sample of ultracool dwarfs in the Solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of $\\sim$1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously-known binaries, all of which were recovered with the technique. The new candidate binaries have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high contrast companions. Including only confident detections within 19 parsecs, we report a binary fraction of at least $\\epsilon_b = 17.2^{+5.7}_{-3.7}%$. The results reporte...

  11. Oscillations of red dwarfs in evolved low-mass binaries with neutron stars

    Science.gov (United States)

    Sarna, Marek J.; Lee, Umin; Muslimov, Alexander G.

    1994-01-01

    We investigate a novel aspect of a problem related to the properties of low-mass binaries (LMBs) with millisecond pulsars: the pulsations of the red dwarf (donor) companion of the neutron star (NS). The illumination of the donor star by the pulsar's high-energy nonthermal radiation and relativistic wind may substantially affect its structure. We present a quantitative analysis of the oscillation spectrum of a red dwarf which has evolved in an LMB and has undergone the stage of evaporation. We calculate the p- and g-modes for red dwarfs with masses in the interval (0.2-0.6) stellar mass. For comparison, similar calculations are presented for zero age main-sequence (ZAMS) stars of the same masses. For less massive donor stars (approximately 0.2 stellar mass) the oscillation spectrum becomes quantitatively different from that of their ZAMS counterparts. The differnce is due to the fact that a ZAMS star of 0.2 stellar mass is fully convective, while the donor star in an LMB is expected to be far from thermal equilibrium and not fully convective. As a result, in contrast to a low-mass ZAMS star, a red dwarf of the same mass in an LMB allows the existence of g-modes. We also consider tidally forced g-modes, and perform a linear analysis of these oscillations for different degrees of nonsynchronism between the orbital and spin rotation of the red dwarf component. We demonstrate the existence of a series of reasonances for the low-order g-modes which may occur in LMBs at a late stage of their evolution. We discuss the possibility that these oscillations may trigger Roche lobe overflow and sudden mass loss by the donor star. Further implications of this effect for gamma- and X-ray burst phenomena are outlined.

  12. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    CERN Document Server

    Rebassa-Mansergas, A; García-Berro, E; Freeman, K C; Cojocaru, R; Manser, C J; Pala, A F; Gänsicke, B T; Liu, X -W

    2016-01-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white dwarf-main sequence (WDMS) binaries. White dwarfs are natural clocks and can be used to derive accurate ages. Metallicities can be obtained from the main sequence companions. Since the progenitors of white dwarfs and the main sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between...

  13. Flare Activity and Polarization States of White Dwarfs in Binary Star Systems

    Science.gov (United States)

    Boneva, D.; Filipov, L.

    2017-03-01

    We investigate flare activity and emission properties of white dwarf binary stars. We apply the polarization as a mechanism to probe the flares and the released resulting radiation. The polarization could appear as patterns in these cases, as it depends mainly on the properties of radiation and geometry of the source. The observational data of MV Lyr and CH Cyg are analysed. A repeated variability in the brightness could affect the degree of polarization. Detectable variations in the polarization parameters of selected binaries for the flares activity period are shown in the result. The analysis may help us to establish more evidence of the close correlation between flares, flow structure transformation around the primary star and polarization parameter variability.

  14. A Code for Stellar Binary Evolution and its Application to the Formation of Helium White Dwarfs

    CERN Document Server

    Benvenuto, O G

    2003-01-01

    We present a numerical code intended for calculating stellar evolution in close binary systems. In doing so, we consider that mass transfer episodes occur when the stellar size overflows the corresponding Roche lobe. In such situation we equate the radius of the star with the equivalent radius of the Roche lobe. This equation is handled implicitly together with those corresponding to the whole structure of the star. We describe in detail the necessary modifications to the standard Henyey technique for treating the mass loss rate implicitly together with thin outer layers integrations. We have applied this code to the calculation of the formation of low mass, helium white dwarfs in low mass close binary systems. We found that the global numerical convergence properties are fairly good. In particular, the onset and end of mass transfer episodes is computed automatically.

  15. Desert Dwellers and Dynamic Duos: Short-Period Brown Dwarf Companions and Binary Science with Exoplanet Surveys

    Science.gov (United States)

    Fleming, Scott W.; Ge, J.

    2011-01-01

    Exoplanet transit and Doppler surveys detect many binary stars and brown dwarf companions with relative ease because the observational signatures are 1-2 orders of magnitude larger than planets. These objects allow for studies of several ancillary science topics, such as the two brown dwarf deserts and the mass-radius relationship of stars. In this dissertation talk, I will present my thesis work on conducting these studies using data from the MARVELS survey and several transit survey databases. I will present the discovery of two short-period (P MARVELS survey and its Pilot Project. Although I will focus on these two brown dwarfs, the MARVELS survey has already discovered a dozen brown dwarf companions that will serve to characterize the dryness of the brown dwarf deserts. These discoveries are needed to better understand brown dwarf formation and dynamical evolution histories. I will then present results from my work on cross-referencing spectroscopic binaries found in the MARVELS survey with archival photometry to conduct studies of the mass-radius relationship. Finally, I will present spectroscopic observations of known eclipsing binaries from transit surveys using the EXPERT instrument at the KPNO 2.1m telescope.

  16. The Orbit of the L Dwarf + T Dwarf Spectral Binary SDSS J080531.84+481233.0

    Science.gov (United States)

    Burgasser, Adam J.; Blake, Cullen H.; Gelino, Christopher R.; Sahlmann, Johannes; Bardalez Gagliuffi, Daniella

    2016-08-01

    SDSS J080531.84+481233.0 is a closely separated, very-low-mass (VLM) binary identified through combined-light spectroscopy and confirmed as an astrometric variable. Here we report four years of radial velocity monitoring observations of the system that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02 ± 0.03 years, a semimajor axis of 0.76{}-0.06+0.05 au, and an eccenticity of 0.46 ± 0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4 ± 0.7 and T5.5 ± 1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90° ± 19°), and deduce a large system mass ratio (M 2/M 1 = {0.86}-0.12+0.10), substellar components (M 1 = {0.057}-0.014+0.016 M ⊙, M 2 = {0.048}-0.010+0.008 M ⊙), and a relatively old system age (minimum age = {4.0}-1.2+1.9 Gyr). The measured projected rotational velocity of the primary ({V}{rot}\\sin i = 34.1 ± 0.7 km s-1) implies that this inactive source is a rapid rotator (period ≲ 3 hr) and a viable system for testing spin-orbit alignment in VLM multiples. Robust model-independent constraints on the component masses may be possible through measurement of the reflex motion of the secondary at wavelengths in which it contributes a greater proportion of the combined luminence, while the system may also be resolvable through sparse-aperature mask interferometry with adaptive optics. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  17. New Close Binary Systems from the SDSS-I (Data Release Five) and the Search for Magnetic White Dwarfs in Cataclysmic Variable Progenitor Systems

    CERN Document Server

    Silvestri, Nicole M; Hawley, Suzanne L; West, Andrew A; Schmidt, Gary D; Liebert, James; Szkody, Paula; Mannikko, Lee; Wolfe, Michael A; Barentine, J C; Brewington, Howard J; Harvanek, Michael; Krzesinski, Jurik; Long, Dan; Schneider, Donald P; Snedden, Stephanie A

    2007-01-01

    We present the latest catalog of more than 1200 spectroscopically-selected close binary systems observed with the Sloan Digital Sky Survey through Data Release Five. We use the catalog to search for magnetic white dwarfs in cataclysmic variable progenitor systems. Given that approximately 25% of cataclysmic variables contain a magnetic white dwarf, and that our large sample of close binary systems should contain many progenitors of cataclysmic variables, it is quite surprising that we find only two potential magnetic white dwarfs in this sample. The candidate magnetic white dwarfs, if confirmed, would possess relatively low magnetic field strengths (B_WD < 10 MG) that are similar to those of intermediate-Polars but are much less than the average field strength of the current Polar population. Additional observations of these systems are required to definitively cast the white dwarfs as magnetic. Even if these two systems prove to be the first evidence of detached magnetic white dwarf + M dwarf binaries, th...

  18. On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral

    CERN Document Server

    McKernan, B

    2016-01-01

    White dwarfs (WDs) are believed to detonate via explosive Carbon-fusion in a Type Ia Supernova when their temperature and/or density reach the point where Carbon is ignited in a runaway reaction. Observations of the Type Ia supernova (SN) rate imply all WD binaries that merge through the emission of gravitational radiation within a Hubble time should result in SNe, regardless of total mass. Here we investigate the conditions under which a single WD in a binary system might extract energy from its orbit, depositing enough energy into a resonant mode such that it detonates before merger. We show that, ignoring non-linear effects, in a WD binary in tidal lock at small binary separations, the sustained tidal forcing of a low-order quadrupolar g-mode or a harmonic of a low-order quadrupolar p-mode could in principle drive the average temperature of Carbon nuclei in the mode over the runaway fusion threshold. If growing mode energy is thermalized at a core/atmosphere boundary, rapid Helium burning and inward-travel...

  19. The population of white dwarf-main sequence binaries in the SDSS DR 12

    Science.gov (United States)

    Cojocaru, R.; Rebassa-Mansergas, A.; Torres, S.; García-Berro, E.

    2017-09-01

    We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disc aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSS WD+MS binaries. We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disc, on the contribution of WD+MS binaries from the thick disc (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).

  20. Properties of the Eclipsing Double-White Dwarf Binary NLTT 11748

    CERN Document Server

    Kaplan, David L; Walker, Arielle N; Bildsten, Lars; Bours, Madelon C P; Breedt, Elmé; Copperwheat, Chris M; Dhillon, Vik S; Howell, Steve B; Littlefair, Stuart P; Shporer, Avi; Steinfadt, Justin D R

    2013-01-01

    We present high-quality ULTRACAM photometry of the eclipsing detached double-white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely-low mass (1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (~13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses we find that our primary mass (0.136-0.162 Msun) and surface gravity (log(g)=6.32-6.38; radii are 0.0423-0.0433 Rsun) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Romer delay at 7 sigma significance, providing an additional weak constraint on the masses and limiting the eccentricity to e*cos(omega)= -4e-5 +/- 5e-5. Finally, we use multi-color data to constrain the secondary's effective te...

  1. SDSS J001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernández Lajús, E. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Insititude of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-01-10

    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ∼8 s yr{sup −1}. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O–C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ∼ 0.14 M {sub ☉}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  2. Gravitational-radiation losses from the pulsar-white-dwarf binary PSR J1141-6545

    CERN Document Server

    Bhat, N D Ramesh; Verbiest, Joris P W

    2008-01-01

    Pulsars in close binary orbit around another neutron star or a massive white dwarf make ideal laboratories for testing the predictions of gravitational radiation and self-gravitational effects. We report new timing measurements of the pulsar-white-dwarf binary PSR J1141-6545, providing strong evidence that such asymmetric systems have gravitational wave losses that are consistent with general relativity. The orbit is found to be decaying at a rate of $1.04\\pm0.06$ times the general relativistic prediction and the Shapiro delay is consistent with the orbital inclination angle derived from scintillation measurements. The system provides a unique test-bed for tensor-scalar theories of gravity; our current measurements place stringent constraints in the theory space, with a limit of $\\alpha_0^2 < 2.1 \\times 10^{-5}$ for weakly non-linear coupling and an asymptotic limit of $\\alpha_0^2 < 3.4 \\times 10^{-6}$ for strongly non-linear coupling, where $\\alpha_0$ is the linear coupling strength of matter to an und...

  3. The formation of a helium white dwarf in a close binary system with diffusion

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.

    2004-07-01

    We study the evolution of a system composed of a 1.4-Msolar neutron star and a normal, solar composition star of 2 Msolar in orbit with a period of 1 d. Calculations were performed employing the binary HYDRO code presented by Benvenuto & De Vito that handle the mass transfer rate in a fully implicit way. We then included the main standard physical ingredients together with the diffusion processes and a proper outer boundary condition. We have assumed fully non-conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly driven RLOFs were not allowed to drive mass transfer have been computed with and without diffusion. As far as we are aware, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of ~0.21 Msolar in an orbit with a period of ~4.3 d for the four cases. We find that mass transfer episodes induced by hydrogen thermonuclear flashes drive a tiny amount of mass transfer. As diffusion produces stronger flashes, the amount of hydrogen-rich matter transferred is slightly higher than in the models without diffusion. We find that diffusion is the main agent in determining the evolutionary time-scale of low-mass white dwarfs even in the presence of mass transfer episodes.

  4. RESOLVED NEAR-INFRARED SPECTROSCOPY OF WISE J104915.57-531906.1AB: A FLUX-REVERSAL BINARY AT THE L DWARF/T DWARF TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States); Luhman, K. L., E-mail: aburgasser@ucsd.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-08-01

    We report resolved near-infrared spectroscopy and photometry of the recently identified brown dwarf binary WISE J104915.57-531906.1AB, located 2.02 {+-} 0.15 pc from the Sun. Low-resolution spectral data from Magellan/FIRE and IRTF/SpeX reveal strong H{sub 2}O and CO absorption features in the spectra of both components, while the secondary also exhibits weak CH{sub 4} absorption at 1.6 {mu}m and 2.2 {mu}m. Spectral indices and comparison to low-resolution spectral standards indicate component types of L7.5 and T0.5 {+-} 1, the former consistent with the optical classification of the primary. Both sources also have unusually red spectral energy distributions for their spectral types, which we attribute to enhanced condensate opacity (thick clouds). Relative photometry reveals a flux reversal between the J and K bands, with the T dwarf component being brighter in the 0.95-1.3 {mu}m region ({Delta}J = -0.31 {+-} 0.05). As with other L/T transition binaries, this reversal likely reflects the depletion of condensate opacity in the T dwarf, with the contrast enhanced by the thick clouds present in the photosphere of the L dwarf primary. The 1 {mu}m flux from the T dwarf most likely emerges from gaps in its cloud layer, as suggested by the significant optical variability detected from this source by Gillon et al. Component mass measurements of the WISE J1049-5319AB system through astrometric and component radial velocity monitoring may resolve the current debate as to whether the loss of photospheric condensate clouds at the L dwarf/T dwarf boundary is a slow or rapid process, a conceivable endeavor given its proximity, brightness, small separation (3.1 {+-} 0.3 AU), and reasonable orbital period (20-30 yr)

  5. DE0823-49 is a juvenile binary brown dwarf at 20.7 pc

    Science.gov (United States)

    Sahlmann, J.; Burgasser, A. J.; Martín, E. L.; Lazorenko, P. F.; Bardalez Gagliuffi, D. C.; Mayor, M.; Ségransan, D.; Queloz, D.; Udry, S.

    2015-07-01

    Astrometric monitoring of the nearby early-L dwarf DE0823-49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows Li i-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 + L5.5 and effective temperatures of 2150 ± 100 K and 1670 ± 140 K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80-500 Myr range. Evolutionary models predict component masses in the ranges of M1 ≃ 0.028-0.063 M⊙ and M2 ≃ 0.018-0.045 M⊙ with a mass ratio of q ≃ 0.64-0.74. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the system and allow us to investigate its kinematic properties. DE0823-49 emerges as a rare example of a nearby brown dwarf binary with orbit, component properties, and age that are characterised well. It is a juvenile resident of the solar neighbourhood, but does not appear to belong to a known young association or moving group. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 086.C-0680, 088.C-0679, 090.C-0786, and 092.C-0202.

  6. The Orbit of the L dwarf + T dwarf Spectral Binary SDSS J080531.84+481233.0

    CERN Document Server

    Burgasser, Adam J; Gelino, Christopher R; Sahlmann, Johannes; Gagliuffi, Daniella Bardalez

    2016-01-01

    [abridged] We report four years of radial velocity monitoring observations of SDSS J080531.84+481233.0 that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02$\\pm$0.03 yr, a semi-major axis of 0.76$^{+0.05}_{-0.06}$ AU, and an eccentricity of 0.46$\\pm$0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4$\\pm$0.7 and T5.5$\\pm$1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90$^o\\pm$19$^o$), and deduce a large system mass ratio (M$_2$/M$_1$ = 0.86$^{+0.10}_{-0.12}$), substellar components (M$_1$ = 0.057$^{+0.016}_{-0.014}$ M$_{\\odot}$, M$_2$ = 0.048$^{+0.008}_{-0.010}$ M$_{\\odot}$), and a relatively old system age (minimum age = 4.0$^{+1.9}_{-1.2}$ Gyr). The measured projected rotational velocity of the p...

  7. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    Science.gov (United States)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  8. The Brown Dwarf Kinematics Project (BDKP. III. Parallaxes for 70 Ultracool Dwarfs

    Science.gov (United States)

    2012-06-10

    National Science Foundation. 10 Hellman Fellow. Distances provide a direct means for calculating the luminos- ity and (if there is a reliable radius ...automatically removed. These were usually spurious sources caused by unfiltered detector artifacts or cosmic rays. The typical centroiding...to its final radius . Indeed, two of the three overluminous M dwarfs are suspected members of the TW Hydrae association. However, eight out of the ten

  9. WD0837+185: THE FORMATION AND EVOLUTION OF AN EXTREME MASS-RATIO WHITE-DWARF-BROWN-DWARF BINARY IN PRAESEPE

    Energy Technology Data Exchange (ETDEWEB)

    Casewell, S. L.; Burleigh, M. R.; Wynn, G. A.; Alexander, R. D.; Lawrie, K. A.; Jameson, R. F. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Napiwotzki, R. [Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Dobbie, P. D. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania 7001 (Australia); Hodgkin, S. T., E-mail: slc25@le.ac.uk [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-11-10

    There is a striking and unexplained dearth of brown dwarf companions in close orbits (<3 AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, these systems leave detectable evolutionary end points in the form of white-dwarf-brown-dwarf binaries and these remnants can offer unique insights into the births and deaths of their parent systems. We present the discovery of a close (orbital separation {approx}0.006 AU) substellar companion to a massive white dwarf member of the Praesepe star cluster. Using the cluster age and the mass of the white dwarf, we constrain the mass of the white dwarf progenitor star to lie in the range 3.5-3.7 M{sub Sun} (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was {approx}2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency ({alpha}) and binding energy parameters ({lambda}) for the AGB star to {alpha}{lambda} {approx} 3. We examine the various formation scenarios and conclude that the substellar object was most likely captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.

  10. Quark-Novae in Neutron Star-White-Dwarf Binaries: A model for dim, sub-Chandrasekhar, Type Ia Supernovae ?

    CERN Document Server

    Ouyed, Rachid

    2011-01-01

    We show that appealing to a Quark-Nova in a tight NS-WD binary system, a Type Ia explosion can occur for a narrow range in white dwarf mass (0.5 2 universe, we expect QNe-Ia to manifest themselves as rare sub-Chandrasekhar Type Ias; most likely in star-forming galaxies.

  11. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    CERN Document Server

    Prieto, J L; Kochanek, C S; Weisz, D R; Baruffolo, A; Bechtold, J; Burwitz, V; DeSantis, C; Gallozzi, S; Garnavich, P M; Giallongo, E; Hill, J M; Pogge, R W; Ragazzoni, R; Speziali, R; Thompson, D J; Wagner, R M

    2007-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ -7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 272 days and the light curve is well-fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed by two yellow supergiants (V-I ~ 1 mag, T_eff = 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however note a second example. The SMC F0 supergiant R47 is a bright (MV ~ -7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well-fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star...

  12. An eccentric binary millisecond pulsar with a helium white dwarf companion in the Galactic Field

    CERN Document Server

    Antoniadis, John; Stovall, Kevin; Freire, Paulo C; Deneva, Julia S; Koester, Detlev; Jenet, Frederick; Martinez, Jose

    2016-01-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 km\\s). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneou...

  13. Discovery of a T Dwarf Binary with the Largest Known J-Band Flux Reversal

    CERN Document Server

    Looper, D L; Burgasser, A J; Kirkpatrick, J D

    2008-01-01

    We present Keck laser guide star observations of two T2.5 dwarfs - 2MASS J11061197+2754225 & 2MASS J14044941-3159329 - using NIRC2 on Keck-II and find 2MASS J14044941-3159329 to be a 0.13" binary. This system has a secondary that is 0.45 mags brighter than the primary in J-band but 0.49 mags fainter in H-band and 1.13 mags fainter in Ks-band. We use this relative photometry along with near-infrared synthetic modeling performed on the integrated light spectrum to derive component types of T1 for the primary and T5 for the secondary. Optical spectroscopy of this system obtained with Magellan/LDSS-3 is also presented. This is the fourth L/T transition binary to show a flux reversal in the 1-1.2 micron regime and this one has the largest flux reversal. Unless the secondary is itself an unresolved binary, the J-band magnitude difference between the secondary and primary shows that the J-band ``bump'' is indeed a real feature and not an artifact caused by unresolved binarity.

  14. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the

  15. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  16. Does the Eclipsing Binary KIC 10935310 Contain a Massively Inflated M Dwarf?

    Science.gov (United States)

    Swift, Jonathan; Han, Eunkyu; Ding, Jeffrey; O'Neill, Kathleen; Lawrence, Yousef; Klink, Douglas; Muirhead, Philip Steven; Shan, Yutong

    2017-01-01

    Stellar evolution models are known to under-predict the radii of low-mass stars by between 5% and 10%, and there are a number of theoretical explanations for this discrepancy including metallicity and age variations, and magnetic suppression of convection. An eclipsing binary system in the Kepler field has been reported to have stars with masses of 0.68 and 0.34 solar and radii of 0.61 and 0.90 solar, respectively. We investigate this system with a new code under development that uses a Gaussian process technique to account for the out of eclipse light variations. We combine new NIR light curve data with the Kepler data and literature RVs to assess the feasibility that this system contains a hugely inflated M dwarf, or if another explanation of the data is preferred.

  17. Resolving M-dwarf Binaries in Young Moving Groups (YMGs) with MagAO

    Science.gov (United States)

    Shan, Yutong; Yee, Jennifer C.; Bowler, Brendan P.

    2017-01-01

    With relatively well-determined ages and uniform histories, YMGs are sparse ensembles of stars that serve as benchmarks for the transition of stellar populations from their birth clusters to the field. We present data and analysis from our Magellan Adaptive Optics (MagAO) campaign to image more than 100 K- and M-dwarf members of several YMGs in the southern sky, revealing ~30 previously unresolved visual stellar companions at separations of ~3 — 300 AU. Knowledge of their binarity is instrumental to interpreting their measured properties for a variety of applications. The tighter of these systems also represent opportunities for future monitoring and dynamical mass inference.Due to faintness and lack of clarity in their YMG memberships (until recently), the multiplicity of PMS M-dwarfs in young associations is hitherto unconstrained. Our study provides statistics for such young M-dwarf multiples in an intermediate regime of orbital distance (across the hard-soft boundary) to populate this little-explored region in the parameter space of multiple star systems. Among the ensemble properties of interest are distributions in physical separations and mass ratios for the binary components. When combined with the SACY survey (Elliott et al. 2015), whose focus is on YMG systems with earlier type primaries, we are able to provide an updated measurement of young-star multiplicity as a function of stellar mass, age, and environment, with significantly more statistical power at lower masses. We discuss implications for the universality and scalability of star formation and evolution processes, as well as comparison to measurements in related populations (e.g. cluster, field, young, old, FGK stars) which form a storyline that theory must explain.

  18. LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF BINARIES ACCRETING THROUGH DIRECT IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Kyle; Kalogera, Vassiliki [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Sepinsky, Jeremy, E-mail: kremer@u.northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: jeremy.sepinsky@scranton.edu [Department of Physics and Electrical Engineering, The University of Scranton Scranton, PA 18510 (United States)

    2015-06-10

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or SNe Ia. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters, which were found in previous studies. Removing these oscillations can reduce the peak mass transfer rate in some systems, keeping them from entering an unstable mass transfer phase.

  19. Long-term Evolution of Double White Dwarf Binaries Accreting through Direct Impact

    Science.gov (United States)

    Kremer, Kyle; Sepinsky, Jeremy; Kalogera, Vassiliki

    2015-06-01

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or SNe Ia. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters, which were found in previous studies. Removing these oscillations can reduce the peak mass transfer rate in some systems, keeping them from entering an unstable mass transfer phase.

  20. DE0823$-$49 is a juvenile binary brown dwarf at 20.7 pc

    CERN Document Server

    Sahlmann, J; Martín, E L; Lazorenko, P F; Gagliuffi, D C Bardalez; Mayor, M; Ségransan, D; Queloz, D; Udry, S

    2015-01-01

    Astrometric monitoring of the nearby early-L dwarf DE0823$-$49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows LiI-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 $+$ L5.5 and effective temperatures of $2150\\pm100$ K and $1670\\pm140$ K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80--500 Myr range. Evolutionary models predict component masses in the ranges of $M_1\\simeq0.028-0.063\\,M_\\odot$ and $M_2\\simeq0.018-0.045\\,M_\\odot$ with a mass ratio of $q\\simeq0.64-0.74$. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the sys...

  1. VLT X-shooter spectroscopy of the nearest brown dwarf binary

    CERN Document Server

    Lodieu, N; Rebolo, R; Bejar, V J S; Pavlenko, Y; Perez-Garrido, A

    2015-01-01

    The aim of the project is to characterise both components of the nearest brown dwarf sytem to the Sun, WISE J104915.57-531906.1 (=Luhman16AB) at optical and near-infrared wavelengths. We obtained high signal-to-noise intermediate-resolution (R~6000-11000) optical (600-1000 nm) and near-infrared (1000-2480nm) spectra of each component of Luhman16AB, the closest brown dwarf binary to the Sun, with the X-Shooter instrument on the Very Large Telescope. We classify the primary and secondary of the Luhman16 system as L6-L7.5 and T0+/-1, respectively, in agreement with previous measurements published in the literature. We present measurements of the lithium pseudo-equivalent widths, which appears of similar strength on both components (8.2+/-1.0 Angstroms and 8.4+/-1.5 Angstroms for the L and T components, respectively). The presence of lithium (Lithium 7) in both components imply masses below 0.06 Msun while comparison with models suggests lower limits of 0.04 Msun. The detection of lithium in the T component is th...

  2. Long-term evolution of double white dwarf binaries accreting through direct impact

    CERN Document Server

    Kremer, Kyle; Kalogera, Vassiliki

    2015-01-01

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary, and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or Type Ia Supernovae. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters which a...

  3. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    Science.gov (United States)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  4. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  5. An M dwarf Companion to an F-type Star in a young main-sequence binary

    CERN Document Server

    Eigmüller, Ph; Csizmadia, Sz; Lehmann, H; Erikson, A; Fridlund, M; Hartmann, M; Hatzes, A; Pasternacki, Th; Rauer, H; Tkachenko, A; Voss, H

    2016-01-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectro- scopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 +- 0.073) Msun and a radius of (1.474 +- 0.040) Rsun. The companion is an M dwarf with a mass of (0.188 +- 0.014) Msun and a radius of (0.234 +- 0.009) Rsun. The orbital period is (1.35121 +- 0:00001)d. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ~250 Myrs. The mass-radius re...

  6. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  7. The binary fraction, separation distribution, and merger rate of white dwarfs from the SPY sample

    CERN Document Server

    Maoz, Dan

    2016-01-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor surveY (SPY), we measure the maximal changes in radial-velocity (DRVmax) between epochs (generally two epochs, separated by up to 470d), and model the observed DRVmax statistics via Monte-Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin=0.103+/-0.017 (1-sigma, random) +/-0.015 (systematic), in the separation range ~<4AU within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power-law, dN/dt ~ a^alpha, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is alpha=-1.4+/-0.4 (1-sigma). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is R_merge=1.4e-13 to 1.3e-11 /yr/Msun (2-sigma), with a likelihood-weighted mean of R_merge=(7.3+/-2.7)e-13 /yr/Msun (1-sigm...

  8. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Allende Prieto, Carlos; Cabrera-Lavers, Antonio [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Mukadam, Anjum S., E-mail: jjhermes@astro.as.utexas.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2012-10-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (- 9.8 {+-} 2.8) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.31 {+-} 0.09 ms yr{sup -1}). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M{sub 1} = 0.26 {+-} 0.04 M{sub Sun} and M{sub 2} = 0.50 {+-} 0.04 M{sub Sun }. General relativity predicts orbital decay due to gravitational wave radiation of (- 8.2 {+-} 1.7) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.26 {+-} 0.05 ms yr{sup -1}). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  9. A molecular outflow driven by the brown dwarf binary FU Tau

    CERN Document Server

    Monin, J -L; Lefloch, B; Dougados, C; de Oliveira, C Alves

    2013-01-01

    We report the detection of a molecular outflow driven by the brown dwarf binary FU Tau. Using the IRAM 30 m telescope we observed the $^{12}$CO(2-1) (CO) emission in the vicinity of FU Tau and detected a bipolar outflow by examining the wings of the CO(2-1) line as we moved away from the source position. An integrated map of the wing emission between 3 kms$^{-1}$ and 5 kms$^{-1}$ reveals a blue-shifted lobe at a position of $\\sim$ 20 \\arcsec\\ from the FU Tau system and at a position angle of $\\sim$ 20$^{\\circ}$. The beam size of the observations is $11\\arcsec$\\ hence it is not possible to distinguish between the two components of the FU Tau binary. However as optical forbidden emission, a strong tracer of the shocks caused by outflow activity, has been detected in the spectrum of FU Tau A we assume this component to be the driving source of the molecular outflow. We estimate the mass and mass outflow rate of the outflow at 4 $\\times$ 10$^{-6}$ \\Msun\\ and 6 $\\times$ 10$^{-10}$ \\Msun/yr respectively. These resu...

  10. Discovery of the Eclipsing Detached Double White Dwarf Binary NLTT 11748

    CERN Document Server

    Steinfadt, Justin D R; Shporer, Avi; Bildsten, Lars; Howell, Steve B

    2010-01-01

    We report the discovery of the first eclipsing detached double white dwarf (WD) binary. In a pulsation search, the low-mass helium core WD NLTT 11748 was targeted for fast (approx 1-min) differential photometry with the Las Cumbres Observatory's Faulkes Telescope North. Rather than pulsations, we discovered approx 180-s 3-6% dips in the photometry. Subsequent radial velocity measurements of the primary from the Keck telescope found variations with a semi-amplitude K_1 = 271 +/- 3 km/s, and confirmed the dips as eclipses caused by an orbiting WD with a mass M_2 = 0.648-0.771 M_sun for M_1 = 0.1-0.2 M_sun. We detect both the primary and secondary eclipse during the P_orb = 5.64 hr orbit and measure the secondary's brightness to be 3.5 +/- 0.3% of the primary at SDSS-g'. Assuming that the secondary follows the mass-radius relation of a cold C/O WD and including the effects of microlensing in the binary, the primary eclipse yields a primary radius of R_1 = 0.043-0.039 R_sun for M_1 = 0.1-0.2 M_sun; consistent wit...

  11. Lucky Imaging Adaptive Optics of the brown dwarf binary GJ569Bab

    CERN Document Server

    Femenía, Autors: B; Pérez-Prieto, J A; Hildebrandt, S R; Labadie, L; Pérez-Garrido, A; Béjar, V J S; Díaz-Sánchez, A; Villó, I; Oscoz, A; López, R; Rodríguez, L F; Piqueras, J

    2010-01-01

    The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0\\farcs1 brown dwarf binary GJ569Bab. We took 50000 $I$-band images with our LI instrument FastCam attached to NAOMI, the 4.2-m William Herschel Telescope (WHT) AO facility. In order to extract the most of the astrometry and photometry of the GJ569Bab system we have resorted to a PSF fitting technique using the primary star GJ569A as a suitable PSF reference which exhibits an $I$-band magnitude of $7.78\\pm0.03$. The AO+LI observations at WHT were able to resolve the binary system GJ569Bab located at $4\\farcs 92 \\pm 0\\farcs05$ from GJ569A. We measure a separation of $98.4 \\pm 1.1$ mas and $I$-band magnitudes of $13.86 \\pm 0.03$ and $14.48 \\pm 0.03$ and $I-J$ colors of 2.72$\\pm$0.08 and 2.83$\\pm$0.08 for the Ba and Bb components, respectively. Our study rules out the presence of any other companion to GJ569A...

  12. Dynamical Tides in Compact White Dwarf Binaries: Tidal Synchronization and Dissipation

    CERN Document Server

    Fuller, Jim

    2011-01-01

    In compact white dwarf (WD) binary systems (with periods ranging from minutes to hours), dynamical tides involving the excitation and dissipation of gravity waves play a dominant role in determining the physical conditions of the WDs prior to mass transfer or binary merger. We calculate the amplitude of the tidally excited gravity waves as a function of the tidal forcing frequency \\omega=2(\\Omega-\\Omega_s) (where \\Omega is the orbital frequency and \\Omega_s is the spin frequency) for several realistic carbon-oxygen WD models, assuming that the waves are efficiently dissipated in the outer layer of the star by nonlinear effects or radiative damping. The mechanism of wave excitation in WDs is complex due to the sharp features associated with composition changes inside the WD, and in our WD models gravity waves are launched just below the helium-carbon boundary. We find that the tidal torque on the WD and the related tidal energy transfer rate, \\dot E_{\\rm tide}, depend on \\omega in an erratic way. On average, \\...

  13. The Formation of a Helium White Dwarf in Close Binary System with Diffusion

    CERN Document Server

    Benvenuto, O G

    2004-01-01

    We study the evolution of a system composed by a 1.4 \\msun neutron star and a normal, solar composition star of 2 \\msun in orbit with a period of 1 day. Calculations were performed employing the binary hydro code presented in Benvenuto & De Vito (2003) that handle the mass transfer rate in a fully implicit way. Now we included the main standard physical ingredients together with diffusion processes and a proper outer boundary condition. We have assumed fully non - conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly-driven RLOFs are not allowed to drive mass transfer have been computed with and without diffusion. To our notice, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of \\sim 0.21 \\msun ...

  14. SDSS 1355+0856: a detached white dwarf + M star binary in the period gap discovered by the SWARMS survey

    Science.gov (United States)

    Badenes, Carles; van Kerkwijk, Marten H.; Kilic, Mukremin; Bickerton, Steven J.; Mazeh, Tsevi; Mullally, Fergal; Tal-Or, Lev; Thompson, Susan E.

    2013-03-01

    SDSS J135523.92 + 085645.4 (SDSS 1355+0856) was identified as a hot white dwarf with a companion from time-resolved Sloan Digital Sky Survey spectroscopy as part of the ongoing Sloan White Dwarf Radial velocity data Mining Survey survey. Follow-up observations with the Astrophysical Research Consortium 3.5 m telescope and the Multiple Mirror Telescope revealed weak emission lines in the central cores of the Balmer absorption lines during some phases of the orbit, but no line emission during other phases. This can be explained if SDSS 1355+0856 is a detached white dwarf + M dwarf binary similar to GD 448, where one of the hemispheres of the low-mass companion is irradiated by the proximity of the hot white dwarf. Based on the available data, we derive an orbital period of 0.114 38 ± 0.000 06 d, a primary mass of 0.46 ± 0.01 M⊙, a secondary mass between 0.083 and 0.097 M⊙, and an orbital inclination larger than 57°. This makes SDSS 1355+0856 one of the shortest period post-common envelope white dwarf + M dwarf binaries, and the record holder for the lowest mass stellar companion, which has interesting implications for our understanding of common envelope evolution and the phenomenology of cataclysmic variables. The short cooling time of the WD (25 Myr) implies that the system emerged from the common envelope phase with an orbital period very similar to what we observe today, and was born in the period gap of cataclysmic variables.

  15. The SDSS spectroscopic catalogue of white dwarf-main sequence binaries: new identifications from DR9-12

    CERN Document Server

    Rebassa-Mansergas, A; Parsons, S G; Gaensicke, B T; Schreiber, M R; Garcia-Berro, E; Liu, X -W; Koester, D

    2016-01-01

    We present an updated version of the spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 939 WDMS binaries within the data releases (DR) 9-12 of SDSS plus 40 objects from DR 1-8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the NaI 8183.27, 8194.81 absorption doublet and Halpha emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to di...

  16. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  17. An r-process Enhanced Star in the Dwarf Galaxy Tucana III

    Science.gov (United States)

    Hansen, T. T.; Simon, J. D.; Marshall, J. L.; Li, T. S.; Carollo, D.; DePoy, D. L.; Nagasawa, D. Q.; Bernstein, R. A.; Drlica-Wagner, A.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Eifler, T. F.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Miquel, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; DES Collaboration

    2017-03-01

    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66‑593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. The Post-Merger Magnetized Evolution of White Dwarf Binaries: The Double-Degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    CERN Document Server

    Ji, Suoqing; Garcia-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Loren-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-01-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly-rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly-rotating white dwarf merger surrounded by a hot corona and a thick, differentially-rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an i...

  19. Spectroscopy of the extreme-ultraviolet source Feige 24 - The binary orbit and the mass of the white dwarf

    Science.gov (United States)

    Thorstensen, J. R.; Charles, P. A.; Bowyer, S.; Margon, B.

    1978-01-01

    Results are reported for coude spectroscopy of the extreme-ultraviolet white dwarf Feige 24. Radial velocities of the H-alpha, He I 5876-A, and He I 6678-A emission lines, and the underlying M-dwarf absorption features, were determined from spectrograms obtained with the Lick 3-m telescope. The velocities show a binary period of 4.239(+ or - 0.0015) days. The emission-line and absorption-line velocities agree in phase, which indicates that the emission lines originate in the atmosphere of the M-dwarf secondary as a result of reprocessing of the EUV radiation. This effect is modeled, and the observed amplitude of the emission-line variability is used to place a lower limit on the orbital inclination. From these and other data it is shown that the mass of the white dwarf lies between 0.46 and 1.24 solar masses. Some possible implications for the evolution of binary stars are briefly discussed.

  20. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    Science.gov (United States)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O iii]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O ii]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  1. The binary fraction, separation distribution, and merger rate of white dwarfs from SPY

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama

    2017-01-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor surveY (SPY), we measure the maximal changes in radial-velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte-Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin=0.100 ± 0.020 (1σ, random) +0.02 (systematic), in the separation range ≲ 4 AU within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power-law, dN/da∝aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1 - 80) × 10-13 yr^{-1} M_⊙ ^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_⊙ ^{-1} (1σ). The Milky Way's specific Type-Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_⊙ ^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.

  2. The binary fraction, separation distribution, and merger rate of white dwarfs from SPY

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama

    2017-05-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor Survey (SPY), we measure the maximal changes in radial velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin = 0.10 ± 0.02 (1σ, random) +0.02 (systematic), in the separation range ≲4 au within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power law, dN/da ∝ aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1-80) × 10-13 yr^{-1} M_{⊙}^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_{⊙}^{-1} (1σ). The Milky Way's specific Type Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_{⊙}^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.

  3. The formation of low-mass helium white dwarfs orbiting pulsars: Evolution of low-mass X-ray binaries below the bifurcation period

    CERN Document Server

    Istrate, Alina; Langer, Norbert

    2014-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) which have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). However, many details of this recycling scenario remain to be understood. Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods P_orb = 2-9 hr. In particular, we examine: i) if such observed systems can be reproduced from theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (M_WD, P_orb) is valid for systems with P_orb < 2 days. Numerical calculations with a detailed stellar evolution code were used to trace the mass-tra...

  4. A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

    CERN Document Server

    Marocco, F; Day-Jones, A C; Pinfield, D J; Lucas, P W; Burningham, B; Zhang, Z H; Smart, R L; Gomes, J I; Smith, L

    2015-01-01

    We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from UKIDSS. Using the YJHK photometry from ULAS and the red-optical photometry from SDSS we selected a sample of 262 brown dwarf candidates and we followed-up 196 of them using X-shooter on the VLT. The large wavelength coverage (0.30-2.48 $\\mu$m) and moderate resolution (R~5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low gravity M dwarfs. Using a spectral indices-based technique we identified 27 unresolved binary candidates, for which we determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity for our targets, and we determined the distribution of the sample, which is centred at -1.7$\\pm$1.2 km s$^{-1}$ ...

  5. Formation pathway of Population III coalescing binary black holes through stable mass transfer

    Science.gov (United States)

    Inayoshi, Kohei; Hirai, Ryosuke; Kinugawa, Tomoya; Hotokezaka, Kenta

    2017-07-01

    We study the formation of stellar mass binary black holes (BBHs) originating from Population III (PopIII) stars, performing stellar evolution simulations for PopIII binaries with mesa. We find that a significant fraction of PopIII binaries form massive BBHs through stable mass transfer between two stars in a binary, without experiencing common envelope phases. We investigate necessary conditions required for PopIII binaries to form coalescing BBHs with a semi-analytical model calibrated by the stellar evolution simulations. The BBH formation efficiency is estimated for two different initial conditions for PopIII binaries with large and small separations, respectively. Consequently, in both models, ˜10 per cent of the total PopIII binaries form BBHs only through stable mass transfer and ˜10 per cent of these BBHs merge due to gravitational wave emission within the Hubble time. Furthermore, the chirp mass of merging BBHs has a flat distribution over 15 ≲ Mchirp/M⊙ ≲ 35. This formation pathway of PopIII BBHs is presumably robust because stable mass transfer is less uncertain than common envelope evolution, which is the main formation channel for Population II BBHs. We also test the hypothesis that the BBH mergers detected by LIGO originate from PopIII stars using the total number of PopIII stars formed in the early universe as inferred from the optical depth measured by Planck. We conclude that the PopIII BBH formation scenario can explain the mass-weighted merger rate of the LIGO's O1 events with the maximal PopIII formation efficiency inferred from the Planck measurement, even without BBHs formed by unstable mass transfer or common envelope phases.

  6. Very Low-Mass Stellar and Substellar Companions to Solar-like Stars From MARVELS VI: A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    CERN Document Server

    Ma, Bo; Wolszczan, Alex; Muterspaugh, Matthew W; Lee, Brian; Henry, Gregory W; Schneider, Donald P; Martin, Eduardo L; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; da Costa, Luiz Nicolaci; Jiang, Peng; Fiorenzano, A F Martinez; Hernandez, Jonay I Gonzalez; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C; Wan, Xiaoke; Wang, Ji; Wisniewski, John P; Zhao, Bo; Zucker, Shay

    2016-01-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using ET at Kitt Peak National Observatory, HRS at HET, the "Classic" spectrograph at the Automatic Spectroscopic Telescope at Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period brown dwarf in this binary. HD 87646 is a close binary with a separation of $\\sim22$ AU between the two stars, estimated using the Hipparcos catalogue and our newly acquired AO image from PALAO on the 200-inch Hale Telescope at Palomar. The primary star in the binary, HD 87646...

  7. A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

    Science.gov (United States)

    Marocco, F.; Jones, H. R. A.; Day-Jones, A. C.; Pinfield, D. J.; Lucas, P. W.; Burningham, B.; Zhang, Z. H.; Smart, R. L.; Gomes, J. I.; Smith, L.

    2015-06-01

    We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from the United Kingdom Deep Infrared Sky Survey. Using the YJHK photometry from the Large Area Survey and the red-optical photometry from the Sloan Digital Sky Survey we selected a sample of 262 brown dwarf candidates and we have followed-up 196 of them using the echelle spectrograph X-shooter on the Very Large Telescope. The large wavelength coverage (0.30-2.48 μm) and moderate resolution (R ˜ 5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low-gravity M dwarfs. Using a spectral indices-based technique, we identified 27 unresolved binary candidates, for which we have determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity of our targets, and we determined the distribution of the sample, which is centred at -1.7 ± 1.2 km s-1 with a dispersion of 31.5 km s-1. Using our results, we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85 ± 0.55) × 10-3 to (1.00 ± 0.64) × 10-3 objects per cubic parsec in the L4-L6.5 range, (0.73 ± 0.47) × 10-3 to (0.85 ± 0.55) × 10-3 objects per cubic parsec in the L7-T0.5 range, and (0.74 ± 0.48) × 10-3 to (0.88 ± 0.56) × 10-3 objects per cubic parsec in the T1-T4.5 range. We notice that there seems to be an excess of objects in the L-T transition with respect to the late-T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L-T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following

  8. IP Eri: A surprising long-period binary system hosting a He white dwarf

    CERN Document Server

    Merle, T; Masseron, T; Van Eck, S; Siess, L; Van Winckel, H

    2014-01-01

    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M$_\\odot$, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are $T_{\\rm eff} = 4960$ K, $\\log{g} = 3.3$, [Fe/H] = 0.09 and $\\xi = 1.5$ km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, N...

  9. Spitzer 24-micron Time-Series Observations of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David R; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a set of {\\it Spitzer} 24$\\mu$m MIPS time series observations of the M-dwarf eclipsing binary star GU Bo\\"otis. Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength (and thus limb darkening-independent) characterization of GU Boo's light curve, allowing for independent verification of the results of previous optical studies. Our results confirm previously obtained system parameters. We further compare GU Boo's measured 24$\\mu$m flux density to the value predicted by spectral fitting and find no evidence for circumstellar dust. In addition to GU Boo, we characterize (and show examples of) light curves of other objects in the field of view. Analysis of these light curves serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS 24\\micron array over short (days) and long (weeks) timescales at flux densities between approximately 300--2,000$\\mu$Jy. We find...

  10. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    CERN Document Server

    Gu, Wei-Min; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche lobe overflow mechanism can be responsible for the observed repeating b...

  11. Discovery of 11 New T Dwarfs in the Two Micron All-Sky Survey, Including a Possible L/T Transition Binary

    CERN Document Server

    Looper, Dagny L; Burgasser, Adam J

    2007-01-01

    We present the discovery of 11 new T dwarfs, found during the course of a photometric survey for mid-to-late T dwarfs in the 2MASS Point Source Catalog and from a proper motion selected sample of ultracool dwarfs in the 2MASS Working Database. Using the NASA Infrared Telescope Facility SpeX spectrograph, we obtained low-resolution (R~150) spectroscopy, allowing us to derive near-infrared spectral types of T2-T8. One of these new T dwarfs, 2MASS J13243559+6358284, was also discovered independently by Metchev et al., in prep. This object is spectroscopically peculiar and possibly a binary and/or very young (<300 Myr). We specifically attempted to model the spectrum of this source as a composite binary to reproduce its peculiar spectral characteristics. The latest-type object in our sample is a T8 dwarf, 2MASS J07290002-3954043, now one of the four latest-type T dwarfs known. All 11 T dwarfs are nearby given their spectrophotometric distance estimates, with 1 T dwarf within 10 pc and 8 additional T dwarfs wit...

  12. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself to be a Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    Science.gov (United States)

    Mack, Claude E., III; Ge, Jian; Deshpande, Rohit; Wisniewski, John P.; Stassun, Keivan G.; Gaudi, B. Scott; Fleming, Scott W.; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; González Hernández, Jonay I.; Femenía, Bruno; Ferreira, Letícia; Porto de Mello, Gustavo; Crepp, Justin R.; Mata Sánchez, Daniel; Agol, Eric; Beatty, Thomas G.; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A.; da Costa, Luiz N.; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R.; Lee, Brian; Maia, Marcio A. G.; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Allende Prieto, Carlos; Pepper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basílio X.; Schneider, Donald P.; Simmons, Audrey; Siverd, Robert J.; Snedden, Stephanie; Tofflemire, Benjamin M.

    2013-05-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R <~ 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i ~ 50 M Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e ~ 0.8), its relatively long period (P ~ 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (ω ~ 189°). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e ~ 0.3). Only during the ~5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ~15 km s-1 reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  13. Formation of Binary Millisecond Pulsars by Accretion-Induced Collapse of White Dwarfs under Wind-Driven Evolution

    CERN Document Server

    Ablimit, Iminhaji

    2014-01-01

    Accretion-induced collapse of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods ($\\gtrsim 10$ days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822$-$37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled due to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with a He WD companion, with the orbital periods distributed between $\\gtrsim 0.1$ day and $\\lesssim 30$ days, while...

  14. Modeling the Effect of Kick Velocity during the Accretion Induced Collapse of White Dwarfs on Binary Pulsars

    Science.gov (United States)

    Taani, Ali

    2016-07-01

    The kick velocity which arises during the binary interaction plays an important role in disruption or surviving the binary systems. This paper attempts to draw an evolutionary connection of the long-period (Porb ≥ 2 d) millisecond pulsars (MSPs) with orbits of low eccentricity (e ≤ 0.2). We propose that a kick velocity caused by dynamical effects of asymmetric collapse imparted to the companion star through an accretion induced collapse (AIC) of white dwarfs-that become unstable once they approach the Chandrasekhar limit-can account for the differences in their orbital period distributions. Furthermore, in some cases, an appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. In this case only the binding energy equivalent (0.2M⊙) of mass is lost and the system remains intact in a symmetric collapse. Consequently, the AIC decreases the mass of the neutron star and increases the orbital period leading to orbit circularization. We present the results of our model and discuss the possible implications for the binary MSPs in galactic disk and globular clusters.

  15. CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System

    CERN Document Server

    Liu, Michael C; Dupuy, Trent J; Bowler, Brendan P; Albert, Loic; Artigau, Etienne; Reyle, Celine; Forveille, Thierry; Delfosse, Xavier

    2011-01-01

    (Abridged) We have identified CFBDSIR J1458+10 as a 0.11" binary using Keck laser guide star AO imaging. We measure a parallactic distance of 23.1+/-2.4 pc to the system based on CFHT near-IR astrometry. We assign a spectral type of T9.5 to the integrated-light near-IR spectrum, and model atmospheres suggest a slightly higher temperature and surface gravity than the T10 dwarf UGPS J0722-05. Thus, CFBDSIR J1458+10AB is the coolest brown dwarf binary to date. Its secondary component has an absolute H-band magnitude that is 1.9+/-0.3 mag fainter than UGPS J0722-05, giving an inferred spectral type of >T10. The secondary's bolometric luminosity of ~2 x 10^{-7} L_sun makes it the least luminous known brown dwarf by a factor of 4-5. By comparing to models and known T9-T10 objects, we estimate a temperature of 370+/-40 K and a mass of 6-15 Mjup for CFBDSIR J1458+10B. At such extremes, atmospheric models predict the onset of novel photospheric processes, namely the appearance of water clouds and the removal of strong...

  16. The possible existence of Pop III NS-BH binary and its detectability

    CERN Document Server

    Kinugawa, Tomoya; Nakano, Hiroyuki

    2016-01-01

    In the population synthesis simulations of Pop III stars, many BH (Black Hole)-BH binaries with merger time less than the age of the Universe $(\\tau_{\\rm H})$ are formed, while NS (Neutron Star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semi major axis becomes too large for Pop III NS-BH binaries to merge within $\\tau_{\\rm H}$. However it is almost established that the kick velocity of the order of $200-500{\\rm~ km~s^{-1}}$ exists for NS from the observation of the proper motion of the pulsar. Therefore, the semi major axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is $\\sim 1 {\\rm Gpc^{-3} yr^{-1}}$. This suggests that t...

  17. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially

  18. The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    CERN Document Server

    Benvenuto, O G; De Vito, M A

    2006-01-01

    Splaver and coworkers have measured the masses of the white dwarf and the neutron star components of the PSR J1713+0747 binary system pair by Shapiro Delay. We attempt to find the original configuration of this system performing a set of binary evolution calculations to simultaneously account for the masses of both stars and the orbital period. We considered initial masses of 1.5 and 1.4 \\msun for the normal (donor) and the neutron star, respectively. We assumed two metallicity values (Z = 0.010 and 0.020), and an initial orbital period near 3 days. We assume that the neutron star is only able to retain \\lesssim 0.10 of the matter transferred by the donor star. Calculations were performed employing our binary hydro code that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients, diffusion and a non-grey atmospheres. We compare the structure of the resulting white dwarfs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations...

  19. Constraints on the binary properties of mid- to late T dwarfs from Hubble space telescope WFC3 observations

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Solano, E. [Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mora, A. [ESA–ESAC, Gaia SOC. P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Martín, E. L. [Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica. Carretera de Ajalvir km 4, E-28550 Torrejín de Ardoz, Madrid (Spain); Reid, I. N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Looper, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-12-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (≤20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition.

  20. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    CERN Document Server

    Mack, Claude E; Deshpande, Rohit; Wisniewski, John P; Stassun, Keivan G; Gaudi, B Scott; Fleming, Scott W; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; Hernandez, Jonay I Gonzalez; Femenia, Bruno; Ferreira, Leticia; de Mello, Gustavo Porto; Crepp, Justin R; Sanchez, Daniel Mata; Agol, Eric; Beatty, Thomas G; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A; da Costa, Luiz N; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R; Lee, Brian; Maia, Marcio A G; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Prieto, Carlos Allende; Peper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basilio X; Schneider, Donald P; Simmons, Audrey; Siverd, Robert J; Snedden, Stephanie; Tofflemire, Benjamin M

    2013-01-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0.8), its relatively long period (P~238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (omega~189 degrees). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding ...

  1. On the possibility of a helium white dwarf donor in the presumed ultracompact binary 2S 0918-549

    CERN Document Server

    in 't Zand, J J M; Van der Sluys, M V; Verbunt, F; Pols, O R

    2005-01-01

    2S 0918-549 is a low-mass X-ray binary (LMXB) with a low optical to X-ray flux ratio. Probably it is an ultracompact binary with an orbital period shorter than 60 min. Such binaries cannot harbor hydrogen rich donor stars. As with other (sometimes confirmed) ultracompact LMXBs, 2S 0918-549 is observed to have a high neon-to-oxygen abundance ratio (Juett et al. 2001) which has been used to argue that the companion star is a CO or ONe white dwarf. However, type-I X-ray bursts have been observed from several of these systems implying the presence of hydrogen or helium on the neutron star surface. In this paper, we argue that the companion star in 2S 0918-549 is a helium white dwarf We first present a Type I X-ray burst from 2S 0918-549 with a long duration of 40 minutes. We show that this burst is naturally explained by accretion of pure helium at the inferred accretion rate of ~0.01 times the Eddington accretion rate. At higher accretion rates of ~0.1 Eddington, hydrogen is required to explain long duration bur...

  2. WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System

    CERN Document Server

    Gelino, Christopher R; Cushing, Michael C; Eisenhardt, Peter R; Griffith, Roger L; Mainzer, Amanda K; Marsh, Kenneth A; Skrutskie, Michael F; Wright, Edward L

    2011-01-01

    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging can not only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer (WISE) and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9.

  3. Two Extraordinary Substellar Binaries at the T/Y Transition and the Y-Band Fluxes of the Coolest Brown Dwarfs

    CERN Document Server

    Liu, Michael C; Bowler, Brendan P; Leggett, S K; Best, William M J

    2012-01-01

    Using Keck laser guide star adaptive optics imaging, we have found that the T9 dwarf WISE J1217+1626 and T8 dwarf WISE J1711+3500 are exceptional binaries, with unusually wide separations (~0.8 arcsec, 8-15 AU), large near-IR flux ratios (~2-3 mags), and small mass ratios (~0.5). Keck/NIRSPEC H-band spectra give a spectral type of Y0 for WISE J1217+1626B, and photometric estimates suggest T9.5 for WISE J1711+3500B. The WISE J1217+1626AB system is very similar to the T9+Y0 binary CFBDSIR J1458+1013AB; these two systems are the coldest known substellar multiples, having secondary components of ~400 K and being planetary-mass binaries if their ages are <~1 Gyr. Both WISE J1217+1626B and CFBDSIR J1458+1013B have strikingly blue Y-J colors compared to previously known T dwarfs, including their T9 primaries. Combining all available data, we find that Y-J color drops precipitously between the very latest T dwarfs and the Y dwarfs. The fact that this is seen in (coeval, mono-metallicity) binaries demonstrates that...

  4. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually `merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  5. CFBDS J111807-064016: A new L/T transition brown dwarf in a binary system

    CERN Document Server

    Reylé, C; Artigau, É; Delfosse, X; Albert, L; Forveille, T; Rajpurohit, A S; Allard, F; Homeier, D; Robin, A C

    2013-01-01

    Stellar-substellar binary systems are quite rare, and provide interesting benchmarks. They constrain the complex physics of substellar atmospheres, because several physical parameters of the substellar secondary can be fixed from the much better characterized main sequence primary. We report the discovery of CFBDS J111807-064016, a T2 brown dwarf companion to 2MASS J111806.99-064007.8, a low-mass M4.5-M5 star. The brown-dwarf was identified from the Canada France Brown Dwarf Survey. At a distance of 50-120 pc, the 7.7 arcsec angular separation corresponds to projected separations of 390-900 AU. The primary displays no Halpha emission, placing a lower limit on the age of the system of about 6 Gyr. The kinematics is also consistent with membership in the old thin disc. We obtained near-infrared spectra, which together with recent atmosphere models allow us determine the effective temperature and gravity of both components. From these parameters and the age constraint, evolutionary models estimate masses of 0.10...

  6. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known...

  7. A CAUTIONARY TALE: MARVELS BROWN DWARF CANDIDATE REVEALS ITSELF TO BE A VERY LONG PERIOD, HIGHLY ECCENTRIC SPECTROSCOPIC STELLAR BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Claude E. III; Stassun, Keivan G.; De Lee, Nathan [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ge, Jian; Fleming, Scott W. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL, 32611-2055 (United States); Deshpande, Rohit; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Gaudi, B. Scott; Eastman, Jason; Beatty, Thomas G. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Observatorio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Gonzalez Hernandez, Jonay I.; Femenia, Bruno; Mata Sanchez, Daniel [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ferreira, Leticia; Porto de Mello, Gustavo [Laboratorio Interinstitucional de e-Astronomia-LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Agol, Eric [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bizyaev, Dmitry, E-mail: claude.e.mack@vanderbilt.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-05-15

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R {approx}< 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i {approx} 50 M{sub Jup}) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e {approx} 0.8), its relatively long period (P {approx} 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight ({omega} {approx} 189 Degree-Sign ). As a result of these properties, for {approx}95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e {approx} 0.3). Only during the {approx}5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of {approx}15 km s{sup -1} reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  8. Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii

    Science.gov (United States)

    Buckley, D. A. H.; Meintjes, P. J.; Potter, S. B.; Marsh, T. R.; Gänsicke, B. T.

    2017-01-01

    The variable star AR Scorpii (AR Sco) was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55-hour orbit with a more massive white dwarf. Here we report new optical observations of AR Sco that show strong linear polarization (up to 40%) that varies strongly and periodically on both the spin period of the white dwarf and the beat period between the spin and orbital period, as well as low-level (up to a few per cent) circular polarization. These observations support the notion that, similar to neutron-star pulsars, the pulsed luminosity of AR Sco is powered by the spin-down of the rapidly rotating white dwarf that is highly magnetized (up to 500 MG). The morphology of the modulated linear polarization is similar to that seen in the Crab pulsar, albeit with a more complex waveform owing to the presence of two periodic signals of similar frequency. Magnetic interactions between the two component stars, coupled with synchrotron radiation from the white dwarf, power the observed polarized and non-polarized emission. AR Sco is therefore the first example of a white dwarf pulsar.

  9. The Discovery of Binary White Dwarfs that will Merge within 500 Myr

    CERN Document Server

    Kilic, Mukremin; Prieto, Carlos Allende; Kenyon, S J

    2009-01-01

    We present radial velocity observations of four extremely low-mass (0.2 Msol) white dwarfs. All four stars show peak-to-peak radial velocity variations of 540 - 710 km/s with 1.0 - 5.9 hr periods. The optical photometry rules out main-sequence companions. In addition, no milli-second pulsar companions are detected in radio observations. Thus the invisible companions are most likely white dwarfs. Due to the loss of angular momentum through gravitational radiation, three of the systems will merge within 500 Myr. The remaining system will merge within a Hubble time. The mass functions for three of the systems imply companions more massive than 0.44 Msol; thus those are carbon/oxygen core white dwarfs. However, the chance of a supernova Ia event is only 1% to 5%. These systems will most likely form single R Coronae Borealis stars, providing evidence for a white dwarf + white dwarf merger mechanism for these unusual objects. One of the systems, SDSS J105353.89+520031.0 has a 70% chance of having a low-mass white d...

  10. IRAS 16253-2429: the First Proto-Brown Dwarf Binary Candidate Identified through Dynamics of Jets

    CERN Document Server

    Hsieh, Tien-Hao; Belloche, Arnaud; Wyrowski, Friedrich

    2016-01-01

    The formation mechanism of brown dwarfs (BDs) is one of the long-standing problems in star formation because the typical Jeans mass in molecular clouds is too large to form these substellar objects. To answer this question, it is crucial to study a BD at the embedded phase. IRAS 16253-2429 is classified as a very low luminosity object (VeLLO) with internal luminosity 0.1 Lsun. VeLLOs are believed to be very low-mass protostars or even proto-BDs. We observed the jet/outflow driven by IRAS 16253-2429 in CO (2-1), (6-5), and (7-6) using the IRAM 30 m and APEX telescopes and the SMA in order to study its dynamical features and physical properties. Our SMA map reveals two protostellar jets, indicating the existence of a proto-binary system as implied by the precessing jet detected in H2 emission. We detect a wiggling pattern in the position-velocity diagrams along the jet axes, which is likely due to the binary orbital motion. Based on this, we derive the current mass of the binary as ~0.032 Msun. Given the low en...

  11. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  12. The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    Science.gov (United States)

    Benvenuto, O. G.; Rohrmann, R. D.; De Vito, M. A.

    2006-03-01

    Recently Splaver et al. have measured the masses of the white dwarf and the neutron star (NS) components of the PSR J1713+0747 binary system pair by means of the general relativistic effect known as Shapiro delay with very high accuracy. Employing these data we attempt to find the original configuration that evolved to the observed system. For this purpose we perform a set of binary evolution calculations trying to simultaneously account for the masses of both stars and the orbital period. In doing so, we considered normal (donor) stars with an initial mass of 1.5Msolar, while for the neutron star companion we assumed a mass of 1.4Msolar. We assumed two metallicity values for the donor star (Z= 0.010 and 0.020) and that the initial orbital period was nearly 3d. In order to get a good agreement between the masses of the models and observations we had to assume that the NS is only able to retain Benvenuto & De Vito, that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients and diffusion processes. Now our code also includes a detailed non-grey treatment for the atmospheres of white dwarfs (WDs). We compare the structure of the resulting WDs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations by Lundgren et al. especially for the case of a donor star with Z= 0.010. This result indicates that, at least for the purposes of this paper, the evolution of this kind of binary system is fairly well understood. The models predict that, due to diffusion, the atmosphere of the white dwarf is an almost hydrogen-pure one. We find that such structures are unable to account for the colours measured by Lundgren et al. within their error bars. Thus, in spite of the very good agreement of the model with the main characteristics of the system, we find that some discrepancies in the WD emergent radiation remain to be explained.

  13. Eclipsing Binary Stars in the OGLE-III Galactic Disk Fields

    CERN Document Server

    Pietrukowicz, P; Soszynski, I; Udalski, A; Poleski, R; Szymanski, M K; Kubiak, M; Pietrzynski, G; Wyrzykowski, L; Ulaczyk, K; Kozlowski, S; Skowron, J

    2013-01-01

    We present the analysis of 11,589 eclipsing binary stars identified in 21 OGLE-III Galactic disk fields toward constellations of Carina, Centaurus, and Musca. All eclipsing binaries but 393 objects are new discoveries. The binaries have out-of-eclipse brightness between I=12.5 and I=21 mag. The completeness of the catalog is estimated at a level of about 75%. Comparison of the orbital period distribution for the OGLE-III disk binaries with systems detected in other recent large-scale Galactic surveys shows the maximum around 0.40 d and an almost flat distribution between 0.5 and 2.5 d, indepedent of population. Among thousands of variables we have found 10 doubly eclipsing objects and one eclipsing-ellipsoidal object, of which 9 are candidates for quadruple systems. We also identify 10 eclipsing subdwarf-B-type binary stars and numerous eclipsing RS Canum-Venaticorum-type variables. All objects reported in this paper are part of the OGLE-III Catalog of Variable Stars.

  14. Strong gravitational wave background from Population III binary black holes consistent with cosmic reionization

    CERN Document Server

    Inayoshi, Kohei; Visbal, Eli; Haiman, Zoltan

    2016-01-01

    The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $\\sim 30~\\odot$. A possible origin of such a massive binary is Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We show that PopIII stars that are consistent with the recent Planck measurement of a low electron scattering optical depth $\\tau_{\\rm e}=0.066\\pm0.016$ could still produce a GWB dominating other binary populations. Moreover, the spectral index of the background from PopIII BBHs becomes flatter at $f\\gtrsim 20$ Hz than the value ${\\rm d}\\ln \\Omega_{\\rm gw}/{\\rm d}\\ln f\\approx 2/3$ generically produced by lower-redshift and less-massive BBHs. A detection of this unique flattening by the future O5 LIGO/Virgo would be a smoking gun of a high-chirp mass, high-redshift BBH population, as expected from PopIII stars. It would also c...

  15. Arbitrarily Degenerate Helium White Dwarfs as Donors in AM Canum Venaticorum Binaries

    NARCIS (Netherlands)

    Deloye, C.J.; Bildsten, L.; Nelemans, G.A.

    2005-01-01

    We apply the Deloye & Bildsten isentropic models for donors in ultracompact low-mass X-ray binaries to the AM CVn population of ultracompact, interacting binaries. The mass-radius relations of these systems' donors in the mass range of interest (M2<0.1Msolar) are not single-val

  16. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  17. The Formation of Population III Binaries from Cosmological Initial Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Matthew J.; Abel, Tom; /KIPAC, Menlo Park; O' Shea, Brian W.; /Michigan State U.

    2010-08-26

    Previous high resolution cosmological simulations predict the first stars to appear in the early universe to be very massive and to form in isolation. Here we discuss a cosmological simulation in which the central 50M{sub {circle_dot}} clump breaks up into two cores, having a mass ratio of two to one, with one fragment collapsing to densities of 10{sup -8}g cm{sup -3}. The second fragment, at a distance of {approx}800 astronomical units, is also optically thick to its own cooling radiation from molecular hydrogen lines, but is still able to cool via collision-induced emission. The two dense peaks will continue to accrete from the surrounding cold gas reservoir over a period of {approx} 10{sup 5} years and will likely form a binary star system.

  18. Biosorption of binary mixtures of Cr(III and Cu(II ions by Sargassum sp

    Directory of Open Access Journals (Sweden)

    Silva E.A.

    2003-01-01

    Full Text Available The adsorption of two metal ions, Cr(III and Cu(II, in single-component and binary systems by Sargassum sp., a brown alga, was studied. Equilibrium batch sorption studies were carried out at 30ºC and pH 3.5. Kinetic tests were done for a binary mixture (chromium + copper for a contact time of 72 hours to guarantee that equilibrium was reached. The monocomponent equilibrium data obtained were analyzed using the Langmuir and Freundlich isotherms. The binary equilibrium data obtained were described using four Langmuir-type and Freundlich isotherms. The F-test showed a statistically significant fit for all binary isotherm models. The parameters for isotherms of the Langmuir-type were used to determine the affinity of one metal for the biosorbent in the presence of another metal. The chromium ion showed a greater affinity for Sargassum sp. than the copper ion.

  19. Detection of binary and multiple systems among rapidly rotating K and M dwarf stars from Kepler data

    CERN Document Server

    Oláh, Katalin; Joss, Matthew

    2016-01-01

    From an examination of ~18,000 Kepler light curves of K- and M-stars we find some 500 which exhibit rotational periods of less than 2 days. Among such stars, approximately 50 show two or more incommensurate periodicities. We discuss the tools that allow us to differentiate between rotational modulation and other types of light variations, e.g., due to pulsations or binary modulations. We find that these multiple periodicities are independent of each other and likely belong to different, but physically bound, stars. This scenario was checked directly by UKIRT and adaptive optics imaging, time-resolved Fourier transforms, and pixel-level analysis of the data. Our result is potentially important for discovering young multiple stellar systems among rapidly rotating K- and M-dwarfs.

  20. A Ground-based Measurement of the Relativistic Beaming Effect in a Detached Double White Dwarf Binary

    Science.gov (United States)

    Shporer, Avi; Kaplan, David L.; Steinfadt, Justin D. R.; Bildsten, Lars; Howell, Steve B.; Mazeh, Tsevi

    2010-12-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass-ratio and low-luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during three nights at the 2.0 m Faulkes Telescope North with the SDSS-g' filter and fitted the data simultaneously for the beaming, ellipsoidal, and reflection effects. Our fitted relative beaming amplitude is (3.0 ± 0.4) × 10-3, consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity (RV) amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic RV amplitude in NLTT 11748 and similar systems. We did not identify any variability due to the ellipsoidal or reflection effects, consistent with their expected undetectable amplitude for this system. Low-mass, helium-core WDs are expected to reside in binary systems, where in some of those systems the binary companion is a faint C/O WD and the two stars are detached and non-interacting, as in the case of NLTT 11748. The beaming effect can be used to search for the faint binary companion in those systems using wide-band photometry.

  1. Adaptive Optics imaging of VHS 1256-1257: A Low Mass Companion to a Brown Dwarf Binary System

    CERN Document Server

    Stone, Jordan M; Kratter, Kaitlin M; Dupuy, Trent J; Close, Laird M; Eisner, Josh A; Fortney, Jonathan J; Hinz, Philip M; Males, Jared R; Morley, Caroline V; Morzinski, Katie M; Ward-Duong, Kimberly

    2016-01-01

    Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age $\\sim300$ Myr the A and B components each have a mass of $64.6^{+0.8}_{-2.0}~M_{\\mathrm{Jup}}$, and the b component has a mass of $11.2^{+9.7}_{-1.8}$, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of $17.2\\pm2.6$ pc and the parallax distance of $12.7\\pm1.0$ pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particul...

  2. The shortest period sdB plus white dwarf binary CD-30 11223 (GALEX J1411-3053)

    CERN Document Server

    Vennes, S; O'Toole, S J; Nemeth, P; Burton, D

    2012-01-01

    We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M_2/M_sun > 0.77) assuming a canonical mass for the hot subdwarf (0.48 M_sun), although a white dwarf mass as low as 0.75 M_sun is allowable by postulating a subdwarf mass as low as 0.44 M_sun. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i > 68 deg) and, possibly, observable secondary transits (i > 74 deg). At the lowest permissible inclination and assuming a subdwarf mass of ~0.48 M_sun, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M_sun and would exceed it for a subdwarf mass above 0.48 M_sun. The syst...

  3. Fundamental Stellar Parameters with HST/FGS Dynamical Masses and HST/STIS Spectroscopy of M Dwarf Binaries

    Science.gov (United States)

    Dieterich, Sergio; Henry, Todd J.; Benedict, George Fritz; Jao, Wei-Chun; White, Russel; RECONS Team

    2017-01-01

    Mass is the most fundamental stellar parameter, and yet model independent dynamical masses can only be obtained for a small subset of closely separated binaries. The high angular resolution needed to characterize individual components of those systems means that little is known about the details of their atmospheric properties. We discuss the results of HST/STIS observations yielding spatially resolved optical spectra for six closely separated M dwarf systems, all of which have HST/FGS precision dynamical masses for the individual components ranging from 0.4 to 0.076 MSol. We assume coevality and equal metallicity for the components of each system and use those constraints to perform stringent tests of the leading atmospheric and evolutionary model families throughout the M dwarf mass range. We find the latest models to be in good agreement with observations. We discuss specific spectral diagnostic features such as the well-known gravity sensitive Na and K lines and address ways to break the temperature-metallicity-gravity degeneracy that often hinders the interpretation of these features. We single out a comparison between the systems GJ 469 AB and G 250-29 AB, which have nearly identical mass configurations but different metallicities, thus causing marked differences in atmospheric properties and overall luminosities.This work is funded by NASA grant HST-GO-12938. and By the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through NSF grant AST-1400680.

  4. New Evidence for a Substellar Luminosity Problem: Dynamical Mass for the Brown Dwarf Binary Gl 417BC

    CERN Document Server

    Dupuy, Trent J; Ireland, Michael J

    2014-01-01

    We present new evidence for a problem with cooling rates predicted by substellar evolutionary models that implies model-derived masses in the literature for brown dwarfs and directly imaged planets may be too high. Based on our dynamical mass for Gl 417BC (L4.5+L6) and a gyrochronology system age from its young, solar-type host star, commonly used models predict luminosities 0.2$-$0.4 dex lower than we observe. This corroborates a similar luminosity$-$age discrepancy identified in our previous work on the L4+L4 binary HD 130948BC, which coincidentally has nearly identical component masses ($\\approx$50$-$55 $M_{\\rm Jup}$) and age ($\\approx$800 Myr) as Gl 417BC. Such a luminosity offset would cause systematic errors of 15%$-$25% in model-derived masses at this age. After comparing different models, including cloudless models that should not be appropriate for mid-L dwarfs like Gl 417BC and HD 130948BC but actually match their luminosities better, we speculate the observed over-luminosity could be caused by opac...

  5. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    CERN Document Server

    Fenn, D; Gawryszczak, A

    2016-01-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a co-rotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multi-grid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heat...

  6. The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals

    CERN Document Server

    Deshpande, R; Bender, C F; Mahadevan, S; Terrien, R C; Carlberg, J; Zasowski, G; Crepp, J; Rajpurohit, A S; Reyle, C; Nidever, D L; Schneider, D P; Prieto, C Allende; Bizyaev, D; Ebelke, G; Fleming, S W; Frinchaboy, P M; Ge, J; Hearty, F; Hernandez, J; Malanushenko, E; Malanushenko, V; Majewski, S R; Oravetz, D; Pan, K; Schiavon, R P; Shetrone, M; Simmons, A; Stassun, K G; Wilson, J C; Wisniewski, J

    2013-01-01

    We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to iden...

  7. High-resolution Smoothed Particle Hydrodynamics simulations of the merger of binary white dwarfs

    CERN Document Server

    Lorén-Aguilar, P; García-Berro, E

    2009-01-01

    We present the results of a set of high-resolution simulations of the merging process of two white dwarfs. In order to do so, we use an up-to-date Smoothed Particle Hydrodynamics code which incorporates very detailed input physics and an improved treatment of the artificial viscosity. Our simulations have been done using a large number of particles (4x10^5) and cover the full range of masses and chemical compositions of the coalescing white dwarfs. We also compare the time evolution of the system during the first phases of the coalescence with that obtained using a simplified treatment of mass transfer, we discuss in detail the characteristics of the final configuration, we assess the possible observational signatures of the merger, like the associated gravitational waveforms and the fallback X-ray flares, and we study the long-term evolution of the coalescence.

  8. Resonant Excitation of White Dwarf Oscillations in Compact Object Binaries: 1. The No Back Reaction Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Y.

    2004-06-14

    We consider the evolution of white dwarfs with compact object companions (specifically black holes with masses up to {approx} 10{sup 6} M{sub {circle_dot}}, neutron stars, and other white dwarfs). We suppose that the orbits are initially quite elliptical and then shrink and circularize under the action of gravitational radiation. During this evolution, the white dwarfs will pass through resonances when harmonics of the orbital frequency match the stellar oscillation eigenfrequencies. As a star passes through these resonances, the associated modes will be excited and can be driven to amplitudes that are so large that there is a back reaction on the orbit which, in turn, limits the growth of the modes. A formalism is presented for describing this dynamical interaction for a non-rotating star in the linear approximation when the orbit can be treated as non-relativistic. A semi-analytical expression is found for computing the resonant energy transfer as a function of stellar and orbital parameters for the regime where back reaction may be neglected. This is used to calculate the results of passage through a sequence of resonances for several hypothetical systems. It is found that the amplitude of the {ell} = m = 2 f-mode can be driven into the non-linear regime for appropriate initial conditions. We also discuss where the no back reaction approximation is expected to fail, and the qualitative effects of back reaction.

  9. OGLE‐2008‐BLG‐510: first automated real‐time detection of a weak microlensing anomaly – brown dwarf or stellar binary?★

    DEFF Research Database (Denmark)

    Bozza, V.; Dominik, M.; Rattenbury, N. J.

    2012-01-01

    The microlensing event OGLE‐2008‐BLG‐510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system in real time. The skewness of the light curve appears to be compatible both with binary......‐lens and binary‐source models, including the possibility that the lens system consists of an M dwarf orbited by a brown dwarf. The detection of this microlensing anomaly and our analysis demonstrate that: (1) automated real‐time detection of weak microlensing anomalies with immediate feedback is feasible...

  10. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  11. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  12. Individual, Model-independent Masses of the Closest Known Brown Dwarf Binary to the Sun

    Science.gov (United States)

    Garcia, E. Victor; Ammons, S. Mark; Salama, Maissa; Crossfield, Ian; Bendek, Eduardo; Chilcote, Jeffrey; Garrel, Vincent; Graham, James R.; Kalas, Paul; Konopacky, Quinn; Lu, Jessica R.; Macintosh, Bruce; Marin, Eduardo; Marois, Christian; Nielsen, Eric; Neichel, Benoît; Pham, Don; De Rosa, Robert J.; Ryan, Dominic M.; Service, Maxwell; Sivo, Gaetano

    2017-09-01

    At a distance of ∼2 pc, our nearest brown dwarf neighbor, Luhman 16 AB, has been extensively studied since its discovery 3 years ago, yet its most fundamental parameter—the masses of the individual dwarfs—has not been constrained with precision. In this work, we present the full astrometric orbit and barycentric motion of Luhman 16 AB and the first precision measurements of the individual component masses. We draw upon archival observations spanning 31 years from the European Southern Observatory (ESO) Schmidt Telescope, the Deep Near-Infrared Survey of the Southern Sky (DENIS), public FORS2 data on the Very Large Telescope (VLT), and new astrometry from the Gemini South Multiconjugate Adaptive Optics System (GeMS). Finally, we include three radial velocity measurements of the two components from VLT/CRIRES, spanning one year. With this new data sampling a full period of the orbit, we use a Markov chain Monte Carlo algorithm to fit a 16-parameter model incorporating mutual orbit and barycentric motion parameters and constrain the individual masses to be {27.9}-1.0+1.1 {M}J for the T dwarf and {34.2}-1.1+1.3 {M}J for the L dwarf. Our measurements of Luhman 16 AB’s mass ratio and barycentric motion parameters are consistent with previous estimates in the literature utilizing recent astrometry only. The GeMS-derived measurements of the Luhman 16 AB separation in 2014–2015 agree closely with Hubble Space Telescope (HST) measurements made during the same epoch, and the derived mutual orbit agrees with those measurements to within the HST uncertainties of 0.3–0.4 mas.

  13. Kepler Eclipsing Binary Stars. III. Classification of Kepler Eclipsing Binary Light Curves with Locally Linear Embedding

    Science.gov (United States)

    Matijevič, Gal; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas

    2012-05-01

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of "detachedness" of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  14. Binary populations in Milky Way satellite galaxies: Constraints from multi-epoch data in the Carina, Fornax, Sculptor, and Sextans dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2013-12-20

    We introduce a likelihood analysis of multi-epoch stellar line-of-sight velocities to constrain the binary fractions and binary period distributions of dwarf spheroidal galaxies. This method is applied to multi-epoch data from the Magellan/MMFS survey of the Carina, Fornax, Sculptor, and Sextans dSph galaxies, after applying a model for the measurement errors that accounts for binary orbital motion. We find that the Fornax, Sculptor, and Sextans dSphs are consistent with having binary populations similar to that of Milky Way field binaries to within 68% confidence limits, whereas the Carina dSph is remarkably deficient in binaries with periods less than ∼10 yr. If Carina is assumed to have a period distribution identical to that of the Milky Way field, its best-fit binary fraction is 0.14{sub −0.05}{sup +0.28}, and is constrained to be less than 0.5 at the 90% confidence level; thus it is unlikely to host a binary population identical to that of the Milky Way field. By contrast, the best-fit binary fraction of the combined sample of all four galaxies is 0.46{sub −0.09}{sup +0.13}, consistent with that of Milky Way field binaries. More generally, we infer probability distributions in binary fraction, mean orbital period, and dispersion of periods for each galaxy in the sample. Looking ahead to future surveys, we show that the allowed parameter space of binary fraction and period distribution parameters in dSphs will be narrowed significantly by a large multi-epoch survey. However, there is a degeneracy between the parameters that is unlikely to be broken unless the measurement error is of order ∼0.1 km s{sup –1} or smaller, presently attainable only by a high-resolution spectrograph.

  15. PSR J1738+0333: The First Millisecond Pulsar + Pulsating White Dwarf Binary

    CERN Document Server

    Kilic, Mukremin; Gianninas, A; Brown, Warren R

    2014-01-01

    We report the discovery of the first millisecond pulsar with a pulsating white dwarf companion. Following the recent discoveries of pulsations in extremely low-mass (ELM, <0.3 Msol) white dwarfs (WDs), we targeted ELM WD companions to two millisecond pulsars with high-speed Gemini photometry. We find significant optical variability in PSR J1738+0333 with periods between roughly 1790-3060 s, consistent in timescale with theoretical and empirical observations of pulsations in 0.17 Msol He-core ELM WDs. We additionally put stringent limits on a lack of variability in PSR J1909-3744, showing this ELM WD is not variable to <0.1 per cent amplitude. Thanks to the accurate distance and radius estimates from radio timing measurements, PSR J1738+0333 becomes a benchmark for low-mass, pulsating WDs. Future, more extensive time-series photometry of this system offers an unprecedented opportunity to constrain the physical parameters (including the cooling age) and interior structure of this ELM WD, and in turn, the ...

  16. Gravitational wave background from Population III binary black holes consistent with cosmic reionization

    Science.gov (United States)

    Inayoshi, Kohei; Kashiyama, Kazumi; Visbal, Eli; Haiman, Zoltán

    2016-09-01

    The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of ˜30 M⊙. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the 10-100 Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB (Ωgw) and the electron scattering optical depth (τe), produced by PopIII stars, assuming that fesc ≈ 10 per cent of their ionizing radiation escapes into the intergalactic medium. We find that PopIII stars would produce a GWB that is detectable by the future O5 LIGO/Virgo if τe ≳ 0.07, consistent with the recent Planck measurement of τe = 0.055 ± 0.09. Moreover, the spectral index of the background from PopIII BBHs becomes as small as dln Ωgw/dln f ≲ 0.3 at f ≳ 30 Hz, which is significantly flatter than the value ˜2/3 generically produced by lower redshift and less-massive BBHs. A detection of the unique flattening at such low frequencies by the O5 LIGO/Virgo will indicate the existence of a high-chirp mass, high-redshift BBH population, which is consistent with the PopIII origin. A precise characterization of the spectral shape near 30-50 Hz by the Einstein Telescope could also constrain the PopIII initial mass function and star formation rate.

  17. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    Science.gov (United States)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  18. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  19. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    Science.gov (United States)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color–magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  20. Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.

    2017-03-01

    We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.

  1. Merger of a White Dwarf-Neutron Star Binary to $10^{29}$ Carat Diamonds: Origin of the Pulsar Planets

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We show that the merger and tidal disruption of a C/O white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disk produced of the disrupted WD, we model its long term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disk opacity. For plausible values of the disk viscosity $\\alpha \\sim 10^{-3}-10^{-2}$ and the RIAF mass loss efficiency, we find that the disk mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon-dominated disk is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger ...

  2. A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

    CERN Document Server

    Osten, Rachel A; Drake, Stephen A; Krimm, Hans; Page, Kim; Gazeas, Kosmas; Kennea, Jamie; Oates, Samantha; Page, Mathew; de Miguel, Enrique; Novák, Rudolf; Apeltauer, Tomas; Gehrels, Neil

    2016-01-01

    On April 23, 2014, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG~CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3-100 keV bandpass by either a single very high temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T$_{X}$ of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be $>$10$^{20}$ cm$^{2}$, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T$\\sim$10$^{4}$K blackbody emission seen in ...

  3. The formation of long-period eccentric binaries with a helium white dwarf

    CERN Document Server

    Siess, L; Jorissen, A

    2014-01-01

    The recent discovery of long-period eccentric binaries hosting a He-WD or a sdB star has been challenging binary-star modelling. Based on accurate determinations of the stellar and orbital parameters for IP Eri, a K0 + He-WD system, we propose an evolutionary path that is able to explain the observational properties of this system and, in particular, to account for its high eccentricity (0.25). Our scenario invokes an enhanced-wind mass loss on the first red giant branch (RGB) in order to avoid mass transfer by Roche-lobe overflow, where tides systematically circularize the orbit. We explore how the evolution of the orbital parameters depends on the initial conditions and show that eccentricity can be preserved and even increased if the initial separation is large enough. The low spin velocity of the K0 giant implies that accretion of angular momentum from a (tidally-enhanced) RGB wind should not be efficient.

  4. 白矮-主序双星的搜寻及研究进展%Research Progress on Searching for White Dwarf-Main Sequence Binaries

    Institute of Scientific and Technical Information of China (English)

    任娟娟; 罗阿理; 赵永恒

    2014-01-01

    White dwarf-main sequence binaries (WDMS) are the most common compact binary ob jects in the Galaxy, each of which consists of a white dwarf and a main sequence star and is evolved from main sequence binary. About 25 percent of the WDMS binaries are close WDMS binaries that evolved through a common envelope phase, and are commonly referred to as post-common-envelope binaries (PCEBs). The remaining 75 percent are wide WDMS binaries that did not evolve through a common envelope phase, with the orbital separation roughly the same as the orbital separation of the initial main sequence binary. Generally, the two components can be seen clearly from the WDMS binary spectra optically. Thanks to the large spectroscopic survey like SDSS and LAMOST, the number of WDMS binaries has been increased dramatically recently. A large number of wide WDMS binaries and PCEBs have been identified by the follow-up observations of these WDMS bina-ries. Currently, more than 2000 WDMS binaries have been discovered spectroscopically and about 200 PCEBs have been confirmed. Upon the large sample of SDSS WDMS binaries and PCEBs identified, many important researches have been carried on, such as the com-mon envelope theory, the origin of low mass white dwarf, mass-radius relations of both white dwarfs and low mass main sequence stars, and the pairing properties of main sequence stars. However, as the SDSS WDMS binaries sample has serious selection effects, which is strongly biased against binary systems containing cool white dwarf and/or early type companions, we still need to search more WDMS binaries to enlarge the sample. The LAMOST sky survey began its five years regular survey from September 2012, which will observe a large number of targets in the Milky Way. From the recent data release (DR1) of LAMOST, more than 100 WDMS binaries have been found. With the ongoing SDSS and LAMOST survey, more WDMS binaries are hoped to be identified and extend the existing WDMS binary sample. In this paper

  5. DISCOVERY OF A BINARY BROWN DWARF AT 2 pc FROM THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-04-10

    I am using multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE) to search for new members of the solar neighborhood via their high proper motions. Through this work, I have identified WISE J104915.57-531906.1 as a high proper motion object and have found additional detections in images from the Digitized Sky Survey, the Two Micron All-Sky Survey, and the Deep Near-Infrared Survey of the Southern Sky. I have measured a parallax of 0.''496 {+-} 0.''037 (2.0 {+-} 0.15 pc) from the astrometry in these surveys, making WISE J104915.57-531906.1 the third closest system to the Sun. During spectroscopic observations with the Gemini Multi-Object Spectrograph at Gemini Observatory, an i-band acquisition image resolved it as a 1.''5 (3 AU) binary. A spectrum was collected for the primary, which I classify as L8 {+-} 1. The secondary is probably near the L/T transition as well given that it is only modestly fainter than the primary ({Delta}i = 0.45 mag).

  6. Discovery of a Binary Brown Dwarf at 2 Parsecs from the Sun

    CERN Document Server

    Luhman, K L

    2013-01-01

    I am using multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE) to search for new members of the solar neighborhood via their high proper motions. Through this work, I have identified WISE J104915.57-531906.1 as a high proper motion object and have found additional detections in images from the Digitized Sky Survey, the Two Micron All-Sky Survey, and the Deep Near-Infrared Survey of the Southern Sky. I have measured a parallax of 0.496+/-0.037" (2.0+/-0.15 pc) from the astrometry in these surveys, making WISE J104915.57-531906.1 the third closest system to the Sun. During spectroscopic observations with GMOS at Gemini Observatory, an i-band acquisition image resolved it as a 1.5" (3 AU) binary. A spectrum was collected for the primary, which I classify as L8+/-1. The secondary is probably near the L/T transition as well given that it is only modestly fainter than the primary (delta i=0.45 mag).

  7. The Spitzer 24-micron Photometric Light Curve of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a carefully controlled set of Spitzer 24 \\micron MIPS time series observations of the low mass eclipsing binary star GU Bo\\"otis (GU Boo). Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength characterization of GU Boo's light curve, independent of limb darkening and less sensitive to surface features such as spots. Its analysis allows for independent verification of the results of optical studies of GU Boo. Our mid-infrared results show good agreement with previously obtained system parameters. In addition, the analysis of light curves of other objects in the field of view serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS-24 at flux densities between approximately 300--2,000$\\mu$Jy. We find that the light curve root mean square about the median level falls into the 1--4% range for flux densities higher than 1 mJy.

  8. The hot subdwarf B + white dwarf binary KPD 1930+2752. A supernova type Ia progenitor candidate

    Science.gov (United States)

    Geier, S.; Nesslinger, S.; Heber, U.; Przybilla, N.; Napiwotzki, R.; Kudritzki, R.-P.

    2007-03-01

    Context: The nature of the progenitors of type Ia supernovae is still under debate. KPD 1930+2752 is one of the best SN Ia progenitor candidates known today. The object is a double degenerate system consisting of a subluminous B star (sdB) and a massive white dwarf (WD). Maxted et al. ([CITE]) conclude that the system mass exceeds the Chandrasekhar mass. This conclusion, however, rests on the assumption that the sdB mass is 0.5 M⊙. However, recent binary population synthesis calculations suggest that the mass of an sdB star may range from 0.3 M⊙ to more than 0.7 M⊙. Aims: It is therefore important to measure the mass of the sdB star simultaneously with that of the white dwarf. Since the rotation of the sdB star is tidally locked to the orbit, the inclination of the system can be constrained if the sdB radius and the projected rotational velocity can be measured with high precision. An analysis of the ellipsoidal variations in the light curve allows the constraints derived from spectroscopy to be tightened. Methods: We derived the mass-radius relation for the sdB star from a quantitative spectral analysis of 150 low-resolution spectra obtained with the Calar Alto 2.2 m telescope using metal-rich, line-blanketed LTE model atmospheres with and without NLTE line formation. The projected rotational velocity was determined for the first time from 200 high-resolution spectra obtained with the Keck I 10 m and with the ESO-VLT 8.2 m telescopes. In addition a reanalysis of the published light curve was performed. Results: The atmospheric and orbital parameters were measured with unprecedented accuracy. In particular the projected rotational velocity was determined. Assuming the companion to be a white dwarf, the mass of the sdB is limited between and and the corresponding total mass of the system ranges from to . This constrains the inclination to i>68°. The photometric analysis allows the parameters to be constrained even more. A neutron star companion can be ruled

  9. Adsorption Kinetic Properties of As(III) on Synthetic Nano Fe-Mn Binary Oxides

    Institute of Scientific and Technical Information of China (English)

    Mei Yu; Yanxin Wang; Shuqiong Kong; Evalde Mulindankaka; Yuan Fang; Ya Wu

    2016-01-01

    The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides (FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. The molar ratio of Fe and Mn in the synthetic Fe-Mn binary oxides was 4 : 3. The FM-1 and FM-2 (prepared at different activation temperatures) having high specific surface areas (358.87 and 128.58 m2/g, respectively) were amorphous and of nano particle types. The amount of arsenic adsorbed on FM-1 was higher than that adsorbed on FM-2 particles. After adsorption by FM-1, residual arsenic concentration decreased to less than 10μg/L. The adsorption kinetics data were analyzed using different kinetic models including pseudofirst-order model, pseudo second-order model, Elovich model and in-traparticle diffusion model. Pseudo second-order kinetic model was the most appropriate model to describe the adsorption kinetics. The adsorption percentage of As(III) increased in the pH range of 2–3 while it de-creased with the increase of pH ( 3III) removal using FM-1 and FM-2 were also studied and the order of the effects is as follows: NO3-, Cl-, F-III) for adsorptive sites on the surface of the ad-sorbents.The higher adsorption capacity of FM-1 makes it potentially attractive adsorbent for the removal of As(III) from groundwater.

  10. THE CRITICAL MASS RATIO OF DOUBLE WHITE DWARF BINARIES FOR VIOLENT MERGER-INDUCED TYPE IA SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakasato, Naohito [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Tanikawa, Ataru; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Maeda, Keiichi, E-mail: sato@ea.c.u-tokyo.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-10

    Mergers of carbon–oxygen (CO) white dwarfs (WDs) are considered to be one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics simulations of merging CO WDs, we derived a critical mass ratio (q{sub cr}) leading to the violent merger scenario that is more stringent than previous results. We conclude that this difference mainly comes from the differences in the initial condition of whether or not the WDs are synchronously spinning. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new q{sub cr} does not significantly affect the brightness distribution. We present the direct outcome immediately following CO WD mergers for various primary masses and mass ratios. We also discussed the final fate of the central system of the bipolar planetary nebula Henize 2-428, which was recently suggested to be a double CO WD system whose total mass exceeds the Chandrasekhar-limiting mass, merging within the Hubble time. Even considering the uncertainties in the proposed binary parameters, we concluded that the final fate of this system is almost certainly a sub-Chandrasekhar mass SN Ia in the violent merger scenario.

  11. Keck Laser Guide Star Adaptive Optics Monitoring of 2MASS J1534-2952AB: First Dynamical Mass Determination of a Binary T Dwarf

    CERN Document Server

    Liu, Michael C; Ireland, Michael J

    2008-01-01

    (Abridged) We present multi-epoch imaging of the T5.0+T5.5 binary 2MASS J1534-2952AB obtained with the Keck laser guide star adaptive optics system. Combined with an extensive (re-)analysis of archival HST imaging, we find a total mass of 0.056+/-0.003 Msun (59+/-3 Mjup). This is the first field binary for which both components are directly confirmed to be substellar. This is also the coolest and lowest mass binary with a dynamical mass determination to date. Using evolutionary models, we derive an age of 0.78+/-0.09 Gyr for the system, and we find Teff = 1028+/-17 K and 978+/-17 K and masses of 0.0287+/-0.0016 Msun (30.1+/-1.7 Mjup) and 0.0269+/-0.0016 Msun (28.2+/-1.7 Mjup) for the individual components. These precise measurements generally agree with previous studies of T dwarfs and affirm the current theoretical models. However, (1) the temperatures are about 100 K cooler than derived for similar objects and suggest that the ages of field brown dwarfs may be overestimated. Also, (2) the H-R diagram positi...

  12. THE WIRED SURVEY. III. AN INFRARED EXCESS AROUND THE ECLIPSING POST-COMMON ENVELOPE BINARY SDSS J030308.35+005443.7

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Farihi, Jay [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Wachter, Stefanie [IPAC, California Institute of Technology, Pasadena, CA (United States); Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

    2012-11-01

    We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSS J030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main-sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longward of 3 {mu}m. A T {sub eff} of 8940 K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 R {sub Sun} out to <0.8 AU, with a total mass of {approx}10{sup 20} g. We also construct WISE and follow-up ground-based near-infrared light curves of the system and find variability in the K band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to (1) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary system or (2) dust condensing from the companion's wind. The high inclination of this system and the presence of dust make it an attractive target for M dwarf transit surveys and long-term photometric monitoring.

  13. Binary group III-nitride based heterostructures: band offsets and transport properties

    Science.gov (United States)

    Roul, Basanta; Kumar, Mahesh; Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.

    2015-10-01

    In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

  14. Brown Dwarf Companions to White Dwarfs

    CERN Document Server

    Burleigh, M R; Dobbie, P D; Farihi, J; Napiwotzki, R; Maxted, P F L; Barstow, M A; Jameson, R F; Casewell, S L; Gänsicke, B T; Marsh, T R

    2011-01-01

    Brown dwarf companions to white dwarfs are rare, but recent infra-red surveys are slowly reveal- ing examples. We present new observations of the post-common envelope binary WD0137-349, which reveals the effects of irradiation on the ~ 0.05M* secondary, and new observations of GD 1400 which show that it too is a close, post-comon envelope system. We also present the lat- est results in a near-infrared photometric search for unresolved ultracool companions and to white dwarfs with UKIDSS. Twenty five DA white dwarfs were identified as having photometric excesses indicative of a low mass companion, with 8-10 of these having a predicted mass in the range asso- ciated with brown dwarfs. The results of this survey show that the unresolved (< 2") brown dwarf companion fraction to DA white dwarfs is 0.3 \\leq fWD+BD \\leq 1.3%.

  15. MARVELS-1b: A Short-Period, Brown Dwarf Desert Candidate from the SDSS-III MARVELS Planet Search

    CERN Document Server

    Lee, Brian L; Fleming, Scott W; Stassun, Keivan G; Gaudi, B Scott; Barnes, Rory; Mahadevan, Suvrath; Eastman, Jason D; Wright, Jason; Siverd, Robert J; Gary, Bruce; Ghezzi, Luan; Laws, Chris; Wisniewski, John P; de Mello, G F Porto; Ogando, Ricardo L C; Maia, Marcio A G; da Costa, Luiz Nicolaci; Sivarani, Thirupathi; Pepper, Joshua; Nguyen, Duy Cuong; Hebb, Leslie; De Lee, Nathan; Wang, Ji; Wan, Xiaoke; Zhao, Bo; Chang, Liang; Groot, John; Varosi, Frank; Hearty, Fred; Hanna, Kevin; van Eyken, J C; Kane, Stephen R; Agol, Eric; Bizyaev, Dmitry; Bochanski, John J; Brewington, Howard; Chen, Zhiping; Costello, Erin; Dou, Liming; Eisenstein, Daniel J; Fletcher, Adam; Ford, Eric B; Guo, Pengcheng; Holtzman, Jon A; Jiang, Peng; Leger, R French; Liu, Jian; Long, Daniel C; Malanushenko, Elena; Malanushenko, Viktor; Malik, Mohit; Oravetz, Daniel; Pan, Kaike; Rohan, Pais; Schneider, Donald P; Shelden, Alaina; Snedden, Stephanie A; Simmons, Audrey; Weaver, B A; Weinberg, David H; Xie, Ji-Wei

    2010-01-01

    We present a new short-period brown dwarf candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of the Sloan Digital Sky Survey (SDSS-III), and we designate the brown dwarf as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5-m telescope. From our 20 radial velocity measurements spread over a ~370 d time baseline, we derive a Keplerian orbital fit with semi-amplitude K=2.533+/-0.025 km/s, period P=5.8953+/-0.0004 d, and eccentricity consistent with circular. Independent follow-up radial velocity data confirm the orbit. Adopting a mass of 1.37+/-0.11 M_Sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0+/-1.5 M_Jup, a semimajor axis 0....

  16. ALFALFA Discovery of the Nearby Gas-Rich Dwarf Galaxy Leo~P. III. An Extremely Metal Deficient Galaxy

    CERN Document Server

    Skillman, Evan D; Berg, Danielle A; Pogge, Richard W; Haurberg, Nathalie C; Cannon, John M; Aver, Erik; Olive, Keith A; Giovanelli, Riccardo; Haynes, Martha P; Adams, Elizabeth A K; McQuinn, Kristen B W; Rhode, Katherine L

    2013-01-01

    We present KPNO 4-m and LBT/MODS spectroscopic observations of an HII region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] 4363 Angstrom line and determine a "direct" oxygen abundance of 12 + log(O/H) = 7.17 +/- 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal alpha element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the "delayed release" hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509 +0.0184 -0.0123 which compares well with the WMAP + BBN prediction of 0.2483 +/- 0.0002 for the primordial helium abundance. We suggest that surve...

  17. Single and binary evolution of Population III stars and their supernovae light curves

    CERN Document Server

    Lawlor, T M; Johnson, T A; MacDonald, J

    2007-01-01

    We present stellar evolution calculations for Population III stars for both single and binary star evolution. Our models include 10 Msun and 16.5 Msun single stars and a 10 Msun model star that undergoes an episode of accretion resulting in a final mass of 16.1 Msun. For comparison, we present the evolution of a solar heavy element abundance model. We use the structure from late stage evolution models to calculate simulated supernova light curves. Light curve comparisons are made between accretion and non-accretion progenitor models, and models for single star evolution of comparable masses. Where possible, we make comparisons to previous works. Similar investigations have been carried out, but primarily for solar or near solar heavy metal abundance stars and not including both the evolution and supernovae explosions in one work.

  18. Natal Kicks and Time Delays in Merging Neutron Star Binaries: Implications for r-process Nucleosynthesis in Ultra-faint Dwarfs and in the Milky Way

    Science.gov (United States)

    Beniamini, Paz; Hotokezaka, Kenta; Piran, Tsvi

    2016-09-01

    Merging neutron star binaries are prime candidate sources for heavy r-process nucleosynthesis. The amount of heavy r-process material is consistent with the mass ejection and rates of mergers, and abundances of relic radioactive materials suggest that heavy r-process material is produced in rare events. Observations of possible macronovae provide further support for this model. Still, some concerns remain. One is the observation of heavy r-process elements in ultra-faint dwarf (UFD) galaxies. The escape velocities from UFDs are so small that the natal kicks, taking place at neutron stars’ birth, might eject such binaries from UFDs. Furthermore, the old stellar populations of UFDs require that r-process nucleosynthesis must have taken place very early on, while it may take several Gyr for compact binaries to merge. This last problem arises also within the Milky Way where heavy r-process materials have been observed in some low-metallicity stars. We show here that ≳ 0.5 of neutron star binaries form with a sufficiently small proper motion to remain bound even in a UFD. Furthermore, approximately 90% of double neutron stars with an initial separation of 1011 cm merge within 300 Myr and ≈ 15 % merge in less than 100 Myr. This population of “rapid mergers” explains the appearance of heavy r-process material in both UFDs and in the early Milky Way.

  19. Basic calibrations of the photographic RGU system. III - Intermediate and extreme Population II dwarf stars

    Science.gov (United States)

    Buser, R.; Fenkart, R. P.

    1990-11-01

    This paper presents an extended calibration of the color-magnitude and two-color diagrams and the metal-abundance parameter for the intermediate Population II and the extreme halo dwarfs observed in the Basel Palomar-Schmidt RGU three-color photometric surveys of the galaxy. The calibration covers the metallicity range between values +0.50 and -3.00. It is shown that the calibrations presented are sufficiently accurate to be useful for the future analyses of photographic survey data.

  20. The WIRED Survey III: An Infrared Excess around the Eclipsing Post-Common Envelope Binary SDSS J030308.35+005443.7

    CERN Document Server

    Debes, John H; Farihi, Jay; Wachter, Stefanie; Leisawitz, David T; Cohen, Martin

    2012-01-01

    We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSSJ 030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longwards of 3-microns. A T_eff of 8940K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 Rsun out to <0.8 AU, with a total mass of ~10^20 g. We also construct WISE and follow-up ground-based near-infrared light curves of the system, and find variability in the K-band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to a) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary sys...

  1. K2 Discovery of Young Eclipsing Binaries in Upper Scorpius: Direct Mass and Radius Determinations for the Lowest Mass Stars and Initial Characterization of an Eclipsing Brown Dwarf Binary

    CERN Document Server

    David, Trevor J; Cody, Ann Marie; Carpenter, John M; Howard, Andrew W

    2015-01-01

    We report the discovery of three low-mass double-lined eclipsing binaries in the pre-main sequence Upper Scorpius association, revealed by $K2$ photometric monitoring of the region over $\\sim$ 78 days. The orbital periods of all three systems are $<$5 days. We use the $K2$ photometry plus multiple Keck/HIRES radial velocities and spectroscopic flux ratios to determine fundamental stellar parameters for both the primary and secondary components of each system, along with the orbital parameters. We present tentative evidence that EPIC 203868608 is a hierarchical triple system comprised of an eclipsing pair of $\\sim$25 $M_\\mathrm{Jup}$ brown dwarfs with a wide M-type companion. If confirmed, it would constitute only the second double-lined eclipsing brown dwarf binary system discovered to date. The double-lined system EPIC 203710387 is composed of nearly identical M4.5-M5 stars with fundamentally determined masses and radii measured to better than 3% precision ($M_1=0.1169\\pm0.0031 M_\\odot$, $M_2=0.1065\\pm0.0...

  2. Ionisation in atmospheres of Brown Dwarfs and extrasolar planets III. Breakdown conditions for mineral clouds

    CERN Document Server

    Helling, Ch; Stark, C; Diver, D

    2013-01-01

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in Brown Dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from ou...

  3. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Helling, Ch.; Jardine, M.; Stark, C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Diver, D., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-04-20

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

  4. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  5. The X-ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-ray Sources

    CERN Document Server

    Laycock, Silas G T; Williams, Benjamin F; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M

    2016-01-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 sigma level, from a catalog of 110 unique point sources. We find 4 transients (flux variability ratio greater than 10) and a further 8 objects with ratio > 5. The observations span years 2003 - 2010 and reach a limiting luminosity of >10$^{35}$ erg/s, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light-curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magella...

  6. Natal Kicks and Time Delays in Merging Neutron Star Binaries - Implications for r-process nucleosynthesis in Ultra Faint Dwarfs and in the Milky Way

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    Merging neutron star binaries are prime candidate sources for heavy r-process nucleosynthesis. The amount of heavy r-process material is consistent with the mass ejection and rates of mergers, and abundances of relic radioactive materials suggest that heavy r-process material is produced in rare events. Observations of possible macronovae provide further support for this model. Still, some concerns remain. One is the observation of heavy r-process elements in Ultra Faint Dwarf (UFD) galaxies. The escape velocities from UFDs are so small that the natal kicks, taking place at neutron stars birth, might eject such binaries from UFDs. Furthermore the old stellar populations of UFDs requires that r-process nucleosynthesis must have taken place very early on, while it may take several Gyr for compact binaries to merge. This last problem arises also within the Milky Way where heavy r-process materials has been observed in some low metallicity stars. We show here that since a significant fraction of neutron star bina...

  7. A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass-Radius Relationship for M Dwarfs

    Science.gov (United States)

    Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme

    2017-08-01

    We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.

  8. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample

    CERN Document Server

    Camacho, J; García-Berro, E; Zorotovic, M; Schreiber, M R; Rebassa-Mansergas, A; Gómez-Morán, A Nebot; Gänsicke, B T

    2014-01-01

    Detached white dwarf + main sequence (WD+MS) systems represent the simplest population of post-common envelope binaries (PCEBs). Since the ensemble properties of this population carries important information about the characteristics of the common-envelope (CE) phase, it deserves close scrutiny. However, most population synthesis studies do not fully take into account the effects of the observational selection biases of the samples used to compare with the theoretical simulations. Here we present the results of a set of detailed Monte Carlo simulations of the population of WD+MS binaries in the Sloan Digital Sky Survey (SDSS) Data Release 7. We used up-to-date stellar evolutionary models, a complete treatment of the Roche lobe overflow episode, and a full implementation of the orbital evolution of the binary systems. Moreover, in our treatment we took into account the selection criteria and all the known observational biases. Our population synthesis study allowed us to make a meaningful comparison with the a...

  9. Statistical Time-Resolved Spectroscopy: A higher fraction of short-period binaries for metal-rich F-type dwarfs in SDSS

    CERN Document Server

    Hettinger, T; Strader, J; Bickerton, S J; Beers, T C

    2015-01-01

    Stellar multiplicity lies at the heart of many problems in modern astrophysics, including the physics of star formation, the observational properties of unresolved stellar populations, and the rates of interacting binaries such as cataclysmic variables, X-ray binaries, and Type Ia supernovae. However, little is known about the stellar multiplicity of field stars in the Milky Way, in particular about the differences in the multiplicity characteristics between metal-rich disk stars and metal-poor halo stars. In this study we perform a statistical analysis of ~15,000 F-type dwarf stars in the Milky Way through time-resolved spectroscopy with the sub-exposures archived in the Sloan Digital Sky Survey. We obtain absolute radial velocity measurements through template cross-correlation of individual sub-exposures with temporal baselines varying from minutes to years. These sparsely sampled radial velocity curves are analyzed using Markov chain Monte Carlo techniques to constrain the very short-period binary fraction...

  10. The Problem of Relationship Between Mass and Radius of the Red Dwarf Binaries%红矮星双星的质径关系难题

    Institute of Scientific and Technical Information of China (English)

    张斌; 朱俐颖

    2016-01-01

    红矮星的质量一般小于0.8 Mfl,有效温度介于2500~5000 K之间,包括晚K型和M型恒星,属于小质量晚型恒星.红矮星双星由于展现出许多独特的性质而备受天文界关注,最为突出的有三点:精确测量恒星半径和质量,强烈的活动性,以及由于存在质径关系难题而表现出与理论演化模型的不符.所谓红矮星质径关系难题,是指观测到的恒星半径要比理论计算的大,而有效温度却比理论计算的低,但是光度一致.对此难题的可能解释主要包括三个方面:恒星金属丰度,恒星的自转以及恒星的磁场活动.随着研究的深入,支持自转和磁场活动联合作用的证据逐渐增多,具体的细节还在研究中.%Red dwarfs which are ubiquitous in our galaxy refer to, the mass is less than 0.8 solar mass, with a low the surface effective temperature distribution between 2500~5000 K and in their main sequence evolution stage. Generally speaking, red dwarf binaries are cool stars including M and late K type stars, which belong to a part of late low-mass eclipsing binaries. Due to many unique properties, red dwarf binaries are brought into sharp focus in astronomy in recent years. The most prominent properties are the accurate measurement of stellar radius and mass; strongly activity and the discrepancy between theory evolution model and observation because of mass-radius relation problem. The so-called mass-radius relation problem means that the observed stellar radius is bigger than the theoretical calculation and the effective temperature is lower than the theoretical calculation, but the luminosity is consistent. The stellar metallicity, stellar rotation and stellar magnetic activity are three possible main explanations to this problem. As the deepening of the research, the evidence of supporting the combined action of rotation and magnetic activity is gradually increasing, the understanding of the specific details still need more efforts in

  11. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences: III. The pre-ELM white dwarf instability strip

    CERN Document Server

    Córsico, A H; Serenelli, A M; Kepler, S O; Jeffery, C S; Corti, M A

    2016-01-01

    Two low-mass pre-white dwarfs, which could be precursors of ELM white dwarfs, have been observed to show multiperiodic photometric variations. They could constitute a new class of pulsating low-mass pre-white dwarf stars. We present a detailed nonadiabatic pulsation study of such stars, employing full evolutionary sequences of low-mass He-core pre-white dwarf models. We have considered models in which element diffusion is accounted for and also models in which it is neglected. We confirm and explore in detail a new instability strip in the domain of low gravities and low effective temperatures of the $T_{\\rm eff}-\\log g$ diagram, where low-mass pre-white dwarfs are currently found. The destabilized modes are radial and nonradial $p$ and $g$ modes excited by the $\\kappa-\\gamma$ mechanism acting mainly at the zone of the second partial ionization of He, with non-negligible contributions from the region of the first partial ionization of He and the partial ionization of H. The computations with element diffusion...

  12. Absolute dimensions of solar-type eclipsing binaries III. EW orionis

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Bruntt, H.; Olsen, E. H.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb.......stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb....

  13. The TRENDS High-Contrast Imaging Survey. III. A Faint White Dwarf Companion Orbiting HD 114174

    CERN Document Server

    Crepp, Justin R; Howard, Andrew W; Marcy, Geoffrey W; Gianninas, Alexandros; Kilic, Mukremin; Wright, Jason T

    2013-01-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the "trend". HD 114174 B has a projected separation of 692+/-9 mas (18.1 AU) and is 10.75+/-0.12 magnitudes (contrast of 5x10{-5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 years demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M_J=13.97+/-0.11, and colors, J-K= 0.12+/-0.16 mag. These characteristics are consistent with an ~T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of m=0.260+/-0.010Msun. ...

  14. The relativistic pulsar-white dwarf binary PSR J1738+0333 I. Mass determination and evolutionary history

    CERN Document Server

    Antoniadis, J; Koester, D; Freire, P C C; Wex, N; Tauris, T M; Kramer, M; Bassa, C G

    2012-01-01

    PSR J1738+0333 is one of the four millisecond pulsars known to be orbited by a white dwarf companion bright enough for optical spectroscopy. Of these, it has the shortest orbital period, making it especially interesting for a range of astrophysical and gravity related questions. We present a spectroscopic and photometric study of the white dwarf companion and infer its radial velocity curve, effective temperature, surface gravity and luminosity. We find that the white dwarf has properties consistent with those of low-mass white dwarfs with thick hydrogen envelopes, and use the corresponding mass-radius relation to infer its mass; M_WD = 0.181 +/- +0.007/-0.005 solar masses. Combined with the mass ratio q=8.1 +/- 0.2 inferred from the radial velocities and the precise pulsar timing ephemeris, the neutron star mass is constrained to M_PSR = 1.47 +/- +0.07/-0.06 solar masses. Contrary to expectations, the latter is only slightly above the Chandrasekhar limit. We find that, even if the birth mass of the neutron s...

  15. Variability of the Spin Period of the White Dwarf in the Magnetic Cataclysmic Binary System EX Hya

    CERN Document Server

    Andronov, Ivan L

    2013-01-01

    The observations of the two-periodic magnetic cataclysmic system EX Hya have been carried out, using the telescopes RC16 and TOA-150 of the Tzec Maun observatory. 6 nights of observations were obtained in 2010-2011 (alternatively changing filters VR). Also the databases of WASP, ASAS and AAVSO have been analyzed. Processing time series was carried out using the program MCV. We analyzed changes in the rotation period of the white dwarf, and based on our own and previously published moments of maximum. The ephemeris was determined for the maxima of the radiation flux associated with the rotation of the magnetic white dwarf: Tmax=2437699.89079(59) +0.0465464808(69).E-6.3(2)*10^{-13}E^2, which corresponds to the characteristic timescale of the rotation spin-up of 4.67(14)*10^6 years. This contradicts the estimated value of the mass of the white dwarf of 0.42M_\\odot, based on X-ray observations made by Yuasa et al (2010), however, is consistent with estimates of the masses of 0.79 M_\\odot (white dwarf) and 0.108 M...

  16. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    Science.gov (United States)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  17. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    Science.gov (United States)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >1035 erg s‑1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  18. The solar neighborhood. XXXI. Discovery of an unusual red+white dwarf binary at ∼25 pc via astrometry and UV imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jao, Wei-Chun; Henry, Todd J.; Winters, Jennifer G.; Gies, Douglas R. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Subasavage, John P. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Riedel, Adric R. [Department of Physics and Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065 (United States); Ianna, Philip A., E-mail: jao@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: winters@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jsubasavage@nofs.navy.mil, E-mail: ar494@hunter.cuny.edu, E-mail: philianna3@gmail.com [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2014-01-01

    We report the discovery of a nearby M5.0V dwarf at 24.6 pc, SCR 1848–6855, that is orbited by an unusual companion causing an astrometric perturbation of more than 200 mas. This is by far the largest perturbation found to date among more than 700 targets observed during our long-term astrometry/photometry program at the CTIO 0.9 m telescope. We present here a suite of astrometric, photometric, and spectroscopic observations of this high proper motion (∼1.''3 yr{sup –1}) system in an effort to reveal the nature of this unusual binary. The measured near-UV and optical U band fluxes exceed those expected for comparable M5.0V stars, and excess flux is also detected in the spectral range 4000-7000 Å. The elusive companion has been detected in HST-STIS+MAMA images at 1820 Å and 2700 Å, and our analysis shows that it is probably a rare, cool, white dwarf with T = 4600-5500 K. Given the long-term astrometric coverage, the prospects for an accurate mass determination are excellent, although as yet we can only provide limits on the unusual companion's mass.

  19. Orbital properties of an unusually low-mass sdB star in a close binary system with a white dwarf

    CERN Document Server

    Silvotti, R; Bloemen, S; Telting, J H; Heber, U; Oreiro, R; Reed, M D; Farris, L E; O'Toole, S J; Lanteri, L; Degroote, P; Hu, H; Baran, A S; Hermes, J J; Althaus, L G; Marsh, T R; Charpinet, S; Li, J; Morris, R L; Sanderfer, D T

    2012-01-01

    We have used 605 days of photometric data from the Kepler spacecraft to study KIC 6614501, a close binary system with an orbital period of 0.15749747(25) days (3.779939 hours), that consists of a low-mass subdwarf B (sdB) star and a white dwarf. As seen in many other similar systems, the gravitational field of the white dwarf produces an ellipsoidal deformation of the sdB which appears in the light curve as a modulation at two times the orbital frequency. The ellipsoidal deformation of the sdB implies that the system has a maximum inclination of \\sim40 degrees, with i \\approx 20\\degrees being the most likely. The orbital radial velocity of the sdB star is high enough to produce a Doppler beaming effect with an amplitude of 432 \\pm 5 ppm, clearly visible in the folded light curve. The photometric amplitude that we obtain, K1 = 85.8 km/s, is \\sim 12 per cent less than the spectroscopic RV amplitude of 97.2 \\pm 2.0 km/s. The discrepancy is due to the photometric contamination from a close object at about 5 arcse...

  20. Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    CERN Document Server

    Lodieu, N; Bejar, V J S; Gauza, B; Ruiz, M T; Rebolo, R; Pinfield, D J; Martin, E L

    2014-01-01

    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of...

  1. Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions

    CERN Document Server

    Fregeau, J M; Joshi, K J; Rasio, F A

    2003-01-01

    We study the dynamical evolution of globular clusters using our 2D Monte Carlo code with the inclusion of primordial binary interactions for equal-mass stars. We use approximate analytical cross sections for energy generation from binary-binary and binary-single interactions. After a brief period of slight contraction or expansion of the core over the first few relaxation times, all clusters enter a much longer phase of stable "binary burning" lasting many tens of relaxation times. The structural parameters of our models during this phase match well those of most observed globular clusters. At the end of this phase, clusters that have survived tidal disruption undergo deep core collapse, followed by gravothermal oscillations. Our results clearly show that the presence of even a small fraction of binaries in a cluster is sufficient to support the core against collapse significantly beyond the normal core collapse time predicted without the presence of binaries. For tidally truncated systems, collapse is easily...

  2. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration.

  3. The Great Escape III: Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    CERN Document Server

    Veras, Dimitri; Wyatt, Mark C; Tout, Christopher A

    2013-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galactic environment before, during and after Asymptotic Giant Branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass loss, Galactic tidal perturbations, and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass loss will shrink ...

  4. Neighbours hiding in the Galactic plane - a new M/L dwarf (binary?) candidate for the 8pc sample

    CERN Document Server

    Scholz, Ralf-Dieter

    2013-01-01

    AIMS: Using Wide-field Infrared Survey Explorer (WISE) data and previous optical and near-infrared sky surveys, I try to identify still missing stellar and substellar neighbours of the Sun. METHODS: When checking the brightest red WISE sources for proper motions and colours expected for nearby M and L dwarfs I also approached the thin Galactic plane. Astrometry (proper motion and parallax measurements) and the available photometry were used to give first estimates of the distance and type of nearby candidates. RESULTS: I have discovered WISE~J072003.20$-$084651.2, an object with moderately high proper motion ($\\mu$$\\approx$120~mas/yr) and at low Galactic latitude ($b$$=$$+$2.3$\\degr$), with similar brightness ($J$$\\approx$10.6, $w2$$\\approx$8.9) and colours ($I$$-$$J$$\\approx$3.2, $J$$-$$K_s$$\\approx$1.2, $w1$$-$$w2$$\\approx$0.3) as the nearest known M-type brown dwarf LP~944-20. With a photometric classification as an M9$\\pm$1 dwarf, the photometric distance of the new object lies in the range of 6$\\pm$2~pc....

  5. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    CERN Document Server

    Brorby, Matthew; Feng, Hua

    2015-01-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high mass X-ray binary (HMXB), with a luminosity of 1.3-23x10^38 erg s^-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7x10^40 erg s^-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high flux state are hard, best described by a disk plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes (StMBH) accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate mass black hole. Determining the spectral properties of HMXBs in BCDs has important im...

  6. Photospheric and chromospheric activity in V405 And: An M dwarf binary with components on the two sides of the full convection limit

    CERN Document Server

    Vida, K; Kővári, Zs; Korhonen, H; Bartus, J; Hurta, Zs; Posztobányi, K

    2009-01-01

    We investigate the fast rotating (P_orb=P_rot=0.465d) active dwarf binary V405 And (M0V+M5V) using photometric BV(RI)_C and optical spectroscopic data. The light variation is caused by the combined effect of spottedness and binarity with a small eclipse. From the available light and radial velocity curves we estimate the system parameters. Three flare events happened during the observations: two were found in the spectroscopic data and one was observed photometrically in BV(RI)_C colours. An interesting eruptive phenomenon emerged from the photometric measurements which can be interpreted as a series of post-flare eruptions lasting for at least 3 orbits (rotations) of the system, originating from trans-equatorial magnetic loops, which connect the active regions in the two hemispheres. The two components of V405 And have masses well over and below the theoretical limit of full convection. This rare property makes the binary an ideal target for observing and testing models for stellar dynamo action.

  7. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters - II. Cataclysmic variables - progenitors and population at birth

    Science.gov (United States)

    Belloni, Diogo; Giersz, Mirek; Rocha-Pinto, Helio J.; Leigh, Nathan W. C.; Askar, Abbas

    2017-02-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst (≲1 Gyr) connected with the formation of the most massive white dwarfs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to four times older than their field counterparts. Our results also illustrate that, due mainly to unstable mass transfer, some CVs that form in our simulations are destroyed before the present day. Finally, some field CVs might have originated from globular clusters, as found in our simulations, although the fraction of such escapers should be small relative to the entire Galactic field CV population.

  8. SDSS J1534+1615AB: A Novel T Dwarf Binary Found with Keck Laser Guide Star Adaptive Optics and the Potential Role of Binarity in the L/T Transition

    CERN Document Server

    Liu, M C; Chiu, K; Fan, X; Geballe, T R; Golimowski, D A; Leggett, S K; Schneider, D P; Chiu, Kuenley; Fan, Xiaohui; Golimowski, David A.; Liu, Michael C.; Schneider, Donald P.

    2006-01-01

    We have resolved the newly discovered T dwarf SDSS J1534+1615 into a 0.11'' binary using the Keck sodium laser guide star adaptive optics system. With an integrated-light spectral type of T3.5, this binary provides a new benchmark for studying the distinctive J-band brightening previously noted among early and mid-T dwarfs, using two brown dwarfs with different spectral types but having a common metallicity and age and very similar surface gravities. We estimate spectral types of T1.5+/-0.5 and T5.5+/-0.5 for the two components based on their near-IR colors, consistent with modeling the integrated-light spectrum as the blend of two components. The observed near-IR flux ratios are unique compared to all previously known substellar binaries: the component that is fainter at H and K' is brighter at J. This inversion of the near-IR fluxes is a manifestation of the J-band brightening within this individual binary system. Therefore, SDSS 1534+1615 demonstrates that the brightening can be intrinsic to ultracool phot...

  9. Near infrared spectroscopy of M dwarfs. III. Carbon and oxygen abundances in late M dwarfs including the dusty rapid rotator 2MASSI J1835379+325954

    CERN Document Server

    Tsuji, Takashi

    2015-01-01

    Carbon and oxygen abundances of eight late M dwarfs are determined based on the near IR spectra of medium resolution. Seven objects with T_eff above 2600K are analyzed with the dust-free models. The M8.5 dwarf 2MASSI J1835379+325954 whose T_eff is 2275K is analyzed by the dusty model, in which the surface temperature is higher by about 600K due to the blanketing effect of the dust, and C and O abundances are higher by 0.25 and 0.15dex, respectively, compared to the analysis by the dust-free model. Once dust forms in the photosphere, the dust works as a kind of thermostat and temperatures of the surface layers remain nearly the same as the condensation temperatures of the dust grains. For this reason, the temperatures of the surface layers of the dusty dwarfs are not sensitive to the fundamental parameters including T_eff. Also, 2MASS J1835379 +325954 is a rapid rotator, for which its EWs are thought to remain unchanged by the rotational broadening. This is, however, true only when the true continuum is well d...

  10. Tidal Downsizing Model. III. Planets from sub-Earths to Brown Dwarfs: structure and metallicity preferences

    CERN Document Server

    Nayakshin, Sergei

    2015-01-01

    We present improved population synthesis calculations in the context of the Tidal Downsizing (TD) hypothesis for planet formation. Our models provide natural explanations and/or quantitative match to exoplanet observations in the following categories: (i) most abundant planets being super-Earths; (ii) cores more massive than $\\sim 5-15 M_\\oplus$ are enveloped by massive metal-rich atmospheres; (iii) the frequency of occurrence of close-in gas giant planets correlates strongly with metallicity of the host star; (iv) no such correlation is found for sub-Neptune planets; (v) presence of massive cores in giant planets; (vi) the composition of gas giant planets is over-abundant in metals compared to their host stars; (vii) this over-abundance decreases with planet's mass, as observed; (viii) a deep valley in the planet mass function between masses of $\\sim 10-20 M_\\oplus$ and $\\sim 100 M_\\oplus$. We provide a number of observational predictions distinguishing the model from Core Accretion: (a) composition of the m...

  11. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: The effects of including recombination energy

    CERN Document Server

    Zorotovic, M; García-Berro, E; Camacho, J; Torres, S; Rebassa-Mansergas, A; Gänsicke, B T

    2014-01-01

    Detached WD+MS PCEBs are perhaps the most suitable objects for testing predictions of close-compact binary-star evolution theories, in particular, CE evolution. The population of WD+MS PCEBs has been simulated by several authors in the past and compared with observations. However, most of those predictions did not take the possible contributions to the envelope ejection from additional sources of energy (mostly recombination energy) into account. Here we update existing binary population models of WD+MS PCEBs by assuming that a fraction of the recombination energy available within the envelope contributes to ejecting the envelope. We performed Monte Carlo simulations of 10^7 MS+MS binaries for 9 different models using standard assumptions for the initial primary mass function, binary separations, and initial-mass-ratio distribution and evolved these systems using the publicly available BSE code. Including a fraction of recombination energy leads to a clear prediction of a large number of long orbital period (...

  12. MARVELS-1b: A Short-period, Brown Dwarf Desert Candidate from the SDSS-III Marvels Planet Search

    Science.gov (United States)

    Lee, Brian L.; Ge, Jian; Fleming, Scott W.; Stassun, Keivan G.; Gaudi, B. Scott; Barnes, Rory; Mahadevan, Suvrath; Eastman, Jason D.; Wright, Jason; Siverd, Robert J.; Gary, Bruce; Ghezzi, Luan; Laws, Chris; Wisniewski, John P.; Porto de Mello, G. F.; Ogando, Ricardo L. C.; Maia, Marcio A. G.; Nicolaci da Costa, Luiz; Sivarani, Thirupathi; Pepper, Joshua; Nguyen, Duy Cuong; Hebb, Leslie; De Lee, Nathan; Wang, Ji; Wan, Xiaoke; Zhao, Bo; Chang, Liang; Groot, John; Varosi, Frank; Hearty, Fred; Hanna, Kevin; van Eyken, J. C.; Kane, Stephen R.; Agol, Eric; Bizyaev, Dmitry; Bochanski, John J.; Brewington, Howard; Chen, Zhiping; Costello, Erin; Dou, Liming; Eisenstein, Daniel J.; Fletcher, Adam; Ford, Eric B.; Guo, Pengcheng; Holtzman, Jon A.; Jiang, Peng; French Leger, R.; Liu, Jian; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Malik, Mohit; Oravetz, Daniel; Pan, Kaike; Rohan, Pais; Schneider, Donald P.; Shelden, Alaina; Snedden, Stephanie A.; Simmons, Audrey; Weaver, B. A.; Weinberg, David H.; Xie, Ji-Wei

    2011-02-01

    We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ~370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s-1, period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M Jup, a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ~14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii lsim1 R Jup.

  13. Complexation study of cryptand 222 with lanthanum(III) cation in binary mixed non-aqueous solvents

    Science.gov (United States)

    Dolatshahi, S.; Rounaghi, G. H.; Tarahomi, S.

    2013-10-01

    Conductometric titrations have been performed in some binary solvent solutions of acetonitrile (AN), 1,2-dichloroethane (DCE), ethylacetate (EtOAc) and methylacetate (MeOAc) with methanol (MeOH), at 288, 298, 308, and 318 K to give the complex stability constant and the thermodynamic parameters for the complexation of lanthanum(III) cation with 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]-hexacosane (cryptand 222). The stability constant of the resulting 1:1 complex at each temperature was determined from computer fitting of the conductance-mole ratio data. The results revealed that, the stoichiometry and the stability order of (cryptand 222 · La)3+ complex changes with the nature and also the composition of the solvent system. A non-linear relationship was observed between the stability constant (log K f) of (cryptand 222 · La)3+ complex versus the composition of the binary mixed solvents. Thermodynamically, the complexation of lanthanum(III) cation with the cryptand 222, is mainly entropy governed and the values of these parameters are influenced by the nature and composition of the binary mixed solvent solutions.

  14. Constraining the Absolute Orientation of Eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    CERN Document Server

    Madura, Thomas I; Owocki, Stanley P; Groh, Jose H; Okazaki, Atsuo T; Russell, Christopher M P

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA {\\theta} that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38 degrees, and the temporal variations in emission seen at negative slit PAs, the binary ...

  15. LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3{pi} PAN-STARRS1 SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nicolas F.; Laevens, Benjamin P. M. [Observatoire astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, 11 rue de l' Universite, F-67000 Strasbourg (France); Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Schlafly, Edward F.; Morganson, Eric; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Bernard, Edouard J.; Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Price, Paul A., E-mail: nicolas.martin@astro.unistra.fr [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-07-20

    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r{sub P1}- and i{sub P1}-band imaging data. Both are luminous systems (M{sub V} {approx} -12) located at projected distances of 20. Degree-Sign 3 and 10. Degree-Sign 5 from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756{sup +44}{sub -28} kpc and 772{sup +61}{sub -56} kpc, respectively, and corresponding M31-centric distances of 275 {+-} 7 kpc and 144{sup +6}{sub -4} kpc. The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r{sub h} = 4.2{sup +0.4}{sub -0.5} arcmin or 912{sup +124}{sub -93} pc for Lac I; r{sub h} = 6.5{sup +1.2}{sub -1.0} arcmin or 1456 {+-} 267 pc for Cas III) and consequently low surface brightness ({mu}{sub 0} {approx} 26.0 mag arcsec{sup -2}), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3{pi} Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.

  16. LASIP-III, a generalized processor for standard interface files. [For creating binary files from BCD input data and printing binary file data in BCD format (devised for fast reactor physics codes)

    Energy Technology Data Exchange (ETDEWEB)

    Bosler, G.E.; O' Dell, R.D.; Resnik, W.M.

    1976-03-01

    The LASIP-III code was developed for processing Version III standard interface data files which have been specified by the Committee on Computer Code Coordination. This processor performs two distinct tasks, namely, transforming free-field format, BCD data into well-defined binary files and providing for printing and punching data in the binary files. While LASIP-III is exported as a complete free-standing code package, techniques are described for easily separating the processor into two modules, viz., one for creating the binary files and one for printing the files. The two modules can be separated into free-standing codes or they can be incorporated into other codes. Also, the LASIP-III code can be easily expanded for processing additional files, and procedures are described for such an expansion. 2 figures, 8 tables.

  17. MOCCA-SURVEY Database I. Accreting White Dwarf Binary Systems in Globular Clusters I. Cataclysmic Variables -- present-day population

    CERN Document Server

    Belloni, Diogo T; Askar, Abbas; Leigh, Nathan; Hypki, Arkadiusz

    2016-01-01

    In this paper, which is the first in a series of papers associated with cataclysmic variables and related objects, we introduce the CATUABA code, a numerical machinery written for analysis of the MOCCA simulations, and show some first results by investigating the present-day population of cataclysmic variables in globular clusters. Emphasis was given on their properties and the observational selection effects when observing and detecting them. In this work we analysed in this work six models, including three with Kroupa distributions of the initial binaries. We found that for models with Kroupa initial distributions, considering the standard value of the efficiency of the common envelope phase adopted in BSE, no single cataclysmic variable was formed only via binary stellar evolution, i. e., in order to form them, strong dynamical interactions have to take place. We show and explain why this is inconsistent with observational and theoretical results. Our results indicate that the population of cataclysmic var...

  18. Rapid Decreasing in the Orbital Period of the Detached White Dwarf-main Sequence Binary SDSS J143547.87+373338.5

    Science.gov (United States)

    Qian, S.-B.; Han, Z.-T.; Soonthornthum, B.; Zhu, L.-Y.; He, J.-J.; Rattanasoon, S.; Aukkaravittayapun, S.; Liao, W.-P.; Zhao, E.-G.; Zhang, J.; Fernández Lajús, E.

    2016-02-01

    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 M⊙ and a fully convective star with a mass of 0.21 M⊙. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed-calculated (O-C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of \\dot{P}=-8.04× {10}-11 s s-1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O-C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.ͩ000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be {M}3{sin}{i}\\prime =0.0189(+/- 0.0016) M⊙ when a total mass of 0.71 M⊙ for SDSS J143547.87+373338.5 is adopted. For orbital inclinations {i}\\prime ≥slant 15\\buildrel{\\circ}\\over{.} 9, it would be below the stable hydrogen-burning limit of M3 ˜ 0.072 M⊙, and thus the third body would be a brown dwarf.

  19. The critical mass ratio of double white dwarf binaries for violent merger-induced Type Ia supernova explosions

    CERN Document Server

    Sato, Yushi; Tanikawa, Ataru; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    2016-01-01

    Mergers of carbon-oxygen (CO) white dwarfs (WDs) are considered as one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics (SPH) simulations of merging CO WDs, we derived more stringent critical mass ratio (qcr) leading to the violent merger scenario than the previous results. We conclude that this difference mainly comes from the differences in the initial condition, synchronously spinning of WDs or not. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new qcr does not significantly affect the brightness...

  20. Fluorescence Resonance Energy Transfer of the Tb(III)-Nd(III) Binary System in Molten LiCl-KCl Eutectic Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, J. I. [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The lanthanides act as a neutron poison in nuclear reactor with large neutron absorption cross section. For that reason, very low amount of lanthanides is required in the recovered U/TRU ingot product from pyrochemical process. In view of that, the investigation of thermodynamic properties and chemical behaviors of lanthanides in molten chloride salt are necessary to estimate the performance efficiency of pyrochemical process. However, there are uncertainties about knowledge and understanding of basic mechanisms in pyrochemical process, such as chemical speciation and redox behaviors due to the lack of in-situ monitoring methods for high temperature molten salt. The spectroscopic analysis is one of the probable techniques for in-situ qualitative and quantitative analysis. Recently, a few fluorescence spectroscopic measurements on single lanthanide element in molten LiCl-KCl eutectic have been investigated. The fluorescence intensity and the fluorescence lifetime of Tb(III) were decreased as increasing the concentration of Nd(III), demonstrating collisional quenching between donor ions and acceptor ions. The Forster distance (..0) of Tb(III)-Nd(III) binary system in molten LiCl-KCl eutectic was determined in the specific range of .... (0.1-1.0) and .. (1.387-1.496)

  1. The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity

    CERN Document Server

    Freire, Paulo C C; Esposito-Farèse, Gilles; Verbiest, Joris P W; Bailes, Matthew; Jacoby, Bryan A; Kramer, Michael; Stairs, Ingrid H; Antoniadis, John; Janssen, Gemma H

    2012-01-01

    (abridged) We report the results of a 10-year timing campaign on PSR J1738+0333, a 5.85-ms pulsar in a low-eccentricity 8.5-hour orbit with a low-mass white dwarf companion (...) The measurements of proper motion and parallax allow for a precise subtraction of the kinematic contribution to the observed orbital decay; this results in a significant measurement of the intrinsic orbital decay: (-25.9 +/- 3.2) \\times 10^{-15} s/s. This is consistent with the orbital decay from the emission of gravitational waves predicted by general relativity, (-27.7 +1.5/-1.9) \\times 10^{-15} s/s (...). This agreement introduces a tight upper limit on dipolar gravitational wave emission, a prediction of most alternative theories of gravity for asymmetric binary systems such as this. We use this limit to derive the most stringent constraints ever on a wide class of gravity theories, where gravity involves a scalar field contribution. When considering general scalar-tensor theories of gravity, our new bounds are more stringent tha...

  2. Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)

    CERN Document Server

    Williams, P K G; Irwin, J; Berta-Thompson, Z K; Charbonneau, D

    2014-01-01

    We present multi-epoch simultaneous radio, optical, H{\\alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 $\\pm$ 0.0001 and 3.7130 $\\pm$ 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational cam...

  3. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  4. LSPM J1112+7626: detection of a 41-day M-dwarf eclipsing binary from the MEarth transit survey

    CERN Document Server

    Irwin, Jonathan M; Berta, Zachory K; Latham, David W; Torres, Guillermo; Burke, Christopher J; Charbonneau, David; Dittmann, Jason; Esquerdo, Gilbert A; Stefanik, Robert P; Oksanen, Arto; Buchhave, Lars A; Nutzman, Philip; Berlind, Perry; Calkins, Michael L; Falco, Emilio E

    2011-01-01

    We report the detection of eclipses in LSPM J1112+7626, which we find to be a moderately bright (I_C = 12.14 +/- 0.05) very low-mass binary system with an orbital period of 41.03236 +/- 0.00002 days, and component masses M_1 = 0.395 +/- 0.002 Msol and M_2 = 0.275 +/- 0.001 Msol in an eccentric (e = 0.239 +/- 0.002) orbit. A 65 day out of eclipse modulation of approximately 2% peak-to-peak amplitude is seen in I-band, which is probably due to rotational modulation of photospheric spots on one of the binary components. This paper presents the discovery and characterization of the object, including radial velocities sufficient to determine both component masses to better than 1% precision, and a photometric solution. We find that the sum of the component radii, which is much better-determined than the individual radii, is inflated by 3.8 +0.9 -0.5 % compared to the theoretical model predictions, depending on the age and metallicity assumed. These results demonstrate that the difficulties in reproducing observed ...

  5. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    CERN Document Server

    Triaud, Amaury H M J; Anderson, David R; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Ségransan, Damien; Smalley, Barry; Stassun, Keivan; Udry, Stéphane; West, Richard G

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial plane...

  6. Interacting Binaries with Eccentric Orbits. III. Orbital Evolution due to Direct Impact and Self-Accretion

    CERN Document Server

    Sepinsky, J F; Kalogera, V; Rasio, F A

    2010-01-01

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of mass transfer is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semi-major axis an...

  7. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    Science.gov (United States)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  8. Evidence of large-scale structures in the atmosphere of the active K-dwarf component of V471 Tauri

    Science.gov (United States)

    Guinan, E. F.; Raymond, J. C.; Raymond, J. C.; Raymond, J. C.; Raymond, J. C.

    1986-01-01

    Contemporaneous IUE ultraviolet spectra and visible photoelectric data of the eclipsing binary V471 Tauri (K2V + DA) between 1979 and 1985 was analyzed. The combined data detail the three-dimensional structure of atmospheric loops and their associated starspots on the K dwarf. The distribution of starspot regions on the surface of the K star was inferred from the visible photometry. When spots are located near the limb of the K dwarf prior to and shortly after the total eclipse of the white dwarf, absorption lines such as C II, C III, c IV, and Si IV appear superimposed on the continuum of the white dwarf. These absorption lines are likely caused by cool coronal loops overlying the spots in the atmosphere of the K dwarf. The loops can extend nearly one stellar radius above the surface of the K2V star.

  9. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water.

    Science.gov (United States)

    Cui, Hao-Jie; Cai, Jie-Kui; Zhao, Huan; Yuan, Baoling; Ai, Cui-Ling; Fu, Ming-Lai

    2014-08-30

    Magnetic porous Fe-Mn binary oxide nanowires were successfully fabricated to efficient removal of As(III) from water. The adsorption capacity of the porous nanowires for As(III) obviously increased with increasing of manganese oxide in the composite, accompanying decrease of the saturation magnetization of the adsorbents. Magnetic porous Fe-Mn binary oxide nanowires with an initial Fe:Mn molar ratio of 1:3 exhibited the highest absorption capacity for As(III) and enable magnetic separation from water. The maximal adsorption capacity value is 171mgg(-1) at pH 7.0. In the initial pH range from 3 to 9, 200μgL(-1) of As(III) could be easily decreased to below 10μgL(-1) by the magnetic porous Fe-Mn binary oxide nanowires (0.05gL(-1)) within 75min, and the corresponding residual As was completely oxidized to less toxic As(V). The coexisting chloride, nitrate and sulfate had no significant effect on arsenic removal, whereas, phosphate and humic acid reduced the removal of As(III) by competing with arsenic species for adsorption sites. The resulting magnetic porous Fe-Mn binary oxide nanowires could be a promising adsorbent for As(III) removal from water. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Binaries discovered by the SPY project I. HE 1047-0436 a subdwarf B + white dwarf system

    CERN Document Server

    Napiwotzki, R; Heber, U; Karl, C; Drechsel, H; Pauli, E M; Christlieb, N

    2001-01-01

    In the course of our search for double degenerate binaries as potential progenitors of type Ia supernovae with the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY - SPY) we discovered that the sdB star HE 1047-0436 is radial velocity variable. The orbital period of 1.213253d, a semi-amplitude of 94km/s, and a minimum mass of the invisible companion of 0.44Msol are derived from the analysis of the radial velocity curve. We use an upper limit on the projected rotational velocity of the sdB star to constrain the system inclination and the companion mass to M>0.71Msol, bringing the total mass of the system closer to the Chandrasekhar limit. However, the system will merge due to loss of angular momentum via gravitational wave radiation only after several Hubble times. Atmospheric parameters and metal abundances are also derived. The resulting values are typical for sdB stars.

  11. Quark-novae in neutron star-white dwarf binaries: a model for luminous (spin-down powered) sub-Chandrasekhar-mass Type Ia supernovae?

    Institute of Scientific and Technical Information of China (English)

    Rachid Ouyed; Jan Staff

    2013-01-01

    We show that,by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD),a Type Ia explosion could occur.The QN ejecta collides with the WD,driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia).The conditions in the compressed low-mass WD (MWD < 0.9 M☉) in our model mimic those of a Chandrasekhar mass WD.The spin-down luminosity from the QN compact remnant (the quark star) provides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield.In QNe-Ia,photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay.Although QNe-Ia may not obey the Phillips relationship,their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample.Light-curve fitters would be confused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes,thus over-or under-estimating the true magnitude of these spin-down powered SNe-Ia.Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift.The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the i-band despite their luminous nature.We discuss possible QNe-Ia progenitors.

  12. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  13. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Norman, Michael L. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ahn, Kyungjin [Department of Earth Science Education, Chosun University, Gwangju 501-759 (Korea, Republic of); Wise, John H. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); O' Shea, Brian W., E-mail: hxu@ucsd.edu, E-mail: mlnorman@ucsd.edu, E-mail: kjahn@chosun.ac.kr, E-mail: jwise@gatech.edu, E-mail: oshea@msu.edu [Lyman Briggs College and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  14. Binary Star Orbits. III. In which we Revisit the Remarkable Case of Tweedledum and Tweedledee

    CERN Document Server

    Mason, Brian D; McAlister, Harold A

    2010-01-01

    Two of the most challenging objects for optical interferometry in the middle of the last century were the close components (FIN 332) of the wide visual binary STF2375 (= WDS 18455+0530 = HIP 92027 = ADS 11640). Each component of the wide pair was found to have subcomponents of approximately the same magnitude, position angle and separation and, hence, were designated by the tongue in cheek monikers "Tweedledum and Tweedledee" by the great visual interferometrist William S. Finsen in 1953. They were later included in a list of "Double Stars that Vex the Observer" by W.H. van den Bos (1958a). While speckle interferometry has reaped a rich harvest investigating the close inteferometric binaries of Finsen, the "Tweedles" have continued to both fascinate and exasperate due to both the great similarity of the close pairs as well as the inherent 180 degree ambiguity associated with interferometry. Detailed analysis of all published observations of the system have revealed several errors which are here corrected, all...

  15. Irradiated brown dwarfs

    CERN Document Server

    Casewell, S L; Lawrie, K A; Maxted, P F L; Dobbie, P D; Napiwotzki, R

    2014-01-01

    We have observed the post common envelope binary WD0137-349 in the near infrared $J$, $H$ and $K$ bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.

  16. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases to...

  17. Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. III. Subpopulations: distributions, shapes, origins

    CERN Document Server

    Lisker, T; Binggeli, B; Glatt, K; Lisker, Thorsten; Grebel, Eva K.; Binggeli, Bruno; Glatt, Katharina

    2007-01-01

    From a quantitative analysis of 413 Virgo cluster early-type dwarf galaxies (dEs) with Sloan Digital Sky Survey imaging data, we find that the dE class can be divided into multiple subpopulations that differ significantly in their morphology and clustering properties. Three dE subclasses are shaped like thick disks and show no central clustering: (1) dEs with disk features like spiral arms or bars, (2) dEs with central star formation, and (3) ordinary, bright dEs that have no or only a weak nucleus. These populations probably formed from infalling progenitor galaxies. In contrast, ordinary nucleated dEs follow the picture of classical dwarf elliptical galaxies in that they are spheroidal objects and are centrally clustered like E and S0 galaxies, indicating that they have resided in the cluster since a long time, or were formed along with it. These results define a morphology-density relation within the dE class. We find that the difference in the clustering properties of nucleated dEs and dEs with no or only...

  18. BEER analysis of Kepler and CoRoT light curves. III. Spectroscopic confirmation of seventy new beaming binaries discovered in CoRoT light curves

    Science.gov (United States)

    Tal-Or, L.; Faigler, S.; Mazeh, T.

    2015-08-01

    Context. The BEER algorithm searches stellar light curves for the BEaming, Ellipsoidal, and Reflection photometric modulations that are caused by a short-period companion. These three effects are typically of very low amplitude and can mainly be detected in light curves from space-based photometers. Unlike eclipsing binaries, these effects are not limited to edge-on inclinations. Aims: Applying the algorithm to wide-field photometric surveys such as CoRoT and Kepler offers an opportunity to better understand the statistical properties of short-period binaries. It also widens the window for detecting intrinsically rare systems, such as short-period brown-dwarf and massive-planetary companions to main-sequence stars. Methods: Applying the search to the first five long-run center CoRoT fields, we identified 481 non-eclipsing candidates with periodic flux amplitudes of 0.5-87 mmag. Optimizing the Anglo-Australian-Telescope pointing coordinates and the AAOmega fiber-allocations with dedicated softwares, we acquired six spectra for 231 candidates and seven spectra for another 50 candidates in a seven-night campaign. Analysis of the red-arm AAOmega spectra, which covered the range of 8342-8842 Å, yielded a radial-velocity precision of ~1 km s-1. Spectra containing lines of more than one star were analyzed with the two-dimensional correlation algorithm TODCOR. Results: The measured radial velocities confirmed the binarity of seventy of the BEER candidates - 45 single-line binaries, 18 double-line binaries, and 7 diluted binaries. We show that red giants introduce a major source of false candidates and demonstrate a way to improve BEER's performance in extracting higher fidelity samples from future searches of CoRoT light curves. The periods of the confirmed binaries span a range of 0.3-10 days and show a rise in the number of binaries per ΔlogP toward longer periods. The estimated mass ratios of the double-line binaries and the mass ratios assigned to the single

  19. The little-studied cluster Berkeley 90. I. LS III +46 11: a very massive O3.5 If* + O3.5 If* binary

    CERN Document Server

    Apellániz, J Maíz; Barbá, R H; Walborn, N R; Pellerin, A; Simón-Díaz, S; Sota, A; Marco, A; Alonso-Santiago, J; Bermudez, J Sanchez; Gamen, R C; Lorenzo, J

    2015-01-01

    Context: It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find due to their low numbers throughout the Galaxy and the implied large distances and extinctions. AIMS: We want to study: [a] LS III +46 11, identified in this paper as a very massive binary; [b] another nearby massive system, LS III +46 12; and [c] the surrounding stellar cluster, Berkeley 90. Methods: Most of the data used in this paper are multi-epoch high-S/N optical spectra though we also use Lucky Imaging and archival photometry. The spectra are reduced with devoted pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results: LS III +46 11 is identified as a new very-early-O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 12 and derive minimum masses of 38.80$\\pm$0.83 M_Sol and 35.60$\\pm$0.77 M_Sol for it...

  20. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Chang, Philip; Broderick, Avery E., E-mail: christoph.pfrommer@h-its.org, E-mail: aeb@cita.utoronto.ca, E-mail: pchang@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    of the density power spectrum, {sigma}{sub 8}, and may reconcile SZ-inferred values with those by other cosmological probes even after allowing for a contribution due to patchy reionization. (3) Our redshift-dependent entropy floor increases the characteristic halo mass below which dwarf galaxies cannot form by a factor of approximately 10 (50) at mean density (in voids) over that found in models that include photoionization alone. This prevents the formation of late-forming dwarf galaxies (z {approx}< 2) with masses ranging from 10{sup 10} to 10{sup 11} M{sub Sun} for redshifts z {approx} 2 to 0, respectively. This may help resolve the 'missing satellite problem' in the Milky Way of the low observed abundances of dwarf satellites compared to cold dark matter simulations and may bring the observed early star formation histories into agreement with galaxy formation models. At the same time, it explains the 'void phenomenon' by suppressing the formation of galaxies within existing dwarf halos of masses <3 Multiplication-Sign 10{sup 10} M{sub Sun} with a maximum circular velocity <60 km s{sup -1} for z {approx}< 2, hence reconciling the number of dwarfs in low-density regions in simulations and the paucity of those in observations.

  1. The K2-ESPRINT Project III: A Close-in Super-Earth around a Metal-rich Mid-M Dwarf

    Science.gov (United States)

    Hirano, Teruyuki; Fukui, Akihiko; Mann, Andrew W.; Sanchis-Ojeda, Roberto; Gaidos, Eric; Narita, Norio; Dai, Fei; Van Eylen, Vincent; Lee, Chien-Hsiu; Onozato, Hiroki; Ryu, Tsuguru; Kusakabe, Nobuhiko; Ito, Ayaka; Kuzuhara, Masayuki; Onitsuka, Masahiro; Tatsuuma, Misako; Nowak, Grzegorz; Pallè, Enric; Ribas, Ignasi; Tamura, Motohide; Yu, Liang

    2016-03-01

    We validate a {R}p=2.32+/- 0.24{R}\\oplus planet on a close-in orbit (P = 2.260455 ± 0.000041 days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band transit observations from the optical to the near-infrared, low-resolution spectroscopy, and high-resolution adaptive optics (AO) imaging. We perform a global fit to all of the observed transits using a Gaussian process-based method and show that the transit depths in all of the passbands adopted for the ground-based transit follow-ups ({r}2\\prime ,{z}s,2,J,H,{K}s) are within ˜2σ of the K2 value. Based on a model of the background stellar population and the absence of nearby sources in our AO imaging, we estimate the probability that a background eclipsing binary could cause a false positive to be GJ 1214b. Given the relative brightness of K2-28 in the near-infrared ({m}{Kep}=14.85 mag and mH = 11.03 mag) and relatively deep transit (0.6%-0.7%), a comparison between the atmospheric properties of these two planets with future observations would be especially interesting.

  2. The K2-ESPRINT Project III: A Close-in Super-Earth around a Metal-rich Mid-M Dwarf

    CERN Document Server

    Hirano, Teruyuki; Mann, Andrew W; Sanchis-Ojeda, Roberto; Gaidos, Eric; Narita, Norio; Dai, Fei; Van Eylen, Vincent; Lee, Chien-Hsiu; Onozato, Hiroki; Ryu, Tsuguru; Kusakabe, Nobuhiko; Ito, Ayaka; Kuzuhara, Masayuki; Onitsuka, Masahiro; Tatsuuma, Misako; Nowak, Grzegorz; Pallè, Enric; Ribas, Ignasi; Tamura, Motohide; Yu, Liang

    2015-01-01

    We validate a candidate super-Earth ($R_p=2.38\\pm 0.25R_\\oplus$) on a close-in orbit ($P=2.26$ days) around EPIC 206318379, a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band transit observations from the optical to the near infrared, low-resolution spectroscopy, and high-resolution adaptive-optics (AO) imaging. The phase-folded K2 transit light curve has a V-shape because the transit duration around this small star is comparable to the 30-minute K2 cadence. However, the light curves from our follow-up observations exhibit a sharp ingress and/or egress and flat bottom, ruling out a grazing eclipse of a binary system. We perform a global fit to all ground-based observations using a Gaussian process-based method and show that the transit depths in all passbands ($r'_2, z_\\mathrm{s,2}, J, H, K_\\mathrm{s}$) are within $2.2\\sigma$ of the K2 value. Based on a model of the background stellar population and the absence of nearby sources in our AO imagi...

  3. Phenomenological survey on the potential profile evolution in III-V binary compounds

    Directory of Open Access Journals (Sweden)

    Alejandro Mendoza Álvarez

    2011-01-01

    Full Text Available En este artículo se presenta el cambio en el perfil de eficacia potencial de algunos compuestos cuando el bandmixing de huecos ligeros y pesados se altera. Se obtuvieron mediante la aplicación de este teorema generalizado Shur a un problema de valores propios cuadrática obtenidos a partir de un sistema con N ecuaciones de segundo orden, junto en el contexto de la aproximación de masa efectiva multibanda. Se consideraron los valores de energía incidente que fue menor, igual y superior a la altura de la barrera de dispersión potencial de diferentes compuestos de semiconductores III-V binario. La mayoría de las propiedades estándar de los compuestos binarios en este estudio están garantizados, pero no todos los materiales que elegimos, han puesto de manifiesto la evolución que se espera en su perfil de potencial efectivo: algunos de los que constituyen los pozos cuánticos (QW en aplicaciones tecnológicas sólo convertirse en efectiva barrera (B las conductas de los agujeros de luz (LH cuando están en la energía incidente diferente (E se extiende y bandmixing diferentes presentes. Ninguno de los compuestos que constituyen barreras para las aplicaciones tecnológicas en este estudio se convierte en eficaz comportamientos QW válido tanto para la LH y HH. Sorprendentemente, todos los compuestos en este estudio que constituyen barreras estándar en las aplicaciones tecnológicas, las transiciones presente desde CS a B para la LH en el rango donde el valor de E es mayor que la altura de la barrera.

  4. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    Science.gov (United States)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  5. Planets Around Low-Mass Stars (PALMS). III. A Young Dusty L Dwarf Companion at the Deuterium-Burning Limit

    CERN Document Server

    Bowler, Brendan P; Shkolnik, Evgenya L; Dupuy, Trent J

    2013-01-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.45" (~52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R~3800) 1.5-2.4 $\\mu$m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ~120 Myr AB Dor young moving group based on the photometric distance to the primary (36 +/- 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I $\\lambda$6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ~10-120 Myr is possible. The age...

  6. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. III: The Third Year (2010--2011)

    CERN Document Server

    Kato, Taichi; Miller, Ian; Ohshima, Tomohito; de Miguel, Enrique; Tanabe, Kenji; Imamura, Kazuyoshi; Akazawa, Hidehiko; Kunitomi, Nanae; Takagi, Ryosuke; Nose, Mikiha; Hambsch, Franz-Josef; Kiyota, Seiichiro; Pavlenko, Elena P; Baklanov, Aleksei V; Antonyuk, Oksana I; Samsonov, Denis; Sosnovskij, Aleksei; Antonyuk, Kirill; Andreev, Maksim V; Morelle, Etienne; Dubovsky, Pavol A; Kudzej, Igor; Oksanen, Arto; Masi, Gianluca; Krajci, Thomas; Pickard, Roger D; Sabo, Richard; Itoh, Hiroshi; Stein, William; Dvorak, Shawn; Henden, Arne; Nakagawa, Shinichi; Noguchi, Ryo; Iino, Eriko; Matsumoto, Katsura; Nishitani, Hiroki; Aoki, Tomoya; Kobayashi, Hiroshi; Akasaka, Chihiro; Ruiz, Javier; Shugarov, Sergey Yu; Chochol, Drahomir; Parakhin, Nikolai A; Monard, Berto; Shiokawa, Kazuhiko; Kasai, Kiyoshi; Staels, Bart; Miyashita, Atsushi; Starkey, Donn R; Ogmen, Yenal; Littlefield, Colin; Katysheva, Natalia; Sergey, Ivan M; Denisenko, Denis; Tordai, Tamas; Fidrich, Robert; Goranskij, Vitaly P; Virtanen, Jani; Crawford, Tim; Pietz, Jochen; Boyd, David; Brady, Steve; James, Nick; Goff, William N; Itagaki, Koh-ichi; Nishimura, Hideo; Nakashima, Youichirou; Yoshida, Seiichi; Stubbings, Rod; Poyner, Gary; Maeda, Yutaka; Korotkiy, Stanislav; Sokolovsky, Kirill V; Ueda, Seiji

    2011-01-01

    Continuing the project described by Kato et al. (2009, PASJ 61, S395, arXiv:0905.1757), we collected times of superhump maxima for 51 SU UMa-type dwarf novae mainly observed during the 2010-2011 season. Although most of the new data for systems with short superhump periods basically confirmed the findings by Kato et al. (2009) and Kato et al. (2010, PASJ 62, 1525, arXiv:1009.5444), the long-period system GX Cas showed an exceptionally large positive period derivative. An analysis of public Kepler data of V344 Lyr and V1504 Cyg yielded less striking stage transitions. In V344 Lyr, there was prominent secondary component growing during the late stage of superoutbursts, and the component persisted at least for two more cycles of successive normal outbursts. We also investigated the superoutbursts of two conspicuous eclipsing objects: HT Cas and the WZ Sge-type object SDSS J080434.20+510349.2. Strong beat phenomena were detected in both objects, and late-stage superhumps in the latter object had an almost constan...

  7. Multi-Element Abundance Measurements from Medium-Resolution Spectra. III. Metallicity Distributions of Milky Way Dwarf Satellite Galaxies

    CERN Document Server

    Kirby, Evan N; Simon, Joshua D; Cohen, Judith G; Guhathakurta, Puragra

    2010-01-01

    We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effect...

  8. Detection of satellite remnants in the Galactic Halo with Gaia III. Detection limits for Ultra Faint Dwarf Galaxies

    CERN Document Server

    Antoja, Teresa; Aguilar, Luis; Figueras, Francesca; Antiche, Erika; Hernandez-Perez, Fabiola; Brown, Anthony; Valenzuela, Octavio; Aparicio, Antonio; Hidalgo, Sebastian; Velazquez, Hector

    2015-01-01

    We present a method to identify Ultra Faint Dwarf Galaxy (UFDG) candidates in the halo of the Milky Way using the future Gaia catalogue and we explore its detection limits and completeness. The method is based on the Wavelet Transform and searches for over-densities in the combined space of sky coordinates and proper motions, using kinematics in the search for the first time. We test the method with a Gaia mock catalogue that has the Gaia Universe Model Snapshot (GUMS) as a background, and use a library of around 30 000 UFDGs simulated as Plummer spheres with a single stellar population. For the UFDGs we use a wide range of structural and orbital parameters that go beyond the range spanned by real systems, where some UFDGs may remain undetected. We characterize the detection limits as function of the number of observable stars by Gaia in the UFDGs with respect to that of the background and their apparent sizes in the sky and proper motion planes. We find that the addition of proper motions in the search impro...

  9. The data mining III: An analysis of 21 eclipsing binary light-curves observed by the INTEGRAL/OMC

    CERN Document Server

    Zasche, P

    2011-01-01

    Twenty-one eclipsing binaries were selected for an analysis from a huge database of observations made by the INTEGRAL/OMC camera. The photometric data were processed and analyzed, resulting in a first light-curve study of these neglected eclipsing binaries. In several systems from this sample even their orbital periods have been confirmed or modified. Thirty-two new minima times of these binaries have been derived.

  10. Masses of the components of SB2 binaries observed with Gaia. III. Accurate SB2 orbits for 10 binaries and masses of HIP 87895

    CERN Document Server

    Kiefer, Flavien; Arenou, Frédéric; Pourbaix, Dimitri; Famaey, Benoit; Guillout, Patrick; Lebreton, Yveline; Gómez-Morán, Ada Nebot; Mazeh, Tsevi; Salomon, Jean-Baptiste; Soubiran, Caroline; Tal-Or, Lev

    2016-01-01

    In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the SOPHIE spectrograph at the Haute--Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 % when the astrometric measurements of Gaia are taken into account. In this paper we present the results from five years of observations of 10 SB2 systems with periods ranging from 37 to 881 days. Using the TODMOR algorithm we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the components are then obtained with an accuracy better than 1.2 % for the ten binaries. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 87895 with an accuracy of 0.98 % and 1.2 % respect...

  11. Spectroscopic binaries among Hipparcos M giants III. The eccentricity-period diagram and mass-transfer signatures

    CERN Document Server

    Jorissen, A; Famaey, B; Van Eck, S

    2009-01-01

    This paper is the third one in a series devoted to studying the properties of binaries involving M giants. We use a new set of orbits to construct the first (e-logP) diagram of an extensive sample of M giant binaries, to obtain their mass-function distribution, and to derive evolutionary constraints for this class of binaries and related systems. The orbital properties of binaries involving M giants were analysed and compared with those of related families of binaries (K giants, post-AGB stars, barium stars, Tc-poor S stars). The orbital elements of post-AGB stars and M giants are not different, which may very indicate that, for the considered sample of post-AGB binaries, the post-AGB star left the AGB at quite an early stage (M4 or so). Neither are the orbital elements of post-mass-transfer binaries like barium stars very different from those of M giants, suggesting that the mass transfer did not alter the orbital elements much, contrary to current belief. Finally, we show that binary systems with e < 0.4...

  12. AR Sco: A White Dwarf Synchronar

    CERN Document Server

    Katz, J I

    2016-01-01

    The emission of the white dwarf-M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. This requires a comparatively large magnetic field $\\sim 100$ gauss at the M dwarf and $\\sim 10^8$ gauss on the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf's magnetic field sweeps past the M dwarf or by a misaligned white dwarf's rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.

  13. Radial Velocity Variability of Field Brown Dwarfs

    CERN Document Server

    Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S

    2015-01-01

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...

  14. Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model.

    Science.gov (United States)

    Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2005-12-08

    This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).

  15. Building an Unusual White-Dwarf Duo

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  16. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  17. KIC 8262223: A Post-Mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    CERN Document Server

    Guo, Zhao; Matson, Rachel A; Hernández, Antonio García; Han, Zhanwen; Chen, Xuefei

    2016-01-01

    KIC~8262223 is an eclipsing binary with a short orbital period ($P=1.61$ d). The {\\it Kepler} light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of Delta Scuti type. We analyzed the {\\it Kepler} photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4-meter Mayall telescope at Kitt Peak National Observatory and determined the fundamental parameters of this system. The low mass and oversized secondary ($M_2=0.20M_{\\odot}$, $R_2=1.31R_{\\odot}$) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal $\\delta$ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that the system can be understood as the result of non-conservative binary evolution similar to that for the formation of EL CVn type binaries. The pulsation...

  18. HD 30187 B and HD 39927 B: Two suspected nearby hot subdwarfs in resolved binaries (based on observations made with the ESA Hipparcos satellite)

    DEFF Research Database (Denmark)

    Makarov, V.V.; Fabricius, C.

    1999-01-01

    Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual......Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual...

  19. The HADES RV Programme with HARPS-N@TNG. III. Flux-flux and activity-rotation relationships of early-M dwarfs

    CERN Document Server

    Maldonado, J; Stelzer, B; Biazzo, K; Lanza, A F; Maggio, A; Micela, G; González-Álvarez, E; Affer, L; Claudi, R U; Cosentino, R; Damasso, M; Desidera, S; Hernández, J I González; Gratton, R; Leto, G; Messina, S; Molinari, E; Pagano, I; Perger, M; Piotto, G; Rebolo, R; Ribas, I; Sozzetti, A; Mascareño, A Suárez; Sanchez, R Zanmar

    2016-01-01

    (Abridged) Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres as well as for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. We aim to test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships also hold for early-M dwarfs on the main-sequence. We analyse in an homogeneous and coherent way a well defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-n red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cross-correlation technique while emission flux excesses in the Ca II H & K and Balmer lines from Halpha up to Hepsilon are obtained by using the spectral subtraction technique. The relationships between the emission excesses and the stellar parameters are studied. Relations between pairs of fluxes of different chromosphe...

  20. AR Sco: A Precessing White Dwarf Synchronar?

    Science.gov (United States)

    Katz, J. I.

    2017-02-01

    The emission of the white dwarf–M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. Synchronization requires a magnetic field ∼100 Gauss at the M dwarf and ∼ {10}8 Gauss at the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf, within the near zone of the rotating white dwarf’s field, by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf’s magnetic field sweeps past the M dwarf or by a misaligned white dwarf rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of the optical maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.

  1. DUSTiNGS. III. Distribution of Intermediate-age and Old Stellar Populations in Disks and Outer Extremities of Dwarf Galaxies

    Science.gov (United States)

    McQuinn, Kristen B.; Boyer, Martha; DUSTiNGS Team

    2017-06-01

    As part of the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey, we have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group. We find intermediate age stars are well mixed with the older populations and extend to large radii, indicating that chemical enrichment from these dust-producing stars may occur in the outer regions of galaxies with some frequency. Theories of structure formation in dwarf galaxies must account for the lack of radial gradients in intermediate-age populations and the presence of these stars in the outer extremities of dwarfs. We also identify the tip of the red giant branch (TRGB) in Spitzer IRAC 3.6 μm photometry. Unlike the constant TRGB in the I band, at 3.6 μm, the TRGB magnitude varies by ˜0.7 mag and is not a metallicity independent distance indicator.

  2. KIC 8262223: A Post-mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    Science.gov (United States)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio; Han, Zhanwen; Chen, Xuefei

    2017-03-01

    KIC 8262223 is an eclipsing binary with a short orbital period (P = 1.61 day). The Kepler light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of δ Scuti type. We analyzed the Kepler photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4 meter Mayall telescope at the Kitt Peak National Observatory and determined the fundamental parameters of this system. The low-mass and oversized secondary ({M}2=0.20{M}ȯ , {R}2=1.31{R}ȯ ) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal δ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that this system and several other systems discussed in prior literature can be understood as the result of non-conservative binary evolution for the formation of EL CVn-type binaries. The pulsations of the primary star can be explained as radial and non-radial pressure modes. The equilibrium models from single star evolutionary tracks can match the observed mass and radius ({M}1=1.94{M}ȯ , {R}1=1.67{R}ȯ ) but the predicted unstable modes associated with these models differ somewhat from those observed. We discuss the need for better theoretical understanding of such post-mass transfer δ Scuti pulsators.

  3. Galaxies with Supermassive Binary Black Holes: (III) The Roche Lobes and Jiang-Yeh Lobe in a Core System

    CERN Document Server

    Yeh, Li-Chin

    2016-01-01

    Three-dimensional equi-potential surfaces of a galactic system with supermassive binary black holes are discussed herein. The conditions of topological transitions for the important surfaces, i.e. Roche Lobes and Jiang-Yeh Lobe, are studied in this paper. In addition, the mathematical properties of the Jacobi surfaces are investigated analytically. Finally, a numerical procedure for determining the regions of the Roche Lobes and Jiang-Yeh Lobe is suggested.

  4. The Merger Rate of Extremely Low Mass White Dwarf Binaries: Links to the Formation of AM CVn Stars and Underluminous Supernovae

    CERN Document Server

    Brown, Warren R; Prieto, Carlos Allende; Kenyon, Scott J

    2010-01-01

    We study a complete, colour-selected sample of double-degenerate binary systems containing extremely low mass (ELM) 3% of AM CVn stars. More importantly, the ELM WD systems that may detonate merge at a rate comparable to the estimated rate of underluminous SNe, rare explosions estimated to produce only ~0.2 Msol worth of ejecta. At least 25% of our ELM WD sample belong to the old thick disk and halo components of the Milky Way. Thus, if merging ELM WD systems are the progenitors of underluminous SNe, transient surveys must find them in both elliptical and spiral galaxies.

  5. Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

    CERN Document Server

    Anderson, D R; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Chew, Y Gómez Maqueo; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Skillen, I; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2013-01-01

    We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\\rm Jup}$, 1.06 R$_{\\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\\rm Jup}$, 1.16R$_{\\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\\geq$800 AU). We exploit the binar...

  6. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters -- II. Cataclysmic variables -- progenitors and population at birth

    CERN Document Server

    Belloni, Diogo; Rocha-Pinto, Helio J; Leigh, Nathan; Askar, Abbas

    2016-01-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst ($\\lesssim$ 1 Gyr) connected with the formation of the most massive WDs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to 4 times older than their field counterparts. Our results also...

  7. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters - II. Cataclysmic variables - progenitors and population at birth

    Science.gov (United States)

    Belloni, Diogo; Giersz, Mirek; Rocha-Pinto, Helio J.; Leigh, Nathan W. C.; Askar, Abbas

    2016-10-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst (≲ 1 Gyr) connected with the formation of the most massive WDs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to 4 times older than their field counterparts. Our results also illustrate that, due mainly to unstable mass transfer, some CVs that form in our simulations are destroyed before the present-day. Finally, some field CVs might have originated from GCs, as found in our simulations, although the fraction of such escapers should be small relative to the entire Galactic field CV population.

  8. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    Science.gov (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  9. A close look at the Centaurus A group of galaxies III. Recent star formation histories of late-type dwarfs around M83

    CERN Document Server

    Crnojević, D; Cole, A A

    2011-01-01

    We study the resolved stellar populations of dwarf galaxies in the nearby Centaurus A/M83 group of galaxies. Our goal is to characterize their evolutionary history and to investigate eventual similarities or differences with the dwarf population in other group environments. This work presents the analysis of five late-type (irregular) dwarfs found in the vicinity of the giant spiral M83. Using archival HST/ACS data, we perform synthetic color-magnitude diagram modeling to derive the star formation histories of these late-type dwarfs. The target objects show heterogeneous star formation histories, with average star formation rates of 0.08 to 0.70x10^{-2} M_odot/yr. Some of them present prolonged, global bursts of star formation (~300-500 Myr). The studied galaxies are all metal-poor ([Fe/H] ~-1.4). We further investigate the spatial extent of different stellar populations, finding that the young stars show a clumpy distribution, as opposed to the smooth, broad extent of the old ones. The actively star forming ...

  10. A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius–Centaurus

    Science.gov (United States)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Aller, Kimberly M.; Zhang, Zhoujian; Kotson, Michael C.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2017-03-01

    We present the discovery of eight young M7–L2 dwarfs in the Taurus star-forming region and the Scorpius–Centaurus OB Association, serendipitously found during a wide-field search for L/T transition dwarfs using Pan-STARRS1 (optical) and WISE (mid-infrared) photometry. We identify PSO J060.3200+25.9644 (near-infrared spectral type L1) and PSO J077.1033+24.3809 (L2) as new members of Taurus based on their vl-g gravity classifications, the consistency of their photometry and proper motions with previously known Taurus objects, and the low probability of contamination by field objects. PSO J077.1033+24.3809 is the coolest substellar member of Taurus found to date. Both Taurus objects are among the lowest-mass free-floating objects ever discovered, with estimated masses ≈6 {M}{Jup}, and provide further evidence that isolated planetary-mass objects can form as part of normal star formation processes. PSO J060.3200+25.9644 (a.k.a. DANCe J040116.80+255752.2) was previously identified as a likely member of the Pleiades (age ≈ 125 {Myr}) based on photometry and astrometry, but its vl-g gravity classification and near-infrared photometry imply a much younger age and thus point to Taurus membership. We have also discovered six M7–L1 dwarfs in outlying regions of Scorpius–Centaurus with photometry, proper motions, and low-gravity spectral signatures consistent with membership. These objects have estimated masses ≈15–36 {M}{Jup}. The M7 dwarf, PSO J237.1470‑23.1489, shows excess mid-infrared flux implying the presence of a circumstellar disk. Finally, we present catalogs of Pan-STARRS1 proper motions for low-mass members of Taurus and Upper Scorpius with median precisions of ≈3 mas yr‑1, including 67 objects with no previous proper motion and 359 measurements that improve on literature values.

  11. Photometric Properties of Selected Algol-type Binaries. III. AL Geminorum and BM Monocerotis with Possible Light-time Orbits

    Science.gov (United States)

    Yang, Y.-G.; Li, H.-L.; Dai, H.-F.

    2012-01-01

    We present the CCD photometry of two Algol-type binaries, AL Gem and BM Mon, observed from 2008 November to 2011 January. With the updated Wilson-Devinney program, photometric solutions were deduced from their EA-type light curves. The mass ratios and fill-out factors of the primaries are found to be q ph = 0.090(± 0.005) and f 1 = 47.3%(± 0.3%) for AL Gem, and q ph = 0.275(± 0.007) and f 1 = 55.4%(± 0.5%) for BM Mon, respectively. By analyzing the O-C curves, we discovered that the periods of AL Gem and BM Mon change in a quasi-sinusoidal mode, which may possibly result from the light-time effect via the presence of a third body. Periods, amplitudes, and eccentricities of light-time orbits are 78.83(± 1.17) yr, 0fd0204(±0fd0007), and 0.28(± 0.02) for AL Gem and 97.78(± 2.67) yr, 0fd0175(±0fd0006), and 0.29(± 0.02) for BM Mon, respectively. Assumed to be in a coplanar orbit with the binary, the masses of the third bodies would be 0.29 M ⊙ for AL Gem and 0.26 M ⊙ for BM Mon. This kind of additional companion can extract angular momentum from the close binary orbit, and such processes may play an important role in multiple star evolution.

  12. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. III. Transition from inspiral to plunge

    Science.gov (United States)

    Kidder, Lawrence E.; Will, Clifford M.; Wiseman, Alan G.

    1993-04-01

    Late in its evolution, a binary system of compact objects will undergo a transition from an adiabatic inspiral induced by gravitational radiation damping to an unstable plunge, induced by strong spacetime curvature. This transition from inspiral to plunge is studied in detail using higher-order post-Newtonian methods. First, we study the innermost stable circular orbits of binary systems of nonrotating, compact objects of arbitrary mass ratio in the absence of gravitational radiation reaction. The method uses ``hybrid'' two-body equations of motion that are valid through (post)2-Newtonian order [order (Gm/rc2)2 ], but that also include the test-body limit in the Schwarzschild geometry exactly. Using a critical-point analysis, we show that circular orbits inside this innermost orbit are unstable to plunge. The separation of the innermost stable orbit (in harmonic, or de Donder coordinates) is found to vary with mass ratio, from the test-body value of 5m to about 6m for equal masses, where m is the total mass of the system. The orbital energy, angular momentum, and frequency of the innermost stable orbit are also determined as a function of the ratio of the two masses. We study the sensitivity of these values to higher-order post-Newtonian corrections. Incorporating gravitational radiation reaction in the hybrid equations of motion, we evaluate such variables as radial velocity, angular velocity, energy, and angular momentum for a coalescing binary at the corresponding innermost stable orbit, as a function of mass ratio. These variables could be used as initial conditions for numerical calculations of the ensuing coalescence.

  13. Dynamical Masses of Accreting White Dwarfs

    Science.gov (United States)

    Pala, A. F.; Gänsckie, B. T.

    2017-03-01

    The mass retention efficiency is a key question in both the theoretical and observational study of accreting white dwarfs in interacting binaries, with important implications for their potential as progenitors for type Ia supernovae (SNe Ia). Canonical wisdom is that classical nova eruptions erode the white dwarf mass, and consequently, cataclysmic variables (CVs) have been excluded from the SN Ia progenitor discussion. However the average mass of white dwarfs in CVs is substantially higher (≃ 0.83 M⊙) than that of single white dwarfs (≃ 0.64 M ⊙), in stark contrast to expectations based on current classical nova models. This finding is based on a sample of ≃ 30 CV white dwarfs with accurate mass measurements, most of them in eclipsing systems. Given the fundamental importance of the mass evolution of accreting white dwarfs, it is necessary to enlarge this sample and to diversify the methods used for measuring masses. We have begun a systematic study of 27 CVs to almost double the number of CV white dwarfs with an accurate mass measurement. Using VLT/X-shooter phase-resolved observations, we can measure the white dwarf masses to a few percent, and will be able to answer the question whether accreting CV white dwarfs grow in mass.

  14. Dynamical Masses of Young M Dwarfs. I. Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    CERN Document Server

    Montet, Benjamin T; Shkolnik, Evgenya L; Deck, Katherine M; Wang, Ji; Horch, Elliott P; Liu, Michael C; Hillenbrand, Lynne A; Kraus, Adam L; Charbonneau, David

    2015-01-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (~20 Myr) M+M binary (unresolved spectral type M0) member of the beta Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.10 \\pm 0.04 M_sun, a period of 29.16 \\pm 0.65$ yr, a semimajor axis of 9.80 \\pm 0.15 AU, and an eccentricity of 0.19 \\pm 0.02. The primary component has a dynamical mass of 0.65 \\pm 0.05 M_sun and the secondary has a mass of 0.44 \\pm 0.05 M_sun. The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5 sigma. Given the observed masses the models predict an age of the GJ 3305 AB system of 28 +15/-6 Myr. Based on the the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly alter...

  15. Orbital Period Changes and Their Evolutionary Status for the Weak-Contact Binaries. III. AO Camelopardalis and AH Tauri

    Science.gov (United States)

    Yang, Y.-G.; Wei, J.-Y.; Kreiner, J. M.; Li, H.-L.

    2010-01-01

    In this paper, we presented multicolor photometric observations for two eclipsing binaries, AO Camelopardalis and AH Tauri, obtained on 2008 December 16 and 17. Using the Wilson-Devinney Code, the photometric solution of AH Tau was determined from our new CCD data. The mass ratio and the fill-out factor are q = 0.503(±0.003) and f = 10.8%(±0.1%), respectively. This indicates that AH Tau is in weak contact. For the weak-contact binary AO Cam, BVI light curves clearly show a difference in the heights of the maxima (i.e., the O'Connell effect), which may be explained by spot activity. By analyzing the O - C curves for AO Cam and AH Tau, it is found that the orbital periods appear to show a secular period decrease with a cyclic variation. The observed period modulation is ΔP/P ~ 10-6. For AO Cam, the cyclic oscillation with a short period of 7.63(±0.07) yr and a low amplitude of 0fd0019(±0fd0003) may be preferably attributed to the cyclic magnetic activity. The period and amplitude of the cyclic variation for AH Tau are 45.8(±1.1) yr and 0fd0171(±0fd0005), which may more likely result from the light-time effect via a third body. The secular period decrease rates are dP/dt = -1.26(±0.04) × 10-7 days yr -1 for AO Cam and dP/dt = -6.98(±0.07) × 10-8 days yr -1 for AH Tau. This kind of period decrease can be plausibly explained by the mass transfer from the primary to the secondary, and may result in the system evolving into a deep contact configuration.

  16. Strangelet dwarfs

    CERN Document Server

    Alford, Mark G; Reddy, Sanjay

    2011-01-01

    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.

  17. A Population Synthesis Study of the White Dwarf Cooling Sequence of the Galactic Bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E. G.; Cojocaru, R. E.; Calamida, A.

    2017-03-01

    Recent Hubble Space Telescope observations have allowed to determine, for the first time, the white dwarf cooling sequence of the Galactic bulge. However, observations show systematically redder objects than those predicted by the theoretical cooling tracks of carbon-oxygen white dwarfs. Here we present a population synthesis study of the white dwarf cooling sequence of the galactic bulge including both single white dwarfs and binary systems. These calculations incorporate the most up-to-date cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolution of binary systems and of the observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. Among other interesting results we estimate the fraction of binaries and double degenerate systems of the Galactic bulge.

  18. HADES RV Programme with HARPS-N at TNG . III. Flux-flux and activity-rotation relationships of early-M dwarfs

    Science.gov (United States)

    Maldonado, J.; Scandariato, G.; Stelzer, B.; Biazzo, K.; Lanza, A. F.; Maggio, A.; Micela, G.; González-Álvarez, E.; Affer, L.; Claudi, R. U.; Cosentino, R.; Damasso, M.; Desidera, S.; González Hernández, J. I.; Gratton, R.; Leto, G.; Messina, S.; Molinari, E.; Pagano, I.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; Sozzetti, A.; Suárez Mascareño, A.; Zanmar Sanchez, R.

    2017-01-01

    Context. Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres and for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. Aims: We test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships previously investigated for main-sequence FGK stars and for pre-main-sequence M stars also hold for early-M dwarfs on the main-sequence. Although several attempts have been made so far, here we analyse a large sample of stars undergoing relatively low activity. Methods: We analyse in a homogeneous and coherent way a well-defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-N red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cross-correlation technique, while emission flux excesses in the Ca ii H & K and Balmer lines from Hα up to Hɛ are obtained by using the spectral subtraction technique. The relationships between the emission excesses and the stellar parameters (projected rotational velocity, effective temperature, kinematics, and age) are studied. Relations between pairs of fluxes of different chromospheric lines (flux-flux relationships) are also studied and compared with the literature results for other samples of stars. Results: We find that the strength of the chromospheric emission in the Ca ii H & K and Balmer lines is roughly constant for stars in the M0-M3 spectral range. Although our sample is likely to be biased towards inactive stars, our data suggest that a moderate but significant correlation between activity and rotation might be present, as well as a hint of kinematically selected young stars showing higher levels of emission in the calcium line and in most of the Balmer lines. We find our sample of M dwarfs to be complementary in terms of chromospheric and X-ray fluxes with

  19. The Banana Project. III. Spin-orbit Alignment in the Long-period Eclipsing Binary NY Cephei

    CERN Document Server

    Albrecht, Simon; Carter, Joshua; Snellen, Ignas; de Mooij, Ernst

    2010-01-01

    Binaries are not always neatly aligned. Previous observations of the DI Her system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here we report on a measurement of the spin-axis orientation of the primary star of the NY Cep system, which is similar to DI Her in many respects: it features two young early-type stars (~6 Myr, B0.5V+B2V), in an eccentric and relatively long-period orbit (e=0.48, P=15.d3). The sky projections of the rotation vector and the spin vector are well-aligned (beta_p = 2 +- 4 degrees), in strong contrast to DI Her. Although no convincing explanation has yet been given for the misalignment of DI Her, our results show that the phenomenon is not universal, and that a successful theory will need to account for the different outcome in the case of NY Cep.

  20. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  1. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  2. Searching for benchmark systems containing ultra-cool dwarfs and white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2013-04-01

    Full Text Available We have used the 2MASS all-sky survey and WISE to look for ultracool dwarfs that are part of multiple systems containing main sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. We consider the binary fraction for L dwarfs and main sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves. We have also identified a sample of common proper motion systems in which a main sequence star has a white dwarf as wide companion. These systems can help explore key issues in star evolution theory, as the initial-final mass relationship of white dwarfs, or the chromospheric activity-age relationship for stars still in the main sequence. Spectroscopy for 50 white dwarf candidates, selected from the SuperCOSMOS Science Archive, was obtained. We have also observed 6 of the main sequence star companions, and have estimated their effective temperatures, rotational and microturbulent velocities and metallicities.

  3. Magnetic white dwarfs with debris disks

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2012-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetism within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. In order to explain this discrepancy we build a model in which the interaction between the magnetosphere of the star and the disk induces angular momentum transfer. Our model predicts that the magnetospheric interaction of magnetic white dwarfs with their disks results in a significant spin down, and we show that the observed rotation period of REJ 0317-853, which is suggested to be a product of a double degenerate merger, can be reproduced.

  4. White dwarfs in cataclysmic variables

    Science.gov (United States)

    Gaensicke, Boris

    2016-07-01

    Cataclysmic variables (CVs) provide excellent laboratories to study the effect that the accretion of matter, energy and angular momentum has on the structure of white dwarfs, with important implications on the evolution of these compact binaries, the ignition of thermonuclear surface burning, and potentially their explosion as SNIa. I will provide an overview of our current understanding of CV white dwarfs, with a particular emphasis on the results of a recent large HST program. I will review our knowledge regarding the mass distribution of CV white dwarfs, as well as the secular mean accretion rates that can be inferred from their effective temperatures, and compare those statistics with predictions from CV population models. I will also discuss a sub-set of CVs which underwent thermal-time scale mass transfer, one of the channels that is often discussed as a pathway to SN Ia, and I will illustrate how the study of these "failed SNIa" can contribute to the discussion of SNIa progenitors. Finally, I will discuss the occurrence of non-radial pulsations in white dwarfs, both in CVs and their detached progenitors.

  5. New White Dwarf Stars in the Sloan Digital Sky Survey Data Release 10

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Kleinman, Scot J; Romero, Alejandra Daniela; Nitta, Atsuko; Eisenstein, Daniel J; Costa, José Eduardo da Silveira; Külebi, Baybars; Jordan, Stefan; Dufour, Patrick; Giommi, Paolo; Rebassa-Mansergas, Alberto

    2014-01-01

    We report the discovery of 9 088 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spectra on helium atmosphere white dwarfs, 71 DQs, 42 hot DO/PG1159s, 171 white dwarf+main sequence star binaries, 206 magnetic DAHs, 327 continuum dominated DCs, 397 metal polluted white dwarfs, 450 helium dominated white dwarfs, 647 subdwarfs and 6887 new hydrogen dominated white dwarf stars.

  6. Spin and Magnetism of White Dwarfs

    CERN Document Server

    Kissin, Yevgeni

    2015-01-01

    The magnetism and rotation of white dwarf (WD) stars are investigated in relation to a hydromagnetic dynamo operating in the progenitor during shell burning phases. We find that the downward pumping of angular momentum in the convective envelope can, by itself, trigger dynamo action near the core-envelope boundary in an isolated intermediate-mass star. A solar-mass star must receive additional angular momentum following its rotational braking on the main sequence, either by a merger with a planet, or by tidal interaction in a stellar binary. Several arguments point to the outer core as the source for a magnetic field in the WD remnant: i) the outer third of a ~0.55$M_\\odot$ WD is processed during the shell burning phases of the progenitor; ii) escape of magnetic helicity through the envelope mediates the growth of (compensating) helicity in the core, as is needed to maintain a stable magnetic field in the remnant; and iii) intense radiation flux at the core boundary facilitates magnetic buoyancy within a rela...

  7. Binary Popldation Synthcsis Study

    Institute of Scientific and Technical Information of China (English)

    HAN Zhanwen

    2011-01-01

    Binary population synthesis (BPS), an approach to evolving millions of stars (including binaries) simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis (EPS) model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.

  8. A brown dwarf orbiting an M-dwarf

    DEFF Research Database (Denmark)

    Bachelet, E.; Fouqué, P.; Albrow, M.D.

    2012-01-01

    -Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit. Methods. Thanks to observations by all the collaborations, this event...... gives two local minima, which correspond to the theoretical degeneracy s ≡ s-1. We find that the lens is composed of a brown dwarf secondary of mass MS = 0.05 M⊙ orbiting a primary M-star of mass MP = 0.18 M⊙. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries...

  9. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  10. Population synthesis studies of white dwarf binaries

    Directory of Open Access Journals (Sweden)

    U. Kolb

    2004-01-01

    Full Text Available Presentamos estudios de s ntesis de poblaci on de binarias enana blanca { estrella de la secuencia principal, de variables catacl smicas que son conducidas por discos circumbinarios y de binarias eclipsantes, en la b usqueda del tr ansito de exoplanetas SuperWASP.

  11. Close binary white dwarfs and supernovae IA

    Directory of Open Access Journals (Sweden)

    R. Napiwotzki

    2004-01-01

    Full Text Available Informamos sobre el estado actual de los \\surveys" de velocidades radiales para binarias de enanas blancas (degeneradas dobles - DDs incluyendo SPY (Exploraci on ESO de progenitoras de supernovas Ia que recien- temente se llevaron a cabo en el VLT. Una amplia muestra de DDs nos permitir a poner fuertes restricciones sobre las fases evolutivas de los sistemas progenitores de binarias cercanas y tambi en llevar a cabo pruebas observacionales del escenario DD para supernovas de tipo Ia.

  12. DUSTiNGS III: Distribution of Intermediate-Age and Old Stellar Populations in Disks and Outer Extremities of Dwarf Galaxies

    CERN Document Server

    McQuinn, Kristen B W; Mitchell, Mallory B; Skillman, Evan D; Gehrz, R D; Groenewegen, Martin A T; McDonald, Iain; Sloan, G C; van Loon, Jacco Th; Whitelock, Patricia A; Zijlstra, Albert A

    2016-01-01

    We have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group, using multi-epoch 3.6 and 4.5 micron data from the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey. Using complementary optical imaging from the Hubble Space Telescope, we identify the tip of the red giant branch (TRGB) in the 3.6 micron photometry, separating thermally-pulsating asymptotic giant branch (TP-AGB) stars from the larger red giant branch (RGB) populations. Unlike the constant TRGB in the I-band, at 3.6 micron the TRGB magnitude varies by ~0.7 mag, making it unreliable as a distance indicator. The intermediate-age and old stars are well mixed in two-thirds of the sample with no evidence of a gradient in the ratio of the intermediate-age to old stellar populations outside the central ~1-2'. Variable AGB stars are detected in the outer extremities of the galaxies, indicating that chemical enrichment from these dust-producing stars may occur in the outer re...

  13. STELLAR KINEMATICS AND STRUCTURAL PROPERTIES OF VIRGO CLUSTER DWARF EARLY-TYPE GALAXIES FROM THE SMAKCED PROJECT. III. ANGULAR MOMENTUM AND CONSTRAINTS ON FORMATION SCENARIOS

    Energy Technology Data Exchange (ETDEWEB)

    Toloba, E.; Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Boselli, A.; Boissier, S. [Aix Marseille Universit, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Peletier, R. F. [Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen (Netherlands); Emsellem, E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Lisker, T. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Van de Ven, G. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Simon, J. D.; Adams, J. J.; Benson, A. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Den Brok, M. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Gorgas, J. [Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Hensler, G. [Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna (Austria); Janz, J. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Paudel, S., E-mail: toloba@ucolick.org [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-02-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotators do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.

  14. Microlensing Planet Around Brown-Dwarf

    CERN Document Server

    Han, C; Udalski, A; Sumi, T; Gaudi, B S; Gould, A; Bennett, D P; Tsapras, Y; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Skowron, J; Kozłowski, S; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Abe, F; Bond, I A; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Furusawa, K; Harris, P; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Wada, K; Yock, P C M; Batista, V; Christie, G; Choi, J -Y; DePoy, D L; Dong, Subo; Hwang, K -H; Kavka, A; Lee, C -U; Monard, L A G; Natusch, T; Ngan, H; Park, H; Pogge, R W; Porritt, I; Shin, I -G; Tan, T G; Yee, J C; Alsubai, K A; Bramich, D M; Browne, P; Dominik, M; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Liebig, C; Snodgrass, C; Steele, I A; Street, R A

    2013-01-01

    Observations of accretion disks around young brown dwarfs have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around brown dwarfs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field brown dwarf via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 +- 0.001), relatively tightly-separated (~0.87 AU) binary composed of a planetary-mass object with 1.9 +- 0.2 Jupiter masses orbiting a brown dwarf with a mass 0.022 M_Sun. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the brown dwarf host, in a manner analogous to planets.

  15. A Pulsar and White Dwarf in an Unexpected Orbit

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  16. KOI-3278: A Self-Lensing Binary Star System

    CERN Document Server

    Kruse, Ethan

    2014-01-01

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  17. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  18. Active states and structure transformations in accreting white dwarfs

    Science.gov (United States)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  19. Building Magnetic Fields in White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  20. X-ray twinkles and Population III stars

    Science.gov (United States)

    Ricotti, Massimo

    2016-10-01

    Population III stars are typically massive stars of primordial composition forming at the centres of the first collapsed dark matter structures. Here we estimate the optimal X-ray emission in the early universe for promoting the formation of Population III stars. This is important in determining the number of dwarf galaxies formed before reionization and their fossils in the local universe, as well as the number of intermediate-mass seed black holes. A mean X-ray emission per source above the optimal level reduces the number of Population III stars because of the increased Jeans mass of the intergalactic medium, while a lower emission suppresses the formation rate of H2 preventing or delaying star formation in dark matter minihaloes above the Jeans mass. The build-up of the H2 dissociating background is slower than the X-ray background due to the shielding effect of resonant hydrogen Lyman lines. Hence, the nearly unavoidable X-ray emission from supernova remnants of Population III stars is sufficient to boost their number to few tens per comoving Mpc3 by redshift z ˜ 15. We find that there is a critical X-ray to ultraviolet energy ratio emitted per source that produces a universe where the number of Population III stars is largest: 400 per comoving Mpc3. This critical ratio is very close to the one provided by 20-40 M⊙ Population III stars exploding as hypernovae. High-mass X-ray binaries in dwarf galaxies are far less effective at increasing the number of Population III stars than normal supernova remnants, we thus conclude that supernovae drove the formation of Population III stars.

  1. Discovery of a widely separated UCD-WD binary

    CERN Document Server

    Day-Jones, A C; Napiwotzki, R; Burningham, B; Jenkins, J S; Jones, H R A; Folkes, S L; Weights, D J; Clarke, J R A

    2008-01-01

    We present the discovery of the widest known ultracool dwarf - white dwarf binary. This binary is the first spectroscopically confirmed widely separated system from our target sample. We have used the 2MASS and SuperCOSMOS archives in the southern hemisphere, searching for very widely separated ultracool dwarf - white dwarf dwarf binaries, and find one common proper motion system, with a separation of 3650-5250AU at an estimated distance of 41-59pc, making it the widest known system of this type. Spectroscopy reveals 2MASS J0030-3740 is a DA white dwarf with Teff=7600+/-100K, log(g)=7.79-8.09 and M(WD)=0.48-0.65Msun. We spectroscopically type the ultracool dwarf companion (2MASS J0030-3739) as M9+/-1 and estimate a mass of 0.07-0.08Msun, Teff=2000-2400K and log(g)=5.30-5.35, placing it near the mass limit for brown dwarfs. We estimate the age of the system to be >1.94Gyrs (from the white dwarf cooling age and the likely length of the main sequence lifetime of the progenitor) and suggest that this system and o...

  2. Non-thermal radio emission from O-type stars III. Is Cyg OB2 No. 9 a wind-colliding binary?

    CERN Document Server

    Van Loo, S; Dougherty, S M; Runacres, M C

    2008-01-01

    The star Cyg OB2 No. 9 is a well-known non-thermal radio emitter. Recent theoretical work suggests that all such O-stars should be in a binary or a multiple system. However, there is no spectroscopic evidence of a binary component. Re-analysis of radio observations from the VLA of this system over 25 years has revealed that the non-thermal emission varies with a period of 2.35+-0.02 yr. This is interpreted as a strong suggestion of a binary system, with the non-thermal emission arising in a wind-collision region. We derived some preliminary orbital parameters for this putative binary and revised the mass-loss rate of the primary star downward from previous estimates.

  3. Masses and Multiplicity of Nearby Free- floating Methane and L Dwarfs

    Science.gov (United States)

    Brandner, Wolfgang

    2000-07-01

    Brown dwarfs never stabilize themselves on the hydrogen main sequence, thus there is an ambiguity between the temperature or luminosity of a given object and its mass or age. In order to test the mass-luminosity relations of {still uncertain} evolutionary models, a direct dynamical determination of mass is required. As a first step towards a dynamical mass estimate for brown dwarfs, we have compiled a sample of 50 very-low-mass objects {Mmasses for brown dwarfs and to calibrate evolutionary tracks. Binary properties like multiplicity, distribution of binary separations and brightness ratios hold clues on the origin of free-floating brown dwarf binaries. Our program will be an important step towards a better understanding of the still elusive class of brown dwarfs.

  4. Spectroscopy of Putative Brown Dwarfs in Taurus

    CERN Document Server

    Luhman, K L

    2010-01-01

    Quanz and coworkers have reported the discovery of the coolest known member of the Taurus star-forming complex (L2+/-0.5) and Barrado and coworkers have identified a possible protostellar binary brown dwarf in the same region. We have performed infrared spectroscopy on the former and the brighter component of the latter to verify their substellar nature. The resulting spectra do not exhibit the strong steam absorption bands that are expected for cool objects, demonstrating that they are not young brown dwarfs. The optical magnitudes and colors for these sources are also indicative of background stars rather than members of Taurus. Although the fainter component of the candidate protostellar binary lacks spectroscopy, we conclude that it is a galaxy rather than a substellar member of Taurus based on its colors and the constraints on its proper motion.

  5. The 25 parsec local white dwarf population

    Science.gov (United States)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  6. Magnetic braking in ultracompact binaries

    CERN Document Server

    Farmer, Alison

    2010-01-01

    Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...

  7. Ultra-short period binaries from the Catalina Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Donalek, C.; Williams, R. [California Institute of Technology, 1200 East California Boulevard, CA 91225 (United States); García-Álvarez, D. [Instituto de Astrofísica de Canarias, Avenida Vía Láctea, 38205 La Laguna, Tenerife (Spain); Catelan, M.; Torrealba, G. [Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Facultad de Física, Av. Vicuña Mackena 4860, 782-0436 Macul, Santiago (Chile); Prieto, J. L. [Department of Astronomy, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Abraham, S. [St. Thomas College, Kozhencheri 689641 (India); Larson, S.; Christensen, E. [Department of Planetary Sciences, The University of Arizona, Lunar and Planetary Laboratory, 1629 East University Boulevard, Tucson, AZ 85721 (United States)

    2014-08-01

    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.

  8. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  9. New population synthesis model: Preliminary results for close double white dwarf populations

    CERN Document Server

    Toonen, Silvia; Zwart, Simon Portegies

    2011-01-01

    An update is presented to the software package SeBa for simulating single star and binary evolution in which new stellar evolution tracks have been implemented. SeBa is applied to study the population of close double white dwarf and the delay time distribution of double white dwarf mergers that may lead to Supernovae Type Ia.

  10. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars -- CEMP-s stars

    CERN Document Server

    Hansen, T T; Nordström, B; Beers, T C; Placco, V M; Yoon, J; Buchhave, L A

    2016-01-01

    Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82+-10%, while four stars appear to be single (18+-10%). We thus confirm that the binary frequency of CEMP-s stars...

  11. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    Science.gov (United States)

    Kepler, S. O.; Pelisoli, I.; Koester, D.; Ourique, G.; Romero, A. D.; Reindl, N.; Kleinman, S. J.; Eisenstein, D. J.; Valois, A. D. M.; Amaral, L. A.

    2016-02-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra (DQs). We found one central star of a planetary nebula, one ultracompact helium binary (AM CVn), one oxygen line-dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium-dominated white dwarfs, 148 white dwarf + main-sequence star binaries, 236 metal-polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen-dominated white dwarf stars, and 2675 cool hydrogen-dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N ≥ 15 in DR12, including the ones in DR7 and DR10, with an average S/N = 26, corrected to the 3D convection scale, and also the distribution after correcting for the observed volume, using 1/Vmax.

  12. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J; Eisenstein, Daniel J; Valois, A Dean M; Amaral, Larissa A

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found one central star of a planetary nebula, one ultra-compact helium binary (AM CVn), one oxygen line dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium dominated white dwarfs, 148 white dwarf+main sequence star binaries, 236 metal polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen dominated white dwarf stars, and 2675 cool hydrogen dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N>15 in DR12, including the ones in DR7 and DR10, with an average S/N=26, correc...

  13. A Very Cool Pair of Brown Dwarfs

    Science.gov (United States)

    2011-03-01

    Observations with the European Southern Observatory's Very Large Telescope, along with two other telescopes, have shown that there is a new candidate for the coldest known star: a brown dwarf in a double system with about the same temperature as a freshly made cup of tea - hot in human terms, but extraordinarily cold for the surface of a star. This object is cool enough to begin crossing the blurred line dividing small cold stars from big hot planets. Brown dwarfs are essentially failed stars: they lack enough mass for gravity to trigger the nuclear reactions that make stars shine. The newly discovered brown dwarf, identified as CFBDSIR 1458+10B, is the dimmer member of a binary brown dwarf system located just 75 light-years from Earth [1]. The powerful X-shooter spectrograph on ESO's Very Large Telescope (VLT) was used to show that the composite object was very cool by brown dwarf standards. "We were very excited to see that this object had such a low temperature, but we couldn't have guessed that it would turn out to be a double system and have an even more interesting, even colder component," said Philippe Delorme of the Institut de planétologie et d'astrophysique de Grenoble (CNRS/Université Joseph Fourier), a co-author of the paper. CFBDSIR 1458+10 is the coolest brown dwarf binary found to date. The dimmer of the two dwarfs has now been found to have a temperature of about 100 degrees Celsius - the boiling point of water, and not much different from the temperature inside a sauna [2]. "At such temperatures we expect the brown dwarf to have properties that are different from previously known brown dwarfs and much closer to those of giant exoplanets - it could even have water clouds in its atmosphere," said Michael Liu of the University of Hawaii's Institute for Astronomy, who is lead author of the paper describing this new work. "In fact, once we start taking images of gas-giant planets around Sun-like stars in the near future, I expect that many of them

  14. Construction and compression of Dwarf

    Institute of Scientific and Technical Information of China (English)

    XIANG Long-gang; FENG Yu-cai; GUI Hao

    2005-01-01

    There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. Ifa partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more compressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of "ALL" cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.

  15. Binary Planetary Nebulae Nuclei towards the Galactic Bulge. I. Sample Discovery, Period Distribution and Binary Fraction

    CERN Document Server

    Miszalski, B; Moffat, A F J; Parker, Q A; Udalski, A

    2009-01-01

    Binarity has been hypothesised to play an important, if not ubiquitous, role in the formation of planetary nebulae (PNe). Yet there remains a severe paucity of known binary central stars required to test the binary hypothesis and to place strong constraints on the physics of the common-envelope (CE) phase of binary stellar evolution. Large photometric surveys offer an unrivalled opportunity to efficiently discover many binary central stars. We have combined photometry from the OGLE microlensing survey with the largest sample of PNe towards the Galactic Bulge to systematically search for new binaries. A total of 21 periodic binaries were found thereby more than doubling the known sample. The orbital period distribution was found to be best described by CE population synthesis models when no correlation between primary and secondary masses is assumed for the initial mass ratio distribution. A comparison with post-CE white dwarf binaries indicates both distributions are representative of the true post-CE period ...

  16. Massive double white dwarfs and the AM CVn birthrate

    Science.gov (United States)

    Kilic, Mukremin; Brown, Warren R.; Heinke, Craig O.; Gianninas, A.; Benni, P.; Agüeros, M. A.

    2016-08-01

    We present Chandra and Swift X-ray observations of four extremely low-mass (ELM) white dwarfs with massive companions. We place stringent limits on X-ray emission from all four systems, indicating that neutron star companions are extremely unlikely and that the companions are almost certainly white dwarfs. Given the observed orbital periods and radial velocity amplitudes, the total masses of these binaries are greater than 1.02-1.39 M⊙. The extreme mass ratios between the two components make it unlikely that these binary white dwarfs will merge and explode as Type Ia or underluminous supernovae. Instead, they will likely go through stable mass transfer through an accretion disc and turn into interacting AM CVn. Along with three previously known systems, we identify two of our targets, J0811 and J2132, as systems that will definitely undergo stable mass transfer. In addition, we use the binary white dwarf sample from the ELM Survey to constrain the inspiral rate of systems with extreme mass ratios. This rate, 1.7 × 10-4 yr-1, is consistent with the AM CVn space density estimated from the Sloan Digital Sky Survey. Hence, stable mass transfer double white dwarf progenitors can account for the entire AM CVn population in the Galaxy.

  17. Discovery of true, likely and possible symbiotic stars in the dwarf spheroidal NGC 205

    CERN Document Server

    Gonçalves, Denise R; de la Rosa, Ignacio G; Akras, Stavros

    2014-01-01

    In this paper we discuss the photometric and spectroscopic observations of newly discovered (symbiotic) systems in the dwarf spheroidal galaxy NGC 205. The Gemini Multi-Object Spectrograph on-off band [O III] 5007 A emission imaging highlighted several [O III] line emitters, for which optical spectra were then obtained (Gon\\c{c}alves et al. 2014). The detailed study of the spectra of three objects allow us to identify them as true, likely and possible symbiotic systems (SySts), the first ones discovered in this galaxy. SySt-1 is unambiguously classified as a symbiotic star, because of the presence of unique emission lines which belong only to symbiotic spectra, the well known O VI Raman scattered lines. SySt-2 is only possibly a SySt because the Ne VII Raman scattered line at 4881 A, recently identified in a well studied Galactic symbiotic as another very conspicuous property of symbiotic, could as well be identified as N III or [Fe III]. Finally, SySt-3 is likely a symbiotic binary because in the red part of...

  18. Abundance analysis of Am binaries and search for tidally driven abundance anomalies - III. HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188

    CERN Document Server

    Stateva, I; Budaj, J

    2011-01-01

    We continue here the systematic abundance analysis of a sample of Am binaries in order to search for possible abundance anomalies driven by tidal interaction in these binary systems. New CCD observations in two spectral regions (6400-6500, 6660-6760 AA) of HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188 were obtained. Synthetic spectrum analysis was carried out and basic stellar properties, effective temperatures, gravities, projected rotational velocities, masses, ages and abundances of several elements were determined. We conclude that all six stars are Am stars. These stars were put into the context of other Am binaries with 10 < Porb < 200 days and their abundance anomalies discussed in the context of possible tidal effects. There is clear anti-correlation of the Am peculiarities with v sin i. However, there seems to be also a correlation with the eccentricity and may be with the orbital period. The dependence on the temperature, age, mass, and microturbulence was studied as well. The ...

  19. BEER analysis of Kepler and CoRoT light curves. III. Spectroscopic confirmation of seventy new beaming binaries discovered in CoRoT lightcurves

    CERN Document Server

    Tal-Or, Lev; Mazeh, Tsevi

    2015-01-01

    (abridged for arXiv) The BEER algorithm, introduced by Faigler & Mazeh (2011), searches stellar lightcurves for the BEaming, Ellipsoidal, and Reflection photometric modulations caused by a short-period companion. Applying the search to the first five long-run center CoRoT fields, we identified $481$ non-eclipsing candidates with periodic flux amplitudes of $0.5-87$ mmag. Optimizing the Anglo-Australian-Telescope pointing coordinates and the AAOmega fiber-allocations with dedicated softwares, we acquired $6-7$ medium-resolution spectra of $281$ candidates in a seven-night campaign. Analysis of the red-arm AAOmega spectra, which covered the range of $8342-8842$ \\AA{}, yielded a radial-velocity precision of $\\sim1$ km/s. Spectra containing lines of more than one star were analyzed with TODCOR$-$the two-dimensional correlation algorithm. The measured radial velocities confirmed the binarity of seventy of the BEER candidates$-45$ single-line binaries, $18$ double-line binaries, and $7$ diluted binaries. We sho...

  20. Conductance Studies on Complex Formation between c-Methylcalix[4]resorcinarene and Titanium (III in Acetonitrile-H2O Binary Solutions

    Directory of Open Access Journals (Sweden)

    Naghmeh Saadati

    2013-09-01

    Full Text Available Calixresorcinarenes have proved to be unique molecules for molecular recognition via hydrogen bonding, hydrophobic and ionic interactions with suitable substrates such as cations. The study of the interactions involved in the complexation of different cations with calixresorcinarenes in solvent mixtures is important for a better understanding of the mechanism of biological transport, molecular recognition, and other analytical applications. This article summarizes different aspects of the complexes of the Ti3+ metal cation with c-methylcalix[4]resorcinarene (CMCR as studied by conductometry in acetonitrile (AN–water (H2O binary mixtures at different temperatures. Conductance data show that the metal cation/ligand (ML stoichiometry of the complexes in solution is 1:1 in all cases. Non-linear behaviour was observed for the variation of logKf of the complexes vs. the composition of the binary solvent mixtures. Selectivity of CMCR for the Ti3+ cation is sensitive to solvent composition; in some cases and at certain compositions of the mixed solvent systems, the selectivity order is changed. Values of thermodynamic parameters (, for formation of the CMCR–Ti3+ complexes in AN–H2O binary systems were obtained from the temperature dependence of stability constants, and the results show that the thermodynamics of complexation reactions are affected by the nature and composition of the mixed solvents.

  1. A Second Stellar Color Locus: a Bridge from White Dwarfs to M stars

    CERN Document Server

    Smolcic, V; Knapp, G R; Lupton, R H; Pavlovski, K; Ilijic, S; Schlegel, D J; Smith, J A; McGehee, P M; Silvestri, N M; Hawley, S L; Rockosi, C M; Gunn, J E; Strauss, M A; Fan, X; Eisenstein, D J; Harris, H

    2004-01-01

    We report the discovery of a locus of stars in the SDSS g-r vs. u-g color-color diagram that connects the colors of white dwarfs and M dwarfs. While its contrast with respect to the main stellar locus is only ~1:2300, this previously unrecognized feature includes 863 stars from the SDSS Data Release 1. The position and shape of the feature are in good agreement with predictions of a simple binary star model that consists of a white dwarf and an M dwarf, with the components' luminosity ratio controlling the position along this binary system locus. SDSS DR1 spectra for 47 of these objects strongly support this model. The absolute magnitude--color distribution inferred for the white dwarf component is in good agreement with the models of Bergeron et al. (1995).

  2. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B.

    2017-08-01

    White dwarfs (WDs) have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all WDs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper belt analog objects, are also viable sources of pollution. The commonly accepted pollution mechanisms, namely scattering interactions between planetary bodies orbiting the WDs, can hardly account for pollution by objects with large masses or long-period orbits. Here we report on a mechanism that naturally leads to the emergence of massive body and icy and volatile material pollution. This mechanism occurs in wide binary stellar systems, where the mass loss of the planets’ host stars during post main sequence stellar evolution can trigger the Eccentric Kozai-Lidov mechanism. This mechanism leads to large eccentricity excitations, which can bring massive and long-period objects close enough to the WDs to be accreted. We find that this mechanism readily explains and is consistent with observations.

  3. Binaries in the field: fossils of the star formation process?

    CERN Document Server

    Parker, Richard J

    2014-01-01

    Recent observations of binary stars in the Galactic field show that the binary fraction and the mean orbital separation both decrease as a function of decreasing primary mass. We present $N$-body simulations of the effects of dynamical evolution in star-forming regions on primordial binary stars to determine whether these observed trends can be explained by the dynamical processing of a common binary population. We find that dynamical processing of a binary population with an initial binary fraction of unity and an initial excess of intermediate/wide separation (100 - 10$^4$ au) binaries does not reproduce the observed properties in the field, even in initially dense ($\\sim 10^3$M$_\\odot$ pc$^{-3}$) star-forming regions. If instead we adopt a field-like population as the initial conditions, most brown dwarf and M-dwarf binaries are dynamically hard and their overall fractions and separation distributions are unaffected by dynamical evolution. G-dwarf and A-star binaries in the field are dynamically intermedia...

  4. Hubble Space Telescope NICMOS Observations of T Dwarfs: Brown Dwarf Multiplicity and New Probes of the L/T Transition

    CERN Document Server

    Burgasser, A J; Cruz, K L; Reid, I N; Leggett, S K; Liebert, J; Burrows, A; Brown, M E; Burgasser, Adam J.; Cruz, Kelle L.; Leggett, Sandy K.; Liebert, James; Burrows, Adam; Brown, Michael E.

    2006-01-01

    We present the results of a Hubble Space Telescope NICMOS imaging survey of 22 T-type field brown dwarfs. Five are resolved as binary systems with angular separations of 0"05-0"35, and companionship is established on the basis of component F110W-F170M colors (indicative of CH4 absorption) and low probabilities of background contamination. Prior ground-based observations show 2MASS 1553+1532AB to be a common proper motion binary. The properties of these systems - low multiplicity fraction (11[+7][-3]% resolved, as corrected for sample selection baises), close projected separations (a = 1.8-5.0 AU) and near-unity mass ratios - are consistent with previous results for field brown dwarf binaries. Three of the binaries have components that span the poorly-understood transition between L dwarfs and T dwarfs. Spectral decomposition analysis of one of these, SDSS 1021-0304AB, reveals a peculiar flux reversal between its components, as its T5 secondary is ~30% brighter at 1.05 and 1.27 micron than its T1 primary. This...

  5. Brown dwarfs forming in discs: Where to look for them?

    Directory of Open Access Journals (Sweden)

    Stamatellos D.

    2011-07-01

    Full Text Available A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation for the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100–5000 AU around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  6. The formation of low-mass stars and brown dwarfs

    CERN Document Server

    Stamatellos, Dimitris

    2013-01-01

    It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragmentation, ejection of protostellar embryos, disc fragmentation, and photo-erosion of prestellar cores. I will focus on the disc fragmentation theory and discuss how it addresses critical observational constraints, i.e. the low-mass initial mass function, the brown dwarf desert, and the binary statistics of low-mass stars and brown dwarfs. I will examine whether observations may be used to distinguish between different formation mechanisms, and give a few examples of systems that strongly favour a specific formation scenario. Finally, I will argue that it is likely that all mechanisms may play a role in low-mass star and brown dwarf formation.

  7. Magnetic White Dwarfs: Observations, Theory, and Future Prospects

    CERN Document Server

    García-Berro, Enrique; Kepler, S O

    2015-01-01

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.

  8. Brown dwarfs forming in discs: where to look for them?

    CERN Document Server

    Stamatellos, Dimitris

    2009-01-01

    A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100-5000 AU) around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  9. The 25 Parsec Local White Dwarf Population

    CERN Document Server

    Oswalt, J B Holberg T D; McCook, G P

    2016-01-01

    We have extended our detailed survey of the local white dwarf population from 20 pc to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68% complete (the corresponding 20 pc sample is now 86\\% complete). The space density of white dwarfs is unchanged at 4.8 \\pm 0.5 x 10^{-3} pc^{-3}. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74\\% vs 26\\%). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition this updated sample exhibits a pronounced deficiency of nearby Sirius-Like systems. Eleven such systems were found within the 20 pc volume vs, only one add...

  10. Calibrating M dwarf metallicities using molecular indices

    CERN Document Server

    Woolf, V M; Woolf, Vincent M; Wallerstein, George

    2005-01-01

    We report progress in the calibration of a method to determine cool dwarf star metallicities using molecular band strength indices. The molecular band index to metallicity relation can be calibrated using chemical abundances calculated from atomic line equivalent width measurements in high resolution spectra. Building on previous work, we have measured Fe and Ti abundances in 32 additional M and K dwarf stars to extend the range of temperature and metallicity covered. A test of our analysis method using warm star - cool star binaries shows we can calculate reliable abundances for stars warmer than 3500 K. We have used abundance measurements for warmer binary or cluster companions to estimate abundances in 6 additional cool dwarfs. Adding stars measured in our previous work and others from the literature provides 76 stars with Fe abundance and CaH2 and TiO5 index measurements. The CaH2 molecular index is directly correlated with temperature. TiO5 depends on temperature and metallicity. Metallicity can be estim...

  11. GTC OSIRIS z-band imaging of Y dwarfs

    CERN Document Server

    Lodieu, N; Rebolo, R

    2013-01-01

    The aim of the project is to contribute to the characterisation of the spectral energy distribution of the coolest brown dwarfs discovered to date, the Y dwarfs. We obtained z-band far-red imaging for six Y dwarfs and a T9+Y0 binary with the OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) instrument on the 10.4-m Gran Telescopio de Canarias (GTC). We detect five of the seven known Y dwarfs in the $z$-band, infer their optical-to-infrared colours, and measure their proper motions. We find a higher dispersion in the z-J and z-H colours of Y0 dwarfs than in T dwarfs. This dispersion is found to be correlated with H-w2. The high dispersion in the optical-to-infrared colours of Y dwarfs and the possible turn-over towards bluer colours may be a consequence of the presence of sulfide clouds with different thicknesses, the depletion of alcalines, and/or gravity effects.

  12. Analysis of White Dwarfs with Strange-Matter Cores

    CERN Document Server

    Mathews, G J; O'Gorman, B; Lan, N Q; Zech, W; Otsuki, K; Weber, F

    2006-01-01

    We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify ...

  13. DA white dwarfs in the Kepler field

    Science.gov (United States)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2017-01-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-m, and Bok 2.3-m telescopes. Using atmospheric models, we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows. (i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these 11 happens to be a presumed binary, KIC 11604781, with a period of ˜5 d. (ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation time-scales.

  14. Magnetic white dwarfs with debris discs

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2013-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetic fields within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. Smoothed Particle Hydrodynamics simulations show that in mergers in which the two white dwarfs have different masses a disc around the central compact object is formed. If the central object is magnetized it can interact with the disc through its magnetosphere. The torque applied by the disc changes the spin of the star, whereas the transferred angular momentum from the star to the disc determines the properties of the disc. In this work we build a model for the disc evolution under the effect of magnetic accretion, and for the angular momentum evolution of the star, which can be compared with the observations. Our model pre...

  15. DA White Dwarfs in the Kepler Field

    Science.gov (United States)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2016-10-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows: i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these eleven happens to be a presumed binary, KIC 11604781, with a period of ˜5 days. ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation timescales.

  16. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  17. Juvenile Ultracool Dwarfs

    CERN Document Server

    Rice, Emily L; Cruz, Kelle; Barman, Travis; Looper, Dagny; Malo, Lison; Mamajek, Eric E; Metchev, Stanimir; Shkolnik, Evgenya L

    2011-01-01

    Juvenile ultracool dwarfs are late spectral type objects (later than ~M6) with ages between 10 Myr and several 100 Myr. Their age-related properties lie intermediate between very low mass objects in nearby star-forming regions (ages 1-5 Myr) and field stars and brown dwarfs that are members of the disk population (ages 1-5 Gyr). Kinematic associations of nearby young stars with ages from ~10-100 Myr provide sources for juvenile ultracool dwarfs. The lowest mass confirmed members of these groups are late-M dwarfs. Several apparently young L dwarfs and a few T dwarfs are known, but they have not been kinematically associated with any groups. Normalizing the field IMF to the high mass population of these groups suggests that more low mass (mainly late-M and possibly L dwarf) members have yet to be found. The lowest mass members of these groups, along with low mass companions to known young stars, provide benchmark objects with which spectroscopic age indicators for juvenile ultracool dwarfs can be calibrated and...

  18. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  19. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies

    Science.gov (United States)

    Will, Clifford M.

    2005-04-01

    Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)5] and O[(v/c)7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies. In particular we determine the effects of radiation reaction coupled to spin-orbit effects on the two-body equations of motion, and on the evolution of the spins. For a suitable definition of spin, we reproduce the standard equations of motion and spin-precession at the first post-Newtonian order. At 3.5 PN order, we determine the spin-orbit induced reaction effects on the orbital motion, but we find that radiation damping has no effect on either the magnitude or the direction of the spins. Using the equations of motion, we find that the loss of total energy and total angular momentum induced by spin-orbit effects precisely balances the radiative flux of those quantities calculated by Kidder et al. The equations of motion may be useful for evolving inspiraling orbits of compact spinning binaries.

  20. A Coordinated X-ray and Optical Campaign of the Nearest Massive Eclipsing Binary, delta Orionis Aa: III. Analysis of Optical Photometric MOST and Spectroscopic (Ground Based) Variations

    CERN Document Server

    Pablo, Herbert; Moffat, Anthony F J; Corcoran, Michael; Shenar, Tomer; Benvenuto, Omar; Fuller, Jim; Naze, Yael; Hoffman, Jennifer L; Miroshnichenko, Anatoly; Apellaniz, Jesus Maiz; Evans, Nancy; Eversberg, Thomas; Gayley, Ken; Gull, Ted; Hamaguch, Kenji; Hamann, Wolf-Rainer; Henrichs, Huib; Hole, Tabetha; Ignace, Richard; Iping, Rosina; Lauer, Jennifer; Leutenegger, Maurice; Lomax, Jamie; Nichols, Joy; Oskinova, Lida; Owocki, Stan; Pollock, Andy; Russell, Christopher M P; Waldron, Wayne; Buil, Christian; Garrel, Thierry; Graham, Keith; Heathcote, Bernard; Lemoult, Thierry; Li, Dong; Mauclaire, Benjamin; Potter, Mike; Ribeiro, Jose; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2015-01-01

    We report on both high-precision photometry from the MOST space telescope and ground-based spectroscopy of the triple system delta Ori A consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7d, and a more distant tertiary (O9 IV P > 400 yrs). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for 3 weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the ?first time in non-phased data. From the spectroscopy we have a well constrained radial velocity curve of Aa1. While we are unable to recover radial velocity variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful...

  1. Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey

    CERN Document Server

    Gates, E; Harris, H C; Subba-Rao, M; Anderson, S; Kleinman, S J; Liebert, J; Brewington, H; Brinkmann, J; Harvanek, M; Krzesínski, J; Lamb, D Q; Long, D; Neilsen, E H; Newman, P R; Nitta, A; Snedden, S A; Gates, Evalyn; Gyuk, Geza; Harris, Hugh C.; Subbarao, Mark; Anderson, Scott; Liebert, James; Brewington, Howard; Harvanek, Michael; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Neilsen, Eric H.; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-01-01

    We report the discovery of five very cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced absorption (CIA) from molecular hydrogen and are similar in color to the three previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402. The fifth, an ultracool white dwarf candidate, shows milder CIA flux suppression and has a color and spectral shape similar to WD 0346+246. All five new white dwarfs are faint (g > 18.9) and have significant proper motions. One of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.

  2. Constraining white-dwarf kicks in globular clusters : IV. Retarding Core Collapse

    CERN Document Server

    Heyl, Jeremy S

    2009-01-01

    Observations of white dwarfs in the globular clusters NGC 6397 and Omega Centauri indicate that these stars may get a velocity kick during their time as giants. This velocity kick could originate naturally if the mass loss while on the asymptotic giant branch is slightly asymmetric. The kicks may be large enough to dramatically change the radial distribution of young white dwarfs, giving them larger energies than other stars in the cluster. As these energetic white dwarfs travel through the cluster they can impart their excess energy on the other stars in the cluster. A Monte-Carlo simualtion of the white-dwarfs kicks combined with estimate of the phase-space diffusion of the white dwarfs reveals that as the white dwarfs equilibrate, they lose most of their energy in the central region of the cluster. They could possibly mimic the effect of binaries, puffing up the cluster and delaying core collapse.

  3. The Field White Dwarf Mass Distribution

    CERN Document Server

    Tremblay, P -E; Kalirai, J S; Gaensicke, B T; Gentile-Fusillo, N; Raddi, R

    2016-01-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Never...

  4. Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den; Roelofs, G.H.A.; Nelemans, G.A.; Augusteijn, T.; Groot, P.J.

    2005-01-01

    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30 0

  5. 3D models of radiatively driven colliding winds in massive O+O star binaries - III. Thermal X-ray emission

    CERN Document Server

    Pittard, J M

    2009-01-01

    The X-ray emission from the wind-wind collision in short-period massive O+O-star binaries is investigated. The emission is calculated from three-dimensional hydrodynamical models which incorporate gravity, the driving of the winds, orbital motion of the stars, and radiative cooling of the shocked plasma. Changes in the amount of stellar occultation and circumstellar attenuation introduce phase-dependent X-ray variability in systems with circular orbits, while strong variations in the intrinsic emission also occur in systems with eccentric orbits. The X-ray emission in eccentric systems can display strong hysteresis, with the emission softer after periastron than at corresponding orbital phases prior to periastron, reflecting the physical state of the shocked plasma at these times. Furthermore, the rise of the luminosity to maximum does not necessarily follow a 1/D law. Our models further demonstrate that the effective circumstellar column can be highly energy dependent. We simulate Chandra and Suzaku observat...

  6. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  7. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  8. Detonability of white dwarf plasma: turbulence models at low densities

    Science.gov (United States)

    Fenn, D.; Plewa, T.

    2017-06-01

    We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performed to date. The resolution required to resolve kernels is 0.1 km. Our results indicate a high probability of detonations in such well-resolved simulations of carbon-oxygen white dwarf mergers. These simulations will likely produce detonations in systems of lower total mass, thus broadening the population of white dwarf binaries capable of producing Type Ia supernovae. Consequently, we expect a downward revision of the lower limit of the total merger mass that is capable of producing a prompt detonation. We review application of the new detonation mechanism to various explosion scenarios of single, Chandrasekhar-mass white dwarfs.

  9. Massive Double White Dwarfs and the AM CVn Birthrate

    CERN Document Server

    Kilic, Mukremin; Heinke, Craig O; Gianninas, A; Benni, P; Agueros, M A

    2016-01-01

    We present Chandra and Swift X-ray observations of four extremely low-mass (ELM) white dwarfs with massive companions. We place stringent limits on X-ray emission from all four systems, indicating that neutron star companions are extremely unlikely and that the companions are almost certainly white dwarfs. Given the observed orbital periods and radial velocity amplitudes, the total masses of these binaries are greater than 1.02 to 1.39 Msun. The extreme mass ratios between the two components make it unlikely that these binary white dwarfs will merge and explode as Type Ia or underluminous supernovae. Instead, they will likely go through stable mass transfer through an accretion disk and turn into interacting AM CVn. Along with three previously known systems, we identify two of our targets, J0811 and J2132, as systems that will definitely undergo stable mass transfer. In addition, we use the binary white dwarf sample from the ELM Survey to constrain the inspiral rate of systems with extreme mass ratios. This r...

  10. Kepler observations of the beaming binary KPD 1946+4340

    DEFF Research Database (Denmark)

    Bloemen, S.; R. Marsh, T.; H. \\Ostensen, R.

    2011-01-01

    The Kepler Mission has acquired 33.5d of continuous one-minute photometry of KPD 1946+4340, a short-period binary system that consists of an sdB and a white dwarf. In the light curve, eclipses are clearly seen, with the deepest occurring when the compact white dwarf crosses the disc of the sdB (0...

  11. Bayesian Evidence for Two Populations of White Dwarfs: Preliminary Results

    Science.gov (United States)

    Valentim, R.; Romero, A. D.; Kepler, S. O.; Horvath, J. E.; Rangel, E. M.

    2017-03-01

    White dwarf (WD) populations are analyzed using Bayesian tools, which allows inferring possible evolutionary paths through the study of the mass values. We employed a sample of 2761 DA white dwarf stars from the SDSS, and obtained the central mass values and their corresponding standard deviations using a bimodal population as an ansatz. The results indicate a population with M1 = 0.60 M⊙ and σ1 = 0.06 M⊙, corresponding to a single stellar evolution, and a second population with M2 = 1.00 M⊙ and σ1 = 0.11 M⊙ possibly due to binary evolution resulting from mergers.

  12. The Factory and the Beehive. III. PTFEB132.707+19.810, A Low-mass Eclipsing Binary in Praesepe Observed by PTF and K2

    Science.gov (United States)

    Kraus, Adam L.; Douglas, Stephanie T.; Mann, Andrew W.; Agüeros, Marcel A.; Law, Nicholas M.; Covey, Kevin R.; Feiden, Gregory A.; Rizzuto, Aaron C.; Howard, Andrew W.; Isaacson, Howard; Gaidos, Eric; Torres, Guillermo; Bakos, Gaspar

    2017-08-01

    Theoretical models of stars constitute the fundamental bedrock upon which much of astrophysics is built, but large swaths of model parameter space remain uncalibrated by observations. The best calibrators are eclipsing binaries in clusters, allowing measurement of masses, radii, luminosities, and temperatures for stars of known metallicity and age. We present the discovery and detailed characterization of PTFEB132.707+19.810, a P = 6.0 day eclipsing binary in the Praesepe cluster (τ ˜ 600-800 Myr [Fe/H] = 0.14 ± 0.04). The system contains two late-type stars (SpT P = M3.5 ± 0.2; SpT S = M4.3 ± 0.7) with precise masses ({M}p=0.3953+/- 0.0020 M ⊙ {M}s=0.2098 +/- 0.0014 M ⊙) and radii ({R}p=0.363+/- 0.008 R ⊙ {R}s=0.272+/- 0.012 R ⊙). Neither star meets the predictions of stellar evolutionary models. The primary has the expected radius but is cooler and less luminous, while the secondary has the expected luminosity but is cooler and substantially larger (by 20%). The system is not tidally locked or circularized. Exploiting a fortuitous 4:5 commensurability between P orb and {P}{rot,{prim}}, we demonstrate that fitting errors from the unknown spot configuration only change the inferred radii by ≲1%-2%. We also analyze subsets of data to test the robustness of radius measurements; the radius sum is more robust to systematic errors and preferable for model comparisons. We also test plausible changes in limb darkening and find corresponding uncertainties of ˜1%. Finally, we validate our pipeline using extant data for GU Boo, finding that our independent results match previous radii to within the mutual uncertainties (2%-3%). We therefore suggest that the substantial discrepancies are astrophysical; since they are larger than those for old field stars, they may be tied to the intermediate age of PTFEB132.707+19.810.

  13. Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander; Ayres, Thomas R. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Neff, James E.; Wells, Mark A. [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Kowalski, Adam [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hawley, Suzanne [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Berdyugina, Svetlana [Kiepenheuer Institut für Sonnenphysik, University of Freiburg, Freiburg, D-79104 (Germany); Harper, Graham M. [School of Physics, Trinity College, Dublin 2 (Ireland); Korhonen, Heidi [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Uppsala SE-751-20 (Sweden); Saar, Steven [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Walkowicz, Lucianne, E-mail: Alexander.Brown@colorado.edu [Astrophysical Sciences Department, Princeton University, Princeton, NJ 08544-1001 (United States)

    2015-02-01

    The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4 year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.

  14. First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A

    CERN Document Server

    Codella, C; Gueth, F; Maret, S; Belloche, A; Cabrit, S; Andre', Ph

    2014-01-01

    Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8") resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22" of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR|...

  15. Electroanalytical measurements of binary-analyte mixtures in molten LiCl-KCl eutectic: Uranium(III)- and Magnesium(II)-Chloride

    Science.gov (United States)

    Rappleye, Devin; Newton, Matthew L.; Zhang, Chao; Simpson, Michael F.

    2017-04-01

    The electrochemical behavior of MgCl2 in molten LiCl-KCl eutectic was investigated to evaluate its suitability as a surrogate for PuCl3 in studies related to the eletrorefining of used nuclear fuel. The reduction of Mg2+ was found to be electrochemically reversible up to 300 mV s-1 at 773 K. The diffusion coefficient for Mg2+ was calculated to be 1.74 and 2.17 × 10-5 cm2 s-1 with and without U3+ present, respectively, at 773 K using cyclic voltammetry (CV). Upon comparison to literature data, the diffusion coefficient of Mg2+ differs by only 8.8% (with U3+ present) from that of Pu3+ and the difference in peak potentials was only 79 mV. Binary-analyte mixtures of UCl3 and MgCl2 in eutectic LiCl-KCl were further investigated using CV, normal pulse voltammetry (NPV), chronoamperometry (CA) and open-circuit potential (OCP) measurements for the purpose of comparing each technique's accuracy in measuring U3+ and Mg2+ concentrations. Of all the techniques tested, NPV resulted in the lowest error which was, on average, 11.4% and 9.81% for U3+ and Mg2+, respectively.

  16. Stellar laboratories III. New Ba V, Ba VI, and Ba VII oscillator strengths and the barium abundance in the hot white dwarfs G191-B2B and RE0503-289

    CERN Document Server

    Rauch, T; Quinet, P; Kruk, J W

    2014-01-01

    For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Reliable Ba V - VII oscillator strengths are used to identify Ba lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE0503-289 and to determine their photospheric Ba abundances. We newly calculated Ba V - VII oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Ba lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE0503-289. For the first time, we identified highly ionized Ba in the spectra of hot white dwarfs. We detected Ba VI and Ba VII lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE0503-289. The Ba VI / Ba VII ionization equil...

  17. Dwarfs in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  18. RX J0648.0--4418: the fastest-spinning white dwarf

    CERN Document Server

    Mereghetti, Sandro

    2013-01-01

    RX J0648.0-4418 is a post common-envelope X-ray binary composed of a hot subdwarf and one of the most massive white dwarfs with a dynamical mass measurement (1.28+/-0.05 M_sun). This white dwarf, with a spin period of 13.2 s, rotates more than twice faster than the white dwarf in the cataclysmic variable AE Aqr. The current properties of these two binaries, as well as their future evolution, are quite different, despite both contain a fast-spinning white dwarf. RX J0648.0-4418 could be the progenitor of either a Type Ia supernova or of a non-recycled millisecond pulsars.

  19. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  20. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  1. The Evolution of Compact Binary Star Systems.

    Science.gov (United States)

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  2. Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations

    CERN Document Server

    Busschaert, C; Michaut, C; Bonnet-Bidaud, J -M; Mouchet, M

    2015-01-01

    Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. High-energy radiation coming from those objects is emitted from the accretion column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. The oscillation frequencies and amplitudes in the X-ray and optic...

  3. Binary population synthesis and SNIa rates

    CERN Document Server

    Toonen, S; Bours, M; Zwart, S Portegies

    2013-01-01

    Despite the significance of type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. We investigate the potential contribution to the SNeIa rate from the most common progenitor channels using the binary population synthesis (BPS) code SeBa. Using SeBa, we aim constrain binary processes such as the common envelope phase and the efficiency of mass retention of white dwarf accretion. We find that the simulated rates are not sufficient to explain the observed rates. Further, we find that the mass retention efficiency of white dwarf accretion significantly influences the rates, but does not explain all the differences between simulated rates from different BPS codes.

  4. New population synthesis model Preliminary results for close double white dwarf populations

    Science.gov (United States)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon F.

    2010-11-01

    An update is presented to the software package SeBa (Portegies Zwart and Verbunt [1], Nelemans et al. [2]) for simulating single star and binary evolution in which new stellar evolution tracks (Hurley et al. [3]) have been implemented. SeBa is applied to study the population of close double white dwarf and the delay time distribution of double white dwarf mergers that may lead to Supernovae Type Ia.

  5. A New Population Synthesis Model: Preliminary Results for Close Double White Dwarf Populations

    Science.gov (United States)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon F.

    2010-12-01

    An update is presented to the software package SeBa (Portegies Zwart and Verbunt [1], Nelemans et al. [2]) for simulating single star and binary evolution in which new stellar evolution tracks (Hurley et al. [3]) have been implemented. SeBa is applied to study the population of close double white dwarf and the delay time distribution of double white dwarf mergers that may lead to Supernovae Type Ia.

  6. The white dwarf population of NGC 6397

    CERN Document Server

    Torres, S; Althaus, L G; Camisassa, M E

    2015-01-01

    NGC 6397 is one of the most interesting, well observed and theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low metallicity progenitors,to determine its age and the percentage of unresolved binaries, and to assess other important characteristics of the cluster, like the slope of the initial mass function, or the fraction of white dwarfs with hydrogen deficient atmospheres. We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram, and the corresponding magnitude and color distributions. We do this using an up-to-date Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. We find a good agreement between our theoretical models and the observed data. In particular, we find that this agreement is best for those cooling sequences th...

  7. Parallax measurements of cool brown dwarfs

    CERN Document Server

    Manjavacas, E; Reffert, S; Henning, T

    2013-01-01

    Accurate parallax measurements allow us to determine physical properties of brown dwarfs, and help us to constrain evolutionary and atmospheric models, break the age-mass degeneracy and reveal unresolved binaries. We measured absolute trigonometric parallaxes and proper motions of 6 cool brown dwarfs using background galaxies to establish an absolute reference frame. We derive the absolute J-mag. The six T brown dwarfs in our sample have spectral types between T2.5 and T7.5 and magnitudes in J between 13.9 and 18.0, with photometric distances below 25 pc. The observations were taken in the J-band with the Omega-2000 camera on the 3.5 m telescope at Calar Alto, during a time period of 27 months, between March 2011 and June 2013. The number of epochs varied between 11 and 12 depending on the object. The reduction of the astrometric measurements was carried out with respect to the field stars. The relative parallax and proper motions were transformed into absolute measurements using the background galaxies in ou...

  8. Detonations in white dwarf dynamical interactions

    CERN Document Server

    Aznar-Siguán, Gabriela; Lorén-Aguilar, Pablo; José, Jordi; Isern, Jordi

    2013-01-01

    In old, dense stellar systems collisions of white dwarfs are a rather frequent phenomenon. Here we present the results of a comprehensive set of Smoothed Particle Hydrodynamics simulations of close encounters of white dwarfs aimed to explore the outcome of the interaction and the nature of the final remnants for different initial conditions. Depending on the initial conditions and the white dwarf masses, three different outcomes are possible. Specifically, the outcome of the interaction can be either a direct or a lateral collision or the interaction can result in the formation of an eccentric binary system. In those cases in which a collision occurs, the infalling material is compressed and heated such that the physical conditions for a detonation may be reached during the most violent phases of the merger. While we find that detonations occur in a significant number of our simulations, in some of them the temperature increase in the shocked region rapidly lifts degeneracy, leading to the quenching of the bu...

  9. DA White Dwarfs in the Kepler Field

    CERN Document Server

    Doyle, T F; Petit, V; Lepine, S

    2016-01-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200", Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows: i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these eleven happens to be a presumed binary, KIC 11604781, with a period of ~5 days. ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will he...

  10. A Study of the Diverse T Dwarf Population Revealed by WISE

    CERN Document Server

    Mace, Gregory N; Cushing, Michael C; Gelino, Christopher R; Griffith, Roger L; Skrutskie, Michael F; Marsh, Kenneth A; Wright, Edward L; Eisenhardt, Peter R; McLean, Ian S; Thompson, Maggie A; Mix, Katholeen; Bailey, Vanessa; Beichman, Charles A; Bloom, Joshua S; Burgasser, Adam J; Fortney, Jonathan J; Hinz, Philip M; Knox, Russell P; Lowrance, Patrick J; Marley, Mark S; Morley, Caroline V; Rodigas, Timothy J; Saumon, Didier; Sheppard, Scott S; Stock, Nathan D

    2013-01-01

    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index d...

  11. On the White Dwarf Mass Problem of Cataclysmic Variables

    CERN Document Server

    Liu, Wei-Min

    2016-01-01

    Recent observations show that the white dwarfs (WDs) in cataclysmic Variables (CVs) have an average mass significantly higher than isolated WDs and WDs in post-common envelope binaries (PCEBs), which are thought to the progenitors of CVs. This suggests that either the WDs have grown in mass during the PCEB/CV evolution or the binaries with low-mass WDs are unable to evolve to be CVs. In this paper, we calculate the evolution of accreting WD binaries with updated hydrogen accumulation efficiency and angular momentum loss prescriptions. We show that thermal timescale mass transfer is not effective in changing the average WD mass distribution. The WD mass discrepancy is most likely related to unstable mass transfer in WD binaries in which an efficient mechanism of angular momentum loss is required.

  12. Discovery of the benchmark metal poor T8 dwarf BD+01 2920B

    CERN Document Server

    Pinfield, D J; Lodieu, N; Leggett, S K; Tinney, C G; van Spaandonk, L; Marocco, F; Smart, R; Gomes, J; Smith, L; Lucas, P W; Day-Jones, A C; Murray, D N; Katsiyannis, A C; Catalan, S; Cardoso, C; Clarke, J R A; Folkes, S; Galvez-Ortiz, M C; Homeier, D; Jenkins, J S; Jones, H R A; Zhang, Z H

    2012-01-01

    We have searched the WISE first data release for widely separated (<10,000AU) late T dwarf companions to Hipparcos and Gliese stars. We have discovered a new binary system containing a K-band suppressed T8p dwarf WISEP J1423+0116 and the mildly metal poor ([Fe/H]=-0.38+-0.06) primary BD+01 2920 (Hip 70319), a G1 dwarf at a distance of 17.2pc. This new benchmark has Teff=680+-55K and a mass of 20-50 Mjup. Its spectral properties are well modelled except for known discrepancies in the Y and K bands. Based on the well determined metallicity of its companion, the properties of BD+01 2920B imply that the currently known T dwarfs are dominated by young low-mass objects. We also present an accurate proper motion for the T8.5 dwarf WISEP J075003.84+272544.8.

  13. CARMENES input catalogue of M dwarfs: High-resolution imaging with FastCam

    Science.gov (United States)

    Cortés-Contreras, M.; Béjar, V. J. S.; Caballero, J. A.; Gauza, B.; Montes, D.; Alonso-Floriano, F. J.; Jeffers, S. V.; Morales, J. C.; Reiners, A.; Ribas, I.; Schofer, P.; Quirrenbach, A.; Amado, P. J.; Mundt, R.; Seifert, W.; CARMENES Consortium

    2017-03-01

    In this contribution we summarise our science preparation activities to complete the CARMENES input catalogue of M dwarfs using low-resolution spectroscopy to derive spectral indices sensible to spectral type, gravity and metallicity as well as the level of chromospheric activity. We provide here all this information for 181 stars in addition to the 727 stars already published in Alonso-Floriano et al. (2015). We have developed a calibration of the M-dwarfs metallicity (Alonso-Floriano et al. 2016) using physical binaries composed of an F-, G- or K-dwarf primary and an M-dwarf secondary that allows us to provide the metallicity for all these M dwarfs.

  14. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    CERN Document Server

    Hoard, D W; Wachter, Stefanie; Leisawitz, David T; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks....

  15. Runaway Dwarf Carbon Stars as Candidate Supernova Ejecta

    CERN Document Server

    Plant, Kathryn A; Guhathakurta, Puragra; Cunningham, Emily C; Toloba, Elisa; Munn, Jeffrey A

    2016-01-01

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531$\\pm 4$ km s$^{-1}$. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425$\\pm 9$ km s$^{-1}$. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of $C_2$ bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric $C_2$ via mass transfer from an evolved companion.

  16. White Dwarf Period Tables I. Pulsators with hydrogen-dominated atmospheres

    Science.gov (United States)

    Bognar, Zs.; Sodor, A.

    2016-09-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  17. White Dwarf Period Tables - I. Pulsators with hydrogen-dominated atmospheres

    CERN Document Server

    Bognár, Zs

    2016-01-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  18. The formation of brown dwarfs in discs: Physics, numerics, and observations

    CERN Document Server

    Stamatellos, Dimitris

    2010-01-01

    A large fraction of brown dwarfs and low-mass stars may form by gravitational fragmentation of relatively massive (a few 0.1 Msun), extended (a few hundred AU) discs around Sun-like stars. We present an ensemble of radiative hydrodynamic simulations that examine the conditions for disc fragmentation. We demonstrate that this model can explain the low-mass IMF, the brown dwarf desert, and the binary properties of low-mass stars and brown dwarfs. Observing discs that are undergoing fragmentation is possible but very improbable, as the process of disc fragmentation is short lived (discs fragment within a few thousand years).

  19. Characterizing the population of active galactic nuclei in dwarf galaxies

    Science.gov (United States)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  20. M-dwarf metallicities - A high-resolution spectroscopic study in the near infrared

    CERN Document Server

    Önehag, Anna; Gustafsson, Bengt; Piskunov, Nikolai; Plez, Bertrand; Reiners, Ansgar

    2011-01-01

    The relativley large spread in the derived metallicities ([Fe/H]) of M dwarfs shows that various approaches have not yet converged to consistency. The presence of strong molecular features, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for a detailed spectroscopic abundance analysis. We present a high-resolution (R~50,000) spectroscopic study of a sample of eight single M dwarfs and three wide-binary systems observed in the infrared J-band. The absence of large molecular contributions allow for a precise continuum placement. We derive metallicities based on the best fit synthetic spectra to the observed spectra. To verify the accuracy of the applied atmospheric models and test our synthetic spectrum approach, three binary systems with a K-dwarf primary and an M-dwarf companion were observed and analysed along with the single M dwarfs. We obt...

  1. The field white dwarf mass distribution

    Science.gov (United States)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.; Gänsicke, B. T.; Gentile-Fusillo, N.; Raddi, R.

    2016-09-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disc vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50 per cent the number of massive white dwarfs (M > 0.75 M⊙) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.

  2. Evolutionary Grids of Accreting White Dwarf Companions in Cataclysmic Variables

    Science.gov (United States)

    Benjamin, J.; Jensen, M.; Nadeau, S.; Nelson, L. A.

    2003-12-01

    We analyze the evolution of accreting white dwarfs in binary systems for a wide range of initial conditions. Specifically, evolutionary tracks are calculated for CO white dwarfs with masses in the range of 0.6 - 1.3 solar masses and accreting H-rich gas at rates of between 10-6 to 10-10 solar masses per year. Since the white dwarfs in these binaries could be very young or very old at the onset of mass transfer we simulated this possibility by investigating the evolution for a large range of internal temperatures. Thus most of the sequences generated were not thermally relaxed at the onset of mass transfer (and the thermonuclear flashes were not cyclic). We discuss the temporal dependence of the interior properties (envelope readjustment on a thermal timescale and compressional heating) on the initial conditions. Particular attention is paid to the white dwarfs accretors that remained small (relative to the Roche lobe radius) during the shell flash event. Finally, we use the results of these models to comment on the observed properties of Supersoft X-ray sources. This research was supported in part by funds from the Natural Sciences and Engineering Research Council (Canada).

  3. Planetary Engulfment as a Trigger for White Dwarf Pollution

    Science.gov (United States)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ∼ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  4. Gravitational wave emission from the coalescence of white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Berro, E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Escola Politecnica Superior de Castelldefels, Avda del Canal OlImpic s/n, 08860 Castelldefels (Spain); Institut d' Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capita 2, 08034 Barcelona (Spain); Loren-Aguilar, P [Institut d' Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capita 2, 08034 Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC), Campus UAB, Facultat de Ciencies, Torre C-5, 08193 Bellaterra (Spain); Isern, J [Institut d' Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capita 2, 08034 Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC), Campus UAB, Facultat de Ciencies, Torre C-5, 08193 Bellaterra (Spain); Pedemonte, A G [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Escola Politecnica Superior de Castelldefels, Avda del Canal OlImpic s/n, 08860 Castelldefels (Spain); Guerrero, J [Institut d' Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capita 2, 08034 Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC), Campus UAB, Facultat de Ciencies, Torre C-5, 08193 Bellaterra (Spain); Lobo, J A [Institut d' Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capita 2, 08034 Barcelona (Spain); Departament de Fisica Fonamental, Universitat de Barcelona, c/MartI i Franques 1, 08028 Barcelona (Spain)

    2005-05-21

    We have computed the gravitational wave emission arising from the coalescence of several close white dwarf binary systems. In order to do so, we have followed the evolution of such systems using a smoothed particle hydrodynamics code. Here we present some of the results obtained so far, paying special attention to the detectability of the emitted gravitational waves. Within this context, we show which could be the impact of individual merging episodes for LISA.

  5. White Dwarf Mass Distribution

    CERN Document Server

    Kepler, S O; Romero, Alejandra Daniela; Ourique, Gustavo; Pelisoli, Ingrid

    2016-01-01

    We present the mass distribution for all S/N > 15 pure DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12, fitted with Koester models for ML2/alpha=0.8, and with Teff > 10 000 K, and for DBs with S/N >10, fitted with ML2/alpha=1.25, for Teff > 16 000 K. These mass distributions are for log g > 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 Msun but very distinct shapes. From the estimated z-distances, we deduce a disk scale height of 300 pc. We also present 10 probable halo white dwarfs, from their galactic U, V, W velocities.

  6. Axions and White Dwarfs

    CERN Document Server

    Isern, J; Garcia-Berro, E; Salaris, M; Torres, S

    2010-01-01

    White dwarfs are almost completely degenerate objects that cannot obtain energy from the thermonuclear sources and their evolution is just a gravothermal process of cooling. The simplicity of these objects, the fact that the physical inputs necessary to understand them are well identified, although not always well understood, and the impressive observational background about white dwarfs make them the most well studied Galactic population. These characteristics allow to use them as laboratories to test new ideas of physics. In this contribution we discuss the robustness of the method and its application to the axion case.

  7. Surface Brightness Profiles of Dwarf Galaxies. II. Color Trends and Mass Profiles

    Science.gov (United States)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2016-06-01

    In this second paper of a series, we explore the B - V, U - B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ˜1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (-9 > MB > -14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (-14 > MB > -19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1-2 M⊙ pc-2 for Type II dwarfs but higher at 5.9 M⊙ pc-2 or 27 M⊙ pc-2 for Type III BCDs and dIms, respectively.

  8. Metallicity determination of M dwarfs - High-resolution IR spectroscopy

    CERN Document Server

    Lindgren, Sara; Seifahrt, Andreas

    2015-01-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims. In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high- resolution infrared spectra. The reliability was confirmed though analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods. The metallicity determination was based on spectra taken in the J band (1.1-1.4 {\\mu}m) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placemen...

  9. White Dwarfs in HETDEX: Preparation for the Survey

    Science.gov (United States)

    Castanheira, B. G.; Winget, D. E.

    2015-06-01

    In the past decade, large scale surveys have discovered a large number of white dwarf stars. Many new aspects have been revealed, including the discovery of the DQVs, close-in non-contact binary systems, and debris disks around many stars. Unfortunately, the population statistics of the newly discovered white dwarf stars are poorly constrained, because of the various methods used to assign objects to fibers for spectroscopic observations in the SDSS survey. A white dwarf sample that is magnitude limited, with well-constrained selection criteria, is needed. The HET Dark Energy Experiment (HETDEX) will use the 9.2 m HET at McDonald Observatory and a set of more than 100 spectrographs to map the three-dimensional positions of one million galaxies, to probe dark energy. In this unique magnitude limited survey, all objects that fall into the fibers will be observed. We expect to observe spectroscopically about 10,00 white dwarf stars. In this paper, we will present the specifications and current status of HETDEX, which will start taking data in Fall 2014. We will also show our first results from observations of white dwarf stars using an identical spectrograph with the 2.7m HJS Telescope and discuss some of the approaches we have been working on in preparation for this exciting survey.

  10. A Brown Dwarf Census from the SIMP Survey

    CERN Document Server

    Robert, Jasmin; Artigau, Étienne; Lafrenière, David; Nadeau, Daniel; Doyon, René; Malo, Lison; Albert, Loïc; Simard, Corinne; Gagliuffi, Daniella C Bardalez; Burgasser, Adam J

    2016-01-01

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre (SIMP), in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging $\\sim28\\%$ of the sky with the Camera PAnoramique Proche-InfraRouge (CPAPIR) both in the southern hemisphere at the Cerro Tololo Inter-American Observatory (CTIO) 1.5-m telescope, and in the northern hemisphere at the Observatoire du Mont-M\\'egantic (OMM) 1.6-m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. We present the results of a NIR spectroscopic follow-up of 169 M, L and T dwarfs. Among the sources discovered are two young field brown dwarfs, six unusually red M and L dwarfs, twenty-five unusually blue M and L dwarfs, two candidate unresolved L+T binaries and twenty-four peculiar UCDs. Additionally, w...

  11. Using Clustering Algorithms to Identify Brown Dwarf Characteristics

    Science.gov (United States)

    Choban, Caleb

    2016-06-01

    Brown dwarfs are stars that are not massive enough to sustain core hydrogen fusion, and thus fade and cool over time. The molecular composition of brown dwarf atmospheres can be determined by observing absorption features in their infrared spectrum, which can be quantified using spectral indices. Comparing these indices to one another, we can determine what kind of brown dwarf it is, and if it is young or metal-poor. We explored a new method for identifying these subgroups through the expectation-maximization machine learning clustering algorithm, which provides a quantitative and statistical way of identifying index pairs which separate rare populations. We specifically quantified two statistics, completeness and concentration, to identify the best index pairs. Starting with a training set, we defined selection regions for young, metal-poor and binary brown dwarfs, and tested these on a large sample of L dwarfs. We present the results of this analysis, and demonstrate that new objects in these classes can be found through these methods.

  12. Beyond-Binary Arithmetic: Algorithms and VLSI Implementations

    OpenAIRE

    Aoki, Takafumi; Higuchi, Tatsuo

    2000-01-01

    Beyond-binary arithmetic algorithms are defined as a new class of computer arithmetic algorithms which employ non-binary data representations to achieve higher performances beyond those of conventional binary algorithms. This paper presents prominent examples of beyond-binary arithmetic algorithms: examples include (i) a high-radix redundant division algorithm without using lookup tables, (ii) a high-radix redundant CORDIC algorithm for fast vector rotation, and (iii) redundant complex arithm...

  13. Binary star influence on post-main-sequence multi-planet stability

    CERN Document Server

    Veras, Dimitri; Dobbs-Dixon, Ian; Gaensicke, Boris T

    2016-01-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation, for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures that are conducive to generating observable heavy metal pollution in white dwarf atmospheres.

  14. Binary star influence on post-main-sequence multi-planet stability

    Science.gov (United States)

    Veras, Dimitri; Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Gänsicke, Boris T.

    2017-02-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures which are conducive to generating observable metal pollution in white dwarf atmospheres.

  15. Periodic optical variability of radio-detected ultracool dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F. [Centre for Astronomy, National University of Ireland, Galway, University Road, Galway (Ireland); Hallinan, G. [Cahill Center for Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Boyle, R. P. [Vatican Observatory Research Group, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Zavala, R. T., E-mail: lkh@astro.caltech.edu [United States Naval Observatory, Flagstaff Station, Flagstaff, AZ 86001 (United States)

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  16. Synthesis, characterization and thermal studies of binary and/or mixed ligand complexes of Cd(II), Cu(II), Ni(II) and Co(III) based on 2-(Hydroxybenzylidene) thiosemicarbazone: DNA binding affinity of binary Cu(II) complex.

    Science.gov (United States)

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2012-06-15

    A new series of metal complexes of Cd(II), Cu(II), Ni(II) and Co(III) with Schiff base ligand, H(2)L, 2-(Hydroxybenzylidene) thiosemicarbazone were synthesized. The mixed ligand complexes were prepared by using glycine (Gly), 2-aminopyridine (2-Ampy) and 1,10-phenanthroline (Phen) as secondary ligands. The structure of these complexes was identified and confirmed by elemental analysis, molar conductivity, UV-Vis, FT-IR and (1)H NMR spectroscopy and magnetic moment measurements as well as TG-DSC technique. The discussions of the prepared complexes indicate that the ligand behaves as a monoanionic tridentate ligand through ONS donor sites. Thermal studies suggested a mechanism for the degradation of the metal complexes as a function of temperature supporting the chelation modes and showed the possibility of obtaining new complexes pyrolytically in the solid state which cannot be synthesized from the solution. The absorption studies support that the binary Cu(II) complex exhibits a significant binding affinity to HS-DNA through intercalative mode.

  17. White Dwarfs in Globular Clusters

    CERN Document Server

    Möhler, S

    2008-01-01

    We review empirical and theoretical findings concerning white dwarfs in Galactic globular clusters. Since their detection is a critical issue we describe in detail the various efforts to find white dwarfs in globular clusters. We then outline the advantages of using cluster white dwarfs to investigate the formation and evolution of white dwarfs and concentrate on evolutionary channels that appear to be unique to globular clusters. We also discuss the usefulness of globular cluster white dwarfs to provide independent information on the distances and ages of globular clusters, information that is very important far beyond the immediate field of white dwarf research. Finally, we mention possible future avenues concerning globular cluster white dwarfs, like the study of strange quark matter or plasma neutrinos.

  18. Stellar laboratories. III. New Ba v, Ba vi, and Ba vii oscillator strengths and the barium abundance in the hot white dwarfs G191-B2B and RE 0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-06-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: Reliable Ba v-vii oscillator strengths are used to identify Ba lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ba abundances. Methods: We newly calculated Ba v-vii oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Ba lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: For the first time, we identified highly ionized Ba in the spectra of hot white dwarfs. We detected Ba vi and Ba vii lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The Ba vi/Ba vii ionization equilibrium is well reproduced with the previously determined effective temperature of 70 000 K and surface gravity of log g = 7.5. The Ba abundance is 3.5 ± 0.5 × 10-4 (mass fraction, about 23 000 times the solar value). In the FUSE spectrum of G191-B2B, we identified the strongest Ba vii line (at 993.41 Å) only, and determined a Ba abundance of 4.0 ± 0.5 × 10-6 (about 265 times solar). Conclusions: Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Ba vi-vii line profiles in two white dwarfs' (G191-B2B and RE 0503-289) far-ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed to determine the photospheric Ba abundance of these two stars precisely. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for

  19. Eastern Spruce Dwarf Mistletoe

    Science.gov (United States)

    F. Baker; Joseph O' Brien; R. Mathiasen; Mike Ostry

    2006-01-01

    Eastern spruce dwarf mistletoe (Arceuthobium pusillum) is a parasitic flowering plant that causes the most serious disease of black spruce (Picea mariana) throughout its range. The parasite occurs in the Canadian provinces of Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland; in the Lake States of Minnesota,...

  20. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  1. The origin of the strongest magnetic fields in dwarfs

    Indian Academy of Sciences (India)

    Christopher A Tout

    2011-07-01

    White dwarfs have frozen in magnetic fields ranging from below the measurable limit of about 3 × 103 to 109 G. White dwarfs with surface magnetic fields in excess of 1 MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1253 white dwarfs with a detached low-mass main-sequence companion have been identified in the Sloan Digital Sky Survey (SDSS) but none of these shows sufficient evidence for Zeeman splitting of hydrogen lines for a magnetic field in excess of 1 MG. If such high magnetic fields in white dwarfs result from the isolated evolution of a single star then there should be the same fraction of high field white dwarfs among this SDSS binary sample as among single stars. Thus, we deduce that the origin of such high magnetic fields must be intimately tied to the formation of cataclysmic variables (CVs). The formation of a CV must involve orbital shrinkage from giant star to main-sequence star dimensions. It is believed that this shrinkage occurs as the low-mass companion and the white dwarf spiral together inside a common envelope. CVs emerge as very close but detached binary stars that are then brought together by magnetic braking or gravitational radiation. We propose that the smaller the orbital separation at the end of the common envelope phase, the stronger the magnetic field. The magnetic cataclysmic variables (MCVs) originate from those common envelope systems that almost merge. Those common envelope systems that do merge are the progenitors of the single high field white dwarfs. Thus all highly magnetic white dwarfs, be they single stars or the components of MCVs, have a binary origin. This accounts for the relative dearth of single white dwarfs with fields of 104 – 106 G. Such intermediate-field white dwarfs are found preferentially in cataclysmic variables. The bias towards higher masses for highly magnetic white dwarfs is expected if a fraction of these form when two degenerate cores

  2. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, John C. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, Todd J.; Ianna, Philip A. [RECONS Institute, Chambersburg, PA 17201 (United States); Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Koerner, David W. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Riedel, Adric R. [Department of Astrophysics, American Museum of Natural History, New York, NY 10034 (United States); Subasavage, John P., E-mail: lurie@uw.edu [United States Naval Observatory, Flagstaff, AZ 86001 (United States)

    2014-11-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M{sub Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  3. Discovery of a bipolar and highly variable mass outflow from the symbiotic binary StHa 190

    CERN Document Server

    Munari, U; Yudin, B F; Marrese, P M; Zwitter, T; Gratton, R G; Bonanno, G; Bruno, P; Cali, A; Claudi, R U; Cosentino, R; Desidera, S; Farisato, G; Martorana, G; Marino, G; Rebeschini, M; Scuderi, S; Timpanaro, M C

    2001-01-01

    A highly and rapidly variable bipolar mass outflow from StHa 190 has been discovered, the first time in a yellow symbiotic star. Permitted emission lines are flanked by symmetrical jet features and multi-component P-Cyg profiles, with velocities up to 300 km/sec. Given the high orbital inclination of the binary, if the jets leave the system nearly perpendicular to the orbital plane, the de-projected velocity equals or exceeds the escape velocity (1000 km/sec). StHa190 looks quite peculiar in many other respects: the hot component is an O-type sub-dwarf without an accretion disk or a veiling nebular continuum and the cool component is a G7 III star rotating at a spectacular 105 km/sec unseen by a large margin in field G giants.

  4. The white dwarf luminosity function

    Science.gov (United States)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  5. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    CERN Document Server

    Morgan, Dylan P; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M

    2012-01-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf -- main sequence binaries from Rebassa et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space to construct a sample of 1756 WD+dM high-quality pairs from the SDSS DR8 spectroscopic database. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{\\alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types \\leqM7. Our results show that early-type M dwarfs (\\leqM4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just pas...

  6. M Dwarf Mysteries

    Science.gov (United States)

    Henry, Todd J.; Jao, Wei-Chun; Irwin, Jonathan; Dieterich, Sergio; Finch, Charlie T.; Riedel, Adric R.; Subasavage, John P.; Winters, Jennifer; RECONS Team

    2017-01-01

    During RECONS' 17-year (so far) astrometry/photometry program at the CTIO/SMARTS 0.9m, we have observed thousands of the ubiquitous red dwarfs in the solar neighborhood. During this reconnaissance, a few mysterious characters have emerged ...The Case of the Mercurial Stars: One M dwarf has been fading steadily for more than a decade, at last measure 6% fainter than when it was first observed. Another has grown brighter by 7% over 15 years. Are these brightness changes part of extremely long stellar cycles, or something else entirely?The Case of Identical Stellar Twins that Aren't: Two M dwarfs seem at first to be identical siblings traveling together through the Galaxy. They have virtually identical spectra at optical wavelengths and identical colors throughout the VRIJHK bands. Long-term astrometry indicates that they are, indeed, at the same distance via parallax measurements, and their proper motions match precisely. Yet, one of the twins is FOUR times brighter than the other. Followup work has revealed that the brighter component is a very close spectroscopic double, but no other stars are seen. So, the mystery may be half solved, but why do the close stars remain twice as bright as their widely-separated twin?The Case of the Great Kaboom!: After more than 1000 nights of observing on the reliable 0.9m telescope, with generally routine frames reading out upon the screen, one stellar system comprised of five red dwarfs flared in stunning fashion. Of the two distinct sources, the fainter one (an unresolved double) surpassed the brightness of the brighter one (an unresolved triple), increasing by more than three full magnitudes in the V filter. Which component actually flared? Is this magnificent outburst an unusual event, or in fact typical for this system and other M dwarfs?At the AAS meeting, we hope to probe the cognoscenti who study the Sun's smaller cousins to solve these intriguing M Dwarf Mysteries.This effort has been supported by the NSF through grants

  7. Coronal activity from the ASAS eclipsing binaries

    CERN Document Server

    Szczygiel, D M; Paczynski, B; Pojmanski, G; Pilecki, B

    2008-01-01

    We combine the catalogue of eclipsing binaries from the All Sky Automated Survey (ASAS) with the ROSAT All Sky Survey (RASS). The combination results in 836 eclipsing binaries that display coronal activity and is the largest sample of active binary stars assembled to date. By using the (V-I) colors of the ASAS eclipsing binary catalogue, we are able to determine the distances and thus bolometric luminosities for the majority of eclipsing binaries that display significant stellar activity. A typical value for the ratio of soft X-ray to bolometric luminosity is L_X/L_bol ~ a few x 10^-4, similar to the ratio of soft X-ray to bolometric flux F_X/F_bol in the most active regions of the Sun. Unlike rapidly rotating isolated late-type dwarfs -- stars with significant outer convection zones -- a tight correlation between Rossby number and activity of eclipsing binaries is absent. We find evidence for the saturation effect and marginal evidence for the so-called "super-saturation" phenomena. Our work shows that wide-...

  8. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  9. The white dwarf luminosity function

    CERN Document Server

    García-Berro, Enrique

    2016-01-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for $\\sim 10$ Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other...

  10. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    Science.gov (United States)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  11. Dwarf Spheroidals in MOND

    CERN Document Server

    Angus, Garry W

    2008-01-01

    We take the line of sight velocity dispersions as functions of radius for 8 Milky Way dwarf spheroidal galaxies and use Jeans analysis to calculate the mass-to-light ratios (M/L) in Modified Newtonian Dynamics (MOND). Using the latest structural parameters, distances and variable velocity anisotropy, we find 6/8 dwarfs have sensible M/L using only the stellar populations. Sextans and Draco, however, have M/L=9.2_{-3.0}^{+5.3} and 43.9_{-19.3}^{+29.0} respectively, which poses a problem. Apart from the need for Sextans' integrated magnitude to be reviewed, we propose tidal effects intrinsic to MOND, testable with numerical simulations, but fully orbit dependant, which are disrupting Draco. The creation of the Magellanic Stream is also re-addressed in MOND, the scenario being the stream is ram pressure stripped from the SMC as it crosses the LMC.

  12. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from Marvels III: A Short-Period Brown Dwarf Candidate Around An Active G0Iv Subgiant

    CERN Document Server

    Ma, Bo; Barnes, Rory; Crepp, Justin R; De Lee, Nathan; Dutra-Ferreira, Leticia; Esposito, Massimiliano; Femenia, Bruno; Fleming, Scott W; Gaudi, B Scott; Ghezzi, Luan; Hebb, Leslie; Hernandez, Jonay I Gonzalez; Lee, Brian L; de Mello, G F Porto; Stassun, Keivan G; Wang, Ji; Wisniewski, John P; Agol, Eric; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; da Costa, Luiz Nicolaci; Eastman, Jason D; Gary, Bruce; Jiang, Peng; Kane, Stephen R; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A G; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L C; Oravetz, Daniel; Pepper, Joshua; Paegert, Martin; Prieto, Carlos Allende; Rebolo, Rafael; Santiago, Basilio X; Schneider, Donald P; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; van Eyken, J C; Wan, Xiaoke; Weaver, Benjamin A; Zhao, Bo

    2012-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T_eff = 5903+/-42 K, surface gravity log (g) = 4.07+/-0.16 (cgs), and metallicity [Fe/H] = -0.23+/-0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K=3.571+/-0.041 km/s, period P=9.0090+/-0.0004 days, and eccentricity e=0.226+/-0.011. Adopting a mass of 1.16+/-0.11 Msun for the subgiant host star, we infer that the companion has a minimum mass of 40.0+/-2.5 M_Jup. Assuming an edge-on orbit, the semimajor axis is 0.090+/-0.003 AU. The host star is photometrically variable at the \\sim1% level with a period of \\sim13.16+/-0.01 days, indicating that the host sta...

  13. A STUDY OF THE DIVERSE T DWARF POPULATION REVEALED BY WISE

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Gregory N.; Wright, Edward L.; McLean, Ian S. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Mix, Katholeen; Beichman, Charles A.; Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C. [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3328 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Marsh, Kenneth A. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Eisenhardt, Peter R. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Thompson, Maggie A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544-1001 (United States); Bailey, Vanessa; Hinz, Philip M.; Knox, Russell P. [Steward Observatory, The University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Burgasser, Adam J. [Department of Physics, University of California, San Diego, CA 92093 (United States); Fortney, Jonathan J., E-mail: gmace@astro.ucla.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); and others

    2013-03-01

    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and 3 brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7 {+-} 1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and 4 photometrically selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two young stellar objects and two active galactic nuclei. The substantial increase in the number of known late-type T dwarfs provides a population that will be used to test models of cold atmospheres and star formation. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.

  14. Searching for Brown Dwarf Outflows

    CERN Document Server

    Whelan, E T; Bacciotti, F; Randich, S; Natta, A

    2009-01-01

    As outflow activity in low mass protostars is strongly connected to ac- cretion it is reasonable to expect accreting brown dwarfs to also be driving out- flows. In the last three years we have searched for brown dwarf outflows using high quality optical spectra obtained with UVES on the VLT and the technique of spectro-astrometry. To date five brown dwarf outflows have been discovered. Here the method is discussed and the results to date outlined.

  15. Dwarf Dark Matter Halos

    CERN Document Server

    Colin, Pierre; Valenzuela, O; Gottlöber, S

    2003-01-01

    We use N-body simulations to study properties of dwarf halos with virial masses in the range 10^7-10^9 Msun/h. Unlike recent reported results, we find that the density profiles of relaxed dwarf halos are well fitted by the NFW profile and do not have cores. We estimate the distribution of concentrations for halos in mass range that covers six orders of magnitude from 10^7 Msun/h to 10^13 Msun/h, and find that the data are well reproduced by the model of Bullock et al. (2001). We predict that present-day isolated dwarf halos should have a very large median concentration of ~ 35. For halos with masses that range from 4.6 x 10^9 Msun/h to 10^13 Msun/h we measure the subhalo circular velocity function and find that they are similar when normalized to the circular velocity of the parent halo. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth and Tormen model while the latter is well fitted by a lognormal distribution with lambda...

  16. The first pre-supersoft X-ray binary

    CERN Document Server

    Parsons, S G; Gansicke, B T; Rebassa-Mansergas, A; Brahm, R; Zorotovic, M; Toloza, O; Pala, A F; Tappert, C; Bayo, A; Jordan, A

    2015-01-01

    We report the discovery of an extremely close white dwarf plus F dwarf main-sequence star in a 12 hour binary identified by combining data from the RAdial Velocity Experiment (RAVE) survey and the Galaxy Evolution Explorer (GALEX) survey. A combination of spectral energy distribution fitting and optical and Hubble Space Telescope ultraviolet spectroscopy allowed us to place fairly precise constraints on the physical parameters of the binary. The system, TYC 6760-497-1, consists of a hot Teff~21,500K, M~0.65Ms white dwarf and an F8 star (M~1.23Ms, R~1.35Rs) seen at a low inclination (i~35 deg). The system is likely the descendent of a binary that contained the F star and a ~2Ms A-type star that filled its Roche-lobe on the second asymptotic giant branch, initiating a common envelope phase. The F star is extremely close to Roche-lobe filling and there is likely to be a short phase of thermal timescale mass-transfer onto the white dwarf. During this phase it will grow in mass by up to 20 per cent, until the mass...

  17. Photometric CCD observations of four Pre-cataclysmic binary candidates

    Science.gov (United States)

    Hinojosa, R.; Vogt, N.; Colque, Juan Pablo

    We present preliminary results of differential photometric observations of Abell 65, HZ 9, GD 1401 and BPM 46460, obtained between September and December 2006 with the 42 cm telescope of the Cerro Armazones Observatory which belongs to the Universidad Catolica del Norte, Antofagasta. All four stars are close red dwarf/white dwarf binaries which could have formed be recent common envelope events. In two of the four cases we detected (or confirmed) significant variability. In one of them, the central star of a planetary nebula Abell 65, we confirmed the rather strong photometric variability with a period very near to 24 hours (Bond and Livio, 1990). In the white dwarf binary HZ9 we detected, for the first time, photometric variations with a period near 0.58 days which corresponds to the known orbital period (Lanning and Pesch, 1981; Stauffer, 1987). The amplitude of this variation is 0.08 mag, it probably refers to reflection of the white dwarf radiation on the surface of the red companion. - These observations are part of a larger on-going project which pretends to identify and to study pre-cataclysmic binaries by means of photometric and spectroscopic methods and to improve, this way, the hitherto poor statistics on the properties of these interesting stars.

  18. Progenitors of the Accretion-Induced Collapse of White Dwarfs

    CERN Document Server

    Kwiatkowski, Damian

    2015-01-01

    Recent calculations of accretion-induced collapse of an oxygen-neon-magnesium white dwarf into a neutron star [Piro & Thompson 2014] allow for a potentially detectable transient electromagnetic signal. Motivated by these results, I present theoretical rates and physical properties of binary stars that can produce accretion-induced collapse. The rates are presented for various types of host galaxies (e.g. old ellipticals versus spirals) and are differentiated by the donor star type (e.g. large giant star versus compact helium-rich donor). Results presented in this thesis may help to guide near-future electromagnetic transient search campaigns to find likely candidates for accretion-induced collapse events. My predictions are based on binary evolution calculations that include the most recent updates on mass accretion and secular mass growth of white dwarfs. I find that the most likely systems that undergo accretion-induced collapse consist of an ONeMg white dwarf with a Hertzsprung gap star or a red giant ...

  19. XMM-Newton observations of the massive colliding wind binary and non-thermal radio emitter CygOB2#8A [O6If + O5.5III(f)

    Science.gov (United States)

    De Becker, M.; Rauw, G.; Sana, H.; Pollock, A. M. T.; Pittard, J. M.; Blomme, R.; Stevens, I. R.; van Loo, S.

    2006-09-01

    We report on the results of four XMM-Newton observations separated by about ten days from each other of CygOB2#8A [O6If + O5.5III(f)]. This massive colliding wind binary is a very bright X-ray emitter - one of the first X-ray emitting O-stars discovered by the Einstein satellite - as well as a confirmed non-thermal radio emitter whose binarity was discovered quite recently. The X-ray spectrum between 0.5 and 10.0keV is essentially thermal, and is best fitted with a three-component model with temperatures of about 3, 9 and 20MK. The X-ray luminosity corrected for the interstellar absorption is rather large, i.e. about 1034ergs-1. Compared to the `canonical' LX/Lbol ratio of O-type stars, CygOB2#8A was a factor of 19-28 overluminous in X-rays during our observations. The EPIC spectra did not reveal any evidence for the presence of a non-thermal contribution in X-rays. This is not unexpected considering that the simultaneous detections of non-thermal radiation in the radio and soft X-ray (below 10.0keV) domains is unlikely. Our data reveal a significant decrease in the X-ray flux from apastron to periastron with an amplitude of about 20 per cent. Combining our XMM-Newton results with those from previous ROSAT-PSPC and ASCA-SIS observations, we obtain a light curve suggesting a phase-locked X-ray variability. The maximum emission level occurs around phase 0.75, and the minimum is probably seen shortly after the periastron passage. Using hydrodynamic simulations of the wind-wind collision, we find a high X-ray emission level close to phase 0.75, and a minimum at periastron as well. The high X-ray luminosity, the strong phase-locked variability and the spectral shape of the X-ray emission of CygOB2#8A revealed by our investigation point undoubtedly to X-ray emission dominated by colliding winds. Based on observations with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member states and the USA (NASA). E-mail: debecker

  20. Remarkable spectral variability on the spin period of the accreting white dwarf in V455 And

    CERN Document Server

    Bloemen, S; De Smedt, K; Vos, J; Gänsicke, B T; Marsh, T R; Rodriguez-Gil, P

    2012-01-01

    We present spin-resolved spectroscopy of the accreting white dwarf binary V455 And. With a suggested spin period of only 67s, it has one of the fastest spinning white dwarfs known. To study the spectral variability on the spin period of the white dwarf, we observed V455 And with 2s integration times, which is significantly shorter than the spin rate of the white dwarf. To achieve this cadence, we used the blue arm of the ISIS spectrograph at the 4.2-m William Herschel Telescope, equipped with an electron multiplying CCD (EMCCD). Strong coherent signals were detected in our time series, which lead to a robust determination of the spin period of the white dwarf (Pspin=67.619 +/- 0.002 s). Folding the spectra on the white dwarf spin period uncovered very complex emission line variations in Hgamma, He I 4472 and He II 4686. We attribute the observed spin phase dependence of the emission line shape to the presence of magnetically controlled accretion onto the white dwarf via accretion curtains, consistent with an ...

  1. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution

    CERN Document Server

    Althaus, Leandro G; Isern, Jordi; Córsico, Alejandro H; Bertolami, Marcelo M Miller

    2011-01-01

    Cool white dwarfs are reliable and independent stellar chronometers. The most common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling ages of very cool white dwarfs sensitively depend on the adopted phase diagram of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen mixtures appropriate for white dwarf interiors has been recently obtained using direct molecular dynamics simulations. In this paper, we explore the consequences of this phase diagram in the evolution of cool white dwarfs. To do this we employ a detailed stellar evolutionary code and accurate initial white dwarf configurations, derived from the full evolution of progenitor stars. We use two different phase diagrams, that of Horowitz et al. (2010), which presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993), which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun white dwarf models during the crystallization phase, and we found that the energy released...

  2. Enigmas from the Sloan Digital Sky Survey DR7 Kleinman White Dwarf Catalog

    CERN Document Server

    Liebert, James; Wickramasinghe, Dayal; Smith, Paul

    2015-01-01

    We report results from a continuation of our searches for high field magnetic white dwarfs paired in a detached binary with non degenerate companions. We made use of the Sloan Digital Sky Survey DR7 catalog of Kleinman et al. (2013) with 19,712 spectroscopically-identified white dwarfs. These include 1,735 white dwarf plus M dwarf detached pairs (almost 10\\% of the Kleinman at al.'s list). No new pairs were found, although we did recover the polar (AM~Herculis system) ST\\,LMi in a low state of accretion. With the larger sample the original situation reported ten years ago remains intact now at a much higher level of statistical significance: in the selected SDSS sample, high field magnetic white dwarfs are not found in an apparently-detached pairing with an M dwarf, unless they are a magnetic CV in a low state of accretion. This finding strengthens the case that the fields in the isolated high field magnetic white dwarfs are generated by stellar mergers but also raises questions on the nature of the progenito...

  3. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  4. A Common Origin of Magnetism from Planets to White Dwarfs

    Science.gov (United States)

    Isern, Jordi; García-Berro, Enrique; Külebi, Baybars; Lorén-Aguilar, Pablo

    2017-02-01

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, 12C and 16O, and of the impurities left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.

  5. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  6. Testing common envelope theories with white dwarf Binaries

    Directory of Open Access Journals (Sweden)

    G. Nelemans

    2004-01-01

    Full Text Available Determinamos las posibles masas y radios de las progenitoras de enanas blancas en binarias a partir de ajustes a modelos evolutivos estelares detallados y los utilizamos para reconstruir la fase de transferencia de masa durante la cual se form o la enana blanca. Con rmamos lo encontrado anteriormente: que en la primera fase de transferencia de masa, en la evoluci on binaria que condujo a la formaci on de un par cercano de enanas blancas, el formalismo est andar de una envolvente com un que se basa en el equilibrio de energ a simplemente no se aplica. Lo que puede explicar las observaciones es un formalismo con base en equilibrio del momento angular. Nuestro an alisis se extendi o a todas las binarias cercanas en las que al menos una componente es enana blanca. Al comparar los dos mostramos que el formalismo con base en el equilibrio del momento angular puede explicar todas las observaciones por lo menos tan bien como el formalismo de energ a.

  7. The Formation of EL CVn-type Binaries

    CERN Document Server

    Xuefei, Chen; Jiao, Li; Zhanwen, Han

    2016-01-01

    EL CVn-type binaries contain an A-type dwarf star and a very low mass ($\\sim 0.2M_\\odot$) helium white dwarf precursor (pre-He WD). Recent surveys and observations have discovered dozens of them, and showed that some pre-He WDs have multi-periodic pulsations, opening up the possibility of using asteroseismology to study the interior structure of these stars. We have studied the formation of EL CVn-type binaries to understand the physics of their formation and give the properties and the space density of this population of stars in the Galaxy. We use a simple analysis to show that EL CVn binaries cannot be produced by rapid common envelope evolution because this process leads to merging of the components when a giant has such a low-mass core. We find that EL CVn-type binaries can be produced by long-term stable mass transfer between low-mass stars in close binary systems. We have comprehensively studied this formation channel and the characteristics of the resulting population of EL CVn-type binaries from more...

  8. The impact of mergers in the mass distribution of white dwarfs

    CERN Document Server

    Isern, J; Garcia-Berro, E; Hernanz, M

    2012-01-01

    Recent surveys have allowed to derive the white dwarf mass distribution with reasonable accuracy. This distribution shows a noticeable degree of structure that it is often attributed to the evolution of close binaries in general, and to mergers in particular. To analyze if the origin of this structure can be attributed to the merger of double white dwarfs, we have used a simplified population synthesis model that retains the essential processes of formation of double degenerate binaries. Special care has been taken to avoid artifacts introduced by discontinuities in the distribution functions. Our result is that these structures are not probably due to mergers, but they can provide a deep insight on the evolution of close binary systems.

  9. Tidally-Induced Apsidal Precession in Double White Dwarfs: a new mass measurement tool with LISA

    CERN Document Server

    Valsecchi, Francesca; Willems, Bart; Deloye, Christopher J; Kalogera, Vassiliki

    2011-01-01

    Galactic interacting double white dwarfs (DWD) are guaranteed gravitational wave (GW) sources for the GW detector LISA, with more than 10^4 binaries expected to be detected over the mission's lifetime. While the majority of DWDs are expected to be circular, dynamical interactions in globular clusters can lead to a sub-population of eccentric DWDs detectable by LISA. Here we investigate the potential for constraining the white dwarf (WD) properties through apsidal precession in these binaries. We analyze the tidal, rotational, and general relativistic contributions to apsidal precession by using detailed He WD models, where the evolution of the star's interior is followed throughout the cooling phase. In agreement with previous studies of zero-temperature WDs, we find that apsidal precession in eccentric DWDs can lead to a detectable shift in the emitted GW signal when binaries with cool (old) components are considered. This shift increases significantly for hot (young) WDs. We find that apsidal motion in hot ...

  10. V and K-band Mass-Luminosity Relations for M Dwarf Stars

    Science.gov (United States)

    Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio

    2015-08-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.

  11. Axion cooling of white dwarfs

    CERN Document Server

    Isern, J; Garcia--Berro, E; Salaris, M; Torres, S

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  12. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...... effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  13. A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS

    CERN Document Server

    Goldman, B; Henning, T; Clemens, C; Greiner, J

    2010-01-01

    Benchmark brown dwarfs are those objects for which fiducial constraints are available, including effective temperature, parallax, age, metallicity. We searched for new cool brown dwarfs in 186 sq.deg. of the new area covered by the data release DR5+ of the UKIDSS Large Area Survey. Follow-up optical and near-infrared broad-band photometry, and methane imaging of four promising candidates, revealed three objects with distinct methane absorption, typical of mid- to late-T dwarfs, and one possibly T4 dwarf. The latest-type object, classified as T8-9, shares its large proper motion with Ross 458 (BD+13o2618), an active M0.5 binary which is 102" away, forming a hierarchical low-mass star+brown dwarf system. Ross 458C has an absolute J-band magnitude of 16.4, and seems overluminous, particularly in the K band, compared to similar field brown dwarfs. We estimate the age of the system to be less than 1 Gyr, and its mass to be as low as 14 Jupiter masses for the age of 1 Gyr. At 11.4 pc, this new late T benchmark dwar...

  14. VERY-LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. III. A SHORT-PERIOD BROWN DWARF CANDIDATE AROUND AN ACTIVE G0IV SUBGIANT

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bo; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Wang Ji [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Barnes, Rory; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Dutra-Ferreira, Leticia; Porto de Mello, G. F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lctea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bizyaev, Dmitry, E-mail: boma@astro.ufl.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T{sub eff} = 5903 {+-} 42 K, surface gravity log (g) = 4.07 {+-} 0.16 (cgs), and metallicity [Fe/H] = -0.23 {+-} 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 {+-} 0.041 km s{sup -1}, period P = 9.0090 {+-} 0.0004 days, and eccentricity e = 0.226 {+-} 0.011. Adopting a mass of 1.16 {+-} 0.11 M{sub Sun} for the subgiant host star, we infer that the companion has a minimum mass of 40.0 {+-} 2.5 M{sub Jup}. Assuming an edge-on orbit, the semimajor axis is 0.090 {+-} 0.003 AU. The host star is photometrically variable at the {approx}1% level with a period of {approx}13.16 {+-} 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 {+-} 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M{sub Sun} if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v{sub rot}sin i, but unusual for a subgiant of this T{sub eff}. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  15. Very-low-mass Stellar and Substellar Companions to Solar-like Stars from Marvels. III. A Short-period Brown Dwarf Candidate around an Active G0IV Subgiant

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Barnes, Rory; Crepp, Justin R.; De Lee, Nathan; Dutra-Ferreira, Leticia; Esposito, Massimiliano; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; Hebb, Leslie; Gonzalez Hernandez, Jonay I.; Lee, Brian L.; Porto de Mello, G. F.; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Gary, Bruce; Jiang, Peng; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Daniel; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T eff = 5903 ± 42 K, surface gravity log (g) = 4.07 ± 0.16 (cgs), and metallicity [Fe/H] = -0.23 ± 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 ± 0.041 km s-1, period P = 9.0090 ± 0.0004 days, and eccentricity e = 0.226 ± 0.011. Adopting a mass of 1.16 ± 0.11 M ⊙ for the subgiant host star, we infer that the companion has a minimum mass of 40.0 ± 2.5 M Jup. Assuming an edge-on orbit, the semimajor axis is 0.090 ± 0.003 AU. The host star is photometrically variable at the ~1% level with a period of ~13.16 ± 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 ± 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M ⊙ if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v rotsin i, but unusual for a subgiant of this T eff. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  16. A Model of White Dwarf Pulsar AR Scorpii

    CERN Document Server

    Geng, Jin-Jun; Huang, Yong-Feng

    2016-01-01

    A 3.56-hour white dwarf (WD) - M dwarf (MD) close binary system, AR Scorpii, was recently reported to show pulsating emission in radio, IR, optical, and UV, with a 1.97-minute period, which suggests the existence of a WD with a rotation period of 1.95 minutes. We propose a model to explain the temporal and spectral characteristics of the system. The WD is a nearly perpendicular rotator, with both open field line beams sweeping the MD stellar wind periodically. A bow shock propagating into the stellar wind accelerates electrons in the wind. Synchrotron radiation of these shocked electrons can naturally account for the broad-band (from radio to X-rays) spectral energy distribution of the system.

  17. Surface Brightness Profiles of Dwarf Galaxies: II. Color Trends and Mass Profiles

    CERN Document Server

    Herrmann, Kimberly A; Elmegreen, Bruce G

    2016-01-01

    In this second paper of a series, we explore the B-V, U-B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that colors of (1) Type I dwarfs generally become redder with increasing radius unlike spirals that have a blueing trend that flattens beyond ~1.5 disk scale lengths, (2) Type II dwarfs come in six different "flavors," one of which mimics the "U" shape of spirals, and (3) Type III dwarfs have a stretched "S" shape where central colors are flattish, become steeply redder to the surface brightness break, then remain roughly constant beyond, similar to spiral TypeIII color profiles, but without the central outward bluing. Faint (-9 > M_B > -14) Type II dwarfs tend to have continuously red or "U" shaped colors and steeper color slopes than bright (-14...

  18. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    CERN Document Server

    Bagchi, Manjari

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  19. The rms-flux relation in accreting white dwarfs: another nova-like variable and the first dwarf nova

    CERN Document Server

    Van de Sande, M; Knigge, C

    2015-01-01

    We report on the detection of the linear rms-flux relation in two accreting white dwarf binary systems: V1504 Cyg and KIC 8751494. The rms-flux relation relates the absolute root-mean-square (rms) variability of the light curve to its mean flux. The light curves analysed were obtained with the Kepler satellite at a 58.8 s cadence. The rms-flux relation was previously detected in only one other cataclysmic variable, MV Lyr. This result reenforces the ubiquity of the linear rms-flux relation as a characteristic property of accretion-induced variability, since it has been observed in several black hole binaries, neutron star binaries and active galactic nuclei. Moreover, its detection in V1504 Cyg is the first time the rms-flux relation has been detected in a dwarf nova-type CV during quiescence. This result, together with previous studies, hence points towards a common physical origin of accretion-induced variability, independent of the size, mass, or type of the central accreting compact object.

  20. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  1. Magnetized White Dwarfs

    CERN Document Server

    Terrero, D Alvear; Martínez, A Pérez

    2016-01-01

    The purpose of this thesis is to obtain more realistic equations of state to describe the matter forming magnetized white dwarfs, and use them to solve its structure equations. The equations of state are determined by considering the weak magnetic field approximation $Bdwarfs. Also, we consider the energy and pressure correction due to the Coulomb interaction of the electron gas with the ions located in a crystal lattice. Moreover, spherically symmetric Tolman-Oppenheimer-Volkoff structure equations are solved independently for the perpendicular and parallel pressures, confirming the necessity of using axisymmetric structure equations, more adequate to describe the anisotropic system. Therefore, we study the solutions in cylindrical coordinates. In this case, the mass per longitude unit is obtained instead of the total mass of the whit...

  2. The effects of host galaxy properties on merging compact binaries detectable by LIGO

    Science.gov (United States)

    O'Shaughnessy, R.; Bellovary, J. M.; Brooks, A.; Shen, S.; Governato, F.; Christensen, C. R.

    2017-01-01

    Cosmological simulations of galaxy formation can produce present-day galaxies with a large range of assembly and star formation histories. A detailed study of the metallicity evolution and star formation history of such simulations can assist in predicting Laser Interferometer Gravitational-Wave Observatory (LIGO)-detectable compact object binary mergers. Recent simulations of compact binary evolution suggest that the compact object merger rate depends sensitively on the progenitor's metallicity. Rare low-metallicity star formation during galaxy assembly can produce more detected compact binaries than typical star formation. Using detailed simulations of galaxy and chemical evolution, we determine how sensitively the compact binary populations of galaxies with a similar present-day appearance depend on the details of their assembly. We also demonstrate by concrete example the extent to which dwarf galaxies overabundantly produce compact binary mergers, particularly binary black holes, relative to more massive galaxies. We discuss the implications for transient multimessenger astronomy with compact binary sources.

  3. Additional Ultracool White Dwarfs Found in the Sloan Digital Sky Survey

    CERN Document Server

    Harris, H C; Gyuk, G; Subba-Rao, M; Anderson, S F; Hall, P B; Munn, J A; Liebert, J; Knapp, G R; Bizyaev, D; Malanushenko, E; Malanushenko, V; Pan, K; Schneider, D P; Smith, J A

    2008-01-01

    We identify seven new ultracool white dwarfs discovered in the Sloan Digital Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are presented, and additional BVRI data are given for these and other previously discovered ultracool white dwarfs. The observed colors span a remarkably wide range, qualitatively similar to colors predicted by models for very cool white dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced absorption (CIA) in its spectra, while the spectra and colors of the other six are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A) is part of a binary system -- its companion is also a cool white dwarf, and other data indicate that the companion exhibits an infrared flux deficiency, making this the first binary system composed of two CIA white dwarfs. A third discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of all seven stars are consistent with membership in the disk or thick disk.

  4. The formation of high-field magnetic white dwarfs from common envelopes

    CERN Document Server

    Nordhaus, J; Spiegel, D S; Metzger, B D; Blackman, E G

    2010-01-01

    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute...

  5. Formation of high-field magnetic white dwarfs from common envelopes.

    Science.gov (United States)

    Nordhaus, Jason; Wellons, Sarah; Spiegel, David S; Metzger, Brian D; Blackman, Eric G

    2011-02-22

    The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.

  6. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Logsdon, Sarah E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Gagné, Jonathan [Institute for Research on Exoplanets (iREx), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Bochanski, John J. [Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 (United States); Faherty, Jaqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue Boston, MA 02215 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Schmidt, Sarah J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Cruz, Kelle L., E-mail: aburgasser@ucsd.edu [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States)

    2015-09-15

    Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfs (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.

  7. Stripped red giants - Helium core white dwarf progenitors and their sdB siblings

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well, another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of heliu...

  8. PROPERTIES OF THE COOLEST DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    SAUMON, DIDIER [Los Alamos National Laboratory; LEGGETT, SANDY K. [NON LANL; FREEDMAN, RICHARD S. [NON LANL; GEBALLE, THOMAS R. [NON LANL; GOLIMOWSKI, DAVID A. [NON LANL; LODIEU, NICOLAS [NON LANL; MARLEY, MARK S. [NON LANL; STEPHENS, DENISE [NON LANL; PINFIELD, DAVID J. [NON LANL; WARREN, STEPHEN J. [NON LANL

    2007-01-18

    Eleven years after the discovery of the first T dwarf, we have a population of ultracool L and T dwarfs that is large enough to show a range of atmospheric properties, as well as model atmospheres advanced enough to study these properties in detail. Since the last Cool Stars meeting, there have been observational developments which aid in these studies. they present recent mid-infrared photometry and spectroscopy from the Spitzer Space Telescope which confirms the prevalence of vertical mixing in the atmospheres of L and T dwarfs. Hence, the 700 K to 2200 K L and t dwarf photspheres require a large number of parameters for successful modeling: effective temperature, gravity, metallicity, grain sedimentation and vertical mixing efficiency. They also describe initial results of a search for ultracool dwarfs in the UKIRT Infrared Deep Sky Survey, and present the latest T dwarf found to date. They conclude with a discussion of the definition of the later-than-T spectral type, the Y dwarf.

  9. Tidal heating in close binary stellar systems

    Energy Technology Data Exchange (ETDEWEB)

    Rieutord, M.; Bonazzola, S.

    1987-07-15

    Tidal heating of a low-mass star in a close binary system, resulting from the conjugate effect of angular momentum loss and tidal action, is investigated via detailed study of the flow inside the secondary. It is found in the case of cataclysmic binaries that viscous dissipation is at most 10/sup -3/ x the nuclear luminosity of the star. It is shown, however, that the dissipation is very sensitive to the turbulent viscosity in the envelope of the secondary. The case of very close pairs of white dwarfs is also considered. It is shown that such pairs, which are thought to be the progenitors of Type I Supernovae may dissipate a power as large as 10/sup 38/ erg s/sup -1/, provided that they reach synchronization; such a heating will strongly modify the conditions in which the nuclear explosion starts.

  10. An irradiated brown-dwarf companion to an accreting white dwarf

    CERN Document Server

    Santisteban, Juan V Hernández; Littlefair, Stuart P; Breton, Rene P; Dhillon, Vikram S; Gänsicke, Boris T; Marsh, Thomas R; Pretorius, Magaretha L; Southworth, John; Hauschildt, Peter H

    2016-01-01

    Brown dwarfs and giant planets orbiting close to a host star are subjected to significant irradiation that can modify the properties of their atmospheres. In order to test the atmospheric models that are used to describe these systems, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures, albedos). Interacting compact binary systems provide a natural laboratory for studying strongly irradiated sub-stellar objects. As the mass-losing secondary in these systems makes a critical, but poorly understood transition from the stellar to the sub-stellar regime, it is also strongly irradiated by the compact accretor. In fact, the internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. However, the atmospheric properties of such donors have so far remained largely unknown. Here, we report the direct spectroscopic detection and characterisation of an irradiated sub-stellar...

  11. Pluto and other dwarf planets

    CERN Document Server

    Saxena, Shalini

    2017-01-01

    The reclassification of Pluto in 2006 not only decreased the number of planets in our solar system by one but also introduced the new category of dwarf planet. Readers will come to understand what separates a dwarf planet from a planet-or for that matter from any of the other bodies found within the solar system. They'll learn about Pluto itself, as well as its fellow dwarf planets, Ceres, Makemake, Haumea, and Eris. Full of recent information, this title is sure to inspire an interest in space science among young readers.

  12. A New Benchmark Brown Dwarf

    CERN Document Server

    Tinney, C G; Forveille, T; Delfosse, Xavier

    1997-01-01

    We present optical spectroscopy of three brown dwarf candidates identified in the first 1% of the DENIS sky survey. Low resolution spectra from 6430--9000A show these objects to have similar spectra to the uncertain brown dwarf candidate GD 165B. High resolution spectroscopy shows that one of the objects -- DBD 1228-1547 -- has a strong EW=2.3+-0.05A absorption line of Li I 6708A, and is therefore a brown dwarf with mass below 0.065 Msol. DBD 1228-1547 can now be the considered proto-type for objects JUST below the hydrogen burning limit.

  13. Binary mass ratios: system mass not primary mass

    CERN Document Server

    Goodwin, Simon P

    2012-01-01

    Binary properties are usually expressed (for good observational reasons) as a function of primary mass. It has been found that the distribution of companion masses -- the mass ratio distribution -- is different for different primary masses. We argue that system mass is the more fundamental physical parameter to use. We show that if system masses are drawn from a log-normal mass function, then the different observed mass ratio distributions as a function of primary mass, from M-dwarfs to A-stars, are all consistent with a universal, flat, system mass ratio distribution. We also show that the brown dwarf mass ratio distribution is not drawn from the same flat distribution, suggesting that the process which decides upon mass ratios is very different in brown dwarfs and stars.

  14. Finding compact hot subdwarf binaries in the Galactic disc

    CERN Document Server

    Kupfer, T; McLeod, A Faye; Groot, P J; Verbeek, K; Schaenroth, V; Heber, U; Heuser, C; Ziegerer, E; Østensen, R; Nemeth, P; Dhillon, V S; Butterley, T; Littlefair, S P; Wilson, R W; Telting, J H; Shporer, A; Fulton, B J

    2013-01-01

    We started a new project which aims to find compact hot subdwarf binaries at low Galactic latitudes. Targets are selected from several photometric surveys and a spectroscopic follow-up campaign to find radial velocity variations on timescales as short as tens of minutes has been started. Once radial variations are detected phase-resolved spectroscopy is obtained to measure the radial velocity curve and the mass function of the system. The observing strategy is described and the discovery of two short period hot subdwarf binaries is presented. UVEXJ032855.25+503529.8 contains a hot subdwarf B star (sdB) orbited by a cool M-dwarf in a P=0.11017 days orbit. The lightcurve shows a strong reflection effect but no eclipses are visible. HS 1741+2133 is a short period (P=0.20 days) sdB most likely with a white dwarf (WD) companion.

  15. Light curve solutions of the ultrashort-period $Kepler$ binaries

    CERN Document Server

    Kjurkchieva, Diana

    2015-01-01

    We carried out light curve solutions of the ultrashort-period binaries with MS components observed by $Kepler$. All six targets turned out almost in thermal contact with contact or slightly overcontact configurations. Two of them, KID 4921906 and KID 6309193, are not eclipsing but reveal ellipsoidal and spot variability. One of the components of KID 8108785 exhibits inherent, quasi-sinusoidal, small-amplitude variability. KID 12055255 turned out a very rare case of ultrashort-period overcontact binary consisting of two M dwarfs. Our modeling indicated that the variability of KID 9532219 is due to eclipses but not to $\\delta$ Sct pulsations as it was previously supposed.

  16. A search for hidden white dwarfs in the ROSAT EUV survey

    CERN Document Server

    Burleigh, M R; Fleming, T; Burleigh, Matt; Barstow, Martin; Fleming, Tom

    1997-01-01

    The ROSAT WFC survey has provided us with evidence for the existence of a previously unidentified sample of hot white dwarfs (WD) in non-interacting binary systems, through the detection of EUV and soft X-ray emission. These stars are hidden at optical wavelengths due to their close proximity to much more luminous main sequence (MS) companions (spectral type K or earlier). However, for companions of spectral type A5 or later the white dwarfs are easily visible at far-UV wavelengths, and can be identified in spectra taken by IUE. Eleven white dwarf binary systems have previously been found in this way from ROSAT, EUVE and IUE observations (e.g. Barstow et al. 1994). In this paper we report the discovery of three more such systems through our programmes in recent episodes of IUE. The new binaries are HD2133, RE J0357+283 (whose existence was predicted by Jeffries, Burleigh and Robb 1996), and BD+27 1888. In addition, we have independently identified a fourth new WD+MS binary, RE J1027+322, which has also been r...

  17. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. III. Analysis of Optical Photometric (MOST) and Spectroscopic (Ground-based) Variations

    NARCIS (Netherlands)

    Pablo, H.; Richardson, N.D.; Moffat, A.F.J.; Corcoran, M.; Shenar, T.; Benvenuto, O.; Fuller, J.; Nazé, Y.; Hoffman, J.L.; Miroshnichenko, A.; Maíz Apellániz, J.; Evans, N.; Eversberg, T.; Gayley, K.; Gull, T.; Hamaguchi, K.; Hamann, W.-R.; Henrichs, H.; Hole, T.; Ignace, R.; Iping, R.; Lauer, J.; Leutenegger, M.; Lomax, J.; Nichols, J.; Oskinova, L.; Owocki, S.; Pollock, A.; Russell, C.M.P.; Waldron, W.; Buil, C.; Garrel, T.; Graham, K.; Heathcote, B.; Lemoult, T.; Li, D.; Mauclaire, B.; Potter, M.; Ribeiro, J.; Matthews, J.; Cameron, C.; Guenther, D.; Kuschnig, R.; Rowe, J.; Rucinski, S.; Sasselov, D.; Weiss, W.

    2015-01-01

    We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P> 400 years).

  18. On the possible observational signatures of white dwarf dynamical interactions

    CERN Document Server

    Aznar-Siguán, G; Magnien, M; Lorén-Aguilar, P

    2014-01-01

    We compute the possible observational signatures of white dwarf dynamical interactions in dense stellar environments. Specifically, we compute the emission of gravitational waves, and we compare it with the sensitivity curves of planned space-borne gravitational wave detectors. We also compute the light curves for those interactions in which a detonation occurs, and one of the stars is destroyed, as well as the corresponding neutrino luminosities. We find that for the three possible outcomes of these interactions - which are the formation of an eccentric binary system, a lateral collision in which several mass transfer episodes occur, and a direct one in which just a single mass transfer episode takes place - only those in which an eccentric binary are formed are likely to be detected by the planned gravitational wave mission eLISA, while more sensitive detectors would be able to detect the signals emitted in lateral collisions. On the other hand, the light curves (and the thermal neutrino emission) of these ...

  19. On The Nature Of Superoutbursts In Dwarf Novae

    CERN Document Server

    Truss, M R; Wynn, G A; Truss, Michael; Murray, James; Wynn, Graham

    2001-01-01

    We present the first detailed hydrodynamic simulation of a superoutburst to incorporate the full tidal potential of a binary system. A two-dimensional smoothed particle hydrodynamics code is used to simulate a superoutburst in a binary with the parameters of the SU UMa system Z Chamaeleontis. The simulated light curves shows all the features observed in such systems. Analysis of the mass flux through the disc and the growth rate of the superhumps and disc eccentricity show that the superoutburst-superhump phenomenon is a direct result of tidal instability. No enhanced mass transfer from the secondary is required to initiate or sustain these phenomena. Comparisons of superoutbursts with normal outbursts are made and we show that the model can be reconciled with the behavior of U Geminorum type dwarf novae, which show no superoutbursts.

  20. Asteroseismology of white dwarf stars

    CERN Document Server

    Córsico, A H

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity of white dwarfs can be inferred from spectroscopy, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods of appropriate theoretical models. In this communication, we first briefly describe the physical properties of white dwarf stars and the various families of pulsating white dwarfs known up to the present day, and then we present two recent analysis carried out by the La...

<