WorldWideScience

Sample records for dusty plasma sheath

  1. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  2. Formation of cavities in dusty plasmas

    International Nuclear Information System (INIS)

    Kravchenko, O.Yu.; Chutov, Yu.Yi.; Yurchuk, M.M.

    2003-01-01

    The computer modeling of evolution one-dimensional dusty of sheaths which is taking place in unbounded argon plasma will be carried out. For examination the magneto-hydrodynamics equations for particles of a dusty particles and ions,and also equilibrium approach for electrons will be utilized. As a result of the carried out calculations the spatial distributions of parameters of plasma in different instants are obtained. It is shown,that in a series of modes of the dusty particles are collected in layers which separated by areas where dusty particles practically miss. At increasing of concentration of neutral particles this effect disappears owing to action of a frictional force between dusty particles and neutral component of plasma. It is shown,that depending on concentration of plasma the dusty particles can be dilated or be compressed under action of an ion wind force

  3. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  4. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  5. Dusty plasma in the region of the lunar terminator

    Energy Technology Data Exchange (ETDEWEB)

    Popel, S. I., E-mail: popel@iki.rssi.ru; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Atamaniuk, B. [Polish Academy of Sciences, Space Research Center (Poland)

    2016-05-15

    Dusty plasma in the region of the lunar terminator is considered. It is shown that, in this region, a structure resembling a plasma sheath forms near the lunar surface. This sheath creates a potential barrier, due to which electrons over the illuminated part of the Moon are confined by electrostatic forces. The width of the sheath-like structure is on the order of the ion Debye length. In this structure, significant (about several hundred V/m) electric fields arise, which lift charged micron-size dust grains to heights of several tens of centimeters. The suggested effect may be used to explain the glow observed by the Surveyor spacecraft over the lunar terminator.

  6. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Department of Physics, Cotton College, Guwahati 781 001, India. Abstract. Considering the Boltzmann response of the ions ... respect to normal electronic charge (q ~105. –106e). The mass of the dust grains can have very high value too, up to ... degrees of plasma dynamics. Thus, the theoretical modeling of a dusty plasma ...

  7. The Bohm criterion for a dusty plasma sheath

    Indian Academy of Sciences (India)

    undergo temperature fluctuations due to collision, the mean square fluctuation in their temperature is much less than the equilibrium temperature. The problem of sheath dynamics with the plasma–wall interactions is of great importance in a number of areas, viz., plasma ion implantation, high-density com- puter chip ...

  8. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  9. The magnetized sheath of a dusty plasma with grains size distribution

    International Nuclear Information System (INIS)

    Ou, Jing; Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-01-01

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance

  10. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  11. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  12. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  13. Introduction to dusty plasma physics

    CERN Document Server

    Shukla, PK

    2001-01-01

    Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth''s mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

  14. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-01-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal

  15. ''Dusty plasmas''

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bingham, R.; Angelis, U. de

    1989-09-01

    The field of ''dusty plasmas'' promises to be a very rewarding topic of research for the next decade or so, not only from the academic point of view where the emphasis is on developing the theory of the often complex collective and non-linear processes, but also from the point of view of applications in astrophysics, space physics, environmental and energy research. In this ''comment'' we should like to sketch the current development of this fast growing and potentially very important research area. We will discuss the new features of ''dusty'' plasmas in the most general terms and then briefly mention some successful applications and effects which have already been examined. (author)

  16. Dusty plasma phase in a steady state plasma device

    International Nuclear Information System (INIS)

    Liang Xiaoping; Zheng Jian; Ma Jinxiu; Liu Wangdong; Zhuang Ge; Xie Jinlin; Wang Congrong; Yu Changxuan

    2000-01-01

    A DC discharge dusty plasma device used for study of waves in dusty plasma is introduced. A dusty plasma column is produced with about 30 cm in length and about 8.4 cm in diameter. The electron saturation current of Langmuir probe is obviously decreasing while the dust grains are present in the plasma. The negative charge on dust grains is directly proportional to the rotation rate of the dispenser. And the dust grains carry up to 40% of the negative charges in the whole plasma

  17. Communication through plasma sheaths

    International Nuclear Information System (INIS)

    Korotkevich, A. O.; Newell, A. C.; Zakharov, V. E.

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent

  18. Dusty Plasmas in Laboratory and in Space

    International Nuclear Information System (INIS)

    Fortov, Vladimir E.

    2013-01-01

    Investigations were directed on the study of dusty plasma structures and dynamics. Dusty plasma is a unique laboratory tool for the investigation of the physics of systems with strong Coulomb interaction. This is due to the fact that the interaction of micron-sized dust particles (usually 0.1-10 µm in diameter) with charges up to 10 2 -10 5 elementary charges may form the ordered structures of liquid and crystal types accessible to observe them at kinetic level, i.e. at level of behavior of separate particles of medium. Dusty plasma is affected by gravity, depending on the size of the solid particles gravity can be the dominating force. Under microgravity conditions in space much weaker forces become important and other new phenomena not achievable on Earth can be observed. In this report results are presented from the experimental studies of dusty plasmas under ground bounded and microgravity conditions. Structural and transport characteristics of the system of macroparticles in dusty plasma were measured in a set of experiments in rf gas-discharge plasmas in microgravity conditions on the board of International Space Station. A number of different phenomena were studied including self-excitation of dusty waves, formation of plasma crystal and plasma liquid regions, different vortices of charged dust grains. The experimental studies of the viscosity of a dust-plasma liquid were carried out. The results of analysis of the obtained data made it possible to estimate the coefficient of dynamic viscosity of a dust-plasma liquid. Dusty plasmas were also studied in a combined dc/rf discharge under microgravity conditions in parabolic flights. The chamber provided a particular advantage for investigation of different dynamical phenomena in dusty plasmas such as sheared laminar flow of a strongly coupled dusty liquid, nozzle flow, boundary layers and instabilities, shock waves formation and propagation, dust particle lane formation and space dust grain separation by their

  19. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  20. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  1. Screening length in dusty plasma crystals

    International Nuclear Information System (INIS)

    Nikolaev, V S; Timofeev, A V

    2016-01-01

    Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)

  2. White paper on dusty plasmas

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1986-04-01

    Dusty plasmas is the name given to plasmas heavily laden with charged dust grains which together with the surrounding ions and electrons constitute a kind of plasma regime. This field of study is receiving increased attention because of the observation of dust during recent spacecraft missions to the planets and comets, together with the dawning recognition that the evolution of dusty plasma clouds in space may be quite different from that of nondusty clouds. Recent work in this field is reviewed and recommendations are made on the kind of research that is needed in the immediate future

  3. On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pustylnik, M. Y.; Ivlev, A. V.; Heidemann, R.; Mitic, S.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching (Germany); Sadeghi, N. [LIPhy, Universite de Grenoble 1/CNRS, UMR 5588, Grenoble 38401 (France)

    2012-10-15

    A hypothesis on the physical mechanism generating the heartbeat instability in complex (dusty) plasmas is presented. It is suggested that the instability occurs due to the periodically repeated critical transformation on the boundary between the microparticle-free area (void) and the complex plasma. The critical transformation is supposed to be analogous to the formation of the sheath in the vicinity of an electrode. The origin of the transformation is the loss of the electrons and ions on microparticles surrounding the void. We have shown that this hypothesis is consistent with the experimentally measured stability parameter range, with the evolution of the plasma glow intensity and microparticle dynamics during the instability, as well as with the observed excitation of the heartbeat instability by an intensity-modulated laser beam (inducing the modulation of plasma density).

  4. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  5. Plasma sheath in non-Maxwellian plasma

    International Nuclear Information System (INIS)

    Shimizu, Takuo; Horigome, Takashi

    1992-01-01

    Reviewing many theoretical and experimental works on the electron-energy distributions (EEDF) of various plasmas, we point out that many plasmas have EEDF of non-Maxwellian in shape. Therefore, the recent treatment of plasma sheath using the Maxwell-Boltzmann distribution approximation should be improved. To do this, we have adopted Rutcher's standard distribution as a generalized form in place of the traditional Maxwellian, and found that the minimum energy of ions entering the sheath edge (Bohm's criterion) varies largely, and have also shown the variation of Debye length with the shape of EEDF. The length is the most important parameter to proceed with more detailed analysis on plasma-sheaths, and also to control them in the future. (author)

  6. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  7. Electro-acoustic shock waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Rahman, A.

    2005-10-01

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  8. Bispectral analysis of nonlinear compressional waves in a two-dimensional dusty plasma crystal

    International Nuclear Information System (INIS)

    Nosenko, V.; Goree, J.; Skiff, F.

    2006-01-01

    Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar + laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory

  9. Revisiting the plasma sheath—dust in plasma sheath

    Energy Technology Data Exchange (ETDEWEB)

    Das, G. C. [Mathematical Science Division, IASST, Guwahati 781014 (India); Deka, R.; Bora, M. P., E-mail: mpbora@gauhati.ac.in [Physics Department, Gauhati University, Guwahati 781014 (India)

    2016-04-15

    In this work, we have considered the formation of warm plasma sheath in the vicinity of a wall in a plasma with considerable presence of dust particles. As an example, we have used the parameters relevant in case of plasma sheath formed around surfaces of various solid bodies in space, though the results obtained in this work can be applied to any other physical situation such as laboratory plasma. In the ion-acoustic time scale, we neglect the dust dynamics. The dust particles affect the sheath dynamics by affecting the Poisson equation which determines the plasma potential in the sheath region. It is important to note that our calculations are valid only when the amount of dust particles is not sufficient so as to affect the plasma dynamics in the dust-acoustic time scale, but enough to affect the plasma sheath. We have assumed the current to a dust particle to be balanced throughout the analysis. This makes the grain potential dependent on plasma potential, which is then incorporated into the Poisson equation. The resultant numerical model becomes an initial value problem, which is described by a 1-D integro-differential equation, which is then solved self-consistently by incorporating the change in plasma potential caused by inclusion of the dust potential in the Poisson equation.

  10. Plasma sheath criterion in thermal electronegative plasmas

    International Nuclear Information System (INIS)

    Ghomi, Hamid; Khoramabadi, Mansour; Ghorannevis, Mahmod; Shukla, Padma Kant

    2010-01-01

    The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

  11. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  12. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with ... Mamun et al [7] have also derived rarefactive solitary waves in low-temperature dusty plasmas such as those in laboratory and astrophysical environments. ... plasma environments that clearly indicate the presence of nonthermal electron pop-.

  13. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  14. Stability of the plasma sheath

    International Nuclear Information System (INIS)

    Franklin, R.N.

    1979-12-01

    The stability of a collisionless sheath joined to a plasma in the presence of secondary emission of electrons from the sheath boundary is examined in the fluid approximation. Instability is unlikely to occur under floating conditions but if significant currents flow corresponding to increased wall-plasma potentials the system can go unstable. (author)

  15. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  16. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)

    2016-04-15

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  17. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui

    2016-01-01

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  18. Ion acceleration in the plasma source sheath

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    This note is a calculation of the potential drop for a planar plasma source, across the source sheath, into a uniform plasma region defined by vector E = 0 and/or perhaps ∂ 2 PHI/∂ x 2 = 0. The calculation complements that of Bohm who obtained the potential drop at the other end of a plasma, at a planar collector sheath. The result is a relation between the source ion flux and the source sheath potential drop and the accompanying ion acceleration. This planar source sheath ion acceleration mechanism (or that from a distributed source) can provide the pre-collector-sheath ion acceleration as found necessary by Bohm. 3 refs

  19. Ion-acoustic dressed solitons in a dusty plasma

    International Nuclear Information System (INIS)

    Tiwari, R.S.; Mishra, M.K.

    2006-01-01

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived

  20. How to Patch Active Plasma and Collisionless Sheath: Practical Guide

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition for calculation of plasma profiles. To calculate sheath properties, a value of electric field at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy are reported

  1. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  2. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  3. Low-frequency dust-lower-hybrid modes in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1995-10-01

    The existence of low-frequency dust-lower-hybrid modes in a magnetized dusty plasma has been examined. These modes arise on account of the inequalities of charge and number densities of electrons, ions, and dust particles, and finite Larmor radius effects in a dusty plasma. (author). 14 refs

  4. Progress in the study of dusty plasmas

    International Nuclear Information System (INIS)

    Mendis, D A

    2002-01-01

    While the study of dust-plasma interactions is by no means new, early progress in the field was slow and uneven. It received a major boost in the early 1980s with the Voyager spacecraft observations of peculiar features in the Saturnian ring system (e.g. the 'radial spokes') which could not be explained by gravitation alone and led to the development of the gravito-electrodynamic theory of dust dynamics. This theory scored another major success more recently in providing the only possible explanation of collimated high-speed beams of fine dust particles observed to sporadically emanate from Jupiter by the Ulysses and Galileo spacecrafts. These dynamical studies were complimented in the early 1990s by the study of collective processes in dusty plasmas. Not only has this led to the discovery of a whole slew of new wave modes and instabilities with wide ranging consequences for the space environment, it also spurred laboratory studies leading to the observation of several of them, including the very low frequency dust acoustic mode, which can be made strikingly visual by laser light scattering off the dust. The most fascinating new development in dusty plasmas, which occurred about 7 years ago, was the crystallization of dusty plasmas in several laboratories. In these so-called 'plasma crystals', micrometre-sized dust, which are either externally introduced or internally grown in the plasma, acquire large negative charges and form Coulomb lattices as was theoretically anticipated for some time. This entirely new material, whose crystalline structure is so strikingly observed by laser light scattering, could be a valuable tool for studying physical processes in condensed matter, such as melting, annealing and lattice defects. Recognizing the crucial role of gravity on the crystal structure, microgravity experiments have already been performed in aircraft, sounding rockets, the Mir Space Station, and most recently in the International Space Station, leading to

  5. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  6. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  7. Nonmodal phenomena in differentially rotating dusty plasmas

    Science.gov (United States)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  8. Nonmodal phenomena in differentially rotating dusty plasmas

    International Nuclear Information System (INIS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-01-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable

  9. Solitary Waves in Space Dusty Plasma with Dust of Opposite Polarity

    International Nuclear Information System (INIS)

    Elwakil, S.A.; Zahran, M.A.; El-Shewy, E.K.; Abdelwahed, H.G.

    2009-01-01

    The nonlinear propagation of small but finite amplitude dust-acoustic solitary waves (DAWs) in an unmagnetized, collisionless dusty plasma has been investigated. The fluid model is a generalize to the model of Mamun and Shukla to a more realistic space dusty plasma in different regions of space viz.., cometary tails, mesosphere, Jupiter s magnetosphere, etc., by considering a four component dusty plasma consists of charged dusty plasma of opposite polarity, isothermal electrons and vortex like ion distributions in the ambient plasma. A reductive perturbation method were employed to obtain a modified Korteweg-de Vries (mKdV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of positively charged dust fluid, the specific charge ratioμ, temperature of the positively charged dust fluid, the ratio of constant temperature of free hot ions and the constant temperature of trapped ions and ion temperature are also discussed.

  10. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  11. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  12. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  13. Non-linear collective phenomena in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E

    2004-01-01

    Dusty plasmas are unusual states of matter where the interactions between the dust grains can be collective and are not a sum of all pair particle interactions. This state of matter is appropriate to form non-linear dissipative collective self-organized structures. It is found that the potential around the grains can be over-screened leading to a new phenomenon-collective attraction of pairs of large charge grains of equal sign. The grain clouds can self-contract and their collapse is terminated at distances where the interaction becomes repulsive. The homogeneous dusty plasma distribution is universally unstable to form structures. The potential of the collective attraction is proportional to the square of the dimensionless parameter P = n d Z d /n i , where n d and n i are the average dust and ion densities, respectively, and Z d is the dust charge in units of electron charge. The collective attraction is determined by finite grain size and by the presence of absorption of plasma flux on grains. The physics of attraction is related to the space charge accumulation caused by collective flux disturbances. The collective attraction operates for systems with size larger than the mean free path for ion-dust absorption, the condition met in many existing low temperature dusty plasma experiments, in edge plasmas of fusion devices and in space dusty plasmas. The collective attraction exceeds the previously known non-collective attraction such as shadow attraction or wake attraction. The collective attraction can be responsible for pairing of dust grains (this process is completely classical in contrast to the known pairing in superconductivity) and can serve as the main process for the formation of more complicated dust complexes up to dust-plasma crystals. The equilibrium structures formed by collective attraction have universal properties and can exist in a limited domain of parameters (similar to the equilibrium balance known for stars). The balance conditions for

  14. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  15. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  16. Plasma Sheath Behavior in a Coaxial Discharge Device

    International Nuclear Information System (INIS)

    EL-Aragi, G.; Soliman, H.M.; Masoud, M.M.

    2001-01-01

    The behavior of the plasma sheath has been studied experimentally and theoretically for 3 kJ coaxial discharge device. The discharge takes place in argon gas with pressure of 0.8 mbar. The experiments are conducted with a 10 kV bank charging voltage, which corresponds to 110 kA peak discharge current with time period of 34 μs. The experimental investigations have been studied using a magnetic probes and a miniature Rogowsky coil. A snowplough model is used to drive an analytical solution of the plasma sheath behavior in axial direction. Measurements of radial distribution of plasma sheath current density J r at the muzzle, show that J r has the following relation, J r is proportional to r -1.1 . From the experimental results and theoretical calculations of axial distribution of azimuthal magnetic field induction and plasma sheath velocity, the inclination angle between the normal of the plasma sheath with the axial distance at any axial position is evaluated and it has approximately a constant value for most axial distances. Also, the axial motion of plasma sheath acceleration is estimated experimentally a max = 0.13 x 10 12 ' cm / s 2 at z = 11 cm and from theoretical calculations a max = 0.15 x 10 12 cm/ s 2 at max z = 1.6 cm. A comparison of the experimental results with the theoretical calculations, under the assumption of the snowplough model are not in agreement. (author)

  17. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R K

    2017-01-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma. (paper)

  18. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  19. THERMODYNAMIC REASONS OF AGGLOMERATION OF DUST PARTICLES IN THE THERMAL DUSTY PLASMA

    Directory of Open Access Journals (Sweden)

    V.I.Vishnyakov

    2003-01-01

    Full Text Available The thermodynamic equilibrium of thermal dusty plasmas consisting of ionized gas (plasma and solid particles (dust grains, which interact with each other, is studied. The tendency of grains in dusty plasmas to agglomerate corresponds to the tendency of dusty plasmas to balanced states. When grains agglomerate, electrical perturbations generated by each grain concentrate inside the agglomerate. The plasma is perturbed only by the agglomerate's exterior surface. The greater number of possible states for electrons and ions in plasma depends on the volume of perturbation of grains. The fewer are the perturbations the greater is the amount of possible states for electrons and ions in plasma. If the grains collected from a distance smaller than 8 Debye lengths, the total volume of perturbations is minimized; the free energy of the plasma is also minimized.

  20. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  1. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  2. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  3. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  4. Dynamic and optical characterization of dusty plasmas for use as solar sails

    International Nuclear Information System (INIS)

    Sheldon, Robert; Thomas, Edward Jr.; Abbas, Mian; Gallagher, Dennis; Adrian, Mark; Craven, Paul

    2002-01-01

    Solar sails presently have mass loadings of 5 gm/m2 that, when including the support structure and payload, could easily average to >10 gm/m2. For reasonably sized spacecraft, the critical parameter is the total mass per total area, which when combined with the reflectivity, yield the true acceleration. We propose that dusty plasmas trapped in a 'Mini-Magnetosphere' (Winglee, 2000) can produce a solar sail with a total mass loading <0.01 gm/m2, and reflectivities of ∼1%. This configuration provides an acceleration equivalent to a standard sail of 95% reflectivity with <1 gm/m2. However, the physics of dusty plasma sails is not mature and several important questions need to be resolved before a large scale effort is warranted. Foremost among these questions are, what is the largest force a dusty plasma can sustain before it demagnetizes and separates from the binding magnetic field; what are the charging properties of dust under solar UV conditions; what is the light scattering cross section for the dust; what is the optimum dust grain size for magnetization and scattering; and, what are the optimum dust grain materials? We outline what we know about dusty plasmas, and what we are hoping to learn from two existing dusty plasma experiments at the National Space Science and Technology Center (NSSTC) and Auburn University

  5. Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath

    Science.gov (United States)

    Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun

    2018-01-01

    There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.

  6. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  7. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  8. Electric sheath and presheath in a collisionless, finite ion temperature plasma

    International Nuclear Information System (INIS)

    Emmert, G.A.; Wieland, R.M.; Mense, A.T.; Davidson, J.N.

    1980-01-01

    The plasma-sheath equation for a collisionless plasma with arbitrary ion temperature in plane geometry is formulated. Outside the sheath, this equation is approximated by the plasma equation, for which an analytic solution for the electrostatic potential is obtained. In addition, the ion distribution function, the wall potential, and the ion energy and particle flux into the sheath are explicitly calculated. The plasma-sheath equation is also solved numerically with no approximation of the Debye length. The numerical results compare well with the analytical results when the Debye length is small

  9. Dust crystal in the electrode sheath of a gaseous discharge

    International Nuclear Information System (INIS)

    Schweigert, I.V.; Schweigert, V.A.

    2002-01-01

    The phenomena observed in strongly coupled dusty plasmas in the electrode sheath of gas discharge clearly indicate that the screened Coulomb potential is not valid for inter-particle interaction. The reason why the conventional model breaks down is clear now. The strong electric field, accelerating ions toward the cathode, leads to an asymmetrical particle shielding and the appearance of an attractive component in the inter-particle force. The sheath plasma with micro-particles is non Hamiltonian system because of input of energy from ion flux from the bulk plasma. The models of interaction potential of microparticles in sheath are proposed. The first is the linear effective positive charge (EPC). On the basis of this model the stability of the dust crystal in the sheath is analyzed both analytically and in MD simulations. The scenario of crystal melting is described. The role of different types of defects in the local heating of the crystal is considered. The next non-linear model of sheath plasma with micro-particles allows to find all parameter of plasma crystal: particle charge, inter-particle distance and study the structural transition. We constructed the analytical expression for inter-particle potential and have found the mechanism acceleration of extra particle beneath the monolayer. Recently new more simple analytical kinetic approach, accounting for ion collisions, have been developed. The structural transition in the dust molecular was obtained in simulation with multipole expansion model interaction potential

  10. Dust-lower-hybrid waves in a magnetized self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Roy Chowdhury, A.; Dasgupta, B.

    1997-11-01

    General dispersion relation for a self-gravitating magnetized and finite temperature dusty plasma has been derived using the Vlasov-kinetic theory in guiding center technique. Results of earlier studies in unmagnetized situations turn out to be special cases of our general dispersion relation. In addition to the usual dust-acoustic waves in unmagnetized plasmas, we find an ultra-low-frequency mode in the frequency range between cyclotron frequencies of ions and charged dust particles and the Jean's instability of the self-gravitating dusty plasma systems. (author)

  11. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  12. The plasma-sheath boundary region

    International Nuclear Information System (INIS)

    Franklin, R N

    2003-01-01

    In this review an attempt is made to give a broad coverage of the problem of joining plasma and sheath over a wide range of physical conditions. We go back to the earliest works quoting them, where appropriate, to understand what those who introduced the various terms associated with the structure of the plasma-sheath had in mind. We try to bring out the essence of the insights that have been gained subsequently, by quoting from the literature selectively, indicating how misunderstandings have arisen. In order to make it accessible to the generality of those currently working in low temperature plasmas we have sought to avoid mathematical complexity but retain physical insight, quoting from published work where appropriate. Nevertheless, in clarifying my own ideas I have found it necessary to do additional original work in order to give a consistent picture. In this way I have sought to bring together work in the late 1920s, the 1960s, and now mindful of the commercial importance of plasma processing, work over the past 15 years that adds to the general understanding. (topical review)

  13. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  14. Dynamic sheath studies in plasma source ion implantation

    International Nuclear Information System (INIS)

    Schever, J.T.; Shamim, M.; Conrad, J.R.

    1990-01-01

    Plasma Source Ion Implantation (PSII) is a non-line-of-sight method for materials processing in which a target is immersed in a plasma and pulse biased to a high negative voltage (∼ 50 kV). A model of the dynamic sheath which forms under these conditions has been developed and applied to planar, cylindrical and spherical geometries. This model assumes that the transient sheath obeys the Child-Langmuir law for space charge limited emission at each instant during the propagation. Ions uncovered by the propagating sheath edge supply the space charge limited current. This yields an equation relating sheath edge velocity to position, which can be integrated to obtain the sheath edge position as a function of time. The same procedure used in cylindrical and spherical geometry results in a similar equation which must be integrated numerically. Comparison of results of experimental measurements, our model and simulation will be presented for the dynamic sheath edge position and target current waveform. Measurements of implanted dose uniformity of wedge shaped targets are also presented

  15. Jeans instability of an inhomogeneous streaming dusty plasma

    Indian Academy of Sciences (India)

    The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the density ...

  16. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  17. Electro-acoustic solitary waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Sayed, F.

    2005-10-01

    present a rigorous theoretical investigation of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] solitary waves in dusty plasmas. We employ the reductive perturbation method for small but finite amplitude solitary waves as well as the pseudo-potential approach for arbitrary amplitude ones. We also analyze the effects of non-planar geometry and dust charge fluctuations on both DIA and DA solitary waves, the effect of finite ion-temperature on DIA solitary waves, and the effects of dust-fluid temperature and non-isothermal ion distributions on DA solitary waves. It has been reported that these effects do not only significantly modify the basic features of DIA or DA solitary waves, but also introduce some important new features. The basic features and the underlying physics of DIA and DA solitary waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  18. Plasma sheath axial phase dynamics in coaxial device

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)); Masoud, M.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt))

    1994-10-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.).

  19. Plasma sheath axial phase dynamics in coaxial device

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1994-01-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.)

  20. Ultra-low-frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Amin, M.R.; Roy Chowdhury, A.R.; Salahuddin, M.

    1997-11-01

    A study on the extremely low-frequency possible electrostatic modes in a finite temperature magnetized dusty plasma taking the charged dust grains as the third component has been carried out using the appropriate Vlasov-kinetic theory for the dynamics of the electrons, ions and the dust particles. It is found that the inequalities of charge and number density of plasma species, and the finite-Larmor-radius thermal kinetic effects of the mobile charged dust grains, introduce the existence of very low-frequency electrostatic eigenmodes in the three-component homogeneous magnetized dusty plasma. The relevance of the present investigation to space and astrophysical situations as well as laboratory experiments for dust Coulomb crystallization has been pointed out. (author)

  1. Influence of vacuum space on formation of potential sheath in plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1997-01-01

    Properties of potential sheaths developed in plasmas are investigated in terms of the plasma Debye length and the dimension of vacuum space. Biased plasma potential and the potential profile depend very sensitively on the geometrical configuration of plasma and vacuum space. The potential sheath is never developed near electrodes in high-density plasmas where the Debye length is much less than the dimension of the vacuum space. In this case, most of the potential drops occur in the vacuum space and almost no electric field exists inside the plasma. Parametric investigation of the potential sheath in terms of the vacuum-space and plasma dimensions is carried out. (orig.)

  2. Experimental test of models of radio-frequency plasma sheaths

    International Nuclear Information System (INIS)

    Sobolewski, M.A.

    1997-01-01

    The ion current and sheath impedance were measured at the radio-frequency-powered electrode of an asymmetric, capacitively coupled plasma reactor, for discharges in argon at 1.33 endash 133 Pa. The measurements were used to test the models of the radio frequency sheath derived by Lieberman [IEEE Trans. Plasma Sci. 17, 338 (1989)] and Godyak and Sternberg [Phys. Rev. A 42, 2299 (1990)], and establish the range of pressure and sheath voltage in which they are valid. copyright 1997 American Institute of Physics

  3. Streaming instabilities in a collisional dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2000-01-01

    A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)

  4. Nanodiamonds in dusty low-pressure plasmas

    International Nuclear Information System (INIS)

    Vandenbulcke, L.; Gries, T.; Rouzaud, J. N.

    2009-01-01

    Dusty plasmas composed of carbon, hydrogen, and oxygen have been evidenced by optical emission spectroscopy and microwave interferometry, due to the increase in electron energy and the decrease in electron density. These plasmas allow homogeneous synthesis of nanodiamond grains composed of either pure diamond nanocrystals only (2-10 nm in size) or of diamond nanocrystals and some sp 2 -hybridized carbon entities. The control of their size and their microstructure could open ways for a wide range of fields. Their formation from a plasma-activated gaseous phase is also attractive because the formation of nanodiamonds in the universe is still a matter of controversy

  5. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    Jovanovic, D.; Shukla, P.K.

    2002-01-01

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  6. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  7. Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations

    Science.gov (United States)

    Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.

    2017-11-01

    Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.

  8. Effects of various forces on the distribution of particles at the boundary of a dusty plasma

    International Nuclear Information System (INIS)

    Liu, J.; Ma, J.X.

    1997-01-01

    The distribution and suspension of dust particles under the action of electrostatic, gravitational, ion-drag and neutral collision forces are investigated near the boundary of a dusty plasma. It is shown that the competition among the forces results in spatial oscillations (multi-layer) of the particle distribution. For sub-micron grains the ion-drag has a significant effect on the grain dynamics while for micrometer sized grains the gravity quickly dominates over other forces. The effect of the neutral gas flux is to enhance or diminish that of the gravity while the effect of the neutral viscosity is to shift the profile toward the wall. Under the force balance, the particles are suspended in a narrow region with sharp boundaries within the sheath. copyright 1997 American Institute of Physics

  9. Large amplitude ion-acoustic solitons in dusty plasmas

    International Nuclear Information System (INIS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-01-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail

  10. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value

  11. Non-Maxwellian plasma sheaths

    International Nuclear Information System (INIS)

    Haines, M.G.

    1998-01-01

    There is much experimental evidence that heat flux to divertor plates or to limiters is very asymmetric. For example, Lowry made measurements on poloidal limiters in JET, Stangeby and McCracken reported asymmetries in several experiments. In 1991 Haines considered the effects on the Child-Langmuir sheaths of having a net current flow. It was found that a sheath that receives more ions than electrons receives more energy flux than a sheath that receives more electrons than ions. We now extend the model to include for the electrons departures from a Maxwellian distribution arising from a net current flow, heat flow and thermoelectric effects in the scrape-off layer (SOL). It is envisaged that a net current flows in the SOL due to applied or induced electric fields, and is of a magnitude similar to that in the adjacent bulk plasma, though reduced due to the lower temperature in the SOL. We employ conventional linear transport theory eg. Braginskii, Epperlein and Haines in which the ions are a stationary Maxwellian. (orig.)

  12. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  13. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  14. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  15. Evolution of perturbation in charge-varying dusty plasmas

    International Nuclear Information System (INIS)

    Popel, S.I.; Golub, A.P.; Losseva, T.V.; Bingham, R.; Benkadda, S.

    2001-01-01

    The nonstationary problem of the evolution of perturbation and its transformation into nonlinear wave structure in dusty plasmas is considered. For this purpose two one-dimensional models based on a set of fluid equations, Poisson's equation, and a charging equation for dust are developed. The first (simplified) model corresponds to the case [Popel et al., Phys. Plasmas 3, 4313 (1996)] when exact steady-state shock wave solutions can exist. This simplified model includes variable-charged dust grains, Boltzmann electrons, and inertial ions. The second (ionization source) model takes into account the variation of the ion density and the ion momentum dissipation due to dust particle charging as well as the source of plasma particles due to ionization process. The computational method for solving the set of equations which describe the evolution in time of a nonlinear structure in a charge-varying dusty plasma is developed. The case of the evolution of an intensive initial nonmoving region with a constant enhanced ion density is investigated on the basis of these two models. The consideration within the ionization source model is performed for the data of the laboratory experiment [Luo et al., Phys. Plasmas 6, 3455 (1999)]. It is shown that the ionization source model allows one to obtain shock structures as a result of evolution of an initial perturbation and to explain the experimental value of the width of the shock wave front. Comparison of the numerical data obtained on the basis of the ionization source model and the simplified model shows that the main characteristic features of the shock structure are the same for both models. Nevertheless, the ionization source model is much more sensitive to the form of the initial perturbation than the simplified model. The solution of the problem of the evolution of perturbation and its transformation into shock wave in charge-varying dusty plasmas opens up possibilities for description of the real phenomena like supernova

  16. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  17. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  18. Measurements of the sheath potential in low density plasmas

    International Nuclear Information System (INIS)

    Bradley, J.W.; Khamis, R.A.; Sanduk, M.I.; Elliott, J.A.; Rusbridge, M.G.

    1992-01-01

    We have measured the sheath potential around a probe in a range of different plasma conditions in the UMIST, University of Manchester Institute of Science and Technology, quadrupole GOLUX and in a related experiment in which the plasma expands freely to supersonic velocity. In the latter case, the sheath potential agrees well with an appropriately modified form of the usual expression for a field-free plasma, for both hydrogen and argon plasmas. In GOLUX, however, the sheath potential is found to be significantly less than the accepted value, even when the magnetic field is taken into account. For the slow moving plasma in the outer part of the quadrupole confining field, we present both theoretical and experimental results showing that the reduction is due to truncation of the electron velocity distribution as the probe drains electrons from a closed flux tube faster than they can be replaced. In the central hot plasma, however, this explanation cannot apply. Here, the plasma is moving at about sonic speed and magnetic effects are weak. Nevertheless, the results are significantly different from both in the field free experiment. (author)

  19. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    Science.gov (United States)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  20. New aspects of the Jeans instability in dusty plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A; Mace, Richard L

    1998-01-01

    In contrast to a gas, a dusty plasma can support a variety of wave modes each in principle able to impart to the dust grains the randomizing energy necessary to avoid Jeans collapse on some length scale. Consequently, the stability to Jeans collapse is more complex in a dusty plasma than it is for a charge-neutral gas. After recalling some of the fundamental ideas related to the ordinary Jeans instability in neutral gases, we will extend the discussion to plasmas containing charged dust grains. Besides the usual Jeans criterion based upon thermal agitation, various other ways of countering the gravitational collapse can be considered. One is via excitation of electrostatic dust-acoustic modes, the other via novel Alfven-Jeans instabilities for perpendicularly propagating electromagnetic waves on the extraordinary mode branch. The wavelengths that are unstable are modified due to the presence of a magnetic field and of charged particles. These mechanisms yield different minimum threshold length scales for the onset of instability/condensation

  1. Effect of two-temperature electrons distribution on an electrostatic plasma sheath

    International Nuclear Information System (INIS)

    Ou, Jing; Xiang, Nong; Gan, Chunyun; Yang, Jinhong

    2013-01-01

    A magnetized collisionless plasma sheath containing two-temperature electrons is studied using a one-dimensional model in which the low-temperature electrons are described by Maxwellian distribution (MD) and high-temperature electrons are described by truncated Maxwellian distribution (TMD). Based on the ion wave approach, a modified sheath criterion including effect of TMD caused by high-temperature electrons energy above the sheath potential energy is established theoretically. The model is also used to investigate numerically the sheath structure and energy flux to the wall for plasmas parameters of an open divertor tokamak-like. Our results show that the profiles of the sheath potential, two-temperature electrons and ions densities, high-temperature electrons and ions velocities as well as the energy flux to the wall depend on the high-temperature electrons concentration, temperature, and velocity distribution function associated with sheath potential. In addition, the results obtained in the high-temperature electrons with TMD as well as with MD sheaths are compared for the different sheath potential

  2. Merging and Splitting of Plasma Spheroids in a Dusty Plasma

    Science.gov (United States)

    Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas

    2012-12-01

    Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.

  3. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution

    Science.gov (United States)

    Borgohain, Dima Rani; Saharia, K.

    2018-03-01

    Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.

  5. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    Science.gov (United States)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  6. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Lynch, Brian; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California–San Diego, La Jolla, California 92093 (United States)

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  7. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  8. Arbitrary amplitude dust-acoustic solitary structures in a three-component dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A rigorous theoretical investigation has been made of arbitrary amplitude dust-acoustic solitary structures in an unmagnetized three-component dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann distributed ions and electrons. The pseudo-potential approach and the reductive perturbation technique are employed for this study. It is found from both weakly and highly nonlinear analyses that the dusty plasma model can support solitary waves only with negative potential but not with positive potential. The effects of equilibrium free electron density and its temperature on these solitary structures are discussed. The implications of these results to some astrophysical and space plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  9. Complex (dusty) plasmas: Current status, open issues, perspectives

    International Nuclear Information System (INIS)

    Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E.

    2005-01-01

    The field of complex (dusty) plasmas-low-temperature plasmas containing charged microparticles-is reviewed: The major types of experimental complex plasmas are briefly discussed. Various elementary processes, including grain charging in different regimes, interaction between charged particles, and momentum exchange between different species are investigated. The major forces on microparticles and features of the particle dynamics in complex plasmas are highlighted. An overview of the wave properties in different phase states, as well as recent results on the phase transitions between different crystalline and liquid states are presented. Fluid behaviour of complex plasmas and the onset of cooperative phenomena are discussed. Properties of the magnetized complex plasmas and plasmas with nonspherical particles are briefly mentioned. In conclusion, possible applications of complex plasmas, interdisciplinary aspects, and perspectives are discussed

  10. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  11. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  12. Screening in weakly ionized dusty plasmas; effect of dust density perturbations

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.

    2013-01-01

    The screening of the charge of a non-emitting dust grain immersed in a weakly ionized dusty plasma is studied on the basis of a self-consistent hydrodynamic description. The dust number density is considered large enough so that the test grain is not isolated from other grains and dust collective effects are important. Not only dust charge perturbations but also dust density perturbations are taken into account, the latter are shown to have a strong effect on both the short and long range part of the potential. The realization of collective attraction via the newly obtained potential is discussed, a mechanism that could be central to the understanding of phase-transitions and self-organization processes in dusty plasmas.

  13. Nonlinear screening of dust grains and structurization of dusty plasma

    International Nuclear Information System (INIS)

    Tsytovich, V. N.; Gusein-zade, N. G.

    2013-01-01

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  14. The role of the sheath in magnetized plasma turbulence and flows

    International Nuclear Information System (INIS)

    Loizu, J.

    2013-01-01

    Controlled nuclear fusion could provide our society with a clean, safe, and virtually inexhaustible source of electric power production. The tokamak has proven to be capable of producing large amounts of fusion reactions by conning magnetically the fusion fuel at sufficiently high density and temperature, thus in the plasma state. Because of turbulence, however, high temperature plasma reaches the outermost region of the tokamak, the Scrape-Off Layer (SOL), which features open magnetic field lines that channel particles and heat into a dedicated region of the vacuum vessel. The plasma dynamics in the SOL is crucial in determining the performance of tokamak devices, and constitutes one of the greatest uncertainties in the success of the fusion program. In the last few years, the development of numerical codes based on reduced fluid models has provided a tool to study turbulence in open field line configurations. In particular, the GBS (Global Braginskii Solver) code has been developed at CRPP and is used to perform global, three-dimensional, full-n, flux-driven simulations of plasma turbulence in open field lines. Reaching predictive capabilities is an outstanding challenge that involves a proper treatment of the plasma-wall interactions at the end of the field lines, to well describe the particle and energy losses. This involves the study of plasma sheaths, namely the layers forming at the interface between plasmas and solid surfaces, where the drift and quasi neutrality approximations break down. This is an investigation of general interest, as sheaths are present in all laboratory plasmas. This thesis presents progress in the understanding of plasma sheaths and their coupling with the turbulence in the main plasma. A kinetic code is developed to study the magnetized plasma-wall transition region and derive a complete set of analytical boundary conditions that supply the sheath physics to fluid codes. These boundary conditions are implemented in the GBS code and

  15. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  16. Sectional modeling of nanoparticle size and charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    Agarwal, Pulkit; Girshick, Steven L

    2012-01-01

    Sectional models of the dynamics of aerosol populations are well established in the aerosol literature but have received relatively less attention in numerical models of dusty plasmas, where most modeling studies have assumed the existence of monodisperse dust particles. In the case of plasmas in which nanoparticles nucleate and grow, significant polydispersity can exist in particle size distributions, and stochastic charging can cause particles of given size to have a broad distribution of charge states. Sectional models, while computationally expensive, are well suited to treating such distributions. This paper presents an overview of sectional modeling of nanodusty plasmas, and presents examples of simulation results that reveal important qualitative features of the spatiotemporal evolution of such plasmas, many of which could not be revealed by models that consider only monodisperse dust particles and average particle charge. These features include the emergence of bimodal particle populations consisting of very small neutral particles and larger negatively charged particles, the effects of size and charge distributions on coagulation, spreading and structure of the particle cloud, and the dynamics of dusty plasma afterglows. (paper)

  17. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  18. Physical models for the description of an electrodynamically accelerated plasma sheath

    International Nuclear Information System (INIS)

    Zambreanu, V.

    1977-01-01

    An analysis of the models proposed for the description of the plasma sheath dynamics in a coaxial system (of the same type as that operating at the Bucharest Institute of Physics) is presented. A particular attention is paid to the physical structure of the accelerated plasma. It has been shown that a self-consistent model could be derived from a phenomenological description of the sheath structure. The physical models presented so far in the literature have been classified into three groups: the hydrodynamic models, the plasma sheet models and the shock wave models. Each of these models is briefly described. The simplifying assumptions used in the construction of these models have been pointed out. The final conclusion has been that, under these assumptions, none of these models taken separately could completely and correctly describe the dynamical state of the plasma sheath. (author)

  19. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  20. Effect of rise-time patterns on dynamics of sheath expansion during plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Huang Yongxian; Tian Xiubo; Yang Shiqin; Fu Ricky; Paul, C.K.

    2007-01-01

    Plasma immersion ion implantation (PIII) has been developed as a low-cost and efficient surface modification technique of irregularly-shaped objects. The effect of six pulse waves with different rise-time patterns on the spatio-temporal evolution of plasma sheath,energy and dose of ion implantation has been simulated by particle-in-cell modeling. Statistical results may be obtained through assuming the Boltzmann distribution of electrons, and solving Poisson and Newton equations for tracing each ion in the plasma sheath. The results show that rise-time pattern has a critical influence on the evolution of plasma sheath. There exists maximum thickness difference of plasma sheath for different waveforms. The acceleration of ions is non-uniform due to the non-uniformity of electrical field strength. The maximum gradient of electrical field appears near the edge of plasma sheath. The results also show that optimization of dose and energy of incident ions may be achieved through modification of rise-time pattern. The numerical simulation of sheath expansion can be effectively used to provide a scientific basis for optimizing the PIII process. (authors)

  1. Observations of dusty plasmas with magnetized dust grains

    Science.gov (United States)

    Luo, Q.-Z.; D'Angelo, N.

    2000-11-01

    We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.

  2. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Science.gov (United States)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  3. The effect of dust size distribution on the damping of the solitary waves in a dusty plasma

    International Nuclear Information System (INIS)

    Yang, Xue; Xu, Yan-Xia; Qi, Xin; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    The effect of the dust size distribution on the damping rate of the solitary wave in a dusty plasma is investigated in the present paper. It is found that the damping rate increases as either the mean radius of dust grains increases or as the total number density of the dust grains increases. The damping rate is less for usual dusty plasma (about which the number density of the smaller dust grains is larger than that of the larger dust grains) than that of the unusual dusty plasma (about which the number density of the larger dust grains is larger than that of the smaller dust grains)

  4. Collisional effect on lower hybrid waves instability in a dusty plasma ...

    African Journals Online (AJOL)

    The effect of particle collisions on lower hybrid modes in a dusty plasma is studied. The dispersion relation derived from fluid theory is numerically solved for plasma parameters relevant to determine the modification in wave propagation due to collisions. This study is relevant to the earth's lower atmosphere, in particular, the ...

  5. X-band microwave generation caused by plasma-sheath instability

    International Nuclear Information System (INIS)

    Bliokh, Y.; Felsteiner, J.; Slutsker, Ya. Z.

    2012-01-01

    It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected by this electrode, pass through the sheath. Such oscillations appear as low-power short spikes due to additional ionization of a neutral gas in the electrode vicinity. Herein we present first results obtained when the additional ionization was eliminated. We succeeded in prolonging the oscillations during the whole time a positive bias was applied to the electrode. These oscillations could be obtained at much higher frequency than previously reported (tens of GHz compared to few hundreds of MHz) and power of tens of mW. These results in combination with presented theoretical estimations may be useful, e.g., for plasma diagnostics.

  6. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  7. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  8. Cutoff effects of electron velocity distribution to the properties of plasma parameters near the plasma-sheath boundary

    International Nuclear Information System (INIS)

    Jelic, N.

    2011-01-01

    The plasma properties under high thermodynamic non-equilibrium condition, established due to the presence of electrically biased electrode, are investigated. Assumption of electron cut-off velocity distribution function (VDF), as done by Andrews and Varey in their investigations of the sheath region [J. Phys. A 3, 413 (1970)], has been extended here to both plasma and sheath regions. Analytic expressions for the moments of electron VDF, as well as for the electron screening temperature function dependence on the plasma-sheath local potential are derived. In deriving the ion velocity distribution the ''standard'' assumption of strict plasma quasineutrality, or equivalently vanishing of the plasma Debye length, is employed, whereas the ions are assumed to be generated at rest over the plasma region. However, unlike the standard approach of solving the plasma equation, where pure Boltzmann electron density profile is used, here we employ modified Boltzmann's electron density profile, due to cutoff effect of the electron velocity distribution. It is shown that under these conditions the quasineutrality equation solution is characterised by the electric field singularity for any negative value of the electrode bias potential as measured with respect to the plasma potential. The point of singularity i.e., the plasma length and its dependence on the electrode bias and sheath potential is established for the particular case of ionization profile mechanism proportional to the local electron density. Relevant parameters for the kinetic Bohm criterion are explicitly calculated for both ions and electrons, for arbitrary electrode bias.

  9. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  10. Accounting for Debye sheath expansion for proud Langmuir probes in magnetic confinement fusion plasmas.

    Science.gov (United States)

    Tsui, C K; Boedo, J A; Stangeby, P C

    2018-01-01

    A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter l p , and the model is thus referred to as the "perimeter sheath expansion method." l p is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ∼ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ∼ 0 and for V = V f .

  11. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  12. Ratio of sheath thickness to Debye length for a slightly ionized continuum plasma

    International Nuclear Information System (INIS)

    Hamilton, J.

    1980-01-01

    The penetration of plasma sheaths for spherical probes in a slightly ionized continuum plasma has been computed for values of epsilon (the ratio of ion to electron temperature) of 0.01 and 1.0 with rhosub(p) (the ratio of probe radius to plasma Debye length) set at 5.10,20 and 30. Values of the potential drops at the sheath boundaries are presented

  13. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  14. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  15. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  16. Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities

    International Nuclear Information System (INIS)

    Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.

    2004-01-01

    It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas

  17. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  18. Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath

    International Nuclear Information System (INIS)

    Nitter, T.; Aslaksen, T.K.; Melandsoe, F.; Havnes, O.

    1994-01-01

    The authors have examined the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite direction and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, they find the necessary and sufficient conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas

  19. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    Science.gov (United States)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of

  20. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  1. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of two new ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of both of these two electrostatic modes. It is also found that under certain conditions, this self-gravitational effect can destabilize these ultra-low-frequency electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  2. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    Science.gov (United States)

    2016-10-26

    the floating potential of wall material samples immersed in a low-temperature plasma were studied. Hysteresis is found to be due to secondary electron...continued research into plasma sheath physics. Hysteresis effects observed in the floating potential of wall material samples immersed in a low... Journal of Applied Physics, Volume 119, March 2016, pp. 113305 1-5. DISTRIBUTION A: Distribution approved for public release. 8 Figure 2

  3. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  4. Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility

    Science.gov (United States)

    Zhukhovitskii, Dmitry I.; Petrov, Oleg F.; Hyde, Truell W.; Herdrich, Georg; Laufer, Rene; Dropmann, Michael; Matthews, Lorin S.

    2015-05-01

    We discuss the inductively heated plasma generator (IPG) facility in application to the generation of the thermal dusty plasma formed by the positively charged dust particles and the electrons emitted by them. We develop a theoretical model for the calculation of plasma electrical conductivity under typical conditions of the IPG. We show that the electrical conductivity of dusty plasma is defined by collisions with the neutral gas molecules and by the electron number density. The latter is calculated in the approximations of an ideal and strongly coupled particle system and in the regime of weak and strong screening of the particle charge. The maximum attainable electron number density and corresponding maximum plasma electrical conductivity prove to be independent of the particle emissivity. Analysis of available experiments is performed, in particular, of our recent experiment with plasma formed by the combustion products of a propane-air mixture and the CeO2 particles injected into it. A good correlation between the theory and experimental data points to the adequacy of our approach. Our main conclusion is that a level of the electrical conductivity due to the thermal ionization of the dust particles is sufficiently high to compete with that of the potassium-doped plasmas.

  5. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    Science.gov (United States)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  6. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  7. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  8. Instability of dust ion-acoustic waves in a dusty plasma containing elongated and rotating charged dust grains

    International Nuclear Information System (INIS)

    Shukla, P.K.; Tskhakaya, D.D.

    2001-01-01

    The dispersion properties of the dust ion-acoustic waves (DIAWs) in an unmagnetized dusty plasma is examined when the plasma constituents are electrons, ions, and charged dust grains which are elongated and rotating. Since the dipole moment of elongated and rotating dust grains is nonzero, significant modifications of the DIAW spectrum emerge. It is found that the DIAWs are subjected to an instability when the DIAW frequency approximately equals the angular rotation frequency of the elongated dust grains. The relevance of our investigation to enhanced fluctuations in space and laboratory dusty plasmas is pointed out

  9. Theory of a wall sheath in a gas-discharge plasma

    International Nuclear Information System (INIS)

    Dvinin, S.A.; Dovzhenko, V.A.; Kuzovnikov, A.A.

    1999-01-01

    An integro-differential equation is proposed that generalizes the plasma-sheath (Langmuir-Tonks) equation to include charge exchange between ions and neutrals in a discharge plasma and makes it possible to correctly analyze how the discharge evolves from the regime of collisionless ion motion to the diffusive regime in pure gases with allowance for the space charge in the sheath at the plasma boundary. The integro-differential equation is solved numerically, and the ionization rate is calculated as a function of the ratio between the ion mean free path and the characteristic discharge dimension. The ion energy distribution function in the positive column of a discharge plasma is computed. The parameter range in which the positive column can exist is examined, and the limits of applicability of different discharge models are analyzed depending on the relations between the ion mean free path, Debye length, and discharge dimension

  10. Collaborative Research: Understanding Ion Losses to Plasma Boundaries Sheaths and Presheaths

    Energy Technology Data Exchange (ETDEWEB)

    Hershkowitz, Noah [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Sheaths are common to all bounded steady-state plasmas. This includes laboratory, industrial, fusion, and in some cases even space plasmas. They form in general to balance particle loss and maintain quasi-neutrality in plasmas. Electrons are lighter than the ions by 2000 times or more (depending on the gas), and in most plasmas ion temperatures are rarely higher than the electron temperature and generally much lower. Thus in most cases, negative potential sheaths occur to confine electrons and allow ions to be freely lost. We have investigated how a plasma locally response to a positive bias on a small electrode, and have established area criteria which plasma reacts differently to the positive bias – first a pure electron sheath, and a global non-ambipolar regime where all electrons are lost to the electrode, and a double layer structure identified as a virtual cathode forms to limiting electron loss and maintain quasi-neutrality, and finally a anode spot regime where a secondary discharge occurs in front of the electrode, turning it into the major loss area of the entire plasma. Electrode area and plasma parameters criteria for these regimes were established, and the effect of the virtual cathode on the electrode’s I-V characteristics was investigated. We have also developed a global non-ambipolar electron source to replace hollow cathodes in a number of plasma applications. This eliminates the lifetime limitation and maintenance cost of hollow cathodes as they easily wear out easily and cannot be replaced in space applications.

  11. Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions

    Science.gov (United States)

    Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly

    The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in

  12. ICRF antenna Faraday shield plasma sheath model

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1990-01-01

    A two-dimensional nonlinear formulation that explicitly considers the plasma edge near a Faraday shield in a self-consistent manner is used in the modeling of the ion motion for a Faraday shield concept and model suggested by Perkins. Two models are considered that may provide significant insight into the generation of impurities for ion cyclotron resonance heating (ICRH) antennas. In one of these models a significant sheath periodically forms next to the Faraday screen, with ion acoustic waves heating the ions in the plasma. (orig.)

  13. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...

  14. Measurement of sheath thickness by lining out grooves in the Hall-type stationary plasma thrusters

    International Nuclear Information System (INIS)

    Yu Daren; Wu Zhiwen; Ning Zhongxi; Wang Xiaogang

    2007-01-01

    Using grooves created along the axial direction of the discharge channel, a method for measuring sheath thickness in Hall-type stationary plasma thrusters has been developed. By distorting the wall surface using these grooves, it is possible to numerically study the effect of the wall surface on the sheath and near wall conductivity. Monte Carlo method is applied to calculate the electron temperature variation with different groove depths. The electron dynamic process in the plasma is described by a test particle method with the electron randomly entering the sheath from the discharge channel and being reflected back. Numerical results show that the reflected electron temperature is hardly affected by the wall surface if the groove depth is much less than the sheath thickness. On the other hand, the reflected electron temperature increases if the groove depth is much greater than the sheath thickness. The reflected electron temperature has a sharp jump when the depth of groove is on the order of the sheath thickness. The simulation is repeated with different sheath thicknesses and the results are the same. Therefore, a diagnosis mean of the sheath thickness can be developed based on the method. Also the simulation results are in accord with the experimental data. Besides, the measurement method may be applicable to other plasma device with similar orthogonal steady state electrical and magnetic fields

  15. Dust particle charge and screening in the collisional RF plasma sheath

    NARCIS (Netherlands)

    Beckers, J.; Trienekens, D.J.M.; Kroesen, G.M.W.; Sprouse, G.D.

    2012-01-01

    Once immersed in plasma, a dust particle gathers a highly negative charge due to the net collection of free electrons. In most plasma's on earth and with particle sizes is in the micrometer range, the gravitational force is dominant and consequently the particle ends up within the plasma sheath

  16. Charge of a macroscopic particle in a plasma sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.

    2003-01-01

    Charging of a macroscopic body levitating in a rf plasma sheath is studied experimentally and theoretically. The nonlinear charge vs size dependence is obtained. The observed nonlinearity is explained on the basis of an approach taking into account different plasma conditions for the levitation positions of different particles. The importance of suprathermal electrons' contribution to the charging process is demonstrated

  17. Density and velocity measurements of a sheath plasma from MPD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.J.; Cho, T.S.; Choi, M.C.; Choi, E.H.; Cho, G.S.; Uhm, H.S.

    1999-07-01

    Magnetoplasma is the plasma that the electron and ion orbits are strongly confined by intense magnetic field. Recently, magnetoplasma dynamics (MPD) has been investigated in connection with applications to the rocket thruster in USA, Germany, etc. It can be widely applicable, including modification of satellite position and propulsion of the interplanetary space shuttle. A travel for a long distance journey is possible because a little amount of neutral gases is needed for the plasma source. Besides, this will provide a pollution free engine for future generations. MPD thruster is not a chemical engine. The authors have built a Mather type MPD thruster, which has 1 kV max charging, 10 kA max current flows, and has about 1 ms characteristic operation time. The Paschen curve of this thruster is measured and its minimum breakdown voltage occurs in the pressure range of 0.1 to 1 Torr. Langmuir and double probes are fabricated to diagnose the sheath plasma from the thruster. The temperature and density are calculated to be 2.5 eV and 10{sup 15} cm {sup {minus}3}, respectively, from the probe data. Making use of photo diode, an optical probe is fabricated to measure propagation velocity of the sheath plasma. The sheath plasma from the MPD thruster in the experiment propagates with velocity of 1 cm/{micro}s.

  18. (KP) equation in warm dusty plasma with variable dust charge, two ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained ...

  19. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  20. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  1. Effect of polarization force on the Jeans instability of self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2011-01-01

    The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system. -- Highlights: → Jeans instability of gravitating dusty plasma with polarization force is investigated. → The fundamental Jeans instability criterion is modified due to polarization effect. → The critical Jeans length decreases due to increase in polarization force. → Polarization force destabilizes the unstable Jeans mode. → The collapsing of interstellar dusty cloud is discussed.

  2. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  3. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yamaguchi, Masahito

    2015-01-01

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the...

  4. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    International Nuclear Information System (INIS)

    Gao, Xiaotian; Jiang, Binhao

    2015-01-01

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters of the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods

  5. Axial sheath dynamics in a plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; El-Khalafawy, T.A.; Masoud, M.M.

    1990-01-01

    This paper presents the result of investigation with a 10 kJ Mather type plasma focus. It is operated in hydrogen gas at ambient pressure of 0.15--1 torr and charging voltage of 8--11 kV. Radial distribution of the current sheath density with axial distance has been estimated. Plasma rotation in the expansion chamber in the absence of external magnetic field has been detected. A plasma flare from the plasma focus region propagating in the radial direction has been observed. Streak photography shows two plasma streams flowing simultaneously out of the muzzle. The mean energy of the electron beam ejected from the pinch region of the focused plasma, was measured by retarding field analyzer to be 0.32 keV. The electron temperature of the plasma focus at peak compression was determined by measuring the X-ray intensity as a function of absorber thickness at a distance of 62 cm from the focus. The electron temperature has been found to 3 keV

  6. Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas

    International Nuclear Information System (INIS)

    Eliasson, B.; Shukla, P.K.

    2005-01-01

    Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments

  7. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    International Nuclear Information System (INIS)

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  8. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    Directory of Open Access Journals (Sweden)

    Bowen Bai

    2018-03-01

    Full Text Available The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry “blackout” problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  9. Propagation of dust electro-acoustic modes in dusty plasma

    International Nuclear Information System (INIS)

    Avinash, K.

    2001-01-01

    The propagation of the dust electro-acoustic (DEA) mode in dusty plasma with different electron and ion temperatures T e and T i and different ion species is studied. The critical ratio of the dust space charge to the ion space charge ε for the excitation of DEA mode is found to decrease with increasing T e /T i and increase with m i /m e (m i and m e are the ion and electron masses). Thus experiments with hydrogen plasma where electrons are sufficiently hotter than ions and where the reduction in the dust charge with ε is more than 50% are essential for the observation of self-shielding and the DEA mode

  10. Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, Nam C.; Lee, D.-Y.

    2005-01-01

    The nonlinear ion acoustic solitary wave in a magnetized dusty plasma, obliquely propagating to the embedding external magnetic field, is revisited. It is found that when the charge density of dust particles is high, the Sagdeev potential needs to be expanded up to δn 4 near n=1. In this case, it is shown that there could exist rarefactive ion acoustic solitary waves as well as the kink-type double layer solutions, in addition to the conventional hump-type ones found in the δn 3 expansion. The amplitude variations of ion acoustic solitary waves in a magnetized dusty plasma are also examined with respect to the change of the dust charge density and the wave directional angle

  11. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  12. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  13. Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas

    Science.gov (United States)

    Ali, S.; Naeem, Ismat; Mirza, Arshad M.

    2017-10-01

    The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.

  14. Cooperative particle motion in complex (dusty) plasmas

    Science.gov (United States)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  15. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  16. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  17. Controlling laser ablation plasma with external electrodes. Application to sheath dynamics study and beam physics

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2013-01-01

    The potential of laser ablation plasma was controlled successfully by using external ring electrodes. We found that an electron sheath is formed at the plasma boundary, which plays an important role in the potential formation. When the positively biased plasma reaches a grounded grid, electrons in the plasma are turned away and ions are accelerated, which leads to the formation of a virtual anode between the grid and an ion probe. We think that this device which can raise the plasma potential up to order of kV can be applied to the study of sheath dynamics and to a new type of ion beam extraction. (author)

  18. Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-05-15

    The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.

  19. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101 (India); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lavanya, C.; Senthil Kumar, V. [Department of Physics, Periyar University, Salem, Tamil Nadu 636 011 (India); Gopi, D. [Department of Chemistry, Periyar University, Salem 636 011 (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem, Tamil Nadu 636 011 (India); Pasqua, A. [Department of Physics, University of Trieste, Trieste (Italy)

    2016-04-15

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.

  20. Effect of radiofrequency on capacitance of low density plasma sheath

    International Nuclear Information System (INIS)

    Carneiro, L.T.; Cunha Rapozo, C. da

    1988-01-01

    It is shown that the influence of induced radiofrequency potential (V RF ) modifies the Bohm theory on ion saturation current, measured with Langmuir probes. The effect of radiofrequency potential on diode type plasma sheath resonance is also investigated. (M.C.K.)

  1. Experiments on ion-acoustic shock waves in a dusty plasma

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2002-01-01

    Dust ion-acoustic shock waves have been investigated experimentally in a homogeneous unmagnetized dusty double-plasma device. An initial compressional wave with a ramp shape steepens to form oscillations at the leading part due to dispersion. The oscillation develops to a train of solitons when the plasma contains no dust grain. The wave becomes an oscillatory shock wave when the dust is mixed in the plasma and the density of the dust grains is smaller than a critical value. When the dust density is larger than the critical value, only steepening is observed at the leading part of the wave and a monotonic shock structure is observed. The velocity and width of the shock waves are measured and compared with results of numerical integrations of the modified Korteweg-de Vries-Burgers equation

  2. Solitons in dusty plasmas with positive dust grains

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.; Mace, R. L.

    2008-01-01

    Although ''typical'' micrometer-sized dust grains in a space or laboratory plasma are often negatively charged because of collisions with the mobile electrons, there are environments in which grains may take on a positive charge. We consider a dusty plasma composed of electrons, positive ions and positive dust grains, and use the fluid dynamic paradigm to identify existence domains in parameter space for both dust-acoustic (DA) and dust-modified ion-acoustic (DIA) solitons. Only positive potential DA solitons are found. This represents an expected antisymmetry with the case of negative dust, where previously only negative solitons were reported. However, whereas for negative dust DIA solitons of either sign of potential may exist, we find that for the case of positive dust, DIA solitons are restricted to positive potentials only. The results for both positive and negative dust are consistent with an hypothesis that, in the absence of flows, the sign(s) of the soliton potential coincide(s) with the sign(s) of the species whose inertia is included in the calculation; i.e., the cold, supersonic species present in the plasma

  3. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  4. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  5. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  6. Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q-distributed electrons

    Science.gov (United States)

    Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad

    2016-07-01

    The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.

  7. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  8. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-01-01

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another

  9. Sheath-lens probe for negative ion detection in reactive plasmas

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.; Takai, O.; Ohe, K.

    2004-01-01

    A method that allows easy and inexpensive detection of negative ions is introduced. The method is based upon the electrostatic lens effect of the sheath layer evolving to a positively biased planar probe that focuses the negative charges to distinct regions on the surface. Trajectories of negative ions inside the sheath are obtained after computing the potential and electric field distribution by solving in three dimensions the nonlinear Poisson equation. The negative ions' flux to square and disk probes is developed in Ar/SF 6 and O 2 plasmas. The method allows negative ion detection with sensitivity higher than that of Langmuir probes

  10. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  11. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  12. Design of new dusty plasma apparatus to view 3D particle dynamics of fluorescent dust clouds

    Science.gov (United States)

    Thome, Kathreen; Fontanetta, Alexandra; Zwicker, Andrew

    2008-11-01

    Particles suspended in dusty plasmas represent both contamination in industrial plasmas and a primary interstellar medium component. Typically, dusty plasma behavior is studied by laser scattering techniques that provide 2D dust cloud images. However, the 3D structure of the dust cloud is essential to understand the waves, group dynamics, and stabilities of the cloud. Techniques used to study this structure include stereoscopic particle image velocimetry and rapid laser scanning. Our UV illumination technique reveals translational and rotational velocities of fluorescent dust particles as a function of UV intensity. The new argon DC glow discharge experiment designed to study the 3D aspects of fluorescent dust consists of a 13.25'' diameter chamber, two 8'' window ports for CCD cameras, one along the plasma and another transverse to it, two additional 8'' window ports transverse to the plasma for laser or UV light illumination of the dust cloud, and a diagnostic probe port. Results from different electrodes--including mesh and ring--observations and imaging will be presented.

  13. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  14. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com; Amirov, R. Kh.; Kirillin, A. V.; Nikolaev, V. S.; Bedran, Z. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

  15. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    Berg, van den M.A.; Bystrov, K.E.; Pasquet, R.; Zielinski, J.J.; De Temmerman, G.C.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m-3) and plasma composition (H2, Ar, N2) relevant for the ITER divertor plasma. The 2D surface

  16. Probing a dusty magnetized plasma with self-excited dust-density waves

    Science.gov (United States)

    Tadsen, Benjamin; Greiner, Franko; Piel, Alexander

    2018-03-01

    A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.

  17. Visco-instability of shear viscoelastic collisional dusty plasma systems

    Science.gov (United States)

    Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-04-01

    In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.

  18. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    Science.gov (United States)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  19. An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2015-01-01

    The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, it reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically

  20. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  1. Formation and dissociation of dust molecules in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fucheng; Dong Lifang; He Yafeng

    2016-01-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. (paper)

  2. Acoustic Wave in a Dusty Plasma with Frequent Grain Charging Collisions

    International Nuclear Information System (INIS)

    Lee, Hee J.; Cho, Sang-Hoon

    2003-01-01

    The sink terms in the electron and ion continuity equations and the frictional terms in the momentum equations of a dusty plasma are obtained by taking moments of a kinetic equation which takes into account the grain charging collisions by electrons and ions. We show that an acoustic wave can propagate as a normal mode in the parameter regime where the frequencies of charging collisions are much greater than the wave frequency

  3. Electromagnetic waves in dusty magnetoplasmas using two-potential theory

    International Nuclear Information System (INIS)

    Zubia, K.; Jamil, M.; Salimullah, M.

    2009-01-01

    The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.

  4. Rotation of a single vortex in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fu-Cheng; He Ya-Feng

    2017-01-01

    A single vortex is obtained in radio-frequency capacitive discharge in argon gas. The dust subsystem is confined in the horizontal plane with an asymmetrical saw structure placed on the lower electrode. The vortex rotates as a whole along the long side of the saw-teeth. Asymmetry of the saw structure plays an important role in the rotation of the vortex. Nonzero curl of the total force resulting from the local ion flow and the electric field in the plasma sheath could be attributed to the persistent rotation of vortex. (paper)

  5. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  6. One-dimensional nonlinear self-organized structures in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2000-01-01

    Dusty plasmas, which are open systems, can form stable one-dimensional self-organized structures. Absorption of plasma by dust particles results in the plasma flux from the plasma regions where the dust is absent. It is found that, in a one-dimensional dust layer, this flux is completely determined by the number of dust particles per unit area of the layer surface. This number determines all of the other parameters of the steady-state dust structure; in particular, it determines the spatial distributions of the dust density, dust charge, electron and ion densities, and ion drift velocity. In these structures, a force and electrostatic balance is established that ensures the necessary conditions for confining the dust and plasma particles in the structure. The equilibrium structures exist only for subthermal ion flow velocities. This criterion determines the maximum possible number of dust particles per unit area in the steady-state structure. The structures have a universal thickness, and the dust density changes sharply at the edge of the structure. The structures with a size either less than or larger than the ion mean free path with respect to ion-neutral collisions, quasi-neutral and charged structures, and soliton- and anti-soliton-like structures are investigated. Laboratory experiments and observations in extraterrestrial plasma formation are discussed in relation to dust structures

  7. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  8. The dust characteristics in the collisional plasma sheath at the presence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shourkaei, Hossein Akbarian [AEOI, Tehran (Iran, Islamic Republic of). Plasma Physics Research Group

    2015-05-15

    The characteristics of dust in a plasma sheath are investigated in the presence of an external magnetic field and taking into account neutral collision forces. By using the fluid model, the continuity and momentum equations of ions and dusts are solved numerically with various magnitudes of collision force. In various magnitude and directions of the magnetic field, the electron and ion density distribution, ion flow velocity, electron potential have been calculated. It is shown that magnetic field has obvious effect on the plasma sheath and the collision force reduces the dust kinetic energy.

  9. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  10. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  11. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  12. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2011-01-01

    Motivated by the Magnetized Target Fusion (MTF), a systematic investigation of the equilibrium properties of a 1D plasma sheath with a magnetic field parallel to the wall was carried out using analytical theory and kinetic simulations. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing conducting wall, which charges positively due to large ions gyro-radii. The analysis of the steady-state plasma and field profiles reveals the importance of the relation between electron and ion thermal Larmor radii and plasma Debye length. In particular, the sheath width scaling, the details of the particle flows and the break-down of force balance components exhibit different behaviors in three possible regimes. Despite our primary motivation, the results in this paper can also be applicable to the divertor and the first wall of tokamaks.

  13. Analytical solutions and particle simulations of cross-field plasma sheaths

    International Nuclear Information System (INIS)

    Gerver, M.J.; Parker, S.E.; Theilhaber, K.

    1989-01-01

    Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye length wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs

  14. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  15. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    International Nuclear Information System (INIS)

    Song, Y.L.; Huang, F.; Chen, Z.Y.; Liu, Y.H.; Yu, M.Y.

    2016-01-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  16. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-01-01

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes

  17. Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud; Shukla, Padma Kant

    2012-05-01

    The dust-modified ion-acoustic waves of Shukla and Silin are revisited within the theoretical framework of the Tsallis statistical mechanics. Nonextensivity may originate from correlation or long-range plasma interactions. Interestingly, we find that owing to electron nonextensivity, dust ion-acoustic (DIA) solitary waves may exhibit either compression or rarefaction. Our analysis is then extended to include self-consistent dust charge fluctuation. In this connection, the correct nonextensive electron charging current is rederived. The Korteweg-de Vries equation, as well as the Korteweg-de Vries-Burgers equation, is obtained, making use of the reductive perturbation method. The DIA waves are then analyzed for parameters corresponding to space dusty plasma situations.

  18. Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang Yaxing; Hu Wei; Tian Bo

    2007-01-01

    Considering the transverse perturbation and axially non-planar geometry, the cylindrical Kadomtsev-Petviashvili (KP) equation is investigated in this paper, which can describe the propagation of dust-acoustic waves in the dusty plasma with two-temperature ions. Through imposing the decomposition method, such a (2+1)-dimensional equation is decomposed into two variable-coefficient (1+1)-dimensional integrable equations of the same hierarchy. Furthermore, three kinds of Darboux transformations (DTs) for these two (1+1)-dimensional equations are constructed. Via the three DTs obtained, the multi-soliton-like solutions of the cylindrical KP equation are explicitly presented. Especially, the one- and two-parabola-soliton solutions are discussed by several figures and some effects resulting from the physical parameters in the dusty plasma and transverse perturbation are also shown

  19. Tearing mode of a neutral current sheath in a plasma flux

    International Nuclear Information System (INIS)

    Gubchenko, V.M.

    1982-01-01

    The linear stage of the tearing mode of diffusion neutral current sheath immersed in the plasma flux directed along the magnetic field is considered. It follows form the obtained dispersion characteristics that the flux exerts a stabilizing effect on the mode and leads to appearance of phase drift velocity

  20. Langmuir wave phase-mixing in warm electron-positron-dusty plasmas

    Science.gov (United States)

    Pramanik, Sourav; Maity, Chandan

    2018-04-01

    An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.

  1. Sheath waves, non collisional dampings

    International Nuclear Information System (INIS)

    Marec, Jean Lucien Ernest

    1974-01-01

    When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr

  2. Plasma sheath dynamics and parameters in focus and defocus conditions. Vol. 2

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Aragi, G.M.

    1996-01-01

    The study deals with the effect of the inner electrode polarity on the dynamic behaviour and parameters of plasma sheath in a coaxial discharge. The experimental investigations presented here were carried out in a coaxial plasma focus discharge device of mather geometry. It consisted of coaxial stainless steel hollow cylindrical electrodes with inner electrode 18.2 cm length and outer-electrode 31.5 cm length. The diameter of the inner and outer electrodes are 3.2 cm and 6.6 cm, respectively. The two electrodes are separated by a teflon disc at the breech. The outer electrode muzzle is connected to stainless steel expansion chamber of 23 cm length and 17 cm diameter. The discharge takes place in hydrogen gas with a base pressure of 1 torr. The experiments were conducted with 10 kV bank voltage, which corresponds to 100 K A peak discharge current. By using a double electric probe, It was found that the plasma electron density was higher near the negative electrode. Investigations using a miniature rogovsky coil have shown that, the radial and azimuthal current density increased with radial distance from negative electrode to positive electrode. The shape and the axial velocity of plasma sheath were measured using a magnetic probe. The experimental results indicate that, the plasma is thick near the negative electrode, in both cases of the outer or the inner electrode. Also it has been found that the axial plasma sheath velocity reaches its maximum value at the muzzle for positive and negative inner electrode. The magnitude of maximum axial velocity reaches 1.7 x 10 60 cm/s for positive inner electrode and decreased by 25% for negative inner electrode further investigations revealed that on interchanging the polarity from normal operation (positive inner electrode), it was found that with negative inner electrode the soft x-ray emission intensity dropped by three orders of magnitude from that with positive inner electrode. 9 figs

  3. Plasma sheath dynamics and parameters in focus and defocus conditions. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Masoud, M M; Soliman, H M; El-Aragi, G M [Plasma Physics and Nuclear Fusion Department, Nuclear Research Centre, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    The study deals with the effect of the inner electrode polarity on the dynamic behaviour and parameters of plasma sheath in a coaxial discharge. The experimental investigations presented here were carried out in a coaxial plasma focus discharge device of mather geometry. It consisted of coaxial stainless steel hollow cylindrical electrodes with inner electrode 18.2 cm length and outer-electrode 31.5 cm length. The diameter of the inner and outer electrodes are 3.2 cm and 6.6 cm, respectively. The two electrodes are separated by a teflon disc at the breech. The outer electrode muzzle is connected to stainless steel expansion chamber of 23 cm length and 17 cm diameter. The discharge takes place in hydrogen gas with a base pressure of 1 torr. The experiments were conducted with 10 kV bank voltage, which corresponds to 100 K A peak discharge current. By using a double electric probe, It was found that the plasma electron density was higher near the negative electrode. Investigations using a miniature rogovsky coil have shown that, the radial and azimuthal current density increased with radial distance from negative electrode to positive electrode. The shape and the axial velocity of plasma sheath were measured using a magnetic probe. The experimental results indicate that, the plasma is thick near the negative electrode, in both cases of the outer or the inner electrode. Also it has been found that the axial plasma sheath velocity reaches its maximum value at the muzzle for positive and negative inner electrode. The magnitude of maximum axial velocity reaches 1.7 x 10{sup 60} cm/s for positive inner electrode and decreased by 25% for negative inner electrode further investigations revealed that on interchanging the polarity from normal operation (positive inner electrode), it was found that with negative inner electrode the soft x-ray emission intensity dropped by three orders of magnitude from that with positive inner electrode. 9 figs.

  4. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  5. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    International Nuclear Information System (INIS)

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-01-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length

  6. Kolmogorov spectra of long wavelength ion-drift waves in dusty plasmas

    International Nuclear Information System (INIS)

    Onishchenko, O.G.; Pokhotelov, O.A.; Sagdeev, R.Z.; Pavlenko, V.P.; Stenflo, L.; Shukla, P.K.; Zolotukhin, V.V.

    2002-01-01

    Weakly turbulent Kolmogorov spectra of ion-drift waves in dusty plasmas with an arbitrary ratio between the ion-drift and the Shukla-Varma frequencies are investigated. It is shown that in the long wavelength limit, when the contribution to the wave dispersion associated with the inhomogeneity of the dust component is larger than that related to the plasma inhomogeneity, the wave dispersion and the matrix interaction element coincide with those for the Rossby or the electron-drift waves described by the Charney or Hasegawa-Mima equations with an accuracy of unessential numerical coefficients. It is found that the weakly turbulent spectra related to the conservation of the wave energy are local and thus the energy flux is directed towards smaller spatial scales

  7. Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma

    International Nuclear Information System (INIS)

    Lee, Dongsoo; Severn, Greg; Oksuz, Lutfi; Hershkowitz, Noah

    2006-01-01

    The Bohm sheath criterion in single- and two-ion species plasma is studied with laser-induced fluorescence using a diode laser. Xenon is added to a low pressure unmagnetized dc hot filament argon discharge confined by surface multidipole magnetic fields. The Ar II transition at 668.614 nm is adopted for optical pumping to detect the fluorescence from the plasma and to measure the argon ion velocity distribution functions with respect to positions relative to a negatively biased boundary plate. The structures of the plasma sheath and presheath are measured by an emissive probe. The ion concentrations of the two-species in the bulk plasma are calculated from ion acoustic wave experiments. Results are compared with previous experiments of Ar-He plasmas in which the argon ions were the heavier ion species. Unlike the previous results, the argon speed is slower than its own Bohm velocity near the sheath-presheath boundary in the Ar-Xe plasma where argon ions are the lighter ion species. We argue that this result is consistent with the behaviour of the helium ion required by the generalized Bohm criterion in the previous experiments with Ar-He plasmas. Further, our results suggest that the measured argon ion speed approaches the ion sound speed of the system

  8. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Chi-Shung; Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Severn, Greg [Department of Physics, University of San Diego, San Diego, California 92110 (United States); Baalrud, Scott D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2016-05-15

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar–Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  9. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  10. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  11. Caltech water-ice dusty plasma: preliminary results

    Science.gov (United States)

    Bellan, Paul; Chai, Kilbyoung

    2013-10-01

    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  12. Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with nonthermal ions: Application to Halley Comet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Bacha, Mustapha [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, B. P. 32, El Alia, Algiers 16111 (Algeria)

    2013-10-15

    Weak dust-acoustic waves (DAWs) are addressed in a nonthermal charge varying electronegative magnetized dusty plasmas with application to the Halley Comet. A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burger equation. The positive ion nonthermality, the obliqueness, and magnitude of the magnetic field are found to modify the dispersive and dissipative properties of the DA shock structure. Our results may aid to explain and interpret the nonlinear oscillations that may occur in the Halley Comet Plasma.

  13. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  14. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  15. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    Science.gov (United States)

    Wu, Hongchen; Anders, André

    2008-08-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 µs, 4 µs, 10 µs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  16. Floating potential and sheath thickness for cylindrical and spherical probes in electronegative plasmas

    International Nuclear Information System (INIS)

    Morales Crespo, R.; Fernandez Palop, J.I.; Hernandez, M.A.; Borrego del Pino, S.; Diaz-Cabrera, J.M.; Ballesteros, J.

    2006-01-01

    In this paper, the floating potential, for cylindrical and spherical Langmuir probes immersed into an electronegative plasma, is determined by using a radial model described in a previous paper. This floating potential is determined for several probe radius values and ranks of plasma electronegativity, from almost electropositive plasmas to high electronegative plasmas. The thickness of the positive ion sheath is also determined for this kind of probes in electronegative plasmas, as well as the analytical expressions fitting this thickness, showing its dependence on the probe radius and electric potential

  17. Discrete focusing effect of positive ions by a plasma-sheath lens

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.

    2005-01-01

    We demonstrate that the sheath created adjacent to the surface of a negatively biased electrode that interfaces an insulator acts as a lens that focuses the positive ions to distinct regions on the surface. Thus, the positive ion flux is discrete, leading to the formation of a passive surface, of no ion impact, near the edge and an active surface at the center. Trajectories of positive ions within the sheath are obtained by solving in three dimensions the Poisson equation for electrodes of different geometry. Simulations are confirmed by developing the ion flux profile on the electrode surface as the sputtering pattern produced by ion impact. Measurements are performed in a dc plasma produced in Ar gas

  18. Excitation of surface waves and electrostatic fields by a RF (radiofrequency systems) wave in a plasma sheath with current

    International Nuclear Information System (INIS)

    Gutierrez Tapia, C.

    1990-01-01

    It is shown in a one-dimensional model that when a current in a plasma sheath is present, the excitation of surface waves and electrostatic fields by a RF wave is possible in the sheath. This phenomena depends strongly on the joint action of Miller's and driven forces. It is also shown that the action of these forces are carried out at different characteristic times when the wave front travels through the plasma sheath. The influence of the current, in the steady limit, is taken into account by a small functional variation of the density perturbations and generated electrostatic field. (Author)

  19. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    International Nuclear Information System (INIS)

    Wu Hongchen; Anders, Andre

    2008-01-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 μs, 4 μs, 10 μs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  20. Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath

    International Nuclear Information System (INIS)

    Sharifian, M.; Shokri, B.

    2008-01-01

    A detailed one-dimensional simulation of the ion dynamics of the plasma sheath near a substrate (cathode) in the presence of fast monoenergetic electrons has been carried out in this article. The sheath evolution is investigated by using a fluid model assuming that the ions, plasma electrons and monoenergetic, fast electrons act as three fluids (fluid approach). The effect of the density of fast electrons on the ion density, ion velocity, and ion energy near the cathode and the evolution of the sheath boundary in front of the cathode are separately explored. Also, the variation of the ion velocity and ion density at the vicinity of the cathode as a function of time is investigated in the absence and presence of the electron beam. Results indicate that the presence of fast electrons in the sheath causes significant change in the sheath thickness and therefore basically changes the ion velocity, ion density, and ion impact energy on the cathode compared to the absence of the electron beam case

  1. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  2. Shear flow instability in a partially-ionized plasma sheath around a fast-moving vehicle

    International Nuclear Information System (INIS)

    Sotnikov, V. I.; Mudaliar, S.; Genoni, T. C.; Rose, D. V.; Oliver, B. V.; Mehlhorn, T. A.

    2011-01-01

    The stability of ion acoustic waves in a sheared-flow, partially-ionized compressible plasma sheath around a fast-moving vehicle in the upper atmosphere, is described and evaluated for different flow profiles. In a compressible plasma with shear flow, instability occurs for any velocity profile, not just for profiles with an inflection point. A second-order differential equation for the electrostatic potential of excited ion acoustic waves in the presence of electron and ion collisions with neutrals is derived and solved numerically using a shooting method with boundary conditions appropriate for a finite thickness sheath in contact with the vehicle. We consider three different velocity flow profiles and find that in all cases that neutral collisions can completely suppress the instability.

  3. ALINE: A device dedicated to understanding radio-frequency sheaths

    Directory of Open Access Journals (Sweden)

    S. Devaux

    2017-08-01

    Full Text Available In fusion devices, radiofrequency (RF antennas are used for heating the plasma. Those antennas and the plasma interact with each other through the so-called RF sheaths, layers of plasma where the quasi-neutrality breaks down and large electric fields arise. Among the effects of RF sheaths, there is the enhancement of the particles and energy fluxes toward the surface of the antenna, which in turn generate hot spots and release impurities, which are both deleterious for plasma operations. RF sheaths comprehension stumbles on the difficulty to achieve in situ measurements of the sheath properties, as scrape-off layer plasmas are a harsh environment. The very goal of the ALINE device is to tackle this issue and to fulfil the blank between numerical simulations and full-scale experiment by providing measurements within the RF sheaths in a controlled environment. In this paper we report on the latest experimental results from ALINE, in which a cylindrical Langmuir probe mounted on a remotely controlled and programmable arm allows for plasma characterizations in the three dimensions of space around the stainless steel antenna, including the sheath. We present a series of density and potential profiles and three dimension (3D maps in the plasma surrounding a stainless-steel RF antenna as well as in the sheath itself, for unmagnetized and magnetized plasmas.

  4. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    Energy Technology Data Exchange (ETDEWEB)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in [Physics Group, Bhabha Atomic Research Center, Mumbai (India)

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  5. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    International Nuclear Information System (INIS)

    Auluck, S. K. H.

    2014-01-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance

  6. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  7. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  8. Electron inertia effects on the planar plasma sheath problem

    International Nuclear Information System (INIS)

    Duarte, V. N.; Clemente, R. A.

    2011-01-01

    The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.

  9. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  10. Sheath and heat flow of a two-electron-temperature plasma in the presence of electron emission

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-01-01

    The electrostatic sheath and the heat flow of a two-electron-temperature plasma in the presence of electron emission are investigated analytically. It is shown that the energy flux is markedly enhanced to a value near the electron free-flow energy flux as a result of considerable reduction of the sheath potential due to electron emission if the fraction of hot electrons at the sheath edge is much smaller than one. If the hot- to cold-electron temperature ratio is of the order of ten and the hot electron density is comparable to the cold electron density, the action of the sheath as a thermal insulator is improved as a result of suppression of electron emission due to the space-charge effect of hot electrons. (author)

  11. Comment on open-quote open-quote Bohm criterion for the collisional sheath close-quote close-quote [Phys. Plasmas 3, 1459 (1996)

    International Nuclear Information System (INIS)

    Riemann, K.U.; Meyer, P.

    1996-01-01

    Recently, Valentini [Phys. Plasmas 3, 1459 (1996)] investigated the influence of collisions on the space charge formation and derived a modified Bohm criterion accounting for collisions in the sheath. It is shown that this derivation is wrong and is based on a misinterpretation of the plasma sheath concept. copyright 1996 American Institute of Physics

  12. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  13. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  14. Physics of the intermediate layer between a plasma and a collisionless sheath and mathematical meaning of the Bohm criterion

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, N. A.; Benilov, M. S. [Departamento de Fisica, CCCEE, Universidade da Madeira Largo do Municipio, 9000 Funchal (Portugal)

    2012-07-15

    A transformation of the ion momentum equation simplifies a mathematical description of the transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic point and weak effects come into play. For this reason, the passage of the ion fluid through the sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different scenarios of asymptotic matching in the plasma-sheath transition is analyzed by means of simple mathematical examples, asymptotic estimates, and numerical calculations. In the case of a collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in the intermediate region between the sheath and the presheath. The value corresponding to this plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye length to the ion mean free path is of the order of 10{sup -3} or smaller. There is no such plateau if the sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.

  15. Jeans instability with exchange effects in quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Jung, Y.-D.; Salimullah, M.

    2015-01-01

    Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems

  16. Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Bacha, Mustapha

    2010-01-01

    Arbitrary amplitude dust acoustic waves in a dusty plasma with a high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from the Boltzmann distribution on the dust acoustic soliton are then considered. The dust charge variation makes the dust acoustic soliton more spiky. The dust grain surface collects less electrons as the latter evolves far away from their thermodynamic equilibrium. The dust accumulation caused by a balance of the electrostatic forces acting on the dust grains is more effective for lower values of the electron spectral index. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. Our results may explain the strong spiky waveforms observed in auroral plasmas.

  17. Cross-field dust acoustic instability in a dusty negative ion plasma

    International Nuclear Information System (INIS)

    Rosenberg, M

    2010-01-01

    A cross-field dust acoustic instability in a dusty negative ion plasma in a magnetic field is studied using kinetic theory. The instability is driven by the ExB drifts of the ions. It is assumed that the negative ions are much heavier than the positive ions, and that the dust is negatively charged. The case where the positive ions and electrons are magnetized, the negative ions are marginally unmagnetized, and the dust is unmagnetized is considered. The focus is on a situation where Doppler resonances near harmonics of the positive ion gyrofrequency can affect the spectrum of unstable dust acoustic waves. Application to possible laboratory experimental parameters is discussed.

  18. Plasma sheath physics and dose uniformity in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Li Jianhui; Kwok, Dixon T. K.; Chu, Paul K.; Wang Zhuo

    2009-01-01

    Based on the multiple-grid particle-in-cell code, an advanced simulation model is established to study the sheath physics and dose uniformity along the sample stage in order to provide the theoretical basis for further improvement of enhanced glow discharge plasma immersion ion implantation and deposition. At t=7.0 μs, the expansion of the sheath in the horizontal direction is hindered by the dielectric cage. The electron focusing effect is demonstrated by this model. Most of the ions at the inside wall of the cage are implanted into the edge of the sample stage and a relatively uniform ion fluence distribution with a large peak is observed at the end. Compared to the results obtained from the previous model, a higher implant fluence and larger area of uniformity are disclosed.

  19. Sheath structure transition controlled by secondary electron emission

    Science.gov (United States)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  20. Breakdown of a Space Charge Limited Regime of a Sheath in a Weakly Collisional Plasma Bounded by Walls with Secondary Electron Emission

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2009-01-01

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  1. Electromagnetic particle in cell modeling of the plasma focus: Current sheath formation and lift off

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-01-01

    The shaping and formation of the current sheath takes place in the breakdown phase of a plasma focus device and critically controls the device performance. Electrostatic particle in cell codes, with magnetic effects ignored, have been used to model the breakdown phase. This Letter reports the successful development and implementation of an electromagnetic particle in cell (EMPIC) code, including magnetic effects self-consistently, to simulate the breakdown phase; from the ionization, localization and gliding discharge along the insulator to the time instant of current sheath lift off. The magnetic field was found to be appreciable from the time the current sheath came into contact with the anode with increased local current, initiating the voltage breakdown of the device as a result

  2. Study of possible chaotic, quasi-periodic and periodic structures in quantum dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2014-01-01

    Existence of chaotic, quasi-periodic, and periodic structures of dust-ion acoustic waves is studied in quantum dusty plasmas through dynamical system approach. A system of coupled differential equations is derived from the fluid model and subsequently, variational matrix is obtained. The characteristic equation is obtained at the equilibrium point, and the behavior of nonlinear waves is studied numerically using Runge-Kutta method. The behavior of the dynamical system changes significantly when any of plasma parameters, such as the dust concentration parameter, temperature ratio, or the quantum diffraction parameter, is varied. The change of the characteristic of solution of the system is extensively studied. It is found that the system changes its behavior from chaotic pattern to limit cycle behavior

  3. Debye shielding in a dusty plasma with nonextensively distributed electrons and ions

    International Nuclear Information System (INIS)

    Liu, Y.; Xu, K.; Liu, S. Q.

    2012-01-01

    The phenomenon of Debye shielding in dusty plasmas is investigated within the framework of nonextensively distributed electrons and ions. The effects of dust grain charge fluctuation are considered. It shows that the increase of the nonextensive parameters of electrons and ions will lead to the decrease of the shielding distance and it is due to that the effective temperature of nonextensively distributed particles drops with the increase of nonextensive parameters. There is a rather interesting result that the Debye shielding effects may vanish in a certain condition when the fluctuation of the dust grain charges is taken into account.

  4. Symbolic computation on integrable decompositions for the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas and Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Li Juan; Xu Tao; Zhang Haiqiang; Gao Yitian; Tian Bo

    2008-01-01

    In this paper, the cylindrical Kadomtsev-Petviashvili (KP) equation arising from dusty plasmas and Bose-Einstein condensates is investigated by the decomposition method. Through the nonlinearization of a single Lax pair, this equation is decomposed into a generalized variable-coefficient Burgers equation and its third-order extension, and then a series of analytic soliton-like solutions are obtained. Furthermore, with the aid of symbolic computation, a symmetry potential constraint in terms of the squared eigenfunctions is proposed to nonlinearize two symmetry Lax pairs into the first two variable-coefficient 2N-coupled soliton systems in the same hierarchy. Based on the Lax representation for these two decomposed soliton systems, a Darboux transformation is constructed to iteratively generate the multi-soliton-like solutions. Via the obtained analytic soliton-like solutions, the graphical analysis is devoted to the one-parabola soliton structure, compressive and rarefactive soliton resonance phenomena occurring in dusty plasmas and Bose-Einstein condensates

  5. Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow

    International Nuclear Information System (INIS)

    Schweigert, I. V.

    2012-01-01

    The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

  6. Simulation of a two-dimensional sheath over a flat insulator-conductor interface on a radio-frequency biased electrode in a high-density plasma

    International Nuclear Information System (INIS)

    Kim, Doosik; Economou, Demetre J.

    2004-01-01

    A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced

  7. Reconstruction of the time-averaged sheath potential profile in an argon RF plasma using the ion energy distribution

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Schwarzenbach, W.; Howling, A.A.; Hollenstein, C.

    1994-10-01

    Charge-exchange collisions and radio-frequency excitation combine to give peaks in the ion energy distribution measured at the ground electrode of an argon plasma in a capacitive reactor. These peaks are used as a diagnostic to reconstruct the profile of the time-averaged potential in the sheath. Particle-In-Cell simulations show that the method is accurate. The method is applied to investigate the sheath thickness as a function of excitation frequency at constant plasma power. The time-averaged potential is found to be parabolic in both experimental measurements and numerical simulation. (author) 6 figs., 1 tab., 15 refs

  8. Effect of secondary electron emission on the Jeans instability in a dusty plasma

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Roy, Banamali; Maity, Saumyen; Khan, Manoranjan; Gupta, M. R.

    2007-01-01

    In this paper the effect of secondary electron emission on Jeans instability in a dusty plasma has been investigated. Due to secondary electron emission, dust grains may have two stable equilibrium states out of which one is negative and the other is positive. Here both cases have been considered separately. It has been shown that secondary electron emission enhances Jeans instability when equilibrium dust charge is negative. It has also been shown that growth rate of Jeans instability reduces with increasing secondary electron emission when equilibrium dust charge is positive

  9. Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids

    International Nuclear Information System (INIS)

    Io, C.-W.; Chan, C.-L.; Lin I

    2010-01-01

    Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.

  10. A model for the condensation of a dusty plasma

    International Nuclear Information System (INIS)

    Bellan, P.M.

    2004-01-01

    A model for the condensation of a dusty plasma is constructed by considering the spherical shielding layers surrounding a dust grain test particle. The collisionless region less than a collision mean free path from the test particle is shown to separate into three concentric layers, each having distinct physics. The method of matched asymptotic expansions is invoked at the interfaces between these layers and provides equations which determine the radii of the interfaces. Despite being much smaller than the Wigner-Seitz radius, the dust Debye length is found to be physically significant because it gives the scale length of a precipitous cut-off of the shielded electrostatic potential at the interface between the second and third layers. Condensation is predicted to occur when the ratio of this cut-off radius to the Wigner-Seitz radius exceeds unity and this prediction is shown to be in good agreement with experiments

  11. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  12. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    Science.gov (United States)

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  13. Microdynamics of dusty plasma liquids in narrow channel: from disorder to order

    CERN Document Server

    Woon Wei Yen; Deng L Iwen; Lin, I

    2003-01-01

    We report direct observations on the microscopic dynamics of dusty plasma liquid confined in a narrow gap. We measure the horizontal and transverse displacement histograms as well as the transverse particle density distributions from particle trajectories. Under confinement, the liquid forms a layer structure. The dust particle motion at boundaries show anisotropy and three outermost layers is found due to the pinching effect of the boundaries. When the gap width is reduced to below 7d (d = inter-layer width), the dust particle motion in the central region shows a transition from isotropic motion to anisotropic discrete hopping motion, leading to a slower dynamics and layer structure through the whole liquid.

  14. Doppler spectroscopic measurements of sheath ion velocities in radio-frequency plasmas

    International Nuclear Information System (INIS)

    Woodcock, B.K.; Busby, J.R.; Freegarde, T.G.; Hancock, G.

    1997-01-01

    We have measured the distributions of N 2 + ion velocity components parallel and perpendicular to the electrode in the sheath of a radio-frequency nitrogen reactive ion etching discharge, using pulsed laser-induced fluorescence. Parallel to the electrode, the ions have throughout a thermal distribution that is found to be consistent with the rotational temperature of 355 K. In the perpendicular direction, we see clearly the acceleration of the ions towards the electrode, and our results agree well with theoretical predictions although an unexpected peak of unaccelerated ions persists. We have also determined the absolute ion concentrations in the sheath, which we have calibrated by analyzing the decay in laser-induced fluorescence in the plasma bulk after discharge extinction. At 20 mTorr, the bulk concentration of 1.0x10 10 cm -3 falls to around 2x10 8 cm -3 at 2 mm from the electrode. copyright 1997 American Institute of Physics

  15. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Turner, M. M. [National Centre for Plasma Science and Technology, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  16. Radio frequency sheaths in an oblique magnetic field

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2015-01-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall

  17. Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres

    International Nuclear Information System (INIS)

    Sheridan, T. E.; Katschke, M. R.; Wells, K. D.

    2007-01-01

    A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n=2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model

  18. Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2016-03-11

    The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.

  19. Formation and dissociation of dust molecules in dusty plasma

    Science.gov (United States)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  20. Stability analysis of a model equilibrium for a gravito-electrostatic sheath in a colloidal plasma under external gravity effect

    International Nuclear Information System (INIS)

    Rajkhowa, Kavita Rani; Bujarbarua, S.; Dwivedi, C.B.

    1999-01-01

    The present contribution tries to find a scientific answer to the question of stability of an equilibrium plasma sheath in a colloidal plasma system under external gravity effect. A model equilibrium of hydrodynamical character has been discussed on the basis of quasi-hydrostatic approximation of levitational condition. It is found that such an equilibrium is highly unstable to a modified-ion acoustic wave with a conditional likelihood of linear driving of the so-called acoustic mode too. Thus, it is reported (within fluid treatment) that a plasma-sheath edge in a colloidal plasma under external gravity effect could be highly sensitive to the acoustic turbulence. Its consequential role on possible physical mechanism of Coulomb phase transition has been conjectured. However, more rigorous calculations as future course of work are required to corroborate our phenomenological suggestions. (author)

  1. Slow-wave propagation and sheath interaction in the ion-cyclotron frequency range

    International Nuclear Information System (INIS)

    Myra, J R; D'Ippolito, D A

    2010-01-01

    In previous work (Myra J R and D'Ippolito D A 2008 Phys. Rev. Lett. 101 195004) we studied the propagation of slow-wave (SW) resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the treatment of SW propagation and sheath interaction to 'dense' scrape-off-layer plasmas where the usual cold-plasma SW is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the SW couples to a sheath-plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length. The conditions for avoiding potentially deleterious rf-wall interactions in tokamak rf heating experiments are summarized.

  2. Effect of electron emission on an ion sheath structure

    International Nuclear Information System (INIS)

    Mishra, M K; Phukan, A; Chakraborty, M

    2014-01-01

    This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)

  3. Nonlinear propagation of ultra-low-frequency electronic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfven waves for small value of θ and are modified magnetosonic waves for large θ, where θ is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. (author)

  4. Fast, kinetically self-consistent simulation of RF modulated plasma boundary sheaths

    International Nuclear Information System (INIS)

    Shihab, Mohammed; Ziegler, Dennis; Brinkmann, Ralf Peter

    2012-01-01

    A mathematical model is presented which enables the efficient, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. It is defined on a one-dimensional geometry where a Cartesian x-axis points from the electrode or wall at x E ≡ 0 towards the plasma bulk. An arbitrary endpoint x B is chosen ‘deep in the bulk’. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at x B and a periodically—not necessarily harmonically—modulated sheath voltage V(t) or sheath charge Q(t). The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). The basis of the scheme is a discretization of the spacetime, the product of the domain [x E , x B ] and the RF period [0, T]. Three modules are called in a sequence. A Monte Carlo module calculates the trajectories of a large set of ions from their start at x B until they reach the electrode at x E , utilizing the potential values on the nodes of the spatio-temporal grid. A harmonic analysis module reconstructs the Fourier modes n im (x) of the ion density n i (x, t) from the calculated trajectories. A field module finally solves the Boltzmann-Poisson equation with the calculated ion densities to generate an updated set of potential values for the spatio-temporal grid. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A subsequent post-processing determines important quantities, in particular the phase-resolved and phase-averaged values of the ion energy and angular distributions and the total energy flux at the electrode. A drastic reduction of the

  5. Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model

    International Nuclear Information System (INIS)

    Liu Bin; Goree, J.

    2005-01-01

    Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an experiment. The phonons correspond to random particle motion in the chain; no external manipulation was applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional damping due to gas, which affects the propagation of externally excited phonons differently from phonons that correspond to random particle motion. A model is developed and fit to the experiment to explain the features of the autocorrelation function, phonon spectrum, and the dispersion relation

  6. Verification of high voltage rf capacitive sheath models with particle-in-cell simulations

    Science.gov (United States)

    Wang, Ying; Lieberman, Michael; Verboncoeur, John

    2009-10-01

    Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199

  7. Solitary waves of the Kadomstev-Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ion and nonthermal electron

    International Nuclear Information System (INIS)

    Pakzad, Hamid Reza

    2009-01-01

    The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev-Petviashivili (KP) equation is derived. Existence of rarefactive and compressive solitons is analyzed.

  8. A sheath model for arbitrary radiofrequency waveforms

    Science.gov (United States)

    Turner, M. M.; Chabert, Pascal

    2012-10-01

    The sheath is often the most important region of a rf plasma, because discharge impedance, power absorption and ion acceleration are critically affected by the behaviour of the sheath. Consequently, models of the sheath are central to any understanding of the physics of rf plasmas. Lieberman has supplied an analytical model for a radio-frequency sheath driven by a single frequency, but in recent years interest has been increasing in radio-frequency discharges excited by increasingly complex wave forms. There has been limited success in generalizing the Lieberman model in this direction, because of mathematical complexities. So there is essentially no sheath model available to describe many modern experiments. In this paper we present a new analytical sheath model, based on a simpler mathematical framework than that of Lieberman. For the single frequency case, this model yields scaling laws that are identical in form to those of Lieberman, differing only by numerical coefficients close to one. However, the new model may be straightforwardly solved for arbitrary current waveforms, and may be used to derive scaling laws for such complex waveforms. In this paper, we will describe the model and present some illustrative examples.

  9. Obliquely propagating cnoidal waves in a magnetized dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, L. L.; Sayal, V. K.

    2009-01-01

    We have studied obliquely propagating dust-acoustic nonlinear periodic waves, namely, dust-acoustic cnoidal waves, in a magnetized dusty plasma consisting of electrons, ions, and dust grains with variable dust charge. Using reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, we have derived Korteweg-de Vries (KdV) equation for the plasma. It is found that the contribution to the dispersion due to the deviation from plasma approximation is dominant for small angles of obliqueness, while for large angles of obliqueness, the dispersion due to magnetic force becomes important. The cnoidal wave solution of the KdV equation is obtained. It is found that the frequency of the cnoidal wave depends on its amplitude. The effects of the magnetic field, the angle of obliqueness, the density of electrons, the dust-charge variation and the ion-temperature on the characteristics of the dust-acoustic cnoidal wave are also discussed. It is found that in the limiting case the cnoidal wave solution reduces to dust-acoustic soliton solution.

  10. Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2009-01-01

    In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.

  11. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    Science.gov (United States)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  12. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  13. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  14. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  15. On the upper bound in the Bohm sheath criterion

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikov, I. A., E-mail: I.A.Kotelnikov@inp.nsk.su; Skovorodin, D. I., E-mail: D.I.Skovorodin@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2016-02-15

    The question is discussed about the existence of an upper bound in the Bohm sheath criterion, according to which the Debye sheath at the interface between plasma and a negatively charged electrode is stable only if the ion flow velocity in plasma exceeds the ion sound velocity. It is stated that, with an exception of some artificial ionization models, the Bohm sheath criterion is satisfied as an equality at the lower bound and the ion flow velocity is equal to the speed of sound. In the one-dimensional theory, a supersonic flow appears in an unrealistic model of a localized ion source the size of which is less than the Debye length; however, supersonic flows seem to be possible in the two- and three-dimensional cases. In the available numerical codes used to simulate charged particle sources with a plasma emitter, the presence of the upper bound in the Bohm sheath criterion is not supposed; however, the correspondence with experimental data is usually achieved if the ion flow velocity in plasma is close to the ion sound velocity.

  16. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, Mustapha [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-08-15

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (∼10{sup 4} km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  17. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, E.; Zahed, H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335–1996 Tabriz (Iran, Islamic Republic of)

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  18. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  19. A suitable boundary condition for bounded plasma simulation without sheath resolution

    International Nuclear Information System (INIS)

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K.; Cohen, B.I.

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of ω pe Δt and Δz/λ De provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved

  20. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2010-01-01

    Motivated by the magnetized target fusion (MTF) experiment [R. E. Siemon et al., Comments Plasma Phys. Controlled Fusion 18, 363 (1999)], a systematic investigation of the force balance and equilibrium plasma flows was carried out using analytical theory and the particle-in-cell code VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] for a one-dimensional plasma sheath with a magnetic field parallel to the wall. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing wall. The analysis of the steady-state force balance of the entire plasma as well as its individual components illuminates the roles that the hydrodynamic, magnetic, and electric forces play. In particular, when ρ thi D , the magnetic force balances the divergence of the pressure tensor. As the magnetic field is decreased, the electric force becomes prominent in areas where quasineutrality breaks, which can be a substantial part of the sheath. Its importance depends on the relation between three parameters, namely, electron and ion thermal Larmor radii and plasma Debye length: ρ the , ρ thi , and λ D . The relative importance of the electron and ion current in the magnetic or Lorentz force term can be understood through the analysis of the two-fluid force balance. It reveals that the current is carried primarily by the electrons. This is due to the direction of the electric field that helps confine the ions, but not the electrons, which are forced to carry a large current to confine themselves magnetically. In the regimes where the electric field is negligible, the ions also need the current for confinement, but in these cases the divergence of ion pressure tensor is much smaller than that of the electrons. Consequently the ion current is also smaller. The study of the electron and ion flow parallel to the wall clarifies this picture even further. In the regime of strong magnetic field, the

  1. Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas

    International Nuclear Information System (INIS)

    Ali, S; Moslem, W M; Kourakis, I; Shukla, P K

    2008-01-01

    The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted

  2. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  3. Studies of RF sheaths and diagnostics on IShTAR

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, K., E-mail: Kristel.Crombe@UGent.be [Department of Applied Physics, Ghent University, Ghent (Belgium); LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Devaux, S.; Faudot, E.; Heuraux, S.; Moritz, J. [YIJL, UMR7198 CNRS-Université de Lorraine, Nancy (France); D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T. [LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  4. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Alam, M.N.; Mamun, A.A.

    2001-01-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)

  5. Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe; Lynch, Brian; Adams, Stephen; LeBlanc, Spencer [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-11-15

    Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., “hopping”) motion of particles between the trapping locations, it is possible to make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.

  6. Scattering and extinction of ion beams in a dusty plasma device

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2001-01-01

    Collisions of ions with charged dust grains are important for the propagation of low frequency waves such as dust acoustic waves and dust ion-acoustic waves. The collision cross-sectional area of charged dust grains depends on the velocity of an ion beam. The collision cross-sectional area of charged dust grains with beam ions is measured. It is compared with the geometrical cross-sectional area of the grain. The experiment is performed in a dusty double-plasma device with glass beads of 8.9 μm in average diameter. The ion beam current and energy are measured with a directional retarding potential analyzer. It is observed that, when dust density inside the system is increased, the beam current ratio is reduced. From the reduction of the ion beam current, the effective cross-sectional area of the dust particle is estimated as a function of the beam energy

  7. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    International Nuclear Information System (INIS)

    Wu Haicheng; Xie Baisong

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  8. The dust motion inside the magnetized sheath - The effect of drag forces

    International Nuclear Information System (INIS)

    Pandey, B. P.; Samarian, A.; Vladimirov, S. V.

    2010-01-01

    The isolated charged dust inside the magnetized plasma sheath moves under the influence of the electron and ion drag force and the sheath electrostatic field. The charge on the dust is a function of its radius as well as the value of the ambient sheath potential. It is shown that the charge on the dust determines its trajectory and dust performs the spiraling motion inside the sheath. The location of the turning spiral is determined by the number of negative charge on the dust, which in turn is a function of the dust radius. The back and forth spiraling motion finally causes the dust to move in a small, narrow region of the sheath. For a bigger dust particle, the dust moves closer to the sheath presheath boundary suggesting that the bigger grains, owing to the strong repulsion between the wall and dust, will be unable to travel inside the sheath. Only small, micron-sized grains can travel closer to the wall before repulsion pushes it back toward the plasma-sheath boundary. The temporal behavior of the spiraling dust motion appears like a damped harmonic oscillation, suggesting that the plasma drag force causes dissipation of the electrostatic energy. However, after initial damping, the grain keeps oscillating although with much smaller amplitude. The possible application of the present results to the ongoing sheath experiments is discussed.

  9. Dispersive properties and attraction instability of low-frequency collective modes in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Rezendes, D.

    1998-01-01

    A dispersion relation for low-frequency collective modes in dusty plasmas is derived with allowance for attractive and repulsive forces arising between the dust grains due to dissipative fluxes of plasma particles onto the grain surfaces. It is shown that these fluxes give rise to dust attraction instabilities, which are similar to the gravitational instability. In the range of wave numbers corresponding to the stability domain, two types of dust sound waves arise, depending on whether the wavelengths of the collective modes are longer or shorter than the mean free path of the plasma particles (i.e., the distance they travel before they collide with dust grains). The dispersion relation derived is valid for any ratio between the wavelength of the perturbations and the mean free path and encompasses the entire range of intermediate wave numbers. The critical wave numbers that determine the threshold for the onset of attraction instability, which is similar to the Jeans instability, can, in particular, lie within this range. The thresholds for attraction instability and the instability growth rates are obtained numerically for a wide range of the plasma parameters (such as the ratio of the ion temperature to the electron temperature) that are of interest for present-day experiments with dust crystals, plasma etching, and space plasma studies. Computer simulation shows that, in the nonlinear stage, the attraction instability causes the dust cloud to collapse, which leads to the formation of dust plasma crystals. Our investigation makes it possible to trace the processes in the initial stage of dust crystallization. Results are obtained for hydrogen and silicon plasmas, which are most typical of laboratory experiments

  10. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  11. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  12. Reflection of ion acoustic waves by the plasma sheath

    International Nuclear Information System (INIS)

    Ibrahim, I.; Kuehl, H.H.

    1984-01-01

    The reflection coefficient R for linear monochromatic ion acoustic waves incident on the transonic layer and sheath from the plasma interior is calculated. The treatment differs from previous analyses in that (1) the exact zero-order ion density and velocity profiles for a planar, bounded plasma are used, and the zero-order charge separation is not neglected, and (2) the first-order quantities near the transonic layer are considered in detail, including first-order charge separation, whereby it is found that no coupling to the beam modes exists, and that the functional form of the first-order solution is completely determined. It is shown that the upper bound for Vertical BarRVertical Bar is (1)/(3) . The largest reflection occurs for frequencies which are small compared with the ionization frequency, and generally decreases with increasing frequency. By Fourier superposition, the reflection of a pulse is computed. For a narrow incident pulse, the reflected pulse is greatly distorted and is small compared with the incident pulse. For a broad pulse, the reflected pulse is similar in shape to the incident pulse, and has a magnitude which is approximately (1)/(3) of the incident pulse

  13. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  14. Sheath heating in low-pressure capacitive radio frequency discharges

    International Nuclear Information System (INIS)

    Wood, B.P.

    1991-01-01

    Capacitively coupled, parallel plate, r.f. discharges are commonly used for materials processing. The electrons in such a discharge gain and lose energy by reflection from the oscillating sheaths which form at the electrodes. Previous models of the electron heating by this mechanism have assumed that the sheath motion is slow compared to the electron thermal velocity, so that the electron energy change from each reflection is small. Here, the heating rate, density, and sheath width relations are derived analytically in the limit of very fast sheath motion. Numerical results are presented spanning the slow and fast limits. Results from particle-in-cell simulations show that in the large-energy-change regime, an electron beam is produced on each sheath expansion. At low pressure, this beam can traverse the plasma and interact with the sheath at the opposite electrode, producing a beam energy and density dependence on the length of the discharge. The beam produces a time and space varying warm tail on the electron energy distribution. Two revised heating models are derived, assuming power-law and two-temperature electron energy distributions, with temporal variation in electron temperature. These revised models yield new predictions for the variation of the power, density, and sheath thickness with applied r.f. voltage. These predictions are compared with simulation results and laboratory experiment. The electron sheath motion is investigated experimentally by observing the signal on a floating probe in the sheath region. This is compared to the signal product by a non-linear circuit model which accounts for the perturbation of the sheath potential by the probe and includes various forms of sheath motion. The experimental observations are consistent with the analytical predictions. Experimental observations of plasma-sheath resonance oscillations are presented which agree with analytical predictions

  15. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar-H2 and Ar-N2 as the sheath gases at atmospheric pressure

    Science.gov (United States)

    Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li

    2017-09-01

    Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.

  16. Experiments on Alignment of Dust Particles in Plasma Sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.; James, B.W.

    2005-01-01

    Here, we report an experimental investigation of the stability of vertical and horizontal confinement of dust particles levitated in an rf sheath. The experiments were carried out in argon plasma with micron-sized dust particles. Changes of particle arrangement were triggered by changing the discharge parameters, applying an additional bias to the confining electrode and by laser beam. The region where the transition was triggered by changes of discharge parameters and the transition from horizontal to vertical alignment has been found to be more pronounced than for the reverse transition. A clear hysteretic effect was observed for transitions triggered by changes of the confining voltage. A vertical alignment occurs in a system of two dust horizontally arranged particles with the decrease of the particle separation. This disruption is attributed to the formation of the common ion wake in the system

  17. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-01-01

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas

  18. Theory of the Electron Sheath and Presheath

    Science.gov (United States)

    Scheiner, Brett; Baalrud, Scott; Yee, Benjamin; Hopkins, Matthew; Barnat, Edward

    2015-09-01

    Electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the velocity distribution function (VDF). This work provides a dedicated theory of electron sheaths, which suggests that electron sheaths are not so simple. Motivated by VDFs observed in recent Particle-In-Cell (PIC) simulations, we develop a 1D model for the electron sheath and presheath. In the model, under low temperature plasma conditions, an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient allows the generation of large flows compared to those that would be generated by the electric field alone. It is due to this pressure gradient that the electron presheath extends much further into the plasma (nominally by a factor of √{mi /me }) than an analogous ion presheath. Results of the model are compared with PIC simulations. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under contract DE-AC04-94SL85000 and by the Office of Science Graduate Student Research (SCGSR) program under Contract Number DE-AC05-06OR23100.

  19. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)

  20. Modelling of the dual frequency capacitive sheath in the intermediate pressure range

    International Nuclear Information System (INIS)

    Boyle, P C; Robiche, J; Turner, M M

    2004-01-01

    The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared

  1. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  2. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  3. Simulations of rf-driven sheath formation in two dimensions

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Grossmann, W.; Drobot, A.; Kress, M.

    1992-01-01

    The results from two-dimensional particle simulations of sheath formation around periodic metal arrays placed inside magnetized plasmas and driven by oscillating voltages are reported. The main goal is the modeling of the plasma interaction with the Faraday bars surrounding the antennas during ion cyclotron tokamak heating. The study of the time-averaged potentials shows that the two-dimensional sheath structure depends on both the sheath length-to-thickness ratio and the inclination of the magnetic lines. The equipotential surfaces form closed, nested cells between adjacent bars. When the magnetic lines are nearly perpendicular to the potential gradients, the ion motion is dominated by the ExB drift, and ion streamlines form vortices around the equipotentials. At larger inclinations of the magnetic lines, the flow decouples from the equipotentials and ion transport is mainly along the potential gradients. The critical angle for the transition from vortex circulation to field aligned flow is computed. The effects of the cross-field ion transport on the sheath properties are discussed. It is shown that the sheath length and the magnetic line inclination affect the sheath scaling in the two-dimensional case. The one-dimensional theory results are recovered in the limit of high length-to-thickness ratio and large inclination of the magnetic lines

  4. A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas

    International Nuclear Information System (INIS)

    Momeni, M; Kourakis, I; Moslehi-Fard, M; Shukla, P K

    2007-01-01

    The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol-Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge-Kutta method. The presence of chaotic limit cycles is pointed out. (fast track communication)

  5. Sheath structure in negative ion sources for fusion (invited)

    International Nuclear Information System (INIS)

    McAdams, R.; King, D. B.; Surrey, E.; Holmes, A. J. T.

    2012-01-01

    In fusion negative ion sources, the negative ions are formed on the caesiated plasma grid predominantly by hydrogen atoms from the plasma. The space charge of the negative ions leaving the wall is not fully compensated by incoming positive ions and at high enough emission a virtual cathode is formed. This virtual cathode limits the flux of negative ions transported across the sheath to the plasma. A 1D collisionless model of the sheath is presented taking into account the virtual cathode. The model will be applied to examples of the ion source operation. Extension of the model to the bulk plasma shows good agreement with experimental data. A possible role for fast ions is discussed.

  6. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  7. Dust ion acoustic solitary waves in a magnetized dusty plasma with anisotropic ion pressure

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, D.-Y.; Lee, Nam C.; Kim, Y.-H.

    2007-01-01

    The influence of anisotropic ion pressure on the dust ion acoustic solitary wave (DIASW) and the double layer (DL) obliquely propagating to a magnetic field are investigated by using the Sagdeev potential. The anisotropic ion pressure is defined by applying the Chew-Goldberger-Low (CGL) theory, p-perpendicular=p-perpendicular 0 n and p-parallel=p-parallel 0 n 3 , where n is the normalized ion density. The solutions of DIASWs and DLs obliquely propagating to an external magnetic field are obtained in the small amplitude limit. It is found that the perpendicular component of anisotropic ion pressure works differently from that of the parallel component on the DIASWs in a magnetized dusty plasma, deviating from a straight extension of the isotropic pressure effect

  8. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  9. Low-frequency electromagnetic solitary and shock waves in an inhomogeneous dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2003-01-01

    It is shown that the nonlinear dynamics of one-dimensional Shukla mode [Phys. Lett. A 316, 238 (2003)] is governed by a modified Kortweg-de Vries-Burgers equation. The latter admits stationary solutions in the form of either a solitary wave or a monotonic/oscillatory shock. The present nonlinear waves may help to understand the salient features of localized density and magnetic field structures in molecular dusty clouds as well as in low-temperature laboratory dusty plasma discharges

  10. Composition of the sheath produced by the green alga Chlorella sorokiniana.

    Science.gov (United States)

    Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H

    2006-05-01

    To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.

  11. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    Science.gov (United States)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  12. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  13. Influence of system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. L.; Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); He, Y. F.; Wu, L. [College of Information and Electrical Engineering, China Agricultural University, Beijing 100083 (China); Liu, Y. H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2015-06-15

    Influence of the system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas is investigated through laboratory experiment and molecular dynamics simulation. The micro-structures, defect numbers, and pair correlation function of the dust clusters are studied for different system temperatures. The dust grains' trajectories, the mean square displacement, and the corresponding self-diffusion coefficient of the clusters are calculated for different temperatures for illustrating the phase properties of the dust clusters. The simulation results confirm that with the increase in system temperature, the micro-structures and dynamics of dust clusters are gradually changed, which qualitatively agree with experimental results.

  14. Effects of neutral gas collisions on the power transmission factor at the divertor sheath

    International Nuclear Information System (INIS)

    Futch, A.H.; Matthews, G.F.; Buchenauer, D.; Hill, D.N.; Jong, R.A.; Porter, G.D.

    1992-01-01

    We show that charge-exchange and other ion-neutral collision can reduce the power transmission factor of the plasma sheath, thereby lowering the ion impact energy and target plate sputtering. The power transmission factor relates the heat flux reaching the divertor target to the plasma density and temperature just in front of the surface: δ=Q surf /J ew k T e . Experimental data from the DIII-D tokamak suggests that δ could be as low as 2-3 near the region of peak divertor particle flux, instead of the 7-8 expected from usual sheath theory. Several effects combine to allow ion-neutral interactions to be important in the divertor plasma sheath. The shallow angle of incidence of the magnetic field (1-3deg in DIII-D) leads to the spatial extension of the sheath from approximately ρ i ∝1 mm normal to the plate to several centimeters along the field lines. Ionization reduces the sheath potential, and collisions reduce the ion impact energy. (orig.)

  15. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    component unmag- netized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian elec- tron distribution to a vortex-like ...

  16. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  17. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  18. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  19. Kolmogorov flow in two dimensional strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)

    2014-07-15

    Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

  20. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  1. What is the size of a floating sheath? An answer

    Science.gov (United States)

    Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter

    2016-09-01

    The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.

  2. Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Zafiu, C.; Melzer, A.; Piel, A.

    2003-01-01

    Experiments on the quantitative determination of the weaker forces (ion drag, thermophoresis, and electric field force) on free-falling dust particles in a rf discharge tube are presented. The strongest force, gravity, is balanced by gas friction and the weaker forces are investigated in the radial (horizontal) plane. Under most discharge conditions, the particles are found to be expelled from the central plasma region. A transition to a situation where the falling particles are focused into the plasma center is observed at low gas pressures using small particles. These investigations allow a quantitative understanding of the mechanism of unwanted dust-free areas (so-called voids) in dusty plasmas under microgravity. Good quantitative agreement with standard models of the ion drag is found

  3. Effect of collisions on photoelectron sheath in a gas

    Science.gov (United States)

    Sodha, Mahendra Singh; Mishra, S. K.

    2016-02-01

    This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.

  4. Theoretical and computational studies of the sheath of a planar wall

    Science.gov (United States)

    Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni

    2012-03-01

    We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).

  5. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  6. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2014-01-01

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient

  7. Ion streaming instability in a quantum dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P. K.; Brodin, G.; Stenflo, L.

    2008-01-01

    It is shown that a relative drift between the ions and the charged dust particles in a magnetized quantum dusty plasma can produce an oscillatory instability in a quantum dust acousticlike wave. The threshold and growth rate of the instability are presented. The result may explain the origin of low-frequency electrostatic fluctuations in semiconductors quantum wells

  8. Waterspout as a special type of atmospheric aerosol dusty plasma

    Science.gov (United States)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  9. The collisional capacitive RF sheath and the assumption of a sharp electron edge

    Science.gov (United States)

    Brinkmann, Ralf Peter

    2008-10-01

    The transition from quasi-neutrality to charge depletion is one of the characteristic features of the plasma boundary sheath. It is often described in terms of the so-called step model which assumes a transition point (electron step) where the electron density drops from a value equal to the ion density (in the bulk) to a value of zero (in the sheath). Inserted into Poisson's equation, the step model yields an expression for the field which is realistic deep in the sheath but fails to merge correctly into the ambipolar field of the bulk. This work studies the consequences of that approximation for the example of the collision-dominated, capacitive RF sheath by Lieberman [1]. First, the model is solved exactly, using a relaxation scheme. Then, the step approximation is applied which recovers Lieberman's semi-analytical solution. It is demonstrated that the step approximation induces a spurious divergence of the ion density at the sheath edge and prevents a matching of the sheath model to a bulk model. Integral sheath quantities, on the other hand, like the capacitance or the overall voltage drop, are faithfully reproduced. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16, pp. 638-644 (1988).

  10. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  11. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  12. Propagation characteristics of dust–acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    International Nuclear Information System (INIS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-01-01

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  13. Propagation characteristics of dust–acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Mangilal, E-mail: mangilal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mukherjee, S.; Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-08-15

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  14. Electric field measurements in the sheath of an argon RF discharge by probing with microparticles under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2010-01-01

    The electric field profile in the plasma sheath of an argon rf plasma has been determined by measuring the equilibrium height and the resonance frequency of plasma-confined microparticles. In order to determine the electric field structure at any position in the plasma sheath without the discharge

  15. Study on the layered dusty plasma structures in the summer polar mesopause

    Directory of Open Access Journals (Sweden)

    Hui Li

    2010-09-01

    Full Text Available Traditional hydrodynamic equations are adopted to build a one-dimensional theoretical model to study the effect of gravity wave on layered dusty plasma structures formation and evolution near the polar summer mesospause region associated with polar mesosphere summer echoes (PMSE. The proposed mechanism gives consideration to the charged ice particle motion by the gravity wave modulation, making a significant contribution to the vertical transport of heavy ice particles and convergence into thin layers. And numerical results show that the pattern of the multi-layer structure depends on the ration of the initial ice particles density distribution to the vertical wavelength of the gravity waves, the ice particle size and the wind velocity caused by gravity wave. Also, the variation of ion density distribution under the influence of gravity wave has also been examined. Finally, the electron density depletions (bite-outs layers has been simulated according to the charge conservation laws, and the results are compared to the ECT02 rocket sounding data, which agree well with the measuring.

  16. Stability of the Tonks–Langmuir discharge pre-sheath

    Energy Technology Data Exchange (ETDEWEB)

    Tskhakaya, D. D. [Fusion@ÖAW, Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna (Austria); Kos, L. [LECAD Laboratory, Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Tskhakaya, D. [Fusion@ÖAW, Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2016-03-15

    The article formulates the stability problem of the plasma sheath in the Tonks–Langmuir discharge. Using the kinetic description of the ion gas, i.e., the stability of the potential shape in the quasi-neutral pre-sheath regarding the high and low frequency, the perturbations are investigated. The electrons are assumed to be Maxwell–Boltzmann distributed. Regarding high-frequency perturbations, the pre-sheath is shown to be stable. The stability problem regarding low-frequency perturbations can be reduced to an analysis of the “diffusion like” equation, which results in the instability of the potential distribution in the pre-sheath. By means of the Particle in Cell simulations, also the nonlinear stage of low frequency oscillations is investigated. Comparing the figure obtained with the figure for linear stage, one can find obvious similarity in the spatial-temporal behavior of the potential.

  17. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-01-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B 0 . It is noted that the growth rate is proportional to the unperturbed electron number density n oe and is independent of inhomogeneity beyond L e =2 cm. An extraordinary growth rate is observed with the quantum effect.

  18. Stability Dust-Ion-Acoustic Wave In Dusty Plasmas With Stream -Influence Of Charge Fluctuation Of Dust Grains

    International Nuclear Information System (INIS)

    Atamaniuk, Barbara; Zuchowski, Krzysztof

    2006-01-01

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In case considering here, when temperature of electrons is much greater then the temperature of the ions and temperature of electrons is not great enough for further ionization of the ions, we show that stability of the acoustic wave depends only one phenomenological coefficient

  19. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    Science.gov (United States)

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  20. Laboratory simulation of laser propagation through plasma sheaths containing ablation particles of ZrB2-SiC-C during hypersonic flight.

    Science.gov (United States)

    Zang, Qing; Bai, Xiangxing; Ma, Ping; Huang, Jie; Ma, Jing; Yu, Siyuan; Shi, Hongyan; Sun, Xiudong; Liu, Yang; Lu, Yueguang

    2017-02-15

    The optical communication method has potential for solving the blackout problem, which is a big challenge faced in the development of aerospace. Two laser transmission systems were set up to explore the influence of the plasma and the ablation particles on the propagation of the laser. The experimental results indicate that the laser can transmit through the plasma with little attenuation. When there are ablation particles of ZrB2-SiC-C added in the plasma, the intensity of the laser has fluctuations. The work introduced in this Letter can be regarded as basic research of the propagation characters of the laser through plasma sheaths.

  1. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  2. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2011-01-01

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n d0 /n i0 )) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa (κ), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  3. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deeba, F. [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Department of Physics, G.C. University, Lahore 54000 (Pakistan); Ahmad, Zahoor [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G.C. University, Lahore 54000 (Pakistan)

    2011-07-15

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n{sub d0}/n{sub i0})) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa ({kappa}), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  4. The ion polytropic coefficient in a collisionless sheath containing hot ions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Binbin; Xiang, Nong, E-mail: xiangn@ipp.ac.cn; Ou, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-08-15

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  5. Jeans instability in a quantum dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Jamil, M.; Shah, H. A.; Murtaza, G.

    2009-01-01

    Jeans instability in a homogeneous cold quantum dusty plasma in the presence of the ambient magnetic field and the quantum effect arising through the Bohm potential has been examined using the quantum magnetohydrodynamic model. It is found that the Jeans instability is significantly reduced by the presence of the dust-lower-hybrid wave and the ion quantum effect. The minimum wavenumber for Jeans stability depends clearly on ion quantum effect and the dust-lower-hybrid frequency also.

  6. On the biogenesis of the myelin sheath : Cognate polarized trafficking pathways in oligodendrocytes

    NARCIS (Netherlands)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, In particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of

  7. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  8. Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ruhunusiri, W. D. Suranga; Goree, J.; Feng Yan; Liu Bin

    2011-01-01

    The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy, bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals features suggesting a possibility of latent heat in the melting and rapid cooling processes.

  9. Sheath formation and extraction of ions from a constricted R.F ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Salam, F W; Helal, A G; El-Khabeary, H; El-Merai, N T [Accelerators Dept., Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1997-12-31

    The present work investigates the plasma characteristics in a constricted R. F. ion source. The extraction of ions from the plasma boundary and sheath formation were studied. The ion source physical parameters are discussed in order to understand the physical processes occurring within the discharge region up to the extraction system. Electron temperature and density were determined using Langmuir probe. The probe current-voltage characteristics were measured for different extraction voltages (ext.) = 0,500,1000, and 1250 volt at various constant R.F. powers. The effect of R.F. power on electron temperature was deduced for a beam = plasma discharge. This revealed that for a quasi-neutral (plasma) region the electron temperature increased linearly with the R.F. Power which leads to substantial electron heating and efficient electron energy transport in this region. Applying extraction voltage, the electron temperature drops as the ionization rate increases. The sheath thickness was obtained at constant extraction voltages. The curves show that if the ion current density increased, the sheath thickness decreased while it increases by increasing extraction voltage, and it is negligible in the plasma region. 13 figs.

  10. Effects of inhomogeneity on the Shukla-Nambu-Salimullah and wake potentials in a streaming dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.U.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    Detailed properties of the electrostatic Shukla-Nambu-Salimullah and the dynamical oscillatory wake potentials in an inhomogeneous dusty magnetoplasma in the presence of ion streaming, as in a laboratory discharge plasma, have been examined analytically. The potentials become sensitive functions of the external static magnetic field, the scale-length of inhomogeneity, and the deviation from the linear ion streaming velocity. For a decreasing ion density gradient, there is a limit of existence of the static modified shielding potential. For a strongly inhomogeneous dusty plasma, the effective length of the oscillatory wake potential increases with increasing deviation of the ion streaming velocity (u i0y ), but it does not depend on the external magnetic field. (author)

  11. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Nazari-Golshan, A.; Nourazar, S. S.

    2013-01-01

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v 0 , and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously

  12. Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma

    Science.gov (United States)

    Feng, Yan; Goree, J.; Liu, Bin; Cohen, E. G. D.

    2011-10-01

    The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally but was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared to the predictions of several simulations.

  13. Response to "Comment on `Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma'" [Phys. Plasmas 24, 094701 (2017)

    Science.gov (United States)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2018-02-01

    On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.

  14. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  15. Plasma Physics Applied (New Book)

    Science.gov (United States)

    Grabbe, Crockett

    2007-03-01

    0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.

  16. Magnetic sheath effect on the gross and net erosion rates due to impurities

    Science.gov (United States)

    Mellet, N.; Pégourié, B.; Martin, C.; Gunn, J. P.; Bufferand, H.; Roubin, P.

    2016-02-01

    Simulations of impurity trajectories in deuterium plasmas in the vicinity of the surface are performed by taking into account the magnetic sheath in conditions relevant for ITER and WEST. We show that the magnetic sheath has a strong effect on the average impact angle of impurities in divertor conditions and that it can lead to an increase of ≈ 60% at the gross erosion maximum for neon (Ne+4) compared to the case when only the cyclotron motion is considered. The evaluation of the net erosion has been undertaken by retaining local redeposition of tungsten (W). We investigate how it is affected by the sheath magnetic potential profile. The largest effect is however observed when an energy distribution is considered. In this case the number of particles that manage to exit the sheath is larger as it is dominated by the more energetic particles. The comparison with other work is also discussed. The application to a scenario of the WEST project is finally performed, which exhibits a moderate, however non negligible, erosion of the plasma facing components.

  17. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  18. The Sheath-less Planar Langmuir Probe

    Science.gov (United States)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  19. Synthesis of sheath voltage drops in asymmetric radio-frequency discharges

    International Nuclear Information System (INIS)

    Yonemura, Shigeru; Nanbu, Kenichi; Iwata, Naoaki

    2004-01-01

    A sheath voltage drop in asymmetric discharges is one of the most important parameters of radio-frequency capacitively coupled plasmas because it determines the kinetic energy of the ions incident on the target or substrate. In this study, we developed a numerical simulation code to estimate the sheath voltage drops and, consequently, the self-bias voltage. We roughly approximated general asymmetric rf discharges to one-dimensional spherical ones. The results obtained by using our simulation code are consistent with measurements and Lieberman's theory

  20. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  1. Propagation of symmetric and anti-symmetric surface waves in aself-gravitating magnetized dusty plasma layer with generalized (r, q) distribution

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-05-01

    The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.

  2. The effect of an auxiliary discharge on anode sheath potentials in a transverse discharge

    International Nuclear Information System (INIS)

    Foster, J.E.; Gallimore, A.D.

    1997-01-01

    A novel scheme that employs the use of an auxiliary discharge has been shown to reduce markedly anode sheath potentials in a transverse discharge. An 8.8 A low-pressure argon discharge in the presence of a transverse magnetic field was used as the plasma source in this study. In such discharges, the transverse flux that is collected by the anode is severely limited due to marked reductions in the transverse diffusion coefficient. Findings of this study indicate that the local electron number density and the transverse flux increase when the auxiliary discharge is operated. Changes in these parameters are reflected in the measured anode sheath voltage. Anode sheath potentials, estimated by using Langmuir probes, were shown to be reduced by over 33% when the auxiliary discharge is operated. These reductions in anode sheath potentials translated into significant reductions in anode power flux as measured using water calorimeter techniques. The reductions in anode power flux also correlate well with changes in the electron transverse flux. Finally, techniques implementing these positive effects in real plasma accelerators are discussed. copyright 1997 American Institute of Physics

  3. Oscillating plasma bubbles. IV. Grids, geometry, and gradients

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Urrutia, J. M. [Urrutia Scientific, Van Nuys, California 91406 (United States)

    2012-08-15

    Plasma bubbles are created in an ambient plasma. The bubble is formed inside a cavity bounded by a negatively biased grid. Ions are injected through the grid and neutralized by electrons from either the background plasma or an internal electron emitter. The external electron supply is controlled by the grid bias relative to the external plasma potential. When the electron flux is restricted to the ion flux, the sheath of the bubble becomes unstable and causes the plasma potential to oscillate near the ion plasma frequency. The exact frequency depends on the net space charge density in the bubble sheath. The frequency increases with density and grid voltage, provided the grid forms a parallel equipotential surface. The present investigation shows that when the Debye length becomes smaller than the grid openings the electron flux cannot be controlled by the grid voltage. The frequency dependence on grid voltage and density is modified creating frequency and amplitude jumps. Low frequency sheath oscillations modulate the high frequency normal oscillations. Harmonics and subharmonics are excited by electrons in an ion-rich sheath. When the plasma parameters vary over the bubble surface, the sheath may oscillate at different frequencies. A cavity with two isolated grids has been used to investigate anisotropies of the energetic electron flux in a discharge plasma. The frequency dependence on grid voltage is entirely different when the grid controls the energetic electrons or the bulk electrons. These observations are important to several fields of basic plasma physics, such as sheaths, sheath instabilities, diagnostic probes, current, and space charge neutralization of ion beams.

  4. Electrostatic potentials and energy loss due to a projectile propagating through a non-Maxwellian dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2006-01-01

    The electrostatic potentials (Debye and wake) and energy loss due to a charged projectile propagating through an unmagnetized collisionless dusty plasma are derived employing kappa and generalized (r,q) velocity distributions for the dust acoustic wave. It is found that these quantities in general differ from their Maxwellian counterparts and are sensitive to the values of spectral index, κ in the case of kappa distribution and to r, q in the case of generalized (r,q) distribution. The amplitudes of these quantities are less for small values of the spectral index (κ, r=0, q) but approach the Maxwellian in the limit κ→∞ (for kappa distribution) and for r=0, q→∞ [for generalized (r,q) distribution]. For any nonzero value of r, the potential and the energy loss grow beyond the Maxwellian results. The effect of kappa and generalized (r,q) distributions on potential and energy loss is also studied numerically and the results are compared with those of the Maxwellian distribution

  5. Use of a hot sheath Tormac for advance fuels

    International Nuclear Information System (INIS)

    Levine, M.A.

    1977-01-01

    The use of hot electrons in a Tormac sheath is predicted to improve stability and increase ntau by an order of magnitude. An effective ntau for energy containment is derived and system parameters for several advance fuels are shown. In none of the advance fuels cases considered is a reactor with fields greater than 10 Wb or major plasma radius of more than 3 m required for ignition. Minimum systems have power output of under 100 MW thermal. System parameters for a hot sheath Tormac have a wide latitude. Sizes, magnetic fields, operating temperatures can be chosen to optimize engineering and economic considerations

  6. Transport of negative ions across a double sheath with a virtual cathode

    International Nuclear Information System (INIS)

    McAdams, R; King, D B; Surrey, E; Holmes, A J T

    2011-01-01

    A one-dimensional analytical model of the sheath in a negative ion source, such as those proposed for heating and diagnostic beams on present and future fusion devices, has been developed. The model, which is collisionless, describes the transport of surface produced negative ions from a cathode, across the sheath to a plasma containing electrons, positive ions and negative ions. It accounts for the situation where the emitted flux of negative ions is greater than the space charge limit, where the electric field at the cathode is negative, and a virtual cathode is formed. It is shown that, in the presence of a virtual cathode, there is a maximum current density of negative ions that can be transported across the sheath into the plasma. Furthermore, for high rates of surface production the virtual cathode persists regardless of the negative bias applied to the cathode, so that the current density transported across the sheath is limited. This is a significant observation and implies that present negative ion sources may not be exploiting all of the surface production available. The model is used to calculate the transported negative ion flux in a number of examples. The limitations of the model and proposed future work are also discussed.

  7. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  8. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  9. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water–Ice Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics and Materials Science, Caltech, Pasadena, CA 91125 (United States)

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μ m, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  10. Size selective dustiness and exposure; simulated workplace comparisons

    NARCIS (Netherlands)

    Brouwer, D.H.; Links, I.H.M.; Vreede, S.A.F. de; Christopher, Y.

    2006-01-01

    A simulated workplace study was conducted to investigate the relation between inhalation exposure and dustiness determined with a rotating drum dustiness tester. Three powders were used in the study, i.e. magnesium stearate, representing a very dusty powder, and aluminium oxide and calcium

  11. Dust Transport And Force Equilibria In Magnetized Dusty DC Discharges

    International Nuclear Information System (INIS)

    Land, Victor; Thomas, Edward Jr.; Williams, Jeremaiah

    2005-01-01

    We have performed experiments on magnetized dusty Argon DC discharges. Here we report on the characterization of the plasma- and the dustparameters and on the response of the dust particles and the plasma to a change in the magnetic configuration inside the discharge. Finally, we show a case in which the balance of forces acting on the dust particles differs from the classical balance (in which the electrostatic force balances the downward force of gravity). In this case the electrostatic force acts as a downward force on the dust particles. From observations we will argue that the ion drag force might be the force that balances this downward electrostatic force

  12. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument

    Czech Academy of Sciences Publication Activity Database

    Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, Ondřej; Watt, C. E. J.

    2016-01-01

    Roč. 121, č. 5 (2016), s. 4590-4606 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : EFW * EMFISIS * plasmaspheric hiss * sheath impedance * Van Allen Probes * whistler mode chorus Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022501/abstract

  13. Measurements of electric charge and screening length of microparticles in a plasma sheath

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ishihara, O.

    2009-01-01

    An experiment is described in which microparticles are levitated within a rf sheath above a conducting plate in argon plasma. The microparticles forming a two-dimensional crystal structure are considered to possess Debye screening Coulomb potential φ(r)=(Q/4πε 0 r)exp(-r/λ), where Q is the electric charge, r is distance, and λ is the screening length. When the crystal structure is slanted with an angle θ, a particle experiences a force Mg sin θ, where M is the mass of the particle and g is acceleration due to gravity, which must be equal to the Debye screened Coulomb force from other particles. By changing θ, relations for λ(Q) are measured. The screening length λ and Q are determined uniquely from the crossing points of several relations. The electric charge Q is also estimated from a floating potential measured with a probe. The measured λ is nearly equal to an ion Debye length.

  14. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  15. Potential coherent structures in nonuniform streaming dusty magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, Jovo [Inst. of Physics, Belgrade (Yugoslavia); Shukla, Padma Kant [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik IV, Bochum (Germany)

    2001-07-01

    In this paper we study linear and nonlinear behaviour of modified convective cells and vortices in nonuniform dusty magnetoplasmas with perpendicular and parallel to the magnetic field plasma flows, and in basically two different physical systems, with stationary (corresponding to the case of ShuklaVarma mode) and nonstationary (i.e. taking part in perturbations) dust particles. For the case of stationary dust, by choosing some specific profiles for the sheared plasma flow and the dust density, we analyze the eigenvalue equation in order to deduce the growth rate. A threshold is also obtained for the wavenumber separating spatially damped and convective modes (growing in space) due to its interaction with the sheared plasma flow. In the nonlinear regime, for both stationary and nonstationary dust particles, and in the presence of various plasma flows perpendicular and parallel to the magnetic field lines, a variety of possible nonlinear solutions, driven by the nonuniform shear flow and dust density is presented, i.e., single and double vortex chains accompanied with zonal flows, and tripolar and global vortices. (author)

  16. Correlating Structural Order with Structural Rearrangement in Dusty Plasma Liquids: Can Structural Rearrangement be Predicted by Static Structural Information?

    Science.gov (United States)

    Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin

    2012-11-01

    Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.

  17. Plasma crowbars in cylindrical flux compression experiments

    International Nuclear Information System (INIS)

    Suter, L.J.

    1979-01-01

    We have done a series of one- and two-dimensional calculations of hard-core Z-pinch flux compression experiments in order to study the effect of a plasma on these systems. These calculations show that including a plasma can reduce the amount of flux lost during the compression. Flux losses to the outer wall of such experiments can be greatly reduced by a plasma conducting sheath which forms along the wall. This conducting sheath consists of a cold, dense high β, unmagnetized plasma which has enough pressure to balance a large field gradient. Flux which is lost into the center conductor is not effectively stopped by this plasma sheath until late in the implosion, at which time a layer similar to the one formed at the outer wall is created. Two-dimensionl simulations show that flux losses due to arching along the sliding contact of the experiment can be effectively stopped by the formation of a plasma conducting sheath

  18. Coronal mass ejections and their sheath regions in interplanetary space

    Science.gov (United States)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  19. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua

    2017-11-01

    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  20. Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications

    Science.gov (United States)

    Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.

  1. Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons

    International Nuclear Information System (INIS)

    Emamuddin, M.; Yasmin, S.; Mamun, A. A.

    2013-01-01

    The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for q c (q>q c ) (where q c is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.

  2. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Science.gov (United States)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  3. Prediction of etching-shape anomaly due to distortion of ion sheath around a large-scale three-dimensional structure by means of on-wafer monitoring technique and computer simulation

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Ohtake, Hiroto; Araki, Ryosuke; Yanagisawa, Yuuki; Samukawa, Seiji; Iwasaki, Takuya; Ono, Kohei; Miwa, Kazuhiro

    2013-01-01

    A system for predicting distortion of a profile during plasma etching was developed. The system consists of a combination of measurement and simulation. An ‘on-wafer sheath-shape sensor’ for measuring the plasma-sheath parameters (sheath potential and thickness) on the stage of the plasma etcher was developed. The sensor has numerous small electrodes for measuring sheath potential and saturation ion-current density, from which sheath thickness can be calculated. The results of the measurement show reasonable dependence on source power, bias power and pressure. Based on self-consistent calculation of potential distribution and ion- and electron-density distributions, simulation of the sheath potential distribution around an arbitrary 3D structure and the trajectory of incident ions from the plasma to the structure was developed. To confirm the validity of the distortion prediction by comparing it with experimentally measured distortion, silicon trench etching under chlorine inductively coupled plasma (ICP) was performed using a sample with a vertical step. It was found that the etched trench was distorted when the distance from the step was several millimetres or less. The distortion angle was about 20° at maximum. Measurement was performed using the on-wafer sheath-shape sensor in the same plasma condition as the etching. The ion incident angle, calculated as a function of distance from the step, successfully reproduced the experimentally measured angle, indicating that the combination of measurement by the on-wafer sheath-shape sensor and simulation can predict distortion of an etched structure. This prediction system will be useful for designing devices with large-scale 3D structures (such as those in MEMS) and determining the optimum etching conditions to obtain the desired profiles. (paper)

  4. Plasma structures in front of a floated emissive electrode

    International Nuclear Information System (INIS)

    Ishiguro, S.; Sato, N.

    1993-01-01

    A particle simulation with plasma source is carried out on plasma structures generated by an electron emissive electrode floated in a collisionless plasma. When low-temperature, high-density thermal electrons are emitted, there appears a negative potential dip in front of the electrode, which is always accompanied by a low-frequency oscillation. On the other hand, three regimes of plasma structures appear for an electron beam injection. When a high-flux electron beam is injected, an electron sheath is generated in front of the electrode. The sheath reflects ions flowing to the electrode, providing an increase in the plasma density. When a low-flux electron beam is injected, no electron sheath is generated. When an intermediate-flux beam is injected, the electron sheath structure appears periodically in time. The lifetime of the sheath is proportional to the system length. These results of beam injection are almost consistent with those of a Q-machine experiment

  5. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  6. Experimental studies of coaxial plasma gun current

    International Nuclear Information System (INIS)

    Price, D.W.

    1988-01-01

    In this investigation of a coaxial plasma gun, plasma sheath currents and related behavior are examined. Plasma behavior in the gun affects gun characteristics. Plasma gun applications are determined by the plasma behavior. The AFWL PUFF capacitor bank (72 μF, 29 nH, 120 kV) drives the plasma gun using a deuterium fill gas. The gas breakdown site is isolated from the dielectric/vacuum interface in the AFWL system. Two gas values deliver gas in the system. The first delivers gas from the gun breech and the second optional valve delivers gas to the gun muzzle. Currents and voltages are measured by Rogowski coils, B probes and capacitive voltage probes. A O-D slug model is used to predict the current, inductance, gun voltage and plasma sheath velocity. The slug model assumes the sheath transits the gun with all mass in the sheath. In the snowplow mode, the plasma sheath is thin with a sharp current rise and drop. Our system operated in a transition mode between the snowplow and deflagration modes with early snowplow behavior and late deflagration behavior. Neutrons are produced in a plasma pinch at the gun muzzle, indicating snowplow behavior. The slug theory models overall gun behavior to experimental accuracy. Experimental results are compared to four theories for plasma sheath velocities: the Alfven collisionally limited model, the Rosenbluth model, the Fishbine saturated model and a single particle drift model. Experimental velocities vary from 10 5 to 10 6 m/s. Only the single particle drift and the slug model calculations are of the right magnitude (8 x 10 5 m/s). The Fishbine and the Rosenbluth models predict slower velocities (2 x 10 5 m/s). The Alfven model is not applicable to this system

  7. A gedankenexperiment for anomalous diffusion in a charge-fluctuating dusty plasma

    International Nuclear Information System (INIS)

    Kopp, Andreas; Shchekinov, Yuri A.

    2014-01-01

    possible prototype of anomalous diffusion. We discuss briefly possible implications to space and astrophysical dusty plasma. In particular, we show that in a plasma with polydisperse dust particles, a superposition of the three regimes of the anomalous diffusion can simultaneously come into play

  8. Debye shielding in a nonextensive plasma

    International Nuclear Information System (INIS)

    Ait Gougam, Leila; Tribeche, Mouloud

    2011-01-01

    The phenomenon of Debye Shielding is revisited within the theoretical framework of the Tsallis statistical mechanics. The plasma consists of nonextensive electrons and ions. Both the effective Debye length λ D q and the fall-off of the electrostatic potential Φ are considered and a parameter study conducted. Owing to electron nonextensivity, the critical Mach number derived from the modified Bohm sheath criterion may become less than unity allowing therefore ions with speed less than ion-acoustic speed to enter the sheath from the main body of the plasma. Considering the wide relevance of collective processes, our analysis may be viewed as a first step toward a more comprehensive Debye shielding and electrostatic plasma sheath in nonequilibrium plasmas.

  9. Effect of external magnetic field and variable dust electrical charge on the shape and propagation of solitons in the two nonthermal ions dusty plasma

    International Nuclear Information System (INIS)

    Ghalambor Dezfuly, S.; Dorranian, D.

    2012-01-01

    In this manuscript, the effect of dust electrical charge, nonthermal ions, and external magnetic field on the shape and propagation of solitons in dusty plasma with two nonthermal ions is studied theoretically. Using the reductive perturbation theory, the Zakharov-Kuznetsov equation for propagation of dust acoustic waves is extracted. Results show that external magnetic field does not affect the amplitude of solitary wave but width of solitons are effectively depend on the magnitude of external magnetic field. With increasing the charge of dust particles the amplitude of solution will increase while their width will decrease. Increasing the nonthermal ions lead to opposite effect.

  10. Studies on waves and instabilities in a plasma sheath formed on the outer surface of a space craft

    International Nuclear Information System (INIS)

    Aria, Anil K.; Malik, Hitendra K.

    2008-01-01

    Using the normal mode analysis, the number of possible modes is obtained in a magnetized inhomogeneous plasma sheath formed during the motion of a space craft which consists of negative ions (due to dust) along with the positive ions and the isothermal electrons. In addition to three propagating modes with phase velocities λ 1 , λ 2 , and λ 3 such that λ 1 2 3 , two types of instabilities with growth rates γ 1 and γ 2 also occur in such a plasma sheath. The growth rate γ 1 is increased with the negative to positive ion density ratio r 0 , ion temperature T, and obliqueness θ of the magnetic field B 0 . The growth rate γ 2 of the other instability gets lower with the density ratio r 0 but gets higher with the temperature T. The growth rate γ 2 is sensitive to the temperature T, whereas the growth rate γ 1 gets prominently changed with the density ratio r 0 . The increase in the growth rate γ 1 with the obliqueness θ is more pronounced under the effect of stronger magnetic field. On other hand, the phase velocity λ 1 shows weak dependence on r 0 and T (though it gets larger) but it gets significantly changed (increased) for the larger obliqueness θ. The phase velocity λ 2 gets larger with r 0 , B 0 , and θ and becomes lower for the higher temperature T. The phase velocity λ 3 is decreased for the higher values of r 0 and B 0 and is increased for the larger values of T and θ

  11. Dust acoustic solitary waves and double layers in a dusty plasma with two-temperature trapped ions

    International Nuclear Information System (INIS)

    El-Labany, S.K.; El-Taibany, W.F.; Mamun, A.A.; Moslem, Waleed M.

    2004-01-01

    The combined effects of trapped ion distribution, two-ion-temperature, dust charge fluctuation, and dust fluid temperature are incorporated in the study of nonlinear dust acoustic waves in an unmagnetized dusty plasma. It is found that, owing to the departure from the Boltzmann ion distribution to the trapped ion distribution, the dynamics of small but finite amplitude dust acoustic waves is governed by a modified Korteweg-de Vries equation. The latter admits a stationary dust acoustic solitary wave solution, which has stronger nonlinearity, smaller amplitude, wider width, and higher propagation velocity than that involving adiabatic ions. The effect of two-ion-temperature is found to provide the possibility for the coexistence of rarefactive and compressive dust acoustic solitary structures and double layers. Although the dust fluid temperature increases the amplitude of the small but finite amplitude solitary waves, the dust charge fluctuation does the opposite effect. The present investigation should help us to understand the salient features of the nonlinear dust acoustic waves that have been observed in a recent numerical simulation study

  12. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  13. Electron sheath collapse in an applied-B ion diode

    International Nuclear Information System (INIS)

    Grechikha, A.V.

    1996-01-01

    The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs

  14. Electron sheath collapse in an applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Grechikha, A V [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik

    1997-12-31

    The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs.

  15. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    Science.gov (United States)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  16. Ion clusters, REB, and current sheath characteristics in focused discharges

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.; DeChiara, P.; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Zeng, D.

    1990-01-01

    Small fluctuations in the current sheath characteristics (peak current density, FWHM of leading sheath, control parameters of sheath internal structure) are linked to wide fluctuations of ion and ion cluster emission from the pinch. Magnetic probe data are used for correlating variations of current sheath parameters with particle emission intensity, Z/M composition, particle energy spectrum. The emission of ion and ion clusters at 90 degrees from the axis of a plasma focus discharge is monitored simultaneously with the 0 degrees emission. The particle energy spectrum is analyzed with a Thomson (parabola) spectrometer (time resolution ∼ 1 nanosec). The cross-sectional structure of the REB at 180 degrees along the discharge axis is monitored via the deposition of collective-field accelerated ions on a target in the REB direction. Etched tracks of ion and ion clusters are in all cases recorded on CR-39 plates. Sharp peaks of the D + -ion spectrum at 90 degrees are found for E > 200 keV/unit charge in all focused discharges. These peaks are due to ion crossing of the azimuthal magnetic field of the pinch region, in a predominant ion cluster structure

  17. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    International Nuclear Information System (INIS)

    Piel, Alexander; Schmidt, Christian

    2015-01-01

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed

  18. Effects of Fast-Ion Injection on a Magnetized Sheath near a Floating Wall

    International Nuclear Information System (INIS)

    Li Jiajia; Hu Zhanghu; Song Yuanhong; Wang Younian

    2013-01-01

    A fully kinetic particle-in-cell/Monte Carlo model is employed to self-consistently study the effects of fast-ion injection on sheath potential and electric field profile in collisional magnetized plasma with a floating absorbing wall. The influences of the fast-ion injection velocity and density, the magnetic field and angle θ 0 formed by the magnetic field and the x-axis on the sheath potential and electric field are discussed in detail. Numerical results show that increasing fast-ion injection density or decreasing injection velocity can enhance the potential drop and electric field in the sheath. Also, increasing the magnetic field strength can weaken the loss of charged particles to the wall and thus decrease the potential and electric field in the sheath. The time evolution of ion flux and velocity distribution on the wall is found to be significantly affected by the magnetic field.

  19. Interaction of magnetized electrons with a boundary sheath: investigation of a specular reflection model

    Science.gov (United States)

    Krüger, Dennis; Brinkmann, Ralf Peter

    2017-11-01

    This publication reports analytical and numerical results concerning the interaction of gyrating electrons with a plasma boundary sheath, with focus on partially magnetized technological plasmas. It is assumed that the electron Debye length {λ }{{D}} is much smaller than the electron gyroradius {r}{{L}}, and {r}{{L}} in turn much smaller than the mean free path λ and the gradient length L of the fields. Focusing on the scale of the gyroradius, the sheath is assumed as infinitesimally thin ({λ }{{D}}\\to 0), collisions are neglected (λ \\to ∞ ), the magnetic field is taken as homogeneous, and electric fields (=potential gradients) in the bulk are neglected (L\\to ∞ ). The interaction of an electron with the electric field of the plasma boundary sheath is represented by a specular reflection {v}\\to {v}-2{v}\\cdot {{e}}z {{e}}z of the velocity {v} at the plane z = 0 of a naturally oriented Cartesian coordinate system (x,y,z). The electron trajectory is then given as sequences of helical sections, with the kinetic energy ɛ and the canonical momenta p x and p y conserved, but not the position of the axis (base point {{R}}0), the slope (pitch angle χ), and the phase (gyrophase φ). A ‘virtual interaction’ which directly maps the incoming electrons to the outgoing ones is introduced and studied in dependence of the angle γ between the field and the sheath normal {{e}}z. The corresponding scattering operator is constructed, mathematically characterized, and given as an infinite matrix. An equivalent boundary condition for a transformed kinetic model is derived.

  20. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  1. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  2. Multislit streak photography for plasma dynamics studies

    International Nuclear Information System (INIS)

    Tou, T.Y.; Lee, S.

    1988-01-01

    A microscope slide with several transparent slits installed in a streak camera is used to record time-resolved two-dimensional information when a curved luminous plasma sheath traverses these slits. Applying this method to the plasma focus experiment, the axial run-down trajectory and the shapes of the plasma sheath at various moments can be obtained from a single streak photograph

  3. Modeling plasma behavior in a plasma electrode Pockels cell

    International Nuclear Information System (INIS)

    Boley, C.D.; Rhodes, M.A.

    1999-01-01

    The authors present three interrelated models of plasma behavior in a plasma electrode Pockels cell (PEPC). In a PEPC, plasma discharges are formed on both sides of a thin, large-aperture electro-optic crystal (typically KDP). The plasmas act as optically transparent, highly conductive electrodes, allowing uniform application of a longitudinal field to induce birefringence in the crystal. First, they model the plasma in the thin direction, perpendicular to the crystal, via a one-dimensional fluid model. This yields the electron temperature and the density and velocity profiles in this direction as functions of the neutral pressure, the plasma channel width, and the discharge current density. Next, they model the temporal response of the crystal to the charging process, combining a circuit model with a model of the sheath which forms near the crystal boundary. This model gives the time-dependent voltage drop across the sheath as a function of electron density at the sheath entrance. Finally, they develop a two-dimensional MHD model of the planar plasma, in order to calculate the response of the plasma to magnetic fields. They show how the plasma uniformity is affected by the design of the current return, by the longitudinal field from the cathode magnetron, and by fields from other sources. This model also gives the plasma sensitivity to the boundary potential at which the top and bottom of the discharge are held. They validate these models by showing how they explain observations in three large Pockels cells built at Lawrence Livermore National Laboratory

  4. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  5. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Gougam, Leila Ait [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-03-15

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  6. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-01-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  7. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  8. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  9. “Orphan” γ-Ray Flares and Stationary Sheaths of Blazar Jets

    Science.gov (United States)

    MacDonald, Nicholas R.; Jorstad, Svetlana G.; Marscher, Alan P.

    2017-11-01

    Blazars exhibit flares across the entire electromagnetic spectrum. Many γ-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These “orphan” γ-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. MacDonald et al. have developed the Ring of Fire model to explain the origin of orphan γ-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan γ-ray flare. This model was successfully applied to modeling a prominent orphan γ-ray flare observed in the blazar PKS 1510-089. To further support the plausibility of this model, MacDonald et al. presented a stacked radio map of PKS 1510-089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71.01, 3C 279, 1055+018, CTA 102, and 3C 345, the majority of which have exhibited orphan γ-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.

  10. Effects of charge depletion in dusty plasmas

    International Nuclear Information System (INIS)

    Goertz, Imke; Greiner, Franko; Piel, Alexander

    2011-01-01

    The charge reduction effect is studied in dense dust clouds. The saturation currents of Langmuir probes are used to derive the density of ions and electrons, which are calibrated with the plasma oscillation method. The plasma potential inside the dust cloud is measured with an emissive probe, which also yields the floating potential in a heated nonemitting mode. The presence of the dust also affects the density and the plasma potential of the ambient plasma. The ion densities inside the dust cloud and in the ambient plasma are found equal, while the electron density is reduced inside the dust cloud. The measured potentials are compared with current models. Inclusion of the bi-Maxwellian distribution of the electrons leads to an improved description in the limit of low dust density. The strong increase of the floating and cloud potential for high dust density, predicted by the constant ion density model, is not confirmed.

  11. Mach cones in space and laboratory dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K

    2004-07-01

    We present a rigorous theoretical investigation on the possibility for the formation of Mach cones in both space and laboratory dusty magnetoplasmas. We find the parametric regimes for which different types of Mach cones, such as dust acoustic Mach cones, dust magneto-acoustic Mach cones, oscillonic Mach cones, etc. are formed in space and laboratory dusty magnetoplasmas. We also identify the basic features of such different classes of Mach cones (viz. dust- acoustic, dust magneto-acoustic, oscillonic Mach cones, etc.), and clearly explain how they are relevant to space and laboratory dusty manetoplasmas. (author)

  12. Dipolar and tripolar vortices in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, D. [Institute of Physics, Belgrade (Yugoslavia); International Centre for Theoretical Physics, Trieste (Italy); Shukla, P.K. [Bochum Univ. (Germany). Inst. fuer Theoretische Physik IV

    2001-07-01

    The nonlinear dynamics is studied of a plasma that consists of hot electrons, cold ions and macroscopic dust particles, in the characteristic frequency range below the ion cyclotron and magnetosonic frequencies. The plasma is immersed in a sheared magnetic field and there exists a sheared plasma flow, in the direction perpendicular to the background magnetic field. In the frequency range above the dust-acoustic and dust charging frequencies, regarding the dust grains as immobile and with constant charges, the plasma is described by the first two moments of the drift-kinetic equation, accounting for the contributions of the stress-tensor and finite mass to the electron dynamics. In the strongly nonlinear regime, the plasma dynamics is governed by the vector nonlinearities arising from the E x B convection and the magnetic field lines' bending. For a linear density profiles a coherent localized nonlinear solution is constructed in the form of a tripole, since stable simple monopolar vortices do not exist. Due to the presence of dust grains, the electron and ion diamagnetic currents do not cancel out, which limits the energy of these structures, provides their good spatial localization and increases the stability, compared to their ordinary-plasma counterparts. (orig.)

  13. PLASMA DEVICE

    Science.gov (United States)

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  14. Fusion oriented plasma research in Bangladesh: theoretical study on low-frequency dust modes and edge plasma control experiment in tandem mirror

    International Nuclear Information System (INIS)

    Khairul Islam, Md.; Salimullah, Mohammed; Yatsu, Kiyoshi; Nakashima, Yousuke; Ishimoto, Yuki

    2003-01-01

    A collaboration with a Japanese institute in the field of plasma-wall interaction and dusty plasma has been formed in order to understand the physical properties of edge plasma. Results of the theoretical study on dusty plasma and the experimental study on GAMMA10 plasma are presented in this paper. Part A deals with the results obtained from the theoretical investigation of the properties and excitation of low-frequency electrostatic dust modes, e.g. the dust-acoustic (DA) and dust-lower-hybrid (DLH) waves, using the fluid models. In this study, dust grain charge is considered as a dynamic variable in streaming magnetized dusty plasmas with a background of neutral atoms. Dust charge fluctuation, collisional and streaming effects on DA and DLH modes are discussed. Part B deals with the results of the plasma control experiment in a non-axisymmetric magnetic field region of the anchor cell of GAMMA10. The observations, which indicate the comparatively low-temperature plasma formation in the anchor cell, are explained from the viewpoint of enhanced outgassing from the wall due to the interaction of the drifted-out ions. The drifting of ions is thought to be due to the effect of a local non-axisymmetric magnetic field. Experimental results on the control of the wall-plasma interaction by covering the flux tube of a non-axisymmetric magnetic field region by conducting plates are given. Possible influences of the asymmetric magnetic field and conducting plates on the GAMMA10 plasma parameters are discussed. (author)

  15. Modelling of plasma-antenna coupling and non-linear radio frequency wave-plasma-wall interactions in the magnetized plasma device under ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lu, LingFeng

    2016-01-01

    Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr

  16. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  17. Stability and special solutions to the conducting dusty gas model

    International Nuclear Information System (INIS)

    Calmelet, C.J.

    1987-01-01

    Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed

  18. Study of 750 J plasma coaxial accelerator

    International Nuclear Information System (INIS)

    Mehanna, E.A.; Hassouba, M.A; Abd al-halim, M.A.

    2009-01-01

    A 750 J plasma coaxial accelerator is used to produce plasma using air at 0.2 torr pressure and 8 kv charging voltage. The discharge current and voltage traces showed that the total circuit inductance was about 1750 μH. The experimental results showed that the plasma sheath reached the muzzle after 6 μs with velocity equal to 4 cm/μs, after then it decreased, while the simulation model showed that the plasma sheath reaches the muzzle with velocity of 3 cm/μs and after one microsecond it increases to reach about 4 cm/μs after 12 μs then it decreased. The plasma temperature measurements showed that the plasma sheath reached the muzzle with temperature of about 9 eV and increase to reach about 12 eV after 8.5 μs then after it decrease. The simulation model showed that the plasma temperature at the muzzle is about 10.5 eV and continue to increase to reach 17.5 eV after 12 μs then it decrease

  19. Annihilation model of the Tormac sheath

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1979-02-01

    A one-dimensional, steady state fluid model is developed to describe the boundary layer between plasma and magnetic field that occurs in the Tormac sheath. Similar systems which may be treatable by the same model are tokamaks with divertors and reversed field mirrors. The model includes transport across the magnetic field as well as mirror losses along the field, the latter being represented as annihilation terms in the one-dimensional equations. The model equations are derived from the two-dimensional, time dependent hierarchy of equations generated by taking velocity moments of the kinetic equation including collisions

  20. Investigation of plasma dynamics and x-ray emission in'ATON'plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1995-01-01

    The experimental studies on 20 kJ 'Aton' plasma focus device are presented in this paper. The plasma sheath structure has been investigated by means of the measurements of the axial and azimuthal magnetic fields along the coaxial electrodes. The operating gas was hydrogen with pressures in the range of 0.62 torr to 6 torr. The intensity of visible radiation emitted by the plasma sheath was measured as a function of axial distances along the coaxial electrodes. The results showed that the visible radiation intensity is increased with axial distances until a position near the muzzle, then it decreased and has a minimum value at the coaxial electrode muzzle. The main parameters contributing to the behavior of the distribution are the plasma sheath density and the impurities from the eroded materials of the discharge electrodes. An x-ray pulse has been detected along the coaxial electrodes and extended up to the expansion chamber. At a distance near the muzzle two x-ray pulses have been detected, the second one has intensity relative to the first one with time lag of 11μs. 8 fig

  1. 2D potential structures induced by RF sheaths coupled with transverse currents in front of ICRH antenna

    International Nuclear Information System (INIS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2004-01-01

    Sheaths are space charge regions at the plasma-wall. They are induced by the differential inertia between ions and electrons, and without external perturbation, they create a floating potential between the neutral plasma and the walls. In Tokamaks, these sheaths are locally enhanced by the RF (radiofrequency) electric field generated by the ICRF (ion cyclotron resonance frequency) antennas used to heat magnetic fusion plasmas at very high temperature. RF sheaths are located at the connection points of magnetic field lines to the wall, or to the bumpers which protect the antenna or to any part of the antenna structure. The asymmetric behaviour of these oscillating sheaths rectifies RF potentials in the plasma in front of antenna, to finally create nonlinearly a DC potential which can be much higher than the floating potential. We study specifically how the space-time distribution of these RF and DC rectified potentials is modified when nearby flux tubes are allowed to exchange perpendicular polarization current. To simulate that, a 2-dimensional (2D) fluid code has been implemented to compute the 2D RF potential map in a plane perpendicular to magnetic lines, and within the flute approximation the whole 3-dimensional potential map is deduced. In simulation, we consider a homogeneous transverse conductivity and use a 'test' potential map having, in absence of transverse currents, a Gaussian shape characterized by its width r 0 and its amplitude φ 0 . As a function of these 2 parameters (normalized respectively to a characteristic length for transverse transport and to the local temperature), we can estimate the peaking and the smoothing of the potential structure in the presence of polarization current. So, we are able to determine, for typical plasmas, the amplitude of DC potential peaks, particularly on antenna's corners, where hot spots appear during a shot. In Tore-supra conditions near antenna corners, potential structures that are shorter than 1 centimeter are

  2. 2D potential structures induced by RF sheaths coupled with transverse currents in front of ICRH antenna

    International Nuclear Information System (INIS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2004-01-01

    Sheaths are space charge regions at the plasma-wall. They are induced by the differential inertia between ions and electrons, and without external perturbation, they create a floating potential between the neutral plasma and the walls. In tokamaks, these sheaths are locally enhanced by the RF (radiofrequency) electric field generated by the ICRF (ion cyclotron resonance frequency) antennas used to heat magnetic fusion plasmas at very high temperature. RF sheaths are located at the connection points of magnetic field lines to the wall, or to the bumpers which protect the antenna or to any part of the antenna structure. The asymmetric behaviour of these oscillating sheaths rectifies RF potentials in the plasma in front of antenna, to finally create nonlinearly a DC potential which can be much higher than the floating potential. We study specifically how the space-time distribution of these RF and DC rectified potentials is modified when nearby flux tubes are allowed to exchange perpendicular polarization current. To simulate that, a 2D (2-dimensional) fluid code has been implemented to compute the 2D RF potential map in a plane perpendicular to magnetic lines, and within the flute approximation the whole 3-dimensional potential map is deduced. In simulation, we consider a homogeneous transverse conductivity and use a 'test' potential map having, in absence of transverse currents, a Gaussian shape characterized by its width r0 and its amplitude φ 0 . As a function of these 2 parameters (normalized respectively to a characteristic length for transverse transport and to the local temperature), we can estimate the peaking and the smoothing of the potential structure in the presence of polarization current. So, we are able to determine, for typical plasmas, the amplitude of DC potential peaks, particularly on antenna's corners, where hot spots appear during a shot. In typical Tore Supra conditions near antenna corners potential structures less than centimetric are

  3. Tendon sheath fibroma in the thigh.

    Science.gov (United States)

    Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D

    2012-04-01

    Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men. Copyright 2012, SLACK Incorporated.

  4. Modeling of Plasma-Induced Ignition and Combustion

    National Research Council Canada - National Science Library

    Boyd, Iain D; Keidar, Michael

    2008-01-01

    .... Phenomena that must be considered in an electrothermal chemical gun model include the initial capillary plasma properties, the plasma-air interaction, plasma sheath effects, and the plasma-propellant interaction itself...

  5. Effect of the raw materials processing on their dustiness

    International Nuclear Information System (INIS)

    López Lilaoa, A.; Juárezb, M.; Sanfelix Fornera, V.; Mallol Gascha, G.; Monfort Gimeno, E.

    2017-01-01

    During the handling and/or processing of powdered materials in the CERAMICS INDUSTRY, one of the most important risks regarding the environmental and occupational health is the potential generation of dust. In this regard, a parameter of great interest is the dustiness of the processed materials; this parameter quantifies the tendency of the powdered materials to generate dust when handled. In this study, to determine the dustiness of a ceramic raw material composition (mixture of the body raw materials), the continuous drop method has been used. This test apparatus was selected because it is considered to better simulate how ceramic materials are handled in the CERAMICS INDUSTRY. The obtained results show that the dustiness of the same ceramic composition exhibits significant changes during the manufacturing process, depending on the presentation form. In this regard, the dry milling sample presents the highest dustiness, which can be significantly reduced (>75%) applying the the moisturization and agglomeration. The obtained results also shown that the best presentation form, regarding the minimization of the dust generation, is achieved in the spray-drying process, where the dustiness is reduced by 95%. [es

  6. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  7. Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Stenflo, L.

    2002-01-01

    The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed

  8. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  9. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  10. Power Transfer to plasma Coxial accelerator

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; Soliman, H.M.; Masoud, M.M.

    2000-01-01

    The total power transfer from the condenser bank, to plasma coaxial accelerator device is theoretically studied by using the voltage equation of the entire circuit and applying impulse - linear momentum theorem. This total power represents a combination of (a) the power flowing to the external inductance, (b) the power flowing to the inductance of that part of electrode system between the breech and the momentary position of the plasma current sheath, (c) the power flowing in the annular space between the two coaxial electrodes, to form the magnetic field induction, (d) the power flowing to accelerate the initial mass, (e) the power flowing to accelerate the mass, which has been swept up into the plasma current sheath, (f) the power, which produces directed kinetic energy for the plasma current sheath, (g) the power, which produces internal energy in the plasma sheath, (h) the joule heating. The peak value of the total power = 6x10 8 watt at t=4 MUs, for maximum calculated discharge current = 110KA with a with a period of 34 us. Experimentally its equal to 3.5x10 8 watt at 7MUs and I 0 = 85KA. The energy flow to the coaxial discharge system has been evaluated theoretically and experimentally, E-MAX (CALCULATED)=5.92X10 2 J AT T = 5.5 MUs and E m ax (measured) = 3.54x10 2 joule at 7.5 MUs

  11. Gap formation processes in a high-density plasma opening switch

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Swanekamp, S.B.; Ottinger, P.F.; Commisso, R.J.; Hinshelwood, D.D.; Weber, B.V.

    1995-01-01

    A gap opening process in plasma opening switches (POS) is examined with the aid of numerical simulations. In these simulations, a high density (n e =10 14 --5x10 15 cm -3 ) uniform plasma initially bridges a small section of the coaxial transmission line of an inductive energy storage generator. A short section of vacuum transmission line connects the POS to a short circuit load. The results presented here extend previous simulations in the n e =10 12 --10 13 cm -3 density regime. The simulations show that a two-dimensional (2-D) sheath forms in the plasma near a cathode. This sheath is positively charged, and electrostatic sheath potentials that are large compared to the anode--cathode voltage develop. Initially, the 2-D sheath is located at the generator edge of the plasma. As ions are accelerated out of the sheath, it retains its original 2-D structure, but migrates axially toward the load creating a magnetically insulated gap in its wake. When the sheath reaches the load edge of the POS, the POS stops conducting current and the load current increases rapidly. At the end of the conduction phase a gap exists in the POS whose size is determined by the radial dimensions of the 2-D sheath. Simulations at various plasma densities and current levels show that the radial size of the gap scales roughly as B/n e , where B is the magnetic field. The results of this work are discussed in the context of long-conduction-time POS physics, but exhibit the same physical gap formation mechanisms as earlier lower density simulations more relevant to short-conduction-time POS. copyright 1995 American Institute of Physics

  12. Characterizing dusty argon-acetylene plasmas as a first step to understand dusty EUV environments

    NARCIS (Netherlands)

    Wetering, van de F.M.J.H.; Nijdam, S.; Kroesen, G.M.W.

    2012-01-01

    In extreme ultraviolet (EUV) lithography, ionic and particulate debris coming from the plasma source plays an important role. We started up a project looking at the principles of particle formation in plasmas and the interaction with EUV radiation. To this end, we study a low-pressure (10 Pa)

  13. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    Science.gov (United States)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  14. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  15. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  16. Note: Additionally refined new possibilities of plasma probe diagnostics

    Science.gov (United States)

    Riaby, V. A.; Savinov, V. P.; Masherov, P. E.; Yakunin, V. G.

    2018-03-01

    In two previous Notes published in this journal, a method of measuring probe sheath thickness and ion mass was described using Langmuir probe diagnostics in low pressure xenon plasma close to Maxwellian substance. According to the first Note, this method includes two stages: (i) in a special experiment with known ion mass, the Bohm and Child-Langmuir-Boguslavsky (CLB) equations for cylindrical Langmuir probes used in this xenon plasma were solved jointly to determine the probe sheath thicknesses and Bohm coefficient CBCyl ≈ 1.13; and (ii) in a general experiment, with known CBCyl, the same equations could be solved to obtain the probe sheath thicknesses and the mean ion mass. In the second Note, the (i) stage of this method was refined: the results of the CLB probe sheath model application, which were termed "evaluations," were corrected using the step-front probe sheath model, which was closer to reality in the special experiment with the xenon plasma. This process resulted in a Bohm coefficient of CBCyl ≈ 1.23 for the cylindrical probe. In the present Note, corrected xenon plasma parameters without the influence of the bare probe protective shield were used for the (i) stage of this diagnostic method. This action also refined the Bohm coefficient, lowering it to CBCyl ≈ 0.745 for cylindrical probes. This advance makes the new diagnostics method more objective and reliable.

  17. International Conference on Plasma Diagnostics. Slides, papers and posters of Plasma Diagnostics 2010

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Bonhomme, G.; Grisolia, C.; Hirsch, M.; Klos, Z.; Mazouffre, S.; Musielok, J.; Ratynskaya, S.; Sadowski, M.; Van de Sanden, R.; Sentis, M.; Stroth, U.; Tereshin, V.; Tichy, M.; Unterberg, B.; Weisen, H.; Zoletnik, S.

    2011-01-01

    Plasma diagnostics 2010 is an International Conference on Diagnostic Methods involved in Research and Applications of Plasmas, originating on combining the 5. German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 7. French-Polish Seminar on Thermal Plasma in Space and Laboratory. The Scientific Committee of 'Plasma 2007' decided to concentrate the attention of future conferences more on the diagnostic development and diagnostic interpretation in the fields of high and low temperature plasmas and plasma applications. It is aimed at involving all European activities in the fields. The Scientific Program will cover the fields from low temperature laboratory to fusion plasmas of various configurations as well as dusty and astrophysical plasmas and industrial plasma applications

  18. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  19. Laboratory Studies on the Charging of Dust Grains in a Plasma

    Science.gov (United States)

    Xu, Wenjun

    1993-01-01

    The charging of dust grains by the surrounding plasma is studied in a dusty plasma device (DPD) (Xu, W., B. Song, R. L. Merlino, and N. D'Angelo, Rev. Sci. Instrum., 63, 5266, 1992). The dusty plasma device consists of a rotating-drum dust dispersal device used in conjunction with an existing Q-machine, to produce extended, steady state, magnetized plasma columns. The dust density in the dust chamber is controlled by the drum rotation speed. The device is capable of generating a dusty plasma in which as much as about 90% of the negative charge is attached to the dust grains of 1-10mu m size. Measurements of the dust parameter eta, the percentage of negative charge on free electrons in the dusty plasma, are presented. The dust parameter eta is found to depend on the rotational speed of the dust chamber, plasma density and the type and size of different dust. The dust parameter eta is calculated from a pair of Langmuir curves taken with and without dust under the same conditions. The operation of the dust chamber as described above has been confirmed by the agreement between the measurements of eta and the direct mechanical measurements consisting of weighing dust samples collected within the rotation dust chamber, at different rotation rates. By varying the ratio d/lambda_ {rm D} between the intergrain distance and the plasma Debye length, the effects predicted by Goertz and Ip (Goertz, C. K., and W-H. Ip, Geophys. Res. Lett., 11, 349, 1984), and subsequently reanalyzed in a more general fashion by Whipple et al. (Whipple, E. C., T. G. Northrop, and D. A. Mendis, J. Geophys. Rev., 90, 7405, 1985), as "isolated" dust grains become "closely packed" grains, have been demonstrated experimentally (Xu, W., N. D'Angelo, and R. L. Merlino, J. Geophys. Rev., 98, 7843, 1993). Similar results are presented and compared for two types of dust, kaolin and Al_2O _3, which have been studied in the experiment.

  20. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  1. Surface roughness effects on plasma near a divertor plate and local impact angle

    Directory of Open Access Journals (Sweden)

    Wanpeng Hu

    2017-08-01

    Full Text Available The impact of rough surface topography on the electric potential and electric field is generally neglected due to the small scale of surface roughness compared to the width of the plasma sheath. However, the distributions of the electric potential and field on rough surfaces are expected to influence the characteristics of edge plasma and the local impact angle. The distributions of plasma sheath and local impact angle on rough surfaces are investigated by a two dimension-in-space and three dimension-in-velocity (2d3v Particle-In-Cell (PIC code. The influences of the plasma temperature andsurface morphology on the plasma sheath, local impact angle and resulting physical sputtering yield on rough surfaces are investigated.

  2. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness

    International Nuclear Information System (INIS)

    Cao, Houbao; Du, Pingfan; Song, Lixin; Xiong, Jie; Yang, Junjie; Xing, Tonghai; Liu, Xin; Wu, Rongrong; Wang, Minchao; Shao, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • The core–sheath TiO 2 /SiO 2 nanofibers were fabricated by co-electrospinning technique. • The catalytic property of nanofibers with different sheath thickness was studied. • The potential methods of improving catalytic efficiency are suggested. - Abstract: In this paper, core/sheath TiO 2 /SiO 2 nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO 2 /SiO 2 nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO 2 core and amorphous SiO 2 sheath. The influences of SiO 2 sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO 2 nanofibers, the core/sheath TiO 2 /SiO 2 nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO 2 /SiO 2 nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance

  3. Modelling of DC electric fields induced by RF sheath in front of ICRF antenna

    International Nuclear Information System (INIS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2003-01-01

    Reducing the ICRF (ion cyclotron range frequency) antenna-plasma interaction is one of the key points for reaching very long tokamak discharges. One problem which limits such discharges, is the appearance of hot spots on the surface of the antenna: Radio Frequency (RF) sheaths modify the properties of the edge plasma by rectifying the RF potential along open magnetic field lines and can induce hot spots. This paper investigates the corrections to sheath potentials introduced by the interactions between adjacent flux tubes. Our theoretical study started from an oscillating double Langmuir probe model, in which a transverse influx of current was included. This model was confronted with 1D PIC simulations along a magnetic field line, and demonstrated that current exchanges can decrease mean potentials. A 2D electrostatic fluid code was then developed, which couples adjacent flux tubes in a poloidal cross section with collisional conductivity or polarization currents. It showed that transverse currents are able to smooth structures smaller than a characteristic size in the sheath potential maps (results for Tore Supra). These computed rectified potentials can be used to obtain the DC electric fields in front of the antenna. And then, it gives an estimate of the particle drift and the energy flux on the antenna structure, which can explain hot spots. (author)

  4. Parallel Transport with Sheath and Collisional Effects in Global Electrostatic Turbulent Transport in FRCs

    Science.gov (United States)

    Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team

    2017-10-01

    Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.

  5. Three Millennia of Southwestern North American Dustiness and Future Implications.

    Directory of Open Access Journals (Sweden)

    Cody C Routson

    Full Text Available Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health.

  6. Load Designs For MJ Dense Plasma Foci

    Science.gov (United States)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  7. Scattering of magnetized electrons at the boundary of low temperature plasmas

    Science.gov (United States)

    Krüger, Dennis; Trieschmann, Jan; Brinkmann, Ralf Peter

    2018-02-01

    Magnetized technological plasmas with magnetic fields of 10-200 mT, plasma densities of 1017-1019 m-3, gas pressures of less than 1 Pa, and electron energies from a few to (at most) a few hundred electron volts are characterized by electron Larmor radii r L, that are small compared to all other length scales of the system, including the spatial scale L of the magnetic field and the collisional mean free path λ. In this regime, the classical drift approximation applies. In the boundary sheath of these discharges, however, that approximation breaks down: The sheath penetration depth of electrons (a few to some ten Debye length λ D; depending on the kinetic energy; typically much smaller than the sheath thickness of tens/hundreds of λ D) is even smaller than r L. For a model description of the electron dynamics, an appropriate boundary condition for the plasma/sheath interface is required. To develop such, the interaction of magnetized electrons with the boundary sheath is investigated using a 3D kinetic single electron model that sets the larger scales L and λ to infinity, i.e. neglects magnetic field gradients, the electric field in the bulk, and collisions. A detailed comparison of the interaction for a Bohm sheath (which assumes a finite Debye length) and a hard wall model (representing the limit {λ }{{D}}\\to 0; also called the specular reflection model) is conducted. Both models are found to be in remarkable agreement with respect to the sheath-induced drift. It is concluded that the assumption of specular reflection can be used as a valid boundary condition for more realistic kinetic models of magnetized technological plasmas.

  8. Ultrasound diagnosis of rectus sheath hematoma

    International Nuclear Information System (INIS)

    Hwang, M. S.; Chang, J. C.; Rhee, C. B.

    1984-01-01

    6 cases of rectus sheath hematoma were correctly diagnosed by ultrasound. 2 cases had bilateral rectus sheath hematoma and 4 cases were unilateral. On ultrasound finding, relatively well defined oval or spindle like cystic mass situated in the area of rectus muscle on all cases. Ultrasound examination may give more definite diagnosis and extension rectus sheath hematoma and also helpful to follow up study of hematoma

  9. Soliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Hui-Ling; Tian, Bo, E-mail: tian-bupt@163.com; Wang, Yu-Feng; Sun, Wen-Rong; Liu, Li-Cai [State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-07-15

    The extended Zakharov-Kuznetsov (eZK) equation for the magnetized two-ion-temperature dusty plasma is studied in this paper. With the help of Hirota method, bilinear forms and N-soliton solutions are given, and soliton propagation is graphically analyzed. We find that the soliton amplitude is positively related to the nonlinear coefficient A, while inversely related to the dispersion coefficients B and C. We obtain that the soliton amplitude will increase with the mass of the jth dust grain and the average charge number residing on the dust grain decreased, but the soliton amplitude will increase with the equilibrium number density of the jth dust grain increased. Upon the introduction of the periodic external forcing term, both the weak and developed chaotic motions can occur. Difference between the two chaotic motions roots in the inequality between the nonlinear coefficient l{sub 2} and perturbed term h{sub 1}. The developed chaos can be weakened with B or C decreased and A increased. Periodic motion of the perturbed eZK equation can be observed when there is a balance between l{sub 2} and h{sub 1}.

  10. Chaos in a complex plasma

    International Nuclear Information System (INIS)

    Sheridan, T.E.

    2005-01-01

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48±0.05 is observed. The largest Lyapunov exponent is positive

  11. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  12. Dusty plasmas in application to astrophysics

    International Nuclear Information System (INIS)

    Verheest, F.

    1999-01-01

    Highly charged and massive dust grains have much smaller characteristic frequencies than electrons and ions and lead to interesting modifications of existing modes and to exciting new possibilities for modes and instabilities at the lower frequency end of the spectrum. Space observations of planets and comets have shown wave-like behaviour which can only be explained by the presence of charged dust grains. Two typical solar system applications are spokes and braids in the rings of Saturn and the influence of charged dust on the pickup process of ions of cometary origin by the solar wind. As dust is ubiquitous in the universe, the Jeans instability in astrophysics is modified by incorporating plasma and charged dust and treating electromagnetic and self-gravitational aspects together. Besides the usual mechanism based upon thermal agitation, other ways of countering gravitational contraction are via excitation of electrostatic dust-acoustic modes or via Alfven-Jeans instabilities for perpendicular magnetosonic waves. The unstable wavelengths tend to be much larger, due to the dominance of plasma and magnetic pressures in inhibiting gravitational collapse. (author)

  13. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  14. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  15. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  16. Dusty WDs in the WISE all sky survey ∩ SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: barber@nhn.ou.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  17. Ion-assisted functional monolayer coating of nanorod arrays in hydrogen plasmas

    International Nuclear Information System (INIS)

    Tam, E.; Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S.

    2007-01-01

    Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications

  18. Experimental study of the interaction between RF antennas and the edge plasma of a tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin

    2013-01-01

    Antennas operating in the ion cyclotron range of frequency (ICRF) provide a useful tool for plasma heating in many tokamaks and are foreseen to play an important role in ITER. However, in addition to the desired heating in the core plasma, spurious interactions with the plasma edge and material boundary are known to occur. Many of these deleterious effects are caused by the formation of radio-frequency (RF) sheaths. The aim of this thesis is to study, mainly experimentally, scrape-off layer (SOL) modifications caused by RF sheaths effects by means of Langmuir probes that are magnetically connected to a powered ICRH antenna. Effects of the two types of Faraday screens' operation on RF-induced SOL modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, injected power and SOL density. In addition to experimental work, the influence of RF sheaths on retarding field analyzer (RFA) measurements of sheath potential is investigated with one-dimensional particle-in-cell code. One-dimensional particle-in-cell simulations show that the RFA is able to measure reliably the sheath potential only for ion plasma frequencies ω π similar to RF cyclotron frequency ω rf , while for the real SOL conditions (ω π ≥ ω rf ), when the RFA is magnetically connected to RF region, it is strongly underestimated. An alternative method to investigate RF sheaths effects is proposed by using broadening of the ion distribution function as an evidence of the RF electric fields in the sheath. RFA measurements in Tore Supra indicate that RF potentials do indeed propagate from the antenna 12 m along magnetic field lines. (author) [fr

  19. Predictable topography simulation of SiO2 etching by C5F8 gas combined with a plasma simulation, sheath model and chemical reaction model

    International Nuclear Information System (INIS)

    Takagi, S; Onoue, S; Iyanagi, K; Nishitani, K; Shinmura, T; Kanoh, M; Itoh, H; Shioyama, Y; Akiyama, T; Kishigami, D

    2003-01-01

    We have developed a simulation for predicting reactive ion etching (RIE) topography, which is a combination of plasma simulation, the gas reaction model, the sheath model and the surface reaction model. The simulation is applied to the SiO 2 etching process of a high-aspect-ratio contact hole using C 5 F 8 gas. A capacitively coupled plasma (CCP) reactor of an 8-in. wafer was used in the etching experiments. The baseline conditions are RF power of 1500 W and gas pressure of 4.0 Pa in a gas mixture of Ar, O 2 and C 5 F 8 . The plasma simulation reproduces the tendency that CF 2 radical density increases rapidly and the electron density decreases gradually with increasing gas flow rate of C 5 F 8 . In the RIE topography simulation, the etching profiles such as bowing and taper shape at the bottom are reproduced in deep holes with aspect ratios greater than 19. Moreover, the etching profile, the dependence of the etch depth on the etching time, and the bottom diameter can be predicted by this simulation

  20. Fundamental studies of fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1998-01-01

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report

  1. Numerical study of plasma-wall transition in an oblique magnetic field

    International Nuclear Information System (INIS)

    Valsaque, Fabrice; Manfredi, Giovanni

    2001-01-01

    The interaction of a plasma with a fixed wall is investigated numerically. The ions are described by a kinetic model, while the electrons are assumed to be at thermal equilibrium. Finite Debye length effects are taken into account. An Eulerian code is used for the ion dynamics, which enables us to obtain a fine resolution of both position and velocity space. First, we analyse the effect of ionization and collisions, which bring the ion flow to supersonic velocity at the entrance of the Debye sheath (Bohm's criterion). Second, we consider a collisionless sheath with an oblique magnetic field. A magnetic presheath, which has a width of several ion gyroradii, is located between the Debye sheath and the bulk plasma. We perform a systematic numerical study of these sheaths for different incidences of the magnetic field

  2. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  3. Rectus sheath abscess after laparoscopic appendicectomy

    Directory of Open Access Journals (Sweden)

    Golash Vishwanath

    2007-01-01

    Full Text Available Port site wound infection, abdominal wall hematoma and intraabdominal abscess formation has been reported after laparoscopic appendicectomy. We describe here a rectus sheath abscess which occurred three weeks after the laparoscopic appendicectomy. It was most likely the result of secondary infection of the rectus sheath hematoma due to bleeding into the rectus sheath from damage to the inferior epigastric arteries or a direct tear of the rectus muscle. As far as we are aware this complication has not been reported after laparoscopic appendicectomy.

  4. Wake potential in a nonuniform self-gravitating dusty magnetoplasma in the presence of ion streaming

    International Nuclear Information System (INIS)

    Salimullah, M.; Ehsan, Z.; Zubia, K.; Shah, H. A.; Murtaza, G.

    2007-01-01

    A detailed investigation of the electrostatic asymmetric shielding potential and consequent generation of the dynamical oscillatory wake potential has been examined analytically in an inhomogeneous self-gravitating dusty magnetoplasma in the presence of uniform ion streaming. It is found that the wake potential depends significantly on the test particle speed, ambient magnetic field, ion streaming velocity, and the plasma inhomogeneity. The periodic oscillatory potential might lead to an alternative approach to the Jeans instability for the formation of dust agglomeration leading to gravitational collapse of the self-gravitating systems

  5. Electromagnetic dust-lower-hybrid and dust-magnetosonic waves and their instabilities in a dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.

    2006-01-01

    The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons

  6. Plasma deposition by discharge in powder

    International Nuclear Information System (INIS)

    El-Gamal, H.A.; El-Tayeb, H.A.; Abd El-Moniem, M.; Masoud, M.M.

    2000-01-01

    Different types of material powders have been fed to the breach of a coaxial discharge. The coaxial discharge is powered from a 46.26 mu F, 24 KV capacitor bank. When the discharge takes place at the breach, the powder is heated and ionized to form a sheath of its material. The plasma sheath is ejected from the discharge zone with high velocity. The plasma sheath material is deposited on a glass substrate. It has been found from scanning electron microscope (SEM) analysis that the deposited material is almost homogenous for ceramic and graphite powders. The grain size is estimated to be the order of few microns. To measure the deposited material thickness the microdensitometer and a suitable arrangement of a laser interferometer and an optical microscope are used. It has also been found that deposited material thickness depends on the discharge number of shots and the capacitor bank energy

  7. Plasma sheath dynamics in pinch discharge

    International Nuclear Information System (INIS)

    Mansour, A.A.Abd-Fattah

    1995-01-01

    The main interest of the study was to understand the dynamic and to determine the plasma parameters in the 3.5 meter θ-pinch discharge. The 3.5 meter thetatron plasma device has been reconstructed and developed which consist of four capacitor banks: a) Main pinch capacitor bank, (θ-pinch bank) consists of 40 capacitors connected in parallel each of 1.5 μ F., with maximum energy equal to 48 k Joule. b) Preionization capacitor bank (z-pinch) consists of capacitors connected in series each of 1.5μ F., with maximum energy to 0.94 k Joule. c) Bias field bank consists of 4 capacitors connected in parallel each of 38μ F., with maximum energy equal to 4.46 k Joule. d) Screw pinch capacitor bank consists of 5 capacitors connected in parallel each of 1.5μ F., with maximum energy equal to 6 k Joule

  8. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  9. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  10. “Virtual IED sensor” at an rf-biased electrode in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, M. A.; Zyryanov, S. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation); Faculty of Physics, Moscow State University, MSU, Moscow (Russian Federation); Lopaev, D. V.; Rakhimov, A. T. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation)

    2016-07-15

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low

  11. Rectus sheath hematoma: three case reports

    Directory of Open Access Journals (Sweden)

    Kapan Selin

    2008-01-01

    Full Text Available Abstract Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management.

  12. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  13. The plasma-wall transition layers in the presence of collisions with a magnetic field parallel to the wall

    Science.gov (United States)

    Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.

    2018-01-01

    The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.

  14. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  15. Interaction of UV laser pulses with reactive dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Beckers, J.; Nijdam, S.; Oosterbeek, W.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75

  16. Studies of irradiated zircaloy fuel sheathing using XPS

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P K; Irving, K G [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Hocking, W H; Duclos, A M; Gerwing, A F [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO{sub 2}) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs.

  17. Studies of irradiated zircaloy fuel sheathing using XPS

    International Nuclear Information System (INIS)

    Chan, P.K.; Irving, K.G.; Hocking, W.H.; Duclos, A.M.; Gerwing, A.F.

    1995-01-01

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO 2 ) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs

  18. Analytical expression for sheath edge around corner cathodes

    International Nuclear Information System (INIS)

    Sheridan, T E

    2009-01-01

    A simple analytical expression for the position of the sheath edge around a two-dimensional corner cathode with included angle θ c has been discovered. This expression is valid for weakly collisional sheaths in the Child-Langmuir regime φ c >> kT e /e, where -φ c e is the electron temperature. In polar coordinates (r, θ), the sheath edge is given by (r/s 0 )sin[πθ/(2π - θ c )] = [π/(2π - θ c )] where s 0 is the planar sheath width far from the vertex of the corner. This result is verified by comparison with previous numerical solutions (Watterson P A 1989 J. Phys. D: Appl. Phys. 22 1300) for the knife edge (θ c = 0) and convex square corner (θ c = π/2). The observed agreement suggests that this expression gives the sheath edge for all corner angles, both concave and convex. The utility of this result is demonstrated by computing the full sheath solution for a knife-edge cathode with φ c = 100kT e /e.

  19. Streaming instability in a velocity–sheared dusty plasma | Duwa ...

    African Journals Online (AJOL)

    A two-stream instability, obtained from kinetic theory, of strongly velocity-sheared inhomogeneous streaming electron in a magnetized plasma in the presence of negatively charged dust is discussed. Various cold plasma approximations were considered and it is shown that when the diamagnetic effect of ion can be ignored ...

  20. Two-dimensional magnetohydrodynamic calculations for a 5 MJ plasma focus

    International Nuclear Information System (INIS)

    Maxon, S.

    1979-01-01

    The performance of a 5 MJ plasma focus is calculated using our two-dimensional magnetohydrodynamic (2-D MHD) code. Two configurations are discussed, a solid and a hollow anode. In the case of the hollow anode, we find an instability in the current sheath which has the characteristics of the short wave length sausage instability. As the current sheath reaches the axis, the numerical solution is seen to break down. Just before this time, plasma parameters take on the characteristic values rho/rho 0 = 143, kT/sup i/ = 7.4 keV, B/sub theta/ = 4.7 MG, and V/sub z/ = 60 cm/μs for a zone with r = 0.2 mm. When the numerical solution breaks down, the code shows a splitting of the current sheath (from the axis to the anode) and the loss of a large amount of magnetic energy. Current-sheath stagnation is observed in the hollow anode configuration, also