WorldWideScience

Sample records for dust episodes observed

  1. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps

    Directory of Open Access Journals (Sweden)

    G. Aymoz

    2004-01-01

    Full Text Available A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC and Organic Carbon (OC are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.

  2. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps

    Directory of Open Access Journals (Sweden)

    G. Aymoz

    2004-07-01

    Full Text Available A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC and Organic Carbon (OC are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.

  3. High Angular Resolution Observations of Episodic Dust Emission from Long Period Variable Stars Twenty Years of Observations with the Berkeley Infrared Spatial Interferometer

    Science.gov (United States)

    Danchi, William

    2010-01-01

    Over the past twenty years the U. C. Berkeley Infrared Spatial Interferometer has observed a number of Long Period Variable stars in the mid-infrared, obtaining information on the spatial distribution of dust around these stars with resolutions of the order of a few tens of milliarcseconds. The ISI is a heterodyne interferometer operating mostly at 11.15 microns, initially with two telescopes. In the last decade, it has been taking data regularly with three telescopes, thus obtaining visibility data on three baselines and also a closure phase. Over the course of the years, the ISI has been able to measure the physical properties of the dust shells surrounding these stars, in particular the inner radii of the dust shells, as well as the temperature and density distribution. For some stars, the ISI has also made precision measurements of their diameters in the mid-infrared. Closure phase measurements have revealed asymmetries in the dust distributions around many stars. Most surprisingly the ISI data has shown evidence for substantial changes in the amount of dust on time scales of 5-10 years, rather than being directly correlated with the stellar pulsation periods, which are of the order of one year. We discuss past results and new results from the ISI that highlight the dynamic environment around these stars.

  4. Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates

    Science.gov (United States)

    Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria

    2016-04-01

    Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the

  5. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  6. A second dust episode of the Wolf-Rayet system WR 19 : another long-period WC+O colliding-wind binary

    NARCIS (Netherlands)

    van der Hucht, KA; Williams, PM; Catchpole, RM; Duijsens, MFJ; Glass, IS; Gunawan, DYAS

    1998-01-01

    We present observations of WR 19 showing an infrared excess due to newly created dust similar to an event observed in 1988. We suggest that these episodes of dust-formation are periodic (P similar to 10yr) and related to the binary nature of the object, comparable to the colliding-wind binary WR 140

  7. Satellite Observations of Desert Dust-induced Himalayan Snow Darkening

    Science.gov (United States)

    Gautam, Ritesh; Hsu, N. Christina; Lau, William K.-M.; Yasunari, Teppei J.

    2013-01-01

    The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are also advected over the Himalaya, visible as dust-laden snow surface in satellite imagery, particularly in western Himalaya. We examined spectral surface reflectance retrieved from spaceborne MODIS observations that show characteristic reduction in the visible wavelengths (0.47 nm) over western Himalaya, associated with dust-induced solar absorption. Case studies as well as seasonal variations of reflectance indicate a significant gradient across the visible (0.47 nm) to near-infrared (0.86 nm) spectrum (VIS-NIR), during premonsoon period. Enhanced absorption at shorter visible wavelengths and the resulting VIS-NIR gradient is consistent with model calculations of snow reflectance with dust impurity. While the role of black carbon in snow cannot be ruled out, our satellite-based analysis suggests the observed spectral reflectance gradient dominated by dust-induced solar absorption during premonsoon season. From an observational viewpoint, this study underscores the importance of mineral dust deposition toward darkening of the western Himalayan snow cover, with potential implications to accelerated seasonal snowmelt and regional snow albedo feedbacks.

  8. Dust observations at orbital altitudes surrounding Mars.

    Science.gov (United States)

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  9. CUACE/Dust ─ an integrated system of observation and modeling systems for operational dust forecasting in Asia

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2008-05-01

    Full Text Available An integrated sand and dust storm (SDS forecasting system – CUACE/Dust (Chinese Unified Atmospheric Chemistry Environment for Dust has been developed, which consists of a comprehensive dust aerosol module with emission, dry/wet depositions and other atmospheric dynamic processes, and a data assimilation system (DAS using observational data from the CMA (China Meteorological Administration ground dust monitoring network and retrieved dust information from a Chinese geostationary satellite – FY-2C. This is the first time that a combination of surface network observations and satellite retrievals of the dust aerosol has been successfully used in the real time operational forecasts in East Asia through a DAS. During its application for the operational SDS forecasts in East Asia for spring 2006, this system captured the major 31 SDS episodes observed by both surface and satellite observations. Analysis shows that the seasonal mean threat score (TS for 0–24 h forecast over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the DAS, a 41% enhancement. The time series of the forecasted dust concentrations for a number of representative stations for the whole spring 2006 were also evaluated against the surface PM10 monitoring data, showing a very good agreement in terms of the SDS timing and magnitudes near source regions where dust aerosols dominate. This is a summary paper for a special issue of ACP featuring the development and results of the forecasting system.

  10. Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode

    Directory of Open Access Journals (Sweden)

    K. Wang

    2012-11-01

    Full Text Available The US Environmental Protection Agency's (EPA Community Multiscale Air Quality (CMAQ modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online dust emission schemes (i.e., the Zender and Westphal schemes, nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust, offline-coupled with the Weather Research and Forecast model (WRF, is applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of ~111 and 223 Tg when using the Zender scheme with an erodible fraction of 0.5 and 1.0, respectively. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM, PM with aerodynamic diameter of 10 μm, and aerosol optical depth than the default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 μm (PM2.5 over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e.g., as a lower limit estimate, reducing O3 by up to 3.8 ppb (~9% and SO2 by up to 0.3 ppb (~27% and as a source for some others (e.g., increasing fine-mode SO42− by up to 1.1 μg m−3 (~12% and PM2.5 by up to 1.4 μg m−3 (~3% over the domain. The

  11. Lidar Methods for Observing Mineral Dust

    Institute of Scientific and Technical Information of China (English)

    Nobuo SUGIMOTO; HUANG Zhongwei

    2014-01-01

    Lidar methods for observing mineral dust aerosols are reviewed. These methods include Mie scattering lidars, polarization lidars, Raman scattering lidars, high-spectral-resolution lidars, and fluorescence lidars. Some of the lidar systems developed by the authors and the results of the observations and applications are introduced. The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions. Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols. The lidar network data are actually used for validation and assimilation of dust transport models, which can evaluate emission, transport, and deposition of mineral dust. The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols. Evolution of the lidar data analysis methods for aerosol characterization is also reviewed. Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment. Directions of the researches with lidar methods in the near future are discussed.

  12. Observational Constraints on Submillimeter Dust Opacity

    CERN Document Server

    Shirley, Yancy L; Pontoppidan, Klaus M; Wilner, David J; Stutz, Amelia M; Bieging, John H; Evans, Neal J

    2010-01-01

    Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-mass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (\\kaprat) and the submillimeter opacity power-law index ($\\kappa \\propto \\lambda^{-\\beta}$). Using the average value of theoretical dust opacity models at 2.2 \\micron, we constrain the dust opacity at 850 and 450 \\micron . Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are $\\frac{\\kappa_{850}}{\\kappa_{2.2}} = (3.21 - 4.80)^{+0.44}_{-0.30} \\times 10^{-4}$ and $\\frac{\\kappa_{450}}{\\kappa_{2.2}} = (12.8 - 24.8)^{+2.4}_{-1.3} \\times 10^{-4}$ with a submillimeter opacity power-law index of $\\beta_{smm}...

  13. Dust Episodes in Hong Kong (South China) and their Relationship with the Sharav and Mongolian Cyclones and Jet Streams

    Science.gov (United States)

    Lee, Y. C.; Wenig, Mark; Zhang, Zhenxi; Sugimoto, Nobuo; Larko, Dave; Diehl, Thomas

    2012-01-01

    The study presented in this paper analyses two dust episodes in Hong Kong, one occurring in March 2006 and the other on 22 March 2010. The latter is the worst dust episode on Hong Kong record. The focus is on the relationship between the dust episodes and the Sharav/Mongolian cyclones and jet streams. The 16 March 2006 episode is traceable to a continental-scale Saharan dust outbreak of 5-9 March 2006 caused by the cold front of an East Mediterranean Sharav cyclone arriving at north-west Africa on 5 March 2006. The eastward movement of the cyclone along the North African coast is clearly illustrated in the geopotential height contours. Simulations by the chemistry transport model GOCART provide a visible evidence of the transport as well as an estimate of contributions from the Sahara to the aerosol concentration levels in Hong Kong. The transport simulations suggest that the dust is injected to the polar jet north of the Caspian Sea, while it is transported eastward simultaneously by the more southerly subtropical jet. The major source of dust for Hong Kong is usually the Gobi desert. Despite the effect of remote sources, the 16 March 2006 dust episode was still mainly under the influence of the Mongolian cyclone cold fronts. In the recent episode of 22 March 2010, the influence of the Mongolian cyclone predominated as well. It appears that the concurrent influence of the Sharav and Mongolian cyclones on Hong Kong and East Asia is not a common occurrence. Besides transporting dusts from non-East Asian sources to Hong Kong and East Asia, the strong subtropical jet on 21 March 2010 (i.e. 1 day prior to the major dust episode) is believed to have strengthened an easterly monsoon surge to South China causing the transport of voluminous dusts to Taiwan and Hong Kong the following day.

  14. Ammonium deficiency caused by heterogeneous reactions during a super Asian dust episode

    Science.gov (United States)

    Hsu, Shih-Chieh; Lee, Celine Siu Lan; Huh, Chih-An; Shaheen, Robina; Lin, Fei-Jan; Liu, Shaw Chen; Liang, Mao-Chang; Tao, Jun

    2014-06-01

    Mineral dust particles exert profound impacts on air quality, visibility, and ocean biogeochemistry. Interactions between dust particles and other anthropogenic pollutants modify not only the size spectrum and morphology but also physicochemical properties of dust particles, thereby affecting their radiative properties and ability to act as cloud condensation nuclei and in turn their impact on climate. Here we report field observations on the surface chemical transformations in a super Asian dust plume captured in coastal areas of China and the adjacent marginal seas. The dust plume showed enhanced concentrations of sulfate, nitrate, and calcium along with a decrease in ammonium. The percentages of total Ca in water-soluble form increased from an intrinsic value of ~5% to 25-40% at four stations along the path of the dust plume. From these increases, we estimated the extent to which carbonate was modified by heterogeneous reactions and calculated that the enhanced sulfate and nitrate could account for 40-60% of the observed concentrations. Our observation suggests that the formation of ammonium sulfate via the H2SO4-NH3-H2O ternary system was impeded by heterogeneous reactions in the marine boundary layer when dust loads exceeded a certain threshold. A conceptual model is proposed to elucidate the heterogeneous reactions during the super Asian dust event and their impacts on atmospheric chemistry.

  15. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  16. An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2007-08-01

    Full Text Available On 24 March 2007, the atmosphere over Central Europe was affected by an episode of exceptionally high mass concentrations of aerosol particles, most likely caused by a dust storm in the Southern Ukraine on the preceding day. At ground-based measurement stations in Slovakia, the Czech Republic, Poland and Germany PM10 mass concentrations rose to values between 200 and 1400 μg m−3. An evaluation of PM10 measurements from 360 monitoring stations showed that the dust cloud advanced along a narrow corridor at speeds of up to 70 km h−1. According to lidar observations over Leipzig, Germany, the high aerosol concentrations were confined to a homogeneous boundary layer of 1800 m height. The wavelength dependence of light extinction using both lidar and sun photometer measurements suggested the dominance of coarse particles during the main event. At a wavelength of 532 nm, relatively high volume extinction coefficients (300–400 Mm−1 and a particle optical depth of 0.65 was observed. In-situ measurements with an aerodynamic particle sizer at Melpitz, Germany, confirmed the presence of a coarse particle mode with a mode diameter >2 μm, whose maximum concentration coincided with that of PM10. A chemical particle analysis confirmed the dominance of non-volatile and insoluble matter in the coarse mode as well as high enrichments of Ti and Fe, which are characteristic of soil dust. A combination of back trajectory calculations and satellite images allowed to identify the dust source with confidence: On 23 March 2007, large amounts of dust were emitted from dried-out farmlands in the southern Ukraine, facilitated by wind gusts up to 100 km h−1. The unusual vertical stability and confined height of this dust layer as well as the rapid transport under dry conditions led to the conservation of high aerosol mass concentrations along the transect and thus to the extraordinary

  17. Aerosols properties during dust-storm episodes over Jaipur, Northwestern India

    Science.gov (United States)

    Payra, Swagata; Verma, Sunita; Prakash, Divya; Kumar, Pramod; Soni, Manish; Holben, Brent

    2013-05-01

    Continuous routine aerosol measurements have been carried out at Jaipur (Rajasthan, Northwestern India) since April 2009 with a CIMEL sun photometer integrated in the global Aerosols Robotic Network (AERONET) program. The present study investigates the aerosol properties during dust storm episodes over Jaipur, Northwestern India. A series of high dust storms were identified as indicated by high values of aerosols optical thickness (AOT) with a significant drop in angstrom exponent values (nearly zero and negative). Consequently, a progressive increase in Single Scattering Albedo (SSA440 nm = 0.89, SSA675 nm = 0.95, SSA870 nm = 0.97, SSA1020 nm = 0.976) suggests more scattering nature of regional aerosols associated with abundant dust loading. Trajectories back in time showed that the air collected in Jaipur during dust period originated from desert regions in the western part of India. Additionally, a comparative analysis of the mean AOT derived from satellite data and Potential Source Contribution Function (PSCF) analysis helped to understand the source region of these particles.

  18. X-rays from Wolf-Rayet Stars: Episodic Dust Makers

    Science.gov (United States)

    Zhekov, Svetozar

    2012-10-01

    We propose to carry out EPIC imaging spectroscopy of a sample of massive Wolf-Rayet stars known to be episodic dust makers (EDM). Thanks to the excellent EPIC sensitivity, we will: (i) obtain good quality spectra of these EDMs yet undetected with the modern X-ray observatories; (ii) deduce the plasma parameters in their X-ray emitting region; (iii) test the current paradigm that the EDMs are binary systems. Finally, even non-detections will provide us with crucial information about the physics of these objects.

  19. Environmental impacts on human health during a Saharan dust episode at Crete Island, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Nastos, P.T. [Univ. of Athens, Athen (Greece). Lab. of Climatology and Atmospheric Environment; Kampanis, N.A. [Foundation for Research and Technology, Hellas (Greece). Inst of Applied and Computational Mathematics; Giaouzaki, K.N. [Univ. of Crete, Iraklion (Greece). Dept. of Cardiology; Matzarakis, A. [Univ. of Freiburg (Germany). Meteorological Inst.

    2011-10-15

    The objective of this study is to examine the synergistic environmental impacts (thermal bioclimatic conditions and air quality due to particulate pollution) with cardiovascular and respiratory syndromes, in Heraklion in the northern part of Crete Island, during a Saharan dust episode on March 22-23, 2008. Daily counts of admissions for cardiovascular and respiratory syndromes were obtained from the two main hospitals in Heraklion. The corresponding daily meteorological parameters, such as maximum and minimum air temperature, relative humidity, wind speed and cloud cover, from the meteorological station of Heraklion (Hellenic National Meteorological Service), were processed in order to estimate and analyze the bioclimatic conditions expressed by the Physiologically Equivalent Temperature (PET), which is based on the energy balance models of the human body. Dust concentrations were derived from the SKIRON forecast model of the University of Athens, while Moderate Resolution Imaging Spectroradiometer (MODIS) products such as aerosol optical depth at 550 nm (AOD550), aerosol small mode fraction (SM), Aangstroem exponent in the 550-865 nm band and mass concentration, were used for the episode. Besides, daily composite anomalies (reference period: 1968-1996) of the air temperature and vector wind from the middle to the lower atmospheric levels (500 hPa - mean sea level) on March 23, 2008, were calculated from the reanalysis datasets of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). The analysis of MODIS and SKIRON products showed that high AOD{sub 550} values (>0.9) and high dust concentration (>250 {mu}g/m{sup 3}), respectively, appear on March 23, 2008, while the respiratory admissions were five-fold than the mean daily admissions on the same day of the emergence of the Saharan dust episode (key day). According to the analysis, this is due to the existence of coarse-mode particles along the dust pathway, which

  20. Observing Episodic Coronal Heating Events Rooted in Chromospheric Activity

    CERN Document Server

    McIntosh, Scott W

    2009-01-01

    We present results of a multi-wavelength study of episodic plasma injection into the corona of AR 10942. We exploit long-exposure images of the Hinode and Transition Region and Coronal Explorer (TRACE) spacecraft to study the properties of faint, episodic, "blobs" of plasma that are propelled upward along coronal loops that are rooted in the AR plage. We find that the source location and characteristic velocities of these episodic upflow events match those expected from recent spectroscopic observations of faint coronal upflows that are associated with upper chromospheric activity, in the form of highly dynamic spicules. The analysis presented ties together observations from coronal and chromospheric spectrographs and imagers, providing more evidence of the connection of discrete coronal mass heating and injection events with their source, dynamic spicules, in the chromosphere.

  1. Trends of Dust Transport Episodes in Cyprus Using a Classification of Synoptic Types Established with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Michaelides

    2013-01-01

    Full Text Available The relationship between dust episodes over Cyprus and specific synoptic patterns has long been considered but also further supported in recent studies by the authors. Having defined a dust episode as a day when the average PM10 measurement exceeds the threshold of 50 mg/(m3 day, the authors have utilized Artificial Neural Networks and synoptic charts, together with satellite and ground measurements, in order to establish a scheme which links specific synoptic patterns with the appearance of dust transport over Cyprus. In an effort to understand better these complicated synoptic-scale phenomena and their associations with dust transport episodes, the authors attempt in the present paper a followup of the previous tasks with the objective to further investigate dust episodes from the point of view of their time trends. The results have shown a tendency for the synoptic situations favoring dust events to increase in the last decades, whereas, the synoptic situations not favoring such events tend to decrease with time.

  2. Observational properties of rigidly rotating dust configurations

    CERN Document Server

    Ilyas, Batyr; Yang, Jinye

    2016-01-01

    We study the observational properties of a class of exact solutions of Einstein's field equations describing stationary, axially symmetric, rigidly rotating dust. We ask the question whether such solutions can describe astrophysical rotating dark matter clouds and we probe the possibility that they may constitute an alternative to supermassive black holes at the center of galaxies. We show that light emission from accretion disks in this space-time has several differences with respect to the emission of light from accretion disks around black holes. The shape of the iron K{\\alpha} line in the reflection spectrum of accretion disks can potentially distinguish this class of solution from the Kerr metric, but this may not be possible with current X-ray missions.

  3. The episodic influx of tin-rich cosmic dust particles during the last ice age

    Science.gov (United States)

    LaViolette, Paul A.

    2015-12-01

    This paper presents evidence of the first detection of interstellar dust in ice age polar ice. Neutron activation analysis (NAA) results are reported for 15 elements found in dust filtered from eight samples of Camp Century Greenland ice dating from 40 to 78 kyrs BP. High concentrations of Sn, Sb, Au, Ag, Ir, and Ni were found to be present in three out of these eight samples. One compositionally anomalous dust sample from an ice core depth of 1230.5 m (age ∼49 kyrs BP, near the beginning of D/O stadial No. 13) was found to contain tin with an average weight percent of 49% as determined by energy dispersive X-ray analysis (EDS). This sample was also found to contain high concentrations of Pb with an average weight abundance of 8.4% and matching the Sn:Pb ratio observed in interstellar spectra. Dust particles in this sample generally have a platy morphology and range from submicron size up to a size as large as 120 μm, a particle consisting almost entirely of SnO2 and being the largest monomineralic extraterrestrial dust particle so far discovered. One porous aggregate tin-bearing particle was found to contain nanometer sized chondrules indicating an extraterrestrial origin. The extraterrestrial origin for the tin is also indicated by the presence of isotopic anomalies in the 114Sn, 115Sn and 117Sn isotopes. Follow up isotopic measurements of this tin-rich dust need to be performed to improve confidence in the anomalies reported here. High abundances of the low melting point elements Ag, Au, and Sb are also present in this tin-rich sample along with elevated abundances of the siderophiles Ir, Ni, Fe, and Co, the latter being present in chondritic proportions and indicating that about 9% of the dust has a C1 chondrite component. Measurements indicate that about 97% of this dust is of extraterrestrial origin with a 3% residual being composed of terrestrial windblown dust. EDS analysis of another tin-rich Camp Century ice core dust sample dating to ∼130 kyrs BP

  4. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  5. Frequency of Mine Dust Episodes and the Influence of Meteorological Parameters on the Witwatersrand Area, South Africa

    Directory of Open Access Journals (Sweden)

    Olusegun Oguntoke

    2013-01-01

    Full Text Available Aeolian dispersal of dust from gold mine tailing storage facilities impacts negatively on amenities, human health, and the environment of the Witwatersrand region, South Africa. The present study adopted a multivariate analytical method to quantify the effect of specific meteorological parameters on dust fall emissions, monitored at 22 sites in the central Witwatersrand area. Using meteorological and dust fall data from 2001 to 2010, the relationships between weather and dust fallout deposition rates were explored across the sites at different seasons. Dust deposition rate varied among seasons, with spring months showing the highest levels and frequency. Atmospheric humidity had negative correlations ( with dust fall while wind speed showed positive correlations ( at the selected sites (. Sites with low influence of relative humidity had higher impact on wind speed. Mean relative humidity below 50% and mean wind speed above 4 m/s were predicted as critical levels for dust episodes incidence at sites that recorded “heavy” and “very heavy” dust fall. For environmental planning purposes, current mitigation measures should be manipulated in relation to levels of air humidity and wind speed for dust emission reduction, especially during spring.

  6. Mesospheric dust observations during the MAXIDUSTY campaign

    Science.gov (United States)

    Antonsen, Tarjei; Havnes, Ove; Fredriksen, Åshild; Friedrich, Martin; Sternovsky, Zoltan; Plane, John; Hartquist, Tom; Olsen, Sveinung; Eilertsen, Yngve; Trondsen, Espen; Mann, Ingrid; Hedin, Jonas; Gumbel, Jörg; Moen, Jøran; Latteck, Ralph; Baumgarten, Gerd; Höffner, Josef; Williams, Bifford; Hoppe, Ulf-Peter; Karlberg, Jan-Ove

    2017-04-01

    The MAXIDUSTY rocket payloads, launched from Andøya June 30 and July 8 2016, were equipped with dust impact detectors aiming to characterize mesospheric dust charge state, mass distribution of impact fragments and NLC/PMSE structure. One of the main scientific objectives for the campaign was to confirm that material of meteoric origin is abundant inside the icy mesospheric dust particles. The rockets were launched simultaneously with PMSE and NLC (MAXIDUSTY-1) and PMSE (MAXIDUSTY-1B) respectively, and radar measurements were made coincident with the rocket flight path. We report here on the initial results from the rocket probes and remote soundings, with emphasis on the dust impact detector results. Results from the Multiple Dust Detector (MUDD) confirm that NLC ice particles probably have a relatively high content of meteoric smoke particles with a filling factor of up to several percent. Comparisons of the DUSTY faraday bucket and PMSE show that there is no simple correlation between the two.

  7. Evaluation of atmospheric dust prediction models using ground-based observations

    Science.gov (United States)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    April 2011, when several dust episodes where recorded. In regions devoid of air quality stations (as Saharan and Arabian deserts), model forecasts are regularly evaluated for 38 dust-prone sites through the use of an empirical relationship between visibility data (obtained from meteorological reports) and dust surface concentration. Finally, active remote sensing with lidar or ceilometers is the only way to inquire about the dust vertical distribution. Analysis of selected cases comparing model forecasts and lidar observations at Santa Cruz de Tenerife (Canary Islands) yields promising results regarding the identification of the dust plume thickness. From the results of this pilot trial, the convenience of a regular evaluation will be assessed.

  8. Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015

    Directory of Open Access Journals (Sweden)

    L. A. Mingari

    2017-06-01

    Full Text Available On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m, located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption from the Bolsón de Fiambalá (Fiambalá Basin in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF core of the WRF (Weather Research and Forecasting model (WRF-ARW and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5–6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the

  9. Adjoint inversion modeling of Asian dust emission using lidar observations

    Directory of Open Access Journals (Sweden)

    K. Yumimoto

    2008-06-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for a regional dust model (RAMS/CFORS-4DVAR; RC4 is applied to an adjoint inversion of a heavy dust event over eastern Asia during 20 March–4 April 2007. The vertical profiles of the dust extinction coefficients derived from NIES Lidar network are directly assimilated, with validation using observation data. Two experiments assess impacts of observation site selection: Experiment A uses five Japanese observation sites located downwind of dust source regions; Experiment B uses these and two other sites near source regions. Assimilation improves the modeled dust extinction coefficients. Experiment A and Experiment B assimilation results are mutually consistent, indicating that observations of Experiment A distributed over Japan can provide comprehensive information related to dust emission inversion. Time series data of dust AOT calculated using modeled and Lidar dust extinction coefficients improve the model results. At Seoul, Matsue, and Toyama, assimilation reduces the root mean square differences of dust AOT by 35–40%. However, at Beijing and Tsukuba, the RMS differences degrade because of fewer observations during the heavy dust event. Vertical profiles of the dust layer observed by CALIPSO are compared with assimilation results. The dense dust layer was trapped at potential temperatures (θ of 280–300 K and was higher toward the north; the model reproduces those characteristics well. Latitudinal distributions of modeled dust AOT along the CALIPSO orbit paths agree well with those of CALIPSO dust AOT, OMI AI, and MODIS coarse-mode AOT, capturing the latitude at which AOTs and AI have high values. Assimilation results show increased dust emissions over the Gobi Desert and Mongolia; especially for 29–30 March, emission flux is about 10 times greater. Strong dust uplift fluxes over the Gobi Desert and Mongolia cause the heavy dust event. Total optimized dust emissions are 57

  10. Direct observations of the atmospheric processing of Asian mineral dust

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2007-01-01

    Full Text Available The accumulation of secondary acids and ammonium on individual mineral dust particles during ACE-Asia has been measured with an online single-particle mass spectrometer, the ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles correlate with air masses from different source regions. The uptake of secondary acids depended on the individual dust particle mineralogy; high amounts of nitrate accumulated on calcium-rich dust while high amounts of sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV to S(VI by iron in the aluminosilicate dust is a possible explanation for this enrichment of sulphate, which has important consequences for the fertilization of remote oceans by soluble iron. This study shows the segregation of sulphate from nitrate and chloride in individual aged dust particles for the first time. A transport and aging timeline provides an explanation for the observed segregation. Our data suggests that sulphate became mixed with the dust first. This implies that the transport pathway is more important than the reaction kinetics in determining which species accumulate on mineral dust. Early in the study, dust particles in volcanically influenced air masses were mixed predominately with sulphate. Dust mixed with chloride then dominated over sulphate and nitrate when a major dust front reached the R. V. Ronald Brown. We hypothesize that the rapid increase in chloride on dust was due to mixing with HCl(g released from acidified sea salt particles induced by heterogeneous reaction with volcanic SO2(g, prior to the arrival of the dust front. The amount of ammonium mixed with dust correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent reports that they exist as external mixtures. The size distribution of the mixing state of dust with these secondary species validates previous

  11. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling.

    Science.gov (United States)

    Guo, Jianping; Lou, Mengyun; Miao, Yucong; Wang, Yuan; Zeng, Zhaoliang; Liu, Huan; He, Jing; Xu, Hui; Wang, Fu; Min, Min; Zhai, Panmao

    2017-07-27

    East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12-22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km-9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An observation-based approach to identify local natural dust events from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-02-01

    Full Text Available Dust is a major component of atmospheric aerosols in many parts of the world. Although there exist many routine aerosol monitoring networks, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose a new approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the Western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24 recorded dust events, respectively, while the years of 2000, 2004 and 2005 are the calmest periods, all with single digit dust records. Among these deserts, the Chihuahua Desert (59 cases and the

  13. Solar and thermal radiative effects during the 2011 extreme desert dust episode over Portugal

    Science.gov (United States)

    Valenzuela, A.; Costa, M. J.; Guerrero-Rascado, J. L.; Bortoli, D.; Olmo, F. J.

    2017-01-01

    This paper analyses the influence of the extreme Saharan desert dust (DD) event on shortwave (SW) and longwave (LW) radiation at the EARLINET/AERONET Évora station (Southern Portugal) from 4 up to 7 April 2011. There was also some cloud occurrence in the period. In this context, it is essential to quantify the effect of cloud presence on aerosol radiative forcing. A radiative transfer model was initialized with aerosol optical properties, cloud vertical properties and meteorological atmospheric vertical profiles. The intercomparison between the instantaneous TOA shortwave and longwave fluxes derived using CERES and those calculated using SBDART, which was fed with aerosol extinction coefficients derived from the CALIPSO and lidar-PAOLI observations, varying OPAC dataset parameters, was reasonably acceptable within the standard deviations. The dust aerosol type that yields the best fit was found to be the mineral accumulation mode. Therefore, SBDART model constrained with the CERES observations can be used to reliably determine aerosol radiative forcing and heating rates. Aerosol radiative forcings and heating rates were derived in the SW (ARFSw, AHRSw) and LW (ARFLw, AHRLw) spectral ranges, considering a cloud-aerosol free reference atmosphere. We found that AOD at 440 nm increased by a factor of 5 on 6 April with respect to the lower dust load on 4 April. It was responsible by a strong cooling radiative effect pointed out by the ARFSw value (-99 W/m2 for a solar zenith angle of 60°) offset by a warming radiative effect according to ARFLw value (+21.9 W/m2) at the surface. Overall, about 24% and 12% of the dust solar radiative cooling effect is compensated by its longwave warming effect at the surface and at the top of the atmosphere, respectively. Hence, larger aerosol loads could enhance the response between the absorption and re-emission processes increasing the ARFLw with respect to those associated with moderate and low aerosol loads. The unprecedented

  14. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002

    Institute of Scientific and Technical Information of China (English)

    GUO Zhigang; LI Juyuan; FENG Jialiang; FANG Ming; YANG Zuosheng

    2006-01-01

    The molecular compositions and compound-specific carbon isotope compositions of individual long-chain n-alkanes of atmospheric aerosols collected during two severe Asian dust episodes in Qingdao in spring of 2002 were analyzed using gas chromatography/mass spectrometry (GC/MS) and gas chromatography/isotope ratio mass spectrometry (GC/IRMS). Typical plant wax n-alkanes (C29 and C31) had lowerδ13C values than those from anthropogenic (engine exhaust) sources (C21―C23). The average δ13C value of plant wax n-alkane C29 in non-dust episode periods was -30.5‰ (-30.3‰― -31.9‰), while -31.3‰ (-31.1‰―-31.5‰) in dust episode periods; for C31, it was -31.4‰ (-31.1‰―-33.0‰) in non-dust episode periods, and -31.7‰ (-31.3‰―-32.6‰) in dust episode periods. Plant wax in the dust episode samples was mainly from herbaceous plants via long-range transport, while local plant wax was mainly from deciduous plants and woody plants. In North China coast, 83.3% of the plant wax in the severe dust episode samples was from C3 plants while 80.0% for the non-dust samples, indicating that plant wax transported to the northwestern Pacific Ocean by airborne dust from East Asia was mainly from C3 plants. The results suggest that the molecular and molecular-isotopic compositions of individual long-chain n-alkanes can, as an effective indicator, identify the terrestrial organic components in the dust from East Asia and sediments in the northwest Pacific Ocean.

  15. Desert Dust Outbreaks over Mediterranean Basin: A Modeling, Observational, and Synoptic Analysis Approach

    Directory of Open Access Journals (Sweden)

    F. Calastrini

    2012-01-01

    Full Text Available Dust intrusions from African desert regions have an impact on the Mediterranean Basin (MB, as they cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at the ground level. To estimate the Saharan dust contribution to PM10, a significant dust intrusion event that occurred in June 2006 is investigated, joining numerical simulations and specific measurements. As a first step, a synoptic analysis of this episode is performed. Such analysis, based only on meteorological and aerosol optical thickness observations, does not allow the assessment of exhaustive informations. In fact, it is not possible to distinguish dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition. The approach proposed in this work applies an ad hoc model chain to describe emission, transport and deposition dynamics. Furthermore, physical and chemical analyses (PIXE analysis and ion chromatography were used to measure the concentration of all soil-related elements to quantify the contribution of dust particles to PM10. The comparison between simulation results and in-situ measurements show a satisfying agreement, and supports the effectiveness of the model chain to estimate the Saharan dust contribution at ground level.

  16. Asian dust storm observed at a rural mountain site in southern China: chemical evolution and heterogeneous photochemistry

    Directory of Open Access Journals (Sweden)

    W. Nie

    2012-12-01

    Full Text Available Heterogeneous processes on dust particles are important for understanding the chemistry and radiative balance of the atmosphere. This paper investigates an intense Asian dust storm episode observed at Mount Heng (1269 m a.s.l. in southern China on 24–26 April 2009. A set of aerosol and trace gas data collected during the study was analyzed to investigate their chemical evolution and heterogeneous photochemistry as the dust traveled to southern China. Results show that the mineral dust arriving at Mt. Heng experienced significant modifications during transport, with large enrichments in secondary species (sulfate, nitrate, and ammonium compared with the dust composition collected at an upwind mountain top site (Mount Hua. A photochemical age "clock" (−Log10(NOx/NOy was employed to quantify the atmospheric processing time. The result indicates an obvious increase in the abundance of secondary water-soluble ions in dust particles with the air mass atmospheric processing time. Based on the observations, a 4-stage evolution process is proposed for carbonate-containing Asian dust, starting from fresh dust to particles coated with hydrophilic and acidic materials. Daytime-enhanced nitrite formation on the dust particles was also observed, which indicates the recent laboratory result of the TiO2 photocatalysis of NO2 as a potential source of nitrite and nitrous acid.

  17. Asian dust storm observed at a rural mountain site in Southern China: chemical evolution and heterogeneous photochemistry

    Directory of Open Access Journals (Sweden)

    W. Nie

    2012-08-01

    Full Text Available Heterogeneous processes on dust particles are important for understanding the chemistry and radiative balance of the atmosphere. This paper investigates an intense Asian dust storm episode observed at Mount Heng (1250 m a.s.l. in Southern China on 24–26 April 2009. A set of aerosol and trace gas data collected during the study was analyzed to investigate their chemical evolution and heterogeneous photochemistry as the dust traveled to Southern China. Results show that the mineral dust arriving at Mt. Heng experienced significant modifications during transport, with large enrichments in secondary species (sulfate, nitrate, and ammonium compared with the dust composition collected at an upwind mountain top site (Mount Hua. A photochemical age "clock" (−log10(NOx/NOy was employed to quantify the atmospheric processing time. The result indicates an obvious increase in the abundance of secondary water-soluble ions in dust particles with the air mass' photochemical age. Based on the observations, a 4-stage evolution process is proposed for carbonate-rich Asian dust, starting from fresh dust to particles coated with hydrophilic and acidic materials. Daytime-enhanced nitrite formation on the dust particles was also observed, which indicates the recent laboratory result of the TiO2 photocatalysis of NO2 as a potential source of nitrite and nitrous acid.

  18. Observing desert dust devils with a pressure logger

    Directory of Open Access Journals (Sweden)

    R. D. Lorenz

    2012-07-01

    Full Text Available A commercial pressure logger has been adapted for long-term field use. Its flash memory affords the large data volume to allow months of pressure measurements to be acquired at the rapid cadence (>1 Hz required to detect dust devils, small dust-laden convective vortices observed in arid regions. The power consumption of the unit is studied and battery and solar/battery options evaluated for long-term observations. A two-month-long field test is described, and several example dust devil encounters are examined. In addition, a periodic (~20 min convective signature is observed, and some lessons in operations and correction of data for temperature drift are reported. The unit shows promise for obtaining good statistics on dust devil pressure drops, to permit comparison with Mars lander measurements, and for array measurements.

  19. Observing desert dust devils with a pressure logger

    Directory of Open Access Journals (Sweden)

    R. D. Lorenz

    2012-12-01

    Full Text Available A commercial pressure logger has been adapted for long-term field use. Its flash memory affords the large data volume to allow months of pressure measurements to be acquired at the rapid cadence (>1 Hz required to detect dust devils, small dust-laden convective vortices observed in arid regions. The power consumption of the unit is studied and battery and solar/battery options evaluated for long-term observations. A two-month long field test is described, and several example dust devil encounters are examined. In addition, a periodic (~20 min convective signature is observed, and some lessons in operations and correction of data for temperature drift are reported. The unit shows promise for obtaining good statistics on dust devil pressure drops, to permit comparison with Mars lander measurements, and for array measurements.

  20. Direct observation of episodic growth in an abyssal xenophyophore (Protista)

    Science.gov (United States)

    Gooday, A. J.; Bett, B. J.; Pratt, D. N.

    1993-11-01

    Three specimens of the xenophyophore Reticulammina labyrinthica were photographed on the Madeira Abyssal Plain (31°6.1'N, 21°10.9'W; 4944 m) using the Bathysnap time-lapse camera system. During the 8 month observation period, the specimens underwent an estimated 3-10 fold increase in volume. Growth occurred episodically in several distinct phases, each lasting 2-3 days, during which sediment was collected and incorporated into the test. These phases were separated by fairly regular periods of about 2 months when the organisms showed little obvious activity. The growth phases were approximately synchronous between specimens. However, it is not clear whether the periodicity and apparent synchronization of these events resulted from an external (environmental) cue or whether growth is internally controlled and the synchronization arose by chance. These unique observations, which represent the first direct measurement of growth in any abyssal organism living outside a hydrothermal vent field, suggest that xenophyophores combine test growth with deposit feeding. The tests appear to grow more quickly, and to be more active, dynamic structures, than previously believed.

  1. Data assimilation of dust aerosol observations for the CUACE/dust forecasting system

    Directory of Open Access Journals (Sweden)

    T. Niu

    2008-07-01

    Full Text Available A data assimilation system (DAS was developed for the Chinese Unified Atmospheric Chemistry Environment – Dust (CUACE/Dust forecast system and applied in the operational forecasts of sand and dust storm (SDS in spring 2006. The system is based on a three dimensional variational method (3D-Var and uses extensively the measurements of surface visibility (phenomena and dust loading retrieval from the Chinese geostationary satellite FY-2C. By a number of case studies, the DAS was found to provide corrections to both under- and over-estimates of SDS, presenting a major improvement to the forecasting capability of CUACE/Dust in the short-term variability in the spatial distribution and intensity of dust concentrations in both source regions and downwind areas. The seasonal mean Threat Score (TS over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the data assimilation system, a 41% enhancement. The forecast results with DAS usually agree with the dust loading retrieved from FY-2C and visibility distribution from surface meteorological stations, which indicates that the 3D-Var method is very powerful by the unification of observation and numerical model to improve the performance of forecast model.

  2. Constraints on the nature of dust particles by infrared observations

    OpenAIRE

    Kiss, Cs.; Abraham, P; Laureijs, R. J.; Moor, A.; Birkmann, S. M.

    2006-01-01

    The far-infrared (FIR) emissivity of dust is an important parameter characterizing the physical properties of the grains. With the availability of stellar databases and far-infrared data from Infrared Space Observatory (ISO) it is possible to compare the optical and infrared properties of dust, and derive the far-infrared emissivity with respect to the optical extinction. In this paper we present the results of a systematic analysis of the FIR emissivity of interstellar clouds observed with I...

  3. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    Science.gov (United States)

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM10 pollution episodes (EEs) as days during which PM10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 μg/m(3

  4. Seasonal patterns of Saharan dust over Cape Verde – a combined approach using observations and modelling

    Directory of Open Access Journals (Sweden)

    Carla Gama

    2015-02-01

    Full Text Available A characterisation of the dust transported from North Africa deserts to the Cape Verde Islands, including particle size distribution, concentrations and optical properties, for a complete annual cycle (the year 2011, is presented and discussed. The present analysis includes annual simulations of the BSC-DREAM8b and the NMMB/BSC-Dust models, 1-yr of surface aerosol measurements performed within the scope of the CV-DUST Project, AERONET direct-sun observations, and back-trajectories. A seasonal intrusion of dust from North West Africa affects Cape Verde at surface levels from October till March when atmospheric concentrations in Praia are very high (PM10 observed concentrations reach hourly values up to 710 µg/m3. The air masses responsible for the highest aerosol concentrations in Cape Verde describe a path over the central Saharan desert area in Algeria, Mali and Mauritania before reaching the Atlantic Ocean. During summer, dust from North Africa is transported towards the region at higher altitudes, yielding to high aerosol optical depths. The BSC-DREAM8b and the NMMB/BSC-Dust models, which are for the first time evaluated for surface concentration and size distribution in Africa for an annual cycle, are able to reproduce the majority of the dust episodes. Results from NMMB/BSC-Dust are in better agreement with observed particulate matter concentrations and aerosol optical depth throughout the year. For this model, the comparison between observed and modelled PM10 daily averaged concentrations yielded a correlation coefficient of 0.77 and a 29.0 µg/m3 ‘bias’, while for BSC-DREAM8b the correlation coefficient was 0.63 and ‘bias’ 32.9 µg/m3. From this value, 12–14 µg/m3 is due to the sea salt contribution, which is not considered by the model. In addition, the model does not take into account biomass-burning particles, secondary pollutants and local sources (i.e., resuspension. These results roughly allow for the establishment of a

  5. Health effects from Sahara dust episodes in Europe: literature review and research gaps.

    Science.gov (United States)

    Karanasiou, A; Moreno, N; Moreno, T; Viana, M; de Leeuw, F; Querol, X

    2012-10-15

    The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust.

  6. Dust properties inside molecular clouds from coreshine modeling and observations

    CERN Document Server

    Lefèvre, Charlène; Juvela, Mika; Paladini, Roberta; Lallement, Rosine; Marshall, D J; Andersen, Morten; Bacmann, Aurore; Mcgee, Peregrine M; Montier, Ludovic; Noriega-Crespo, Alberto; Pelkonen, V -M; Ristorcelli, Isabelle; Steinacker, Jürgen

    2014-01-01

    Context. Using observations to deduce dust properties, grain size distribution, and physical conditions in molecular clouds is a highly degenerate problem. Aims. The coreshine phenomenon, a scattering process at 3.6 and 4.5 $\\mu$m that dominates absorption, has revealed its ability to explore the densest parts of clouds. We want to use this effect to constrain the dust parameters. The goal is to investigate to what extent grain growth (at constant dust mass) inside molecular clouds is able to explain the coreshine observations. We aim to find dust models that can explain a sample of Spitzer coreshine data. We also look at the consistency with near-infrared data we obtained for a few clouds. Methods. We selected four regions with a very high occurrence of coreshine cases: Taurus-Perseus, Cepheus, Chameleon and L183/L134. We built a grid of dust models and investigated the key parameters to reproduce the general trend of surface bright- nesses and intensity ratios of both coreshine and near-infrared observation...

  7. Inferring the interplanetary dust properties from remote observations and simulations

    CERN Document Server

    Lasue, Jeremie; Fray, Nicolas; Cottin, Hervé

    2016-01-01

    Since in situ studies and interplanetary dust collections only provide a spatially limited amount of information about the interplanetary dust properties, it is of major importance to complete these studies with properties inferred from remote observations of light scattered and emitted, with interpretation through simulations. Physical properties of the interplanetary dust in the near-ecliptic symmetry surface, such as the local polarization, temperature and composition, together with their heliocentric variations, may be derived from scattered and emitted light observations, giving clues to the respective contribution of the particles sources. A model of light scattering by a cloud of solid particles constituted by spheroidal grains and aggregates thereof is used to interpret the local light scattering data. Equilibrium temperature of the same particles allows us to interpret the temperature heliocentric variations. A good fit of the local polarization phase curve, $P_{\\alpha}$, near 1.5~AU from the Sun is ...

  8. Coherent dust cloud observed by three Cassini instruments

    CERN Document Server

    Khalisi, Emil

    2015-01-01

    We revisit the evidence for a "dust cloud" observed by the Cassini spacecraft at Saturn in 2006. The simultaneous data of 3 instruments are compared to interpret the signatures of a coherent swarm of dust that could have remained floating near the equatorial plane. The conspicuous pattern, as seen in the dust counters of the Cosmic Dust Analyser (CDA) and in the magnetic field (MAG), clearly repeats on three consecutive revolutions of the spacecraft. The data of the Radio Plasma and Wave Science (RPWS) appear less decisive but do back our conclusions. The results support the idea of a "magnetic bubble" as reported from both Voyager flybys in the early 1980ies. That particular cloud, which we firstly discovered in the CDA data, is estimated to about 1.36 Saturnian radii in size, and probably broadening. Both the bulk of dust particles and the peak of the magnetic depression seem to drift apart, but this can also be an effect of hitting the cloud at different parts during the traverse.

  9. Impacts of crystal metal on secondary aliphatic amine aerosol formation during dust storm episodes in Beijing

    Science.gov (United States)

    Liu, Qingyang; Bei, Yiling

    2016-03-01

    Trimethylamine (TMA) enters the atmosphere from a variety of sources and is a ubiquitous atmospheric organic base. The atmospheric reaction mechanism of TMA with key atmospheric oxidants is important to predict its distribution and environmental behavior in the particle phase. While previous studies have extensively focused on the production of particle amine salts (i.e. trimethylamine-N-oxide (TMAO)) using chamber experiments, the atmospheric behavior of TMAO in the environment is still poorly understood. Ambient fine particulate matter (PM2.5) was collected at two sampling sites in Beijing from March 10 to May 10, 2012. We analyzed the samples for water-soluble ions, crystal metals, TMA, and TMAO. Water-soluble ions (e.g. SO42-, NO3-, NH4+), TMA, and TMAO were measured using ion chromatography, while crystal metal (e.g. Al, Fe, Mn) in PM2.5 was quantified by inductively coupled plasma mass spectrometry (ICP-MS). Two dust storms (DS) occurred during the sampling period on March 28 and April 28. Mineral dust impacted PM2.5 mass and composition greatly during dust storm days, as it contributed approximately 1.2-4.0 times greater on dust storm days versus non-dust storm days. We found TMAO concentrations were highly associated with aluminum in PM2.5. Further, we applied the density functional theory (DFT) method to confirm that aluminum plays a catalytic effect in the reaction of TMA with ozone (O3). Our work improves understanding of the effect of crystal metals on secondary aliphatic amine aerosol formation in the atmosphere.

  10. Observations of the spectrum of the interplanetary dust emission

    Science.gov (United States)

    Salama, A.; de Bernardis, P.; Masi, S.; Moreno, G.

    Published data from satellite (IRAS), rocket-borne (ZIP), and balloon-borne (ARGO) spectroscopic observations of interplanetary dust emission in the FIR are compiled and analyzed, extending the spatial-distribution results of Salama et al. (1986) to evaluate the possible role of silicate and graphite grains in determining the FIR spectrum. The zodiacal dust spectra in the ecliptic plane at solar elongations epsilon = 45 and 90 deg are calculated on the basis of theoretical models and compared with the observations. A model based on a flat distribution of 10-micron-diameter silicate grains is shown to reproduce the observed spectrum at epsilon = 45 deg but not at epsilon = 90 deg, where a model with a mixture of silicate and graphite grains gives a better, but still unsatisfactory fit to the observations.

  11. Dust-induced episodic phytoplankton blooms in the Arabian Sea during winter monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, P.; PrasannaKumar, S.

    measurements in the northern Bay of Bengal (88o-92oE, 19o-21oN) during WM when anthropogenic fraction dominates the total aerosol load [Nair et al., 2005]. fma was taken as 0.47 based on average value for the period of 2003 to 2011 over the western part... of the Equatorial Indian Ocean (55o-65oE, 5o-10oS) where pristine maritime condition prevails. The standard deviations (SD) for values of fan and fma were 0.15 and 0.08 respectively. A value of 0.25 was assigned to fdu based on satellite values during dust...

  12. Dust Continuum Observations of Protostars: Constraining Properties with Simulations

    CERN Document Server

    Offner, Stella S R

    2012-01-01

    The properties of unresolved protostars and their local environment (e.g., disk, envelope and outflow characteristics) are frequently inferred from spectral energy distributions (SEDs) through comparison with idealized model SEDs. However, if it is not possible to image a source and its environment directly, it is difficult to constrain and evaluate the accuracy of these derived properties. In this proceeding, I present a brief overview of the reliability of SED modeling by analyzing dust continuum synthetic observations of realistic simulations.

  13. Multiband Optical Observation of P/2010 A2 Dust Tail

    CERN Document Server

    Kim, Junhan; Hanayama, Hidekazu; Hasegawa, Sunao; Usui, Fumihiko; Yanagisawa, Kenshi; Sarugaku, Yuki; Watanabe, Jun-ichi; Yoshida, Michitoshi

    2012-01-01

    An inner main-belt asteroid, P/2010 A2, was discovered on January 6th, 2010. Based on its orbital elements, it is considered that the asteroid belongs to the Flora collisional family, where S-type asteroids are common, whilst showing a comet-like dust tail. Although analysis of images taken by the Hubble Space Telescope and Rosetta spacecraft suggested that the dust tail resulted from a recent head-on collision between asteroids (Jewitt et al. 2010; Snodgrass et al. 2010), an alternative idea of ice sublimation was suggested based on the morphological fitting of ground-based images (Moreno et al. 2010). Here, we report a multiband observation of P/2010 A2 made on January 2010 with a 105 cm telescope at the Ishigakijima Astronomical Observatory. Three broadband filters, $g'$, $R_c$, and $I_c$, were employed for the observation. The unique multiband data reveals that the reflectance spectrum of the P/2010 A2 dust tail resembles that of an Sq-type asteroid or that of ordinary chondrites rather than that of an S-...

  14. Constraints on the nature of dust particles by infrared observations

    CERN Document Server

    Kiss, C; Laureijs, R J; Moor, A; Birkmann, S M; Kiss, Cs.

    2006-01-01

    The far-infrared (FIR) emissivity of dust is an important parameter characterizing the physical properties of the grains. With the availability of stellar databases and far-infrared data from Infrared Space Observatory (ISO) it is possible to compare the optical and infrared properties of dust, and derive the far-infrared emissivity with respect to the optical extinction. In this paper we present the results of a systematic analysis of the FIR emissivity of interstellar clouds observed with ISOPHOT (the photometer onboard ISO) at least at two infrared wavelengths, one close to ~100um and one at 200um. We constructed FIR emission maps, determined dust temperatures, created extinction maps using 2MASS survey data, and calculated far-infrared emissivity for each of these clouds. We present the largest homogeneously reduced database constructed so far for this purpose. During the data analysis special care was taken on possible systematic errors. We find that far-infrared emissivity has a clear dependence on temp...

  15. Direct observations of the atmospheric processing of Asian mineral dust

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2006-05-01

    Full Text Available The accumulation of secondary acid products and ammonium on individual mineral dust particles during ACE-Asia has been measured in real-time using ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles corresponded to different air mass source regions. During volcanically influenced periods, dust mixed with sulphate dominated. This rapidly switched to dust predominantly mixed with chloride when the first Asian dust front reached the R/V Ronald Brown. We hypothesise that the high degree of mixing of dust with chloride was caused by the prior reaction of NOy(g and volcanic SO2(g with sea salt particles, reducing the availability of nitrate and sulphate precursors while releasing HCl(g, which then reacted with the incoming dust front. The segregation of sulphate from nitrate and chloride in individual dust particles is demonstrated for the first time. This is likely caused by the dust plume encountering elevated SO2(g in the Chinese interior before reaching coastal urban areas polluted by both SO2(g and NOx(g. This caused the fractions of dust mixed with nitrate and/or chloride to be strongly dependent on the total dust loadings, whereas dust mixed with sulphate did not show this same dust concentration dependence. Ammonium was also significantly mixed with dust and the amount correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent statements that they exist as an external mixture. The size distribution of the mixing state of dust with these secondary species validates previous models and mechanisms of the atmospheric processing of dust. The uptake of secondary acids was also dependent on the individual dust particle mineralogy; nitrate accumulated on calcium-rich dust while sulphate accumulated on aluminosilicate-rich dust. Oxidation of S

  16. Constraints on continued episodic inflation at Long Valley Caldera, based on seismic and geodetic observations

    Science.gov (United States)

    Feng, Lujia; Newman, Andrew V.

    2009-06-01

    Long Valley Caldera, a large and potentially explosive silicic system, has experienced highly anomalous continued inflation since late 1970s. We characterize an episode of rapid episodic uplift occurring between 2002 and 2003 following similar episodes of 1979-1980, 1983, 1989-1990, and 1997-1998. This most recent episode was the first to be observed by a dense array of 13 continuous Global Positioning System (GPS) stations. Similar to previously observed episodes of deformation, uplift is quasi-radially symmetric and is mostly explained by a compact pressure source located ˜3 km west of the resurgent dome. The maximum uplift during the 2002-2003 episode is ˜35 ± 8 mm, about 1/3 the magnitude but with a similar time-dependent behavior as the 1997-1998 episode. The horizontal source location is well constrained at -118.930°, 37.678°, for a small spherical source, and indistinguishable from the location of a vertically dipping prolate spheroidal source. A trade-off between depth and volume change is observed for both spherical and prolate models, with depth between 7.5 and 13.5 km and a volume change of 0.01-0.03 km3 at 95% confidence. For prolate spheroidal models, depth and volume change are additionally affected by the source axis ratio (b/a), which is greater than 0.55. Though the background seismicity remained low during the 2002-2003 episode, we identified a significant spike in activity during the maximum rate of uplift, similar to observations in both the much larger episodes in 1989-1990, and 1997-1998. More interestingly, we additionally find that all three episodes begin immediately after a short period of seismic quiescence, with background seismicity falling to levels below background levels following the prior uplift event. With the dense GPS coverage, we also identify increased opening of the Mono-Inyo volcanic chain after the 2002-2003 episode suggesting potential interaction of magmatic fluids between the two systems.

  17. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    Science.gov (United States)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  18. Observations of dust trapping phenomena in the TRISTAN accumulation ring and a study of dust removal in a beam chamber

    Science.gov (United States)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-04-01

    Using a gamma-ray detector and a television camera system for synchrotron light, high-energy bremsstrahlung and horizontal growth of the synchrotron light source were observed when sudden decrease in the electron-beam lifetime occurred due to dust trapping in the electron beam. Two types of beam current losses were found; one was a continuous beam current loss, and the other was a short-term beam current loss. High-energy bremsstrahlung at a location was observed in a short time and after that, the bremsstrahlung was not detected in spite of the occurrence of dust trapping phenomena. The fact suggests motions of the trapped dust particles in the longitudinal directions. Materials collected in the beam chamber are dust particles from ion pumps and dust particles made during the beam chamber processing for welding. Most of the collected dust particles were less than 2 mm in size and surfaces of some dust particles were melted with the electron beam. Simple analysis was carried out for the conditions necessary for a dust particle to be trapped, for motions of the trapped dust particle, and for interactions between the trapped dust particle and the electron beam. The analysis showed that a dust particle less than 3 mm in size, made of Al, can be trapped and that the trapped dust particle can move in the vertical and longitudinal directions. The analysis also suggested that a dust particle in size of about 2 mm can be continuously trapped around the electron beam without being destroyed by the electron beam. Furthermore, the analysis explained the difference between the two types of beam current losses observed in the ring. Experiments which simulate the electron beam using a Cu wire in an evacuated beam chamber show that a dust particle (less than 70 μm) is trapped sufficiently. The experiments also coincide with theory for an attractive force acting to a conducting small particle. The calculated electric field of the electron beam and the calculated electric charge

  19. Observational evidence of dust evolution in galactic extinction curves

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Palermo, P.zza Parlamento 1, I-90134 Palermo (Italy); Casu, Silvia; Mulas, Giacomo [INAF-Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Zonca, Alberto, E-mail: cecchi-pestellini@astropa.unipa.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: azonca@oa-cagliari.inaf.it [Dipartimento di Fisica, Università di Cagliari, Strada Prov.le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2014-04-10

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds. Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.

  20. Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    . The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk......We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling...... of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31...

  1. Saharan mineral dust outbreaks observed over the North Atlantic island of La Palma in summertime between 1984 and 2012

    CERN Document Server

    Laken, Benjamin A; Pallé, Enric; Shahbaz, Tariq

    2013-01-01

    We estimate the frequency of Saharan mineral dust outbreak events observed over the North Atlantic island of La Palma based on in situ nightly atmospheric extinction measurements recorded almost continuously since 1984 by the Carlsberg Meridian Telescope at the Roque de los Muchachos observatory. The outbreak frequency shows a well-defined seasonal peak in the months of July to September, during which time the occurrence of Saharan dust events (SDEs) is approximately 28\\pm6%. We find considerable year-to-year variability in the summertime SDEs frequency, observing a steady reduction between 1984 and 1997, followed by a period of relative mean stability from 1999 to 2012. We investigated changes in the atmospheric extinction of the SDEs as an indicator of strength of the episodes and found that this parameter approximately follows the SDE frequency, however, instrumental limitations prevented us from deriving precise conclusions regarding their long-term changes. A lagged correlation analysis between SDE prope...

  2. Observations of smoke and mineral dust over Eastern Mediterranean

    Science.gov (United States)

    Nisantzi, Argyro; Elisavet Mamouri, Rodanthi; Hadjimitsis, Diofandos; Ansmann, Albert

    2016-04-01

    Four-year combined observations (2010-2014) with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7 N, 33 E), Cyprus, Eastern Mediterranean, were used in order to study the soil dust content in lofted fire smoke plumes. This study focuses on air masses advected from Turkey as well regions further north of Black Sea during the main burning season (summer half year). Cases with strong impact of smoke events (occurring over Turkey during 1-3 days before arrival at Limassol) and observations with more background-like aerosol signatures (not influenced by Turkish fire smoke) were separated. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR), measured with lidar, shown that PDR was typically 10-15% when Turkish fires contributed to the aerosol burden in the free troposphere and considerably lower with values 3-8% when fires over Turkey were absent while the air masses cross this country. High Ångström exponents of 1.4-2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When PDR plotted vs. travel time (spatial distance between Limassol and last fire area), PDR decreased strongly from initial values around 16-18% (1 day travel) to 4-8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Biomass burning should therefore be considered as another source of free tropospheric soil dust.

  3. Experimental observation of crystalline particle flows in toroidal dust clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jochen, E-mail: wilms@physik.uni-kiel.de; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); Reichstein, Torben [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); DME, Kiel University of Applied Sciences, Grenzstr. 3, D-24147 Kiel (Germany)

    2015-06-15

    The dust flow in a toroidal dust trap is studied experimentally. The flow is driven by the Hall component of the ion drag force in a magnetized plasma. Dust density waves are found in a torus with a large minor radius a, which allows for several wavelength, 2a>5λ, in the (mostly) radial direction of the ion flow. Beyond an intermediate state with radial sloshing oscillations, a crystalline dust flow with suppressed wave activity could be realized for 2a<2λ. The particles arrange themselves in distinct layers with hexagonal-like local order. Smooth transitions between states with different numbers of layers are found in the inhomogeneous flow.

  4. SEPPCoN: Comet Dust and Activity at Moderate Heliocentric Distances as Observed with Spitzer

    Science.gov (United States)

    Kelley, Michael S.; Fernández, Y. R.; Reach, W. T.; Lisse, C. M.; A'Hearn, M. F.; Bauer, J. M.; Campins, H.; Fitzsimmons, A.; Groussin, O.; Lamy, P. L.; Licandro, J.; Lowry, S. C.; Meech, K. J.; Pittichova, J.; Toth, I.; Weaver, H. A.

    2007-10-01

    A Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN) is underway to characterize the nuclei of 100 Jupiter-family comets (JFC). The survey combines both visible and mid-infrared observations to measure the JFC size and albedo distributions. We inspected Spitzer Space Telescope MIPS and IRS images of the survey targets for dust comae, tails, and trails. Out of 98 observed comets, we found 32 to have some emission from dust outside of the central point source. A few of these sources were also observed to have dust in visible, ground-based data. The heliocentric distances (rh) of the 32 targets range from 3.5 to 6.5 AU, with most between 4 and 5 AU. We derive color-temperatures for the 20 dust detections observed in both the 16 and 22 micron IRS cameras and find the color-temperature approximately varies as 280*rh^(-0.5) [K], as expected for isothermal low-albedo dust in local thermodynamic equilibrium. We discuss the evidence for outliers from this trend. We compare our observations to dust syndynes and 3-dimensional dust models to distinguish dust trails from dust tails. Unlike dust tails, dust trails only weakly respond to solar radiation pressure and, therefore, likely represent the largest (> 1 mm) grains ejected from the nucleus. We also compare observations to model images in order to determine the extent of recent coma activity. Water sublimation is expected to be greatly extinguished on comet surfaces by 3.5 AU. Dust structures observed outside of this rh could arise from recent coma activity (timescales up to weeks) caused by the sublimation of highly volatile ices (such as CO2) or the crystallization of amorphous water ice. Alternatively, the observed dust may be slowly dispersing grains ejected at a much earlier epoch (timescales up to years) when water sublimation dominated coma activity.

  5. Determination of Net Martian Polar Dust Flux from MGS-TES Observations

    Science.gov (United States)

    Blackmon, M. A.; Murphy, J. R.

    2003-01-01

    Using atmospheric dust abundance and atmospheric temperature observation data from the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS), the net flux of dust into and out of the Martian polar regions will be examined. Mars polar regions possess layered terrain , believed to be comprised of a mixture of ice and dust, with the different layers possibly representing different past climate regimes. These changes in climate may reflect changes in the deposition of dust and volatiles through impacts, volcanism, changes in resources of ice and dust, and response to Milankovitch type cycles (changes in eccentricity of orbit, obliquity and precession of axis). Understanding how rapidly such layers can be generated is an important element to understanding Mars climate history. This study uses the observed vertical temperature data and dust content measurements from TES to analyze the sign (gain or loss) of dust at high latitudes.

  6. Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations

    Science.gov (United States)

    Zhang, Huan; Bo, Tian-Li; Zheng, Xiaojing

    2017-03-01

    Dusty phenomena, such as wind-blown sand, dust devils, and dust storms, play key roles in Earth's climate and geological processes. Dust electrification considerably affects the lifting and transport of dust particles. However, the electrical properties of dust storms remain poorly understood. Here, we conducted multi-parameter measurements and theoretical calculations to investigate the electrical properties of dust storms and their application to dust storm prediction. The results show that the vertical electric field (E-field) decreases first, then increases, and finally decreases with the height above the ground, reversing its direction at two heights, ∼ 8- 12 and ∼ 24 m. This suggests that the charge polarity of dust particles changes from negative to positive and back to negative again as the height increases. By carefully analyzing the E-field and dust concentration data, we further found that there is a significant positive linear relationship between the measured E-field intensity and dust concentration at the given ambient conditions. In addition, measurements and calculations demonstrate that a substantial enhancement in the vertical E-field can be observed several hours before the arrival of the external-source dust storms, indicating that the E-field can be used to provide an early warning of external-source dust storms.

  7. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013.

    Science.gov (United States)

    Diokhane, Aminata Mbow; Jenkins, Gregory S; Manga, Noel; Drame, Mamadou S; Mbodji, Boubacar

    2016-04-01

    The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.

  8. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013

    Science.gov (United States)

    Diokhane, Aminata Mbow; Jenkins, Gregory S.; Manga, Noel; Drame, Mamadou S.; Mbodji, Boubacar

    2016-04-01

    The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.

  9. Chemical characteristics of PM2.5-0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon

    Science.gov (United States)

    Borgie, Mireille; Ledoux, Frédéric; Dagher, Zeina; Verdin, Anthony; Cazier, Fabrice; Courcot, Lucie; Shirali, Pirouz; Greige-Gerges, Hélène; Courcot, Dominique

    2016-11-01

    Located on the eastern side of the Mediterranean Basin at the intersection of air masses circulating between three continents, the agglomeration of Beirut, capital of Lebanon is an important investigating area for air pollution and more studies are needed to elucidate the composition of the smallest particles classified as carcinogenic to humans. PM2.5-0.3 and PM0.3 samples were collected during the spring-summer period in an urban background site of Beirut, after a dust storm episode occurred, and their chemical composition was determined. Our findings showed that components formed by gas to particle conversion (SO42 - and NH4+) and related to combustion processes are mainly found in the PM0.3 fraction. Typical crustal (Ca2+, Fe, Ti, Mg2+), sea-salt (Na+, Cl-, Mg2+, Sr) species, and NO3- are mainly associated with the PM2.5-0.3 fraction. We have also evidenced that the dust episode which occurred in Lebanon in May 2011 originated from the Iraqian and Syrian deserts, which are the least studied, and had a direct influence on the composition of PM2.5-0.3 during the beginning of the first sampling period, and then an indirect and persistent influence by the re-suspension of deposited dust particles. Moreover, PAHs concentrations were much higher in PM0.3 than in PM2.5-0.3 and their composition appeared influenced by diesel (buses, trucks and generator sets) and gasoline (private cars) emissions.

  10. Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946

    CERN Document Server

    Aniano, G; Calzetti, D; Dale, D A; Engelbracht, C W; Gordon, K D; Hunt, L K; Kennicutt, R C; Krause, O; Leroy, A K; Rix, H-W; Roussel, H; Sandstrom, K; Sauvage, M; Walter, F; Armus, L; Bolatto, A D; Crocker, A; Meyer, J Donovan; Galametz, M; Helou, G; Hinz, J; Johnson, B D; Koda, J; Montiel, E; Murphy, E J; Skibba, R; Smith, J -D T; Wolfire, M G

    2012-01-01

    We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by...

  11. Derivation of an observation-based map of North African dust emission

    Energy Technology Data Exchange (ETDEWEB)

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, C.; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  12. The Aggression Observation Short Form identified episodes not reported on the Staff Observation Aggression Scale--Revised.

    Science.gov (United States)

    Hvidhjelm, Jacob; Sestoft, Dorte; Bjørner, Jakob Bue

    2014-06-01

    The purpose of this study is to evaluate the underreporting of violence and aggression on the Staff Observation Aggression Scale-Revised (SOAS-R) when compared to a simpler assessment: the Aggression Observation Short Form (AOS). During a period of one year, two open and two closed wards gathered data on both the SOAS-R and the AOS for all of their patients. The 22-item SOAS-R is to be filled out after each violent episode. The 3-item AOS is to be filled out during each shift and should also record the absence of violence. The SOAS-R registered 703 incidents and the AOS registered 1,281 incidents. The agreement between the SOAS-R and the AOS was good (kappa = 0.65, 95% CI = 0.62-0.67). Among the 1,281 AOS episodes, 51% were also registered on the SOAS-R. For the 176 AOS episodes with harm, 42% were also registered on the SOAS-R. We found 44% missing registrations on the AOS, primarily for open wards and for patients with short admission lengths. Standard instruments such as the SOAS-R underreport aggressive episodes by 45% or more. Underreporting can be reduced by introducing shorter instruments, but it cannot be completely eliminated.

  13. Protection of SAAO observing site against light and dust pollution

    Science.gov (United States)

    Sefako, Ramotholo; Väisänen, Petri

    2016-10-01

    The South African Astronomical Observatory (SAAO) observing station near Sutherland, Northern Cape in South Africa, is one of the darkest sites in the world for optical and IR astronomy. The SAAO hosts and operates several facilities, including the Southern African Large Telescope (SALT) and a number of international robotic telescopes. To ensure that the conditions remain optimal for astronomy, legislation called the Astronomy Geographic Advantage (AGA) Act, of 2007, was enacted. The Act empowers the Department of Science and Technology (DST) to regulate issues that pose a threat to optical and/or radio astronomy in areas declared Astronomy Advantage Areas in South Africa. For optical astronomy, the main challenges are those posed by light and dust pollution as result of wind energy developments, and petroleum gas and oil exploration/exploitation in the area. We give an update of possible threats to the quality of the night skies at SAAO, and the challenges relating to the AGA Act implementation and enforcement. We discuss measures that are put in place to protect the Observatory, including a study to quantify the threat by a planned wind energy facility.

  14. An Investigation of Dust Storms Observed with the Mars Color Imager

    Science.gov (United States)

    Guzewich, Scott D.; Toigo, Anthony D.; Wang, Huiqun

    2017-01-01

    Daily global imaging by the Mars Color Imager (MARCI) continues the record of the Mars Orbiter Camera (MOC) and has allowed creation of a long-duration record of Martian dust storms. We observe dust storms over the first two Mars years of the MARCI record, including tracking individual storms over multiple sols, as well as tracking the growth and recession of the seasonal polar caps. Using the combined 6 Mars year record of textured dust storms (storms with visible textures on the observed dust cloud tops), we study the relationship between textured dust storm activity and meteorology (as simulated by the MarsWRF general circulation model) and surface properties. We find that textured dust storms preferentially occur in places and seasons with above average surface wind stress. Textured dust storm occurrence also has a modest linear anti-correlation with surface albedo (0.43) and topography (0.40). Lastly, we perform an empirical orthogonal function (EOF) analysis on the distribution of occurrence of textured dust storms and find that over 50 of the variance in textured dust storm activity can be explained by two EOF modes. We associate the first EOF mode with cap-edge storms just before Ls = 180deg and the second EOF mode with flushing dust storms that occur from Ls = 180-210deg and again near Ls = 320deg.

  15. An investigation of dust storms observed with the Mars Color Imager

    Science.gov (United States)

    Guzewich, Scott D.; Toigo, Anthony D.; Wang, Huiqun

    2017-06-01

    Daily global imaging by the Mars Color Imager (MARCI) continues the record of the Mars Orbiter Camera (MOC) and has allowed creation of a long-duration record of Martian dust storms. We observe dust storms over the first two Mars years of the MARCI record, including tracking individual storms over multiple sols, as well as tracking the growth and recession of the seasonal polar caps. Using the combined 6 Mars year record of textured dust storms (storms with visible textures on the observed dust cloud tops), we study the relationship between textured dust storm activity and meteorology (as simulated by the MarsWRF general circulation model) and surface properties. We find that textured dust storms preferentially occur in places and seasons with above average surface wind stress. Textured dust storm occurrence also has a modest linear anti-correlation with surface albedo (-0.43) and topography (-0.40). Lastly, we perform an empirical orthogonal function (EOF) analysis on the distribution of occurrence of textured dust storms and find that over 50% of the variance in textured dust storm activity can be explained by two EOF modes. We associate the first EOF mode with cap-edge storms just before Ls = 180° and the second EOF mode with flushing dust storms that occur from Ls = 180-210° and again near Ls = 320°.

  16. Multi-decadal and seasonal variability of dust observations in West Greenland.

    Science.gov (United States)

    Bullard, Joanna E.; Mockford, Tom

    2017-04-01

    Since the early 1900s expedition records from west Greenland have reported local dust storms. The Kangerlussuaq region, near the inland ice, is dry (mean annual precipitation WMO weather codes 6 (dust haze), 7 (raised dust or sand) and 9 (distant or past dust storm) and associated wind data. The 70-year average number of dust observations days is 5 per year but variable ranging from 0 observations to 23 observations in 1985. Over the past 7 decades the number of dust days has increased from 75 in 1995-2004 and 2005-2015. The seasonality of dust observations has remained consistent throughout most of the period. Dust days occur all year round but are most frequent in May-June and September-October and are associated with minimum snow cover and glacial meltwater-driven sediment supply to the outwash plains during spring and fall flood events. Wind regime is bimodal dominated by katabatic winds from the northeast, which are strongest and most frequent during winter months (Nov-Jan), with less frequent, southwesterly winds generated by Atlantic storms mostly confined to spring (May, June). The southwesterly winds are those most likely to transport dust onto the Greenland ice sheet.

  17. Global sand and dust storms in 2008: Observation and HYSPLIT model verification

    Science.gov (United States)

    Wang, Yaqiang; Stein, Ariel F.; Draxler, Roland R.; de la Rosa, Jesús D.; Zhang, Xiaoye

    2011-11-01

    The HYSPLIT model has been applied to simulate the global dust distribution for 2008 using two different dust emission schemes. The first one assumes that emissions could occur from any land-use grid cell defined in the model as desert. The second emission approach uses an empirically derived algorithm based on satellite observations. To investigate the dust storm features and verify the model performance, a global dataset of Integrated Surface Hourly (ISH) observations has been analyzed to map the spatial distribution and seasonal variation of sand and dust storms. Furthermore, the PM 10 concentration data at four stations in Northern China and two stations in Southern Spain, and the AOD data from a station located at the center of the Sahara Desert have been compared with the model results. The spatial distribution of observed dust storm frequency from ISH shows the known high frequency areas located in North Africa, the Middle East, Mongolia and Northwestern China. Some sand and dust storms have also been observed in Australia, Mexico, Argentina, and other sites in South America. Most of the dust events in East Asia occur in the spring, however this seasonal feature is not so evident in other dust source regions. In general, the model reproduces the dust storm frequency for most of the regions for the two emission approaches. Also, a good quantitative performance is achieved at the ground stations in Southern Spain and Western China when using the desert land-use based emissions, although HYSPLIT overestimates the dust concentration at downwind areas of East Asia and underestimates the column in the center of the Saharan Desert. On the other hand, the satellite based emission approach improves the dust forecast performance in the Sahara, but underestimates the dust concentrations in East Asia.

  18. Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007

    Science.gov (United States)

    Kao, Honn; Shan, Shao-Ju; Dragert, Herb; Rogers, Garry

    2009-11-01

    We analyze continuous seismic and GPS records collected in the last decade (1997-2007) to establish the most comprehensive observational basis for northern Cascadia episodic tremor and slip (ETS) events. A simple "ETS scale" system, using a combination of a letter and a digit, is proposed to quantitatively characterize the spatial and temporal dimensions of ETS events. Clear correlation between GPS and tremor signals is observed for all A/B class episodes, but the GPS signature is less obvious for minor ones. Regular ETS recurrence can be established only for A/B class episodes in southern Vancouver Island. Halting and jumping are very common in ETS migration patterns, and along-strike migration can happen in both directions. A prominent tremor gap is observed in midisland around 49.5°N. This gap coincides with the epicenters of the only two large earthquakes beneath Vancouver Island. ETS tremors also tend to occur in places where the local seismicity is relatively sparse. The tremor depth distribution shows a peak in the 25-35 km range where strong seismic reflectors (i.e., the E layer) are documented. Detailed waveform analysis confirms the existence of shallow tremors above the currently interpreted plate interface. Our results suggest that a significant portion of the tremor activity and perhaps associated shearing are taking place along well-developed structures such as the E layer, while fewer tremor bursts are generated elsewhere in response to the induced stress variation throughout the source volume.

  19. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    CERN Document Server

    Ade, P A R; Alves, M I R; Aniano, G; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Couchot, F; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Dore, O; Douspis, M; Draine, B T; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Holmes, W A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihanen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Macias-Perez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschenes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Natoli, P; Norgaard-Nielsen, H U; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ristorcelli, I; Rocha, G; Roudier, G; Rubio-Martin, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Spencer, L D; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Ysard, N; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We present all-sky dust modelling of the high resolution Planck, IRAS and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL). We study the performance of this model and present implications for future dust modelling. The present work extends to the full sky the dust modelling carried out on nearby galaxies using Herschel and Spitzer data. We employ the DL dust model to generate maps of the dust mass surface density, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. We test the model by comparing these maps with independent estimates of the dust optical extinction AV . In molecular clouds, we compare the DL AV estimates with maps generated from stellar optical observations from the 2MASS survey. The DL AV estimates are a factor of about 3 larger than values estimated from 2MASS observations. In the diffuse interstellar medium (ISM) we compare the DL optical extinction AV estimates with optical est...

  20. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    Directory of Open Access Journals (Sweden)

    C. L. Ryder

    2015-01-01

    Full Text Available The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1 the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL, (2 dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3 vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4 in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5 dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL, (6 airborne observations of a dust storm associated with a cold-pool (haboob issued from deep convection over the Atlas, (7 the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations and absorption properties between 2011 and 2012, (8 coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9 discrepancies between airborne coarse mode size distributions and AERONET sunphotometer

  1. An Observational and Numerical Study on the Topographic Influence on Dust Transport in East Asia

    Institute of Scientific and Technical Information of China (English)

    JIANG Xuegong; CHEN Shoujun

    2009-01-01

    Based on observations and numerical simulations, the topographic impacts on dust transport in East Asia were studied. Two regions frequently attacked by dust storms have been confirmed: one is the western part of Inner Mongolia and the southern Mongolia (namely the Mongolia Plateau), and the other is the Tarim Basin.The most frequent dust storm occurrence area within the first region appears in its hinterland while that of the second one lies in its southern boundary. Moreover, the region from the northeastern edge of the Tibetan Plateau (TP) to the Loess Plateau is attacked by dust storms second frequently. The dust storms frequently occurring over the Mongolia Plateau are related not only to the abundant sand and dust sources, but also to the special topographic conditions of East Asia. The most significant factor that influences the dust storms forming in the hinterland of the Mongolia Plateau is the canyon low level jet (CLLJ), which dominates around the southern areas of the Altay-Sayan Mountains with an east-west direction in the beginning of its formation, and is accompanied by significantly enhanced surface wind afterwards. Due to the obstructive effects of the CLLJ, a lot of dust particles carried by the southward down-slope cold air mass would pile up over the southern slope of the Sayan Mountains. Meanwhile, uneven surface conditions are favorable for the dust particles to go up into the upper atmosphere. With the dust particles piling up continuously, a dust layer is formed in the troposphere and can be recognized as a "dust accumulating container", which provides abundant dust particles to be transported later to the downstream areas. Additionally, the topographic features of East Asia also exert a great influence on dust transport. Generally, the easterly CLLJ enhances the easterly dust transport. The down-slope air current over the southern Sayan Mountains and the air flow surrounding the TP near its northeastern edge enhance the southward dust

  2. Modelling and Observation of Mineral Dust Optical Properties over Central Europe

    Science.gov (United States)

    Chilinski, Michał T.; Markowicz, Krzysztof M.; Zawadzka, Olga; Stachlewska, Iwona S.; Kumala, Wojciech; Petelski, Tomasz; Makuch, Przemysław; Westphal, Douglas L.; Zagajewski, Bogdan

    2016-12-01

    This paper is focused on Saharan dust transport to Central Europe/Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth ( 0.04-0.05, 550 nm) in April-May, but the MACC modeled peak is broader ( 0.04). During occurrence of mineral dust over Central-Europe for 14% (NAAPS) / 12% (MACC) of days dust optical depths are above 0.05 and during 4% (NAAPS) / 2.5% (MACC) of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June-July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sun-photometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.

  3. Modelling and Observation of Mineral Dust Optical Properties over Central Europe

    Directory of Open Access Journals (Sweden)

    Chilinski Michał T.

    2016-12-01

    Full Text Available This paper is focused on Saharan dust transport to Central Europe/Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth (~0.04-0.05, 550 nm in April-May, but the MACC modeled peak is broader (~0.04. During occurrence of mineral dust over Central-Europe for 14% (NAAPS / 12% (MACC of days dust optical depths are above 0.05 and during 4% (NAAPS / 2.5% (MACC of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June-July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sun-photometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.

  4. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    by micrometeoroid impacts on the solar arrays. The majority of detections occurred just prior to and shortly after Juno's transit of the asteroid belt. This rather novel detection technique utilizes the Juno spacecraft's prodigious 60 m2 of solar array as a dust detector and provides valuable information...

  5. Mars: Correcting surface albedo observations for effects of atmospheric dust loading

    Science.gov (United States)

    Lee, S. W.; Clancy, R. T.

    1992-01-01

    We have developed a radiative transfer model which allows the effects of atmospheric dust loading on surface albedo to be investigated. This model incorporates atmospheric dust opacity, the single scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and variable lighting and viewing geometry. The most recent dust particle properties are utilized. The spatial and temporal variability of atmospheric opacity (Tan) strongly influences the radiative transfer modelling results. We are currently using the approach described to determine Tan for IRTM mapping sequences of selected regions. This approach allows Tan to be determined at the highest spatial and temporal resolution supported by the IRTM data. Applying the radiative transfer modelling and determination of Tan described, IRTM visual brightness observations can be corrected for the effects of atmospheric dust loading a variety of locations and times. This approach allows maps of 'dust-corrected surface albedo' to be constructed for selected regions. Information on the variability of surface albedo and the amount of dust deposition/erosion related to such variability results. To date, this study indicates that atmospheric dust loading has a significant effect on observations of surface albedo, amounting to albedo corrections of as much as several tens of percent. This correction is not constant or linear, but depends upon surface albedo, viewing and lighting geometry, the dust and surface phase functions, and the atmospheric opacity. It is clear that the quantitative study of surface albedo, especially where small variations in observed albedo are important (such as photometric analyses), needs to account for the effects of the atmospheric dust loading. Maps of 'dust-corrected surface albedo' will be presented for a number of regions.

  6. Observation of a Dust Storm during 2015 Spring over Beijing, China

    Science.gov (United States)

    Lv, Y.; Li, D.; Li, Z.; Chen, X.; Xu, H.; Liu, Z.; Qie, L.; Zhang, Y.; Li, K.; Ma, Y.

    2015-12-01

    Dust events bring significant impacts on the regional environment, human health and even climate. There are four major dust explosion areas in the world, such as North America, Australia, Central Asia and Middle East. Located in the Central Asia, North China has a severe desertification because of deforestation and excessive population growth. Beijing is at the fork of three dust transmission paths in Chin, which makes it a dust-prone region for a long history especially in spring. Thanks to the improvement of the ecological environment in Mongolia, the number of dust weather in recent years reduced significantly than before. However, as the spring coming earlier for the relatively high temperature, a severe dust weather process happened suddenly on March 28, 2015 following with the long-term hazy weather, which up to the highest intensity in the nearly two years. A set of ground-based observations for this serious dust event were adopted in this paper. The ground-based remote sensing station is equipped with an automatic CIMEL lidar and an AERONET sun-photometer. Aerosol optical depth (AOD) and aerosol size distribution were measured by sun-photometer. AOD of dust reached 2.0 at 532nm, which was much larger than clear days. And there was an obvious trend that coarse mode increases more significantly and quickly than fine mode when a dust storm occurs. At the same time, data provided by the air quality monitoring and analysis platform of China shown that the PM10 concentration was larger than 1000μg/m3 and PM10 made important contribution to the high AQI. Lidar observation clearly shown the dust spread very tall (higher than 1km) when the dust storm occurrence. After the dust dissipating, the planetary boundary layer roughly from 0 to 3km, aerosol has a very widely vertical distribution. The AOD based on sun-photometer were taken as a constraint, 65 sr were retrieved and analyzed. And the extinction coefficients indicated that the dust had been dissipation near

  7. MISR Decadal Observations of Mineral Dust: Property Characterization and Climate Applications

    Science.gov (United States)

    Kalashnikova, Olga V.; Garay, Michael J.; Sokolik, Irina; Kahn, Ralph A.; Lyapustin, A.; Diner, David J.; Lee, Jae N.; Torres, Omar; Leptoukh, Gregory G.; Sabbah, Ismail

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and 200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.

  8. The Aggression Observation Short Form Identified Episodes Not Reported on the Staff Observation Aggression Scale-Revised

    DEFF Research Database (Denmark)

    Hvidhjelm, Jacob; Sestoft, Dorte; Bjørner, Jakob Bue

    2014-01-01

    The purpose of this study is to evaluate the underreporting of violence and aggression on the Staff Observation Aggression Scale-Revised (SOAS-R) when compared to a simpler assessment: the Aggression Observation Short Form (AOS). During a period of one year, two open and two closed wards gathered...... for open wards and for patients with short admission lengths. Standard instruments such as the SOAS-R underreport aggressive episodes by 45% or more. Underreporting can be reduced by introducing shorter instruments, but it cannot be completely eliminated....

  9. Dust forecast over North Africa: verification with satellite and ground based observations

    Science.gov (United States)

    Singh, Aditi; Kumar, Sumit; George, John P.

    2016-05-01

    Arid regions of North Africa are considered as one of the major dust source. Present study focuses on the forecast of aerosol optical depth (AOD) of dust over different regions of North Africa. NCMRWF Unified Model (NCUM) produces dust AOD forecasts at different wavelengths with lead time upto 240 hr, based on 00UTC initial conditions. Model forecast of dust AOD at 550 nm up to 72 hr forecast, based on different initial conditions are verified against satellite and ground based observations of total AOD during May-June 2014 with the assumption that except dust, presence of all other aerosols type are negligible. Location specific and geographical distribution of dust AOD forecast is verified against Aerosol Robotic Network (AERONET) station observations of total and coarse mode AOD. Moderate Resolution Imaging Spectroradiometer (MODIS) dark target and deep blue merged level 3 total aerosol optical depth (AOD) at 550 nm and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrieved dust AOD at 532 nm are also used for verification. CALIOP dust AOD was obtained by vertical integration of aerosol extinction coefficient at 532 nm from the aerosol profile level 2 products. It is found that at all the selected AERONET stations, the trend in dust AODs is well predicted by NCUM up to three days advance. Good correlation, with consistently low bias (~ +/-0.06) and RMSE (~ 0.2) values, is found between model forecasts and point measurements of AERONET, except over one location Cinzana (Mali). Model forecast consistently overestimated the dust AOD compared to CALIOP dust AOD, with a bias of 0.25 and RMSE of 0.40.

  10. The representation of dust transport and missing urban sources as major issues for the simulation of PM episodes in a Mediterranean area

    Directory of Open Access Journals (Sweden)

    E. Flaounas

    2009-10-01

    Full Text Available Due to its adverse effects on human health, atmospheric particulate matter (PM constitutes a growing challenge for air quality management. It is also a complex subject of study. The understanding of its atmospheric evolution is indeed made difficult by the wide number of sources and the numerous processes that govern its evolution in the troposphere. As a consequence, the representation of particulate matter in chemistry-transport models needs to be permanently evaluated and enhanced in order to refine our comprehension of PM pollution events and to propose consistent environmental policies. The study presented here focuses on two successive summer particulate pollution episodes that occurred on the French Mediterranean coast. We identify and analyze the constitutive elements of the first and more massive episode and we discuss their representation within a eulerian model.

    The results show that the model fails in reproducing the variability and the amplitude of dust import from western Africa, and that it constitutes a strong bias in PM daily forecasts. We then focus on the lack of diurnal variability in the model, which is attributed to missing urban sources in standard emission inventories, and notably the resuspension of particles by urban road traffic. Through a sensitivity study based on PM and NOx measurements, we assess the sensitivity of PM to local emissions and the need to reconsider road traffic PM sources. In parallel, by coupling the CHIMERE-DUST model outputs to our simulation, we show that the representation of transcontinental dust transport allows a much better representation of atmospheric particles in southern France, and that it is needed in the frame of air quality management for the quantification of the anthropogenic part of particulate matter pollution.

  11. Northern Cascadia Episodic Tremor and Slip: A Decade of Observations from 1997 to 2007

    Science.gov (United States)

    Kao, H.; Shan, S.; Dragert, H.; Rogers, G.; Ito, Y.

    2008-12-01

    We analyze continuous seismic and GPS records collected in the last decade (1997-2007) to establish the most comprehensive observational basis for northern Cascadia episodic tremor and slip (ETS) events. A simple ¡§ETS scale¡¨ system, using a combination of a letter and a digit, is proposed to quantitatively characterize the spatial and temporal dimensions of ETS events. Clear correlation between GPS and tremor signals is observed for all major episodes with lateral dimension >150 km (i.e., A- or B-class), but the GPS signature is less obvious for minor ones. Regular ETS recurrence can be established only for A-/B-class episodes in southern Vancouver Island. Halting and jumping are very common in ETS migration patterns, and along-strike migration can happen in both directions. A prominent tremor gap is observed in mid island around 49.5N. This gap coincides with the epicenters of the only two large documented crustal earthquakes in the region. ETS tremors also tend to occur in places where the local seismicity is relatively sparse. The tremor depth distribution shows a peak in the 25-35 km range where strong seismic reflectors (i.e., the E- layer) are documented. Existence of tremors in the vicinity of E-layer is also confirmed by an independent waveform analysis. More significantly, we have found a few very-low-frequency earthquakes (VLFE) at the depth of E-layer showing low-angle thrust faulting mechanisms. Our results suggest that a significant portion of the tremor activity and perhaps associated shearing are taking place along well-developed structures such as the E-layer, while a reduced number of tremor bursts are generated elsewhere in response to induced stress variation throughout the source volume.

  12. Accuracy of core mass estimates in simulated observations of dust emission

    CERN Document Server

    Malinen, J; Collins, D C; Lunttila, T; Padoan, P

    2010-01-01

    We study the use of sub-millimetre dust emission in the estimation of the masses of molecular cloud cores. We want to determine the reliability of the mass estimates and at what level the observational biases are visible in the derived clump mass spectra. We use magnetohydrodynamic simulations and radiative transfer calculations to produce synthetic observations of dust emission. The synthetic maps have a spatial resolution and noise levels typical of the current Herschel surveys. Based on these data we estimate the dust temperatures and the column densities and compare the 'observed' core masses to the true values. We study the effects of spatial variations of dust properties. With high resolution adaptive mesh refinement simulations we also investigate how protostellar sources embedded in the cores affect the mass estimates. The shape, although not the position, of the mass spectrum is very reliable against observational errors. However, the core masses will be strongly underestimated in cores that have opt...

  13. Dust Count Observations March 1933 - August 1933 in College-Fairbanks, AK

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are daily dust count observations taken in College-Fairbanks, Alaska from 23 March 1933 to 29 August 1933. The data are part of a larger collection titled...

  14. The Exozodiacal Dust Problem for Direct Observations of ExoEarths

    CERN Document Server

    Roberge, Aki; Millan-Gabet, Rafael; Weinberger, Alycia J; Hinz, Philip M; Stapelfeldt, Karl R; Absil, Olivier; Kuchner, Marc J; Bryden, Geoffrey

    2012-01-01

    Debris dust in the habitable zones of stars - otherwise known as exozodiacal dust - comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the Solar System's zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this paper, we qualitatively assess the primary impact of exozodical dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detec...

  15. Martian airfall dust on smooth, inclined surfaces as observed on the Phoenix Mars Lander telltale mirror

    Science.gov (United States)

    Moores, John E.; Ha, Taesung; Lemmon, Mark T.; Gunnlaugsson, Haraldur Páll

    2015-10-01

    The telltale mirror, a smooth inclined surface raised over 1 m above the deck of the Phoenix Mars Lander, was observed by the Surface Stereo Imager (SSI) several times per sol during the Phoenix Mars Lander mission. These observations were combined with a radiative transfer model to determine the thickness of dust on the wind telltale mirror as a function of time. 239 telltale sequences were analyzed and dustiness was determined on a diurnal and seasonal basis. The thickness of accumulated dust did not follow any particular diurnal or seasonal trend. The dust thickness on the mirror over the mission was 0.82±0.39 μm, which suggests a similar thickness to the modal scattering particle diameter. This suggests that inclining a surface beyond the angle of repose and polishing it to remove surface imperfections is an effective way to mitigate the accumulation of dust to less than a micron over a wide range of meteorological conditions and could be beneficial for surfaces which can tolerate some dust but not thick accumulations, such as solar panels. However, such a surface will not remain completely dust free through this action alone and mechanical or electrical clearing must be employed to remove adhered dust if a pristine surface is required. The single-scattering phase function of the dust on the mirror was consistent with the single-scattering phase function of martian aerosol dust at 450 nm, suggesting that this result is inconsistent with models of the atmosphere which require vertically or horizontally separated components or broad size distributions to explain the scattering behavior of these aerosols in the blue. The single-scattering behavior of the dust on the mirror is also consistent with Hapke modeling of spherical particles. The presence of a monolayer of particles would tend to support the spherical conclusion: such particles would be most strongly adhered electrostatically.

  16. Interstellar dust modelling: Interfacing laboratory, theoretical and observational studies (The THEMIS model)

    CERN Document Server

    Jones, Ant

    2015-01-01

    The construction of viable and physically-realistic interstellar dust models is only possible if the constraints imposed by laboratory data on interstellar dust analogue materials are respected and used within a meaningful theoretical framework. These physical dust models can then be directly compared to observations without the need for any tuning to fit the observations. Such models will generally fail to achieve the excellent fits to observations that empirical models are able to achieve. However, the physically-realistic approach will necessarily lead to a deeper insight and a fuller understanding of the nature and evolution of interstellar dust. The THEMIS modelling approach, based on (hydrogenated) amorphous carbons and amorphous silicates with metallic Fe and/or FeS nano-inclusions appears to be a promising move in this direction.

  17. Dust variations in the diffuse interstellar medium: constraints on Milky Way dust from Planck-HFI observations

    CERN Document Server

    Ysard, N; Jones, A; Miville-Deschênes, M -A; Abergel, A; Fanciullo, L

    2015-01-01

    The Planck-HFI all-sky survey from 353 to 857GHz combined with the 100 microns IRAS show that the dust properties vary in the diffuse ISM at high Galactic latitude (1e19dust model. It consists of small aromatic-rich carbon grains, larger amorphous carbon grains with aliphatic-rich cores and aromatic-rich mantles, and amorphous silicates with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observations. The dust properties are also varied in terms of mantle thickness, Fe/FeS inclusions, carbon abundance, and size distribution. Variations in the radiation field intensity and gas density distribution cannot explain the observed variations but radiation fields harder than the standard ISRF may participate in crea...

  18. Experimental demonstration and visual observation of dust trapping in an electron storage ring

    Directory of Open Access Journals (Sweden)

    Yasunori Tanimoto

    2009-11-01

    Full Text Available Sudden decreases in the beam lifetime, which are attributed to the dust trappings, sometimes occur at the electron storage ring Photon Factory Advanced Ring (PF-AR. Since these dust events cause difficulties in user operations, we have been carefully observing this phenomenon for many years. Our observations indicated that the dust trappings could be caused by electric discharges in vacuum ducts. In order to demonstrate this hypothesis experimentally, we designed a new vacuum device that intentionally generates electric discharges and installed it in PF-AR. Using this device, we could repeatedly induce sudden decreases in the beam lifetime because of the generated electric discharge. We also detected decreases in the beam lifetime caused by mechanical movement of the electrodes in the device. Moreover, we could visually observe the dust trapping phenomenon; the trapped dust particle was observed by two video cameras and appeared as a luminous body that resembled a shooting star. This was the first direct observation of a luminous dust particle trapped by the electron beam.

  19. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  20. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    Science.gov (United States)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  1. Observation of Dust Aging Processes During Transport from Africa into the Caribbean - A Lagrangian Case Study

    Science.gov (United States)

    Weinzierl, B.; Sauer, D. N.; Walser, A.; Dollner, M.; Reitebuch, O.; Gross, S.; Chouza, F.; Ansmann, A.; Toledano, C.; Freudenthaler, V.; Kandler, K.; Schäfler, A.; Baumann, R.; Tegen, I.; Heinold, B.

    2014-12-01

    Aerosol particles are regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. During transport, particle properties are modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. In June/July 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted to study the transport and transformation of Saharan mineral dust. Besides ground-based lidar and in-situ instruments deployed on Cape Verde, Barbados and Puerto Rico, the DLR research aircraft Falcon was equipped with an extended aerosol in-situ instrumentation, a nadir-looking 2-μm wind lidar and instruments for standard meteorological parameters. During SALTRACE, five large dust outbreaks were studied by ground-based, airborne and satellite measurements between Senegal, Cape Verde, the Caribbean, and Florida. Highlights included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. Between Cape Verde and Barbados, the aerosol optical thickness (500 nm) decreased from 0.54 to 0.26 and the stratification of the dust layers changed significantly from a rather homogenous structure near Africa to a 3-layer structure with embedded cumulus clouds in the Caribbean. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust properties was observed between 0.7 and 2.5 km altitude probably due to interaction of the mineral dust with clouds. In our

  2. Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Natalie [Cornell University; Kloster, Silvia [Cornell University; Engelstaedter, S. [Cornell University; Moore, Jefferson Keith [University of California, Irvine; Mukhopadhyay, S. [Harvard University; McConnell, J. R. [Desert Research Institute, Reno, NV; Albani, S. [Cornell University; Doney, Scott C. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Bhattacharya, A. [Harvard University; Curran, M. A. J. [Antarctic Climate and Ecosystems Cooperative Research Centre; Flanner, Mark G. [University of Michigan; Hoffman, Forrest M [ORNL; Lawrence, David M. [National Center for Atmospheric Research (NCAR); Lindsay, Keith [National Center for Atmospheric Research (NCAR); Mayewski, P. A. [University of Maine; Neff, Jason [University of Colorado, Boulder; Rothenberg, D. [Cornell University; Thomas, E. [British Antarctic Survey, Cambridge, UK; Thornton, Peter E [ORNL; Zender, Charlie S. [University of California, Irvine

    2010-01-01

    Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be -0.14 {+-} 0.11 W/m{sup 2} (1990-1999 vs. 1905-1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (-0.57 {+-} 0.46 W/m{sup 2}), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding

  3. Observed 20th century desert dust variability: impact on climate and biogeochemistry

    Directory of Open Access Journals (Sweden)

    N. M. Mahowald

    2010-11-01

    Full Text Available Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere over the 20th century to be −0.14 ± 0.11 W/m2 (1990–1999 vs. 1905–1914. The estimated radiative change due to dust is especially strong between the heavily loaded 1980–1989 and the less heavily loaded 1955–1964 time periods (−0.57 ± 0.46 W/m2, which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and

  4. Observation of Dust and Smoke Plume Transport and Impact on Remote Sensing of Air Quality in New York City

    Science.gov (United States)

    Moshary, F.; Wu, Y.; Han, Z. T.; Nazmi, C.; Gross, B.

    2015-12-01

    Long-range transport of aloft aerosol plumes affects both air quality and climate on regional and continental scales. Asian dust impacts on the western US and Canada have been extensively analyzed, yet such quantitative demonstrations are not well documented in the northeastern US. Similarly, episodes of continental transport of smoke plumes from forest fires in western US and Canada impact visibility and air quality in the US east coast. In this study, we present the synergistic observation of transported dust and smoke aerosol plumes in New York City (NYC, 40.821ºN, 73.949ºW), using a combination of a ground-based multiple-wavelength lidar, a CIMEL sunphotometer/radiometer, satellite sensors such as CALIOP and MODIS/VIIRS, and NAAPS aerosol forecast model. We show case studies of trans-Pacific Asian dust transport to the northeast US driven by the strong western or polar jets. The potential impact of the plumes on the local air quality is indicated by the plumes mixing down into boundary layer and the coincident increase of the ground PM measurement. Using multi-year lidar and sunphotometer observations, range-resolved monthly occurrence frequency of aloft aerosol plumes and modification of local aerosol optical properties are presented. The transport paths and the optical properties of aerosol for each clustered path are characterized. We further demonstrate the impact of these aloft plumes on the surface PM2.5 estimates from MODIS and VIIRS derived aerosol optical depth (AOD), and observe that when the aloft plumes-layer AODs are filtered out using lidar, the correlation between AOD-PM2.5 is much improved.

  5. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving...... with an apparent angular rate of between 2 and 18,000 arcsec/s were recorded. Among the objects detected were a small group of objects tracked briefly in close proximity to the spacecraft. The trajectory of these objects demonstrates that they originated on the Juno spacecraft, evidently excavated...... by micrometeoroid impacts on the solar arrays. The majority of detections occurred just prior to and shortly after Juno's transit of the asteroid belt. This rather novel detection technique utilizes the Juno spacecraft's prodigious 60 m2 of solar array as a dust detector and provides valuable information...

  6. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    Science.gov (United States)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  7. HERschel Observations of Edge-on Spirals (HEROES). III. Dust energy balance study of IC 2531

    CERN Document Server

    Mosenkov, Aleksandr V; Baes, Maarten; Bianchi, Simone; Camps, Peter; De Geyter, Gert; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Hughes, Thomas M; Lewis, Fraser; Verstappen, Joris; Verstocken, Sam; Viaene, Sébastien

    2016-01-01

    We investigate the dust energy balance for the edge-on galaxy IC 2531, one of the seven galaxies in the HEROES sample. We perform a state-of-the-art radiative transfer modelling based, for the first time, on a set of optical and near-infrared galaxy images. We show that taking into account near-infrared imaging in the modelling significantly improves the constraints on the retrieved parameters of the dust content. We confirm the result from previous studies that including a young stellar population in the modelling is important for explaining the observed stellar energy distribution. However, the discrepancy between the observed and modelled thermal emission at far-infrared wavelengths, the so-called dust energy balance problem, is still present: the model underestimates the observed fluxes by a factor of about two. We compare two different dust models, and find that dust parameters and thus the spectral energy distribution in the infrared domain are sensitive to the adopted dust model. In general, the THEMIS...

  8. Observed 20th century desert dust variability: impact on climate and biogeochemistry

    Directory of Open Access Journals (Sweden)

    N. M. Mahowald

    2010-05-01

    Full Text Available Desert dust perturbs climate by interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were in the net increasing or decreasing desert dust. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere over the 20th century to be −0.14±0.11 W/m2 (1990–1999 vs. 1905–1914. The estimated radiative change due to aerosols is especially strong between the dusty 1980–1989 and the less dusty 1955–1964 time periods (−0.57±0.46 W/m2, which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from the desert dust changes, causing 6 ppm (12 Pg C reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 Pg C of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding of these

  9. Observation of dust acoustic multi-solitons in a strongly coupled dusty plasma

    Science.gov (United States)

    Boruah, A.; Sharma, S. K.; Nakamura, Y.; Bailung, H.

    2016-09-01

    The excitation and propagation of low frequency dust acoustic multi-solitons are investigated in an unmagnetized strongly coupled dusty plasma. A floating 2D dusty medium is produced in an RF discharge Ar plasma with silica micro-particles. Dust acoustic perturbations are excited by applying a negative sinusoidal pulse of frequency 1-2 Hz and amplitude 4-20 V to an exciter grid. An initial large amplitude dust density compression breaks into a number of solitary pulses which are identified as dust acoustic solitons. The observed multi-soliton evolution is compared with numerical simulations of modified Korteweg de Vries (KdV)-Burger equation. The characteristics of the generated solitons are in good agreement with the theory.

  10. ALMA observations of cool dust in a low-metallicity starburst, SBS0335-052

    CERN Document Server

    Hunt, L K; Casasola, V; Garcia-Burillo, S; Combes, F; Nikutta, R; Caselli, P; Henkel, C; Maiolino, R; Menten, K M; Sauvage, M; Weiss, A

    2013-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 Band 7 observations of an extremely metal-poor dwarf starburst galaxy in the Local Universe, SBS0335-052 (12+log(O/H)~7.2). With these observations, dust is detected at 870micron (ALMA Band 7), but 87% of the flux in this band is due to free-free emission from the starburst. We have compiled a spectral energy distribution (SED) of SBS0335-052 that spans almost 6 orders of magnitude in wavelength and fit it with a spherical dust shell heated by a single-age stellar population; the best-fit model gives a dust mass of (3.8+/-0.6)x10^4 Msun. We have also constructed a SED including Herschel archival data for IZw18, another low-metallicity dwarf starburst (12+log(O/H)=7.17), and fit it with a similar model to obtain a dust mass of (3.4+/-1.0)x10^2 Msun. Compared with their atomic gas mass, the dust mass of SBS0335-052 far exceeds the prediction of a linear trend of dust-to-gas mass ratio with metallicity, while IZw18 falls far below. We use gas...

  11. SOFIA/FORCAST Observations of Warm Dust in S106: A Fragmented Environment

    CERN Document Server

    Adams, J D; Hora, J L; Schneider, N; Lau, R M; Staughn, J G; Simon, R; Smith, N; Gehrz, R D; Allen, L E; Bontemps, S; Carey, S J; Fazio, G G; Gutermuth, R A; Fernandez, A Guzman; Hankins, M; Hill, T; Keto, E; Koenig, X P; Kraemer, K E; Megeath, S T; Mizuno, D R; Motte, F; Myers, P C; Smith, H A

    2015-01-01

    We present mid-IR (19 - 37 microns) imaging observations of S106 from SOFIA/FORCAST, complemented with IR observations from Spitzer/IRAC (3.6 - 8.0 microns), IRTF/MIRLIN (11.3 and 12.5 microns), and Herschel/PACS (70 and 160 microns). We use these observations, observations in the literature, and radiation transfer modeling to study the heating and composition of the warm (~ 100 K) dust in the region. The dust is heated radiatively by the source S106 IR, with little contributions from grain-electron collisions and Ly-alpha radiation. The dust luminosity is >~ (9.02 +/- 1.01) x 10^4 L_sun, consistent with heating by a mid- to late-type O star. We find a temperature gradient (~ 75 - 107 K) in the lobes, which is consistent with a dusty equatorial geometry around S106 IR. Furthermore, the SOFIA observations resolve several cool (~ 65 - 70 K) lanes and pockets of warmer (~ 75 - 90 K) dust in the ionization shadow, indicating that the environment is fragmented. We model the dust mass as a composition of amorphous ...

  12. SOFIA/FORCAST OBSERVATIONS OF WARM DUST IN S106: A FRAGMENTED ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J. D. [Stratospheric Observatory for Infrared Astronomy, Universities Space Research Association, NASA/Armstrong Flight Research Center, 2825 East Avenue P, Palmdale, CA 93550 (United States); Herter, T. L.; Lau, R. M.; Hankins, M. [Department of Astronomy, Cornell University, Space Sciences Building, Ithaca, NY 14853 (United States); Hora, J. L.; Fazio, G. G.; Fernandez, A. Guzman; Keto, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schneider, N.; Simon, R. [KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Staguhn, J. G. [NASA/Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Smith, N. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Gehrz, R. D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Allen, L. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Bontemps, S. [Université Bordeaux, LAB, UMR 5804, CNRS, F-33270, Floirac (France); Carey, S. J. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, LGRT-B 619E, 710 North Pleasant Street, Amherst, MA 01003-9305 (United States); Hill, T. [Joint ALMA Observatory, 3107 Alonso de Cordova, Vitacura, Santiago (Chile); Koenig, X. P. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Kraemer, K. E. [Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467 (United States); and others

    2015-11-20

    We present mid-IR (19–37 μm) imaging observations of S106 from SOFIA/FORCAST, complemented with IR observations from Spitzer/IRAC (3.6–8.0 μm), IRTF/MIRLIN (11.3 and 12.5 μm), and Herschel/PACS (70 and 160 μm). We use these observations, observations in the literature, and radiation transfer modeling to study the heating and composition of the warm (∼100 K) dust in the region. The dust is heated radiatively by the source S106 IR, with little contributions from grain–electron collisions and Lyα radiation. The dust luminosity is ≳(9.02 ± 1.01) × 10{sup 4} L{sub ⊙}, consistent with heating by a mid- to late-type O star. We find a temperature gradient (∼75–107 K) in the lobes, which is consistent with a dusty equatorial geometry around S106 IR. Furthermore, the SOFIA observations resolve several cool (∼65–70 K) lanes and pockets of warmer (∼75–90 K) dust in the ionization shadow, indicating that the environment is fragmented. We model the dust mass as a composition of amorphous silicates, amorphous carbon, big grains, very small grains, and polycyclic aromatic hydrocarbons. We present the relative abundances of each grain component for several locations in S106.

  13. Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA

    CERN Document Server

    Gonzalez, J -F; Maddison, S T; Ménard, F; Fouchet, L

    2012-01-01

    [Abridged] Aims: We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results: Our findings clearly demonstrate the importance of correctly incorporat...

  14. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations

    KAUST Repository

    Jin, Q.

    2015-09-02

    © Author(s) 2015. The response of the Indian summer monsoon (ISM) circulation and precipitation to Middle East dust aerosols on sub-seasonal timescales is studied using observations and the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Satellite data show that the ISM rainfall in coastal southwest India, central and northern India, and Pakistan is closely associated with the Middle East dust aerosols. The physical mechanism behind this dust-ISM rainfall connection is examined through ensemble simulations with and without dust emissions. Each ensemble includes 16 members with various physical and chemical schemes to consider the model uncertainties in parameterizing short-wave radiation, the planetary boundary layer, and aerosol chemical mixing rules. Experiments show that dust aerosols increase rainfall by about 0.44 mm day-1 (∼10 % of the climatology) in coastal southwest India, central and northern India, and north Pakistan, a pattern consistent with the observed relationship. The ensemble mean rainfall response over India shows a much stronger spatial correlation with the observed rainfall response than any other ensemble members. The largest modeling uncertainties are from the boundary layer schemes, followed by short-wave radiation schemes. In WRF-Chem, the dust aerosol optical depth (AOD) over the Middle East shows the strongest correlation with the ISM rainfall response when dust AOD leads rainfall response by about 11 days. Further analyses show that increased ISM rainfall is related to enhanced southwesterly monsoon flow and moisture transport from the Arabian Sea to the Indian subcontinent, which are associated with the development of an anomalous low-pressure system over the Arabian Sea, the southern Arabian Peninsula, and the Iranian Plateau due to dust-induced heating in the troposphere. The dust-induced heating in the mid-upper troposphere is mainly located in the Iranian Plateau rather than the Tibetan

  15. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations

    Science.gov (United States)

    Jin, Q.; Wei, J.; Yang, Z.-L.; Pu, B.; Huang, J.

    2015-09-01

    The response of the Indian summer monsoon (ISM) circulation and precipitation to Middle East dust aerosols on sub-seasonal timescales is studied using observations and the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Satellite data show that the ISM rainfall in coastal southwest India, central and northern India, and Pakistan is closely associated with the Middle East dust aerosols. The physical mechanism behind this dust-ISM rainfall connection is examined through ensemble simulations with and without dust emissions. Each ensemble includes 16 members with various physical and chemical schemes to consider the model uncertainties in parameterizing short-wave radiation, the planetary boundary layer, and aerosol chemical mixing rules. Experiments show that dust aerosols increase rainfall by about 0.44 mm day-1 (~10 % of the climatology) in coastal southwest India, central and northern India, and north Pakistan, a pattern consistent with the observed relationship. The ensemble mean rainfall response over India shows a much stronger spatial correlation with the observed rainfall response than any other ensemble members. The largest modeling uncertainties are from the boundary layer schemes, followed by short-wave radiation schemes. In WRF-Chem, the dust aerosol optical depth (AOD) over the Middle East shows the strongest correlation with the ISM rainfall response when dust AOD leads rainfall response by about 11 days. Further analyses show that increased ISM rainfall is related to enhanced southwesterly monsoon flow and moisture transport from the Arabian Sea to the Indian subcontinent, which are associated with the development of an anomalous low-pressure system over the Arabian Sea, the southern Arabian Peninsula, and the Iranian Plateau due to dust-induced heating in the troposphere. The dust-induced heating in the mid-upper troposphere is mainly located in the Iranian Plateau rather than the Tibetan Plateau. This study

  16. Circumstellar Dust Composition of M-type Mira Variables observed with phase with Spitzer

    Science.gov (United States)

    Güth, Tina; Creech-Eakman, Michelle J.

    2017-01-01

    Our research concerns the detailed dust composition surrounding Mira variables. These regular pulsators are easily observed in the optical and infrared due to their changes in brightness. Data on 25 galactic Miras were obtained with the Spitzer Infrared Spectrograph (IRS) instrument in 2008-09 under a GO program led by Creech-Eakman. The stars were observed approximately once per month to track changes in their brightness and spectral features. This dataset is unique for both the number of observations of each star and the high SNR due to their intrinsic brightness.The stars in this study span the range of oxygen- to carbon-rich, with each type exhibiting certain known solid state components (i.e dust). The current focus is on trying to reproduce dust spectral features in the short, high (SH) and long, high (LH) resolution wavelength range (~9.7 - 40 microns) of the oxygen-rich Miras (C/O features that provide insight into the stellar atmospheres and circumstellar dust composition with phase.Using the 1-D radiative transfer modeling code, DUSTY, we are attempting to identify several broad, and some sharp, dust features by including recently derived laboratory spectral indices for dust opacities. Prominent features seen in oxygen-rich Mira variables include potential identifications of water ice emission, as well as amorphous and crystalline silicates. We implement a greybody continuum obtained from MARCS, a 1-D hydrostatic spherical LTE model grid code, as the stellar continuum input for DUSTY. Using a greybody rather than a blackbody curve allows us to obtain a better agreement between the DUSTY spectrum and the Spitzer data. We will show these amended model fits that will improve the identification of the dust and other features in the spectra.

  17. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2008-08-01

    Full Text Available Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.

  18. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

    Directory of Open Access Journals (Sweden)

    Zhaoyan Liu

    2008-03-01

    Full Text Available Airborne dust is a major environmental hazard in Asia. Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 10 km and higher. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in North India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar.

  19. A Look at Dust Storms on Mars (2007 To 2009) Using MCS and THEMIS Observations

    Science.gov (United States)

    Flynn, William; Bowles, N. E.; Teanby, N. A.; Montabone, L.; Calcutt, S. B.; Read, P. L.; Kass, D. M.; Hale, A. S.

    2009-09-01

    Martian dust storms may be small, localised and short lived or can be large and intense and expand to enshroud most, if not all, of the planet within a few days. The martian dusty season occurs near the time of perihelion (closest approach to the sun) during Mars' southern hemisphere spring and summer. During this period (+/- 90 degrees Ls of perihelion) local and regional dust storms are more frequent and there is a higher probability of a major and possible planet-encircling dust storm occuring. Despite this there is still a lot of interannual variability and uncertainty regarding the occurence of both major and regional dust storms. The Mars Climate Sounder (MCS) instrument onboard NASA's Mars Reconnaissance Orbiter (MRO) is a two telescope 9 channel filter IR radiometer (0.3 to 45 microns), with each channel consisting of a linear array of 21 detectors. Each pixel sounds a 5km thick region of the Martian atmosphere in a limb viewing/scanning mode. We present a comparison of dust storm activity on Mars for 2007 to 2009 using MCS limb observations of changes in dust opacity. These measurements are also compared with observations and atmospheric opacity maps generated by the Thermal Emission Imaging System (THEMIS) multi-wavelength instrument onboard the Mars Odyssey spacecraft and Mars weather maps from MRO's Mars Color Imager (MARCI) for this period. Model predictions from the Mars Climate Database and simulations from the UK Mars General Circulation Model (GCM) are also used. This comparison gives us an empirical method for using MCS data directly to identify dust storm activity during this period.

  20. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  1. Observations of X-rays and Thermal Dust Emission from the Supernova Remnant Kes 75

    CERN Document Server

    Morton, T D; Borkowski, K J; Reynolds, S P; Helfand, D J; Gaensler, B M; Hughes, J P

    2007-01-01

    We present Spitzer Space Telescope and Chandra X-ray Observatory observations of the composite Galactic supernova remnant Kes 75 (G29.7-0.3). We use the detected flux at 24 microns and hot gas parameters from fitting spectra from new, deep X-ray observations to constrain models of dust emission, obtaining a dust-to-gas mass ratio M_dust/M_gas ~0.001. We find that a two-component thermal model, nominally representing shocked swept-up interstellar or circumstellar material and reverse-shocked ejecta, adequately fits the X-ray spectrum, albeit with somewhat high implied densities for both components. We surmise that this model implies a Wolf-Rayet progenitor for the remnant. We also present infrared flux upper limits for the central pulsar wind nebula.

  2. Aircraft-based observations and high-resolution simulations of an Icelandic dust storm

    Directory of Open Access Journals (Sweden)

    A.-M. Blechschmidt

    2012-11-01

    Full Text Available The first aircraft-based observations of an Icelandic dust storm are presented. The measurements were carried out over the ocean near Iceland's south coast in February 2007. This dust event occurred in conjunction with an easterly barrier jet of more than 30 m s−1. The aircraft measurements show high particle mass mixing ratios in an area of low wind speeds in the wake of Iceland near the coast, decreasing abruptly towards the jet. Simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF/Chem indicate that the measured high mass mixing ratios and observed low visibility inside the wake are due to dust transported from Icelandic sand fields towards the ocean. This is confirmed by meteorological station data. Glacial outwash terrains located near the Mýrdalsjökull glacier are among simulated dust sources. Sea salt aerosols produced by the impact of strong winds on the ocean surface started to dominate as the aircraft flew away from Iceland into the jet. The present results support recent studies which suggest that Icelandic deserts should be considered as important dust sources in global and regional climate models.

  3. Effects of levitated dust on astronomical observations from the lunar surface

    Science.gov (United States)

    Murphy, D. L.; Vondrak, R. R.

    1993-01-01

    It is believed that a substantial population of levitated dust is present in the terminator region of the moon. Stray light scattered by this dust layer may contaminate astronomical observations made from the lunar surface using infrared, visible, and ultraviolet light. The evidence for dust levitation stems from: Surveyor vidicon images of horizon glow; anomalous brightness in photographs of the solar corona taken by Apollo astronauts while the spacecraft was just inside the moon's shadow; and observations by Apollo astronauts of streamers just prior to lunar orbital sunrise or just after lunar orbital sunset. It has been proposed that the differential charging of the lunar surface in the terminator region due to photoemission and the consequent strong local electric fields comprise the mechanism responsible for this levitation. Although quantitative data on the levitated lunar dust distribution are meager, it is possible to estimate column densities and sizes. In this paper we summarize the estimates of particulate sizes and number densities of previous authors, and construct a nominal terminator dust distribution, as a function of particulate radius and altitude above the lunar surface. Using the model we estimate the brightness of scattered sunshine for three wavelength bands. For the results in the visible wavelengths, we compare the estimated brightness with the known brightness of selected astronomical objects and discuss the implications for lunar-based astronomy.

  4. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  5. Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC

    Directory of Open Access Journals (Sweden)

    M. de Reus

    2005-01-01

    Full Text Available An intensive field measurement campaign was performed in July/August 2002 at the Global Atmospheric Watch station Izaña on Tenerife to study the interaction of mineral dust aerosol and tropospheric chemistry (MINATROC. A dense Saharan dust plume, with aerosol masses exceeding 500 µg m-3, persisted for three days. During this dust event strongly reduced mixing ratios of ROx (HO2, CH3O2 and higher organic peroxy radicals, H2O2, NOx (NO and NO2 and O3 were observed. A chemistry boxmodel, constrained by the measurements, has been used to study gas phase and heterogeneous chemistry. It appeared to be difficult to reproduce the observed HCHO mixing ratios with the model, possibly related to the representation of precursor gas concentrations or the absence of dry deposition. The model calculations indicate that the reduced H2O2 mixing ratios in the dust plume can be explained by including the heterogeneous removal reaction of HO2 with an uptake coefficient of 0.2, or by assuming heterogeneous removal of H2O2 with an accommodation coefficient of 5x10-4. However, these heterogeneous reactions cannot explain the low ROx mixing ratios observed during the dust event. Whereas a mean daytime net ozone production rate (NOP of 1.06 ppbv/hr occurred throughout the campaign, the reduced ROx and NOx mixing ratios in the Saharan dust plume contributed to a reduced NOP of 0.14-0.33 ppbv/hr, which likely explains the relatively low ozone mixing ratios observed during this event.

  6. COMET 22P/KOPFF: DUST ENVIRONMENT AND GRAIN EJECTION ANISOTROPY FROM VISIBLE AND INFRARED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Fernando; Pozuelos, Francisco; Aceituno, Francisco; Casanova, Victor; Sota, Alfredo [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Castellano, Julio; Reina, Esteban, E-mail: fernando@iaa.es [Amateur Association Cometas-Obs (Spain)

    2012-06-20

    We present optical observations and Monte Carlo models of the dust coma, tail, and trail structures of the comet 22P/Kopff during the 2002 and 2009 apparitions. Dust loss rates, ejection velocities, and power-law size distribution functions are derived as functions of the heliocentric distance using pre- and post-perihelion imaging observations during both apparitions. The 2009 post-perihelion images can be accurately fitted by an isotropic ejection model. On the other hand, strong dust ejection anisotropies are required to fit the near-coma regions at large heliocentric distances (both inbound at r{sub h} = 2.5 AU and outbound at r{sub h} = 2.6 AU) for the 2002 apparition. These asymmetries are compatible with a scenario where dust ejection is mostly seasonally driven, coming mainly from regions near subsolar latitudes at far heliocentric distances inbound and outbound. At intermediate to near-perihelion heliocentric distances, the outgassing would affect much more extended latitude regions, the emission becoming almost isotropic near perihelion. We derived a maximum dust production rate of 260 kg s{sup -1} at perihelion, and an averaged production rate over one orbit of 40 kg s{sup -1}. An enhanced emission rate, also accompanied by a large ejection velocity, is predicted at r{sub h} > 2.5 pre-perihelion. The model has also been extended to the thermal infrared in order to be applied to available trail observations of this comet taken with IRAS and Infrared Space Observatory spacecrafts. The modeled trail intensities are in good agreement with those observations, which is remarkable taking into account that those data are sensitive to dust ejection patterns corresponding to several orbits before the 2002 and 2009 apparitions.

  7. LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Science.gov (United States)

    Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.

  8. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations

    KAUST Repository

    Jin, Q.

    2015-06-11

    The response of the Indian summer monsoon (ISM) circulation and precipitation to Middle East dust aerosols on sub-seasonal timescales is studied using observations and the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Satellite data show that the ISM rainfall in coastal southwest India, central and northern India, and Pakistan is closely associated with the Middle East dust aerosols. The physical mechanism behind this dust–ISM rainfall connection is examined through ensemble simulations with and without dust emissions. Each ensemble includes 16 members with various physical and chemical schemes to consider the model uncertainties in parameterizing short-wave radiation, the planetary boundary layer, and aerosol chemical mixing rules. Experiments show that dust aerosols increase rainfall by about 0.44mmday1 ( 10% of the climatology) in coastal southwest India, central and northern India, and north Pakistan, a pattern consistent with the observed relationship. The ensemble mean rainfall response over India shows a much stronger spatial correlation with the observed rainfall response than any other ensemble members. The largest modeling uncertainties are from the boundary layer schemes, followed by short-wave radiation schemes. In WRF-Chem, the dust aerosol optical depth (AOD) over the Middle East shows the strongest correlation with the ISM rainfall response when dust AOD leads rainfall response by about 11 days. Further analyses show that increased ISM rainfall is related to enhanced southwesterly monsoon flow and moisture transport from the Arabian Sea to the Indian subcontinent, which are associated with the development of an anomalous low-pressure system over the Arabian Sea, the southern Arabian Peninsula, and the Iranian Plateau due to dust-induced heating in the troposphere. The dust-induced heating in the mid-upper troposphere is mainly located in the Iranian Plateau rather than the Tibetan Plateau. This study demonstrates

  9. Dust emissions of organic soils observed in the field and laboratory

    Science.gov (United States)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    . In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples emission rates with the laboratory results will be presented.

  10. Large-scale characteristics of interstellar dust from COBE DIRBE observations

    Science.gov (United States)

    Sodroski, T. J.; Bennett, C.; Boggers, N.; Dwek, E.; Franz, B. A.; Hauser, M. G.; Kelsall, T.; Moseley, S. H.; Odegard, N.; Silverberg, R. F.

    1994-01-01

    Observations from the COBE Diffuse Infrared Background Experiment of the 140 and 240 micrometer emissions from the Galatic plane region (absolute value of b less than 10 deg) are combined with radio surveys that trace the molecular (H2), neutral atomic (H I), and extended low-density (n(sub e) approximately 10 to 100/cm(exp 3)) ionized (H II) gas phases of the interstellar medium to derive physical conditions such as the dust temperature, dust-to-gas mass ratio, and far-infrared emissivity (1) averaged over these gas phases along each line of sight and (2) within each of these three gas phases. This analysis shows large-scale longitudinal and latitudinal gradients in the dust temperature and a decrease in dust temperature with increasing Galactocentric distance. The derived dust temperatures are significantly different from those derived in similar analyses using the Infrared Astronomical Satellite (IRAS) 60 and 100 micrometer data, suggesting that small (5 A approximately less than radius approximately less than 200 A) transiently heated dust particles contribute significantly o the Galactic 60 micrometer emission. It is found that 60% to 75% of the far-infrared luminosity arises from cold (approximately 17 to 22 K) dust associated with diffuse H I clouds, 15% to 30% from cold (approximately 19 K) dust associated with molecular gas, and less than 10% from warm (approximately 29 K) dust in extended low-density H II regions, consistent with the results of the IRAS analyses of the Galactic 60 and 100 micrometer emission. Within 2 deg of longitude of the Galactic center, the derived gas-to-dust mass ratio along the line of sight, G(sub d), reverses its general trend of decreasing G(sub d) toward the inner Galaxy and increases by a factor of approximately 2 to 3 toward the Galactic center. One possible explanation for this result is that the ratio of H2 column density to (12)CO intensity is lower in the Galactic center region than in the Galactic disk.

  11. Large-scale characteristics of interstellar dust from COBE DIRBE observations

    Science.gov (United States)

    Sodroski, T. J.; Bennett, C.; Boggers, N.; Dwek, E.; Franz, B. A.; Hauser, M. G.; Kelsall, T.; Moseley, S. H.; Odegard, N.; Silverberg, R. F.

    1994-01-01

    Observations from the COBE Diffuse Infrared Background Experiment of the 140 and 240 micrometer emissions from the Galatic plane region (absolute value of b less than 10 deg) are combined with radio surveys that trace the molecular (H2), neutral atomic (H I), and extended low-density (n(sub e) approximately 10 to 100/cm(exp 3)) ionized (H II) gas phases of the interstellar medium to derive physical conditions such as the dust temperature, dust-to-gas mass ratio, and far-infrared emissivity (1) averaged over these gas phases along each line of sight and (2) within each of these three gas phases. This analysis shows large-scale longitudinal and latitudinal gradients in the dust temperature and a decrease in dust temperature with increasing Galactocentric distance. The derived dust temperatures are significantly different from those derived in similar analyses using the Infrared Astronomical Satellite (IRAS) 60 and 100 micrometer data, suggesting that small (5 A approximately less than radius approximately less than 200 A) transiently heated dust particles contribute significantly o the Galactic 60 micrometer emission. It is found that 60% to 75% of the far-infrared luminosity arises from cold (approximately 17 to 22 K) dust associated with diffuse H I clouds, 15% to 30% from cold (approximately 19 K) dust associated with molecular gas, and less than 10% from warm (approximately 29 K) dust in extended low-density H II regions, consistent with the results of the IRAS analyses of the Galactic 60 and 100 micrometer emission. Within 2 deg of longitude of the Galactic center, the derived gas-to-dust mass ratio along the line of sight, G(sub d), reverses its general trend of decreasing G(sub d) toward the inner Galaxy and increases by a factor of approximately 2 to 3 toward the Galactic center. One possible explanation for this result is that the ratio of H2 column density to (12)CO intensity is lower in the Galactic center region than in the Galactic disk.

  12. SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Smitka, Michael T.; Wang, Lifan; Krisciunas, Kevin [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Breeveld, Alice; Kuin, N. Paul; Page, Mat [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking Surrey, RH5 6NT (United Kingdom); De Pasquale, Massimiliano [Instituto di Astrofisica Spaziale e Fisica Cosmica di Palermo Via Ugo la Malfa 153 90146 Palermo (Italy); Hartmann, Dieter H. [Clemson University, Department of Physics and Astronomy, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Milne, Peter A. [Steward Observatory, University of Arizona, Tucson, AZ 85719 (United States); Siegel, Michael [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2015-05-20

    We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN 2014J with Hubble Space Telescope observations of SN2011fe or UVOT grism spectra of SN 2012fr are consistent with an extinction law with a low value of R{sub V} ∼1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift and does not show a flattening due to photons being scattered back into the line of sight (LOS). The light curve shapes and color evolution are inconsistent with a contribution scattered into the LOS by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circumstellar scattering. Rather, when considering scattering from a time-variable source, we confirm earlier studies that the reddening law is a function of the dust geometry, column density, and epoch. We also show how an assumed geometry of dust as a foreground sheet in mixed stellar/dust systems will lead to a higher inferred R{sub V}. Rather than assuming the dust around SNe is peculiar, SNe may be useful probes of the interstellar reddening laws in other galaxies.

  13. Coma dust environment observed by GIADA during the Perihelion of 67P/Churyumov-Gerasimenko.

    Science.gov (United States)

    Rotundi, A.; Della Corte, V.; Fulle, M.; Ferrari, M.; Ivanovski, S. L.; Sordini, R.; Mazzotta Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Zakharov, V.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Gruen, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zarnecki, J.; Cosi, M.; Giovane, F.; Gustafson, B.; Herranz, M.; Jeronimo, J. M.; Leese, M.; Lopez-Jimenez, A.; Morales, R.

    2015-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument mounted onboard Rosetta monitoring the dust environment of comet 67P/Churyumov-Gerasimenko. GIADA is composed of 3 sub-systems: 1) the Grain Detection System, based on particle detection through light scattering; 2) the Impact Sensor, giving momentum measurement; 3) the Micro-Balances System, constituted of 5 quartz crystal microbalances, giving cumulative deposited dust. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the speed distribution of dust particles emitted from the comet nucleus. We will present the coma dust environment as observed by GIADA during the perihelion phase of the Rosetta space mission. Despite the large distance from the nucleus, more than 200 km, GIADA was able to detect temporal and spatial variation of dust density distribution. Specific high dust spatial density sectors of the coma have been identified and their evolution during the perihelion phase was studied. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site.

  14. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    Science.gov (United States)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 μm 49 Cet is significantly extended in the 70 μm image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 μm and [C II] 158 μm. The C II line was detected at the 5σ level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  15. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    Science.gov (United States)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  16. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Roberge, A. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kamp, I. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), ESAC Campus, PO Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Dent, W. R. F. [ALMA, Avda Apoquindo 3846, Piso 19, Edificio Alsacia, Las Condes, Santiago (Chile); Meeus, G.; Eiroa, C. [Departmento Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Donaldson, J. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Olofsson, J. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117, Heidelberg (Germany); Moor, A. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Augereau, J.-C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble, UMR 5274, F-38041, Grenoble (France); Howard, C.; Sandell, G. [SOFIA-USRA, NASA Ames Research Center, Building N232, PO Box 1, Moffett Field, CA 94035 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, 1200 E. California Blvd., Mail Stop 220-6, Pasadena, CA 91125 (United States); Woitke, P., E-mail: Aki.Roberge@nasa.gov [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180, Vienna (Austria)

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  17. Efficiency of cold pool outflows in dust emission: central Saharan observations from Fennec

    Science.gov (United States)

    Allen, Christopher; Washington, Richard; Engelstaedter, Sebastian

    2013-04-01

    The Fennec project has, for the first time, provided high quality high resolution instrument observations of the remote central Saharan atmosphere. Fennec Supersite 1 at Bordj-Badji Mokhtar (BBM) in south-west Algeria is located very close to the boreal summer global dust maximum and is an ideal location from which to investigate dust production mechanisms. A detailed analysis of observations taken during the 2011 intensive observation period (IOP) allows the dust to be partitioned by emission mechanism. Cold pool outflows are the most important mechanism, responsible for up to 65% of the dust during the IOP, followed by low level jets (LLJs) and dry convective plumes. This ranking is maintained whether the partitioning is done using lidar backscatter, nephelometer scattering or uplift potential. It is also consistent with aerosol optical thickness (AOT) measurements: the dustiest cold pool AOTs are always 3.0 or over, the dustiest LLJ AOTs are between 1.0 and 2.0 and the dustiest dry convective plume has an AOT of 1.25. The reason cold pool outflows raise more dust than the other two mechanisms is examined further. For locally emitting dust events, there is a positive correlation between lidar backscatter and wind speed at BBM as expected, but it is not particularly strong (r=0.4688, pcup anemometers do not provide three-dimensional wind measurements. Shear velocity (u*), a common metric used for calculating thresholds for erosion and sediment transport, does not take it into account. Model parameterizations of uplift are often based around u* and also do not account for the direction of vertical wind. Data from BBM suggest that these emission schemes may have missing processes.

  18. DUst Around NEarby Stars. The survey observational results

    CERN Document Server

    Eiroa, C; Mora, A; Montesinos, B; Absil, O; Augereau, J Ch; Bayo, A; Bryden, G; Danchi, W; del Burgo, C; Ertel, S; Fridlund, M; Heras, A M; Krivov, A V; Launhardt, R; Liseau, R; Löhne, T; Maldonado, J; Pilbratt, G L; Roberge, A; Rodmann, J; Sanz-Forcada, J; Solano, E; Stapelfeldt, K; Thébault, P; Wolf, S; Ardila, D; Arévalo, M; Beichmann, C; Faramaz, V; González-García, B M; Gutiérrez, R; Lebreton, J; Martínez-Arnáiz, R; Meeus, G; Montes, D; Olofsson, G; Su, K Y L; White, G J; Barrado, D; Fukagawa, M; Grün, E; Kamp, I; Lorente, R; Morbidelli, A; Müller, S; Mutschke, H; Nakagawa, T; Ribas, I; Walker, H

    2013-01-01

    Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. We used {\\it Herschel}/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 $\\mu$m were obtained, complemented in some cases with observations at 70 $\\mu$m, and at 250, 350 and 500 $\\mu$m using SPIRE. The observing strategy was to integrate as deep as possible at 100 $\\mu$m to detect the stellar photosphere. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of $\\sim$ 12.1% $\\pm$ 5% befo...

  19. OBSERVATIONAL STUDIES ON SAND-DUST STORM IN HELAN MOUNTAINOUS AREA

    Institute of Scientific and Technical Information of China (English)

    牛生杰; 章澄昌; 孙继明; 樊曙先

    2001-01-01

    According to the observation of the number and mass concentration spectra of atmospheric aerosols, the total suspended particulates (TSP) and their size distribution, micrometeorology,and the solar spectroscopic radiation, even neutron activation treatment of sand dust samples in Helan Mountainous area, the formation law of floating dust, blowing sand and sandstorm weather and the characteristics of climatic variation in this area and the influence of the Helan Mountain are counted and analyzed. In addition, the spectrum characteristics, optical depth and chemical composition of sand aerosol particles are also analyzed and discussed.

  20. Nine martian years of dust optical depth observations: A reference dataset

    Science.gov (United States)

    Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael

    2016-07-01

    We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html

  1. Pancam and microscopic imager observations of dust on the Spirit Rovers

    DEFF Research Database (Denmark)

    Vaughan....[], Alicia F.; Johnson, Jeffrey R.; Walter, Goetz

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals th...

  2. DUst around NEarby Stars. The Survey Observational Results

    Science.gov (United States)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Montesinos, B.; Absil, O.; Augereau, J. Ch.; Bayo, A.; Bryden, G.; Danchi, W.; delBurgo, C.; Ertel, S..; Fridlund, M.; Heras, A. M.; Krivov, A. V.; Launhardt, R.; Liseau, R.; Lohne, T.; Maldonado, J.; Pilbratt, G. L.; Roberge, A.; Rodman, J.; Sanz-Forcada, J.; Stapelfeldt, K.; Ardila, D.; Beichmann, C.

    2013-01-01

    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts.Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems.Methods. We used Herschel PACS to observe a sample of nearby FGK stars. Data at 100 and 160 micron were obtained, complemented in some cases with observations at 70 micron, and at 250, 350 and 500 micron using SPIRE. The observing strategy was to integrate as deep as possible at 100 micron to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of approx. 12.1% +/- 5% before Herschel to approx 20.2 % +/- % 2. A significant fraction (approx. 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 micron range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.

  3. AKARI observations of circumstellar dust in the globular clusters NGC104 and NGC362

    CERN Document Server

    Ita, Yoshifusa; Matsunaga, Noriyuki; Nakada, Yoshikazu; Matsuura, Mikako; Onaka, Takashi; Matsuhara, Hideo; Wada, Takehiko; Fujishiro, Naofumi; Ishihara, Daisuke; Kataza, Hirokazu; Kim, Woojung; Matsumoto, Toshio; Murakami, Hiroshi; Ohyama, Youichi; Usui, Fumihiko; Oyabu, Shinki; Sakon, Itsuki; Takagi, Toshinobu; Uemizu, Kazunori; Ueno, Munetaka; Watarai, Hidenori

    2007-01-01

    We report preliminary results of AKARI observations of two globular clusters, NGC104 and NGC362. Imaging data covering areas of about 10x10 arcmin^2 centered on the two clusters have been obtained with InfraRed Camera (IRC) at 2.4, 3.2, 4.1, 7.0, 9.0, 11.0, 15.0, 18.0 and 24.0 mu. We used F11/F2 and F24/F7 flux ratios as diagnostics of circumstellar dust emission. Dust emissions are mainly detected from variable stars obviously on the asymptotic giant branch, but some variable stars that reside below the tip of the first-ascending giant branch also show dust emissions. We found eight red sources with F24/F7 ratio greater than unity in NGC362. Six out of the eight have no 2MASS counterparts. However, we found no such source in NGC104.

  4. The influence of dust grain porosity on the analysis of debris disc observations

    CERN Document Server

    Brunngräber, Robert; Kirchschlager, Florian; Ertel, Steve

    2016-01-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution -- the so-called 'blowout size' -- is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of two. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The ana...

  5. Are primary care factors associated with hospital episodes for adverse drug reactions? A national observational study.

    Science.gov (United States)

    McKay, Ailsa J; Newson, Roger B; Soljak, Michael; Riboli, Elio; Car, Josip; Majeed, Azeem

    2015-12-29

    Identification of primary care factors associated with hospital admissions for adverse drug reactions (ADRs). Cross-sectional analysis of 2010-2012 data from all National Health Service hospitals and 7664 of 8358 general practices in England. We identified all hospital episodes with an International Classification of Diseases (ICD) 10 code indicative of an ADR, in the 2010-2012 English Hospital Episode Statistics (HES) admissions database. These episodes were linked to contemporary data describing the associated general practice, including general practitioner (GP) and patient demographics, an estimate of overall patient population morbidity, measures of primary care supply, and Quality and Outcomes Framework (QOF) quality scores. Poisson regression models were used to examine associations between primary care factors and ADR-related episode rates. 212,813 ADR-related HES episodes were identified. Rates of episodes were relatively high among the very young, older and female subgroups. In fully adjusted models, the following primary care factors were associated with increased likelihood of episode: higher deprivation scores (population attributable fraction (PAF)=0.084, 95% CI 0.067 to 0.100) and relatively poor glycated haemoglobin (HbA1c) control among patients with diabetes (PAF=0.372; 0.218 to 0.496). The following were associated with reduced episode likelihood: lower GP supply (PAF=-0.016; -0.026 to -0.005), a lower proportion of GPs with UK qualifications (PAF=-0.035; -0.058 to -0.012), lower total QOF achievement rates (PAF=-0.021; -0.042 to 0.000) and relatively poor blood pressure control among patients with diabetes (PAF=-0.144; -0.280 to -0.022). Various aspects of primary care are associated with ADR-related hospital episodes, including achievement of particular QOF indicators. Further investigation with individual level data would help develop understanding of the associations identified. Interventions in primary care could help reduce the ADR burden

  6. Quantifying the surface energy fluxes in South Greenland during the 2012 high melt episodes using in-situ observations

    Science.gov (United States)

    Fausto, Robert; van As, Dirk; Box, Jason; Colgan, William; Langen, Peter

    2016-09-01

    Two high melt episodes occurred on the Greenland ice sheet in July 2012, during which nearly the entire ice sheet surface experienced melting. Observations from an automatic weather station (AWS) in the lower ablation area in South Greenland reveal the largest daily melt rates (up to 28 cm d-1 ice equivalent) ever recorded on the ice sheet. The two melt episodes lasted 6 days, equivalent to 6% of the June-August melt period, but contributed 14 % to the total annual ablation of 8.5 m ice equivalent. We employ a surface energy balance model driven by AWS data to quantify the relative importance of the energy budget components contributing to melt through the melt season. During the days with largest daily melt rates, surface turbulent heat input peaked at 552 Wm-2, 77 % of the surface melt energy, which is otherwise typically dominated by absorbed solar radiation. We find that rain contributed ca. 7 % to melt during these episodes.

  7. 35 Cascadia Episodic Tremor and Slip events observed on GPS, seismic, and strain/tiltmeter arrays

    Science.gov (United States)

    Melbourne, T. I.; Aguiar, A. C.; Santillan, V. M.; Szeliga, W.; Miller, M.

    2007-12-01

    Several rapidly expanding GPS networks along the greater Cascadia forearc have enabled identification of 36 isolated Episodic Tremor and Slip (ETS) events since 1997, including two in 2007. ETS events are observed throughout the forearc, from northern California to southwestern British Columbia, with station density generally increasing towards the north. Events located in well-instrumented regions can be tracked as they migrate laterally north-south along the plate boundary, but increasing station density has resolved many smaller transients that could not previously be confidently identified. At the specific latitude of the northern Washington State and southwestern British Columbia, the 14-month average recurrence interval still holds true, 5 events after first recognition. Elsewhere, this periodicity is not observed. Along central Vancouver Island, a host of smaller events distinct from the 14-month recurrence occur with an aperiodic fashion. Sporadic smaller events also appear throughout the subduction zone to the south, including within the region known for the 14-month periodicity. In southern Washington State, some of the largest transient displacements are observed, but lack any obvious periodicity in their recurrence. Along central Oregon, an 18-month recurrence is evident, while in northern California (Yreka) the 11-month periodicity previously documented still holds true. We invert estimated GPS offsets for the largest 14 events using non-negative thrust faulting along a plate interface divided into roughly 500 subfaults. Those events have equivalent moment magnitudes ranging from 6.3 (smallest resolvable with GPS) to 6.8, and typically 2-3 cm of slip. The largest spatial extent of the events resolved to date is just under 500 km along strike, and maximum duration is seven weeks, which lies in marked contrast to other subduction zones. Averaged over many ETS events, the upper limit of transient slip in the vicinity of Seattle, WA lies just west of the

  8. Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations

    CERN Document Server

    Odegard, N; Chuss, D T; Miller, N J

    2016-01-01

    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for CMB measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 millimeters to 100 microns and compare the quality of the fits. We consider the two-level systems model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anticorrelation between emissivity index and dust temperature. We consider the model of Finkbeiner, Davis, and Schlegel because it has been widely used for CMB studies, and the generalized version of this model recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenologic...

  9. The Martian Dust Chronicle: Eight Years of Reconstructed Climatology from Spacecraft Observations

    Science.gov (United States)

    Montabone, Luca; Forget, François; Millour, Ehouarn; Wilson, R. John; Lewis, Stephen R.; Kass, David; Kleinboehl, Armin; Lemmon, Mark T.; Smith, Michael D.; Wolff, Mike J.

    2014-05-01

    We have reconstructed the climatology of airborne dust from Martian years (MY) 24 to 31 using multiple datasets of retrieved or estimated column optical depth. The datasets are based on observations of the Martian atmosphere from March 1999 to July 2013 by different orbiting instruments: the Thermal Emission Spectrometer (TES) on board Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) on board Mars Odyssey, and the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists in gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates weighted averages on a regular but likely incomplete spatial grid, using an iterative procedure with weights in space, time, and retrieval uncertainty. The derived product consists of daily synoptic gridded maps of CDOD at a resolution of 6 degree longitude x 3 degree latitude for MY 24-26, and 6 degree longitude x 5 degree latitude for MY 27-31. We have statistically analyzed the gridded maps to present an overview of the dust climatology on Mars over eight years, specifically in relation to its intraseasonal and interannual variability. Finally, we have produced complete daily maps of CDOD by spatially interpolating the available incomplete gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and should be useful for many other applications. The maps for the eight available Martian years are publicly available and distributed with open access, under Creative Commons Attribution-ShareAlike 3.0 Unported License. The current version and future updates can be downloaded from the MCD website at the Laboratoire de Meteorologie Dynamique: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/

  10. Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates

    Science.gov (United States)

    Vaughan, Alicia F.; Johnson, Jeffrey R.; Herkenhoff, Kenneth E.; Sullivan, Robert; Landis, Geoffrey A.; Goetz, Walter; Madsen, Morten B.

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger.

  11. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.

    2016-11-01

    A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on

  12. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    Science.gov (United States)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  13. The influence of dust grain porosity on the analysis of debris disc observations

    Science.gov (United States)

    Brunngräber, Robert; Wolf, Sebastian; Kirchschlager, Florian; Ertel, Steve

    2017-02-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called `blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.

  14. The atmospheric structure during episodes of open cellular convection observed in KonTur 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kruspe, G.; Bakan, S. (Max-Planck-Inst. fuer Meteorologie, Hamburg (West Germany))

    1990-02-20

    The KonTur (Konvektion and Turbulenz) 1981 experiment was primarily dedicated to the study of organized boundary layer convection. While two research aircraft were used for detailed boundary layer measurements, an aerological network of four stations in the North Sea yielded information on the mean atmospheric structure in organized convective situations. During the second experiment phase in October 1981, cold air advection caused intense convective activity. Four periods of well-organized open convection cells could be determined from NOAA satellite images. The present paper contains the results from the aerological data set, which allowed the derivation of mean profiles of the dynamic and thermodynamic quantities. Finally, the evolution of the most pronounced cellular episode is presented in a case study. Cellular episodes appeared during rather cold and dry periods in which potential temperature, specific humidity, and equivalent potential temperature in the convection layer reached a relative minimum. However, none of the mean atmospheric profiles differ considerably from those found under convective conditions without cellular organization. During the cellular episodes, horizontal gradients show generally small values throughout the convection layer.

  15. The atmospheric structure during episodes of open cellular convection observed in KonTur 1981

    Science.gov (United States)

    Kruspe, G.; Bakan, S.

    1990-02-01

    The KonTur (Konvektion und Turbulenz) 1981 experiment was primarily dedicated to the study of organized boundary layer convection. While two research aircraft were used for detailed boundary layer measurements, an aerological network of four stations in the North Sea yielded information on the mean atmospheric structure in organized convective situations. During the second experiment phase in October 1981, cold air advection caused intense convective activity. Four periods of well-organized open convection cells could be determined from NOAA satellite images. The present paper contains the results from the aerological data set, which allowed the derivation of mean profiles of the dynamic and thermodynamic quantities with acceptable accuracy, but also of the horizontal gradients of thermodynamic quantities. Finally, the evolution of the most pronounced cellular episode is presented in a case study. Cellular episodes appeared during rather cold and dry periods in which potential temperature, specific humidity, and equivalent potential temperature in the convection layer reached a relative minimum. However, none of the mean atmospheric profiles differ considerably from those found under convective conditions without cellular organization. During the cellular episodes, horizontal gradients show generally small values throughout the convection layer.

  16. The Berkeley EUV/FUV Shuttle Telescope - Observations of dust reflection in the FUV

    Science.gov (United States)

    Hurwitz, Mark; Martin, Christopher; Bowyer, Stuart

    1986-01-01

    Observations by the Berkeley EUV/FUV Shuttle Telescope of the FUV reflection from dust clouds are reported. Spectra of the diffuse UV background from regions of low and high hydrogen column density have been taken. The intensity of the continuum correlates well with the column density of neutral hydrogen, and the slope of this correlation is interpreted with a simple model of optically thin scattering to obtain a measurement of a combination of the albedo and asymmetry parameter in the FUV.

  17. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; Chen, Hongbin

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  18. Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; Chen, Hongbin

    2010-04-01

    Trace gases and aerosols were measured in Zhangye (39.082°N, 100.276°E, 1460 m a.s.l.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO: 265 ppb; SO2: 3.4 ppb; NOy*: 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 μg/m3) and light scattering (159 Mm-1 at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3 Mm-1 at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 nm) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NOy, NOy/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 × 10-3, respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 × 10-3 for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  19. Spitzer Space Telescope Observations of Kepler's Supernova Remnant: A Detailed Look at the Circumstellar Dust Component

    CERN Document Server

    Blair, W P; Long, K S; Williams, B J; Borkowski, K J; Sankrit, S P R R; Blair, William P.; Ghavamian, Parviz; Long, Knox S.; Williams, Brian J.; Borkowski, Kazimierz J.; Sankrit, Stephen P. Reynolds & Ravi

    2007-01-01

    We present 3.6 - 160 micron infrared images of Kepler's supernova remnant (SN1604) obtained with the IRAC and MIPS instruments on the Spitzer Space Telescope. We also present MIPS SED low resolution spectra in the 55 - 95 micron region. The observed emission in the MIPS 24 micron band shows the entire shell. Emission in the MIPS 70 micron and IRAC 8 micron bands is seen only from the brightest regions of 24 micron emission, which also correspond to the regions seen in optical Halpha images. Shorter wavelength IRAC images are increasingly dominated by stars, although faint filaments are discernible. The SED spectrum of shows a faint continuum dropping off to longer wavelengths and confirms that strong line emission does not dominate the mid-IR spectral region. The emission we see is due primarily to warm dust emission from dust heated by the primary blast wave; no excess infrared emission is observed in regions where supernova ejecta are seen in X-rays. We use models of the dust to interpret the observed 70/24...

  20. Long term observations of PM2.5-associated PAHs: Comparisons between normal and episode days

    Science.gov (United States)

    Wang, Jia; Li, Xiao; Jiang, Nan; Zhang, Wenkai; Zhang, Ruiqin; Tang, Xiaoyan

    2015-03-01

    The pollution characteristic of fine particular matter (PM2.5) and associated polycyclic aromatic hydrocarbons (PAHs) are currently drawing a great deal of interest because of their influence on environment and health. In this study, PM2.5 was collected from 2011 to 2013 (n = 188) in a suburban area of Zhengzhou, China. 16-PAHs were analyzed to determine the concentration, seasonal variation and potential sources during normal days and episode events. The total mass of 16 PAHs and PM2.5 were in the range of 7-961 ng m-3 and 55-697 μg m-3, with a 3-year average of 174 ng m-3 and 194 μg m-3 respectively. Winter is most polluted for both PM2.5 and PAHs. Average PAH and PM2.5 concentrations during three episode events are 454 ng m-3 and 453 μg m-3, respectively, much higher than values during normal days (299 ng m-3 and 180 μg m-3, respectively). Ratios of Σ16PAH/PM2.5 varied with seasons and concentrations of PM2.5, but showed a negative correlation with PM2.5 concentrations during episode events. The dominant components of PAHs are Benzo[b]fluoranthene, Chrysene, Fluoranthene, and Benzo[k]fluoranthene, Benz[a]anthracene, Pyrene, Indeno(1,2,3-cd)pyrene and their total concentrations vary from 27 to 342 ng m-3, accounting for 58-82% (average = 73%) of 16 PAHs. The Benzo[a]pyrene (Bap) concentration obtained was 9.4 ng m-3 (3-year average), exceeding nearly one order of magnitude of ambient air BaP standard (annual average: 1.0 ng m-3) in China. Diagnose ratios and Positive Matrix Factorization results show that coal combustion, vehicles, coking plant, and biomass burning are main sources for PAHs in this area. The high concentrations of PM2.5 and PAHs, especially during episode events, reflected a potential health problem for nearby public and the necessity of air pollution control for both stationary and mobile sources.

  1. CARMA Observations of Galactic Cold Cores: Searching for Spinning Dust Emission

    CERN Document Server

    Tibbs, C T; Cleary, K; Muchovej, S J C; Scaife, A M M; Stevenson, M A; Laureijs, R J; Ysard, N; Grainge, K J B; Perrott, Y C; Rumsey, C; Villadsen, J

    2015-01-01

    We present the first search for spinning dust emission from a sample of 34 Galactic cold cores, performed using the CARMA interferometer. For each of our cores we use photometric data from the Herschel Space Observatory to constrain N_{H}, T_{d}, n_{H}, and G_{0}. By computing the mass of the cores and comparing it to the Bonnor-Ebert mass, we determined that 29 of the 34 cores are gravitationally unstable and undergoing collapse. In fact, we found that 6 cores are associated with at least one young stellar object, suggestive of their proto-stellar nature. By investigating the physical conditions within each core, we can shed light on the cm emission revealed (or not) by our CARMA observations. Indeed, we find that only 3 of our cores have any significant detectable cm emission. Using a spinning dust model, we predict the expected level of spinning dust emission in each core and find that for all 34 cores, the predicted level of emission is larger than the observed cm emission constrained by the CARMA observa...

  2. Observations of V592 Cassiopeiae with the Spitzer Space Telescope - Dust in the Mid-Infrared

    CERN Document Server

    Hoard, D W; Wachter, Stefanie; Howell, Steve B; Brinkworth, Carolyn S; Ciardi, David R; Szkody, Paula; Belle, Kunegunda; Froning, Cynthia; van Belle, Gerard

    2008-01-01

    We present the ultraviolet-optical-infrared spectral energy distribution of the low inclination novalike cataclysmic variable V592 Cassiopeiae, including new mid-infrared observations from 3.5-24 microns obtained with the Spitzer Space Telescope. At wavelengths shortward of 8 microns, the spectral energy distribution of V592 Cas is dominated by the steady state accretion disk, but there is flux density in excess of the summed stellar components and accretion disk at longer wavelengths. Reproducing the observed spectral energy distribution from ultraviolet to mid-infrared wavelengths can be accomplished by including a circumbinary disk composed of cool dust, with a maximum inner edge temperature of ~500 K. The total mass of circumbinary dust in V592 Cas (~10^21 g) is similar to that found from recent studies of infrared excess in magnetic CVs, and is too small to have a significant effect on the long-term secular evolution of the cataclysmic variable. The existence of circumbinary dust in V592 Cas is possibly ...

  3. A Combined Observational and Modeling Approach to Study Modern Dust Transport from the Patagonia Desert to East Antarctica

    Science.gov (United States)

    Gasso, S.; Stein, A.; Marino, F.; Castellano, E.; Udisti, R.; Ceratto, J.

    2010-01-01

    The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS ,POLDER, OMI,), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (approx.54deg S) and from the shores of the Colihue Huapi lake in Central Patagonia (approx.46deg S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6-7 and 9-10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant de- position over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and approx.800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the

  4. MULTIBAND OPTICAL OBSERVATION OF THE P/2010 A2 DUST TAIL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junhan [303-201, Mokdong Apartment, Mok-5-dong, Yangcheon-gu, Seoul 158-753 (Korea, Republic of); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, San 56-1, Silim-dong, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Hasegawa, Sunao; Usui, Fumihiko; Sarugaku, Yuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yanagisawa, Kenshi [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asaguchi, Okayama 719-0232 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Yoshida, Michitoshi, E-mail: ishiguro@astro.snu.ac.kr [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2012-02-10

    An inner main-belt asteroid, P/2010 A2, was discovered on 2010 January 6. Based on its orbital elements, it is considered that the asteroid belongs to the Flora collisional family, where S-type asteroids are common, while showing a comet-like dust tail. Although analysis of images taken by the Hubble Space Telescope and Rosetta spacecraft suggested that the dust tail resulted from a recent head-on collision between asteroids, an alternative idea of ice sublimation was suggested based on the morphological fitting of ground-based images. Here, we report a multiband observation of P/2010 A2 made on 2010 January with a 105 cm telescope at the Ishigakijima Astronomical Observatory. Three broadband filters, g', R{sub c} , and I{sub c} , were employed for the observation. The unique multiband data reveal that the reflectance spectrum of the P/2010 A2 dust tail resembles that of an Sq-type asteroid or that of ordinary chondrites rather than that of an S-type asteroid. Due to the large error of the measurement, the reflectance spectrum also resembles the spectra of C-type asteroids, even though C-type asteroids are uncommon in the Flora family. The reflectances relative to the g' band (470 nm) are 1.096 {+-} 0.046 at the R{sub c} band (650 nm) and 1.131 {+-} 0.061 at the I{sub c} band (800 nm). We hypothesize that the parent body of P/2010 A2 was originally S-type but was then shattered upon collision into scattering fresh chondritic particles from the interior, thus forming the dust tail.

  5. Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?

    Science.gov (United States)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2017-09-01

    The abrupt change in North Atlantic dust deposition found in sediment records has been associated with a rapid large scale transition of Holocene Saharan landscape. We hypothesize that gradual changes in the landscape may have caused this abrupt shift in dust deposition either because of the non-linearity in dust activation or because of the heterogeneous distribution of major dust sources. To test this hypothesis, we investigate the response of North Atlantic dust deposition to a prescribed 1) gradual and spatially homogeneous decrease and 2) gradual southward retreat of North African vegetation and lakes during the Holocene using the aerosol-climate model ECHAM-HAM. In our simulations, we do not find evidence of an abrupt increase in dust deposition as observed in marine sediment records along the Northwest African margin. We conclude that such gradual changes in landscape are not sufficient to explain the observed abrupt changes in dust accumulation in marine sediment records. Instead, our results point to a rapid large-scale retreat of vegetation and lakes in the area of significant dust sources.

  6. Swift Ultraviolet Observations of Supernova 2014J in M82: Large Extinction from Interstellar Dust

    CERN Document Server

    Brown, Peter J; Wang, Lifan; Breeveld, Alice; de Pasquale, Massimiliano; Hartmann, Dieter H; Krisciunas, Kevin; Kuin, N P M; Milne, Peter A; Page, Mat; Siegel, Michael

    2014-01-01

    We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN~2014J with Hubble Space Telescope observations of SN2011fe or UVOT grism spectra of SN~2012fr are consistent with an extinction law with a low value of R_V~1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift and does not show a flattening due to photons being scattered back into the line of sight. The light curve shapes and color evolution are inconsistent with a contribution scattered into the line of sight by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circums...

  7. Radiative Effects of African Dust and Smoke Observed from CERES and CALIOP Data

    Science.gov (United States)

    Yorks, J. E.; McGill, M. J.; Rodier, S. D.; Hlavka, D. L.; Vaughan, M. A.; Hu, Y.

    2009-05-01

    Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of about 270 W/m2 and thin cirrus clouds had a SW radiative flux of about 208 W/m2. When dust and smoke aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to as low as roughly 205 W/m2. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics (semi- direct effect). CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.

  8. Unveiling the gas and dust disk structure in HD 163296 using ALMA observations

    CERN Document Server

    de Gregorio-Monsalvo, I; Dent, W; Pinte, C; López, C; Klaassen, P; Hales, A; Cortés, P; Rawlings, M G; Tachihara, K; Testi, L; Takahashi, S; Chapillon, E; Mathews, G; Juhasz, A; Akiyama, E; Higuchi, A E; Saito, M; Nyman, L - Å; Phillips, N; Rodń, J; Corder, S; Van Kempen, T

    2013-01-01

    Aims: The aim of this work is to study the structure of the protoplanetary disk surrounding the Herbig Ae star HD 163296. Methods: We have used high-resolution and high-sensitivity ALMA observations of the CO(3-2) emission line and the continuum at 850 microns, as well as the 3- dimensional radiative transfer code MCFOST to model the data presented in this work. Results: The CO(3-2) emission unveils for the first time at sub-millimeter frequencies the vertical structure details of a gaseous disk in Keplerian rotation, showing the back- and the front-side of a flared disk. Continuum emission at 850 microns reveals a compact dust disk with a 240 AU outer radius and a surface brightness profile that shows a very steep decline at radius larger than 125 AU. The gaseous disk is more than two times larger than the dust disk, with a similar critical radius but with a shallower radial profile. Radiative transfer models of the continuum data confirms the need for a sharp outer edge to the dust disk. The models for the ...

  9. Mercury simulations within GMOS: Analysis of short-term observational episodes

    Directory of Open Access Journals (Sweden)

    Travnikov O.

    2013-04-01

    Full Text Available A number of contemporary chemical transport models for mercury are applied within the framework of the EU GMOS project to study principal processes of mercury transport and transformations in the atmosphere. Each model is involved in simulation of short-term episodes corresponding to particular Hg measurement campaigns in Europe and other regions. In order to evaluate different physical and chemical mechanisms the models perform sensitivity runs with various parameterizations and/or combinations of considered processes. The modeling results are compared to detailed measurements of Hg species (Hg0/TGM, RGM, HgP with high temporal resolution (hours aiming at reproduction of short-term temporal variability of Hg air concentration.

  10. A study of episodic events in the Baltic Sea - combined in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    Sławomir Sagan

    2012-04-01

    Full Text Available A project was developed concerning the operational system of surveillanceand the recording of episodic events in the Baltic Sea.In situ information was to be combined with multi-sensory satelliteimagery to determine the extent of algal blooms, to track their evolutionand that of rapid environmental events like hydrological fronts. The mainelement of the system was an autonomous Ferry Box module on a ferry operatingbetween Gdynia and Karlskrona, automatically measuring temperature,salinity and chlorophyll a fluorescence. At pre-selected locations,discrete water samples were collected, which were subsequently analysedfor their phytoplankton content, and algal hepato- and neurotoxins;they were also used in toxicity tests with Artemia franciscana}.

  11. EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy

    Science.gov (United States)

    Mona, L.; Papagiannopoulos, N.; Basart, S.; Baldasano, J.; Binietoglou, I.; Cornacchia, C.; Pappalardo, G.

    2014-08-01

    In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000-July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model-observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.

  12. Dust deposition and removal at the MER landing sites from observations of the Panoramic Camera (Pancam) calibration targets

    Science.gov (United States)

    Kinch, K. M.; Bell, J. F.; Madsen, M. B.

    2012-12-01

    The Panoramic Cameras (Pancams) [1] on NASA's Mars Exploration Rovers have each returned in excess of 17000 images of their external calibration targets (caltargets), a set of optically well-characterized patches of materials with differing reflectance properties. During the mission dust deposition on the caltargets changed their optical reflectance properties [2]. The thickness of dust on the caltargets can be derived with high confidence from the contrast between brighter and darker colored patches. The dustier the caltarget the less contrast. We present a new history of dust deposition and removal at the two MER landing sites. Our data reveals two quite distinct dust environments. At the Spirit landing site half the Martian year is dominated by dust deposition, the other half by dust removal that usually happens during brief sharp wind events. At the Opportunity landing site the Martian year has a four-season cycle of deposition-removal-deposition-removal with dust removal happening gradually throughout the two removal seasons. Comparison to atmospheric optical depth measurements [3] shows that dust removals happen during dusty high-wind periods and that dust deposition rates are roughly proportional to the atmospheric dust load. We compare with dust deposition studies from other Mars landers and also present some early results from observation of dust on a similar camera calibration target on the Mars Science Laboratory mission. References: 1. Bell, J.F., III, et al., Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res., 2003. 108(E12): p. 8063. 2. Kinch, K.M., et al., Dust Deposition on the Mars Exploration Rover Panoramic Camera (Pancam) Calibration Targets. J. Geophys. Res., 2007. 112(E06S03): p. doi:10.1029/2006JE002807. 3. Lemmon, M., et al., Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004. 306: p. 1753-1756. Deposited dust optical depth on the Pancam caltargets as a

  13. Observing a Severe Dust Storm Event over China using Multiple Satellite Data

    Science.gov (United States)

    Xu, Hui; Xue, Yong; Guang, Jie; Mei, Linlu

    2013-04-01

    A severe dust storm (SDS) event occurred from 19 to 21 March 2010 in China, originated in western China and Mongolia and propagated into eastern/southern China, affecting human's life in a large area. As reported by National Meteorological Center of CMA (China Meteorological Administration), 16 provinces (cities) of China were hit by the dust storm (Han et al., 2012). Satellites can provide global measurements of desert dust and have particular importance in remote areas where there is a lack of in situ measurements (Carboni et al., 2012). To observe a dust, it is necessary to estimate the spatial and temporal distributions of dust aerosols. An important metric in the characterisation of aerosol distribution is the aerosol optical depth (AOD) (Adhikary et al., 2008). Satellite aerosol retrievals have improved considerably in the last decade, and numerous satellite sensors and algorithms have been generated. Reliable retrievals of dust aerosol over land were made using POLarization and Directionality of the Earth's Reflectance instrument-POLDER (Deuze et al., 2001), Moderate Resolution Imaging Spectroradiometer-MODIS (Kaufman et al., 1997; Hsu et al., 2004), Multiangle Imaging Spectroradiometer-MISR (Martonchik et al., 1998), and Cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO). However, intercomparison exercises (Myhre et al., 2005) have revealed that discrepancies between satellite measurements are particularly large during events of heavy aerosol loading. The reason is that different AOD retrieval algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. For MISR, POLDER and MODIS instrument, the multi-angle approaches, the polarization measurements and single-view approaches were used to retrieval AOD respectively. Combining of multi-sensor AOD data can potentially create a more consistent, reliable and complete picture of the space-time evolution of dust storms (Ehlers, 1991). In order to

  14. Multi-instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal

    Science.gov (United States)

    PreißLer, J.; Wagner, F.; Pereira, S. N.; Guerrero-Rascado, J. L.

    2011-12-01

    An exceptionally strong outbreak of Saharan dust was observed in southern Portugal from 4 to 9 April 2011. The event was monitored with a multiwavelength Raman lidar, a CIMEL Sun photometer, the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and two Moderate Resolution Imaging Spectroradiometer (MODIS). Those instruments provided vertically resolved and columnar information about the optical properties of the mineral dust plume. Maximum aerosol optical depths in the free troposphere of 1.8 and 1.9 were observed with Raman lidar at 355 and 532 nm, respectively. The mean extinction-related Ångström exponents (355, 532 nm) from Raman lidar averaged over the whole period were 0.0 ± 0.2. Backscatter-related Ångström exponents (355, 532 nm and 532, 1064 nm) were 0.4 on average. Mean lidar ratios calculated from Raman lidar measurements were 45 ± 8 sr at 355 nm and 53 ± 7 sr at 532 nm. The mean linear particle depolarization ratio at 532 nm was 0.28 ± 0.04. Furthermore, intrusion of Saharan dust into the planetary boundary layer could be observed with different ground-based in-situ instruments. Maximum particle mass concentration values (PM10) of 162 μg m-3 were detected at ground. The daily threshold of 50 μg m-3 for PM10 was exceeded on three subsequent days during the considered period. The ratio of coarse to fine mode particle number concentration reached maximum values larger than 1, coinciding with the maximum in PM10mass concentration. A comparison of ground-based Raman lidar measurements and CALIOP Level 2 data was done for one CALIPSO overpass. A good agreement was found for backscatter coefficients.

  15. The dust environment of comet 67P/Churyumov-Gerasimenko: results from Monte Carlo dust tail modelling applied to a large ground-based observation data set

    Science.gov (United States)

    Moreno, Fernando; Muñoz, Olga; Gutiérrez, Pedro J.; Lara, Luisa M.; Snodgrass, Colin; Lin, Zhong Y.; Della Corte, Vincenzo; Rotundi, Alessandra; Yagi, Masafumi

    2017-07-01

    We present an extensive data set of ground-based observations and models of the dust environment of comet 67P/Churyumov-Gerasimenko covering a large portion of the orbital arc from about 4.5 au pre-perihelion through 3.0 au post-perihelion, acquired during the current orbit. In addition, we have also applied the model to a dust trail image acquired during this orbit, as well as to dust trail observations obtained during previous orbits, in both the visible and the infrared. The results of the Monte Carlo modelling of the dust tail and trail data are generally consistent with the in situ results reported so far by the Rosetta instruments Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and Grain Impact Analyser and Dust Accumulator (GIADA). We found the comet nucleus already active at 4.5 au pre-perihelion, with a dust production rate increasing up to ˜3000 kg s-1 some 20 d after perihelion passage. The dust size distribution at sizes smaller than r = 1 mm is linked to the nucleus seasons, being described by a power law of index -3.0 during the comet nucleus southern hemisphere winter but becoming considerably steeper, with values between -3.6 and -4.3, during the nucleus southern hemisphere summer, which includes perihelion passage (from about 1.7 au inbound to 2.4 au outbound). This agrees with the increase of the steepness of the dust size distribution found from GIADA measurements at perihelion showing a power index of -3.7. The size distribution at sizes larger than 1 mm for the current orbit is set to a power law of index -3.6, which is near the average value of insitu measurements by OSIRIS on large particles. However, in order to fit the trail data acquired during past orbits previous to the 2009 perihelion passage, a steeper power-law index of -4.1 has been set at those dates, in agreement with previous trail modelling. The particle sizes are set at a minimum of r = 10 μm, and a maximum size, which increases with decreasing heliocentric

  16. HERschel Observations of Edge-on Spirals (HEROES). I: Far-infrared morphology and dust mass determination

    CERN Document Server

    Verstappen, J; Baes, M; Smith, M W L; Allaert, F; Bianchi, S; Blommaert, J A D L; De Geyter, G; De Looze, I; Gentile, G; Gordon, K D; Holwerda, B W; Viaene, S; Xilouris, E M

    2013-01-01

    Context. Edge-on spiral galaxies with prominent dust lanes provide us with an excellent opportunity to study the distribution and properties of the dust within them. The HEROES project was set up to observe a sample of seven large edge-on galaxies across various wavelengths for this investigation. Aims. Within this first paper, we present the Herschel observations and perform a qualitative and quantitative analysis on them, and we derive some global properties of the far infrared and submillimetre emission. Methods. We determine horizontal and vertical profiles from the Herschel observations of the galaxies in the sample and describe the morphology. Modified black-body fits to the global fluxes, measured using aperture photometry, result in dust temperatures and dust masses. The latter values are compared to those that are derived from radiative transfer models taken from the literature. Results. On the whole, our Herschel flux measurements agree well with archival values. We find that the exponential horizon...

  17. Satellite based Observations of Saharan Dust Source Areas - Comparison and Variability

    Science.gov (United States)

    Schepanski, K.; Tegen, I.; Macke, A.

    2012-04-01

    Satellite remote sensing products such as Meteosat Second Generation (MSG) Infra Red (IR) dust index and Ozone Monitoring Instrument (OMI) Aerosol Index (AI) are commonly used to infer dust source areas. We compare two different methods for dust source identification, (1) a "back-tacking" method applied to 4 years of 15-minute MSG IR dust index, and (2) a "frequency" method applied to daily OMI AI and daily MODIS DeepBlue Aerosol Optical Thickness (AOT) data for the same time period. Using the "back-tracking" method, dust source areas are inferred by tracking individual dust plumes back to their place of origin, allowed by the high temporal resolution of the MSG images. OMI AI and MODIS Deep Blue AOT products are available on daily resolution only, which disables for back-tracking of individual dust plumes. Thus, dust source areas are retrieved by relating the frequencies of occurrence of high dust loadings to source areas. The spatial distribution of inferred dust source areas from the two methods shows significant differences. The MSG back-tracking method highlights frequent dust emission from sources within complex terrain, while frequencies of high OMI AI values emphasise topographic basins as important dust source areas. Dust source areas retrieved from DeepBlue AOTs are generally placed further south towards the Sahel region. This study shows that the temporal resolution of satellite dust products is a key issue in retrieving dust source areas. Both, the spatial distribution of dust sources and their annual cycle strongly depend on the acquisition time related to the start of dust emission.

  18. Observations of the Optical Transient in NGC 300 with AKARI/IRC: Possibilities of Asymmetric Dust Formation

    CERN Document Server

    Ohsawa, R; Onaka, T; Tanaka, M; Moriya, T; Nozawa, T; Maeda, K; Nomoto, K; Tominaga, N; Usui, F; Matsuhara, H; Nakagawa, T; Murakami, H

    2010-01-01

    We present the results of near-infrared (NIR) multi-epoch observations of the optical transient in the nearby galaxy NGC300 (NGC300-OT) at 398 and 582 days after the discovery with the Infrared Camera (IRC) onboard AKARI. NIR spectra (2--5 um) of NGC300-OT were obtained for the first time. They show no prominent emission nor absorption features, but are dominated by continuum thermal emission from the dust around NGC300-OT. NIR images were taken in the 2.4, 3.2, and 4.1 um bands. The spectral energy distributions (SED) of NGC300-OT indicate the dust temperature of 810 (+-14) K at 398 days and 670 (+-12) K at 582 days. We attribute the observed NIR emission to the thermal emission from dust grains formed in the ejecta of NGC300-OT. The multi-epoch observations enable us to estimate the dust optical depth as larger than about 12 at 398 days and larger than about 6 at 582 days at 2.4 um, by assuming an isothermal dust cloud. The observed NIR emission must be optically thick, unless the amount of dust grains incr...

  19. Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations

    CERN Document Server

    Guidi, G; Testi, L; de Gregorio-Monsalvo, I; Chandler, C J; Pérez, L; Isella, A; Natta, A; Ortolani, S; Hennings, Th; Corder, S; Linz, H; Andrews, S; Wilner, D; Ricci, L; Carpenter, J; Sargent, A; Mundy, L; Storm, S; Calvet, N; Dullemond, C; Greaves, J; Lazio, J; Deller, A; Kwon, W

    2016-01-01

    To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. Our goal is to study grain growth in the disk of the young, intermediate mass star HD163296 where dust processing has already been observed, and to look for evidence of growth by ice condensation across the CO snowline, already identified in this disk with ALMA. Under the hypothesis of optically thin emission we compare images at different wavelengths from ALMA and VLA to measure the opacity spectral index across the disk and thus the maximum grain size. We also use a Bayesian tool based on a two-layer disk model to fit the observations and constrain the dust surface density. The measurements of the opacity spectral index indicate the presence of large grains and pebbles ($\\geq$1 cm) in the inner regions of the disk (inside $\\sim$50 AU) and smaller grains, consistent with ISM sizes, in the outer ...

  20. Peering through the Dust: NuSTAR Observations of Two FIRST-2MASS Red Quasars

    CERN Document Server

    LaMassa, Stephanie M; Glikman, Eilat; Urry, C Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George B; Civano, Francesca; Boggs, Steve E; Brandt, W N; Chen, Chien-Ting J; Christensen, Finn E; Craig, William W; Hailey, Chuck J; Harrison, Fiona; Hickox, Ryan C; Koss, Michael; Ricci, Claudio; Treister, Ezequiel; Zhang, Will

    2016-01-01

    Some reddened quasars appear to be transitional objects in the merger-induced black hole growth/galaxy evolution paradigm, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830+3759 is moderately obscured ($N_{\\rm H,Z} = 2.1\\pm0.2 \\times10^{22}$ cm$^{-2}$) and F2M 1227+3214 is mildly absorbed ($N_{\\rm H,Z} = 3.4^{+0.8}_{-0.7}\\times10^{21}$ cm$^{-2}$) along the line-of-sight, heavier global obscuration may be present in both sources, with $N_{\\rm H,S} = 3.7^{+4.1}_{-2.6} \\times 10^{23}$ cm$^{-2}$ and $< 5.5\\times10^{23}$ cm$^{-2}$, for F2M 0830+3759 and F2M 1227+3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 keV which i...

  1. Spitzer Space Telescope observations of magnetic cataclysmic variables: possibilities for the presence of dust in polars

    CERN Document Server

    Brinkworth, C S; Wachter, S; Howell, S B; Ciardi, D R; Szkody, P; Harrison, T E; van Belle, G T; Esin, A A; 10.1086/512797

    2009-01-01

    We present Spitzer Space Telescope photometry of six short-period polars, EF Eri, V347 Pav, VV Pup, V834 Cen, GG Leo, and MR Ser. We have combined the Spitzer Infrared Array Camera (3.6 -8.0 microns) data with the 2MASS J, H, K_s photometry to construct the spectral energy distributions of these systems from the near- to mid-IR (1.235 - 8 microns). We find that five out of the six polars have flux densities in the mid-IR that are substantially in excess of the values expected from the stellar components alone. We have modeled the observed SEDs with a combination of contributions from the white dwarf, secondary star, and either cyclotron emission or a cool, circumbinary dust disk to fill in the long-wavelength excess. We find that a circumbinary dust disk is the most likely cause of the 8 micron excess in all cases, but we have been unable to rule out the specific (but unlikely) case of completely optically thin cyclotron emission as the source of the observed 8 micron flux density. While both model components...

  2. Enhancement and identification of dust events in the south-west region of Iran using satellite observations

    Science.gov (United States)

    Taghavi, F.; Owlad, E.; Ackerman, S. A.

    2017-03-01

    South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust more accurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and the locations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.

  3. Enhancement and identification of dust events in the south-west region of Iran using satellite observations

    Indian Academy of Sciences (India)

    F Taghavi; E Owlad; S A Ackerman

    2017-03-01

    South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust moreaccurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and thelocations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.

  4. Lidar Ratio Derived for Pure Dust Aerosols: Multi-Year Micro Pulse Lidar Observations in a Saharan Dust-Influenced Region

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available A seasonal distribution of the Lidar Ratio (LR, extinction-to-backscattering coefficient ratio for pure Saharan dust particles has been achieved. Simultaneous MPLNET/Micro Pulse lidar measurements in synergy with AERONET sun-photometer data were collected in the Tenerife area, a Saharan dust-influenced region, from June 2007 to November 2009. Dusty cases were mostly observed in summertime (71.4 % of total dusty cases. No differences were found among the LR values derived for spring, summertime and autumn times (a rather consistent seasonally averaged LR value of 57 sr is found. In wintertime, however, a higher mean LR is derived (65 sr, associated likely with a potential contamination from fine biomass burning particles coming from Sahel area during wintertime deforestation fires period. Results, obtained from a free-tropospheric pristine station (AEMET/Izaña Observatory under Saharan dust intrusion occurrence, provide a more realistic perspective about LR values to be used in elastic lidar-derived AOD inversion for Saharan pure dust particles, and hence in improving CALIPSO AOD retrievals.

  5. Lidar Ratio Derived for Pure Dust Aerosols: Multi-Year Micro Pulse Lidar Observations in a Saharan Dust-Influenced Region

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Adame, José Antonio; Campbell, James R.; Cuevas, Emilio; Díaz, Juan Pedro; Expósito, Francisco; Gil-Ojeda, Manuel

    2016-06-01

    A seasonal distribution of the Lidar Ratio (LR, extinction-to-backscattering coefficient ratio) for pure Saharan dust particles has been achieved. Simultaneous MPLNET/Micro Pulse lidar measurements in synergy with AERONET sun-photometer data were collected in the Tenerife area, a Saharan dust-influenced region, from June 2007 to November 2009. Dusty cases were mostly observed in summertime (71.4 % of total dusty cases). No differences were found among the LR values derived for spring, summertime and autumn times (a rather consistent seasonally averaged LR value of 57 sr is found). In wintertime, however, a higher mean LR is derived (65 sr), associated likely with a potential contamination from fine biomass burning particles coming from Sahel area during wintertime deforestation fires period. Results, obtained from a free-tropospheric pristine station (AEMET/Izaña Observatory) under Saharan dust intrusion occurrence, provide a more realistic perspective about LR values to be used in elastic lidar-derived AOD inversion for Saharan pure dust particles, and hence in improving CALIPSO AOD retrievals.

  6. Observations and Modeling of Saharan Dust Interaction with a Tropical Cyclone

    Science.gov (United States)

    Braun, Scott; Shi, Jainn J.; Sippel, Jason A.; Tao, Wei-Kuo

    2015-01-01

    Conflicting views on role of the SAL pre- and post-genesis (Karyampudi and Carlson 1988, Dunion and Velden 2004, Braun 2010, among others). Early dust impact studies claimed negative impacts, but had unrealistic dust distributions. (Zhang et al. 2007, 2009). More recent work with more realistic dust suggest possible positive impacts in some cases (Herbener et al. 2014).

  7. Nature of the gas and dust around 51 Ophiuchi. Modelling continuum and Herschel line observations

    Science.gov (United States)

    Thi, W. F.; Ménard, F.; Meeus, G.; Carmona, A.; Riviere-Marichalar, P.; Augereau, J.-C.; Kamp, I.; Woitke, P.; Pinte, C.; Mendigutía, I.; Eiroa, C.; Montesinos, B.; Britain, S.; Dent, W.

    2013-09-01

    Context. Circumstellar disc evolution is paramount for the understanding of planet formation. The gas in protoplanetary discs large program (GASPS) aims at determining the circumstellar gas and solid mass around ~250 pre-main-sequence Herbig Ae and T Tauri stars. Aims: We aim to understand the origin and nature of the circumstellar matter orbiting 51 Oph, a young (ii] emission at 158 microns, the high-J CO emissions, and the warm water emissions were not detected. Continuum emission was detected at 1.2 mm. The continuum from the near- to the far-infrared and the [O i] emission are well explained by the emission from a compact (Rout = 10-15 AU) hydrostatic disc model with a gas mass of 5 × 10-6 M⊙, 100 times that of the solid mass. However, this model fails to match the continuum millimeter flux, which hints at a cold outer disc with a mass in solids of ~10-6 M⊙ or free-free emission from a photoevaporative disc wind. This outer disc can either be devoid of gas and/or is too cold to emit in the [O i] line. A very flat extended disc model (Rout = 400 AU) with a fixed vertical structure and dust settling matches all photometric points and most of the [O i] flux. Conclusions: The observations can be explained by an extended flat disc where dust grains have settled. However, a flat gas disc cannot be reproduced by hydrostatic disc models. The low mass of the 51 Oph inner disc in gas and dust may be explained either by the fast dissipation of an initial massive disc or by a very small initial disc mass. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Soil Moisture Eff ects on Sand Saltation and Dust Emission Observed over the Horqin Sandy Land Area in China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolan; ZHANG Hongsheng

    2014-01-01

    In this study, the eff ects of soil moisture on sand saltation and dust emission over the Horqin Sandy Land area are investigated, based on observations of three dust events in 2010. The minimum friction velocity initiating the motion of surface particles, namely, the threshold friction velocity, is estimated to be 0.34, 0.40, and 0.50 m s−1 under the very dry, dry, and wet soil conditions, respectively. In comparison with the observations during the dust events under the very dry and dry soil conditions, the dust emission fl ux during the wet event is smaller, but the saltation activities of sand particles (d≧50 µm) are stronger. The size distributions of airborne dust particles (0.1≦d≦20 µm) show that concentrations of the fi ner dust particles (0.1≦d≦0.3 µm) have a secondary peak under dry soil conditions, while they are absent under wet soil conditions. This suggests that the surface soil particle size distribution can be changed by soil moisture. Under wet soil conditions, the particles appear to have a larger size, and hence more potential saltating particles are available. This explains the occurrence of stronger saltation processes observed under wet soil conditions.

  9. The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models

    Science.gov (United States)

    Yang, Yao-Lun; Evans, Neal J., II; Green, Joel D.; Dunham, Michael M.; Jørgensen, Jes K.

    2017-02-01

    We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to provide new constraints on its physical properties. We detect 645 (non-unique) spectral lines among all spatial pixels. At least 61 different spectral lines originate from the central region. A CO rotational diagram analysis shows four excitation temperature components, 43, 197, 397, and 1057 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of {{{H}}}2{{O}} trace the large-scale outflow, while the high-excitation emission lines trace a small-scale distribution around the equatorial plane. We model the envelope structure using the dust radiative transfer code, hyperion, incorporating rotational collapse, an outer static envelope, outflow cavity, and disk. The evolution of a rotating collapsing envelope can be constrained by the far-infrared/millimeter spectral energy distribution along with the azimuthally averaged radial intensity profile, and the structure of the outflow cavity plays a critical role at shorter wavelengths. Emission at 20–40 μm requires a cavity with a constant-density inner region and a power-law density outer region. The best-fit model has an envelope mass of 19 {M}ȯ inside a radius of 0.315 pc and a central luminosity of 18.8 {L}ȯ . The time since collapse began is 24,630–44,000 years, most likely around 36,000 years. The corresponding mass infall rate in the envelope (1.2 × 10‑5 {M}ȯ {{yr}}-1) is comparable to the stellar mass accretion rate, while the mass-loss rate estimated from the CO outflow is 20% of the stellar mass accretion rate. We find no evidence for episodic accretion.

  10. Pesticides in house dust from urban and farmworker households in California: an observational measurement study

    Directory of Open Access Journals (Sweden)

    McKone Thomas E

    2011-03-01

    Full Text Available Abstract Background Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion. Methods In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total. We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin, one phthalate herbicide (chlorthal-dimethyl, one dicarboximide fungicide (iprodione, and one pesticide synergist (piperonyl butoxide. Results More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in

  11. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  12. Analysis of the three-dimensional trajectories of dusts observed with a stereoscopic fast framing camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, M., E-mail: shoji@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Tanaka, Y. [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Pigarov, A.Yu.; Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States); Kawamura, G.; Uesugi, Y.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan)

    2015-08-15

    The three-dimensional trajectories of dusts have been observed with two stereoscopic fast framing cameras installed in upper and outer viewports in the Large Helical Device (LHD). It shows that the dust trajectories locate in divertor legs and an ergodic layer around the main plasma confinement region. While it is found that most of the dusts approximately move along the magnetic field lines with acceleration, there are some dusts which have sharply curved trajectories crossing over the magnetic field lines. A dust transport simulation code was modified to investigate the dust trajectories in fully three dimensional geometries such as LHD plasmas. It can explain the general trend of most of observed dust trajectories by the effect of the plasma flow in the peripheral plasma. However, the behavior of the some dusts with sharply curved trajectories is not consistent with the simulations.

  13. No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse.

    Science.gov (United States)

    Lamy, P; Kuhn, J R; Lin, H; Koutchmy, S; Smartt, R N

    1992-09-04

    During the past 25 years there have been many attempts to detect a possible dust ring around the sun, with contradictory results. Before the 1991 eclipse, infrared eclipse experiments used single-element detectors to scan the corona along the ecliptic for excess surface brightness peaks. The availability of relatively large-format infrared array detectors now provides a considerable observational advantage: two-dimensional mapping of the brightness and polarization of the corona with high photometric precision. The 1991 eclipse path included the high-altitude Mauna Kea Observatory, a further advantage to measure the corona out to large angular distances from the sun. Results are reported from an experiment conducted on Mauna Kea with a HgCdTe-array detector sensitive to wavelengths between 1 and 2.5 micrometers, using broad-band J, H, and K filters. Although the sky conditions were not ideal, the H- and K-band surface brightnesses clearly show the inhomogeneous structure in the K-corona and the elliptical flattening of the F-corona, but no evidence of a circumsolar, local dust component out to 15 solar radii.

  14. A multicenter observational study on the role of comorbidities in the recurrent episodes of benign paroxysmal positional vertigo.

    Science.gov (United States)

    De Stefano, Alessandro; Dispenza, Francesco; Suarez, Hamlet; Perez-Fernandez, Nicolas; Manrique-Huarte, Raquel; Ban, Jae Ho; Kim, Min-Beom; Kim, Min Beom; Strupp, Michael; Feil, Katharina; Oliveira, Carlos A; Sampaio, Andres L; Araujo, Mercedes F S; Bahmad, Fayez; Ganança, Mauricio M; Ganança, Fernando F; Dorigueto, Ricardo; Lee, Hyung; Kulamarva, Gautham; Mathur, Navneet; Di Giovanni, Pamela; Petrucci, Anna Grazia; Staniscia, Tommaso; Citraro, Leonardo; Croce, Adelchi

    2014-02-01

    Primary objective of this study was to find a statistical link between the most worldwide comorbidities affecting the elderly population (hypertension, diabetes, osteoarthrosis, osteoporosis and depression) and recurrent episodes of BPPV. Secondary objective was defining possible "groups of risk" for people suffering recurrent positional vertigo related to the presence of a well documented comorbidity. This was an observational, cross-sectional, multicenter, spontaneous, non-pharmacological study. The data of 1092 patients suffering BPPV evaluated in 11 different Departments of Otolaryngology, Otoneurology and Neurology, referring Centers for positional vertigo evaluation, were retrospectively collected. Regarding evaluated comorbidities (hypertension, diabetes, osteoarthrosis, osteoporosis and depression), data analysis showed the presence of at least one comorbid disorder in 216 subjects (19.8%) and 2 or more in 408 subjects (37.4%). Moreover there was a statistical significant difference between the number of comorbidities and the number of recurrences, otherwise said as comorbidity disorders increased the number of relapses increased too. The presence of a systemic disease may worsen the status of the posterior labyrinth causing a more frequent otolith detachment. This condition increases the risk for patients suffering BPPV to have recurrent episodes, even if correctly managed by repositioning maneuvers. The combination of two or more of aforementioned comorbidities further increases the risk of relapsing BPPV, worsened by the presence of osteoporosis. On the basis of this results it was possible to define "groups of risk" useful for predicting BPPV recurrence in patients with one or more comorbidity. Copyright © 2013. Published by Elsevier Ireland Ltd.

  15. Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations

    Science.gov (United States)

    Odegard, N.; Kogut, A.; Chuss, D. T.; Miller, N. J.

    2016-09-01

    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 mm to 100 μm and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.

  16. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus

    Directory of Open Access Journals (Sweden)

    A. Nisantzi

    2014-11-01

    Full Text Available Four-year observations (2010–2014 with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E, Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR, measured with lidar, contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (> 4 days after emission. We found significant PDR differences with values from 9 to 18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13 % when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. travel time (spatial distance between Limassol and last fire area, PDR decreased strongly from initial values around 16–18% (1 day travel to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Computation of particle extinction coefficient and mass concentrations, derived from the lidar observations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions on the order of 10% (for PDR =4%, travel times > 4 days and 50% (PDR =15%, 1 day travel time and respective mass-related dust fractions of 25% (PDR =4% to 80% (PDR =15%. Biomass burning should therefore be considered as another source of free tropospheric soil dust.

  17. Determining dust temperatures and masses in the Herschel era: the importance of observations longward of 200 micron

    CERN Document Server

    Gordon, K D; Hony, S; Bernard, J -P; Bolatto, A; Bot, C; Engelbracht, C; Hughes, A; Israel, F P; Kemper, F; Kim, S; Li, A; Madden, S C; Matsuura, M; Meixner, M; Misselt, K; Okumura, K; Panuzzo, P; Rubio, M; Reach, W T; Roman-Duval, J; Sauvage, M; Skibba, R; Tielens, A G G M

    2010-01-01

    The properties of the dust grains (e.g., temperature and mass) can be derived from fitting far-IR SEDs (>100 micron). Only with SPIRE on Herschel has it been possible to get high spatial resolution at 200 to 500 micron that is beyond the peak (~160 micron) of dust emission in most galaxies. We investigate the differences in the fitted dust temperatures and masses determined using only 200 micron data (new SPIRE observations) to determine how important having >200 micron data is for deriving these dust properties. We fit the 100 to 350 micron observations of the Large Magellanic Cloud (LMC) point-by-point with a model that consists of a single temperature and fixed emissivity law. The data used are existing observations at 100 and 160 micron (from IRAS and Spitzer) and new SPIRE observations of 1/4 of the LMC observed for the HERITAGE Key Project as part of the Herschel Science Demonstration phase. The dust temperatures and masses computed using only 100 and 160 micron data can differ by up to 10% and 36%, res...

  18. Spatio-temporal distribution of Saharan dust source activations inferred from 15-minute MSG-SEVIRI observations and its links to meteorological processes (Invited)

    Science.gov (United States)

    Schepanski, K.; Tegen, I.

    2009-12-01

    Mineral dust aerosol emitted from arid and semi-arid areas impacts on the weather and climate system by affecting e.g. radiation fluxes and nutrient cycles. The emission of dust particles depend strongly on surface wind velocity and turbulent fluxes as well as on surface characteristics like surface texture and vegetation cover. To estimate the effect of dust aerosol, detailed knowledge on the spatio-temporal distribution of active dust sources is necessary. As dust sources are mostly located over remote areas satellite observations are suitable for localizing active dust sources. Thereby the accuracy of determining dust sources from such an indirect method is limited by the temporal resolution and the ambiguities of the retrieval. A 1°x1° map on the spatial and temporal (3-hourly) distribution of dust source activations (DSA) over North Africa is compiled starting in March 2006. For dust source identification 15-minute Meteosat Second Generation (MSG) infra-red (IR) dust index images are used based on brightness temperature measurements by the Spinning enhanced Visible and Infra-Red Imager (SEVIRI) at 8.7 µm, 10.8 µm and 12.0 µm. This data set has been used (1) to identify most active dust source areas, and (2) to investigate on the temporal distribution of occurring dust source activations. Over the Sahara Desert 65% of dust sources becomes active during 06-09 UTC pointing towards an important role of the break-down of the nocturnal low-level jet (LLJ) for dust mobilization besides other meteorological features like density currents, haboobs, and cyclones. Furthermore the role of the nocturnal LLJ for dust mobilization over the Sahara is investigated by weather observations and a modelling study. DSA observations of the last 3.5 years indicate an interannual variability in frequencies of local dust source activations. The causes of this variability will be analyzed with respect to corresponding atmospheric conditions.

  19. Far-Ultraviolet Rocket Observations of OB Stars and Dust Scattering

    Science.gov (United States)

    Feldman, Paul D.; Lupu, R. E.; McCandliss, S. R.; Fleming, B.; France, K.; Nikzad, S.

    2009-01-01

    The rocket-borne Long-slit Imaging Dual Order Spectrograph (LIDOS) was used to obtain spectra of the Trifid and Orion nebula regions and their illuminating stars in the 900 - 1650 A bandpass during successive flights in 2007 and 2008. The instrument uses both positive and negative diffraction orders, employing a delta-doped CCD in addition to an MCP detector for an expanded dynamic range. We present preliminary extractions of the stellar spectra and the nebular dust scattered light profiles. The chosen lines of sight show little extinction and molecular hydrogen absorption, providing unique observations of stellar atmospheric features below 1200 A, including O VI, C III and He II, and the overall far-ultraviolet continuum output. This work was supported by NASA grants NNG04WC03G and NNX08AM68G to the Johns Hopkins University.

  20. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus

    Directory of Open Access Journals (Sweden)

    A. Nisantzi

    2014-06-01

    Full Text Available Four-year observations (2010–2014 with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E, Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3 days old smoke plumes in terms of particle depolarization contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (>4 days after emission. We found significant differences in the particle depolarization ratio (PDR with values from 9–18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13% when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occuring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. the travel time (spatial distance between Limassol and last fire area, PDR decreased strongly from initial values around 16–18% (one day travel to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with the literature. Computation of particle extinction coefficient and mass concentrations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions of the order of 10% (for PDR = 4%, travel times >4 days and 50% (PDR = 15%, one day travel time and mass-related dust fractions of 25% (PDR = 4% to 80% (PDR = 15%. Biomass burning should be considered as another source of free tropospheric soil dust.

  1. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  2. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis

    Science.gov (United States)

    Deboudt, Karine; Flament, Pascal; ChoëL, Marie; Gloter, Alexandre; Sobanska, Sophie; Colliex, Christian

    2010-12-01

    The mixing state of aerosols collected at M'Bour, Senegal, during the Special Observing Period conducted in January-February 2006 (SOP-0) of the African Monsoon Multidisciplinary Analysis project (AMMA), was studied by individual particle analysis. The sampling location on the Atlantic coast is particularly adapted for studying the mixing state of tropospheric aerosols since it is (1) located on the path of Saharan dust plumes transported westward over the northern tropical Atlantic, (2) influenced by biomass burning events particularly frequent from December to March, and (3) strongly influenced by anthropogenic emissions from polluted African cities. Particle size, morphology, and chemical composition were determined for 12,672 particles using scanning electron microscopy (automated SEM-EDX). Complementary analyses were performed using transmission electron microscopy combined with electron energy loss spectrometry (TEM-EELS) and Raman microspectrometry. Mineral dust and carbonaceous and marine compounds were predominantly found externally mixed, i.e., not present together in the same particles. Binary internally mixed particles, i.e., dust/carbonaceous, carbonaceous/marine, and dust/marine mixtures, accounted for a significant fraction of analyzed particles (from 10.5% to 46.5%). Western Sahara was identified as the main source of mineral dust. Two major types of carbonaceous particles were identified: "tar balls" probably coming from biomass burning emissions and soot from anthropogenic emissions. Regarding binary internally mixed particles, marine and carbonaceous compounds generally formed a coating on mineral dust particles. The carbonaceous coating observed at the particle scale on African dust was evidenced by the combined use of elemental and molecular microanalysis techniques, with the identification of an amorphous rather than crystallized carbon structure.

  3. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    Science.gov (United States)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  4. Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane

    CERN Document Server

    Paradis, D; Noriega-Crespo, A; Paladini, R; Piacentini, F; Bernard, J P; de Bernardis, P; Calzoletti, L; Faustini, F; Martin, P; Masi, S; Montier, L; Natoli, P; Ristorcelli, I; Thompson, M A; Traficante, A; Molinari, S

    2010-01-01

    Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first time to study the dust emissivity variations in the inner regions of the Galactic plane at resolution below 1 degree. We present maps of the emissivity spectral index derived from the combined Herschel PACS 160 \\mu m, SPIRE 250 \\mu m, 350 \\mu m, and 500 \\mu m data, and the IRIS 100 \\mu m data, and we analyze the spatial variations of the spectral index as a function of dust temperature and wavelength in the two Science Demonstration Phase Hi-GAL fields, centered at l=30{\\deg} and l=59{\\deg}. Applying two different methods, we determine both dust temperature and emissivity spectral index between 100 and 500 \\mu m, at an angular resolution of 4'. Combining both fields, the results show variations of the emissivity spectral index in the range 1.8-2.6 for temperature...

  5. Moist Process Biases in Simulations of the Madden–Julian Oscillation Episodes Observed during the AMIE/DYNAMO Field Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Zhao, Chun; Martini, Matus N.; Berg, Larry K.

    2016-02-01

    Two Madden-Julian Oscillation (MJO) episodes observed during the 2011 AMIE/DYNAMO field campaign are simulated using a regional cloud-permitting model, a regional model with various cumulus parameterizations, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases associated with moisture mode instability, wind-induced surface heat exchange (WISHE), and convective momentum transport (CMT) are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. Linear relationships are found among the normalized root mean square errors of precipitation, saturation fraction, evaporation, and surface wind speed suggesting that errors may propagate across the processes involving these variables. Analysis using a linear statistical model shows the relationship between convection and local surface wind speed (related to CMT processes) is the source of the largest uncertainty. In comparison, WISHE processes in the simulations tend to be biased consistently, with excess evaporation for the same wind speeds as the observations, which suggests they are likely related to biases in boundary layer and/or surface schemes. The relationship between precipitation and saturation fraction (which is associated with moisture mode instability) is captured relatively well with slightly larger model precipitation in the simulations in comparison to observations for the same saturation fraction, especially for weak rain rates. By linking developments in theoretical understanding of MJO processes and cumulus parameterizations, this study provides guidance to future improvements of MJO simulation by in high-resolution regional and global models.

  6. Long-range transport of Saharan dust to northern Europe: The 11-16 October 2001 outbreak observed with EARLINET

    Science.gov (United States)

    Ansmann, Albert; BöSenberg, Jens; Chaikovsky, Anatoli; Comerón, Adolfo; Eckhardt, Sabine; Eixmann, Ronald; Freudenthaler, Volker; Ginoux, Paul; Komguem, Leonce; Linné, Holger; MáRquez, Miguel ÁNgel López; Matthias, Volker; Mattis, Ina; Mitev, Valentin; Müller, Detlef; Music, Svetlana; Nickovic, Slobodan; Pelon, Jacques; Sauvage, Laurent; Sobolewsky, Piotr; Srivastava, Manoj K.; Stohl, Andreas; Torres, Omar; Vaughan, Geraint; Wandinger, Ulla; Wiegner, Matthias

    2003-12-01

    The spread of mineral particles over southwestern, western, and central Europe resulting from a strong Saharan dust outbreak in October 2001 was observed at 10 stations of the European Aerosol Research Lidar Network (EARLINET). For the first time, an optically dense desert dust plume over Europe was characterized coherently with high vertical resolution on a continental scale. The main layer was located above the boundary layer (above 1-km height above sea level (asl)) up to 3-5-km height, and traces of dust particles reached heights of 7-8 km. The particle optical depth typically ranged from 0.1 to 0.5 above 1-km height asl at the wavelength of 532 nm, and maximum values close to 0.8 were found over northern Germany. The lidar observations are in qualitative agreement with values of optical depth derived from Total Ozone Mapping Spectrometer (TOMS) data. Ten-day backward trajectories clearly indicated the Sahara as the source region of the particles and revealed that the dust layer observed, e.g., over Belsk, Poland, crossed the EARLINET site Aberystwyth, UK, and southern Scandinavia 24-48 hours before. Lidar-derived particle depolarization ratios, backscatter- and extinction-related Ångström exponents, and extinction-to-backscatter ratios mainly ranged from 15 to 25%, -0.5 to 0.5, and 40-80 sr, respectively, within the lofted dust plumes. A few atmospheric model calculations are presented showing the dust concentration over Europe. The simulations were found to be consistent with the network observations.

  7. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    Science.gov (United States)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2014-01-01

    We use CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios, as well as particulate retrievals during the summer of 2007 to study transatlantic dust properties downwind of Saharan sources, and to examine the influence of nearby clouds on dust. Our analysis suggests that (1) under clear skies, while lidar backscatter and color ratio do not change much with altitude and longitude in the Saharan Air Layer (SAL), depolarization ratio increases with altitude and decreases westward in the SAL (2) the vertical lapse rate of dust depolarization ratio, introduced here, increases within SAL as plumes move westward (3) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Moreover, the presence of nearby clouds tends to decrease the depolarization of dust volumes within SAL. Finally, (4) the odds of CALIOP finding dust below SAL next to clouds are about of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dust volumes loose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  8. Characteristics of extreme dust events observed over two urban areas in Iran

    Indian Academy of Sciences (India)

    Abbas-Ali A Bidokhti; Maryam Gharaylou; Nafiseh Pegahfar; Samaneh Sabetghadam; Maryam Rezazadeh

    2016-03-01

    Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity islow in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.

  9. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Directory of Open Access Journals (Sweden)

    O. Havnes

    2009-03-01

    Full Text Available The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height ~81.5–83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was ~−3.5×109 e m−3 and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2–3 over a distance of ≲10 m, while the same change at their lower edges were much more gradual. The upper edge of this layer is also sharp, with a change in the probe current from zero to IDC=−10−11 A over ~10 m, while the same change at the low edge occurs over ~500 m. The second dust layer at ~85–92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was ~−108 e m−3. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=NdZd /n_e≲0.01.

    In spite of the dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to ~50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is θi≳20–35°. This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Næsheim, 2007 as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  10. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, O. [Department of Physics and Technology, University of Tromsoe, Tromsoe (Norway); Surdal, L.H. [Narvik University College, Norvik, and Andoeya Rocket Range, Andenes (Norway); Philbrick, C.R. [Pennsylvania State University, Electrical Engineering Department (United States)

    2009-07-01

    The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height {proportional_to}81.5-83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was {proportional_to}-3.5 x 10{sup 9} e m{sup -3} and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2-3 over a distance of dust layer at {proportional_to}85-92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was {proportional_to}-10{sup 8} e m{sup -3}. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=N{sub d}Z{sub d}/n{sub e}dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to {proportional_to}50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is {theta}{sub i}>or similar 20-35 . This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Naesheim, 2007) as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  11. Spatial and Temporal Analysis of Winter Fog Episodes over South Asia by exploiting ground-based and satellite observations

    Science.gov (United States)

    Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico

    2016-04-01

    The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD

  12. X-ray observations of dust obscured galaxies in the Chandra Deep Field South

    CERN Document Server

    Corral, A; Comastri, A; Ranalli, P; Akylas, A; Salvato, M; Lanzuisi, G; Vignali, C; Koutoulidis, L

    2016-01-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra Deep Field South. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields. In that work, we only found a moderate percentage ($<$ 50%) of CT AGN among the DOGs sample, but we were limited by poor photon statistics. In this paper, we use not only a deeper 6 Ms Chandra survey of the Chandra Deep Field South (CDF-S), but combine these data with the 3 Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (but only 3 could be CT AGN), wherea...

  13. Mid-infrared Spectroscopic Observations of the Dust-forming Classical Nova V2676 Oph

    Science.gov (United States)

    Kawakita, Hideyo; Ootsubo, Takafumi; Arai, Akira; Shinnaka, Yoshiharu; Nagashima, Masayoshi

    2017-02-01

    The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μm was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μm originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Peering through the dust: NuSTAR observations of two first-2MASS red quasars

    DEFF Research Database (Denmark)

    LaMassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat;

    2016-01-01

    Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and gas. Hard X-ray observations are able to peer...

  15. Peering through the dust: NuSTAR observations of two first-2MASS red quasars

    DEFF Research Database (Denmark)

    LaMassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat

    2016-01-01

    Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and gas. Hard X-ray observations are able to peer...

  16. Field Observation of Heterogeneous Formation of Secondary Organic Aerosols on Asian Mineral Dust Surfaces

    Science.gov (United States)

    Wang, G.

    2014-12-01

    This study investigated the heterogeneous formation mechanism of secondary organic aerosols (SOA) on dust surfaces by characterizing molecular compositions and size distributions of dicarboxylic acids, keto-carboxylic acids, a-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) in the urban atmosphere of Xi'an, China during dust storm periods and comparing with those in non-dust storm periods. In the presence of a dust storm, all the above mentioned SOA species in Xi'an are predominantly enriched on coarse particles (>2.1 µm). Oxalic acid well correlated with NO3- (r2=0.72, pmethylglyoxal (mGly) on dust surfaces. Our data indicate a more critical role of nitrate than sulfate in the heterogeneous formation process of SOA on dust surfaces. Mass ratio of C2 to wC2 was found to be higher in coarse particles than in fine particles during the dust storm events, which is due to low acidity condition of large particles that is favorable for conversion of wC2 to C2.

  17. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  18. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    Science.gov (United States)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  19. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  20. C18O Observations of the Dark Molecular Cloud L134 and Gas Depletion onto Dust

    Institute of Scientific and Technical Information of China (English)

    Xin-Jie Mao; Xiao-Xia Sun

    2005-01-01

    We map the dark molecular cloud core of L134 in the C18O (J =1 -0) emission line using the PMO 13.7m telescope, and present a contour map of integrated intensity of C18O (J = 1 - 0) emission. The C18O cloud is inside the distribution of extinction AB, the visual extinction of blue light, as well as inside the 13CO cloud in the L134 region. The depletion factors in this C18O cloud are generally greater than unity, which means there is gas depletion onto dust. Since only a minimum AB = 9.7 mag is available, and our observations measure both undepleted and depleted regions along the line of sight, the depletion factors could very likely be larger in the central core than the calculated value. So we conclude that depletion does occur in the bulk of the C18O cloud through a comparison between the C18O and blue extinction maps in the L134 region. There is no direct evidence as yet for star formation in L134, and so cores on the verge of collapse will not be visible in CO and other gas molecules.

  1. "Dust, Ice, and Gas In Time" (DIGIT) Herschel Observations of GSS30-IRS1 in Ophiuchus

    CERN Document Server

    Je, Hyerin; Lee, Seokho; Green, Joel D; Evans, Neal J

    2015-01-01

    As a part of the "Dust, Ice, and Gas In Time" (DIGIT) key program on Herschel, we observed GSS30-IRS1, a Class I protostar located in Ophiuchus (d = 120 pc), with Herschel/Photodetector Array Camera and Spectrometer (PACS). More than 70 lines were detected within a wavelength range from 50 micron to 200 micron, including CO, H2O, OH, and two atomic [O I] lines at 63 and 145 micron. The [C II] line, known as a tracer of externally heated gas by the interstellar radiation field, is also detected at 158 micron. All lines, except [O I] and [C II], are detected only at the central spaxel of 9.4" X 9.4". The [O I] emissions are extended along a NE-SW orientation, and the [C II] line is detected over all spaxels, indicative of external PDR. The total [C II] intensity around GSS30 reveals that the far-ultraviolet radiation field is in the range of 3 to 20 G0, where G0 is in units of the Habing Field, 1.6 X 10^{-3} erg cm^{-2} s^{-1}. This enhanced external radiation field heats the envelope of GSS30-IRS1, causing the...

  2. Herschel observations of the Sgr B2 cores: Hydrides, warm CO, and cold dust

    CERN Document Server

    Etxaluze, M; Cernicharo, J; Polehampton, E T; Noriega-Crespo, A; Molinari, S; Swinyard, B M; Wu, R; Bally, J

    2013-01-01

    Sagittarius B2 (Sgr B2) is one of the most massive and luminous star-forming regions in the Galaxy and shows chemical and physical conditions similar to those in distant extragalactic starbursts. We present large-scale far-IR/submm photometric images and spectroscopic maps taken with the PACS and SPIRE instruments onboard Herschel. The spectra towards the Sgr B2 star-forming cores, B2(M) and B2(N), are characterized by strong CO line emission, emission lines from high-density tracers (HCN, HCO+, and H2S), [N II] 205 um emission from ionized gas, and absorption lines from hydride molecules (OH+, H2O+, H2O, CH+, CH, SH+, HF, NH, NH2, and NH3). The rotational population diagrams of CO suggest the presence of two gas temperature components: an extended warm component, which is associated with the extended envelope, and a hotter component, which is seen towards the B2(M) and B2(N) cores. As observed in other Galactic Center clouds, the gas temperatures are significantly higher than the dust temperatures inferred f...

  3. Dust observations of Comet 9P/Tempel 1 at the time of the Deep Impact

    CERN Document Server

    Tozzi, G P; Kolokolova, L; Bonev, T; Pompei, E; Bagnulo, S; Ageorges, N; Barrera, L; Hainaut, O; Käufl, H U; Kerber, F; LoCurto, G; Marco, O; Pantin, E; Rauer, H; Saviane, I; Sterken, C; Weiler, M

    2007-01-01

    On 4 July 2005 at 05:52 UT, the impactor of NASA's Deep Impact (DI) mission crashed into comet 9P/Tempel 1 with a velocity of about 10 km/s. The material ejected by the impact expanded into the normal coma, produced by ordinary cometary activity. The characteristics of the non-impact coma and cloud produced by the impact were studied by observations in the visible wavelengths and in the near-IR. The scattering characteristics of the "normal" coma of solid particles were studied by comparing images in various spectral regions, from the UV to the near-IR. For the non-impact coma, a proxy of the dust production has been measured in various spectral regions. The presence of sublimating grains has been detected. Their lifetime was found to be about 11 hours. Regarding the cloud produced by the impact, the total geometric cross section multiplied by the albedo was measured as a function of the color and time. The projected velocity appeared to obey a Gaussian distribution with the average velocity of the order of 1...

  4. The Effect of Dust Extinction on the Observed Properties of Galaxies in the Near-Infrared

    CERN Document Server

    Riad, Ihab F; Woudt, Patrick A

    2009-01-01

    Galaxies behind the Milky Way suffer size reduction and dimming due to their obscuration by dust in the disk of our Galaxy. The degree of obscuration is wavelength dependent. It decreases towards longer wavelengths. Compared to the optical, the Near InfraRed (NIR) $K_s$ band extinction is only $\\approx10%$ that of the $B$ band. This makes NIR surveys well suited for galaxy surveys close to the Galactic Plane where extinction is severe. While Galactic obscuration is less prominent in the NIR it is not negligible. In this paper we derive empirical relations to correct isophotal radii and magnitudes of galaxies observed in the NIR for foreground absorption. We simulate extinction in the $J$, $H$ and $K_s$ bands on 64 (unobscured) galaxies from the 2MASS Large Galaxy Atlas \\citep{jarrett}. We propose two methods for the extinction correction, the first is optimized to provide the most accurate correction and the second provides a convenient statistical correction that works adequately in lower extinction regions....

  5. Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B

    Directory of Open Access Journals (Sweden)

    I. G. McKendry

    2008-06-01

    Full Text Available The meteorology and physico-chemical characteristics of aerosol associated with two new cases of long range dust transport affecting western Canada during spring 2006 are described. Each event showed enhancements of both sulfate aerosol and crustal material of Asian origin. However, the events were of quite different character and demonstrate the highly variable nature of such events. The April event was a significant dust event with moderate sulfate enhancement while the May event was a weak dust event with very significant sulfate enhancement. The latter event was interesting in the sense that it was of short duration and was quickly followed by significant enhancement of organic material likely of regional origin. Comparison of these two events with other documented cases extending back to 1993, suggests that all dust events show coincident enhancements of sulfate and crustal aerosol. However, events vary across a wide continuum based on the magnitude of aerosol enhancements and their sulfate to calcium ratios. At one extreme, events are dominated by highly significant crustal enhancements (e.g. the well-documented 1998 and 2001 "dust" events while at the other are events with some dust transport, but where sulfate enhancements are of very high magnitude (e.g. the 1993 event at Crater Lake and the 15 May 2006 event at Whistler. Other events represent a "mix". It is likely that this variability is a function of the comparative strengths of the dust and anthropogenic SO2 sources, the transport pathway and in particular the extent to which dust is transported across industrial SO2 sources, and finally, meteorological and chemical processes.

  6. All-sky Observational Evidence for An Inverse Correlation between Dust Temperature and Emissivity Spectral Index

    CERN Document Server

    Liang, Z; Gold, B

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free-{\\alpha} model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed-{\\alpha} models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100 - 240 {\\mu}m maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-{\\alpha} model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (Tdust) to be 13.7-22.7 ({\\pm}1.3) K, the emissivity spectral index ({\\alpha}) to be 1.2 - 3.1 ({\\pm}0.3) and the optical depth ({\\tau}) to range 0.6 - 46 {\\times} 10^(-5) with a 23 per cent uncertainty. Using these estimates, w...

  7. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  8. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties near Source and Transport Regions

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Liu, Z.; Vaughan, M. A.; Trepte, C. R.; Winker, D. M.; Yu, H.

    2015-12-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol between 2006 and 2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on small-scale phenomena such as morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National d'Études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  9. Sensitivity of the dust cycle in a Chemistry-GCM

    Science.gov (United States)

    Gläser, G.; Kerkweg, A.; Wernli, H.

    2010-09-01

    Mineral dust is an important part of the atmospheric aerosol. The export of Saharan dust across the Atlantic Ocean to the South American continent is known to be an important source of nutrition to the rain forest and the sea. Dust mobilisation in deserts and long-range transport occurs in episodic events and is strongly influenced by synoptic-scale flow patterns. The scientific understanding of these processes, the resulting global dust distribution and the climate impact is still low. In this study, the atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) is used to simulate the mineral dust cycle. We performed free-running 5-year time slice simulations and nudged experiments for selected dust emission episodes. Two different dust emission schemes and four different horizontal resolutions have been used for investigating their influence on the entire dust cycle. The horizontal resolutions T42 (~312 km), T63 (~208 km), T85 (~155 km) and T106 (~125 km) are explored. Independent of the horizontal resolution the "Balkanski" dust emission scheme simulates global maxima of the dust emissions and the dust column mass in the north-western part of India. Various observations indicate that in reality the maximum lies over the Sahara Desert. The "Tegen" dust emission scheme shows a much more realistic distribution. For all horizontal resolutions both schemes simulate dust emissions, total dust load and a dust life time within the range of the 15 GCMs participating in the AEROCOM-project (Aerosol Comparisons between Observations and Models). However, in T42 and T63 the northward transport of dust is too strong leading to unrealistic high column masses in high northern latitudes. The transport and subsequently the global dust distribution in T85 and T106 is much more sensible. The dust emission (total load) is 28 % (16 %) higher in T106 as in T85 which is traced back to higher wind velocities in T106. In addition to these climatological investigations, the

  10. Detection and characterization of a 500 mic dust emissivity excess in the Galactic Plane using Herschel/Hi-GAL observations

    CERN Document Server

    Paradis, D; Noriega-Crespo, A; Mény, C; Piacentini, F; Thompson, M A; Marshall, D J; Veneziani, M; Bernard, J -P; Molinari, S

    2011-01-01

    Past and recent observations have revealed unexpected variations of the FIR-mm dust emissivity. In the Herschel spectral range, those are often referenced to as a 500 {\\mu}m emission excess. Several dust emission models have been developed to interpret astrophysical data in the FIR-mm domain. However, these are commonly not able to fully reconcile theoretical predictions with observations. On the contrary, the recently revised Two Level System (TLS) model seems to provide a promising way to interpret the existing data. The newly available Herschel Hi-GAL data which covers most of the inner Milky-Way offers a unique opportunity to investigate possible variations in the dust emission properties both with wavelength and the environment. By combining the IRIS 100 {\\mu}m with the Hi-GAL 160, 250, 350 and 500 {\\mu}m data, we model the dust emission spectra in each pixel of the Hi-GAL maps, using both the TLS model and, for comparison, a single modified black-body fit. The effect of temperature mixing along the line...

  11. Four highly luminous massive star forming regions in the Norma Spiral Arm.: I. Molecular gas and dust observations

    CERN Document Server

    Garay, Guido; Bronfman, Leonardo; May, Jorge; Chavarria, Luis; Nyman, Lars-Ake

    2009-01-01

    We report molecular line and dust continuum observations, made with the SEST telescope, towards four young high-mass star forming regions associated with highly luminous (L> 6x10^5 Lsun) IRAS sources (15290-5546, 15502-5302, 15567-5236 and 16060-5146). Molecular emission was mapped in lines of CS (J=2-1, 3-2 and 5-4), SiO (J=2-1 and 3-2), CH3OH (Jk=3k-2k and 2k-1k), and C34S (J=3-2). In addition, single spectra at the peak position were taken in the CO, 13CO and C18O (J=1-0) lines. We find that the luminous star forming regions are associated with molecular gas and dust structures with radii of typically 0.5 pc, masses of ~5x10^3 Msun, column densities of ~5x10^{23} cm^{-2}, molecular hydrogen densities of typically ~2x10^5 cm^{-3} and dust temperatures of ~40 K. The 1.2 mm dust continuum observations further indicate that the cores are centrally condensed, having radial density profiles with power-law indices in the range 1.6-1.9. We find that under these conditions dynamical friction by the gas plays an imp...

  12. MIRO Observations of Millimeter-wave Emission from Large Dust Particles in the Coma of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Schloerb, F. Peter; Gulkis, Samuel; Biver, Nicolas; von Allmen, Paul; Beaudin, Gerard; Bockelee-Morvan, Dominique; Choukroun, Mathieu; Crovisier, Jacques; Davidsson, Bjorn; Encrenaz, Pierre; Encrenaz, Therese A.; Frerking, Margaret; Hartogh, Paul; Ip, Wing-Huen; Janssen, Michael A.; Jarchow, Christopher; Kareta, Teddy; Lellouch, Emmanuel; Leyrat, Cedric; Rezac, Ladislav; Spilker, Thomas R.

    2016-10-01

    We present observations of dust emission from comet 67P/Churyumov-Gerasimenko obtained by the Microwave Instrument for the Rosetta Orbiter (MIRO). MIRO is a millimeter-wave instrument with two continuum channels at wavelengths of 0.53 mm and 1.59 mm. The instrument has a 30cm-diameter antenna which provides resolution of about 217m and 690m at the respective wavelengths for a spacecraft-comet distance of 100km. During the months around the August 2015 perihelion of comet 67P, a small continuum emission excess was observed above the sunlit limb of the comet. The excess emission extends many beam widths off the dayside limb and is a persistent feature for months of observations. No excess above the noise limit of the instrument is observed above the nightside limb, and given the known strong day-night asymmetry of gas production from the nucleus, we interpret the observed continuum excess on the day side to result from thermal emission from dust. Typical antenna temperatures of the emission over the day side at a distance of 4 km from the center of the nucleus (approximately 2 km above the surface) are approximately 1K in both the submillimeter-wave (0.53 mm) and millimeter-wave (1.59 mm) channels, corresponding to likely dust column densities of ~0.1 kg m-2. The typical relative brightness of the 0.53 mm emission to the 1.59 mm emission is approximately 1.2. This result is most consistent with particle size distributions which extend up to radii of at least several centimeters and/or flatter particle size distributions than those often attributed to cometary dust. Maps of the emission show that the column density of dust decreases with distance from the nucleus following a power law with b-1.6 - b-2.0, where b is the impact parameter of the beam with respect to the nucleus. Models of dust outflow, in which particles are accelerated by the drag force of the outflowing gas, predict a column density falloff according to b-1.2. We find that to achieve the observed

  13. Observed trend in Asian dust days in South Korea and its geo-physiographical implications

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock

    2015-04-01

    South Korea has experienced significant socio-economic damages by Asian dust (also called Yellow sand or Yellow dust). Asian dust is a wind-driven natural phenomenon that carries fine sand particles along with surface pollutants from semi-arid areas in northern China, Inner Mongolia, the Gobi Desert, and the Taklimakan Desert to the East Asia. Its occurrence requires three necessary conditions: dry soil in source areas, strong ascending air current to lift sand particles up, and intense wind speed to transport the particles. Accordingly, the drier source areas are, the larger amount of source materials for Asian dust becomes. Further, regional wind speed and direction are key elements that determine the influencing boundary and level of damage. In this study, we investigate number of Asian dust days over South Korea. We utilize monthly data over 50 years (from 1961 to 2013) recorded at 12 stations, operated by the Korean Meteorological Administration, which are evenly distributed over the country. We find that annual number of Asian dust days in South Korea tends to increase until early 2000s and the increasing trend is ceased since then. Interestingly, this transition time (early 2000s) matches the time when the surface wind speed trend has reversed (Kim and Paik, 2015). Hence, we hypothesize that occurrence of Asian dust in South Korea can be largely captured by surface wind, instead of air circulation at high altitude. We also hypothesize that the transition in the trend around early 2000s is associated with expansion of cold air system during winter over the East Asia. Detailed analysis to support these findings will be presented. Reference Kim, JC., & Paik, K. (2015). Recent recovery of surface wind speed after decadal decrease: A focus on South Korea. Climate Dynamics, (Under review).

  14. Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B

    Directory of Open Access Journals (Sweden)

    C. S. McNaughton

    2009-03-01

    reduced to <50% of total nitrate (nitric acid plus particulate nitrate. NOy as a fraction of total nitrogen (NOy plus particulate nitrate, is reduced from >85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport.

  15. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  16. Dust Measurements in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  17. Integrated Analysis of Asian Dust Events from CALIPSO Space Lidar Data in Conjunction with Passive Remote Sensing and Ground-Based Observations

    Science.gov (United States)

    Choi, H.; Sokolik, I. N.; Winker, D. M.; Kurosaki, Y.

    2008-05-01

    The vast arid regions of East Asia are active dust sources. Each spring, large amounts of mineral dust are emitted into the atmosphere, affecting the regional air quality, environment and climate. This study presents analyses of Asian dust events by integrating CALIPSO lidar data with A-Train satellite multi-sensor observations (Ozone Monitoring Instrument, OMI, and Moderate-Resolution Imaging Spectroradiometer, MODIS) as well as ground-based observations. We use data from WMO meteorological stations located in China, Mongolia, Korea and Japan that report different present weather types related to dust events. Also, lidar data from Asian network sites were included in the analysis. The focus is on dust events that occurred during the spring seasons of 2006- 2008. The capability of CALIPSO to detect dust was investigated by analyzing the CALIPSO features against independent observations for selected CALPSO overpasses on a case-by-case basis. The changes in the linear depolarization ratio were analyzed in conjunction with T-matrix optical modeling to constrain the particle nonsphericity and size distribution. The dust properties and vertical distribution in different dust sources (the Taklamakan vs. Gobi) were analyzed. The evolution of dust properties during the mid-range transport was also investigated from combined CALIPSO and lidar data.

  18. Herschel observations of Hickson compact groups of galaxies: Unveiling the properties of cold dust

    CERN Document Server

    Bitsakis, T; Appleton, P N; Diaz-Santos, T; Floc'h, E Le; da Cunha, E; Alatalo, K; Cluver, M

    2014-01-01

    We present a Herschel far-IR and sub-mm study of a sample of 120 galaxies in 28 Hickson Compact Groups. Fitting their UV to sub-mm spectral energy distributions with the model of da Cunha et al. (2008), we accurately estimate the dust masses, luminosities and temperatures of the individual galaxies. We find that nearly half of the late-type galaxies in dynamically "old" groups, those with more than 25% of early-type members and redder UV-optical colours, have also significantly lower dust-to-stellar mass ratios compared to those of actively star-forming galaxies of the same mass found both in HCGs and the field. Examining their dust-to-gas mass ratios we conclude that dust was stripped out of these systems as a result of the gravitational and hydrodynamic interactions, experienced due to previous encounters with other group members. About 40% of the early-type galaxies (mostly lenticulars), in dynamically "old" groups, display dust properties similar to those of the UV-optical red late-type galaxies. Given th...

  19. Dust aerosol impact on the retrieval of cloud top height from satellite observations of CALIPSO, CloudSat and MODIS

    Science.gov (United States)

    Wang, Wencai; Sheng, Lifang; Dong, Xu; Qu, Wenjun; Sun, Jilin; Jin, Hongchun; Logan, Timothy

    2017-02-01

    Dust aerosol effect on the retrievals of dusty cloud top height (DCTH) are analyzed over Northwest China using cloud products from MODerate Resolution Imaging Spectroradiometer (MODIS) on Aqua, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat for the Spring season of March-May over the years 2007-2011. An excellent agreement is found between CloudSat and CALIPSO derived DCTHs for all cloud types, suggesting that the effect of dust aerosols plays a small role in DCTHs determination for lidar and radar measurements. However, the presence of dust aerosols greatly affects the retrievals of DCTHs for MODIS compared with pure clouds and the active sensors derived results. The differences of DCTHs retrieving from CloudSat and MODIS range from -2.30 to 6.8 km. Likewise, the differences of DCTHs retrieving from CALIPSO and MODIS range from -2.66 to 6.78 km. In addition, the results show that the differences in DCTHs for active and passive sensors are dependent on cloud type. On the whole, dust aerosols have the largest effect on cloud top heights (CTH) retrieved of nimbostratus (Ns), followed by altocumulus (Ac) and altostratus (As), the last is cirrus (Ci) over Northwest China. Our results also indicate that the accuracy of MODIS-derived retrievals reduces accompanied with a decrease of height.

  20. Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis.

    Science.gov (United States)

    Elliot, Alex J; Smith, Sue; Dobney, Alec; Thornes, John; Smith, Gillian E; Vardoulakis, Sotiris

    2016-07-01

    There is an increasing body of evidence illustrating the negative health effects of air pollution including increased risk of respiratory, cardiac and other morbid conditions. During March and April 2014 there were two air pollution episodes in England that occurred in close succession. We used national real-time syndromic surveillance systems, including general practitioner (GP) consultations, emergency department attendances, telehealth calls and ambulance dispatch calls to further understand the impact of these short term acute air pollution periods on the health seeking behaviour of the general public. Each air pollution period was comparable with respect to particulate matter concentrations (PM10 and PM2.5), however, the second period was longer in duration (6 days vs 3 days) and meteorologically driven 'Sahara dust' contributed to the pollution. Health surveillance data revealed a greater impact during the second period, with GP consultations, emergency department attendances and telehealth (NHS 111) calls increasing for asthma, wheeze and difficulty breathing indicators, particularly in patients aged 15-64 years. Across regions of England there was good agreement between air quality levels and health care seeking behaviour. The results further demonstrate the acute impact of short term air pollution episodes on public health and also illustrate the potential role of mass media reporting in escalating health care seeking behaviour.

  1. Cloudy - simulating the non-equilibrium microphysics of gas and dust, and its observed spectrum

    Science.gov (United States)

    Ferland, Gary J.

    2014-01-01

    Cloudy is an open-source plasma/spectral simulation code, last described in the open-access journal Revista Mexicana (Ferland et al. 2013, 2013RMxAA..49..137F). The project goal is a complete simulation of the microphysics of gas and dust over the full range of density, temperature, and ionization that we encounter in astrophysics, together with a prediction of the observed spectrum. Cloudy is one of the more widely used theory codes in astrophysics with roughly 200 papers citing its documentation each year. It is developed by graduate students, postdocs, and an international network of collaborators. Cloudy is freely available on the web at trac.nublado.org, the user community can post questions on http://groups.yahoo.com/neo/groups/cloudy_simulations/info, and summer schools are organized to learn more about Cloudy and its use (http://cloud9.pa.uky.edu gary/cloudy/CloudySummerSchool/). The code’s widespread use is possible because of extensive automatic testing. It is exercised over its full range of applicability whenever the source is changed. Changes in predicted quantities are automatically detected along with any newly introduced problems. The code is designed to be autonomous and self-aware. It generates a report at the end of a calculation that summarizes any problems encountered along with suggestions of potentially incorrect boundary conditions. This self-monitoring is a core feature since the code is now often used to generate large MPI grids of simulations, making it impossible for a user to verify each calculation by hand. I will describe some challenges in developing a large physics code, with its many interconnected physical processes, many at the frontier of research in atomic or molecular physics, all in an open environment.

  2. CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Stutz, Amelia M.; Henning, Thomas; Ragan, Sarah E. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Megeath, S. Thomas; Fischer, William J. [Ritter Astrophysical Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43560 (United States); Ali, Babar [NASAHerschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Stanke, Thomas [European Southern Observatory, D-85748 Garching bei München (Germany); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 (India); Calvet, Nuria; Hartmann, Lee, E-mail: tobin@strw.leidenuniv.nl [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-01-10

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ∼5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ ∝ R {sup –2.5}. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.

  3. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    Science.gov (United States)

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010.

  4. FIRST-LIGHT LBT NULLING INTERFEROMETRIC OBSERVATIONS: WARM EXOZODIACAL DUST RESOLVED WITHIN A FEW AU OF η Crv

    Energy Technology Data Exchange (ETDEWEB)

    Defrère, D.; Hinz, P. M.; Skemer, A. J.; Bailey, V. P.; Hoffmann, W. F.; Arbo, P.; Brusa, G.; Downey, E. C.; Durney, O.; Gaspar, A.; Grenz, P. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Mennesson, B.; Bryden, G. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Millan-Gabet, R.; Beichman, C. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Danchi, W. C. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Sart Tilman (Belgium); Esposito, S. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Haniff, C., E-mail: ddefrere@email.arizona.edu [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); and others

    2015-01-20

    We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (∼2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ∼23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (∼3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU)

  5. Far-IR Observations of Gas and Dust in the Unusual 49 Ceti Disk

    NARCIS (Netherlands)

    Roberge, Aki; Kamp, I.; Augereau, J.; Montesinos, B.; Meeus, G.; Olofsson, J.; Donaldson, J.; Howard, C. D.; Eiroa, C.; Dent, B.

    2013-01-01

    We present Herschel Space Observatory far-IR imaging and spectroscopy of 49 Cet, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. Photometry was obtained at 7

  6. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NARCIS (Netherlands)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space

  7. Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.;

    2016-01-01

    in the Sloan Digital Sky Survey (SDSS). The DL A(V) estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U-min. The DL fitting parameter U-min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust...

  8. The properties of diffuse interstellar dust clouds as determined from GALEX and infrared (IRAS, Herschel) observations

    Science.gov (United States)

    Armengot, M.; Gómez de Castro, A. I.

    2017-03-01

    Dust grain properties are known to vary in the interstellar medium depending on the density, the ultraviolet radiation field and the local abundances of metal elements. Though there are plenty of studies addressing the atomic and molecular gas component or the infrared radiation of dust grains, there are very few studies that address the spatial distribution of small large grains and large molecules such as the Polyaromathic Hydrocarbons (PAHs).In this work, we make use of the GALEX survey of the Galaxy to identify the absorption produced in the GALEX far UV (write in the spectral range) and new UV (write in the spectral range) by well know infrared cirrus and compare the absorption produced in the UV by the thin cirrus with the infrared dust emissivity in various bands; (describe the IRAS bands used and whether there is any Herschel band in this study). As the spatial resolution of GALEX images is significantly larger than that of IRAS images data handling has required mosaicking and and rescaling GALEX data as well as transforming the images form equinox 1950 to equinox 2000. We describe in this work the computational procedures used to generate the ultraviolet and infrared maps. Also we present our first results that show there is an anticorrelation between UV and infrared (IR) emission, as other wise expected. The largest concentrations of dust grains radiate IR photons and absorb UV photons.

  9. Carbon stars with oxygen-rich circumstellar dust shells Observational evidence for the onset of the carbon star phase

    Energy Technology Data Exchange (ETDEWEB)

    Willems, F.J.; De jong, T.

    1986-10-01

    Results from the IRAS Low Resolution Spectrograph (LRS) are presented which show that some carbon stars are surrounded by circumstellar shells containing oxygen-rich silicate-type dust rather than carbon-rich dust. This observation suggests that these stars have quite recently become carbon stars because they are still surrounded by the last remnant of the oxygen-rich M-type phase. It also suggests a direct transition from M-type to C-type rather than through an intermediate S phase. The transition takes place in about 100 years. Using a simple statistical argument, the typical duration of the carbon star phase is estimated to be from 1000 to 10,000 years. 37 references.

  10. Dust origin in late-type dwarf galaxies: ISM growth vs. type II supernovae

    CERN Document Server

    Zhukovska, Svitlana

    2014-01-01

    We re-evaluate the roles of different dust sources in dust production as a function of metallicity in late-type dwarf galaxies, with the goal of understanding the relation between dust content and metallicity. The dust content ol late-type dwarf galaxies with episodic star formation is studied with a multicomponent model of dust evolution, which includes dust input from AGB stars, type II SNe and dust growth by accretion of atoms in the ISM. Dust growth in the ISM becomes an important dust source in dwarf galaxies, on the timescale of 0.1 - a few Gyrs. It increases the dust-to-gas ratio (DGR) during post-burst evolution, unlike type II SNe, which eject grains to the ISM only during starbursts. Before the dust growth in the ISM overtakes the dust production, AGB stars can be major sources of dust in metal-poor dwarf galaxies. Our models reproduce the relation between the DGR and oxygen abundance, derived from observations of a large sample of dwarf galaxies. The steep decrease in the DGR at low O values is exp...

  11. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    Science.gov (United States)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  12. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    Science.gov (United States)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  13. Alignment of atmospheric mineral dust due to electric field

    Science.gov (United States)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-12-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  14. Evidence for Quasar Activity Triggered by Galaxy Mergers in HST Observations of Dust-reddened Quasars

    Science.gov (United States)

    Urrutia, Tanya; Lacy, Mark; Becker, Robert H.

    2008-02-01

    We present Hubble Space Telescope ACS images of 13 dust-reddened type 1 quasars selected from the FIRST/2MASS Red Quasar Survey. These quasars have high intrinsic luminosities after correction for dust obscuration (-23.5 >= MB >= - 26.2 from K-magnitude). The images show strong evidence of recent or ongoing interaction in 11 of the 13 cases, even before the quasar nucleus is subtracted. None of the host galaxies are well fit by a simple elliptical profile. The fraction of quasars showing interaction is significantly higher than the 30% seen in samples of host galaxies of normal, unobscured quasars. There is a weak correlation between the amount of dust reddening and the magnitude of interaction in the host galaxy, measured using the Gini coefficient and the concentration index. Although few host galaxy studies of normal quasars are matched to ours in intrinsic quasar luminosity, no evidence has been found for a strong dependence of merger activity on host luminosity in samples of the host galaxies of normal quasars. We thus believe that the high merger fraction in our sample is related to their obscured nature, with a significant amount of reddening occurring in the host galaxy. The red quasar phenomenon seems to have an evolutionary explanation, with the young quasar spending the early part of its lifetime enshrouded in an interacting galaxy. This might be further indication of a link between AGNs and starburst galaxies.

  15. Assimilating MODIS Aerosol Optical Depth Observations to Assess the Impact of Saharan Mineral Dust on the Genesis and Evolution of Hurricane Ernesto (2006)

    Science.gov (United States)

    Earl, K. S.; Chen, S. H.; Liu, Z.; Lin, H. C.

    2016-12-01

    Mineral dust can impact the atmosphere in two primary ways: (1) by directly absorbing, scattering, and emitting short and longwave radiation (radiative effects), and (2) by acting as cloud condensation or ice nuclei, indirectly affecting cloud optical and physical properties as well as precipitation processes (microphysical effects). During boreal summer, mineral dust plumes from North Africa are advected well into the tropical North Atlantic and can regularly be found in close proximity to tropical cyclones (TCs) or their seed disturbances, particularly in the Atlantic Main Development Region, potentially affecting their development and evolution. Many studies indicate that dust radiative effects within African dust plumes alter vertical and horizontal temperature gradients in such a way that may increase mid-level wind shear and static stability in the tropical Atlantic, possibly altering TC development and/or track. The effects of dust microphysics on TCs, on the other hand, are less certain but an increasing body of research suggests that they depend on TC strength, environmental conditions, and how close dust aerosols are to the storm center. Hurricane Ernesto (2006), whose precursor African Easterly Wave disturbance traveled across the Atlantic in close association with a large, persistent dust plume, is one such storm whose development may have been greatly influenced by dust physical processes. The storm developed only after the eventual dissipation of the plume in the eastern Caribbean. In this study, we examine the impact of mineral dust on the genesis and evolution of Hurricane Ernesto with a series of numerical experiments using a modified, dust-capable version of the WRF model and analyses created by assimilating meteorological and MODIS AOD observations within the GSI 3DVAR software framework. The impacts of MODIS AOD assimilation on the simulated dust distribution and forecasts of Ernesto's development are highlighted.

  16. Peering Through the Dust. II. XMM-Newton  Observations of Two Additional FIRST-2MASS Red Quasars

    Science.gov (United States)

    Glikman, Eilat; LaMassa, Stephanie; Piconcelli, Enrico; Urry, Meg; Lacy, Mark

    2017-10-01

    We obtained XMM-Newton observations of two highly luminous dust-reddened quasars, F2M1113+1244 and F2M1656+3821, that appear to be in the early, transitional phase predicted by merger-driven models of quasar/galaxy co-evolution. These sources have been well studied at optical through mid-infrared wavelengths and are growing relatively rapidly, with Eddington ratios > 30 % . Their black hole masses are relatively small compared to their host galaxies, placing them below the {M}{BH}{--}{L}{bulge} relation. We find that for both sources, an absorbed power-law model with 1%–3% of the intrinsic continuum scattered or leaked back into the line of sight best fits their X-ray spectra. We measure the absorbing column density (N H ) and constrain the dust-to-gas ratios in these systems, finding that they lie well below the Galactic value. This, combined with the presence of broad emission lines in their optical and near-infrared spectra, suggests that the dust absorption occurs far from the nucleus and in the host galaxy, while the X-rays are mostly absorbed in the nuclear, dust-free region within the sublimation radius. We also compare the quasars’ absorption-corrected, rest-frame X-ray luminosities (2–10 keV) to their rest-frame infrared luminosities (6 μm) and find that red quasars, similar to other populations of luminous obscured quasars, are either underluminous in X-rays or overluminous in the infrared.

  17. Perspectives on Episodic-like and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Bettina M Pause

    2013-04-01

    Full Text Available Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory.

  18. Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B

    Directory of Open Access Journals (Sweden)

    F. Flocke

    2009-11-01

    the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol.

    In the presence of dust, nitric acid concentrations are reduced to <50% of total nitrate (nitric acid plus particulate nitrate. NOy as a fraction of total nitrogen (NOy plus particulate nitrate, is reduced from >85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport.

  19. Measures to observe the current dust emission limit; Massnahmen zur Einhaltung des aktuellen Staubemissionsgrenzwerts

    Energy Technology Data Exchange (ETDEWEB)

    Evard, Michael [Vattenfall Europe Waerme AG, Berlin (Germany). Betrieb Heizkraftwerk Moabit

    2011-07-01

    The paper describes the operational experience and optimisation approach for a hot electrostatic precipitator (ESP) with a flue gas temperature of approximately 350 C as part of a circulating fluidised bed (CFB) boiler. It is particularly dealing with fault finding and cleaning after 20 years of operation. From the beginning of January 2011, new laws have come into force regulating dust emission limits. Therefore, it was necessary that existing ESP systems operate optimally. The ESP is a part of a hard coal-fired CFB boiler. (orig.)

  20. Gas and dust productions of comet 103P/Hartley 2 from millimetre observations: interpreting rotation-induced time variations

    CERN Document Server

    Boissier, J; Biver, N; Colom, P; Crovisier, J; Moreno, R; Zakharov, V; Groussin, O; Jorda, L; Lis, D C

    2013-01-01

    Comet 103P/Hartley 2 made a close approach to the Earth in October 2010. It was the target of an extensive observing campaign and was visited by the Deep Impact spacecraft (mission EPOXI). We present observations of HCN and CH3OH emission lines conducted with the IRAM Plateau de Bure interferometer on 22-23, 28 October and 4, 5 November 2010 at 1.1, 1.9 and 3.4 mm wavelengths. The thermal emission from the dust coma and nucleus is detected simultaneously. Interferometric images with unprecedented spatial resolution are obtained. A sine-wave variation of the thermal continuum is observed in the 23 October data, that we associate with the nucleus thermal light curve. The nucleus contributes up to 30-55 % of the observed continuum. The large dust-to-gas ratio (in the range 2-6) can be explained by the unusual activity of the comet for its size, which allows decimeter size particles and large boulders to be entrained by the gas. The rotational temperature of CH3OH is measured. We attribute the increase from 35 to...

  1. Implementation and testing of a desert dust module in a regional climate model

    Directory of Open Access Journals (Sweden)

    A. S. Zakey

    2006-01-01

    Full Text Available In an effort to improve our understanding of aerosol impacts on climate, we implement a desert dust module within a regional climate model (RegCM. The dust module includes emission, transport, gravitational settling, wet and dry removal and calculations of dust optical properties. The coupled RegCM-dust model is used to simulate two dust episodes observed over the Sahara region (a northeastern Africa dust outbreak, and a west Africa-Atlantic dust outbreak observed during the SHADE "Saharan Dust Experiment", as well as a three month simulation over an extended domain covering the Africa-Europe sector. Comparisons with satellite and local aerosol optical depth measurements shows that the model captures the main spatial (both horizontal and vertical and temporal features of the dust distribution. The main model deficiency occurs in the representation of certain dynamical patterns observed during the SHADE case which is associated with an active easterly wave that contributed to the generation of the dust outbreak. The model appears suitable to conduct long term simulations of the effects of Saharan dust on African and European climate.

  2. Asian Dust Storm Events of 2001 and Associated Pollution Observed in New England by the AIRMAP Monitoring Network

    Science.gov (United States)

    Debell, L. J.; Vozzella, M. E.; Talbot, R. W.; Dibb, J. E.

    2002-12-01

    The Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program is operating 4 monitoring sites in New Hampshire, located at Fort Constitution (FC)(43.07oN, 70.71oW, 5m elevation), Thompson Farm (TF) (43.11oN, 70.95oW, 21m elevation), Castle Springs (CS) (43.75oN,71.35oW, 406m elevation) and Mount Washington (MW)(44.267oN, 71.30oW, 1909m elevation). Three chemically distinct, statistically extreme, regional scale dust aerosol events were observed at all four AIRMAP monitoring stations in NH between 4/18/01 and 5/13/01 (UTC). All three events, at all four sites, had days where the 24 hr bulk aerosol samples had Ca2+ concentrations that exceeded at least the 95th percentile of the site-specific, multi-year datasets. NO3- and SO42- were also enhanced above typical levels, ranging from above the 75th to above the 99th percentile. During all three events, mixing ratios of the gas phase pollutants O3 and CO were compared to mixing ratios on either side of the events. During event 1,enhancements above background levels were approximately 130 ppbv for CO and 30 ppbv for O3, very similar to the CO values in apparent Asian dust plumes sampled over Colorado at 6-7 km by aircraft measurements (http://www.cmdl.noaa.gov/info/asiandust.html); enhancements during events 2 and 3 were similar to event 1. The maximum elemental carbon value ever observed at TF, 0.97 μg/m3, occurred during the peak day of event 1. Elemental carbon was not substantially elevated during event 2 and no data were collected during event 3. Elemental ratios, determined by PIXE, on filters from events 1 and 3 were compared pairwise to each other and to published samples attributed to Asian dust storms. The AIRMAP samples collected on the same date at different sites showed good statistical agreement whereas samples collected at the same site on different dates show only moderate correlation. Of 17 published samples of Asian dust storm aerosol, collected well outside of the major

  3. Observations of the Optical Transient in NGC 300 with AKARI/IRC: Possibilities of Asymmetric Dust Formation

    OpenAIRE

    Ohsawa, R; Sakon, I.; Onaka, T.; M. Tanaka; Moriya, T.; Nozawa, T; Maeda, K.; Nomoto, K.; Tominaga, N.; Usui, F.; Matsuhara, H.; Nakagawa, T.; H. Murakami

    2010-01-01

    We present the results of near-infrared (NIR) multi-epoch observations of the optical transient in the nearby galaxy NGC300 (NGC300-OT) at 398 and 582 days after the discovery with the Infrared Camera (IRC) onboard AKARI. NIR spectra (2--5 um) of NGC300-OT were obtained for the first time. They show no prominent emission nor absorption features, but are dominated by continuum thermal emission from the dust around NGC300-OT. NIR images were taken in the 2.4, 3.2, and 4.1 um bands. The spectral...

  4. AGB stars in the SMC: evolution and dust properties based on Spitzer observations

    CERN Document Server

    Dell'Agli, F; Ventura, P; Schneider, R; Di Criscienzo, M; Rossi, C

    2015-01-01

    We study the population of asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC) by means of full evolutionary models of stars of mass 1Msun < M < 8Msun, evolved through the thermally pulsing phase. The models also account for dust production in the circumstellar envelope. We compare Spitzer infrared colours with results from theoretical modelling. We show that ~75% of the AGB population of the SMC is composed by scarcely obscured objects, mainly stars of mass M < 2.5Msun at various metallicity, formed between 700 Myr and 5 Gyr ago; ~ 70% of these sources are oxygen--rich stars, while ~ 30% are C-stars. The sample of the most obscured AGB stars, accounting for ~ 25% of the total sample, is composed almost entirely by carbon stars. The distribution in the colour-colour ([3.6]-[4.5], [5.8]-[8.0]) and colour-magnitude ([3.6]-[8.0], [8.0]) diagrams of these C-rich objects, with a large infrared emission, traces an obscuration sequence, according to the amount of carbonaceous dust in the...

  5. Episodic Aging and End States of Comets

    Science.gov (United States)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  6. Episodic Aging and End States of Comets

    Science.gov (United States)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  7. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Samuel [University of Siena, Graduate School in Polar Sciences, Siena (Italy); University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Mahowald, Natalie M. [Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Delmonte, Barbara; Maggi, Valter [University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Winckler, Gisela [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Columbia University, Department of Earth and Environmental Sciences, New York, NY (United States)

    2012-05-15

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum. (orig.)

  8. Three-dimensional distribution of a major desert dust outbreak over East Asia in March 2008 derived from IASI satellite observations

    Science.gov (United States)

    Cuesta, Juan; Eremenko, Maxim; Flamant, Cyrille; Dufour, Gaëlle; Laurent, Benoît; Bergametti, Gilles; Höpfner, Michael; Orphal, Johannes; Zhou, Daniel

    2015-07-01

    We describe the daily evolution of the three-dimensional (3D) structure of a major dust outbreak initiated by an extratropical cyclone over East Asia in early March 2008, using new aerosol retrievals derived from satellite observations of IASI (Infrared Atmospheric Sounding Interferometer). A novel auto-adaptive Tikhonov-Phillips-type approach called AEROIASI is used to retrieve vertical profiles of dust extinction coefficient at 10 µm for most cloud-free IASI pixels, both over land and ocean. The dust vertical distribution derived from AEROIASI is shown to agree remarkably well with along-track transects of CALIOP spaceborne lidar vertical profiles (mean biases less than 110 m, correlation of 0.95, and precision of 260 m for mean altitudes of the dust layers). AEROIASI allows the daily characterization of the 3D transport pathways across East Asia of two dust plumes originating from the Gobi and North Chinese deserts. From AEROIASI retrievals, we provide evidence that (i) both dust plumes are transported over the Beijing region and the Yellow Sea as elevated layers above a shallow boundary layer, (ii) as they progress eastward, the dust layers are lifted up by the ascending motions near the core of the extratropical cyclone, and (iii) when being transported over the warm waters of the Japan Sea, turbulent mixing in the deep marine boundary layer leads to high dust concentrations down to the surface. AEROIASI observations and model simulations also show that the progression of the dust plumes across East Asia is tightly related to the advancing cold front of the extratropical cyclone.

  9. Near-Infrared observations of the type Ib Supernova SN2006jc: evidence of interactions with dust

    CERN Document Server

    Di Carlo, E; Arkharov, A A; Massi, F; Larionov, V M; Efimova, N V; Dolci, M; Napoleone, N; Di Paola, A

    2007-01-01

    In the framework of a program for the monitoring of Supernovae in the Near-Infrared (NIR) carried out by the Teramo, Rome and Pulkovo observatories with the AZT-24 telescope, we observed the Supernova SN2006jc in the J,H,K photometric bands during a period of 7 months, starting ~36 days after its discovery. Our observations evidence a NIR re-brightening, peaking ~70 days after discovery, along with a reddening of H-K and J-H colors until 120 days from discovery. After that date, J-H seems to evolve towards bluer colors. Our data, complemented by IR, optical, UV and X-ray observations found in the literature, show that the re-brightening is produced by hot dust surrounding the supernova, formed in the interaction of the ejecta with dense circumstellar matter.

  10. An observational study of dust nucleation in Mira ($o$ Ceti): II. Titanium oxides are negligible for nucleation at high temperatures

    CERN Document Server

    Kamiński, T; Schmidt, M R; Cherchneff, I; Wong, K T; Brünken, S; Menten, K M; Winters, J M; Gottlieb, C A; Patel, N A

    2016-01-01

    The formation of silicate dust in oxygen-rich envelopes of evolved stars is thought to be initiated by formation of seed particles that can withstand the high temperatures close to the stellar photosphere and act as condensation cores farther away from the star. Candidate species considered as first condensates are TiO and TiO$_2$. We aim to identify and characterize the circumstellar gas-phase chemistry of titanium that leads to the formation of solid titanium compounds in the envelope of $o$ Cet, the prototypical Mira, and seek an observational verification of whether titanium oxides play a major role in the onset of dust formation in M-type AGB stars. We present high angular-resolution ALMA observations at submillimeter (submm) wavelengths supplemented by APEX and Herschel spectra of the rotational features of TiO and TiO$_2$. In addition, circumstellar features of TiO and TiI are identified in optical spectra which cover multiple pulsation cycles of $o$ Cet. The submm ALMA data reveal TiO and TiO$_2$ bear...

  11. Dust Properties of C ii Detected z ˜ 5.5 Galaxies: New HST/WFC3 Near-IR Observations

    Science.gov (United States)

    Barisic, I.; Faisst, A. L.; Capak, P. L.; Pavesi, R.; Riechers, D. A.; Scoville, N. Z.; Cooke, K.; Kartaltepe, J. S.; Casey, C. M.; Smolcic, V.

    2017-08-01

    We examine the rest-frame ultraviolet (UV) properties of 10 [C ii]λ158 μm-detected galaxies at z ˜ 5.5 in COSMOS using new Hubble Space Telescope/Wide Field Camera 3 near-infrared imaging. Together with pre-existing 158 μm continuum and [C ii] line measurements by the Atacama Large Millimeter/submillimeter Array, we study their dust attenuation properties on the IRX-β diagram, which connects the total dust emission (\\propto {IRX}={log}({L}{FIR}/{L}1600)) to the line-of-sight dust column (∝ β). We find systematically bluer UV continuum spectral slopes (β) compared to previous low-resolution ground-based measurements, which relieves some of the tension between models of dust attenuation and observations at high redshifts. While most of the galaxies are consistent with local starburst or Small Magellanic Cloud-like dust properties, we find galaxies with low IRX values and a large range in β that cannot be explained by models of a uniform dust distribution well mixed with stars. A stacking analysis of Keck/DEIMOS optical spectra indicates that these galaxies are metal-poor with young stellar populations that could significantly alter their spatial dust distribution.

  12. ISO far infrared observations of the high latitude cloud L1642. II. Correlated variations of far-infrared emissivity and temperature of "classical large" dust particles

    CERN Document Server

    Lehtinen, K; Mattila, K; Lemke, D; Russeil, D

    2007-01-01

    Our aim is to compare the infrared properties of big, ``classical'' dust grains with visual extinction in the cloud L1642. In particular, we study the differences of grain emissivity between diffuse and dense regions in the cloud. The far-infrared properties of dust are based on large-scale 100um and 200um maps. Extinction through the cloud has been derived by using the star count method at B- and I-bands, and color excess method at J, H and Ks bands. Radiative transfer calculations have been used to study the effects of increasing absorption cross-section on the far-infrared emission and dust temperature. Dust emissivity, measured by the ratio of far-infrared optical depth to visual extinction, tau(far-IR)/A(V), increases with decreasing dust temperature in L1642. There is about two-fold increase of emissivity over the dust temperature range of 19K-14K. Radiative transfer calculations show that in order to explain the observed decrease of dust temperature towards the centre of L1642 an increase of absorption...

  13. Interplanetary Charged Dust Magnetic Clouds Striking the Magnetosphere: Coordinated Space-based and Ground-based Observations

    Science.gov (United States)

    Russell, C. T.; Chi, Peter; Lai, Hairong

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth’s magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth’s field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth’s magnetopause. These ground stations spread across

  14. Herschel OBSERVATIONS OF DUST AROUND THE HIGH-MASS X-RAY BINARY GX 301-2

    Energy Technology Data Exchange (ETDEWEB)

    Servillat, M. [Laboratoire Univers et Théories (CNRS/INSU, Observatoire de Paris, Université Paris Diderot), 5 place Jules Janssen, F-92190 Meudon (France); Coleiro, A.; Chaty, S. [Laboratoire AIM (CEA/Irfu/SAp, CNRS/INSU, Universit Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Rahoui, F. [Harvard University, Department of Astronomy, 60 Garden Street, Cambridge, MA 02138 (United States); Zurita Heras, J. A., E-mail: mathieu.servillat@obspm.fr [AstroParticule et Cosmologie (Université Paris Diderot, CNRS/IN2P3, CEA/DSM, Observatoire de Paris, Sorbonne Paris Cité), 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2014-12-20

    We aim at characterizing the structure of the gas and dust around the high-mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant (HG) star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs from the optical to the radio range (0.4 to 4 × 10{sup 4} μm). GX 301-2 is detected for the first time at 70 and 100 μm. We fitted different models of circumstellar (CS) environments to the data. All tested models are statistically acceptable, and consistent with an HG star at ∼3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far-infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favor a disk-like CS environment of ∼8 AU that would enshroud the binary system. The temperature goes down to ∼200 K at the edge of the disk, allowing for dust formation. This disk is probably a rimmed viscous disk with an inner rim at the temperature of the dust sublimation temperature (∼1500 K). The similarities between the HG GX 301-2, B[e] supergiants, and the highly obscured X-ray binaries (particularly IGR J16318-4848) are strengthened. GX 301-2 might represent a transition stage in the evolution of massive stars in binary systems, connecting supergiant B[e] systems to luminous blue variables.

  15. HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chen [School of Space Science and Physics, Shandong University, Weihai, Weihai, Shandong 264209 (China); Xu, Cong Kevin; Lu, Nanyao; Mazzarella, Joe [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Domingue, Donovan; Ronca, Joseph; Jacques, Allison [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); Buat, Veronique [Laboratoire d’Astrophysique de Marseille—LAM, Université d’Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cheng, Yi-Wen [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Gao, Yu [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Lisenfeld, Ute [Departamento de Fisica Teórica y del Cosmos, Universidad de Granada (Spain); Sun, Wei-Hsin [Institute of Astrophysics, National Taiwan University and The National Museum of Natural Science, Taiwan (China); Wu, Hong [National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China); Yun, Min S., E-mail: caochen@sdu.edu.cn, E-mail: cxu@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-02-15

    We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M{sub dust}) are derived from the IR SED fitting. The mass of total gas (M{sub gas}) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M{sub gas} of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR.

  16. Observing gas and dust in simulations of star formation with Monte Carlo radiation transport on Voronoi meshes

    CERN Document Server

    Hubber, D A; Dale, J

    2015-01-01

    Ionising feedback from massive stars dramatically affects the interstellar medium local to star forming regions. Numerical simulations are now starting to include enough complexity to produce morphologies and gas properties that are not too dissimilar from observations. The comparison between the density fields produced by hydrodynamical simulations and observations at given wavelengths relies however on photoionisation/chemistry and radiative transfer calculations. We present here an implementation of Monte Carlo radiation transport through a Voronoi tessellation in the photoionisation and dust radiative transfer code MOCASSIN. We show for the first time a synthetic spectrum and synthetic emission line maps of an hydrodynamical simulation of a molecular cloud affected by massive stellar feedback. We show that the approach on which previous work is based, which remapped hydrodynamical density fields onto Cartesian grids before performing radiative transfer/photoionisation calculations, results in significant ...

  17. Multiyear Evidence from Ground-based Observations and Modeling of the Impact of Dust on Snowfall in the Sierra Nevada

    Science.gov (United States)

    Creamean, J.; Ault, A. P.; Collins, D. B.; Cahill, J. F.; Fitzgerald, E.; White, A. B.; Neiman, P. J.; Wick, G. A.; Fan, J.; Leung, L.; Ralph, F. M.; Prather, K. A.

    2011-12-01

    Aerosols that have the ability to act as ice nuclei (IN) can impact cloud formation and alter the type, amount, and location of precipitation. IN such as dust and biological aerosols can lead to early initiation of the ice phase that enhances riming and thus precipitation. Depending on temperature conditions, this can lead to increased snowfall at the surface. Potential snowfall enhancement in mountainous regions such as California's Sierra Nevada has large implications on regional water supply, which in turn can affect agricultural and ecosystem productivity, the amount of renewable energy from hydropower, and many other water uses. However, the magnitude of the effect of IN on precipitation intensity, form, and patterns during intense winter storms in the Sierra Nevada is poorly understood. During three consecutive winters (2009-2011) of the CalWater field campaign, the chemical composition of precipitation residues were measured at Sugar Pine Dam, a remote rural site in the Sierra Nevada. Some precipitation events occurred during storms that were characterized by atmospheric river (AR) conditions, which are ideal for generating copious amounts of orographic precipitation. Large fractions of dust and biological aerosols were measured as residues in precipitation samples collected during storms with increased snowfall and lower surface temperatures. In most cases, higher fractions of dust were measured in samples during stronger ARs, while higher fractions of biological or water-insoluble organic residues were measured during weaker ARs throughout all three winters. During the winter storms of CalWater, we observed an increase over time in the fraction of dust and biological residues combined, from 20% in 2009 to 82% in 2011 of the total residues in all precipitation samples, in addition to a decrease in average surface temperature (from 4.8 to 2.3 °C), an increase in the total amount of precipitation (from 253 to 374 mm), and an increase in the frequency of

  18. Silicon in the dust formation zone of IRC +10216 as observed with PACS and SPIRE on board Herschel

    CERN Document Server

    Decin, L; Barlow, M J; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; De Beck, E; Agúndez, M; Blommaert, J A D L; Cohen, M; Daniel, F; De Meester, W; Exter, K; Feuchtgruber, H; Fonfria, J P; Gear, W K; Goicoechea, J R; Gomez, H L; Groenewegen, M A T; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Tercero, B; Waelkens, C; Witherick, D K; Yates, J A

    2010-01-01

    The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {\\mu}m) and SPIRE (194-672 {\\mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggest...

  19. First Detection of UV emission from a Detached Dust Shell: GALEX Observations of the Carbon AGB Star U Hya

    CERN Document Server

    Sanchez, E; Ramstedt, S; Stassun, K G

    2014-01-01

    We present the discovery of an extended ring of ultraviolet emission surrounding the AGB star U Hya in archival observations performed by the Galaxy Evolution Explorer (GALEX). This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the ultraviolet ring has a radius of $\\sim 110^{\\prime\\prime}$, thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most $\\sim10%$ of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H$_2$ molecules are the most likely origins of the UV flux. In contrast to previou...

  20. First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of eta Corvi

    CERN Document Server

    Defrère, D; Skemer, A J; Kennedy, G M; Bailey, V P; Hoffmann, W F; Mennesson, B; Millan-Gabet, R; Danchi, W C; Absil, O; Arbo, P; Beichman, C; Brusa, G; Bryden, G; Downey, E C; Durney, O; Esposito, S; Gaspar, A; Grenz, P; Haniff, C; Hill, J M; Lebreton, J; Leisenring, J M; Males, J R; Marion, L; McMahon, T J; Montoya, M; Morzinski, K M; Pinna, E; Puglisi, A; Rieke, G; Roberge, A; Serabyn, E; Sosa, R; Stapeldfeldt, K; Su, K; Vaitheeswaran, V; Vaz, A; Weinberger, A J; Wyatt, M C

    2015-01-01

    We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81 - 12.41 um) emission around the nearby main-sequence star eta Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% +/- 0.35% over a field-of-view of 140 mas in radius (~2.6\\,AU at the distance of eta Corvi) and shows no significant variation over 35{\\deg} of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by Spitzer/IRS (~23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the Solar zodiacal cloud, unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predic...

  1. Herschel observations of gas and dust in comet C/2006 W3 (Christensen) at 5 AU from the Sun

    CERN Document Server

    de Val-Borro, M; Jehin, E; Hartogh, P; Opitom, C; Szutowicz, S; Biver, N; Crovisier, J; Lis, D C; Rezac, L; de Graauw, Th; Hutsemékers, D; Jarchow, C; Kidger, M; Küppers, M; Lara, L M; Manfroid, J; Rengel, M; Swinyard, B M; Teyssier, D; Vandenbussche, B; Waelkens, C

    2014-01-01

    We aimed to measure the H2O and dust production rates in C/2006 W3 (Christensen) with the Herschel Space Observatory at a heliocentric distance of ~ 5 AU. We have searched for emission in the H2O and NH3 ground-state rotational transitions at 557 GHz and 572 GHz, simultaneously, with HIFI onboard Herschel on UT 1.5 September 2010. Photometric observations of the dust coma in the 70 and 160 {\\mu}m channels were acquired with the PACS instrument on UT 26.5 August 2010. A tentative 4-{\\sigma} H2O line emission feature was found in the spectra obtained with the HIFI wide-band and high-resolution spectrometers, from which we derive a water production rate of $2.0(5) \\times 10^{27}$ molec. s$^{-1}$. A 3-{\\sigma} upper limit for the ammonia production rate of <$1.5 \\times 10^{27}$ molec. s$^{-1}$ is obtained taking into account the contribution from all hyperfine components. The blueshift of the water line detected by HIFI suggests preferential emission from the subsolar point. However, it is also possible that w...

  2. ISO observations of 3 - 200 micron emission by three dust populations in an isolated local translucent cloud

    CERN Document Server

    Rawlings, M G; Mattila, K; Lehtinen, K; Lemke, D

    2004-01-01

    We present ISOPHOT spectrophotometry of three positions within the isolated high latitude cirrus cloud G 300.2 - 16.8, spanning from the near- to far-infrared. The positions exhibit contrasting emission spectrum contributions from the UIBs, very small grains and large classical grains, and both semi-empirical and numerical models are presented. At all three positions, the UIB spectrum shapes are found to be similar, and the large grain emission may be fitted by an equilibrium temperature of ~17.5 K. The energy requirements of both the observed emission spectrum and optical scattered light are shown to be satisfied by the incident local ISRF. The FIR emissivity of dust in G 300.2 - 16.8 is found to be lower than in globules or dense clouds, and is even lower than model predictions for dust in the diffuse ISM. The results suggest physical differences in the ISM mixtures between positions within the cloud, possibly arising from grain coagulation processes.

  3. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    Science.gov (United States)

    Varga, György; Cserháti, Csaba; Kovács, János; Szalai, Zoltán

    2016-09-01

    Several hundred tons of windblown dust material are lifted into the atmosphere and are transported every year from Saharan dust source areas towards Europe having an important climatic and other environmental effect also on distant areas. According to the systematic observations of modern Saharan dust events, it can be stated that dust deflated from North African source areas is a significant constituent of the atmosphere of the Carpathian Basin and Saharan dust deposition events are identifiable several times in a year. Dust episodes are connected to distinct meteorological situations, which are also the determining factors of the different kinds of depositional mechanisms. By using the adjusted values of dust deposition simulations of numerical models, the annual Saharan dust flux can be set into the range of 3.2-5.4 g/m2/y. Based on the results of past mass accumulation rates calculated from stratigraphic and sedimentary data of loess-paleosol sequences, the relative contribution of Saharan dust to interglacial paleosol material was quantified. According to these calculations, North African exotic dust material can represent 20-30% of clay and fine silt-sized soil components of interglacial paleosols in the Carpathian Basin. The syngenetic contribution of external aeolian dust material is capable to modify physicochemical properties of soils and hereby the paleoclimatic interpretation of these pedogene stratigraphic units.

  4. Experimental simulation of the atmospheric ablation of cosmic dust particles: implications for HPLA radar and lidar observations

    Science.gov (United States)

    Gomez Martin, Juan Carlos; Bones, David; Diego Carrillo Sanchez, Juan; James, Alexander; Janches, Diego; Plane, John

    2016-04-01

    The inner solar system is full of interplanetary dust particles (IDPs) originating from cometary trails and collisions between asteroids. The entry and evaporation of IDPs in planetary atmospheres is related to a variety of phenomena including formation of mesospheric metal layers and clouds and stratospheric aerosol chemistry. The estimated mass flux into the Earth's Atmosphere from modelling of Zodiacal Cloud observations combined with results from our chemical ablation model (CABMOD) is consistent with the deposition rate of cosmic spherules on the ice caps. However, the fluxes derived from modelling HPLA radar observations, which also uses CABMOD, are significantly lower. In addition, all models underestimate the observed Na/Fe ratio in metal layers observed by LIDAR, and the radar-based model in particular does not predict differential ablation. In order to address these inconsistencies, we have built a laboratory meteor ablation simulator, which enables us to observe and characterise the ablation of metal atoms from meteoritic IDP analogues. CABMOD can be then benchmarked against the laboratory data. In this presentation, the implications of our experimental results for the interpretation of radar field observations, mass flux estimates and modelling of metal layers will be discussed.

  5. Alignment of atmospheric mineral dust due to electric field

    Directory of Open Access Journals (Sweden)

    Z. Ulanowski

    2007-09-01

    Full Text Available Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction consistent with the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling also indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here.

  6. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    Science.gov (United States)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  7. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    Science.gov (United States)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  8. Bipolar-pulses observed by the LRS/WFC-L onboard KAGUYA - Plausible evidence of lunar dust impact -

    Science.gov (United States)

    Kasahara, Yoshiya; Horie, Hiroki; Hashimoto, Kozo; Omura, Yoshiharu; Goto, Yoshitaka; Kumamoto, Atsushi; Ono, Takayuki; Tsunakawa, Hideo; Lrs/Wfc Team; Map/Lmag Team

    2010-05-01

    Introduction: The waveform capture (WFC) [1] is one of the subsystems of the Lunar Radar Sounder (LRS) [2] on board the KAGUYA spacecraft. By taking advantage of a moon orbiter, the WFC measures plasma waves and radio emis-sions around the moon. The WFC measures two components of electric wave signals detected by the two orthogonal 30 m tip-to-tip antennas from 100Hz to 1MHz. The WFC consists of the WFC-L which meas-ures electric waveform from 100Hz to 100kHz, and the WFC-H which is a fast sweep frequency analyz-er covering from 1kHz up to 1MHz. The WFC-L has two operation modes: DIFF and MONO. In DIFF mode, signals from two pairs of 30m tip-to-tip dipole antennas are obtained. MONO mode is namely an interferometry mode and we separately measure the signals from a pair of monopole antennas. This mode is dedicated to measure the phase velocities and wave numbers of plasma waves. Bipolar-pulses with their time scales of a few ms upto several tens ms were often observed by the WFC-L. Some of them are classified into elec-trostatic solitary waves (ESW) [3], while another type of bipolar pulses which are supposed to be caused by lunar dust impacts are also observed. In the present paper, we introduce the latter type of bipolar-pulses. Observation: In general, ESWs are caused by electron-holes in the nonlinear evolution of electron beam instability. Therefore waveform of ESW is basically symmetric and its propagation direction is parallel to the am-bient magnetic field. On the other hand, another type of bipolar pulses are characterized by their asymmetric waveforms, that is, the latter half of pulse is longer than the first half. It is also noted that detection probability of such asymmetric bipolar pulses in MONO mode is much higher than that in DIFF mode. This is because bipolar pulses detected by a pair of monopole antennas in MONO mode are almost identical (pulses are simultaneously detected with both monopole anten-nas and the polarities of these pulses are also

  9. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2011-08-01

    Full Text Available The differences in North African dust emission regions and transport routes, between the boreal winter and summer are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 years of satellite data, in order to determine better the different dust transport periods and their characteristics. We see a robust annual triplet: a discernible rhythm of "transatlantic dust weather".

    The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one clean, light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes.

    The southern route period lasts about ~4 months, from the end of November to end of March. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months, from the end of March to mid October, and is associated with a steady drift northward of ~0.1 latitude day−1, reaching ~1500 km north of the southern route. The northern period is characterized by higher frequency of dust events, higher (and variable background and smaller variance in dust loading. It is less episodic than the southern period.

    Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition between the northern and southern periods commences with an abrupt reduction in dust loading (thereby initiating the clean period and rapid shift southward of ~0.2 latitude day

  10. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  11. Variability and dust filtration in the transition disk J160421.7-213028 observed in optical scattered light

    CERN Document Server

    Pinilla, P; Benisty, M; Juhász, A; Ovelar, M de Juan; Dominik, C; Avenhaus, H; Birnstiel, T; Girard, J H; Huelamo, N; Isella, A; Milli, J

    2015-01-01

    Context. Some of transition disks show asymmetric structures in thermal sub-millimetre emission and optical scattered light. These structures can be the result of planet(s) or companions embedded in the disk. Aims. We aim to detect and analyse the scattered light of the transition disk J160421.7-213028, identify disk structures, and compare the results with previous observations of this disk at other wavelengths. Methods. We obtained and analysed new polarised intensity observations of the transition disk J160421.7-213028 with VLT/SPHERE using the visible light instrument ZIMPOL at $R'$-band (0.626$\\mu$m). We probe the disk gap down to a radius of confidence of 0.1'' (${\\sim}15$ AU at 145 pc). We interpret the results in the context of dust evolution when planets interact with the parental disk. Results. We observe a gap from 0.1 to 0.3'' (${\\sim}15$ to 40 AU) and a bright annulus as previously detected by HiCIAO $H$-band observations at $1.65\\mu$m. The radial width of the annulus is around $40$ AU, and its p...

  12. The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011

    KAUST Repository

    Banks, Jamie R.

    2014-12-16

    © 2014. American Geophysical Union. All Rights Reserved. The direct clear-sky radiative effect (DRE) of atmospheric mineral dust is diagnosed over the Bordj Badji Mokhtar (BBM) supersite in the central Sahara during the Fennec campaign in June 2011. During this period, thick dust events were observed, with aerosol optical depth values peaking at 3.5. Satellite observations from Meteosat-9 are combined with ground-based radiative flux measurements to obtain estimates of DRE at the surface, top-of-atmosphere (TOA), and within the atmosphere. At TOA, there is a distinct daytime cycle in net DRE. Both shortwave (SW) and longwave (LW) DRE peak around noon and induce a warming of the Earth-atmosphere system. Toward dusk and dawn, the LW DRE reduces while the SW effect can switch sign triggering net radiative cooling. The net TOA DRE mean values range from -9 Wm-2 in the morning to heating of +59 Wm-2 near midday. At the surface, the SW dust impact is larger than at TOA: SW scattering and absorption by dust results in a mean surface radiative cooling of 145Wm-2. The corresponding mean surface heating caused by increased downward LW emission from the dust layer is a factor of 6 smaller. The dust impact on the magnitude and variability of the atmospheric radiative divergence is dominated by the SW cooling of the surface, modified by the smaller SW and LW effects at TOA. Consequently, dust has a mean daytime net radiative warming effect on the atmosphere of 153Wm-2.

  13. Observed particle sizes and fluxes of Aeolian sediment in the near surface layer during sand-dust storms in the Taklamakan Desert

    Science.gov (United States)

    Huo, Wen; He, Qing; Yang, Fan; Yang, Xinghua; Yang, Qing; Zhang, Fuyin; Mamtimin, Ali; Liu, Xinchun; Wang, Mingzhong; Zhao, Yong; Zhi, Xiefei

    2016-08-01

    Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008-2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m-2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60-80 % of the samples collected, with 0.9-2.5 % for PM0-2.5, 3.5-7.0 % for PM0-10, 5.0-14.0 % for PM0-20 and 20.0-40.0 % for PM0-50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m-2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.

  14. Chemical characterization of submicron particles during typical air pollution episodes in spring over Beijing

    National Research Council Canada - National Science Library

    YANG Ting SUN Ye-Le ZHANG Wei WANG Zi-Fa WANG Xi-Quan

    2016-01-01

    Beijing experienced a long-lasting pollution episode in April 2012. Here, the authors characterize the sources and evolution processes of the pollution, with a focus on a haze and a dust episode that occurred during 15-30 April...

  15. [A long-term prospective observation of the course of dust-induced bronchitis in mechanical engineering workers].

    Science.gov (United States)

    Kleĭner, A I; Makotchenko, V M; Efremova, V A; Prilipskaia, N I; Martynov, P N; Ovchinnik, E N

    1993-04-01

    A study of 206 machine builders in dynamics (up to 15 years) with dust-induced bronchitis showed that the disease has a tendency to advancing within the first three years, especially in those with a combination of noxious professional factors (dust, heat, hard physical work). Negative risk factors: working conditions, preceding unspecific respiratory infections, smoking.

  16. Continuous observations of synoptic-scale dust transport at the Nepal Climate Observatory-Pyramid (5079 m a.s.l. in the Himalayas

    Directory of Open Access Journals (Sweden)

    R. Duchi

    2011-02-01

    Full Text Available This study presents two years of continuous observations of physical aerosol properties at the GAW-WMO global station "Nepal Climate Observatory – Pyramid" (NCO-P, 27°57' N, 86°48' E, sited at 5079 m a.s.l. in the high Himalayan Khumbu Valley (Nepal. Measurements of aerosol number size distribution, aerosol optical depth (AOD and single scattering albedo (SSA are analysed from March 2006 to February 2008. By studying the temporal variations of coarse (1 μm < Dp ≤ 10 μm particle number concentration, 53 mineral Dust Transport Events (DTEs are identified, accounting for 22.2% of the analysed data-set. Such events occurred prevalently during pre-monsoon (for 30.6% of the period and winter (22.1% seasons. However, uncommon cases of mineral dust transport are observed even during the monsoon season. The main sources of mineral dust reaching NCO-P are identified in the arid regions not far from the measurement site, i.e. from Tibetan Plateau, and Lot-Thar deserts, which account for 52% of the dust transport days. Moreover, a non-negligible contribution can be attributed to the Arabian Peninsula (17% and the Indo-Gangetic Plains (16%, as indicated by three dimensional (3-D back-trajectory analyses performed with LAGRANTO model.

    The observed DTEs lead to significant enhancements in the coarse aerosol number concentration (+513% and coarse aerosol mass (+655%, as compared with average values observed in "dust-free" conditions ( 0.05 ± 0.11 cm−3 and 3.4 ± 3.7 μg m−3, respectively. During DTEs, SSA is higher (0.84–0.89 than on "dust-free" days (0.75–0.83, confirming the importance of this class of events as a driver of the radiative features of the regional Himalayan climate. Considering the dust events, a significant seasonal AOD increase (+37.5% is observed in the post-monsoon, whereas lower increase (less than +11.1% characterises the pre-monsoon and winter seasons confirming the

  17. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006

    Science.gov (United States)

    Chou, CéDric; Formenti, Paola; Maille, Michel; Ausset, Patrick; Helas, Günter; Harrison, Mark; Osborne, Simon

    2008-12-01

    Dust samples were collected onboard the UK community BAe-146 research aircraft of the Facility for Airborne Atmospheric Measurements (FAAM) operated over Niger during the winter Special Observation Period of the African Monsoon Multidisciplinary Analysis project (AMMA SOP0/DABEX). Particle size, morphology, and composition were assessed using single-particle analysis by analytical scanning and transmission electron microscopy. The aerosol was found to be composed of externally mixed mineral dust and biomass burning particles. Mineral dust consists mainly of aluminosilicates in the form of illite and kaolinite and quartz, accounting for up to 80% of the aerosol number. Fe-rich particles (iron oxides) represented 4% of the particle number in the submicron fraction. Diatoms were found on all the samples, suggesting that emissions from the Bodélé depression were also contributing to the aerosol load. Satellite images confirm that the Bodélé source was active during the period of investigation. Biomass burning aerosols accounted for about 15% of the particle number of 0.1-0.6 μm diameter and were composed almost exclusively of particles containing potassium and sulfur. Soot particles were very rare. The aspect ratio AR is a measure of particle elongation. The upper limit of the AR value distribution is 5 and the median is 1.7, which suggests that mineral dust particles could be described as ellipsoids whose major axis never exceeds 1.9 × Dp (the spherical geometric diameter). This is consistent with other published values for mineral dust, including the recent Aerosol Robotic Network retrieval results of Dubovik et al. (2006).

  18. INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    R. TÓTH

    2016-03-01

    Full Text Available The Sahara Desert is the largest dust source on Earth. Its dust is frequently emitted into the Mediterranean atmosphere and transported by the winds sometimes as far north as Central Europe. The accumulated particles contribute to soil forming processes, while the atmospheric mineral dust has an impact on the radiation budget, cloud forming processes, the pH of precipitation and biogeochemical cycles of marine ecosystems. The PM (particulate matter in ambient air does not contain only primary particles but secondary particles formed in the atmosphere from precursor gases as well. Especially these latter ones have significant negative impacts to human health. There are in average four-five Saharan dust episodes annually in Hungary, sometimes in form of colour precipitation (brown rainfall, red snow. There are several possibilities for providing evidence for the Saharan origin of the dust observed in our country: back-trajectories using NOAA HYSPLIT model, TOMS satellite maps of NASA, maps of aerosol index of Ozone Monitoring Instrument, observations of spectral aerosol optical depth of Aerosol Robotic Network, satellite maps of EUMETSAT, elemental analysis of dust samples. In this study we try to reveal the suitability of the upper-air wind fields in detection of Saharan dust episodes in Central Europe. We deployed the global upper-air data base of the last 41 years that is available by courtesy of College of Engineering and Applied Sciences at University of Wyoming. We apply this method also for tracking air pollution of vegetation fires.

  19. Influence of blocking effect of mountain and local front on two Asian-dust events observed at Mt. Haruna and Tsukuba in Kanto, Japan, in 2007

    Science.gov (United States)

    Inomata, Yayoi; Igarashi, Yasuhito; Naoe, Hiroaki; Takahashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Tanaka, Taichu Y.

    2011-08-01

    Aerosol number concentrations were continuously measured at sites at Tsukuba and Mt. Haruna on the Kanto region of Japan by using optical particle counters (OPCs) from February to June 2007. Three specific dust events captured at the sites were analyzed by using lidar, backward trajectories, and model simulation in detail. The temporal variations in aerosol concentrations in the two Asian-dust events (K1 event: 31 March-3 April; K2 event: 25-28 May) were similar. Dust particles (≥2.0 μm in diameter) were transported in association with a synoptic-scale cold front, and they arrived at the Tsukuba site about 8 h after they were observed at the Mt. Haruna site, in association with the dissipation of a local front formed ahead of the cold front. However, the inflow patterns of dust particles differed between the K1 and K2 events. The K1 event flowed onto the Kanto Plain, detouring around the mountainous region, whereas the K2 event directly flowed across the mountains. The difference in inflow pattern was probably due to the blocking effects of the mountains and the formation of a stable layer near the surface. Preceding the dust plume arrival, an increase in the number concentration of small-aerosol particles (0.3-1.0 μm in diameter), which are considered to be spherical by lidar, was observed, but only at the Tsukuba site. This increase was possibly due to anthropogenic pollution transported over long distances from the continent and from domestic sources in the Kanto region. The third event was a local dust event, because it was observed only at the Tsukuba site (on 13 and 14 March) under dry conditions (10 m s -1).

  20. ALMA Observations of Anisotropic Dust Mass-loss in the Inner Circumstellar Environment of the Red Supergiant VY CMa

    CERN Document Server

    O'Gorman, E; Richards, A M S; Baudry, A; De Beck, E; Decin, L; Harper, G M; Humphreys, E M; Kervella, P; Khouri, T; Muller, S

    2014-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass-loss in cool evolved stars is an area of intense study. Here, we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, allowing us to trace dust on spatial scales down to 11 R$_{\\star}$ (71 AU). Two prominent dust components are detected and resolved. The brightest dust component, C, is located 334 mas (61 R$_{\\star}$) south-east of the star and has a dust mass of at least $2.5\\times 10^{-4} $M$_{\\odot}$. It has an emissivity spectral index of $\\beta =-0.1$ at its peak, implying that it is either optically thick at these frequencies with a cool core of $T_{d}\\lesssim 100$ K, and/or contains very large dust grains. Interestingly, not a single molecule in the ALMA data has emission close to th...

  1. Impact of Middle Eastern dust sources on PM10 in Iran: Highlighting the impact of Tigris-Euphrates basin sources and Lake Urmia desiccation

    Science.gov (United States)

    Sotoudeheian, Saeed; Salim, Reza; Arhami, Mohammad

    2016-12-01

    Contribution of different Middle Eastern dust origins to PM10 (PM with aerodynamic diameters less than 10 µm) levels in several receptor large cities in Iran was investigated. Initially, the major regional dust episodes were determined through statistical analysis of recorded PM levels at air quality stations and verified using satellite images. The particles dispersion was simulated by Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) to regenerate PM10 during the dust episodes. The accuracy of the modeled results was rather convincing, with an average squared correlation coefficient (R2) of 0.7 (max = 0.95). Consequently, the contributions of different dust sources to the observed concentrations were determined. Basin of Tigris-Euphrates Rivers encompasses active dust sources with significant rate of emission due to fluvial deposits. The sources in this basin with approximately 70-95% contribution, by far, had the most influence on PM10 levels at the receptor cities. In a finer resolution, northern and central parts of Iraq had the most influence on PM10 level during the dust episodes. Effect of probable improvement or deterioration of the current dust origin conditions on PM10 levels was analyzed by performing a sensitivity analysis through varying threshold friction velocities. The results demonstrated that 10% increase or decrease in threshold friction velocities of major dust sources could lead to average of 51% decrease or 77% increase in the receptor cities' PM10, respectively. Finally, effects of Lake Urmia desiccation, as a new hydrological prospect dust origin were analyzed. The predicted dust from the prospective dried lake bed could result in 30-60% increase in PM10 of nearby cities during the studied dust episodes.

  2. Physical structure of the photodissociation regions in NGC 7023. Observations of gas and dust emission with Herschel

    CERN Document Server

    Köhler, M; Arab, H; Bernard-Salas, J; Ayasso, H; Abergel, A; Zavagno, A; Polehampton, E; van der Wiel, M H D; Naylor, D A; Makiwa, G; Dassas, K; Joblin, C; Pilleri, P; Berne, O; Fuente, A; Gerin, M; Goicoechea, J R; Teyssier, D

    2014-01-01

    The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs.

  3. L1448-MM observations by the Herschel Key program, "Dust, Ice, and Gas In Time" (DIGIT)

    CERN Document Server

    Lee, Jinhee; Lee, Seokho; Green, Joel D; Evans, Neal J; Choi, Minho; Kristensen, Lars; Dionatos, Odysseas; Jørgensen, Jes K

    2013-01-01

    We present Herschel/PACS observations of L1448-MM, a Class 0 protostar with a prominent outflow. Numerous emission lines are detected at 55 1000 K) environment, indicative of a shock origin. For OH, IR-pumping processes play an important role in the level population. The molecular emission in L1448-MM is better explained with a C-shock model, but the atomic emission of PACS [O I] and Spitzer/IRS [Si II] emission is not consistent with C-shocks, suggesting multiple shocks in this region. Water is the major line coolant of L1448-MM in the PACS wavelength range, and the best-fit LVG models predict that H2O and CO emit (50-80)% of their line luminosity in the PACS wavelength range.

  4. Episode-Based Evolution Pattern Analysis of Haze Pollution: Method Development and Results from Beijing, China.

    Science.gov (United States)

    Zheng, Guangjie; Duan, Fengkui; Ma, Yongliang; Zhang, Qiang; Huang, Tao; Kimoto, Takashi; Cheng, Yafang; Su, Hang; He, Kebin

    2016-05-01

    Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days. These episodes differed in terms of sources, formation processes, and chemical composition and thus required different control policies. Therefore, an overview of the similarities and differences among these episodes is needed. For this purpose, we conducted one-year online observations and developed a program that can simultaneously divide haze episodes and identify their shapes. A total of 73 episodes were identified, and their shapes were linked with synoptic conditions. Pure-haze events dominated in wintertime, whereas mixed haze-dust (PM2.5/PM10 haze-fog (Aerosol Water/PM2.5 ∼ 0.3) events dominated in spring and summer-autumn, respectively. For all types, increase of ratio of PM2.5 in PM10 was typically achieved before PM2.5 reached ∼150 μg/m(3). In all PM2.5 species observed, organic matter (OM) was always the most abundant component (18-60%), but it was rarely the driving factor: its relative contribution usually decreased as the pollution level increased. The only OM-driven episode observed was associated with intensive biomass-burning activities. In comparison, haze evolution generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species. Applicability of these conclusions required further tests with simultaneously multisite observations.

  5. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations

    CERN Document Server

    Pont, F; Gibson, N P; Aigrain, S; Henry, G; Husnoo, N

    2012-01-01

    The hot Jupiter HD189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterised in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together the results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to IR with HST, using the STIS, ACS and WFC3 instruments. We provide a new transmission spectrum across the entire visible and infrared range. The radius ratio in each wavelength band was re-derived, where necessary, to ensure a consistent treatment of the bulk transit parameters and stellar limb-darkening. Special care was taken to correct for both occulted and unocculted star spots, and derive realistic uncertainties. The combined spectrum is very different from the predictions of cloud-free models; it is dominated by Rayleigh scattering over the whole visible and NIR range, the only detected features being narrow Na and K lines. We interpret this as the si...

  6. A pervasive and persistent Asian dust event over North America during spring 2010: lidar and sunphotometer observations

    Directory of Open Access Journals (Sweden)

    P. Cottle

    2013-05-01

    Full Text Available Among the many well-documented cases of springtime trans-Pacific transport of crustal dust from Asia to North America (significant events include those of 1998, 2001, and 2005, the events of March and April 2010 were extraordinary both in the extent of the dust distribution and in the unique meteorological conditions that caused the dust layers in the free troposphere to linger and be detectable across Canada and the northern United States for over a month. This study focuses on extending previous research by combining data from CORALNet (Canadian Operational Research Aerosol Lidar Network lidars in Vancouver, BC, and Egbert, ON, with AERONET (AErosol RObotic NETwork sunphotometer retrievals and model results from HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory and NAAPS (Navy Aerosol Analysis and Prediction System to monitor the arrival and distribution of dust layers across North America. This is the first documented instance of lidar detection of Asian dust from the Egbert CORALNet installation, where layers identified as dust using depolarization ratios corresponded with retrievals of coarse-mode optical depth at the co-located AEROCAN/AERONET site. In Vancouver dust layer depolarization ratios varied from 0.27 for dust above 6 km to less than 0.10 for the first 1.5–2 km above the surface. Similar layers of elevated dust exhibited much lower volume depolarization ratios for all altitudes in Egbert, ON, where maximum depolarization ratios stayed below 0.15 for all layers from 2–8 km with no clear variation with altitude, or over time. The relative lack of variation is an indication that as the layers of dust were transported across North America the rates of change in their optical properties slowed. HYSPLIT back trajectories performed throughout the free troposphere above these sites showed a majority of air parcels originating from central Asia on the days in question. Using these techniques, it was shown that elevated

  7. ISM Masses and Star Formation at z = 1 to 6 ALMA Observations of Dust Continuum in 180 Galaxies in COSMOS

    CERN Document Server

    Scoville, N; Aussel, H; Bout, P Vanden; Capak, P; Bongiorno, A; Casey, C M; Murchikova, L; Koda, J; Pope, A; Toft, S; Ivison, R; Sanders, D; Manohar, S; Lee, N

    2015-01-01

    ALMA Cycle 2 observations of the long wavelength dust emission in 180 star-forming (SF) galaxies are used to investigate the evolution of ISM masses at z = 1 to 6.4. The ISM masses exhibit strong increases from z = 0 to $\\rm $ = 1.15 and further to $\\rm $ = 2.2 and 4.8, particularly amongst galaxies above the SF galaxy main sequence (MS). The galaxies with highest SFRs at $\\rm $ = 2.2 and 4.8 have gas masses 100 times that of the Milky Way and gas mass fractions reaching 50 to 80\\%, i.e. gas masses 1 - 4$\\times$ their stellar masses. For the full sample of galaxies, we find a single, very simple SF law: $\\rm SFR \\propto M_{\\rm ISM}^{0.9}$, i.e. a `linear' dependence on the ISM mass -- on and above the MS. Thus, the galaxies above the MS are converting their larger ISM masses into stars on a timescale similar to those on the MS. At z $> 1$, the entire population of star-forming galaxies has $\\sim$5 - 10$\\times$ shorter gas depletion times ($\\sim0.2$ Gyr) than galaxies at low redshift. These {\\bf shorter deplet...

  8. Comparing Herschel dust emission structures, magnetic fields observed by Planck, and dynamics: high-latitude star forming cloud L1642

    Science.gov (United States)

    Malinen, Johanna

    2016-01-01

    The nearby high-latitude cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. This cloud is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642, and also combine these with dynamic information from molecular line observations. The high-resolution Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data reveal an ordered magnetic field that pervades the cloud and is aligned with the surrounding low density striations. We show that there is a complex interplay between the cloud structure and large scale magnetic fields revealed by Planck polarization data at 10' resolution. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. We see a clear transition from aligned to perpendicular structures approximately at a column density of NH = 2x10^21 cm-2. We conclude that Planck polarization data revealing the large scale magnetic field orientation can be very useful even when comparing to the finest structures in higher resolution data, e.g. Herschel at ~18" resolution.

  9. The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE

    CERN Document Server

    Walsh, J R; Barlow, M J; Ueta, T; Wesson, R; Zijlstra, A A

    2016-01-01

    The large field and wavelength range of MUSE is well suited to mapping Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE on the VLT during the Science Verification of the instrument in seeing of 0.6". Emission line maps in hydrogen Balmer and Paschen lines were formed from analysis of the MUSE cubes. The measured electron temperature and density from the MUSE cube were employed to predict the theoretical hydrogen line ratios and map the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H) has been mapped for the first time in a PN. The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. A large-scale feature in the extinction map, consisting of a crest and trough, occurs at the rim of the inner shell. The nature of this feature was investigated and instrumental and physical causes considered; no convincing mechanisms wer...

  10. Photochemistry in Saturn's Ring-Shadowed Atmosphere: Modulation of Key Molecules and Observations of Dust Content

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil H.; Wilson, Eric H.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh N.; Momary, Tom

    2015-04-01

    -generated molecules and haze. [1] Edgington, S.G., et al., 2012. Photochemistry in Saturn's Ring Shadowed Atmosphere: Modeling, Observations, and Preliminary Analysis. Bull. American. Astron. Soc., 38, 499 (#11.23).

  11. Photochemistry in Saturn's Ring-Shadowed Atmosphere: Modeling of Key Molecules and Observations of Dust Content

    Science.gov (United States)

    Edgington, S. G.; Atreya, S. K.; Wilson, E. H.; West, R. A.; Fletcher, L. N.; Baines, K. H.; Bjoraker, G. L.; Momary, T.

    2014-12-01

    -generated molecules and haze. [1] Edgington, S.G., et al., 2012. Photochemistry in Saturn's Ring Shadowed Atmosphere: Modeling, Observations, and Preliminary Analysis. Bull. American. Astron. Soc., 38, 499 (#11.23).

  12. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  13. The level of recognition of physical symptoms in patients with a major depression episode in the outpatient psychiatric practice in Puerto Rico: An observational study

    Directory of Open Access Journals (Sweden)

    Román Karis

    2005-06-01

    Full Text Available Abstract Background This study was designed to evaluate the psychiatrists' level of recognition of somatic symptoms associated to a major depressive episode (MDE (DSM-IV-TR criteria and the impact of those somatic symptoms on the treatment effectiveness. Methods This non-interventional study was conducted in 25 medical offices in Puerto Rico from February to December 2003. It had 2 visits separated by 8 weeks. The level of recognition was determined by: the correlation between the physician clinical evaluation and their patients' self-evaluations through different validated instruments using kappa statistics. Chi-square test was used to evaluate the impact of somatic symptoms on treatment antidepressants' effectiveness. Results All the 145 recruited patients reported the presence of at least one somatic symptom associated with their current MDE. In the two visits covered by the study, a fair agreement between the psychiatrists' and the patients' reports was noted for headache, abdominal pain and upper limb pains (0.4003 ≤ κ ≥ 0.6594. For other painful symptoms and painless somatic symptoms, the Kappa values obtained were non-significant. Slight but significant reductions in depression and painful symptoms severity were observed after 8 weeks of treatment. A proportional relationship between the pain and depression severity was observed (p Conclusion The study results show that somatic symptoms: are very common in depressed Puerto Rican patients; are significant under-reported by psychiatrists; and have a significant impact on the antidepressant effectiveness.

  14. Synoptic study of the seasonal variability of dust cases observed by the TOMS satellite over northern Saudi Arabia

    Science.gov (United States)

    Awad, Adel M.; Mashat, Abdul-Wahab S.; Alamoudi, Ahmad O.; Assiri, Mazen E.

    2016-05-01

    The aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) satellite and meteorological parameters from National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis datasets were used to examine seasonal dust cases in northern Saudi Arabia. Considering all seasons, winter has the fewest dust cases, whereas summer has the most dust cases. Synoptically, surface high-pressure systems in the eastern and western regions are important for the occurrence of dust cases over the northern Arabian Peninsula. When the eastern high pressure prevails, the effects of the Indian low-pressure system on the Arabian Peninsula are weakened or become nonexistent. The extension of the western high-pressure system toward the southeast provides an opportunity for a low-pressure system over Southeast Africa to connect with the Indian low-pressure system, which increases the width of the low-pressure trough and affects the Arabian Peninsula by increasing the amount of dust over the region. At 850 hPa, the weather systems typically rotate clockwise between winter and autumn. In winter, cyclonic systems prevail in the northern region, while anticyclonic systems prevail in the south. The systems are oriented toward the northeast in spring, the west in summer, and the southeast in autumn. Moreover, northern cyclones at 500 hPa shrink as they move northward and the maximum wind speed at 250 hPa decreases from winter to summer. Furthermore, the case study confirms that a change in the relative strength of the pressure systems and a change in the orientation of the isobars (contours) affect the amount of dust over the area. When the orientation of the isobar (contour) lines become strictly north to south or east to west, the amount of dust decreases and vice versa.

  15. Physical activity in people with asbestos related pleural disease and dust-related interstitial lung disease: An observational study.

    Science.gov (United States)

    Dale, Marita T; McKeough, Zoe J; Munoz, Phillip A; Corte, Peter; Bye, Peter T P; Alison, Jennifer A

    2015-11-01

    This study aimed to measure the levels of physical activity (PA) in people with dust-related pleural and interstitial lung diseases and to compare these levels of PA to a healthy population. There is limited data on PA in this patient population and no previous studies have compared PA in people with dust-related respiratory diseases to a healthy control group. Participants with a diagnosis of a dust-related respiratory disease including asbestosis and asbestos related pleural disease (ARPD) and a healthy age- and gender-matched population wore the SenseWear(®) Pro3 armband for 9 days. Six-minute walk distance, Medical Outcomes Study 36-item short-form health survey and the Hospital Anxiety and Depression Scale were also measured. Fifty participants were recruited and 46 completed the study; 22 with ARPD, 10 with dust-related interstitial lung disease (ILD) and 14 healthy age-matched participants. The mean (standard deviation) steps/day were 6097 (1939) steps/day for dust-related ILD, 9150 (3392) steps/day for ARPD and 10,630 (3465) steps/day for healthy participants. Compared with the healthy participants, dust-related ILD participants were significantly less active as measured by steps/day ((mean difference 4533 steps/day (95% confidence interval (CI): 1888-7178)) and energy expenditure, ((mean difference 512 calories (95% CI: 196-827)) and spent significantly less time engaging in moderate, vigorous or very vigorous activities (i.e. >3 metabolic equivalents; mean difference 1.2 hours/day (95% CI: 0.4-2.0)). There were no differences in levels of PA between healthy participants and those with ARPD. PA was reduced in people with dust-related ILD but not those with ARPD when compared with healthy age and gender-matched individuals.

  16. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  17. A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure

    CERN Document Server

    Tazzari, M; Ercolano, B; Natta, A; Isella, A; Chandler, C J; Pérez, L M; Andrews, S; Wilner, D J; Ricci, L; Henning, T; Linz, H; Kwon, W; Corder, S A; Dullemond, C P; Carpenter, J M; Sargent, A I; Mundy, L; Storm, S; Calvet, N; Greaves, J A; Lazio, J; Deller, A T

    2015-01-01

    Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88mm to ~10mm is available (from SMA, CARMA, and VLA), finding evidence ...

  18. K'-band observations of the evil eye galaxy: Are the optical and near-infrared dust albedos identical?

    Science.gov (United States)

    Witt, Adolf N.; Lindell, Rebecca S.; Block, David L.; Evans, Rhodri

    1994-05-01

    New measurements of the reduction of the V-band surface brightness across the prominent dust feature in the galaxy NGC 4826 are compared with corresponding increases in the V-K' color within the context of radiative transfer models invoking both absorption and scattering. The K'-band surface brightness is found to be higher than expected from standard dust models. We interpret the difference as resulting from a high effective dust albedo at K', with a likely value in excess of 0.8, provided the near-IR extinction curve in NGC 4826 is identical to the Galactic one. The high effective albedo may result from scattering by dust with a maximum grain size at least twice as large as assumed by standard models, a conclusion already indirectly hinted at by recent studies of dust star-forming regions and reflection nebulae. At least part of the high effective albedo at K' may result from near-IR nonequilibrium continuum emission attributable to very small grains.

  19. The Gas-to-Dust Relation in the Dark Cloud L1523 - Observational Evidence for CO Gas Depletion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Correlation between gas and dust column density has been studied for the dark globule L1523. The 13CO(J= 1→0) emission is used for tracing the gas, and the IR emissions, for tracing the dust constituent. In order to match the beam resolution between the images, a beam de-convolution algorithm based on the Maximum Correlation Method (MCM) was applied on the Infrared Astronomical Satellite (IRAS) data. The morphology of 13CO column density map shows a close correlation to that of 100μm dust optical depth. The distribution of the optical depth at 100 μm follows that of gas column density more closely than does the flux map at either 60 or 100μm. The ratio of the 13CO column density to the 100μm optical depth shows a decreasing trend with increasing dust optical depth in the central part, indicating possible molecular gas condensation onto dust particles. The excessive decrease in the CO column density in the envelope may most probably be due to the photo-dissociation of CO molecules.

  20. Comparison of the dust distributions in the innermost comae of comets-1P/Halley and 19P/Borrelly spacecraft observations

    Science.gov (United States)

    Ho, T.-M.; Thomas, N.; Boice, D.C.; Combi, M.; Soderblom, L.A.; Tenishev, V.

    2007-01-01

    We present a comparative study of the inner comae of comets 1P/Halley and 19P/Borrelly using data from the Halley Multicolour Camera (HMC) onboard Giotto and the Miniature Integrated Camera and Spectrometer onboard Deep Space 1 (DS1). We show that the dust brightness dependence as a function of radial distance is different for both comets. We suggest that optical depth or fragmentation effects dominate the brightness distribution at comet 1P/Halley whereas acceleration or non-point source geometry effects dominate at comet 19P/Borrelly. The nightside profiles of comet 19P/Borrelly suggest a continuing non-radial outflow from the nucleus out to several tens of kilometres. This modifies the observed dayside to nightside brightness ratio with distance and offers a further constraint on dust emission models. By setting up a linear system of equations to fit the dust intensity distribution, better fits could be obtained by incorporating acceleration into the equation of free-radial outflow. Finally, we estimate the dust production rate of 19P/Borrelly at the time of DS1 encounter as no higher than 324 kg/s based on comparisons with HMC intensity measurements. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region

    Science.gov (United States)

    Yang, Zhifeng; Wang, Jun; Ichoku, Charles; Hyer, Edward; Zeng, Jing

    2013-11-01

    transport and vertical distribution of smoke and dust aerosols over the northern sub-Saharan African region are simulated in the Weather Research and Forecasting model with Chemistry (WRF-Chem), which uses hourly dynamic smoke emissions from the Fire Locating and Modeling of Burning Emissions database derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance for February 2008 is evaluated using MODIS true color images, aerosol optical depth (AOD) measurements from the Aerosol Robotic Network, MODIS AOD retrievals, and the Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Between the equator and 10°N, Saharan dust is often mixed with smoke near the surface, and their transport patterns manifest the interplay of trade winds, subtropical highs, precipitation associated with the Intertropical Convergence Zone, and the high mountains located near the Great Rift Valley region. At the 700 hPa level and above, smoke layers spread farther to the north and south and are often above the dust layers over the Sahel region. In some cases, transported smoke can also be mixed with dust over the Saharan region. Statistically, 5% of the CALIOP valid measurements in February 2007-2011 show aerosol layers either above or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region.

  2. Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. I. Influences of Dust Attenuation and Stellar Population Age

    CERN Document Server

    Mao, Ye-Wei; Hao, Cai-Na; Kong, Xu; Zhou, Xu

    2012-01-01

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color, i.e. the IRX-UV relation, was regarded as a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion, in this paper, we select five spiral nearby galaxies, and perform spatially resolved studies on each individual of the galaxies, with combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to ...

  3. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    Science.gov (United States)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Schlager, H.; Blechschmidt, A.-M.; Kristjánsson, J. E.; Stohl, A.

    2011-04-01

    During the POLARCAT summer campaign in 2008, two episodes (2-5 July and 7-10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  4. Episodes of Cross-Polar Transport in the Arctic Troposphere During July 2008 as Seen from Models, Satellite, and Aircraft Observations

    Science.gov (United States)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Schlager, H.; Blechschmidt, A.-M.; Kristjansson, J. E.; Stohl, A.

    2011-01-01

    During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  5. Episodic Mass Loss on the Timescale of Thermal Pulses: Radiative Transfer Modeling.

    Science.gov (United States)

    Speck, Angela; Nenkova, Maia; Meixner, Margaret; Eltizur, Moshe; Knapp, Gillian

    Using far-infrared observations obtained from the Infrared Space Observatory (ISO), we have discovered extremely large dust shells around two post-AGB stars (the Egg Nebula and AFGL 618; Speck, Meixner & Knapp 2001). These circumstellar shells contain the fossil record of their previous AGB mass loss. The radial profiles of these dust shells suggest that episodic mass loss has occurred with mass-loss enhancements on timescales corresponding to theoretical predictions of thermal pulses on the AGB. By modeling the dust emission, we can constrain how the mass loss varies as stars evolve on the AGB, which will constrain the mass-loss mechanisms. Furthermore this modeling allows the determination of the density distribution of the dust around the protoplanetary nebulae as a function of radius. However, modeling such large dust shells is not trivial. Previous studies of very large circumstellar shells showed that most of the outer shell is heated by the interstellar radiation field (ISRF) rather than the central star. Therefore using radiative transfer models with only the central star heating the dust is unrealistic. Furthermore, where the circumstellar shell ploughs into the surrounding interstellar medium may lead to a pile up of material at the outer edge of the dust shell. We present results of modeling the very large dust shells around the Egg Nebula and AFGL 618 using a version of the 1-d radiative transfer code DUSTY which includes external heating of the dust by the ISRF. The models require that the innermost regions has a rapid (1r3) dust density drop-off, indicative of the increased mass-loss rate towards the end of the AGB. Further out, the dust shell has an underlying 1r2 density drop-off, with two superimposed density enhancements. These results provide constraints on the spatial extent of increased density regions and therefore on the duration of increased mass-loss episodes. Furthermore, the modeling suggests that the mass loss rate was either higher in

  6. Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140

    CERN Document Server

    Williams, P M; Marston, A P; Moffat, A F J; Varricatt, W P; Dougherty, S M; Kidger, M R; Morbidelli, L; Tapia, M

    2009-01-01

    We present high-resolution infrared (2--18 micron) images of the archetypal periodic dust-making Wolf-Rayet binary system WR140 (HD 193793) taken between 2001 and 2005, and multi-colour (J -- [19.5]) photometry observed between 1989 and 2001. The images resolve the dust cloud formed by WR140 in 2001, allowing us to track its expansion and cooling, while the photometry allows tracking the average temperature and total mass of the dust. The combination of the two datasets constrains the optical properties of the dust. The most persistent dust features, two concentrations at the ends of a `bar' of emission to the south of the star, were observed to move with constant proper motions of 324+/-8 and 243+/-7 mas/y. Longer wavelength (4.68-micron and 12.5-micron) images shows dust emission from the corresponding features from the previous (1993) periastron passage and dust-formation episode. A third persistent dust concentration to the east of the binary (the `arm') was found to have a proper motion ~ 320 mas/y. Extr...

  7. Dust transport into Martian polar latitudes

    Science.gov (United States)

    Murphy, J. R.; Pollack, J. B.

    1992-01-01

    The presence of suspended dust in the Martian atmosphere, and its return to the planet's surface, is implicated in the formation of the polar layered terrain and the dichotomy in perennial CO2 polar cap retention in the two hemispheres. A three dimensional model was used to study Martian global dust storms. The model accounts for the interactive feedbacks between the atmospheric thermal and dynamical states and an evolving radiatively active suspended dust load. Results from dust storm experiments, as well as from simulations in which there is interest in identifying the conditions under which surface dust lifting occurs at various locations and times, indicate that dust transport due to atmospheric eddy motions is likely to be important in the arrival of suspended dust at polar latitudes. The layered terrain in both polar regions of Mars is interpreted as the reality of cyclical episodes of volatile (CO2, H2O) and dust deposition.

  8. Episodic tremor triggers small earthquakes

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  9. African dust outbreaks over the Mediterranean Basin during 2001-2011: concentrations, phenomenology and trends

    Science.gov (United States)

    Pey, Jorge; Querol, Xavier; Alastuey, Andres; Forastiere, Franceso; Stafoggia, Massimo

    2013-04-01

    Concentrations, phenomenology and trends of African dust outbreaks over the whole Mediterranean Basin werestudied on an 11-year period (2001-2011). This work has been performed in the context of the MED-PARTICLES (LIFE programme, EU) project, devoted to quantify short-term health effects of particulate matter over the Mediterranean region by distinguishing different particle sizes, chemical components and sources, with emphasis in the effects of African dust. In order to evaluate conduct this investigation, PM10 data from 19 regional and suburban background sites West to East in the Mediterranean area were compiled. After identifying the daily occurrence of African dust outbreaks, a methodology for estimating natural dust contributions on daily PM10 concentrations was applied. Our findings point out that African dust outbreaks are sensibly more frequent in southern sitesacross the Mediterranean, from 30 to 37 % of the annual days, whereas they occur less than 20% of the annual days in northern sites. The central Mediterranean emerges as a transitional area, with slightly higher frequency of dust episodes in its lower extreme when compared to similar latitudinal positions in western and eastern sides of the Basin. A decreasing south to north gradient of African dust contribution to PM10, driven by the latitudinal position of the monitoring sites at least 25°E westwards across the Basin,is patent across the Mediterranean. From 25°E eastwards, higher annual dust contributions are encountered due to the elevated annual occurrence of severe episodesof dust but also because of inputs from Middle Eastern deserts. Concerning seasonality patterns and intensity characteristics, a clear summer prevalence is observed in the western part, with low occurrence of severe episodes (daily dust averages over 100 µg m-3 in PM10); no seasonal trend is detected in the central region, with moderate-intensity episodes; and significantly higher contributions are common in autumn

  10. NuSTAR Observations of WISE J1036+0449, A Galaxy at Z Approx. 1 Obscured by Hot Dust

    Science.gov (United States)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  11. NuSTAR Observations of WISE J1036+0449, A Galaxy at zeta approx 1 Obscured by Hot Dust

    Science.gov (United States)

    Ricci, C.; Assef, R. J.; Stern, Daniel K.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A.W.; Zhang, William W.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  12. NuSTAR Observations of WISE J1036+0449, a Galaxy at z~1 Obscured by Hot Dust

    Science.gov (United States)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Chang, C. S.; Chen, C.-T. J.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Díaz-Santos, T.; Eisenhardt, P. R.; Farrah, D.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Jun, H. D.; Koss, M. J.; LaMassa, S.; Lansbury, G. B.; Markwardt, C. B.; Stalevski, M.; Stanley, F.; Treister, E.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.; Zappacosta, L.; Zhang, W. W.

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer’s all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z> 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z∼ 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 ({L}{Bol}≃ 8× {10}46 {erg} {{{s}}}-1). We find evidence of a broadened component in Mg ii, which would imply a black hole mass of {M}{BH}≃ 2× {10}8 {M}ȯ and an Eddington ratio of {λ }{Edd}≃ 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of {N}{{H}}≃ (2{--}15)× {10}23 {{cm}}-2. The source has an intrinsic 2–10 keV luminosity of ∼ 6× {10}44 {erg} {{{s}}}-1, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z≲ 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  13. ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris

    NARCIS (Netherlands)

    O'Gorman, E.; Vlemmings, W.; Richards, A.M.S.; Baudry, A.; De Beck, E.; Decin, L.; Harper, G.M.; Humphreys, E.M.; Kervella, P.; Khouri, T.; Muller, S.

    2015-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These

  14. ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris

    NARCIS (Netherlands)

    O'Gorman, E.; Vlemmings, W.; Richards, A.M.S.; Baudry, A.; De Beck, E.; Decin, L.; Harper, G.M.; Humphreys, E.M.; Kervella, P.; Khouri, T.; Muller, S.

    2015-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These

  15. An observational study of dust nucleation in Mira ($o$ Ceti): I. Variable features of AlO and other Al-bearing species

    CERN Document Server

    Kamiński, T; Schmidt, M R; Müller, H S P; Gottlieb, C A; Cherchneff, I; Menten, K M; Keller, D; Brünken, S; Winters, J M; Patel, N A

    2016-01-01

    Context: Dust is efficiently produced by cool giant stars, but the condensation of inorganic dust is poorly understood. Aims: Identify and characterize aluminum bearing species in the circumstellar gas of Mira ($o$ Ceti) in order to elucidate their role in the production of Al$_2$O$_3$ dust. Methods: Multiepoch spectral line observations at (sub-)millimeter, far-infrared, and optical wavelengths including: maps with ALMA which probe the gas distribution in the immediate vicinity of the star at ~30 mas; observations with ALMA, APEX, and Herschel in 2013-2015 for studying cycle and inter-cycle variability of the rotational lines of Al bearing molecules; optical records as far back as 1965 to examine variations in electronic transitions over time spans of days to decades; and velocity measurements and excitation analysis of the spectral features which constrain the physical parameters of the gas. Results: Three diatomic molecules AlO, AlOH, and AlH, and atomic Al I are the main observable aluminum species in Mir...

  16. Balloon-borne and Raman lidar observations of Asian dust and cirrus cloud properties over Tsukuba, Japan

    Science.gov (United States)

    Sakai, Tetsu; Orikasa, Narihiro; Nagai, Tomohiro; Murakami, Masataka; Tajiri, Takuya; Saito, Atsushi; Yamashita, Katsuya; Hashimoto, Akihiro

    2014-03-01

    The vertical distributions of the microphysical and optical properties of tropospheric aerosols and cirrus cloud were measured using an instrumented balloon and a ground-based Raman lidar over Tsukuba, Japan (36°N, 140°E), during the Asian dust events on 9 and 21 May 2007 to investigate the influence of Asian mineral dust on ice cloud formation in the upper troposphere. The instrumented balloon measured the particle size distribution, ice crystal images, dew/frost point, relative humidity, and temperature. The Raman lidar measured the particle backscattering and extinction coefficients and the depolarization ratio at a wavelength of 532 nm. The results of the balloon measurements showed that supermicrometer (0.7 to 2.8 µm in optical-equivalent radius) dust particles and ice crystals (10 to 400 µm in maximum dimension) were present in the upper troposphere (8 to 12 km in altitude), with number concentrations varying from 5 × 10-3 to 0.6 cm-3 for dust and from 5 × 10-3 to 0.15 cm-3 for ice crystals. The Raman lidar measurement indicated that the particle depolarization ratios were 15 to 35% in the altitude range of 6 to 12 km, indicating the predominance of nonspherical particles in the region. The temperature ranged from -33 to -63°C, and the relative humidity with respect to ice (RHi), estimated from the total (vapor plus condensate) water content obtained with the Snow White hygrometer in the cloud, was 130% at maximum on 9 May, which was close to the activation point of Asian mineral dust as ice nuclei to form ice crystals.

  17. Operational Dust Prediction

    Science.gov (United States)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  18. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-06-01

    Full Text Available This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24

  19. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    Science.gov (United States)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants

  20. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    Directory of Open Access Journals (Sweden)

    H. Sodemann

    2010-11-01

    Full Text Available During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–10 July 2008 occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications.

    Here we compare transport simulations of carbon monoxide (CO from the Lagrangian transport model FLEXPART, the Eulerian chemical transport model TOMCAT, and for numerical aspects the limited-area chemical transport model WRF-Chem. Retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite are used as a total column CO reference for the two simulations. Main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are.

    The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian models. Aircraft data suggest that the satellite data are biased high, while TOMCAT and WRF-Chem are biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight

  1. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    Directory of Open Access Journals (Sweden)

    H. Sodemann

    2011-04-01

    Full Text Available During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–10 July 2008 occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications.

    Here we compare transport simulations of carbon monoxide (CO from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are.

    The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO

  2. Demonstration of microorganisms and dust in schools and offices. An observational study of non-industrial buildings.

    Science.gov (United States)

    Gravesen, S; Larsen, L; Gyntelberg, F; Skov, P

    1986-09-01

    "The sick-building syndrome" (WHO) is reported with increasing intensity in non-industrial places of work, such as schools, kindergartens, and offices, all of which have a heavy load of traffic (people). The construction of these buildings (e.g. flat roofs) often leads to water damage with subsequent microbial growth. Further, reduced cleaning budgets in connection with the wide use of needle-felt carpets, as well as ventilation systems not regularly maintained, will lead to pollution by dust and microorganisms. A systematic registration of dust and microbial parameters has been carried out since 1980 in buildings with indoor climate complaints, in order to elucidate the possible influence of these factors.

  3. Bispectrum speckle interferometry observations and radiative transfer modelling of the red supergiant NML Cyg. Multiple dust-shell structures evidencing previous superwind phases

    Science.gov (United States)

    Blöcker, T.; Balega, Y.; Hofmann, K.-H.; Weigelt, G.

    2001-04-01

    NML Cyg is a highly evolved OH/IR supergiant, one of the most prominent infrared objects due to its strong obscuration by dust, and supposed to be among the most luminous supergiants in the galaxy. We present the first diffraction-limited 2.13 mu m observations of NML Cyg with 73 mas resolution. The speckle interferograms were obtained with the 6 m telescope at the Special Astrophysical Observatory, and the image reconstruction is based on the bispectrum speckle-interferometry method. The visibility function declines towards the diffraction limit to ~ 0.6. Radiative transfer calculations have been carried out to model the spectral energy distribution, given by ground-based photometry and ISO spectroscopy, and our 2.13 mu m visibility function. Additionally, mid-infrared visibility functions at 11 mu m were considered. The observed dust shell properties do not appear to be in accordance with standard single-shell (uniform outflow) models but seem to require multiple components. Considering previous periods of enhanced mass-loss, various density enhancements in the dust shell were taken into account. An extensive grid of models was calculated for different locations and strenghts of such superwind regions in the dust shell. To match the observations from the optical to the sub-mm domain requires at least two superwind regions embedded in the shell. The best model includes a dust shell with a temperature of 1000 K at its inner radius of 6.2 R*, a close embedded superwind shell extending from 15.5 R* to 21.7 R* with an amplitude (factor of density enhancement) of 10, and a far-out density enhancement at 186 R* with an amplitude of 5. The angular diameters of the central star and of the inner rim of the dust shell amount to 16.2 mas and 105 mas, resp. The diameter of the embedded close superwind region extends from 263 mas to 368 mas, and the inner boundary of the distant superwind region has a diameter of 3\\farcs 15. In the near-infrared the dust condensation zone is

  4. Dust exposure in Finnish foundries.

    Science.gov (United States)

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered.

  5. Evolution of the dust and water ice plume components as observed by the LCROSS visible camera and UV-visible spectrometer

    Science.gov (United States)

    Heldmann, Jennifer L.; Lamb, Justin; Asturias, Daniel; Colaprete, Anthony; Goldstein, David B.; Trafton, Laurence M.; Varghese, Philip L.

    2015-07-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) impacted the Cabeus crater near the lunar South Pole on 9 October 2009 and created an impact plume that was observed by the LCROSS Shepherding Spacecraft. Here we analyze data from the ultraviolet-visible spectrometer and visible context camera aboard the spacecraft. We use these data to constrain a numerical model to understand the physical evolution of the resultant plume. The UV-visible light curve peaks in brightness 18 s after impact and then decreases in radiance but never returns to the pre-impact radiance value for the ∼4 min of observation by the Shepherding Spacecraft. The blue:red spectral ratio increases in the first 10 s, decreases over the following 50 s, remains constant for approximately 150 s, and then begins to increase again ∼180 s after impact. Constraining the modeling results with spacecraft observations, we conclude that lofted dust grains remained suspended above the lunar surface for the entire 250 s of observation after impact. The impact plume was composed of both a high angle spike and low angle plume component. Numerical modeling is used to evaluate the relative effects of various plume parameters to further constrain the plume properties when compared with the observational data. Dust particle sizes lofted above the lunar surface were micron to sub-micron in size. Water ice particles were also contained within the ejecta cloud and simultaneously photo-dissociated and sublimated after reaching sunlight.

  6. Galactic dust properties

    Science.gov (United States)

    Paradis, D.

    2011-12-01

    Recent studies have shown evidence for variations in the dust emissivity law with temperature and wavelength. A recent dust emission model, called TLS model (for two-level systems), based on the description of the disordered internal structure of the amorphous dust grains has been developped to interpret observations in the far-infrared/submillimeter (FIR/submm) domain. A recent work focusing on the comparison between data of the diffuse interstellar medium seen by FIRAS-WMAP, as well as Archeops compact sources, with the TLS model allowed us to constrain the model parameters characterizing the general Galactic dust properties. Using the newly available Herschel/Hi-GAL data of the inner Galactic plane, we report a 500 μm emissivity excess in the peripheral parts of the Galactic plane, that can reach up to 20% of the emissivity. Results of the TLS modeling indicate significant changes in the dust properties from the central to peripheral parts of the Galactic plane.

  7. Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multi-wavelength gas and dust observations

    CERN Document Server

    Carmona, A; Thi, W F; Benisty, M; Ménard, F; Grady, C; Kamp, I; Woitke, P; Olofsson, J; Roberge, A; Brittain, S; Dûchene, G; Meeus, G; Martin-Zaïdi, C; Dent, B; Bouquin, J B Le; Berger, J P

    2014-01-01

    HD 135344B is an accreting (pre-) transition disk which displays emission of warm CO extending tens of AU inside its 30 AU dust cavity. We employ the dust radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 micron, Herschel/PACS [O I] 63 micron, Spitzer-IRS, and JCMT 12CO J=3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. We found a disk model able to describe simultaneously the current observations. This disk has the following structure: (1) to reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 100 to account for the 870 micron continuum upper limit and the CO P(10) line flux; (5) the gas/dust ratio at 30

  8. Retrievals of Effective Aerosol Layer Height and Single Scattering Albedo for Biomass-Burning Smoke and Mineral Dust Aerosols from A-Train Observations

    Science.gov (United States)

    Jeong, M.; Hsu, C.

    2010-12-01

    Launches of state-of-the-art satellite sensors dedicated to aerosol remote sensing in recent years marked the beginning of a new era in aerosol-related studies by virtue of the well-coordinated observing system consisting of an array of satellites flown in formation, so called A-Train (Afternoon satellites constellation). The capabilities of the individual sensors aboard the A-Train satellites are complementary and overlapping in terms of retrievable aerosol parameters, sensitivity, spatial resolution and coverage. Thus, there is a great potential to gain value-added information about aerosols by merging observations from the A-Train sensors. In this study, we introduce a new algorithm, which can be utilized to derive aerosol layer height (ALH) and single scattering albedo (SSA) for biomass-burning smoke and airborne mineral dust aerosols by synthesizing observations from three A-Train satellite sensors: CALIOP, MODIS, and OMI. By using this algorithm, it is presented that ALH and SSA of biomass-burning smoke aerosols over North America, Southeast Asia, and Europe can be derived successfully. We show the retrieved values of SSA bear reasonable agreements with those from AERONET. The results of this study also reveal that the algorithm has a basic skill to estimate ALH by combining only MODIS and OMI observations, allowing us to separate smoke aerosols residing within the boundary layer from those elevated in the free troposphere. Currently, another version of the algorithm to be applicable for mineral dust aerosols is under development, and earlier results will be presented. Results from this study are expected to provide a better understanding of transport and radiative effects of biomass-burning smoke and mineral dust aerosols.

  9. A comparison of the physical properties of desert dust retrieved from the sunphotometer observation of major events in the Sahara, Sahel, and Arabian Peninsula

    KAUST Repository

    Masmoudi, Mohamed

    2015-05-01

    © 2015 Elsevier B.V. The objective of this work is to assess the variability of the size-distribution, real (n) and imaginary (k) parts of the refractive index, asymmetry parameter (g), and single scattering albedo (SSA) of desert dust events observed in the Sahara, Sahel, and Arabian Peninsula areas. For this we use the level-2 inversions of 14 AERONET sunphotometers representative of the area of study. In the dataset, the dust-dominated events are discriminated on the basis of their large optical depth and low (<. 0.3) Ångström exponent (α) calculated between 440. nm and 870. nm. In all the volume size-distributions a coarse mode (CM) of particles is observed but a fine mode (FM) of particles with radii. <. 0.2. μm is also present. The volume fraction represented by the FM is lower (3%) during the most intense dust storms than during moderate ones (12%). The inter-site variability of the characteristics of the CM-dominated situations is found to be non-significant and at 440, 675, 870, and 1020. nm a common set of values can be adopted for n (1.54 ± 0.03, 1.53 ± 0.02, 1.50 ± 0.02, 1.48 ± 0.02), k (0.0037 ± 0.0007, 0.0012 ± 0.0002, 0.0011 ± 0.0002, 0.0012 ± 0.0002), g (0.77 ± 0.01, 0.74 ± 0.01, 0.73 ± 0.01, 0.74 ± 0.01), and the SSA (0.90 ± 0.02, 0.97 ± 0.01, 0.98 ± 0.01, 0.98 ± 0.01). However; during the less intense dust-events the growing influence of the FM leads to regional differentiation of the dust properties and 2 main areas can be distinguished: 1) the relatively clean central Sahara/Sahel, and 2) the more polluted continuum constituted by the Mediterranean coast and the Arabian Peninsula.

  10. Seasonal and occupational trends of five organophosphate pesticides in house dust.

    Science.gov (United States)

    Smith, Marissa N; Workman, Tomomi; McDonald, Katie M; Vredevoogd, Melinda A; Vigoren, Eric M; Griffith, William C; Thompson, Beti; Coronado, Gloria D; Barr, Dana; Faustman, Elaine M

    2016-08-24

    Since 1998, the University of Washington's Center for Child Environmental Health Risks Research has followed a community-based participatory research strategy in the Lower Yakima Valley of Washington State to assess pesticide exposure among families of Hispanic farmworkers. As a part of this longitudinal study, house dust samples were collected from both farmworker and non-farmworker households, across three agricultural seasons (thinning, harvest and non-spray). The household dust samples were analyzed for five organophosphate pesticides: azinphos-methyl, phosmet, malathion, diazinon, and chlorpyrifos. Organophosphate pesticide levels in house dust were generally reflective of annual use rates and varied by occupational status and agricultural season. Overall, organophosphate pesticide concentrations were higher in the thinning and harvest seasons than in the non-spray season. Azinphos-methyl was found in the highest concentrations across all seasons and occupations. Farmworker house dust had between 5- and 9-fold higher concentrations of azinphos-methyl than non-farmworker house dust. Phosmet was found in 5-7-fold higher concentrations in farmworker house dust relative to non-farmworker house dust. Malathion and chlorpyriphos concentrations in farmworker house dust ranged between 1.8- and 9.8-fold higher than non-farmworker house dust. Diazinon showed a defined seasonal pattern that peaked in the harvest season and did not significantly differ between farmworker and non-farmworker house dust. The observed occupational differences in four out of five of the pesticide residues measured provides evidence supporting an occupational take home pathway, in which workers may bring pesticides home on their skin or clothing. Further, these results demonstrate the ability of dust samples to inform the episodic nature of organophosphate pesticide exposures and the need to collect multiple samples for complete characterization of exposure potential.Journal of Exposure Science

  11. Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    Science.gov (United States)

    Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.

    1991-01-01

    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.

  12. EBEX-IDS: A Balloon-Borne Experiment to Observe and Separate Galactic Dust from Cosmic Inflation Signals

    Science.gov (United States)

    Hanany, Shaul

    Measurements of the imprint of inflationary gravity waves on the cosmic microwave background radiation are currently limited by uncertainty in the properties of polarized galactic dust. A balloon-borne platform probing frequency bands that are not accessible from the ground is uniquely suited to drastically reduce this uncertainty. We propose to advance the technology readiness level of EBEX-IDS, a long-duration balloon-borne experiment that will measure the polarization of galactic dust at 360 GHz with 36 times lower power spectrum noise, compared to the Planck satellite. EBEX-IDS will have 20,562 detectors, spread over 7 frequency bands between 150 and 360 GHz. Using its high sensitivity and broad-bandwidth EBEX-IDS will determine the spectral index of polarized dust emission and its B-mode power spectrum at 150 GHz with an unprecedented accuracy of 0.04% and signal-to-noise ratio (SNR) of 42, respectively. EBEX-IDS proposes to use three types of sinuous antenna multichroic pixels (SAMPs) that are readout with a frequency domain multiplexed system. To advance the TRL if these technologies, we will fabricate and characterize SAMPs with the appropriate properties for use at the balloon environment. We will investigate low power readout systems that are suitable for use aboard EBEX-IDS. We will implement a prototype end-to-end system in the laboratory consisting of SAMP wafers and the intended readout system, and measure its noise, frequency response, and power consumption properties. The work will be carried out by a postdoctoral fellow and graduate student at the University of Minnesota, and a newly hired person at the University of California, Berkeley.

  13. An air quality forecasting system in Beijing - Application to the study of dust storm events in China in May 2008

    Institute of Scientific and Technical Information of China (English)

    Qijie Zhang; Benoit Laurent; Fanny Velay-Lasry; Richard Ngo; Claude Derognat; Béatrice Marticorena; Armand Albergel

    2012-01-01

    An air pollution forecast system,ARIA Regional,was implemented in 2007-2008 at the Beijing Municipality Environmental Monitoring Center,providing daily forecast of main pollutant concentrations.The chemistry-transport model CHIMERE was coupled with the dust emission model MB95 for restituting dust storm events in springtime so as to improve forecast results.Dust storm events were sporadic but could be extremely intense and then control air quality indexes close to the source areas but also far in the Beijing area.A dust episode having occurred at the end of May 2008 was analyzed in this article,and its impact of particulate matter on the Chinese air pollution index (API) was evaluated.Following our estimation,about 23 Tg of dust were emitted from source areas in Mongolia and in the Inner Mongolia of China,transporting towards southeast.This episode of dust storm influenced a large part of North China and East China,and also South Korea.The model result was then evaluated using satellite observations and in situ data.The simulated daily concentrations of total suspended particulate at 6:00 UTC had a similar spatial pattern with respect to OMI satellite aerosol index.Temporal evolution of dust plume was evaluated by comparing dust aerosol optical depth (AOD) calculated from the simulations with AOD derived from MODIS satellite products.Finally,the comparison of reported Chinese API in Beijing with API calculated from the simulation including dust emissions had showed the significant improvement of the model results taking into account mineral dust correctly.

  14. Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-independent particle properties

    Science.gov (United States)

    Müller, D.; Weinzierl, B.; Petzold, A.; Kandler, K.; Ansmann, A.; Müller, T.; Tesche, M.; Freudenthaler, V.; Esselborn, M.; Heese, B.; Althausen, D.; Schladitz, A.; Otto, S.; Knippertz, P.

    2010-04-01

    Aerosol Robotic Network (AERONET) Sun photometer observations were carried out at Ouarzazate, Morocco, during the Saharan Mineral Dust Experiment (SAMUM) 2006. Data from one measurement day, 19 May 2006, are used to derive particle optical and microphysical parameters with AERONET's latest version of light-scattering model for non-spherical particle geometry. In our analysis we also make use of a novel measurement channel at 1638 nm wavelength. We compare the results to data products obtained by airborne high-spectral-resolution lidar, several ground-based Raman lidar, and airborne and ground-based in situ measurement platforms. We chose that specific measurement day because the dust plume was vertically well mixed. Extinction coefficients from AERONET Sun photometer and lidar observations and in situ measurements agree well. Ångström exponents from Sun photometer and lidar are in close agreement, too. Airborne in situ measurements of dust particle size distributions show larger effective radii than inferred from the AERONET data. Complex refractive indices that are derived with the AERONET algorithm differ from the values obtained with different independent techniques employed in our study. The single-scattering albedo was derived from the airborne observations of particle size distributions and complex refractive indices. Single-scattering albedo differs to the value inferred from the AERONET data. The differences may be attributed to the different effective radii that we obtained from the various techniques. The differences between the data products from the various measurement platforms, however, cannot be generalized, as we could only test data for one measurement day. An analysis of additional measurements is under way.

  15. Radioecological impact of Saharan dusts fallout. Case study of a major event on the 21. of february 2004 in south part of France; Impact radioecologique des retombees de poussieres sahariennes. Episode majeur du 21/02/2004 dans le sud de la France

    Energy Technology Data Exchange (ETDEWEB)

    Masson, O.; Pourcelot, L.; Gurriaran, R.; Paulat, P

    2005-07-01

    Lithometeors, Sirocco or more commonly 'red mud' are all in fact related to a single phenomenon which affects France every year: the wind transport and deposit of desert particles from the Sahara. On the 21. of February 2004, the southern part of France is swept by a weather event of wind transport of Saharan particles. The recordings of atmospheric dust contamination and the deposit of dust, which results from it, make an episode of exceptional width. In a few hours, the thickness of the deposit exceeds 1 mm (up to 4 mm in Corsica) with a maximum density of surface charge of 50 g.m{sup -2} (50 tons per km{sup 2}). The loads of the PM{sub 10} type particles in the air, recorded by associations of monitoring of the quality of the air, indicate concentrations multiplied to the maximum by 10 and an influence on the ground of the plume ranging between 300 000 and 350 000 km{sup 2}. To the end, 2 million tons are deposited on a portion of the territory located at the south of a line from Nantes to Besancon. This event also had a significant radio-ecological impact, leading to significant {sup 137}Cs, {sup (239+240)}Pu, {sup 241}Am, activity levels of 38 Bq. kg{sup -1} sec, 1 Bq. kg{sup -1} sec and 0,46 Bq. kg{sup -1} sec, respectively. Quality of air monitoring organisations recorded 10-fold increases in the concentration of charged PM{sub 10} {sup 2}type particles within the cloud; ground coverage stretched over a 300 000 km{sup 2} surface area. Across this whole area, the artificial radioactivity deposits are estimated to 37.10{sup 10} Bq. In term of flow of deposit, this episode represents, with him only, i.e. in a few hours, a {sup 137}Cs deposition equivalent to that recorded on average in a cumulated time of one year. Data from this study show that these weather-climatic episodes generate today, environmental samples which on average, present the highest levels and flux of artificial radioactivities, more than those in the sediments of the Rhone river

  16. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data

    Science.gov (United States)

    Gkikas, Antonis; Basart, Sara; Hatzianastassiou, Nikos; Marinou, Eleni; Amiridis, Vassilis; Kazadzis, Stelios; Pey, Jorge; Querol, Xavier; Jorba, Oriol; Gassó, Santiago; Baldasano, José Maria

    2016-07-01

    algorithm is assessed against surface-based daily data from 109 sun-photometric (AERONET) and 22 PM10 stations. The agreement between AERONET and MODIS AOD is satisfactory (R = 0.505 - 0.750) and improves considerably when MODIS level 3 retrievals with higher sub-grid spatial representativeness and homogeneity are considered. Through the comparison against PM10 concentrations, it is found that the presence of dust is justified in all ground stations with success scores ranging from 68 to 97 %. However, poor agreement is evident between satellite and ground PM10 observations in the western parts of the Mediterranean, which is attributed to the desert dust outbreaks' vertical extension and the high altitude of dust presence. The CALIOP vertical profiles of pure and polluted dust observations and the associated total backscatter coefficient at 532 nm (β532 nm), indicate that dust particles are mainly detected between 0.5 and 6 km, though they can reach 8 km between the parallels 32 and 38° N in warm seasons. An increased number of CALIOP dust records at higher altitudes is observed with increased latitude, northwards to 40° N, revealing an ascending mode of the dust transport. However, the overall intensity of DD episodes is maximum (up to 0.006 km-1 sr-1) below 2 km and at the southern parts of the study region (30-34° N). Additionally, the average thickness of dust layers gradually decreases from 4 to 2 km, moving from south to north. In spring, dust layers of moderate-to-high β532 nm values ( ˜ 0.004 km-1 sr-1) are detected over the Mediterranean (35-42° N), extending from 2 to 4 km. Over the western Mediterranean, dust layers are observed between 2 and 6 km, while their base height is decreased down to 0.5 km for increasing longitudes underlying the role of topography and thermal convection. The vertical profiles of CALIOP β532 nm confirm the multilayered structure of the Mediterranean desert dust outbreaks on both annual and seasonal bases, with several dust

  17. 肺心病急性发作期血糖观察探讨%Cor Pulmonale with Acute Episodes Glucose to Observe

    Institute of Scientific and Technical Information of China (English)

    王漫丽

    2015-01-01

    Objective To observe the cor pulmonale with acute episodes blood sugar levels. Methods From May 2014 to May 2014 patients of cor pulmonale, 100 patients with acute phase, review the clinical data for analysis. Results The hy-perglycemia group case fatality rate was 20.00%, no high blood glucose group was 5.00%, hyperglycemia group were signif-icantly higher than those without a high blood glucose group (P<0.05). High blood glucose group was in the hospital for an average of d (14.33+1.67), no (9.67-1.26) for high blood sugar group d, high blood glucose significantly longer than without high blood glucose group (P<0.05). Breathing, heart failure, fasting hyperglycemia group, the incidence of postprandial hy-perglycemia are 23.68% and 23.68% respectively, without breathing, heart failure group were 6.45%, 16.13%, breathing, heart failure group were significantly higher than those without breathing, heart failure group (P<0.05). Conclusion The cor pulmonale patients with acute phase may occur high blood sugar, high blood glucose will influence on the course and prog-nosis, observe the blood sugar level, and take active treatment.%目的:观察肺心病急性发作期血糖水平。方法选取从2014年5月-2015年5月收治的肺心病急性发作期患者100例,回顾分析其临床资料。结果高血糖组病死率为20.00%,无高血糖组为5.00%,高血糖组明显高于无高血糖组(P<0.05)。高血糖组住院时间平均为(14.33±1.67)d,无高血糖组为(9.67±1.26)d,高血糖组明显长于无高血糖组(P<0.05)。呼吸、心力衰竭组空腹高血糖、餐后高血糖发生率分别为23.68%、39.47%,无呼吸、心力衰竭组分别为6.45%、16.13%,呼吸、心力衰竭组明显高于无呼吸、心力衰竭组(P<0.05)。结论肺心病急性发作期患者可能会发生高血糖,高血糖会对病程、预后产生影响,注意观察血糖水平,并采取积极治疗。

  18. Extensive HST Ultraviolet Spectra and Multi-wavelength Observations of SN 2014J in M82 Indicate Reddening and Circumstellar Scattering by Typical Dust

    CERN Document Server

    Foley, Ryan J; McCully, C; Phillips, M M; Sand, D J; Zheng, W; Challis, P; Filippenko, A V; Folatelli, G; Hillebrandt, W; Hsiao, E Y; Jha, S W; Kirshner, R P; Kromer, M; Marion, G H; Nelson, M; Pakmor, R; Pignata, G; Roepke, F K; Seitenzahl, I R; Silverman, J M; Skrutskie, M; Stritzinger, M D

    2014-01-01

    SN 2014J in M82 is the closest detected Type Ia supernova (SN Ia) in at least 28 years and perhaps in 410 years. Despite its small distance of 3.3 Mpc, SN 2014J is surprisingly faint, peaking at V = 10.6 mag, and assuming a typical SN Ia luminosity, we infer an observed visual extinction of A_V = 2.0 +/- 0.1 mag. But this picture, with R_V = 1.6 +/- 0.2, is too simple to account for all observations. We combine 10 epochs (spanning a month) of HST/STIS ultraviolet through near-infrared spectroscopy with HST/WFC3, KAIT, FanCam, and Spitzer photometry from the optical to the infrared and 9 epochs of high-resolution TRES spectroscopy to investigate the sources of extinction and reddening for SN 2014J. We argue that the wide range of observed properties for SN 2014J are caused by a combination of dust reddening, likely originating in the interstellar medium of M82, and scattering off circumstellar material. For this model, roughly half of the extinction is caused by reddening from typical dust (E(B-V) = 0.45 mag a...

  19. Radiative effects of African dust and smoke observed from Clouds and the Earth's Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data

    Science.gov (United States)

    Yorks, John E.; McGill, Matt; Rodier, Sharon; Vaughan, Mark; Hu, Yongxiang; Hlavka, Dennis

    2009-09-01

    Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the tropical Atlantic Ocean were analyzed for the month of July for 3 years (2006-2008) using colocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Aqua satellites. Aerosol layer height and type can be accurately determined using CALIOP data through directly measured parameters such as optical depth, volume depolarization ratio, attenuated backscatter, and color ratio. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 ± 16.9 W/m2 and thin cirrus clouds had a SW radiative flux of 208.0 ± 12.7 W/m2. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 ± 13.0 W/m2. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 ± 16.6 W/m2. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.

  20. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  1. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  2. OISTER optical and near-infrared observations of the super-Chandrasekhar supernova candidate SN 2012dn: Dust emission from the circumstellar shell

    Science.gov (United States)

    Yamanaka, Masayuki; Maeda, Keiichi; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S.; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-10-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from -11 to +140 d after the date of its B-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO (Optical and Infrared Synergetic Telescopes for Education and Research Target of Opportunity) program. The NIR light curves and color evolutions up to 35 days after the B-band maximum provided an excellent match with those of another SC SN 2009dc, providing further support to the nature of SN 2012dn as an SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from 30 d after the B-band maximum. The H- and Ks-band light curves exhibited much later maximum dates at 40 and 70 d after the B-band maximum, respectively, compared with those of normal SNe Ia. The H- and Ks-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating an NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to 4.8-6.4 × 10-2 pc. No emission lines were found in its early phase spectra, suggesting that the ejecta-circumstellar material interaction could not occur. On the other hand, we found no signature that strongly supports the scenario of dust formation. The mass-loss rate of the pre-explosion system is estimated to be 10-6-10-5 M⊙ yr-1, assuming that the wind velocity of the system is 10-100 km s-1, which suggests that the progenitor of SN 2012dn could be a recurrent nova system. We conclude that the progenitor of this SC SN could be explained by the single-degenerate scenario.

  3. Dust processing in elliptical galaxies

    CERN Document Server

    Hirashita, Hiroyuki; Villaume, Alexa; Srinivasan, Sundar

    2015-01-01

    We reconsider the origin and processing of dust in elliptical galaxies. We theoretically formulate the evolution of grain size distribution, taking into account dust supply from asymptotic giant branch (AGB) stars and dust destruction by sputtering in the hot interstellar medium (ISM), whose temperature evolution is treated by including two cooling paths: gas emission and dust emission (i.e. gas cooling and dust cooling). With our new full treatment of grain size distribution, we confirm that dust destruction by sputtering is too efficient to explain the observed dust abundance even if AGB stars continue to supply dust grains, and that, except for the case where the initial dust-to-gas ratio in the hot gas is as high as $\\sim 0.01$, dust cooling is negligible compared with gas cooling. However, we show that, contrary to previous expectations, cooling does not help to protect the dust; rather, the sputtering efficiency is raised by the gas compression as a result of cooling. We additionally consider grain grow...

  4. The micrometeoric input in the upper atmosphere. A comparison between model predictions and HPLA and meteor radars observations and AIM-CDE dust detections

    Science.gov (United States)

    Janches, Diego; Sparks, Jonathan; Johnson, Kyle; Poppe, Andrew; James, David; Fentzke, Jonathan; Palo, Scott; Horanyi, Mihaly

    It is now widely accepted that microgram extraterrestrial particles from the sporadic background are the major contributors of metals in the Mesosphere/Lower Thermosphere (MLT). It is also well established that this material gives rise to the upper atmospheric metallic and ion layers observed by radars and lidars. In addition, micrometeoroids are believed to be an important source for condensation nuclei (CN), the existence of which is a prerequisite for the formation of NLC and PMSE particles in the polar mesopause region. In order to understand how this flux gives rise to these atmospheric phenomena, accurate knowledge of the global meteoric input function (MIF) is critical. This function accounts for the annual and diurnal variations of meteor rates, global distribution, directionality, and velocity and mass distributions. Estimates of most of these parameters are still under investigation. In this talk, we present results of a detailed model of the diurnal, seasonal and geographical variability of the micrometeoric activity in the upper atmosphere. The principal goal of this effort is to construct a new and more precise sporadic MIF needed for the subsequent modeling of the atmospheric chemistry of meteoric material and the origin and formation of metal layers in the MLT. The model uses Monte Carlo simulation techniques and includes an accepted mass flux provided by six main known meteor sources (i.e. orbital families of dust) and a detailed modeling of the meteoroid atmospheric entry physics. We compare the model predictions with meteor head-echo observations using the 430 MHz Arecibo (AO) radar in Puerto Rico and the 450 MHz Advance Modular ISR in Poker Flat (PFISR), AK. The results indicate, that although the Earth's Apex centered source, thought to be composed mostly of dust from long period comets, is required to be only about ˜33% of dust in the Solar System at 1 AU, it accounts for 60 to 70% of the actual dust that ablates in the atmosphere. These

  5. Impact of episodic thinking on altruism.

    Science.gov (United States)

    Yi, Richard; Pickover, Alison; Stuppy-Sullivan, Allison M; Baker, Sydney; Landes, Reid D

    2016-07-01

    Episodic future thinking, which refers to the use of prospective imagery to concretely imagine oneself in future scenarios, has been shown to reduce delay discounting (enhance self-control). A parallel approach, in which prospective imagery is used to concretely imagine other's scenarios, may similarly reduce social discounting (i.e., enhance altruism). In study 1, participants engaged in episodic thinking about the self or others, in a repeated-measures design, while completing a social discounting task. Reductions in social discounting were observed as a function of episodic thinking about others, though an interaction with order was also observed. Using an independent-measures design in study 2, the effect of episodic thinking about others was replicated. Study 3 addressed a limitation of studies 1 and 2, the possibility that simply thinking about others decreased social discounting. Capitalizing on Construal Level Theory, which specifies that social distance and time in the future are both dimensions of a common psychological distance, we hypothesized that episodic future thinking should also decrease social discounting. Participants engaged in episodic future thinking or episodic present thinking, in a repeated-measures design, while completing a social discounting task. The pattern of results was similar to study 1, providing support for the notion that episodic thinking about psychologically distant outcomes (for others or in the future) reduces social discounting. Application of similar episodic thinking approaches may enhance altruism.

  6. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  7. Dust-to-gas ratio, XCO factor and CO-dark gas in the Galactic anticentre: an observational study

    Science.gov (United States)

    Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Huang, Y.; Xiang, M.-S.

    2015-04-01

    We investigate the correlation between extinction and H I and CO emission at intermediate and high Galactic latitudes (|b| > 10°) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I, we present a three-dimensional (3D) dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6000 deg2 at a spatial angular resolution of 6 arcmin. In the current work, the map is combined with data from gas tracers, including H I data from the Galactic Arecibo L-band Feed Array H I survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR = AV/N(H) and CO-to-H2 conversion factor XCO = N(H2)/WCO for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR = (4.15 ± 0.01) × 10-22 mag cm2 and XCO = (1.72 ± 0.03) × 1020 cm- 2 (K km s- 1)- 1. We have also investigated the distribution of `CO-dark' gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the V-band extinction: N(DG) ˜eq 2.2 × 10^{21} (A_V - AcV) cm^{-2}. The mass fraction of DG is found to be fDG ˜ 0.55 towards the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2 cloud models by Wolfire et al.

  8. Validation of the equilibrium model for galaxy evolution to z~3 through molecular gas and dust observations of lensed star-forming galaxies

    CERN Document Server

    Saintonge, Amelie; Genzel, Reinhard; Magnelli, Benjamin; Nordon, Raanan; Tacconi, Linda J; Baker, Andrew J; Bandara, Kaushala; Berta, Stefano; Schreiber, Natascha M Forster; Poglitsch, Albrecht; Sturm, Eckhard; Wuyts, Eva; Wuyts, Stijn

    2013-01-01

    We combine IRAM Plateau de Bure Interferometer and Herschel PACS and SPIRE measurements to study the dust and gas contents of high-redshift star forming galaxies. We present new observations for a sample of 17 lensed galaxies at z=1.4-3.1, which allow us to directly probe the cold ISM of normal star-forming galaxies with stellar masses of ~10^10Msun, a regime otherwise not (yet) accessible by individual detections in Herschel and molecular gas studies. The lensed galaxies are combined with reference samples of sub-millimeter and normal z~1-2 star-forming galaxies with similar far-infrared photometry to study the gas and dust properties of galaxies in the SFR-M*-redshift parameter space. The mean gas depletion timescale of main sequence galaxies at z>2 is measured to be only ~450Myr, a factor of ~1.5 (~5) shorter than at z=1 (z=0), in agreement with a (1+z)^-1 scaling. The mean gas mass fraction at z=2.8 is 40+/-15% (44% after incompleteness correction), suggesting a flattening or even a reversal of the trend ...

  9. OISTER Optical and Near-Infrared Observations of the Super-Chandrasekhar Supernova Candidate SN 2012dn: Dust Emission from the Circumstellar Shell

    CERN Document Server

    Yamanaka, Masayuki; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-01-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from $-11$ to $+140$ days after the date of its $B$-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO program. The NIR light curves and color evolutions up to 35 days after the $B$-band maximum provided an excellent match with those of another SC SN 2009dc, providing a further support to the nature of SN 2012dn as a SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from $30$ days after the $B$-band maximum. The $H$ and $K_{s}$-band light curves exhibited much later maximum dates at $40$ and $70$ days after the $B$-band maximum, respectively, compared with those of normal SNe Ia. The $H$ and $K_{s}$-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating a NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to be $4.8 - 6.4\\times10^{-2}$ pc. No ...

  10. Early Science with the Large Millimeter Telescope: Observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    CERN Document Server

    Zavala, J A; Aretxaga, I; Hughes, D H; Wilson, G W; Geach, J E; Egami, E; Gurwell, M A; Wilner, D J; Smail, Ian; Blain, A W; Chapman, S C; Coppin, K E K; Dessauges-Zavadsky, M; Edge, A C; Montana, A; Nakajima, K; Rawle, T D; Sanchez-Arguelles, D; Swinbank, A M; Webb, T M A; Zeballos, M

    2015-01-01

    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver (RSR), towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the SCUBA-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z=2.040, 3.252 and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated b...

  11. The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 au heliocentric distance range inbound

    CERN Document Server

    Moreno, F; Hainaut, O; Tubiana, C; Sierks, H; Barbieri, C; Lamy, P L; Rodrigo, R; Koschny, D; Rickman, H; Keller, H U; Agarwal, J; AHearn, M F; Barucci, M A; Bertaux, J L; Bertini, I; Besse, S; Bodewits, D; Cremonese, G; Da Deppo, V; Davidsson, B; Debei, S; De Cecco, M; Ferri, F; Fornasier, S; Fulle, M; Groussin, O; Gutierrez, P J; Marques, P Gutierrez; Guettler, C; Hviid, S F; Ip, W H; Jorda, L; Knollenberg, J; Kovacs, G; Kramm, J R; Kuehrt, E; Kueppers, M; Lara, L M; Lazzarin, M; Moreno, J J Lopez; Marzari, F; Mottola, S; Naletto, G; Oklay, N; Pajola, M; Thomas, N; Vincent, J B; Della Corte, V; Fitzsimmons, A; Faggi, S; Jehin, E; Opitom, C; Tozzi, G P

    2016-01-01

    The ESA Rosetta spacecraft, currently orbiting around comet 67P, has already provided in situ measurements of the dust grain properties from several instruments, particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014. A Monte Carlo dust tail code has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall...

  12. ISOPHOT observations of R CrB: A star caught smoking

    DEFF Research Database (Denmark)

    Walker, H.J.; Heinrichsen, I.; Richards, P.J.;

    1996-01-01

    R CrB is a very unusual star, being extremely hydrogen deficient and undergoing irregular deep minima in its visible light. R CrB started to undergo a fading episode in October 1995. The infrared Space Observatory (ISO) observed the star after it had faded by 7 magnitudes. The inner, warm dust...... with an unusual shape to the observed spectrum. The long wavelength photometry, when compared to IRAS data, shows the temperature of the warm dust shell is unaffected by the ejection of a new cloud of carbon from the central star. The dust cloud is probably composed of pure carbon, but other materials cannot...

  13. Particle Lifting Processes in Dust Devils

    Science.gov (United States)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-10-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  14. Talking about Teaching Episodes

    Science.gov (United States)

    Nemirovsky, Ricardo; DiMattia, Cara; Ribeiro, Branca; Lara-Meloy, Teresa

    2005-01-01

    This paper examines two types of discourse in which teachers engage when discussing case studies based on classroom episodes, and the ways in which the availability of video data of these episodes may motivate a shift in the mode of discourse used. We interviewed two pairs of secondary school mathematics teachers after they had read a case study…

  15. Dust Versus Cosmic Acceleration

    CERN Document Server

    Aguirre, A N

    1999-01-01

    Two groups have recently discovered a statistically significant deviation in the fluxes of high-redshift type Ia supernovae from the predictions of a Friedmann model with zero cosmological constant. This letter argues that bright, dusty, starburst galaxies would preferentially eject a dust component with a shallower opacity curve (hence less reddening) and a higher opacity/mass than the observed galactic dust which is left behind. Such dust could cause the falloff in flux at high-z without violating constraints on reddening or metallicity. The specific model presented is of needle-like dust, which is expected from the theory of crystal growth and has been detected in samples of interstellar dust. Carbon needles with conservative properties can supply the necessary opacity, and would very likely be ejected from galaxies as required. The model is not subject to the arguments given in the literature against grey dust, but may be constrained by future data from supernova searches done at higher redshift, in clust...

  16. Closure between ice-nucleating particle and ice crystal number concentrations in ice clouds embedded in Saharan dust: Lidar observation during the BACCHUS Cyprus 2015 campaign

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Bühl, Johannes; Engelmann, Ronny; Baars, Holger; Nisantzi, Argyro; Hadjimitsis, Diofantos; Atkinson, James; Kanji, Zamin; Vrekoussis, Michalis; Sciare, Jean; Mihalopoulos, Nikos

    2016-04-01

    For the first time, we compare ice-nucleating particle number concentration (INPC) derived from polarization lidar (Mamouri and Ansmann, 2015) with ice crystal number concentrations (ICNC) in ice cloud layers embedded in the observed Saharan dust layers (at heights above 6 km and corresponding temperatures from -20 to -40°C). ICNC is estimated from the respective cirrus extinction profiles obtained with the same polarization lidar in combination with Doppler lidar measurements of the ice crystal sedimentation speed from which the mean size of the crystals can be estimated. Good agreement between INPC and ICNC was obtained for two case studies of the BACCHUS Cyprus 2015 field campaign with focus on INPC profiling. The campaign was organized by the Cyprus Institute, Nicosia, where a lidar was deployed. Additionaly, observations of AERONET and EALINET Lidar stations during the BACCHUS Cyprus 2015 field campaign, performed by Cyprus University of Technology in Limassol. Both, INPC and ICNC were found in the range from 10-50 1/L. Lidar-derived INPC values were also compared with in-situ INPC measurements (Horizontal Ice Nucleation Chamber, HINC, ETH Zurich, deployed at Agia Marina, at 500 m a.s.l., 30 km west of the lidar site). Reasonable and partly good agreement (during dust events) was found between the two retrievals. The findings of these closure studies corroborate the applicability of available INPC parameterization schemes (DeMott et al., 2010, 2015) implemented in the lidar retrieval scheme, and more generally INPC profiling by using active remote sensing (at ground and in space with CALIPSO and EarthCARE lidars).

  17. An Intensely Star-Forming Galaxy at z~7 with Low Dust and Metal Content Revealed by Deep ALMA and HST Observations

    CERN Document Server

    Ouchi, Masami; Ono, Yoshiaki; Nakanishi, Kouichiro; Kohno, Kotaro; Momose, Rieko; Kurono, Yasutaka; Ashby, M L N; Shimasaku, Kazuhiro; Willner, S P; Fazio, G G; Tamura, Yoichi; Iono, Daisuke

    2013-01-01

    We report deep ALMA observations complemented with associated HST imaging for a luminous (m_uv=25) galaxy, 'Himiko', at a redshift z=6.595. The galaxy is remarkable for its high star formation rate, 100 Mo/yr, securely estimated from our deep HST and Spitzer photometry, and the absence of any evidence for strong AGN activity or gravitational lensing magnification. Our ALMA observations probe an order of magnitude deeper than previous IRAM observations, yet fail to detect a 1.2mm dust continuum, indicating a flux <52uJy comparable with or weaker than that of local dwarf irregulars with much lower star formation rates. We likewise provide a strong upper limit for the flux of [CII] 158um, L([CII]) < 5.1x10^7 Lo, a diagnostic of the hot interstellar gas often described as a valuable probe for early galaxies. In fact, our observations indicate Himiko lies off the local L([CII]) - star formation rate scaling relation by a factor of more than 30. Both aspects of our ALMA observations suggest Himiko is an uniqu...

  18. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    Science.gov (United States)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  19. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    Energy Technology Data Exchange (ETDEWEB)

    Janches, D. [Space Weather Laboratory, Mail Code 674, GSFC/NASA, Greenbelt, MD 20771 (United States); Plane, J. M. C.; Feng, W. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Nesvorný, D. [SouthWest Research Institute, Boulder, CO 80302 (United States); Vokrouhlický, D. [Institute of Astronomy, Charles University, Prague (Czech Republic); Nicolls, M. J., E-mail: diego.janches@nasa.gov, E-mail: j.m.c.plane@leeds.ac.uk, E-mail: w.feng@leeds.ac.uk, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz, E-mail: Michael.Nicolls@sri.com [SRI International, Menlo Park, CA 94025 (United States)

    2014-11-20

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d{sup –1}) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  20. Perinatal psychiatric episodes

    DEFF Research Database (Denmark)

    Munk-Olsen, Trine; Maegbaek, M L; Johannsen, B M

    2016-01-01

    ). This was done for all women who had records of one or more singleton births from 1998 until 2012. In total, we had information on 822 439 children born to 491 242 unique mothers. Results showed first-time psychiatric episodes treated at inpatient facilities were rare during pregnancy, but increased...... significantly shortly following childbirth (0.02 vs 0.25 per 1000 births). In comparison, first-time psychiatric episodes treated at outpatient facilities were more common, and showed little variation across pregnancy and postpartum. For every single birth resulting in postpartum episodes treated at inpatient...

  1. Observational evidence for dust-plasma interactions in the Enceladus' plume, Saturn E-ring, in Titan's ionosphere, and near comets

    Science.gov (United States)

    Wahlund, J. E.; Holmberg, M. K. G.; Engelhardt, I. A. D.; Eriksson, A. I.; Shebanits, O.; Morooka, M. W.; Farrell, W. M.; Gurnett, D. A.; Kurth, W. S.; Ye, S.

    2014-12-01

    The Cassini mission has identified dust-plasma interactions in at least three different regions in the Saturn system. These are the dusty plasma environment near Enceladus, in particular within its plume the dusty plasma environment in the Saturn inner plasma disk enveloping the E-ring the aerosol-plasma environment in Titan's deep ionosphere. It is also believed to affect the dynamics substantially in a comet coma, now studied by Rosetta. The motion of plasma is changed considerably by the presence of substantial amounts of charged dust due to the added effect of gravity and radiation pressure forces on the dust component, thereby affecting the dynamics of the magnetosphere. Conversely the Lorentz force affects the charged dust through electric and magnetic fields that normally govern the motion of the plasma. Part of the dust size distribution should be considered a component of the plasma collective ensemble. The Cassini RPWS Langmuir Probe clearly detects a difference between the electron and ion number densities in all these regions, from which the total charge density of the negatively charged dust can be estimated. Moreover, the Cassini electron spectrometer (CAPS/ELS) detects negatively charged nanometer sized particles both in Titan's ionosphere as well as in Enceladus' plume. The inferred number densities are consistent with the Langmuir probe measurements. Here, the dust absorption of electrons is so strong that an ion-dust plasma is created with few free electrons. In the case of Titan's ionosphere this triggers the formation of aerosols that then diffuse to the ground. We show here new measurements from the E-ring showing electron density depletions due to dust absorption, a dust tail region of Enceladus, and confirm the consistency between measurements of negative ions by CAPS/ELS and the Radio and Plasma Wave Science Langmuir Probe (RPWS/LP) in Titan's ionosphere. We will also show initial hints regarding dust-plasma interaction near comets from the

  2. First Episode Psychosis

    Science.gov (United States)

    ... About Psychosis Treatment Share Fact Sheet: First Episode Psychosis Download PDF Download ePub Order a free hardcopy En Español Facts About Psychosis The word psychosis is used to describe conditions ...

  3. Peroxy radical observations over West Africa during the AMMA 2006 campaign: Photochemical activity in episodes of formation of convective systems on the basis of radical measurements

    Directory of Open Access Journals (Sweden)

    M. D. Andrés-Hernández

    2009-01-01

    Full Text Available Peroxy radical measurements made on board the DLR-Falcon research aircraft over West Africa within the African Monsoon Multidisciplinary Analysis (AMMA campaign during the 2006 wet monsoon are presented in this study. The analysis of data focuses on the photochemical activity of air masses sampled during episodes of intense convection and biomass burning. Generally, the total sum of peroxy radical mixing ratios, measured in the outflow of convective clouds, are quite variable but occasionally are coupled with the NO variations indicating the coexistence, or simultaneously emission of NOx, with a potential radical precursor (i.e., formaldehyde, acetone or peroxides which has likely been transported to higher atmospheric layers. Based on the measurements, significant O3 production rates up to 2 ppb/h in the MCS outflow are estimated by using a box model with simplified chemistry. Peroxy radicals having mixing ratios around 20–25 pptv and with peak values of up to 60–70 pptv are measured within biomass burning plumes, detected at the coast in Ghana. Calculations of back-trajectory densities confirm the origin of these air masses being a biomass burning region at southern latitudes and close to the Gulf of Guinea, according to satellite pictures.

    Measured peroxy radical concentrations agree reasonably with modelled estimations taking into account simple local chemistry. Moreover the vertical profiles taken at the aircraft base in Ouagadougou, Burkina Faso, indicate the common feature of having maximum concentrations between 2 and 4 km, in agreement with other literature values obtained under similar conditions.

  4. Genetics Home Reference: episodic ataxia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions episodic ataxia episodic ataxia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Episodic ataxia is a group of related conditions that affect ...

  5. EPISODIC EJECTION FROM ACTIVE ASTEROID 311P/PANSTARRS

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David [Department of Earth and Space Sciences, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Gottingen (Germany); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: jewitt@ucla.edu [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson AZ 85721-0092 (United States)

    2015-01-10

    We examine the development of the active asteroid 311P/PANSTARRS (formerly, 2013 P5) in the period from 2013 September to 2014 February using high resolution images from the Hubble Space Telescope. This multi-tailed object is characterized by a single, reddish nucleus of absolute magnitude H ≥ 18.98 ± 0.10, corresponding to an equal-area sphere of radius ≤200 ± 20 m (for assumed geometric albedo 0.29 ± 0.09). We set an upper limit to the radii of possible companion nuclei at ∼10 m. The nucleus ejected debris in nine discrete episodes, spread irregularly over a nine month interval, each time forming a distinct tail. Particles in the tails range from about 10 μm to at least 80 mm in radius, and were ejected at speeds <1 m s{sup –1}. The ratio of the total ejected dust mass to the nucleus mass is ∼3×10{sup –5}, corresponding to a global surface layer ∼2 mm thick, or to a deeper layer covering a smaller fraction of the surface. The observations are incompatible with an origin of the activity by impact or by the sublimation of entrapped ice. This object appears to be shedding its regolith by rotational (presumably YORP-driven) instability. Long-term fading of the photometry (months) is attributed to gradual dissipation of near-nucleus dust. Photometric variations on short timescales (<0.7 hr) are probably caused by fast rotation of the nucleus. However, because of limited time coverage and dilution of the nucleus signal by near-nucleus dust, we have not been able to determine the rotation period.

  6. A 3-D evaluation of the MACC reanalysis dust product over the greater European region using CALIOP/CALIPSO satellite observations

    Science.gov (United States)

    Georgoulias, Aristeidis K.; Tsikerdekis, Athanasios; Amiridis, Vassilis; Marinou, Eleni; Benedetti, Angela; Zanis, Prodromos; Kourtidis, Konstantinos

    2016-04-01

    Significant amounts of dust are being transferred on an annual basis over the Mediterranean Basin and continental Europe from Northern Africa (Sahara Desert) and Middle East (Arabian Peninsula) as well as from other local sources. Dust affects a number of processes in the atmosphere modulating weather and climate also having an impact on human health and the economy. Therefore, the ability of simulating adequately the amount and optical properties of dust is essential. This work focuses on the evaluation of the MACC reanalysis dust product over the regions mentioned above. The evaluation procedure is based on pure dust satellite retrievals from CALIOP/CALIPSO that cover the period 2007-2012. The CALIOP/CALIPSO data utilized here come from an optimized retrieval scheme that was originally developed within the framework of the LIVAS (Lidar Climatology of Vertical Aerosol Structure for Space-Based LIDAR Simulation Studies) project. CALIOP/CALIPSO dust extinction coefficients and dust optical depth patterns at 532 nm are used for the validation of MACC natural aerosol extinction coefficients and dust optical depth patterns at 550 nm. Overall, it is shown in this work that space-based lidars may play a major role in the improvement of the MACC aerosol product. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).

  7. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  8. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  9. Planetary Magnetosphere Probed by Charged Dust Particles

    Science.gov (United States)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  10. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2005-01-01

    Full Text Available We report on the vertical distributions of Saharan dust aerosols over the N.E. Mediterranean region, which were obtained during a typical dust outbreak on August 2000, by two lidar systems located in Athens and Thessaloniki, Greece, in the frame of the European EARLINET project. MODIS and ground sun spectrophotometric data, as well as air-mass backward trajectories confirmed the existence of Saharan dust in the case examined, which was also successfully forecasted by the DREAM dust model. The lidar data analysis for the period 2000-2002 made possible, for the first time, an estimation of the vertical extent of free tropospheric dust layers [mean values of the aerosol backscatter and extinction coefficients and the extinction-to-backscatter ratio (lidar ratio, LR at 355 nm], as well as a seasonal distribution of Saharan dust outbreaks over Greece, under cloud-free conditions. A mean value of the lidar ratio at 355 nm was obtained over Athens (53±1 sr and over Thessaloniki (44±2 sr during the Saharan dust outbreaks. The corresponding aerosol optical thickness (AOT at 355 nm, in the altitude range 0-5 km, was 0.69±0.12 and 0.65±0.10 for Athens and Thessaloniki, respectively (within the dust layer the AOT was 0.23 and 0.21, respectively. Air-mass back-trajectory analysis performed in the period 2000-2002 for all Saharan dust outbreaks over the N.E. Mediterranean indicated the main pathways followed by the dust aerosols.

  11. Observation of Arabian and Saharan Dust in Cyprus with a New Generation of the Smart Raman Lidar Polly

    Directory of Open Access Journals (Sweden)

    Engelmann Ronny

    2016-01-01

    The latest system was built in cooperation with the National Observatory of Athens (NOA. Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].

  12. Dust Mite Allergy

    Science.gov (United States)

    Dust mite allergy Overview By Mayo Clinic Staff Dust mite allergy is an allergic reaction to tiny bugs that commonly live in house dust. Signs of dust mite allergy include those common to hay fever, such as ...

  13. Oblique dust density waves

    Science.gov (United States)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  14. Spitzer Observations of Var Her 04: Possible Detection of Dust Formation in a Super-Outbursting TOAD

    CERN Document Server

    Ciardi, D R; Hoard, D W; Howell, S B; Van Belle, G T; Ciardi, David R.; Wachter, Stefanie; Howell, Steve B.; Belle, Gerard T. van

    2006-01-01

    We present four MIPS (24 \\micron) and two IRAC (3.6, 4.5, 5.8, and 8.0 \\micron) Spitzer observations of the newly discovered Tremendous Outburst Amplitude Dwarf nova (TOAD) Var Her 04 during decline from super-outburst. The four MIPS observations span 271 days and the two IRAC observations span 211 days. Along the line-of-sight to Var Her 04, there is a foreground M-star within 1\\arcsec of the variable; as a result, all of the Spitzer photometry presented in this paper is a blend of the foreground M-star and Var Her 04. We estimate the quiescent level of the TOAD to be $\\Delta V=4-5$ magnitudes below that of the M-star. Based upon the spectral energy distribution and the 2MASS colors, we find the M-star to be an M3.5V dwarf at a distance of 80-130 pc. Based upon its outburst amplitude and quiescent apparent magnitude, we estimate the distance to Var Her 04 to be 200-400 pc, suggesting that the line-of-sight foreground star is physically unrelated to the cataclysmic variable. All of the Spitzer photometry is c...

  15. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  16. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    Science.gov (United States)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  17. Recurrent dust formation by WR 48a on a 30-year timescale

    CERN Document Server

    Williams, Peredur M; van Wyk, Francois; Marang, Fred; Whitelock, Patricia A; Bouchet, Patrice; Gunawan, Diah Y A Setia

    2011-01-01

    We present infrared photometry of the WC8 Wolf-Rayet system WR 48a observed with telescopes at ESO, the SAAO and the AAT between 1982 and 2011 which show a slow decline in dust emission from the previously reported outburst in 1978--79 until about 1997, when significant dust emission was still evident. This was followed by a slow rise, accelerating to reach and overtake the first (1978) photometry, demonstrating that the outburst observed in 1978--79 was not an isolated event, but that they recur at intervals of 32+ years. This suggests that WR 48a is a long-period dust maker and colliding-wind binary (CWB). The locus of WR 48a in the (H-L), K colour-magnitude diagram implies that the rate of dust formation fell between 1979 and about 1997 and then increased steadily until 2011. Superimposed on the long-term variation are secondary (`mini') eruptions in (at least) 1990, 1994, 1997, 1999 and 2004, characteristic of relatively brief episodes of additional dust formation. Spectra show evidence for an Oe or Be co...

  18. Observation of Arabian and Saharan Dust in Cyprus with a New Generation of the Smart Raman Lidar Polly

    Science.gov (United States)

    Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis

    2016-06-01

    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the "3+2" measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].

  19. [Biological effect of wood dust].

    Science.gov (United States)

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  20. Aeolian dust event in Korea observed by an EZ Lidar in the frame of global lidar networks.

    Science.gov (United States)

    Lolli, Simone

    2010-05-01

    Duststorms and sandstorms regularly devastate Northeast Asia and cause considerable damage to transportation system and public health; further, these events are conceived to be one of the very important indices for estimating the global warming and desertification. Previously, yellow sand events were considered natural phenomena that originate in deserts and arid areas. However, the greater scale and frequency of these events in recent years are considered to be the result of human activities such as overgrazing and over-cultivation. Japan, Korea, Cina and Mongolia are directly concerned to prevent and control these storms and have been able to some extent to provide forecasts and early warnings. In this framework, to improve the accuracy of forecasting , a compact and rugged eye safe lidar, the EZ LIDAR™, developed together by Laboratoire des Sciences du Climat et l'Environnement (LSCE) (CEA-CNRS) and LEOSPHERE (France) to study and investigate structural and optical properties of clouds and aerosols, thanks to the strong know-how of CEA and CNRS in the field of air quality measurements and cloud observation and analysis, was deployed in Seoul, Korea in order to detect and study yellow sand events, thanks to its depolarization channel and scan capabilities. The preliminary results, showed in this paper, of this measurement campaign put in evidence that EZ Lidar, for its capabilities of operating unattended day and night under each atmospheric condition, is mature to be deployed in a global network to study long-range transport, crucial in the forecasting model.

  1. Comet C/2011 L4 (PanStarrs): Small nucleus, fast rotator and dust rich comet observed after perihelion

    CERN Document Server

    Scarmato, Toni

    2016-01-01

    Orbital elements of C2011 L4 (PanStarrs) Oort cloud comet, computed by MPC (Minor Planet Center, Minor Planet Electronic Circular 2012-T08), show that the closest approach to the Sun occurred on 2013 March 10th, at about 0.3 A.U., then about 4,51x10^7 km. Discovered by Richard Wainscoat (Institute for Astronomy, University of Hawaii) on four CCD images taken with the 1.8-m "Pan-STARRS 1" telescope at Haleakala taken on 2011 June 6th. My first observation of the comet was on 2013 March 10th whit the comet visible in the twilight. I did the following visual estimation; Mar. 10.73,-1.0*,5'(T. Scarmato, Calabria, Italy, 7x50 binoculars; altitude 7 deg, tail 1 deg in pa 140 deg), reported to the ICQ (International Comet Quarterly). Easy comet in 7x50 binoculars I started to see C/2011 L4 at 18:35 L.T. when the comet was at about 7{\\deg} above the horizon. I saw a tail long about 1,5{\\deg} in pa 140{\\deg} with a coma well condensed and large about 5'. I followed the comet until to the set at 18:55 L.T., still clear...

  2. Flying Through Dust From Asteroids

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  3. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    Science.gov (United States)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; hide

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_hPierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R approx. 21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections.

  4. Karl G. Jansky Very Large Array observations of cold dust and molecular gas in starbursting quasar host galaxies at z~4.5

    CERN Document Server

    Wagg, J; Aravena, M; Cox, P; Lentati, L; Maiolino, R; McMahon, R G; Riechers, D; Walter, F; Andreani, P; Hills, R; Wolfe, A

    2014-01-01

    We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J=2-1 line emission in BR1202-0725 at z=4.7 (a starburst galaxy and quasar pair) and BRI1335-0417 at z=4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the Low-J CO line emission. The measured CO J=2-1 line luminosities of BR1202-0725 are L'(CO) = (8.7+/-0.8)x10^10 K km/s pc^2 and L'(CO) = (6.0+/-0.5)x10^10 K km/s pc^2 for the submm galaxy (SMG) and quasar, which are equal to previous measurements of the CO J=5-4 line luminosities implying thermalized line emission and we estimate a combined cold molecular gas mass of ~9x10^10 Msun. In BRI1335-0417 we measure L'(CO) = (7.3+/-0.6)x10^10 K km/s pc^2. We detect continuum emission in the SMG BR1202-0725 North (S(44GHz) = 51+/-6 microJy), while the quasar is detected with S(44GHz) = 24+/-6 microJy and in BR...

  5. The Fertilizing Role of African Dust in the Amazon Rainforest. A First Multiyear Assessment Based on Data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbin [Univ. of Maryland, College Park, MD (United States); NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Chin, Mian [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Yuan, Tianle [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland, Baltimore, MD (United States); Bian, Huisheng [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland, Baltimore, MD (United States); Remer, L. A. [Univ. of Maryland, Baltimore, MD (United States); Prospero, J. [Univ. of Miami, FL (United States); Omar, Ali [NASA Langley Research Center, Hampton, VA (United States); Winker, D. [NASA Langley Research Center, Hampton, VA (United States); Yang, Yuekui [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Universities Space Research Association, Columbia, MD (United States); Zhang, Yan [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Universities Space Research Association, Columbia, MD (United States); Zhang, Zhibo [Univ. of Maryland, Baltimore, MD (United States); Zhao, Chun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-18

    The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three dimensional (3D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8~48) Tg a-1 or 29 (8~50) kg ha-1 a-1. The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multi-year mean estimate of dust deposition matches better with estimates from in-situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.006~0.037) Tg P of phosphorus per year, equivalent to 23 (7~39) g P ha-1 a-1 to fertilize the Amazon rainforest. This out-of-Basin P input is comparable to the hydrological loss of P from the Basin, suggesting an important role of African dust in preventing phosphorus depletion on time scales of decades to centuries.

  6. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    Directory of Open Access Journals (Sweden)

    X. Dong

    2015-12-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. The default parameterization of threshold friction velocity constants in the CMAQ are revised to avoid double counting of the impact of soil moisture based on the re-analysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is implemented to simulate the reactions involving dust aerosol. The improved dust module in the CMAQ was applied over East Asia for March and April from 2006 to 2010. Evaluation against observations has demonstrated that simulation bias of PM10 and aerosol optical depth (AOD is reduced from −55.42 and −31.97 % in the original CMAQ to −16.05 and −22.1 % in the revised CMAQ, respectively. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry is also found to result in better agreement with observations for sulfur dioxide (SO2, sulfate (SO42-, nitric acid (HNO3, nitrous oxides (NOx, and nitrate (NO3-. Investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variations of dust aerosols. Model evaluation indicates potential uncertainties within the excessive soil moisture fraction used by meteorological simulation. The mass contribution of fine mode aerosol in dust emission may be underestimated by 50 %. The revised revised CMAQ provides a useful tool for future studies to investigate the emission, transport, and impact of wind

  7. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Modeling of Key Molecules and Observations of Dust Content

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Wilson, Eric H.; West, Robert A.; Baines, Kevin H.; Bjoraker, Gordon L.; Fletcher, Leigh N.; Momary, Tom

    2014-11-01

    -generated molecules and haze. [1] Edgington, S.G., et al., 2012. Photochemistry in Saturn’s Ring Shadowed Atmosphere: Modeling, Observations, and Preliminary Analysis. Bull. American. Astron. Soc., 38, 499 (#11.23).

  8. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    Science.gov (United States)

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  9. Regional transport of anthropogenic pollution and dust aerosols in spring to Tianjin - A coastal megacity in China.

    Science.gov (United States)

    Su, Xiaoli; Wang, Qiao; Li, Zhengqiang; Calvello, Mariarosaria; Esposito, Francesco; Pavese, Giulia; Lin, Meijing; Cao, Junji; Zhou, Chunyan; Li, Donghui; Xu, Hua

    2017-04-15

    Simultaneous measurements of columnar aerosol microphysical and optical properties, as well as PM2.5 chemical compositions, were made during two types of spring pollution episodes in Tianjin, a coastal megacity of China. The events were investigated using field observations, satellite data, model simulations, and meteorological fields. The lower Ångström Exponent and the higher aerosol optical depth on 29 March, compared with the earlier event on 26 March, implied a dominance of coarse mode particles - this was consistent with the differences in volume-size distributions. Based on the single scattering spectra, the dominant absorber (at blue wavelength) changed from black carbon during less polluted days to brown carbon on 26 March and dust on 29 March. The concentrations of major PM2.5 species for these two episodes also differed, with the earlier event enriched in pollution-derived substances and the later with mineral dust elements. The formation mechanisms of these two pollution episodes were also examined. The 26 March episode was attributed to the accumulation of both local emissions and anthropogenic pollutants transported from the southwest of Tianjin under the control of high pressure system. While the high aerosol loading on 29 March was caused by the mixing of transported dust from northwest source region with local urban pollution. The mixing of transported anthropogenic pollutants and dust with local emissions demonstrated the complexity of springtime pollution in Tianjin. The synergy of multi-scale observations showed excellent potential for air pollution study. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. First-episode psychosis

    DEFF Research Database (Denmark)

    Simonsen, Erik

    2011-01-01

    . Patients with first-episode psychosis had significantly high NEO-PI-R scores for neuroticism and agreeableness, and lower scores for conscientiousness and extroversion. The median time for remission in the total sample was three months. Female gender and better premorbid functioning were predictive of less...

  11. Primary Episodic Ataxias

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-10-01

    Full Text Available The clinical and genetic diagnosis, genotype-phenotype correlations, pathophysiology and treatment of primary episodic ataxia syndromes are reviewed by researchers from Departments of Neurology, UCLA School of Medicine, Los Angeles, CA; National Hospital for Neurology, Queen Square, London, UK; Johns Hopkins University School of Medicine, Baltimore, MD; and University of Rochester School of Medicine, NY, USA.

  12. [Hereditary episodic ataxia].

    Science.gov (United States)

    Riant, F; Vahedi, K; Tournier-Lasserve, E

    2011-05-01

    Episodic ataxia (EA) designates a group of autosomal dominant channelopathies that manifest as paroxysmal attacks of imbalance and incoordination. EA conditions are clinically and genetically heterogeneous. Seven types of EA have been reported so far but the majority of clinical cases result from two recognized entities. Episodic ataxia type 1 (EA1) is characterized by brief episodes of ataxia and dysarthria, and interictal myokymia. Onset occurs during the first two decades of life. Associated epilepsy has been reported in some EA1 patients. EA1 is caused by mutations of the KCNA1 gene coding for the voltage-gated potassium channel Kv1.1. Mutation is mostly missense mutations. Acetazolamide, a carbonic-anhydrase inhibitor, may reduce the frequency and severity of the attacks in some but not all affected individuals. Episodic ataxia type 2 (EA2) is characterized by episodes lasting longer than in EA1, that manifest by ataxia, dysarthria, vertigo, and also, in most of the cases, an interictal nystagmus. Other clinical features as developmental delay or epilepsy can be present in some patients. Brain MRI shows frequently a vermian atrophy. Onset occurs typically in childhood or early adolescence, but can sometimes be in adulthood. EA2 is caused by mutations in CACNA1A, a gene coding for the neuronal voltage-gated calcium channel Cav1.1. For two-thirds of the cases, mutations lead to a stop codon. This type is most often responsive to acetazolamide that reduces the frequency and severity of attacks, but does not appear to prevent the progression of interictal symptoms. This article summarizes current knowledge on episodic ataxia type 1 and 2 and describes briefly the other types of EA. Molecular analysis of KCNA1 or CACNA1A provides a confirmation of the diagnosis of EA1 and EA2. Other types remain rare phenotypic variants. Among them, only two genes have been identified: CACNB4 in EA5 and SLC1A3 in EA6 and mutations have been found in a very few cases. No mutation

  13. Can dust emission mechanisms be determined from field measurements?

    Science.gov (United States)

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  14. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Science.gov (United States)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  15. A Comparison of the Physical and Optical Properties of Anthropogenic Air Pollutants and Mineral Dust over Northwest China

    Institute of Scientific and Technical Information of China (English)

    王鑫; 浦伟; 史晋森; 闭建荣; 周天; 张雪荣; 任勇

    2015-01-01

    Emissions of mineral dust and its mixing with anthropogenic air pollutants aff ect both regional and global climates. Our fi eldwork in late spring 2007 (April 25–June 15) measured the physical and optical properties of dust storms mixed with local air pollutants at a rural site about 48 km southeast of central Lanzhou. Levels of air pollutants and aerosol optical properties were observed during the experiment, with concentrations of NOx (6.8 ± 3.3 ppb, average ± standard deviation), CO (694 ± 486 ppb), SO2 (6.2 ± 10 ppb), O3 (50.7 ± 13.1 ppb), and PM10 (172 ± 180 µg m−3), and aerosol scattering coeffi cient (164 ± 89 Mm−1; 1 Mm = 106 m) and absorption coeffi cient (11.7 ± 6.6 Mm−1), all much lower than the values observed during air pollution episodes in urban areas. During a major dust storm, the mass concentration of PM10 reached 4072 µg m−3, approximately 21-fold higher than in non-dust storm periods. The mixing ratios of trace gases declined noticeably after a cold front passed through. The observed CO/SO2 and CO/NOx ratios during air pollution episodes were 4.2–18.3 and 13.7–80.5, respectively, compared with the corresponding ratios of 38.1–255.7 and 18.0–245.9 during non-pollution periods. Our investigations suggest that dust storms have a signifi cant infl uence on air quality in areas far from their source, and this large-scale transport of dust and air pollutants produces major uncertainties in the quantifi cation of the global eff ects of emissions over Northwest China.

  16. Smaller desert dust cooling effect estimated from analysis of dust size and abundance

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-03-01

    Desert dust aerosols affect Earth's global energy balance through direct interactions with radiation, and through indirect interactions with clouds and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, or what the effects of potential future changes in dust loading will be. Here we present an analysis of the size and abundance of dust aerosols to constrain the direct radiative effect of dust. Using observational data on dust abundance, in situ measurements of dust optical properties and size distribution, and climate and atmospheric chemical transport model simulations of dust lifetime, we find that the dust found in the atmosphere is substantially coarser than represented in current global climate models. As coarse dust warms the climate, the global dust direct radiative effect is likely to be less cooling than the ~-0.4 W m-2 estimated by models in a current global aerosol model ensemble. Instead, we constrain the dust direct radiative effect to a range between -0.48 and +0.20 W m-2, which includes the possibility that dust causes a net warming of the planet.

  17. [Chemical Characteristics of Particulate Matters and Trajectory Influence on Air Quality in Shanghai During the Heavy Haze Episode in December, 2013].

    Science.gov (United States)

    Zhou, Min; Qiao, Li-ping; Zhu, Shu-hui; Li, Li; Lou, Sheng-rong; Wang, Hong-li; Tao, Shi-kang; Huang, Cheng; Chen, Chang-hong

    2016-04-15

    Intensive haze shrouded central and eastern parts of China in Dec. 2013. In this study, the mass concentrations of gaseous and particulate pollutants, and also the chemical compositions of fine particulate matters were obtained based on in-situ measurement in Shanghai urban area. The characteristics of PM2.5 were investigated during different pollution episodes, including dust, haze, fog-haze and long-rang transport episodes. The results showed that pollution was most serious during the fog-haze episode, during which the maximum daily mass concentrations of PM10 and PM2.5 reached 536 microg x m(-3) and 411 microg x m(-3), respectively. During the fog-haze episode, the ratio of PM2.5 to PM10 was over 76.7%, suggesting that high humidity enhanced the secondary formation of NO3-, SO4(2-) and NH4+ in PM2.5. Highest concentration of Ca2+ in PM2.5 occurred during the dust episode and the proportion of primary components in PM2.5 increased obviously. Highest concentration of SO2- was observed in PM25 during the long-range transport episode, with a fast growth rate. Meanwhile, the trajectories reaching Shanghai urban area and cluster analysis during different pollution episodes were simulated by HYSPLIT model. Combined with observation data of PM2.5 in Shanghai urban area, chemical characteristics of PM2.5 in different clusters and potential source apportionment of various pollution episodes were also studied in this study. The result revealed that the air trajectories could be grouped into six clusters based on their spatial similarities. Among these clusters, cluster6 which moved fast was associated with clean air. Cluster2 and cluster3 originating from Mongolia region had strong correlations to dust pollution, along with low PM2.5/PM10 ratio and high concentration of Ca2+ in PM2.5. Compared with other clusters, cluster5 and cluster4 with slow moving speed were more favorable for reactions between particulate species and formation of secondary pollutants during transport

  18. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; Jones, L; Lu, S.; Menut, L.; Mulcahy, J.; Nickovic, S.; Morcrette, J.-J.; Perez, C.; Reid, J. S.; Sekiyama, T. T.; Tanaka, T.; Terradellas, E.; Westphal, D. L.; Zhang, X.-Y.; Zhou, C.-H.

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  19. Global amount of dust in the universe

    CERN Document Server

    Fukugita, Masataka

    2011-01-01

    It is pointed out that the total amount of dust in the Universe that is produced in stellar evolution in the entire cosmic time is consistent with the observed amount, if we add to the dust amount inferred for galactic discs the amount recently uncovered in galactic haloes and the surrounding of galaxies in reddening of the quasar light passing through the vicinity of galaxies. The inventory concerning the dust closes. This implies that dust produced from stars should survive effectively for the cosmic time, and that a substantial amount of dust is produced in the burning phase of evolved stars of intermedaite mass.

  20. Andromeda's dust

    Energy Technology Data Exchange (ETDEWEB)

    Draine, B. T.; Aniano, G. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States); Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Braun, Robert [CSIRO—Astronomy and Space Science, P.O. Box 76, Epping, NWS 1710 (Australia); Leroy, Adam, E-mail: draine@astro.princeton.edu, E-mail: ganiano@ias.u-psud.fr [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  1. Dust ablation in Pluto's atmosphere

    Science.gov (United States)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  2. Hippocampal place cells, context, and episodic memory.

    Science.gov (United States)

    Smith, David M; Mizumori, Sheri J Y

    2006-01-01

    Although most observers agree that the hippocampus has a critical role in learning and memory, there remains considerable debate about the precise functional contribution of the hippocampus to these processes. Two of the most influential accounts hold that the primary function of the hippocampus is to generate cognitive maps and to mediate episodic memory processes. The well-documented spatial firing patterns (place fields) of hippocampal neurons in rodents, along with the spatial learning impairments observed with hippocampal damage support the cognitive mapping hypothesis. The amnesia for personally experienced events seen in humans with hippocampal damage and the data of animal models, which show severe memory deficits associated with hippocampal lesions, support the episodic memory account. Although an extensive literature supports each of these hypotheses, a specific contribution of place cells to episodic memory has not been clearly demonstrated. Recent data from our laboratory, together with previous findings, indicate that hippocampal place fields and neuronal responses to task-relevant stimuli are highly sensitive to the context, even when the contexts are defined by abstract task demands rather than the spatial geometry of the environment. On the basis of these findings, it is proposed that place fields reflect a more general context processing function of the hippocampus. Hippocampal context representations could serve to differentiate contexts and prime the relevant memories and behaviors. Since episodic memories, by definition, include information about the time and place where the episode occurred, contextual information is a necessary prerequisite for any episodic memory. Thus, place fields contribute importantly to episodic memory as part of the needed context representations. Additionally, recent findings indicate that hippocampal neurons differentiate contexts at progressively finer levels of detail, suggesting a hierarchical coding scheme which

  3. Dust Devil Tracks

    Science.gov (United States)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  4. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Wave in Late Summer, 2003-2007

    Science.gov (United States)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-01-01

    Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  5. Episodes, events, and models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2015-10-01

    Full Text Available We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning.

  6. Large-Scale Analysis of Relationships between Mineral Dust, Ice Cloud Properties, and Precipitation from Satellite Observations Using a Bayesian Approach: Theoretical Basis and First Results for the Tropical Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Lars Klüser

    2017-01-01

    Full Text Available Mineral dust and ice cloud observations from the Infrared Atmospheric Sounding Interferometer (IASI are used to assess the relationships between desert dust aerosols and ice clouds over the tropical Atlantic Ocean during the hurricane season 2008. Cloud property histograms are first adjusted for varying cloud top temperature or ice water path distributions with a Bayesian approach to account for meteorological constraints on the cloud variables. Then, histogram differences between dust load classes are used to describe the impact of dust load on cloud property statistics. The analysis of the histogram differences shows that ice crystal sizes are reduced with increasing aerosol load and ice cloud optical depth and ice water path are increased. The distributions of all three variables broaden and get less skewed in dusty environments. For ice crystal size the significant bimodality is reduced and the order of peaks is reversed. Moreover, it is shown that not only are distributions of ice cloud variables simply shifted linearly but also variance, skewness, and complexity of the cloud variable distributions are significantly affected. This implies that the whole cloud variable distributions have to be considered for indirect aerosol effects in any application for climate modelling.

  7. Dust Evolution in Protoplanetary Disks

    CERN Document Server

    Testi, Leonardo; Ricci, Luca; Andrews, Sean; Blum, Juergen; Carpenter, John; Dominik, Carsten; Isella, Andrea; Natta, Antonella; Williams, Jonathan; Wilner, David

    2014-01-01

    (abridged) In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational...

  8. LADEE Search for a Dust Exosphere: A Historical Perspective

    Science.gov (United States)

    Glenar, D. A.; Stubbs, T. J.; Elphic, R.

    2014-01-01

    The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.

  9. Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Testi, L.; Birnstiel, T.; Ricci, L.; Andrews, S.; Blum, J.; Carpenter, J.; Dominik, C.; Isella, A.; Natta, A.; Williams, J. P.; Wilner, D. J.

    In the core-accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow up to micrometer-sized particles in the dense regions of molecular clouds, the growth to pebbles and kilometer-sized bodies must occur at the high densities within protoplanetary disks. This critical step is the last stage of solids evolution that can be observed directly in extrasolar systems before the appearance of large planetary-sized bodies. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures of these processes are summarized. We briefly discuss grain growth in molecular cloud cores and in collapsing envelopes of protostars, as these likely provide the initial conditions for the dust in protoplanetary disks. We then review the observational constraints on grain growth in disks from millimeter surveys, as well as the very recent evidence for radial variations of the dust properties in disks. We also include a brief discussion on the small end of the grain size distribution and dust settling as derived from optical, near-, and mid-infrared observations. Results are discussed in the context of global dust-evolution models; in particular, we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of maximum grain sizes as the result of growth barriers. We also highlight the limits of the current models of dust evolution in disks, including the need to slow the radial drift of grains to overcome the migration/fragmentation barrier.

  10. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K

    2002-12-30

    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  11. An electrified dust storm over the Negev desert, Israel

    Science.gov (United States)

    Yair, Yoav; Katz, Shai; Yaniv, Roy; Ziv, Baruch; Price, Colin

    2016-11-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35‧N, 34°45‧E) during a large dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The dust was transported from the Sahara, Egypt and the Sinai Peninsula ahead of an approaching Cyprus low. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m- 3 and the AOT from the AERONET station in Sde-Boker was 1.5 on February 10th. The gradual intensification of the event reached peak concentrations on February 11th of over 1200 μg m- 3 and an AOT of 1.8. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted at the Wise Observatory with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observatory, very large fluctuations in the electrical parameters were registered. From the onset of the dust storm, the Ez values changed between + 1000 and + 8000 V m- 1 while the current density fluctuated between - 10 pA m2 and + 20 pA m2, both on time-scales of a few minutes. These values are significant departures from the average fair-weather values measured at the site, which are ~- 200 V m- 1 and ~ 2 pA m2. The disturbed episodes lasted for several hours on February 10th and the 11th and coincided with local meteorological conditions related to the wind speed and direction, which carried large amounts of dust particles over our observation station. We interpret the rapid changes as caused by the transport of electrically charged dust, carrying an excess of negative charge at lower altitudes.

  12. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  13. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  14. Chemical tracers of episodic accretion in low-mass protostars

    CERN Document Server

    Visser, Ruud; Jorgensen, Jes K

    2015-01-01

    Aims: Accretion rates in low-mass protostars can be highly variable in time. Each accretion burst is accompanied by a temporary increase in luminosity, heating up the circumstellar envelope and altering the chemical composition of the gas and dust. This paper aims to study such chemical effects and discusses the feasibility of using molecular spectroscopy as a tracer of episodic accretion rates and timescales. Methods: We simulate a strong accretion burst in a diverse sample of 25 spherical envelope models by increasing the luminosity to 100 times the observed value. Using a comprehensive gas-grain network, we follow the chemical evolution during the burst and for up to 10^5 yr after the system returns to quiescence. The resulting abundance profiles are fed into a line radiative transfer code to simulate rotational spectra of C18O, HCO+, H13CO+, and N2H+ at a series of time steps. We compare these spectra to observations taken from the literature and to previously unpublished data of HCO+ and N2H+ 6-5 from th...