WorldWideScience

Sample records for dual-feed burner modelling

  1. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm...... conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion......-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall...

  2. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  3. Increased Coal Replacement in a Cement Kiln Burner by Feeding a Mixture of Solid Hazardous Waste and Shredded Plastic Waste

    OpenAIRE

    Ariyaratne, W. K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    The present study aims to find the maximum possible replacement of coal by combined feeding of plastic waste and solid hazardous waste mixed with wood chips (SHW) in rotary kiln burners used in cement kiln systems. The coal replacement should be achieved without negative impacts on product quality, emissions or overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement kiln by varying SHW and plastic waste feeding rates. Experimental result...

  4. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    minimized and more heat is transferred via radiation. Because the current engine-burner is of the surface burner type, a model for this burner type is established, showing typical burner characteristics. It is investigated how the radiant efficiency can be improved of this porous surface burner type. Using this burner technology, the maximum possible radiant heat flux would lead to an impractically large burner surface area. It is believed that the radiation efficiency of the burner can be greatly enhanced when combustion takes place inside a porous medium. By doing so, high material temperatures can be achieved due to internal radiation and the heat exchanger effect of the burner material downstream of the flame. The theoretical maximum burner performance is therefore investigated for a certain value of optimum temperature, for which the gas temperature and solid temperature are equal. It is found that a submerged flame inside a porous medium greatly enhances radiant efficiency. From previous, mainly experimental work on dual layer submerged combustion, preferable material parameters per layer are found and a suggestion is made for future practical analysis. Because of the high potential of the dual porous layer submerged radiant burner, a model for this type of burner is initiated. For ease of future changes and implementation, as well as to obtain knowledge on this type of burner, model development was performed by its future user, the author of this thesis.

  5. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    Science.gov (United States)

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  6. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    Gueorguieva, A.

    2001-01-01

    The main objective of this project is prediction and reduction of NOx and CO 2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO 2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  7. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars

    1997-08-01

    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  8. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  9. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: Theoretical and experimental studies

    Science.gov (United States)

    Dai, J.; Belomestnykh, S.; Ben-Zvi, I.; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 104 to 109 provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  10. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2004-01-01

    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  11. A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed

    Science.gov (United States)

    Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix

    2014-01-01

    Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.

  12. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  13. Dual-polarized feed antenna apparatus and method of use

    Science.gov (United States)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2009-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  14. Premixed combustion on ceramic foam burners

    NARCIS (Netherlands)

    Bouma, P.H.; Goey, de L.P.H.

    1999-01-01

    Combustion of a lean premixed methane–air mixture stabilized on a ceramic foam burner has been studied. The stabilization of the flame in the radiant mode has been simulated using a one-dimensional numerical model for a burner stabilized flat-flame, taking into account the heat transfer between the

  15. A novel dual-feed low-dropout regulator

    International Nuclear Information System (INIS)

    Duan Zhikui; Hu Jianguo; Ding Yi; Lu Chong; Ding Yanyu; Wang Deming; Tan Hongzhou

    2015-01-01

    A novel dual-feed (DF) low-dropout (LDO) is presented. The DF-LDO adopts dual control loops to maintain the output voltage. The dual control loops include a feedback loop and a feedforward loop. There is an equilibrium point in dual control loops, and the equilibrium point is the output voltage of the DF-LDO. In addition, the transient performance is optimized by adjusting the damping ratio and natural frequency. With a 1 μF decoupling capacitor, the proposed DF-LDO is fabricated in a 0.18 μm CMOS process and its output voltage is 1.5 V. When the workload changes from 100 μA to 100 mA in 100 ns, load regulation of 7 mV for a 100 mA step is achieved, the settling time is 997 ns and the undershoot is 12.8 mV; when the workload changes from 100 mA to 100 μA in 100 ns, the settling time is 249 ns with an imperceptible overshoot. (paper)

  16. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  17. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  18. Modeling of complex premixed burner systems by using flamelet-generated manifolds

    NARCIS (Netherlands)

    Oijen, van J.A.; Lammers, F.A.; Goey, de L.P.H.

    2001-01-01

    The numerical modeling of realistic burner systems puts a very high demand on computational recources.The computational cost of combustion simulations can be reduced by reduction techniques which simplify the chemical kinetics. In this paper the recently introduced Flamelet-Generated Manifold method

  19. Modeling of confined and unconfined laminar premixed flames on slit and tube burners

    NARCIS (Netherlands)

    Mallens, R.M.M.; Lange, de H.C.; Ven, van de C.J.H.; Goey, de L.P.H.

    1995-01-01

    A model is presented for laminar premixed Bunsen flames on slit and cylindrical burners burning in a surrounding atmosphere. A comparison between modeling and experimental results shows that the model can reproduce the experimental results within 10% accuracy. The influence of a surrounding

  20. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  1. Pulverized coal burner

    Science.gov (United States)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  2. Impact of Subgrid Scale Models and Heat Loss on Large Eddy Simulations of a Premixed Jet Burner Using Flamelet-Generated Manifolds

    Science.gov (United States)

    Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.

    2017-11-01

    Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.

  3. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  4. Utility boiler computer modeling experience in the USA for practical furnace air port and low NOx burner field design

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Urich, J.A.; Krippene, B.C. [ESA, Inc. (United States)

    2000-07-01

    This paper presents several examples of where effective furnace and low NOx burner modeling has produced substantial advantages to the low NOx combustion system designer. Using practical boiler furnace air injection port and low NOx burner maths modeling as an integral part of the design process has often made the difference between a successful low NOx combustion system field conversion project and an unsuccessful one.

  5. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    modification to the motion and reaction due to their non-sphericity. The simulation results show a big difference between the two cases and indicate it is very significant to take into account the non-sphericity of biomass particles in order to model biomass combustion more accurately. Methods to improve...... of numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion...... and reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...

  6. Mathematical model of stacked one-sided arrangement of the burners

    Directory of Open Access Journals (Sweden)

    Oraz J.A.

    2017-01-01

    Full Text Available Paper is aimed at computer simulation of the turbulent methane-air combustion in upgraded U-shaped boiler unit. To reduce the temperature in the flame and hence NOx release every burner output was reduced, but the number of the burners was increased. The subject of studying: complex of characteristics with space-time fields in the upgraded steam boiler E-370 with natural circulation. The flare structure, temperature and concentrations were determined computationally.

  7. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  8. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  9. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  11. The acoustic response of burner-stabilised flat flames : a two-dimensional numerical analysis

    NARCIS (Netherlands)

    Rook, R.; Goey, de L.P.H.

    2003-01-01

    The response of burner-stabilized flat flames to acoustic perturbations is studied numerically. So far, one-dimensional models have been used to study this system. However, in most practical surface burners, the scale of the perforations in the burner plate is of the order of the flame thickness.

  12. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    Science.gov (United States)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  13. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    Science.gov (United States)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due

  14. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  15. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  16. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  17. Southern Woods-Burners: A Descriptive Analysis

    Science.gov (United States)

    M.L. Doolittle; M.L. Lightsey

    1979-01-01

    About 40 percent of the South's nearly 60,000 wildfires yearly are set by woods-burners. A survey of 14 problem areas in four southern States found three distinct sets of woods-burners. Most active woods-burners are young, white males whose activities are supported by their peers. An older but less active group have probably retired from active participation but...

  18. Case study for co and counter swirling domestic burners

    Directory of Open Access Journals (Sweden)

    Ashraf Kotb

    2018-03-01

    Full Text Available In this case study, the influence of equivalence ratio for co and counter-swirl domestic burners compared with non-swirl design on the thermal efficiency as well as CO emissions has been studied using liquefied petroleum gas (LPG. Also, the flame stability, and pot height, which is defined as the burner-to-pot distance (H, of the co and counter domestic burners were compared. The analysis of the results showed that, for both swirl burners co and counter one the thermal efficiency under all operation conditions tested is higher than the non-swirled burner (base burner. For example, the thermal efficiency increased by 8.8%, and 5.8% than base burner for co and counter swirl, respectively at Reynolds number equal 2000 and equivalence ratio 1. The co and counter swirl burners show lower CO emission than the base burner. The co swirl burner has wider operation range than counter swirl. With the increase of pot height, the thermal efficiency of all burners decreases because the flame and combustion gases are cooled due to mixing with ambient air. As a result, the heat transfer is decreased due to atmospheric loss, which decrease the thermal efficiency.

  19. The influence of burner material properties on the acoustical transfer function of radiant surface burners

    NARCIS (Netherlands)

    Schreel, K.R.A.M.; Tillaart, van den E.L.; Goey, de L.P.H.

    2005-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a largemodulation range. This can lead to noise problems which cannot be solved viatrial and error, but need accurate modelling. An acoustical analysis as part ofthe design phase can reduce the time-to-market considerably, but the

  20. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  1. Recuperative dual fuel bruner with low NO{sub x} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Munko, A.; Kleine Jaeger, F.; Koehne, H. [RWTH Aachen (Germany). Energie- und Stofftransport

    2003-07-01

    In a current research project of the Arbeitsgemeinschaft Industrieller Forschungsvereinigungen e.V. (AIF) (a German research association) a new dual fuel burner for radiant tubes is being developed at the Department tof Heat and Mass Transfer (EST, RWTH Aachen University). As combustible gas (natural gas type H / Erdgas H) and fuel oil (Heizoel Extra Leicht) are used. These research activities represent the further development of the radiant tube oil burner that was developed on behalf of the AIF and in cooperation with the Forschungsgemeinschaft Industrieofenbau (FOGI e.V.) (AIF project 12345B). The radiant tube burner was designed for the furnace temperature 1000 C can the firing rate 20 to 40 kW. Due to the vaporization of the fuel oil and the homogeneous fuel mixing with a flue gas flow, at the furnace temperature 1000 C and preheated air temperature 850 C NO{sub x}-emissions below 200 mg/m{sup 3} (5% O{sub 2}, Heizoel Extra Leicht) are reached. Using gas (natural gas type H) the burner tests indicate a high NO{sub x}-reduction potential - in gas operation at a lab furnace (furnace temperature 700 C) NO{sub x}-emissions below 40 mg/m{sup 3} result. The future works within the project are the construction of a dual-fuel mixing-device for the alternative use of liquid and gaseous fuel as well as further burner operation tests at furnace temperature 1000 C. (orig.)

  2. Dual temperature isotope exchange process using hot feed with liquid recycle from the humidifier

    International Nuclear Information System (INIS)

    Paulis, G.J.C.A.

    1977-01-01

    This invention relates to an improvement in the dual temperature substances at two temperatures. It provides hot feed process, which while keeping the water purity advantages offered by a recycle of liquid, reduces the energy requirements of the process saving in capital cost over previous hot feed process, at equal production rate, or conversely which offers a substantial increase in production rate at equal capital costs

  3. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Ganjehkaviri, Abdolsaeid; Wahid, Mazlan Abdul; Mohd Jaafar, M.N.

    2017-01-01

    Highlights: • Using flameless burner as a supplementary firing system after gas turbine is modeled. • Thermodynamic, economic and environmental analyses of this model are performed. • Efficiency of the plant increases about 6% and CO_2 emission decreases up to 5.63% in this design. • Available exergy for work production in both gas cycle and steam cycle increases in this model. - Abstract: To have an optimum condition for the performance of a combined cycle power generation, using supplementary firing system after gas turbine was investigated by various researchers. Since the temperature of turbine exhaust is higher than auto-ignition temperature of the fuel in optimum condition, using flameless burner is modelled in this paper. Flameless burner is installed between gas turbine cycle and Rankine cycle of a combined cycle power plant which one end is connected to the outlet of gas turbine (as primary combustion oxidizer) and the other end opened to the heat recovery steam generator. Then, the exergoeconomic-environmental analysis of the proposed model is evaluated. Results demonstrate that efficiency of the combined cycle power plant increases about 6% and CO_2 emission reduces up to 5.63% in this proposed model. It is found that the variation in the cost is less than 1% due to the fact that a cost constraint is implemented to be equal or lower than the design point cost. Moreover, exergy of flow gases increases in all points except in heat recovery steam generator. Hence, available exergy for work production in both gas cycle and steam cycle will increase in new model.

  4. 3-DIMENSIONAL SIMULATION AND FEASIBILITY STUDY OF BIOMASS/COAL CO-COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    Nataliya DUNAYEVSKA

    2017-06-01

    Full Text Available Combustion of solid biomass mixed with coal in existing boilers not only reduces harmful emissions, but also allows diversifying the available fuel base. Such technology allows to implement the efficient use of food industry solid wastes, which otherwise would be dumped in piles, and thus produce harmful environmental impact. The geometrical models of research reactor and a burner thermal preprocessing of pulverized coal were developed and calculational meshes were generated. The geometrical model of the VGP-100Vpresents only fluid domain whereas the effect of cooled walls was substituted by the equivalent biudary conditions deruved on the basis of direct experimentation. The model of the VGP-100V allowed accounting for the specifics of radiative heat transfer by comparison of experimental thermo-couple measurements to the simulated by the model one. A model has been developed allowing the determination of actual temperatures of combustion gases flow based upon the reading of unsheathed thermo-couples by taking into account the reradiation of the thermo-couple beads to the channel walls. Based on the ANSYS 3-D process model in the burner of the Trypilska Thermal Power Plant (TPP for the combustion of low-reactive coal with the thermochemical preparation of the design of an actual burner has been developed. On the basis of the experimental studies of the actual burner and the above-mentioned CFD calculations, the burner draft of the 65 MW for TPP-210A boiler aimed at the implementation of biomass-coal co-combustion was designed.

  5. Mathematical modeling of the drying of extruded fish feed and its experimental demonstration

    DEFF Research Database (Denmark)

    Haubjerg, Anders Fjeldbo; Simonsen, B.; Løvgreen, S.

    This paper present a mathematical model for the drying of extruded fish feed pellets. The model relies on conservation balances for moisture and energy. Sorption isotherms from literature are used together with diffusion and transfer coefficients obtained from dual parameter regression analysis...... against experimental data. The lumped capacitance method for the estimation of the heat transfer coefficient is used. The model performs well at temperatures ± 5 °C from sorption isotherm specificity, and for different pellet sizes. There is a slight under-estimation of surface temperature of denser feed...

  6. Experimentation and mathematical simulation of the operation of a 300-kW boiler, equipped with a progressive regulation or on/off burner

    Energy Technology Data Exchange (ETDEWEB)

    Anglesio, P [Politecnico di Torino, Italy; Perthuis, E

    1980-04-01

    The results of an experimental study undertaken during tests run with domestic fuel oil and natural gas, are described. Losses via wall surfaces and exhaust gases are determined, and according to variations in output with the effective power of the boiler and the advantage of progressive regulation mode operation, from the energy point of view, are demonstrated. The mathematical model developed is presented. Simulation is obtained by considering thermal transfers in the hearth, and then the exchanger of the boiler. For continuous operation, two programs are presented. The first is used for adjustment to experimental results. A third program simulates discontinuous operation. Theoretical results slightly overestimate actual output, but confirm the advantage of progressive regulation. The economic study shows that the excess cost of a progressive modulation type burner tends to direct choice towards a compromise, in the form of a dual-rate (high/low) type burner.

  7. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  8. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  9. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  10. The new low-NO{sub x} burner

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masato [Joban Joint Power Corporation, Ltd., Nagasaki (Japan); Domoto, Kazuhiro; Tanaka, Ryuichiro [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Boiler Engineering Dept. Power Systems; Matsumoto, Keigo [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Combustion Lab.

    2013-11-01

    Burner design requires good ignitability, high burn-up rate and low NO{sub x} emissions. Mitsubishi Heavy Industries Ltd. (MHI) developed a low-NO{sub x} burner which meets the aforementioned requirements. It also needs less combustion air, the burner nozzle is subjected to less thermal stresses, and the potential of NO{sub x} corrosion is being reduced. (orig.)

  11. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  12. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  13. Incineration of ion exchange resins using concentric burners

    International Nuclear Information System (INIS)

    Fukasawa, T.; Chino, K.; Kawamura, F.; Kuriyama, O.; Yusa, H.

    1985-01-01

    A new incineration method, using concentric burners, is studied to reduce the volume of spent ion exchange resins generated from nuclear power plants. Resins are ejected into the center of a propane-oxygen flame and burned within it. The flame length is theoretically evaluated by the diffusion-dominant model. By reforming the burner shape, flame length can be reduced by one-half. The decomposition ratio decreases with larger resin diameters due to the loss of unburned resin from the flame. A flame guide tube is adapted to increase resin holding time in the flame, which improves the decomposition ratio to over 98 wt%

  14. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  15. Sensitivity of Transmutation Capability to Recycling Scenarios in KALIMER-600 TRU Burner

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Myung Hyun

    2013-01-01

    The purpose of this study is to test transmutation and design feasibility of KALIMER burner caused from many limitations in recycling options; such as low recovery factors and external feed. Design impact from many recycling options will be tested as a sensitivity to various recycling process parameters under many recycling scenarios. Through this study, possibilities when Pyro-processing is realized with SFR can be expected in the recycling scenarios. For the development of sodium-cooled fast reactor(SFR) technology, prototype KALIMER plant is now under R and D stage in Korea. For the future application of SFR for waste transmutation, KALIMER core was designed for TRU burner by KAERI. Feasibility of TRU burner cannot be evaluated exactly because overall functional parameters in pyro-processing recycling process has not been verified yet. There is great possibility to accept undesirable process functions in pyro-processing. Only TRU nuclides composition a little differs between PWR SF and CANDU SF so first scenario has no problem operating SFR. In second scenario, the radiotoxicity of waste at 99% of TRU RF have to be confirmed whether it is proper level to reposit as Low and Intermediate Level Wastes or not. And the reactor safety at high RF of RE must be inspected. Not only third scenario but also several scenarios for good measure are being calculated and will be evaluated

  16. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  17. Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Béla Kosztin

    2013-03-01

    Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.

  18. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  19. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    Janca, J.; Tesar, C.

    1996-01-01

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  20. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  1. Efficient industrial burner control of a flexible burner management system; Effiziente industrielle Brennertechnik durch Einsatz flexibler Feuerungsautomaten

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ulrich; Saenger, Peter [Siemens AG, Rastatt (Germany)

    2012-02-15

    Compactness and flexibility of a burner control system is a very important issue. With a few types a wide range in different industrial applications should be covered. This paper presents different applications of a new burner control system: heating of cooling lines in glass industry, steam generation and air heating for a pistachio roastery and in grain dryers. (orig.)

  2. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  3. Burner for a wood burning furnace

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, H

    1981-12-10

    The burner according to the invention consists of a horizontal tube, whose front wall is penetrated by an intake pipe, which is surrounded by a pipe duct and several divided shells, which are arranged below the pipe duct. The front wall is also provided with air openings. The intake pipe is provided with a spiral and moves chopped wood into the burner.

  4. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  5. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  6. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  7. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    Martinez, Camilo; Cardona, Mario; Arrieta, Andres Amell

    2001-01-01

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  8. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  9. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  10. CFD simulation of a burner for syngas characterization and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Desideri, Umberto [University of Perugia (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, umberto.desideri@unipg.it; D' Amico, Michele [University of Perugia (Italy). Dept. of Energetic Engineering], E-mail: damico@crbnet.it

    2009-07-01

    Biomass and waste are distributed and renewable energy sources that may contribute effectively to sustainability if used on a small and micro scale. This requires the transformation through efficient technologies (gasification, pyrolysis and anaerobic digestion) into a suitable gaseous fuel to use in small internal combustion engines and gas turbines. The characterization of biomass derived syngas during combustion is therefore a key issue to improve the performance of small scale integrated plants because synthesis gas show significant differences with respect to Natural Gas (mixture of gases, low calorific value, hydrogen content, tar and particulate content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. To this aim a burner for syngas combustion and LHV measurement through mass and energy balance was realized and connected to the rotary-kiln laboratory scale pyrolyzer at the Department of Industrial Engineering of the University of Perugia. A computational fluid dynamics (CFD) simulation of the burner was carried out considering the combustion of propane to investigate temperature and pressure distribution, heat transmission and distribution of the combustion products and by products. The simulation was carried out using the CFD program Star-CD. Before the simulation a geometrical model of the burner was built and the volume of model was subdivided in cells. A sensibility analysis of cells was carried out to estimate the approximation degree of the model. Experimental data about combustion emission were carried out with the propane combustion in the burner, the comparison between numerical results and experimental data was studied to validate the simulation for future works involved with the combustion of treated or raw (syngas with tar) syngas obtained from pyrolysis process. (author)

  11. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  12. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  13. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  14. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  15. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Makmool, U.; Jugjai, S.; Tia, S.; Vallikul, P.; Fungtammasan, B.

    2007-01-01

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  16. Assessment of PWR plutonium burners for nuclear energy centers

    International Nuclear Information System (INIS)

    Frankel, A.J.; Shapiro, N.L.

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible

  17. A Design Of Feeding Network For A Dual-Linear Polarization, Stacked, Probe-Fed Microstrip Patch Antenna Array

    DEFF Research Database (Denmark)

    Jaworski, G.; Krozer, Viktor

    2004-01-01

    Components of multilayer feed network are presented for application in broad-band dual-linear polarized stacked C-band antenna. Measurement results of wide band matching circuits and different types of power divider networks constituting parts of BFN demonstrate wideband operation. Suitable...

  18. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    Eskilsson, David; Roennbaeck, Marie; Samuelsson, Jessica; Tullin, Claes

    2004-01-01

    There is a trade-off between the emissions of nitrogen oxides (NO x ) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NO x emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NO x emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NO x emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NO x emission from today's pellet burners

  19. Comparison calculations for an accelerator-driven minor actinide burner

    International Nuclear Information System (INIS)

    2002-01-01

    International interest in accelerator-driven systems (ADS) has recently been increasing in view of the important role that these systems may play as efficient minor actinide and long-lived fission-product (LLFP) burners and/or energy producers with an enhanced safety potential. However, the current methods of analysis and nuclear data for minor actinide and LLFP burners are not as well established as those for conventionally fuelled reactor systems. Hence, in 1999, the OECD/NEA Nuclear Science Committee organised a benchmark exercise for an accelerator-driven minor actinide burner to check the performances of reactor codes and nuclear data for ADS with unconventional fuel and coolant. The benchmark model was a lead-bismuth-cooled subcritical system driven by a beam of 1 GeV protons. This report provides an analysis of the results supplied by seven participants from eight countries. The analysis reveals significant differences in important neutronic parameters, indicating a need for further investigation of the nuclear data, especially minor actinide data, as well as the calculation methods. This report will be of particular interest to reactor physicists and nuclear data evaluators developing nuclear systems for nuclear waste management. (authors)

  20. The effect of heat transfer on acoustics in burner stabilized flat flames

    OpenAIRE

    Schreel, K.R.A.M.; Tillaart, van den, E.L.; Janssen, R.W.M.; Goey, de, L.P.H.; Vovelle, C.; Lucka, K.

    2003-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a large modulation range. This can lead to noise problems which cannot be solved via trial and error, but need accurate modelling. An acoustic analysis as part of the design phase can reduce the time-to-market considerably, but the acoustic response of the flame is an unknown and complex key-factor. In this study, the influence of the heat transfer between the gas and the burner on the acoustic transfer coefficient is studied...

  1. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  2. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  3. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  4. Dual-Schemata Model

    Science.gov (United States)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  5. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  6. Wideband feeds for the upgraded GMRT

    International Nuclear Information System (INIS)

    Bandari, Hanumanth Rao; Sankarasubramanian, G; Kumar, A Praveen

    2013-01-01

    This paper describes the existing feeds in use at the GMRT Observatory and details the ongoing development of next generation wideband feeds for the upgraded GMRT. The existing feeds include: feed with folded thick dipoles (for 150 MHz), dipole-disc feed (for 325 MHz), dual-band coaxial feed (for 233 MHZ and 610 MHz), and corrugated horn feed (for 1400–1450 MHz). The new broadband feeds covered in this paper are: cone-dipole feeds for 250–500 and 500–1000 MHz, wideband horn feed for 550–900 MHz, and dual ring feed for 130–260 MHz. Design techniques and performance results for these are described.

  7. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  8. Design evaluation of the 20-cm (8-inch) secondary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  9. Design evaluation of the 40-cm (16-inch) primary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-06-01

    An evaluation is given of the design of the existing 40-cm (16-in.) engineering-scale primary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) primary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype primary burner system. One concept utilizes the existing burner heating and cooling sub-systems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes direct contact hot gas heating and internal gas cooling of the burner, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  10. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  11. Ethanol production in an immobilized-cell column reactor: The effects of micro-aeration and dual feeds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K

    1988-01-01

    Immobilized Saccharomyces cerevesiae cells adsorbed onto wood chips in a packed-bed bioreactor were used for ethanol fermentation from glucose solution. In aerobic and anaerobic batch experiments, an increase in initial glucose concentration resulted in a reduction of the specific growth rate, but no apparent glucose inhibition was found at initial glucose concentrations of ca <120 g/l. Since it is inevitable to use high substrate concentration to obtain high product concentration, experiments were performed in an immobilized-cell reactor (ICR) to examine any improvements achieved by a dual-feed mode over a continuous ICR system. The dual scheme can provide the same total amount of substrate while keeping the maximum substrate concentration to which the cells are exposed to about half of that in the single-feed case. In the dual-feed ICR, the ethanol production rate was 15% higher than that of the single-fed ICR. Experiments in skewed and vertical ICRs were performed to observe the difference in CO{sub 2} bubble removal; the bubbles were smoothly released in the skewed ICR compared to significant CO{sub 2} accumulation in the vertical ICR, and a biomass buildup on the wood surface was also observed. The experimental results indicate that trace amounts of dissolved oxygen stimulated fermentation rates, with one experiment showing a 31% improvement in ethanol productivity using aeration. At a controlled aeration rate, cells were observed to flocculate naturally onto the wood surface. Plugging of the void spaces, due to excess cell growth and intermittent CO{sub 2} holdup, was observed to begin at the base of the packed bed and progressed upward with time, thus undesirable channelling of liquid flow occurred. 200 refs., 76 figs., 21 tabs.

  12. Some parameters and conditions defining the efficiency of burners ...

    Indian Academy of Sciences (India)

    irradiation in special burners, namely, in the blankets of ADS. Various views ... Ecologic gain – ratio of the ecologic threat level of initial LLW to that of final. LLW. .... For all burner types, the general tendency is that the increase of consumption.

  13. Characterization of combustion in a fabric singeing burner operating with varsol

    International Nuclear Information System (INIS)

    Quintana M, Juan C; Mendoza S, Cesar Camilo; Molina Alejandro

    2009-01-01

    The textile industry uses singeing burners to diminish the amount of pilling on surface fabrics. Some of these burners use Stoddard solvent which has high cost per unit of energy, high flammability and emits volatile organic compounds that pose an occupational safety hazard. This study characterized a singing burner operating with varsol performing measurements of temperature downstream the burner, air and fuel flows, and concentration of CO, CO 2 , O 2 and NO x . These measurements defined the most important characteristics of the Stoddard solvent flame that should be maintained to obtain a similar behavior in an eventual change to natural gas.

  14. Parametric Study of High-Efficiency and Low-Emission Gas Burners

    Directory of Open Access Journals (Sweden)

    Shuhn-Shyurng Hou

    2013-01-01

    Full Text Available The objective of this study is to investigate the influence of three significant parameters, namely, swirl flow, loading height, and semi-confined combustion flame, on thermal efficiency and CO emissions of a swirl flow gas burner. We focus particularly on the effects of swirl angle and inclination angle on the performance of the swirl flow burner. The results showed that the swirl flow burner yields higher thermal efficiency and emits lower CO concentration than those of the conventional radial flow burner. A greater swirl angle results in higher thermal efficiency and CO emission. With increasing loading height, the thermal efficiency increases but the CO emission decreases. For a lower loading height (2 or 3 cm, the highest efficiency occurs at the inclination angle 15°. On the other hand, at a higher loading height, 4 cm, thermal efficiency increases with the inclination angle. Moreover, the addition of a shield can achieve a great increase in thermal efficiency, about 4-5%, and a decrease in CO emissions for the same burner (swirl flow or radial flow.

  15. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  16. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  17. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  18. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier

    International Nuclear Information System (INIS)

    Unar, Imran Nazir; Wang, Lijun; Pathan, Abdul Ghani; Mahar, Rasool Bux; Li, Rundong; Uqaili, M. Aslam

    2014-01-01

    Highlights: • We simulated a double stage 3D entrained flow coal gasifier with multi-opposite burners. • The various reaction mechanisms have evaluated with experimental results. • The effects of coal and oxygen distribution between two stages on the performance of gasifier have investigated. • The local coal to oxygen ratio is affecting the overall efficiency of gasifier. - Abstract: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–ε turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance

  19. The effects of chemical kinetics and wall temperature on performance of porous media burners

    Science.gov (United States)

    mohammadi, Iman; Hossainpour, Siamak

    2013-06-01

    This paper reports a two-dimensional numerical prediction of premixed methane-air combustion in inert porous media burner by using of four multi-step mechanisms: GRI-3.0 mechanism, GRI-2.11 mechanism and the skeletal and 17 Species mechanisms. The effects of these models on temperature, chemical species and pollutant emissions are studied. A two-dimensional axisymmetric model for premixed methane-air combustion in porous media burner has developed. The finite volume method has used to solve the governing equations of methane-air combustion in inert porous media burner. The results indicate that the present four models have the same accuracy in predicting temperature profiles and the difference between these profiles is not more than 2 %. In addition, the Gri-3.0 mechanism shows the best prediction of NO emission in comparison with experimental data. The 17 Species mechanism shows good agreement in prediction of temperature and pollutant emissions with GRI-3.0, GRI-2.11 and the skeletal mechanisms. Also the effects of wall temperature on the gas temperature and mass fraction of species such as NO and CH4 are studied.

  20. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Aspfors, Jonas; Larfeldt, Jenny

    1999-01-01

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm 3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/m n 3 and OGC to 125 mg/m n 3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/m n 3 at half load while the emission of CO increased to 800 mg/m n 3 . The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  1. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho

    2009-01-01

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a

  2. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  3. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  4. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  5. Slurry burner for mixture of carbonaceous material and water

    Science.gov (United States)

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  6. Dependence of flame length on cross sections of burners

    Energy Technology Data Exchange (ETDEWEB)

    Hackeschmidt, M.

    1983-06-01

    This article analyzes the relation between the shape of burner muzzle and the resulting flame jet in a combustion chamber. Geometrical shapes of burner muzzles, either square, circular or triangular are compared as well as proportions of flame dimensions. A formula for calculating flame lengths is derived, for which the mathematical value 'contact profile radius' for burner muzzle shape is introduced. The formula for calculating flame lengths allows a partial replacement of the empirical flame mixing factor according to N.Q. Toai, 1981. The geometrical analysis does not include thermodynamic and reaction kinetic studies, which may be necessary for evaluating heterogenous (coal dust) combustion flames with longer burning time. (12 refs.)

  7. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    Science.gov (United States)

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  8. Development of strand burner for solid propellant burning rate studies

    International Nuclear Information System (INIS)

    Aziz, A; Mamat, R; Ali, W K Wan

    2013-01-01

    It is well-known that a strand burner is an apparatus that provides burning rate measurements of a solid propellant at an elevated pressure in order to obtain the burning characteristics of a propellant. This paper describes the facilities developed by author that was used in his studies. The burning rate characteristics of solid propellant have be evaluated over five different chamber pressures ranging from 1 atm to 31 atm using a strand burner. The strand burner has a mounting stand that allows the propellant strand to be mounted vertically. The strand was ignited electrically using hot wire, and the burning time was recorded by electronic timer. Wire technique was used to measure the burning rate. Preliminary results from these techniques are presented. This study shows that the strand burner can be used on propellant strands to obtain accurate low pressure burning rate data

  9. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  10. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  11. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  12. Numerical modeling of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB

    Directory of Open Access Journals (Sweden)

    Kanokkarn Jirakulsomchok

    2017-08-01

    Full Text Available This article presents a numerical study of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB. The LMPB consists of four main components, i.e., the fuel preheating porous (FP, the porous combustor (PC, the air jacket, and the mixing chamber. Interestingly, this LMPB was able to highly preheated and it still maintained high safety in operation. A single-step global reaction, steady state approach and a one-dimensional model were considered. The necessary information for burner characteristics, i.e., temperature profile, flame location and maximum temperature were also presented. The results indicated that stable combustion of a low-calorific-producer-gas within LMPB was possible achieved. Increasing equivalence ratio resulted in increasing in the flame temperature. Meanwhile, increasing the firing rate caused slightly decrease in flame temperature. The flame moved to downstream zone of the PC when the firing rate increased. Finally, it was found that the equivalence ratio did not affect the flame location.

  13. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    International Nuclear Information System (INIS)

    Larry G. Felix; P. Vann Bush

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ((approx)1.0% S). The dual-register burner is a generic low-NO(sub x) burner that incorporates two independent wind boxes. In the second test (Test 11), regular ((approx)70% passing 200 mesh) and finely ground ((approx)90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO(sub x) and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO(sub x) emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002

  14. The dual of the Carroll-Field-Jackiw model

    International Nuclear Information System (INIS)

    Guimaraes, M.S.; Grigorio, L.; Wotzasek, C.

    2006-01-01

    In this work we apply different duality techniques, both the dual projection, based on the soldering formalism and the master action, in order to obtain and study the dual description of the Carroll- Field-Jackiw model [1], a theory with a Chern-Simons-like explicitly Lorentz and CPT violating term, including the interaction with external charges. This Maxwell-Chern-Simons-like model may be rewritten in terms of the interacting modes of a massless scalar model and a topologically massive model [2], that are mapped, through duality, into interacting massless Maxwell and massive self-dual modes [3]. It is also shown that these dual modes might be represented into an unified rank-two self-dual model that represents the direct dual of the vector Maxwell-Chern-Simons-like model

  15. A small porous-plug burner for studies of combustion chemistry and soot formation

    Science.gov (United States)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  16. Developement of porous media burner operating on waste vegetable oil

    International Nuclear Information System (INIS)

    Lapirattanakun, Arwut; Charoensuk, Jarruwat

    2017-01-01

    Highlights: • Steam was successfully applied to promote combustion of WVO. • A specially designed porous domain was an essential element for stable combustion of WVO. • The performance of WVO burner was in the range of cooking stove. • Nozzle clog up in domestic WVO burner can be avoided when replacing it with a steam-assisted nozzle. - Abstract: A newly designed cooking stove using Wasted Vegetable Oil (WVO) as fuel was introduced. Porous media, containing 2 cm diameter of spherical ceramic balls, was used as a flame stabilizer. Steam was successfully applied in a burner at this scale to atomize WVO droplet and entrain air into the combustion zone as well as to reduce soot and CO emission. DIN EN 203-1 testing standard was adopted and the experiment was conducted at various firing rate with the water flow rate at 0.16, 0.20 and 0.22 kg/min. Temperature, emissions, visible flame length, thermal efficiency as well as combustion efficiency were evaluated. Under the current WVOB design, it was suitable to operate the burner at the range of nominal firing rate between 325 and 548 kW/m"2 with water flow rate of 0.16 kg/min, at burner height to diameter ratio of 0.75, giving CO and NO_x emissions up to 171 and 40 ppm, respectively (at 6% O_2). Thermal efficiency was at around 28% where the combustion efficiency was approximately at 99.5%. The performance of WVO burner could be improved further if increasing the H/D ratio to 1.5, yielding thermal efficiency up to 42%.

  17. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    International Nuclear Information System (INIS)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-01-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% Δk. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% Δk. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  18. Nitrogen oxide suppression by using a new design of pulverized-coal burners

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Cameron, S.D.; Grekhov, L.L. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The results of testing a low-NO{sub x} swirl burner are presented. This burner was developed by Babcock Energy Ltd., for reducing nitrogen oxide emissions when burning Ekibastuz and Kuznetsk low-caking coals in power boilers. The tests conducted at a large plant of the BEL Technological Center showed that the new burner reduces NO{sub x} emissions by approximately two times. 6 refs., 6 figs., 1 tab.

  19. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  20. Numerical simulations of a large scale oxy-coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group

    2013-07-01

    Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.

  1. Numerical investigation of premixed combustion in a porous burner with integrated heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Farzaneh, Meisam; Shafiey, Mohammad; Shams, Mehrzad [K.N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Ebrahimi, Reza [K.N. Toosi University of Technology, Department of Aerospace Engineering, Tehran (Iran, Islamic Republic of)

    2012-07-15

    In this paper, we perform a numerical analysis of a two-dimensional axisymmetric problem arising in premixed combustion in a porous burner with integrated heat exchanger. The physical domain consists of two zones, porous and heat exchanger zones. Two dimensional Navier-Stokes equations, gas and solid energy equations, and chemical species transport equations are solved and heat release is described by a multistep kinetics mechanism. The solid matrix is modeled as a gray medium, and the finite volume method is used to solve the radiative transfer equation to calculate the local radiation source/sink in the solid phase energy equation. Special attention is given to model heat transfer between the hot gas and the heat exchanger tube. Thus, the corresponding terms are added to the energy equations of the flow and the solid matrix. Gas and solid temperature profiles and species mole fractions on the burner centerline, predicted 2D temperature fields, species concentrations and streamlines are presented. Calculated results for temperature profiles are compared to experimental data. It is shown that there is good agreement between the numerical solutions and the experimental data and it is concluded that the developed numerical program is an excellent tool to investigate combustion in porous burner. (orig.)

  2. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Fantuzzi, M.; Ballarino, L.

    2008-01-01

    Environmental emissions constraints have led manufacturers to improve their low NO x recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO x emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O 2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  3. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  4. Modeling of pollutant formation in fully premixing surface burners using a verified practice-oriented experimental reaction-kinetic calculation method. Final report

    International Nuclear Information System (INIS)

    Ruy, C.; Kremer, H.

    1996-01-01

    The intent of the present study was to simulate quantitatively pollutant formation in premixing surface burners and to describe qualitatively the share of the premixing flame in pollut emissions from atmospheric burners. For this purpose reaction-kinetic programmes for one-dimensional premixing flames were extended by a terms describing heat discharge through gas radiation. Furthermore, the calculation range for the flame was extended far into the secondary reaction zone. Temperature, CO, and NO x profiles were measured in the secondary reaction zone of premixing burners at standard pressure. The air-fuel ratio was calculated within the practically relevant range between 0.5 and 1.5, as was load behaviour. (DG) [de

  5. Experiential study on temperature and emission performance of micro burner during porous media combustion

    Science.gov (United States)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, A.; Ismail, A. K.; Hussien, A. A.; Kataraki, P. S.; Ishak, M. H. H.; Mazlan, M.; Zubair, A. F.

    2018-05-01

    Addition of porous materials in reaction zone give rise to significant improvements in combustion performance. In this work, a dual layered micro porous media burner was tested for stable flame and emissions. Reaction and preheat layer was made up of discrete (zirconia) and foam (porcelain) type of materials respectively. Three different thickness of reaction zone was tested, each with 10, 20 and 30mm. Interestingly, only 20mm thick layer can able to show better thermal efficiency of 72% as compared to 10 and 30mm. Best equivalence ratio came out to be 0.7 for surface and 0.6 for submerged flame conditions. Moreover, emission was continuously monitored to detect presence of NOx and CO, which were under controlled limits.

  6. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Yen Tzu-Hsiang; Chen Bao-Dong [Refining and Manufacturing Research Institute, CPC Corporation, Chia-Yi City 60036, Taiwan (China); Hong Wen-Tang; Tsai Yu-Ching; Wang Hung-Yu; Huang Cheng-Nan; Lee Chien-Hsiung [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546, Taiwan (China)

    2010-07-01

    Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC) system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2--6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively), but increases to 2--9 kW and 2.6--11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5--16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  7. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  8. 300 MWe Burner Core Design with two Enrichment Zoning

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il

    2008-01-01

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has been also performed. In the early stage of the development of a fast reactor, the main purpose is an economical use of a uranium resource but nowadays in addition to the maximum utilization of a uranium resource, the burning of a high level radioactive waste is taken as an additional interest for the harmony of the environment. In way of constructing the commercial size reactor which has the power level ranging from 800 MWe to 1600 MWe, the demonstration reactor which has the power level ranging from 200 MWe to 600 MWe was usually constructed for the midterm stage to commercial size reactor. In this paper, a 300 MWe burner core design was performed with purpose of demonstration reactor for KALIMER-600 burner of 600 MWe. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in design of KALIMER-600 burner, the 2 enrichment zoning approach was adapted

  9. CFD optimization of a pellet burner

    Directory of Open Access Journals (Sweden)

    Westerlund Lars B.

    2012-01-01

    Full Text Available Increased capacity of computers has made CFD technology attractive for the design of different apparatuses. Optimization of a pellet burner using CFD was investigated in this paper. To make the design tool work fast, an approach with only mixing of gases was simulated. Other important phenomena such as chemical reactions were omitted in order to speed up the design process. The original design of the burner gave unsatisfactory performance. The optimized design achieved from simulation was validated and the results show a significant improvement. The power output increased and the emission of unburned species decreased but could be further reduced. The contact time between combustion gases and secondary air was probably too short. An increased contact time in high temperature conditions would possibly improve the design further.

  10. The effect of heat transfer on acoustics in burner stabilized flat flames

    NARCIS (Netherlands)

    Schreel, K.R.A.M.; Tillaart, van den E.L.; Janssen, R.W.M.; Goey, de L.P.H.; Koehne, H.; Lucka, K.

    2003-01-01

    Modern central heating systems use low NOx premixed burners with a largemodulation range. This can lead to noise problems which cannot be solved viatrial and error, but need accurate modelling. An acoustic analysis as part ofthe design phase can reduce the time-to-market considerably, but the

  11. Effect of fuel volatility on performance of tail-pipe burner

    Science.gov (United States)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  12. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  13. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  14. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    The marine industry is changing with new demands concerning high energy efficiency, fuel flexibility and lower emissions of NOX and SOX. A collaboration between the company Alfa Laval and Technical University of Denmark has been established to support the development of the next generation...... of marine burners. The resulting auxiliary boilers shall be compact and able to operate with different fuel types, while reducing NOX emissions. The specific boiler object of this study uses a swirl stabilized liquid fuel burner, with a pressure swirl spill-return atomizer (Fig.1). The combustion chamber...... is enclosed in a water jacket used for water heating and evaporation, and a convective heat exchanger at the furnace outlet super-heats the steam. The purpose of the present study is to gather detailed knowledge about the influence of fuel spray conditions on marine utility boiler flames. The main goal...

  15. BURNER RIG TESTING OF A500 C/SiC

    Science.gov (United States)

    2018-03-17

    AFRL-RX-WP-TR-2018-0071 BURNER RIG TESTING OF A500® C /SiC Larry P. Zawada Universal Technology Corporation Jennifer Pierce UDRI...TITLE AND SUBTITLE BURNER RIG TESTING OF A500® C /SiC 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...test program characterized the durability behavior of A500® C /SiC ceramic matrix composite material at room and elevated temperature. Specimens were

  16. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600 0 C), lower fluid bed operating temperature (850 0 C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  17. The effect of heat transfer on acoustics in burner stabilized flat flames

    NARCIS (Netherlands)

    Schreel, K.R.A.M.; Tillaart, van den E.L.; Janssen, R.W.M.; Goey, de L.P.H.; Vovelle, C.; Lucka, K.

    2003-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a large modulation range. This can lead to noise problems which cannot be solved via trial and error, but need accurate modelling. An acoustic analysis as part of the design phase can reduce the time-to-market considerably, but the

  18. Transfer function calculations of segregated elements in a simplified slit burner with heat exchanger

    NARCIS (Netherlands)

    Hosseini, N.; Kornilov, V.N.; Teerling, O. J.; Lopez Arteaga, I.; de Goey, Ph.

    A simplified burner-heat exchanger system is numerically modeled in order to investigate the effects of different elements on the response of the whole system to velocity excitation. We model the system in a 2D CFD code, considering a linear array of multiple Bunsen-type flames with heat exchanger

  19. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  20. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  1. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  2. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  3. IEN project - Fluidized bed burner

    International Nuclear Information System (INIS)

    1985-08-01

    Due to difficulties inherent to the organic waste storage from laboratories and institutes which use radioactive materials for scientific researches, the Nuclear Facilities Division (DIN/CNEN); elaborated a project for constructing a fluidized burner, in laboratory scale, for burning the low level organic radioactive wastes. The burning system of organic wastes is described. (M.C.K.) [pt

  4. Numerical modeling for flame dynamics and combustion processes in a two-sectional porous burner with a detailed chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Jun; Kim, Yong Mo [Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    A two-dimensional model with the detailed chemistry and variable transport properties has been applied to numerically investigate the combustion processes and flame dynamics in the bilayer porous burner. To account for the velocity transition and diffusion influenced by solid matrix, porosity terms are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. The detailed chemistry is based on GRI 2.11. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous media in terms of the precise flame structure, pollutant formation, and stabilization characteristics. In this bilayer porous burner, the heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix. This heat transfer process through the solid matrix substantially influences the flame structure and stabilization characteristics in the porous media. The predicted results are compared with experimental data in terms of temperature for gaseous mixture and solid matrix, CO and NO emission level. Based on numerical results, a precise comparison has been made for the freely propagating premixed flames and the premixed flames with a porous media for various inlet velocities.

  5. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed; Mansour, Morkous S.; Memon, Nasir K.; Anjum, Dalaver H.; Chung, Suk-Ho

    2016-01-01

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide

  6. Microjet burners for molecular-beam sources and combustion studies

    Science.gov (United States)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  7. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat...

  8. Dual-band dual-polarized array for WLAN applications

    CSIR Research Space (South Africa)

    Steyn, JM

    2009-01-01

    Full Text Available dual-band dual-polarized (DBDP) antenna design for WLAN applications. The antenna is in the form of an array consisting of four double-dipole radiators. The basic radiating element consists of a rhombus shaped dipole above a planar ground plane... the ground planes and the respective feedlines. Substrate cuts and difierent heights for the horizontal feedlines were necessary to achieve the latter. The 2nd conflguration (for vertical polarization) has a slightly difierent feeding network layout...

  9. Development, study and use of GN type high-speed burners

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, R A; Yerinov, A Y

    1981-01-01

    The design of a tunnel high speed gas burner for thermal, tunnel, and annealing furnaces is described. The use of GN type burners and heat treating processes and annealing of articles allows one to attain high uniformity of heating, to reduce fuel consumption, and to simplify the lining. A high degree of (+ or - f/sup 0/C) heating uniformity and significant (up to 30%) fuel saving was obtained in a heat treatment furnace with a roll-out hearth at the Uralkhimmash plant.

  10. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  11. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  12. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  13. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  14. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    Science.gov (United States)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a

  15. On Goldstone particles and the Adler principle in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    The results that have been obtained on the basis of considering the spontaneous vacuum transitions for the cases of Veneziano dual model and dual M-model are generalized to model containing internal quantum numbers of SU(N)-group. This generalization allows to consider how in dual models the spontaneous violation of symmetry occurs, which Goldstone particles appear in this process, how Adler's principle is realized for dual amplitudes and their topics related of spontaneous violation of symmetry

  16. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  17. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  18. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner

    Energy Technology Data Exchange (ETDEWEB)

    S. Mahesh; D.P. Mishra [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-09-15

    The stability characteristics and emissions from turbulent LPG inverse diffusion flame (IDF) in a backstep burner are reported in this paper. The blow-off velocity of turbulent LPG IDF is observed to increase monotonically with fuel jet velocity. In contrast to normal diffusion flames (NDF), the flame in the present IDF burner gets blown out without getting lifted-off from the burner surface. The soot free length fraction, SFLF, defined as the ratio of visible premixing length, H{sub p}, to visible flame length, H{sub f}, is used for qualitative estimation of soot reduction in this IDF burner. The SFLF is found to increase with central air jet velocity indicating the occurrence of extended premixing zone in the vicinity of flame base. Interestingly, the soot free length fraction (SFLF) is found to be correlated well with the newly devised parameter, global momentum ratio. The peak value of EINOX happens to occur closer to stoichiometric overall equivalence ratio. 16 refs., 9 figs.

  19. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners

    International Nuclear Information System (INIS)

    Wei Xiaolin; Xu Tongmo; Hui Shien

    2004-01-01

    Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value N d , which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and NO x emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the N d value has significant influences on the distributions of temperature and char burnout. There exists an optimal N d value under which the carbon content in the char and the NO x emission is relatively low. The coal ignition and NO x emission in the utilized power station are improved after retrofitting the burners

  20. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  1. Charge distribution in an two-chain dual model

    International Nuclear Information System (INIS)

    Fialkowski, K.; Kotanski, A.

    1983-01-01

    Charge distributions in the multiple production processes are analysed using the dual chain model. A parametrisation of charge distributions for single dual chains based on the νp and anti vp data is proposed. The rapidity charge distributions are then calculated for pp and anti pp collisions and compared with the previous calculations based on the recursive cascade model of single chains. The results differ at the SPS collider energies and in the energy dependence of the net forward charge supplying the useful tests of the dual chain model. (orig.)

  2. Effect of cycled combustion ageing on a cordierite burner plate

    International Nuclear Information System (INIS)

    Garcia, Eugenio; Gancedo, J. Ramon; Gracia, Mercedes

    2010-01-01

    A combination of 57 Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe 2+ and Fe 3+ ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for ≅40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe 3+ ions existing in the cordierite lattice were reduced to Fe 2+ , and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: →Depth profile analyses used as a probe to understand changes in refractory structure. →All changes take place in the uppermost surface of the burner, close to the flame. →Reduction to Fe 2+ of substitutional Fe 3+ ions and partial cordierite decomposition. →Heating-cooling cycling induces a sintering of the existing iron oxide particles. →Chemical changes can explain the alterations observed in the material microstructure.

  3. Unraveling dual feeding associated molecular complexity of salivary glands in the mosquito Anopheles culicifacies

    Directory of Open Access Journals (Sweden)

    Punita Sharma

    2015-08-01

    Full Text Available Mosquito salivary glands are well known to facilitate meal acquisition, however the fundamental question on how adult female salivary gland manages molecular responses during sugar versus blood meal uptake remains unanswered. To investigate these responses, we analyzed a total of 58.5 million raw reads generated from two independent RNAseq libraries of the salivary glands collected from 3–4 day-old sugar and blood fed Anopheles culicifacies mosquitoes. Comprehensive functional annotation analysis of 10,931 contigs unraveled that salivary glands may encode diverse nature of proteins in response to distinct physiological feeding status. Digital gene expression analysis and PCR validation indicated that first blood meal significantly alters the molecular architecture of the salivary glands. Comparative microscopic analysis also revealed that first blood meal uptake not only causes an alteration of at least 12–22% of morphological features of the salivary glands but also results in cellular changes e.g. apoptosis, confirming together that adult female salivary glands are specialized organs to manage meal specific responses. Unraveling the underlying mechanism of mosquito salivary gene expression, controlling dual feeding associated responses may provide a new opportunity to control vector borne diseases.

  4. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  5. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Bang

    2016-01-01

    Full Text Available This paper presents a new dual circularly polarized feed that provides good axial ratio over wide angles and low cross-polarized radiation in backward direction. A circular waveguide open end is fed with two orthogonally polarized waves in phase quadrature by a pair of printed crossed dipoles and a compact connectorized quadrature hybrid coupler. The waveguide aperture is loaded with a dielectric cylinder to reduce the cross-polarization beyond 90 degrees off the boresight. The fabricated feed has, at 5.5 GHz, 6.33-dBic copolarized gain, 3-dB beamwidth of 106°, 10-dB beamwidth of 195°, 3-dB axial ratio beamwidth of 215°, maximum cross-polarized gain of −21.4 dBic, and 27-dB port isolation. The reflection coefficient of the feed is less than −10 dB at 4.99–6.09 GHz.

  6. Dual superconductor models of color confinement

    CERN Document Server

    Ripka, Georges

    2004-01-01

    The lectures, delivered at ECT (European Centre for Theoretical Studies in Nuclear Physics and Related Areas) in Trento (Italy) in 2002 and 2003, are addressed to physicists who wish to acquire a minimal background to understand present day attempts to model the confinement of quantum chromo-dynamics (QCD) in terms of dual superconductors. The lectures focus more on the models than on attempts to derive them from QCD. They discuss the Dirac theory of magnetic monopoles, the world sheet swept out by Dirac strings, deformations of Dirac strings and charge quantization, gauge fields associated to the field tensor and to the dual field tensor, the Landau-Ginzburg (Abelian Higgs) model of a dual superconductor, the flux tube joining two equal and opposite color-electric charges, the Abrikosov-Nielsen-Olesen vortex, the divergencies of the London limit, the comparison of the calculated flux tube and string tension with lattice data, duality transformations and the use of Kalb-Ramond fields, the two-potential Zwanzi...

  7. The planetary water drama: Dual task of feeding humanity and curbing climate change

    Science.gov (United States)

    Rockström, J.; Falkenmark, M.; Lannerstad, M.; Karlberg, L.

    2012-08-01

    This paper analyses the potential conflict between resilience of the Earth system and global freshwater requirements for the dual task of carbon sequestration to reduce CO2 in the atmosphere, and food production to feed humanity by 2050. It makes an attempt to assess the order of magnitude of the increased consumptive water use involved and analyses the implications as seen from two parallel perspectives; the global perspective of human development within a “safe operating space” with regard to the definition of the Planetary Boundary for freshwater; and the social-ecological implications at the regional river basin scale in terms of sharpening water shortages and threats to aquatic ecosystems. The paper shows that the consumptive water use involved in the dual task would both transgress the proposed planetary boundary range for global consumptive freshwater use and would further exacerbate already severe river depletion, causing societal problems related to water shortage and water allocation. Thus, strategies to rely on sequestration of CO2 as a mitigation strategy must recognize the high freshwater costs involved, implying that the key climate mitigation strategy must be to reduce emissions. The paper finally highlights the need to analyze both water and carbon tradeoffs from anticipated large scale biofuel production climate change mitigation strategy, to reveal gains and impact of this in contrast to carbon sequestration strategies.

  8. Interim results: fines recycle testing using the 4-inch diameter primary graphite burner

    International Nuclear Information System (INIS)

    Palmer, W.B.

    1975-05-01

    The results of twenty-two HTGR primary burner runs in which graphite fines were recycled pneumatically to the 4-inch diameter pilot-plant primary fluidized-bed burner are described. The result of the tests showed that zero fines accumulation can easily be achieved while operating at plant equivalent burn rates. (U.S.)

  9. Dual Numbers Approach in Multiaxis Machines Error Modeling

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrdina

    2014-01-01

    Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

  10. Stochastic feeding dynamics arise from the need for information and energy.

    Science.gov (United States)

    Scholz, Monika; Dinner, Aaron R; Levine, Erel; Biron, David

    2017-08-29

    Animals regulate their food intake in response to the available level of food. Recent observations of feeding dynamics in small animals showed feeding patterns of bursts and pauses, but their function is unknown. Here, we present a data-driven decision-theoretical model of feeding in Caenorhabditis elegans Our central assumption is that food intake serves a dual purpose: to gather information about the external food level and to ingest food when the conditions are good. The model recapitulates experimentally observed feeding patterns. It naturally implements trade-offs between speed versus accuracy and exploration versus exploitation in responding to a dynamic environment. We find that the model predicts three distinct regimes in responding to a dynamical environment, with a transition region where animals respond stochastically to periodic signals. This stochastic response accounts for previously unexplained experimental data.

  11. Dual resonance models and their currents

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1978-01-01

    It is shown how dual resonance models were rederived from the concept of a string tracing out a surface in space-time. Thus, interacting strings reproduce the dual amplitudes. A scheme for tackling the unitarity problem began to develop. As a consistent theory of hadronic processes began to be built, workers at the same time were naturally led to expect that leptons could be included with hadrons in a unified dual theory. Thus, there is a search for dual amplitudes which would describe interactions between hadrons and currents (for example, electrons), as well as interactions involving only hadrons. Such amplitudes, it is believed, will be the correct ones, describing the real world. Such amplitudes will provide valuable information concerning such things as hadronic form factors. The great difficulties in building current-amplitudes with the required properties of proper factorization on a good spectrum, duality, current algebra, and proper asymptotic behavior are described. Dual models at the present time require for consistency, an intercept value of α 0 = 1 and a dimension value of d = 26 (or d = 10). There have been speculations that the unphysical dimension may be made physical by associating the ''extra dimensions'' with certain internal degrees of freedom. However, it is desired that the theory itself, force the dimension d = 4. It is quite possible that the dimension problem and the intercept problem are tied together and that resolving either problem will resolve the other. Order by order, a new dual current is constructed that is manifestly factorizable and which appears to be valid for arbitrary space-time dimension. The fact that this current is not bound at d = 26, leads to interesting speculations on the nature of dual currents

  12. A Differentially Driven Dual-Polarized Dual-Wideband Complementary Antenna for 2G/3G/LTE Applications

    Directory of Open Access Journals (Sweden)

    Botao Feng

    2014-01-01

    Full Text Available A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layer η-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz with a stable gain of 7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz with a gain of 9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.

  13. Passive safety design characteristics of the KALIMER-600 burner reactor

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Cho, Chung-Ho; Ha, Ki-Seok; Kim, Sang-Ji

    2009-01-01

    The Korea Atomic Energy Research Institute (KAERI) has recently studied several burner core designs for a transuranics (TRU) transmutation based on the breakeven core geometry of KALIMER-600. The KALIMER-600 is a net electrical rating of 600MWe, sodium-cooled, metallic-fueled, pool-type reactor. For the burner core concept selected for the present analysis, the smearing fractions of the fuel rods in three fuel zones are changed while maintaining the cladding outer diameter and cladding thickness. The resulting fuel slug smearing fractions of the inner, middle, and outer core zones are 36%, 40%, and 48%, respectively. The TRU conversion ratio is 0.57 and the TRU enrichment of the driver fuel is set to 30.0 w/o because of the current practical limitation of the U-TRU-10%Zr metal fuel database. The purpose of this paper is to evaluate the safety performance characteristics provided by the passive safety design features in the KALIMER-600 burner reactor by using a system-wide safety analysis code. The present scoping analysis focuses on an assessment of the enhanced safety design features that provide passive and self-regulating responses to transient conditions and an evaluation of the safety margin during unprotected overpower, unprotected loss of flow, and unprotected loss of heat sink events. The analysis results show that the KALIMER-600 burner reactor provides larger safety margins with respect to the sodium boiling, fuel rod integrity, and structural integrity. The overall inherent safety can be enhanced by accounting for the reactivity feedback mechanisms in the design process. (author)

  14. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  15. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation

    OpenAIRE

    Valera Medina, Agustin; Marsh, Richard; Runyon, Jon; Pugh, Daniel; Beasley, Paul; Hughes, Timothy Richard; Bowen, Philip John

    2017-01-01

    Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were...

  16. A Model of Feeding Readiness for Preterm Infants

    OpenAIRE

    Pickler, Rita H.

    2004-01-01

    This paper presents a theoretical model of bottle feeding readiness in preterm infants, which hypothesizes relationships between bottle feeding readiness, experience, and outcomes. The synactive theory of development provided the conceptual foundation for the model. The model, which is currently being tested, is designed to establish bottle feeding readiness criteria that will help nurses decide when to offer a bottle to a preterm infant The model may also provide a useful framework for deter...

  17. Novel feeding strategies for Saccharomyces cerevisiae DS2155 ...

    African Journals Online (AJOL)

    The dual behavior of Saccharomyces cerevisiae on glucose feed as function of the dilution rate near the critical specific growth rate (ì=0.25) is a bottleneck in industrial production, hence the need for more efficient feeding strategies. In this work novel feeding strategies have been generated and evaluated. For each feeding ...

  18. Dual processing model of medical decision-making

    OpenAIRE

    Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G

    2012-01-01

    Abstract Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administe...

  19. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  20. A dynamic dual process model of risky decision making.

    Science.gov (United States)

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. CORPORATE FEED WITH DUAL SEGMENT CIRCULAR POLARIZED ARRAY RECTENNA FOR LOW POWER RF ENERGY HARVESTING

    Directory of Open Access Journals (Sweden)

    CHIA CHAO KANG

    2016-06-01

    Full Text Available This paper focuses on the investigation of the level powers that can be scavenged from the ambient environment by using corporate feed with dual segment circular polarized antenna array . It will converts the received power to direct current (DC. Being a circular polarized antenna, it has higher inductance per unit area, a good Q-factor and compact capability. The design of corporate-series feed rectenna array is to achieve a high gain antenna and maximize the RF energy received by the rectenna system at ultra low power levels. The entire structure was investigated using a combination of harmonic balance nonlinear analysis and full wave electromagnetic field analysis. The results show that 5.0 dBi gain for circular polarized antenna array can be achieved at frequency 956 MHz. When the input power of 20 dBm fed into the transmitting antenna, the maximum distance for radio frequency (RF harvesting is 5.32m. The output DC voltage for various values of incident RF power is also presented. There are noticed reasonable agreements between the simulated and measured result and the works concludes that the investigation of RF energy harvesting system was successful.

  2. Experimental investigation of combustion instabilities in lean swirl-stabilized partially-premixed flames in single- and multiple-burner setup

    Directory of Open Access Journals (Sweden)

    Christian Kraus

    2016-03-01

    Full Text Available In the present work, combustion instabilities of a modular combustor are investigated. The combustor operates with partially premixed, swirl-stabilized flames and can be operated in single- and different multiple-burner setups. The design parameters of the combustor prevent large-scale flame–flame interactions in the multiple-burner arrangements. The objective is to investigate how the interaction of the swirl jets affects the thermoacoustic stability of the combustor. Results of measurements of pressure oscillations and high-speed OH*-chemiluminescence imaging for the single-burner setup and two multiple-burner setups are discussed. Additionally, results of investigations with different flame characteristics are presented. These are achieved by varying the ratio of the mass flow rates through the swirlers of the double-concentric swirl nozzle. Several unstable modes with high pressure amplitudes are observed in the single-burner setup as well as in the multiple-burner setups. Numerical studies of the acoustic behavior of the combustor setups were performed that indicate that the different geometries show similar acoustic behaviors. The results lead to the conclusion that the interaction of the swirl jets in the multiple-burner setups affects the thermoacoustic response spectrum of the flame even in the absence of large-scale flame–flame interactions. Based on the findings in earlier studies, it is concluded that the differences in the flame response characteristics are induced by the reduction of the swirl intensity in the multiple-burner arrangements, which is caused by the exchange of momentum between the adjacent swirl jets.

  3. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  4. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  5. The dual model of perfectionism and depression among Chinese ...

    African Journals Online (AJOL)

    The dual model of perfectionism was adopted to explore the influence of adaptive and maladaptive perfectionism on depression in college students. The results support the dual process model of perfectionism in Chinese undergraduates. A sample of 206 Chinese undergraduates completed measures of perfectionism, ...

  6. Preliminary Results on the Effects of Distributed Aluminum Combustion Upon Acoustic Growth Rates in a Rijke Burner

    OpenAIRE

    Newbold, Brian R.

    1998-01-01

    Distributed particle combustion in solid propellant rocket motors may be a significant cause of acoustic combustion instability. A Rijke burner has been developed as a tool to investigate the phenomenon. Previous improvements and characterization of the upright burner lead to the addition of a particle injection flame. The injector flame increases the burner's acoustic driving by about 10% which is proportional to the injector's additional 2 g/min of gas. Frequency remained fairly constant fo...

  7. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  8. Analyses of the performance of the ASTRID-like TRU burners in regional scenario studies - 5136

    International Nuclear Information System (INIS)

    Vezzoni, B.; Gabrielli, F.; Rineiski, A.

    2015-01-01

    In the past, large Sodium Fast Reactors systems (earlier CAPRA/CADRA, later ESFR and ESFR-like systems) and Accelerator Driven Systems (ADS-EFIT) were considered and extensively studied in Europe for managing MAs/Pu within regional or national scenario studies. After the ASTRID system was proposed in France, ASTRID-like burners could be considered as further options to be investigated. Low conversion ratio (CR) ASTRID-like burner cores (1200 MWth) have been considered at KIT by introducing few modifications with respect to the original French ASTRID design. These modifications allow keeping almost unchanged the main characteristics of the system (e.g. thermal power) and avoiding a strong deterioration of safety parameters (such as sodium void effect) after introduction of large amounts of Pu (more than 20%) and MAs (2-12%) in the fuel. These cores have already been studied at KIT for phase-out scenarios. A constant energy production case, relevant for a European or another regional scenario is considered in the paper. Cases with different shares (from 10 to 30%) of ASTRID-like burners in the nuclear energy fleet are compared. The results show that the ASTRID-like burners allow the use of all TRUs compositions foreseen in the fuel cycle with a proper choice of the MAs to Pu ratios and of the U/TRUs fractions either in phasing-out and on-going nuclear energy utilization conditions. The results show that a mixed fleet composed of 11% burners and 89% ESFR is able to stabilize the MAs in the cycle. The same stabilization is obtained with a fleet composed by 33% burner in combination with LWRs only

  9. 40 CFR 266.102 - Permit standards for burners.

    Science.gov (United States)

    2010-07-01

    ... or industrial furnace downstream of the combustion zone and prior to release of stack gases to the... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces...

  10. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  11. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  12. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  13. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  14. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    Science.gov (United States)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  15. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  16. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  17. Animal Modeling and Neurocircuitry of Dual Diagnosis

    Science.gov (United States)

    Chambers, R. Andrew

    2010-01-01

    Dual diagnosis is a problem of tremendous depth and scope, spanning many classes of mental disorders and addictive drugs. Animal models of psychiatric disorders studied in addiction paradigms suggest a unitary nature of mental illness and addiction vulnerability both on the neurocircuit and clinical-behavioral levels. These models provide platforms for exploring the interactive roles of biological, environmental and developmental factors on neurocircuits commonly involved in psychiatric and addiction diseases. While suggestive of the artifice of segregated research, training, and clinical cultures between psychiatric and addiction fields, this research may lead to more parsimonious, integrative and preventative treatments for dual diagnosis. PMID:20585464

  18. The influence of near burner region aerodynamics on the formation and emission of nitrogen oxides in a pulverized coal-fired furnace

    International Nuclear Information System (INIS)

    Abbas, T.; Costen, P.; Lockwood, F.C.

    1992-01-01

    This paper reports that detailed measurements have been performed for two distinct pulverized-coal-fired burners in a large-scale laboratory furnace. Comparative in-flame data are archived and include gas temperature, O 2 , CO concentration, and an inventory of stable fuel nitrogen species and solids (HCN, NH 3 , N 2 O, NO, nitrogen release, mass flux, and particle burnout). A significant decrease in the NO concentration in the near burner region and a substantial decrease in the furnace exit values are observed when the central tube from a single annular orifice burner jet (normally the location of a gas or oil burner for light-up purposes) is replaced with a single central orifice burner jet of same cross-sectional area. The latter burner exhibits the delayed combustion phenomena normally associated with a tangentially fired system. The particle burnout remains unaffected due to the longer particles' residence time in the all-important oxygen lean internal recirculation zone

  19. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  20. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  1. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  2. Dual processing model of medical decision-making

    Science.gov (United States)

    2012-01-01

    Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical

  3. Dual processing model of medical decision-making.

    Science.gov (United States)

    Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G

    2012-09-03

    Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. We show that physician's beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker's threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the

  4. A Dual System Model of Preferences under Risk

    Science.gov (United States)

    Mukherjee, Kanchan

    2010-01-01

    This article presents a dual system model (DSM) of decision making under risk and uncertainty according to which the value of a gamble is a combination of the values assigned to it independently by the affective and deliberative systems. On the basis of research on dual process theories and empirical research in Hsee and Rottenstreich (2004) and…

  5. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant Unit...

  6. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  7. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  8. Surface ignition behaviors of methane–air mixture in a gas oven burner

    International Nuclear Information System (INIS)

    Ryu, Jungwan; Kwon, Jongseo; Kim, Ryanggyun; Kim, Minseong; Kim, Youngsoo; Jeon, Chunghwan; Song, Juhun

    2014-01-01

    In a gas oven burner, commonly used as a residential appliance, a surface igniter is a critical component for creating a pilot flame near the surface that can propagate safely back to the nozzle of the burner. The igniter should meet critical operating requirements: a lower surface temperature needed to ignite a methane–air mixture and a stable/safe ignition sustained. Otherwise, such failure would result in an instantaneous peak in carbon monoxide emission and a safety hazard inside a closed oven. Several theoretical correlations have been used to predict ignition temperature as well as the critical ignition/extinction limit for a stagnation flow ignition. However, there have only been a few studies on ignition modes or relevant stability analysis, and therefore a more detailed examination of the transient ignition process is required. In this study, a high-speed flame visualization technique with temperature measurement was employed to reveal a surface ignition phenomenon and subsequent flame propagation of a cold combustible methane–air mixture in a gas oven burner. The operating parameters were the temperature–time history of the igniter surface, mixture velocity, and the distance of the igniter from the nozzle. The surface ignition temperatures were analyzed for such parameters under a safe ignition mode, while several abnormal modes leading to ignition failure were also recognized. - Highlights: •We revealed a surface ignition behavior of combustible mixture in gas oven burner. •We employed a flame visualization technique with temperature measurement. •We evaluated effects of parameters such as lifetime, mixture velocity and igniter distance. •We recognized several abnormal modes leading to ignition failure

  9. The method of waste liquid atomization/incineration by using ultrasonic industrial burners

    International Nuclear Information System (INIS)

    Bartonek, Thomas

    1999-01-01

    The problem of burning a fuel is closely related to distributing that fuel and mixing it with the combustion air within a pre-designated space, the combustion chamber. For fuel engineers, the rule of thumb is unchanged: mix it and it will burn. That is why the burner designer focuses his attention on incorporating the best possible atomization and mixing, equipment, i.c. in the end, on the construction of the atomizer nozzle and the control of the combustion air. It was these considerations plus the inability of conventional burners to meet the tough demands of today's applications that led DUMAG to undertake an intensive program of research which has now been crowned with success. Below, basic points drawn from the fundamental knowledge of all fuel engineers have been included to bring into sharper focus the operating principles of the DUMAG Ultrasonic Industrial Burner, a world class Austrian product. This paper describes a plant which has been operating without incident since October 1977. Its level of operational effectiveness is at least equivalent to that of a standard oil burner plant. The plant is also in full compliance with current environmental standards following the installation of additional safety equipment such as pre-combustion chambers, sensors to monitor pre-combustion chamber temperatures, cut-off valves for reaction water and solvents to block their flow if no heating oil is being fed in, flue gas density monitor, and finer atomization and better mixing by means of an ultrasonic system - even with fluctuations in the viscosity. By eliminating disposal costs and recovering power from liquid waste materials, the entire plant pays for itself within one year. (Original)

  10. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  11. The Effects of Combustion Parameters on Pollutant Emissions in a Porous Burner

    Directory of Open Access Journals (Sweden)

    Negin Moallemi Khiavi

    2014-06-01

    Full Text Available This paper reports a two-dimensional numerical prediction of premixed methane/air combustion in inert porous media. The two dimensional Navier-stokes equations, the two separate energy equations for solid and gas and conservation equations for chemical species are solved using finite volume method based on SIMPLE algorithm. The burner under study is a rectangular one with two different regions. First region is a preheating zone (low porosity matrix that followed by the actual combustion region (high porosity matrix. For simulating the chemical reactions, skeletal mechanism (26 species and 77 reactions is used. For studying the pollutant emissions in this porous burner, the effects of porous matrix properties, excess air ratio and inlet velocity are studied. The predicted gas temperature contour and pollutant formations are in good agreement with the available experimental data. The results indicate that the downstream of the burner should be constructed from materials with high conductivity, high convective heat transfer coefficient and high porosity in order to decrease the CO and NO emissions. Also, with increasing the inlet velocity of gas mixture and the excess air ratio, the pollutant emissions are decreased.

  12. Cultural differences of a dual-motivation model on health risk behaviour

    NARCIS (Netherlands)

    Ohtomo, S.; Hirose, Y.; Midden, C.J.H.

    2011-01-01

    This study investigated the cultural differences of a dual-motivation model of unhealthy risk behaviour in the Netherlands and Japan. Our model assumes dual motivations involved in unhealthy eating behaviour, a behavioural willingness that leads behaviour unintentionally or subconsciously and a

  13. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Garnier, J.C.; Ikegami, T.

    1993-01-01

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  14. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  15. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  16. Superoperators in the dual model with coloured quarks

    International Nuclear Information System (INIS)

    Manida, S.N.

    1978-01-01

    The derivation of the dual model with coloured quarks is considered. The model is represented as a superoperator generalization of the Bardakci-Halpern model. It is shown that the three-regeon vertex of the model appears to be more compact and transparent

  17. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed; Memon, Nasir; Mansour, Morkous S.; Anjum, Dalaver H.; Chung, Suk-Ho

    2015-01-01

    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium

  18. On the quark structure of resonance states in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed

  19. Dual processing model of medical decision-making

    Directory of Open Access Journals (Sweden)

    Djulbegovic Benjamin

    2012-09-01

    Full Text Available Abstract Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I and/or an analytical, deliberative (system II processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to

  20. Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm

    International Nuclear Information System (INIS)

    Ghazi, M.; Ahmadi, P.; Sotoodeh, A.F.; Taherkhani, A.

    2012-01-01

    Highlights: ► Comprehensive thermodynamic modeling of a dual pressure HRSG with duct burners. ► Thermoeconomic performance assessment of the system. ► To find the best design parameters of the HRSG using a genetic algorithm. - Abstract: In the present study a comprehensive thermodynamic modeling of a dual pressure combined cycle power plant is performed. Moreover, an optimization study to find the best design parameters is carried out. Total cost per unit of produced steam exergy is defined as the objective function. The objective function includes capital or investment cost, operational and maintenance cost, and the corresponding cost of the exergy destruction. This objective function is minimized while satisfying a group of constraints. For this study, design variables are high and low drum pressures, steam mass flow rates, pinch point temperature differences and the duct burner fuel consumption flow rate. The variations of design parameters with the inlet hot gas enthalpy and exergy unit price are also shown. Finally the sensitivity analysis of change in design parameters with change in fuel and investment cost is performed. The results show that with increasing the exergy unit cost, the optimum values of design parameters are selected such that to decrease the objective function. Furthermore it is found that at higher inlet gas enthalpy, the required heat transfer surface area (and its corresponding capital cost) increases

  1. The Complexity of Developmental Predictions from Dual Process Models

    Science.gov (United States)

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  2. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  3. A dual-trace model for visual sensory memory.

    Science.gov (United States)

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  5. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central

  6. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  7. Developing a workplace breast feeding support model for employed lactating mothers.

    Science.gov (United States)

    Yimyam, Susanha; Hanpa, Wasana

    2014-06-01

    Resuming work is often considered an obstacle for continued breast feeding. The objectives of this participatory action research study were to develop a breast feeding support model in the workplace and to compare breast feeding rates before and after implementation of the breast feeding support campaign. Twenty-four women participated before the implementation of the breast feeding support campaign, whereas 31 women participated after the campaign. Data were collected by interviewing employed women about their breast feeding practices within six months post partum. Additional data were collected through interviews with the workplace administrator and head of work sections as well as observation of the breast feeding support campaigns. Qualitative data were analysed using thematic analysis, whereas quantitative data were analysed using descriptive statistics and χ(2) test. The workplace breast feeding support model was developed based on the concept of Mother-Friendly Workplace Initiatives by the World Alliance for Breastfeeding Action (WABA) and the Thai government׳s promotion of a workplace breast feeding corner. Within this model, a committee for breast feeding support was created for working with the research team to develop breast feeding activities and media for breast feeding education and breast feeding support campaigns in the workplace. Breast feeding rates at six months after implementation of the breast feeding support campaign were significantly higher than rates before, both for exclusive breast feeding and any breast feeding at levels .004 and .033, respectively. These results suggest that breast feeding should be encouraged in every workplace depending on context. Individual advice and help for employed mothers should be provided from pregnancy through weaning in the postpartum period. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Optimization of gas mixing system of premixed burner based on CFD analysis

    International Nuclear Information System (INIS)

    Zhang, Tian-Hu; Liu, Feng-Guo; You, Xue-Yi

    2014-01-01

    Highlights: • New multi-ejectors gas mixing system for premixed combustion burner is provided. • Two measures are proposed to improve the flow uniformity at the outlet of GMS. • Small improvement of uniformity induces significant decrease of pollutant emission. • Uniformity of velocity and fuel–gas mixing of ejector increases 234.2% and 2.9%. • Uniformity of flow rate and fuel–gas mixing of ejectors increases 1.9% and 2.2%. - Abstract: The optimization of gas mixing system (GMS) of premixed burner is presented by Computational Fluid Dynamics (CFD) and the uniformity at the outlet of GMS is proved experimentally to have strong influence on pollutant emission. To improve the uniformity at the outlet of GMS, the eleven distribution orifice plates and a diversion plate are introduced. The quantified analysis shows that the uniformity at the outlet of GMS is improved significantly. With applying the distribution orifice plates, the uniformity of velocity and fuel–gas mixing of single ejector is increased by 234.2% and 2.9%, respectively. With applying the diversion plate, the uniformity of flow rate and fuel–gas mixing of different ejectors is increased by 1.9% and 2.2%, respectively. The optimal measures and geometrical parameters provide an applicable guidance for the design of commercial premixed burner

  9. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  10. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  11. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  12. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Th.H.

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbu- lence? To that end an active grid is constructed that consists of two perforated disks of which one is rotat- ing, creating a system of pulsating jets, which in the end can be used as a central

  13. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  14. An AdS3 dual for minimal model CFTs

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Gopakumar, Rajesh

    2011-01-01

    We propose a duality between the 2d W N minimal models in the large N't Hooft limit, and a family of higher spin theories on AdS 3 . The 2d conformal field theories (CFTs) can be described as Wess-Zumino-Witten coset models, and include, for N=2, the usual Virasoro unitary series. The dual bulk theory contains, in addition to the massless higher spin fields, two complex scalars (of equal mass). The mass is directly related to the 't Hooft coupling constant of the dual CFT. We give convincing evidence that the spectra of the two theories match precisely for all values of the 't Hooft coupling. We also show that the renormalization group flows in the 2d CFT agree exactly with the usual AdS/CFT prediction of the gravity theory. Our proposal is in many ways analogous to the Klebanov-Polyakov conjecture for an AdS 4 dual for the singlet sector of large N vector models.

  15. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO(sub x) emissions. At issue are the NO(sub x) contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO(sub x) control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO(sub x) control. The system will be comprised of an ultra low-NO(sub x) pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO(sub x)/10(sup 6) Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO(sub x) control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO(sub x) PC burner technology will be combined with Fuel Tech's NO(sub x)OUT (SNCR) and NO(sub x)OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO(sub x)OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO(sub x) reductions will be inferred from other measurements (i.e., SNCR NO(sub x) removal efficiency plus projected NO(sub x) reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO(sub x) burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO(sub x)/10(sup 6) Btu or less. At burner NO(sub x) emission level of 0.20 lb NO(sub x)/10(sup 6) Btu, the levelized cost per ton of NO(sub x) removed is 52% lower than the SCR cost

  16. Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner

    International Nuclear Information System (INIS)

    Saberi Moghaddam, Mohammad Hossein; Saei Moghaddam, Mojtaba; Khorramdel, Mohammad

    2017-01-01

    This paper investigates the geometric parameters related to thermal efficiency and pollution emission of a multi-hole flat flame burner. Recent experimental studies indicate that such burners are significantly influenced by both the use of distribution mesh and the size of the diameter of the main and retention holes. The present study numerically simulated methane-air premixed combustion using a two-step mechanism and constant mass diffusivity for all species. The results indicate that the addition of distribution mesh leads to uniform flow and maximum temperature that will reduce NOx emissions. An increase in the diameter of the main holes increased the mass flow which increased the temperature, thermal efficiency and NOx emissions. The size of the retention holes should be considered to decrease the total flow velocity and bring the flame closer to the burner surface, although a diameter change did not considerably improve temperature and thermal efficiency. Ultimately, under temperature and pollutant emission constraints, the optimum diameters of the main and retention holes were determined to be 5 and 1.25 mm, respectively. - Highlights: • Using distribution mesh led to uniform flow and reduced Nox pollutant by 53%. • 93% of total heat transfer occurred by radiation method in multi-hole burner. • Employing retention hole caused the flame become closer to the burner surface.

  17. Regulator of Dust and Coal Burner of Power Boilers

    Directory of Open Access Journals (Sweden)

    W. Wujcik

    2004-01-01

    Full Text Available The papers considers problems concerning introduction of neutron regulator into engineering practice. The regulator makes it possible to regulate CO, N0^ and O2 values with the purpose to optimize ejections into environment. The paper contains scheme of automation control of cyclone dust and coal burner with the help of a neutron regulator.

  18. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, A. [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, J.G.; Bonnet, U. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2007-09-15

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub x}. (orig.)

  19. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  20. Analysis of the current–voltage curves and saturation currents in burner-stabilised premixed flames with detailed ion chemistry and transport models

    KAUST Repository

    Belhi, Memdouh

    2018-05-22

    Current-voltage, or i–V, curves are used in combustion to characterise the ionic structure of flames. The objective of this paper is to develop a detailed modelling framework for the quantitative prediction of the i–V curves in methane/air flames. Ion and electron transport coefficients were described using methods appropriate for charged species interactions. An ionic reaction mechanism involving cations, anions and free electrons was used, together with up-to-date rate coefficients and thermodynamic data. Because of the important role of neutral species in the ion production process, its prediction by the detailed AramcoMech 1.4 mechanism was optimised by using available experimental measurements. Model predictions were evaluated by comparing to i–V curves measured in atmospheric-pressure, premixed, burner-stabilised flames. A detailed evaluation of the reliability of ion kinetic and transport parameters adopted was performed. The model provides good quantitative agreement with experimental data for various conditions.

  1. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  2. Optimization of a premixed low-swirl burner for industrial applications

    International Nuclear Information System (INIS)

    Fable, S.E.; Cheng, R.K.

    2000-01-01

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-similar behavior. This self-similarity may explain why the flame remains stationary relative to the burner exit despite a change in bulk flow velocity from 5 to 90m/s. The recess distance of the swirler affects the shape of the mean and rms velocity profiles. Lean blow-off limits were also determined for various recess distances, and an optimum exit length was found that provides stable operation for ultra-lean flames

  3. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  4. Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A. [CIATEQ, Parque Industrial Bernardo Quintana, Turbomachinery Department, Queretaro (Mexico); Syred, N.; Kay, P.; Griffiths, A. [Cardiff University, School of Engineering, Cardiff, Wales (United Kingdom)

    2011-06-15

    Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion. (orig.)

  5. Performance of a Highly Sensitive, 19-element, Dual-polarization, Cryogenic L-band Phased-array Feed on the Green Bank Telescope

    Science.gov (United States)

    Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.

    2018-05-01

    A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.

  6. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was

  7. Predicting sugar consumption: Application of an integrated dual-process, dual-phase model.

    Science.gov (United States)

    Hagger, Martin S; Trost, Nadine; Keech, Jacob J; Chan, Derwin K C; Hamilton, Kyra

    2017-09-01

    Excess consumption of added dietary sugars is related to multiple metabolic problems and adverse health conditions. Identifying the modifiable social cognitive and motivational constructs that predict sugar consumption is important to inform behavioral interventions aimed at reducing sugar intake. We tested the efficacy of an integrated dual-process, dual-phase model derived from multiple theories to predict sugar consumption. Using a prospective design, university students (N = 90) completed initial measures of the reflective (autonomous and controlled motivation, intentions, attitudes, subjective norm, perceived behavioral control), impulsive (implicit attitudes), volitional (action and coping planning), and behavioral (past sugar consumption) components of the proposed model. Self-reported sugar consumption was measured two weeks later. A structural equation model revealed that intentions, implicit attitudes, and, indirectly, autonomous motivation to reduce sugar consumption had small, significant effects on sugar consumption. Attitudes, subjective norm, and, indirectly, autonomous motivation to reduce sugar consumption predicted intentions. There were no effects of the planning constructs. Model effects were independent of the effects of past sugar consumption. The model identified the relative contribution of reflective and impulsive components in predicting sugar consumption. Given the prominent role of the impulsive component, interventions that assist individuals in managing cues-to-action and behavioral monitoring are likely to be effective in regulating sugar consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  9. The effectiveness of recirculating flue gasses on a gas-fuel oil boiler unit with hearth burners

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, V V; Kovalenko, A L; Kozlov, V G

    1981-01-01

    The results of investigating the effect of recirculating flue gasses on a TP-87 boiler (D = 420 tons per hour, 14 MPa, 560 C) with a hearth composition of four gas-fuel oil burners are presented. The heat-release rate of the volume of the furnace is 136 Kw per m/sup 3/; that if a cross section of the combustion chamber is 3.2 MW/m/sup 2/. The hot air temperature is 420 C. The tests were carried out during the combustion of M-100 petroleum oil which has a moisture content of 3 / 4% and a sulfur content of 2.4%. The pressure of the oil against the mechanical sprayers is 2.9-3.0 MPa at the rated load; the temperature is 125-130 C. The recirculation of the flue gasses was organized in order to expand the regulatory stress range and decrease the discharge of nitric oxides into the atmosphere. Moreover, flue gasses with a temperature of 330-370/sup 0/C were removed from a first-degree BE gas conduit, and, using two BGD-15.5 type exhaust fans, were fed into the annular channels around the burners. The calculated velocity of the gasses at the output of the burner is equal to 35 M/s; the air velocity is 64 M/s. It is shown that the TP-87 furnace--with fuel oil hearth burners and recirculation to obtain flue gasses into independent burner ducts--makes it possible to obtain a useful stress range during almost complete fuel oil combustion with minimal air exceses by maintaining the calculated temperature of the superheated vapor. Recirculating flue gasses in a duct around the burners constitutes an effective means of decreasing the discharge of nitric oxides, and of decreasing local heat stress on the screens. However, increasing the recirculation coefficient to 0.17 causes a 0.35% increase in the loss of heat with the departing gasses (the temperature of which increases by 7 C), and a 0.15% decrease in the heat flow rate for SN, which leads to an overall drop of approx. 0.5% in the efficiency coefficient of the boiler.

  10. Dual coding: a cognitive model for psychoanalytic research.

    Science.gov (United States)

    Bucci, W

    1985-01-01

    Four theories of mental representation derived from current experimental work in cognitive psychology have been discussed in relation to psychoanalytic theory. These are: verbal mediation theory, in which language determines or mediates thought; perceptual dominance theory, in which imagistic structures are dominant; common code or propositional models, in which all information, perceptual or linguistic, is represented in an abstract, amodal code; and dual coding, in which nonverbal and verbal information are each encoded, in symbolic form, in separate systems specialized for such representation, and connected by a complex system of referential relations. The weight of current empirical evidence supports the dual code theory. However, psychoanalysis has implicitly accepted a mixed model-perceptual dominance theory applying to unconscious representation, and verbal mediation characterizing mature conscious waking thought. The characterization of psychoanalysis, by Schafer, Spence, and others, as a domain in which reality is constructed rather than discovered, reflects the application of this incomplete mixed model. The representations of experience in the patient's mind are seen as without structure of their own, needing to be organized by words, thus vulnerable to distortion or dissolution by the language of the analyst or the patient himself. In these terms, hypothesis testing becomes a meaningless pursuit; the propositions of the theory are no longer falsifiable; the analyst is always more or less "right." This paper suggests that the integrated dual code formulation provides a more coherent theoretical framework for psychoanalysis than the mixed model, with important implications for theory and technique. In terms of dual coding, the problem is not that the nonverbal representations are vulnerable to distortion by words, but that the words that pass back and forth between analyst and patient will not affect the nonverbal schemata at all. Using the dual code

  11. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    . The theories of LES and the corresponding closure models have been well developed. This research focuses on statistical analysing flow field and characteristic features. Validation studies show good agreement in the isothermal cases, while for the reacting case, the LES predictions are less satisfactory...... zone which starts at the burner surface. As for the medium swirling isothermal case, there are two reverse flow zones in the reacting case. Due to the low stoichiometric mixture fraction in the methane flame, only the outer layer of the bluff‐body induced reverse zone is reactive. The main reactive...... method strategy has limitations concerning wall bounded flows, especially for complex geometries typically found in industry. Multi‐phase flows need special treatment....

  12. Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory

    International Nuclear Information System (INIS)

    Sanchez, N.; Whiting, B.

    1986-01-01

    The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers

  13. Economic values for health and feed efficiency traits of dual-purpose cattle in marginal areas.

    Science.gov (United States)

    Krupová, Z; Krupa, E; Michaličková, M; Wolfová, M; Kasarda, R

    2016-01-01

    Economic values of clinical mastitis, claw disease, and feed efficiency traits along with 16 additional production and functional traits were estimated for the dairy population of the Slovak Pinzgau breed using a bioeconomic approach. In the cow-calf population (suckler cow population) of the same breed, the economic values of feed efficiency traits along with 15 further production and functional traits were calculated. The marginal economic values of clinical mastitis and claw disease incidence in the dairy system were -€ 70.65 and -€ 26.73 per case per cow and year, respectively. The marginal economic values for residual feed intake were -€ 55.15 and -€ 54.64/kg of dry matter per day for cows and breeding heifers in the dairy system and -€ 20.45, -€ 11.30, and -€ 6.04/kg of dry matter per day for cows, breeding heifers, and fattened animals in the cow-calf system, respectively, all expressed per cow and year. The sums of the relative economic values for the 2 new health traits in the dairy system and for residual feed intake across all cattle categories in both systems were 1.4 and 8%, respectively. Within the dairy production system, the highest relative economic values were for milk yield (20%), daily gain of calves (20%), productive lifetime (10%), and cow conception rate (8%). In the cow-calf system, the most important traits were weight gain of calves from 120 to 210 d and from birth to 120 d (19 and 14%, respectively), productive lifetime (17%), and cow conception rate (13%). Based on the calculation of economic values for traits in the dual-purpose Pinzgau breed, milk production and growth traits remain highly important in the breeding goal, but their relative importance should be adapted to new production and economic conditions. The economic importance of functional traits (especially of cow productive lifetime and fertility) was sufficiently high to make the inclusion of these traits into the breeding goal necessary. An increased interest

  14. The Dual Half-Edge—A Topological Primal/Dual Data Structure and Construction Operators for Modelling and Manipulating Cell Complexes

    Directory of Open Access Journals (Sweden)

    Pawel Boguslawski

    2016-02-01

    Full Text Available There is an increasing need for building models that permit interior navigation, e.g., for escape route analysis. This paper presents a non-manifold Computer-Aided Design (CAD data structure, the dual half-edge based on the Poincaré duality that expresses both the geometric representations of individual rooms and their topological relationships. Volumes and faces are expressed as vertices and edges respectively in the dual space, permitting a model just based on the storage of primal and dual vertices and edges. Attributes may be attached to all of these entities permitting, for example, shortest path queries between specified rooms, or to the exterior. Storage costs are shown to be comparable to other non-manifold models, and construction with local Euler-type operators is demonstrated with two large university buildings. This is intended to enhance current developments in 3D Geographic Information Systems for interior and exterior city modelling.

  15. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    Science.gov (United States)

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. [The dual process model of addiction. Towards an integrated model?].

    Science.gov (United States)

    Vandermeeren, R; Hebbrecht, M

    2012-01-01

    Neurobiology and cognitive psychology have provided us with a dual process model of addiction. According to this model, behavior is considered to be the dynamic result of a combination of automatic and controlling processes. In cases of addiction the balance between these two processes is severely disturbed. Automated processes will continue to produce impulses that ensure the continuance of addictive behavior. Weak, reflective or controlling processes are both the reason for and the result of the inability to forgo addiction. To identify features that are common to current neurocognitive insights into addiction and psychodynamic views on addiction. The picture that emerges from research is not clear. There is some evidence that attentional bias has a causal effect on addiction. There is no evidence that automatic associations have a causal effect, but there is some evidence that automatic action-tendencies do have a causal effect. Current neurocognitive views on the dual process model of addiction can be integrated with an evidence-based approach to addiction and with psychodynamic views on addiction.

  17. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Yun, Sunghwan; Kim, Sang Ji

    2015-01-01

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH 2 and B 4 C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor

  18. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  19. Experience from performance testing of low NOx burners for refinery heaters; Tests de performance avec des bruleurs de raffinerie a basse emission de NOx

    Energy Technology Data Exchange (ETDEWEB)

    Boden, J.C. [Refining Technology, BP Oil International, Sunbury (United Kingdom)

    2001-07-01

    Developments in low NOx burner technology have resulted in major reductions in NOx emissions from refinery process heaters. However, the techniques used in low NOx burners to reduce NOx emissions can potentially affect other key aspects of burner performance, particularly flame stability and completeness of combustion. BP has evaluated many of the currently available low and ultra-low NOx burners, both natural and forced draught, in its purpose-built test furnace. This extensive test programme has shown that to be a reliable predictor of actual performance a test rig must recreate accurately the real furnace conditions, particularly with respect to furnace and hearth temperatures. The testing has demonstrated the NOx emissions to be expected in practice from different generic types of burner, conventional, low NOx and ultra-low NOx, and has highlighted the sets of conditions most likely to lead to combustion performance problems. (authors)

  20. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.; Mannaa, O.; Chung, Suk-Ho

    2015-01-01

    and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff

  1. Distributed Model Predictive Control via Dual Decomposition

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...

  2. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  3. Dual elaboration models in attitude change processes

    Directory of Open Access Journals (Sweden)

    Žeželj Iris

    2005-01-01

    Full Text Available This article examines empirical and theoretical developments in research on attitude change in the past 50 years. It focuses the period from 1980 till present as well as cognitive response theories as the dominant theoretical approach in the field. The postulates of Elaboration Likelihood Model, as most-researched representative of dual process theories are studied, based on review of accumulated research evidence. Main research findings are grouped in four basic factors: message source, message content, message recipient and its context. Most influential criticisms of the theory are then presented regarding its empirical base and dual process assumption. Some possible applications and further research perspectives are discussed at the end.

  4. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2015-01-01

    to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized

  5. An integrated model of clinical reasoning: dual-process theory of cognition and metacognition.

    Science.gov (United States)

    Marcum, James A

    2012-10-01

    Clinical reasoning is an important component for providing quality medical care. The aim of the present paper is to develop a model of clinical reasoning that integrates both the non-analytic and analytic processes of cognition, along with metacognition. The dual-process theory of cognition (system 1 non-analytic and system 2 analytic processes) and the metacognition theory are used to develop an integrated model of clinical reasoning. In the proposed model, clinical reasoning begins with system 1 processes in which the clinician assesses a patient's presenting symptoms, as well as other clinical evidence, to arrive at a differential diagnosis. Additional clinical evidence, if necessary, is acquired and analysed utilizing system 2 processes to assess the differential diagnosis, until a clinical decision is made diagnosing the patient's illness and then how best to proceed therapeutically. Importantly, the outcome of these processes feeds back, in terms of metacognition's monitoring function, either to reinforce or to alter cognitive processes, which, in turn, enhances synergistically the clinician's ability to reason quickly and accurately in future consultations. The proposed integrated model has distinct advantages over other models proposed in the literature for explicating clinical reasoning. Moreover, it has important implications for addressing the paradoxical relationship between experience and expertise, as well as for designing a curriculum to teach clinical reasoning skills. © 2012 Blackwell Publishing Ltd.

  6. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  7. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  8. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  9. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  10. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  11. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  12. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  13. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.; Kirk, G. J. D.; Jones, D. L.; Wissuwa, M.; Roose, T.

    2011-01-01

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  14. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  15. Dual temperature isotope exchange system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1976-01-01

    Improvements in the method for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. In a preferred embodiment the first is a vaporizable liquid and the auxiliary fluid a gas, comprising steps for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations

  16. Interacting-string picture of dual-resonance models

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1985-01-01

    Dual-resonance models are an alyzed by means of operators which act within the physical Hilbert space of positive-metric states. The basis of the method is to extend the relativistic-string picture of a previous study to interacting particles. Functional methods are used, but their relation to the operator is evident, and factorization is maintained. An expression is given for the N-point amplitude in terms of physical-particle operators. For the three-point function the Neumann functions which occur in this expression are evaluated, so that we have a formula for the on- and off-energy-shell vertex. The authors assume that the string has no longitudinal degrees of freedom, and their results are Lorentz invariant and dual only if d=26

  17. A numerical study of a premixed flame on a slit burner

    NARCIS (Netherlands)

    Somers, L.M.T.; Goey, de L.P.H.

    1995-01-01

    A numerical study of a premixed methane/air flame on a 4 mm slit burner is presented. A local grid refinement technique is used to deal with large gradients and curvature of all variables encountered in the flame, keeping the number of grid points within reasonable bounds. The method used here leads

  18. Numerical Simulation of Gas-Solid Two-Phase Flow for Four-Channels Pulverized Swirling Burner

    Directory of Open Access Journals (Sweden)

    Defu LI

    2013-05-01

    Full Text Available This article presents a mathematical model of cold gas-solid two-phase flow which is based on the cement rotary kiln in service. By altering the parameters of air supply system of four- channels pulverized burner, investigations are taken of that motion trajectory and particle distributions in the very turbulent field. The results show that motion trail of most particles in rotary kiln is a combination process of gradual diffusion and slow sedimentation; increasing internal flow velocity would aggravate coal particles to diffuse; external flow velocity should be controlled in a reasonable range.

  19. Genomic dissection and prediction of feed intake and residual feed intake traits using a longitudinal model in F2 chickens

    DEFF Research Database (Denmark)

    Begli, Hakimeh Emamgholi; Torshizi, Rasoul vaez; Masoudi, Ali Akbar

    2017-01-01

    Feed efficiency trait s (FETs) ar e import ant economic indicators in poultry production. Because feed intake (FI) is a time -dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models a...

  20. Cutting edge SRU control : improved environmental compliance with Jacobs advanced burner control+ (ABC+)

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, G. [Jacobs Canada Inc., Calgary, AB (Canada); Henning, A.; Kobussen, S. [Jacobs Nederland BV, Hoogvliet (Netherlands)

    2009-07-01

    Oil sands bitumen contains approximately 4 to 5 per cent sulphur by weight and the bitumen is upgraded to produce lighter fractions. During coking the bitumen is heated and cracked into lighter molecules and a mixture of kerosene, naphtha and gas oil is recovered via fractionation. Then, the vapors leaving the fractionator are processed through hydrodesulphurization, followed by removal by amine based sweetening units. The acid gas from the ASUs is sent to the sulphur recovery units (SRUs) where most of the sulphur is recovered as elemental sulphur. The oil sands industry faces many challenges with respect to environmental impact, energy use and greenhouse gas emissions including the recovery of sulphur and minimizing hydrogen sulfide (H{sub 2}S) and sulphur dioxide (SO{sub 2}) emissions from the oil sands production facilities. In order to improve the SRU control response to acid gas feed variations, Jacobs Comprimo Sulphur Solutions implemented advanced burner control+ (ABC+) at Suncor's Simonette Gas Plant's SRU in northern Alberta. This control system used an acid gas feed analyzer and dynamic algorithms to control the combustion air to the reaction furnace. The analyzer measures H{sub 2}S, total hydrocarbons, carbon dioxide (CO{sub 2}) and water (H{sub 2}O) accurately and quickly, which is important for having effective and fast air-to-acid gas ratio control. The paper provided background information on the Suncor Simonette Gas Plant and discussed ABC+ versus conventional control. An overview of the simplified ABC and ABC+ systems was then illustrated and presented. The ABB multiwave process photometer was also explained. Last, a dynamic simulation of the potential benefits of ABC+ was discussed and the ABC+ benefits for oil sands were presented. It was concluded that ABC+ provides improved SRU performance, reduced SO{sub 2} emissions and violations, and reduced flaring. 1 tab., 3 figs.

  1. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  2. Feed-forward and generalized regression neural networks in modeling feeding behavior of pigs in the grow-finishing phase

    Science.gov (United States)

    Feeding patterns in group-housed grow-finishing pigs have been investigated for use in management decisions, identifying sick animals, and determining genetic differences within a herd. Development of models to predict swine feeding behaviour has been limited due the large number of potential enviro...

  3. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro; Isobe, Yusuke; Hayashi, Naoki; Yamashita, Hiroshi; Chung, Suk-Ho

    2015-01-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study

  4. High effective inverse dynamics modelling for dual-arm robot

    Science.gov (United States)

    Shen, Haoyu; Liu, Yanli; Wu, Hongtao

    2018-05-01

    To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.

  5. Low NO{sub x} burner modifications to front-fired pulverized coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, R G; Wagner, M

    1998-07-01

    Madison Gas and Electric Blount Street Station Units 8 and 9 are Babcock and Wilcox pulverized coal fired and natural gas fired boilers. These boilers were build in the late 1950's and early 1960's with each boiler rated at 425,000 lb./hr of steam producing 50 MW of electricity. The boilers are rated at 9,500 F at 1,350 psig. Each unit is equipped with one Ljungstroem air heater and two B and W EL pulverizers. These units burn subbituminous coal with higher heating value of 10,950 Btu/LB on an as-received basis. The nitrogen content is approximately 1.23% with 15% moisture. In order to comply with the new Clean Air Act Madison Gas and Electric needs to reduce NO{sub x} on these units to less than .5 LB/mmBtu. Baseline NO{sub x} emissions on these units range between .8--.9 lb./mmBtu. LOIs average approximately 8%. Madison Gas and Electric contracted with RJM Corporation to modify the existing burners to achieve this objective. These modifications consisted of adding patented circumferentially and radially staged flame stabilizers, modifying the coal pipe, and replacing the coal impeller with a circumferentially staged coal spreader. RJM Corporation utilized computational fluid dynamics modeling in order to design the equipment to modify these burners. The equipment was installed during the March 1997 outage and start-up and optimization was conducted in April 1997. Final performance results and economic data will be included in the final paper.

  6. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  7. Exhaust gas aftertreatment with online burner; Abgasnachbehandlung mit Online-Brenner

    Energy Technology Data Exchange (ETDEWEB)

    Rembor, Hans-Joerg; Bischler, Thomas [Huss Technologies GmbH, Nuernberg (Germany)

    2010-09-15

    In order to fulfil continuously tightened emission standards, modern Diesel engines for on and off road have to meet demands of catalytic exhaust gas aftertreatment with their thermomanagement. With an online burner from Huss Technologies, even with low load duty cycles, catalytic exhaust gas aftertreatment is possible. Diesel engine development can therefore be redirected again more on efficiency enhancement and other direct customer demands. (orig.)

  8. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  9. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  10. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  11. Dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2003-01-01

    A different aspect of using the parameterisation of all systems stabilised by a given controller, i.e. the dual Youla parameterisation, is considered. The relation between system change and the dual Youla parameter is derived in explicit form. A number of standard uncertain model descriptions...... are considered and the relation with the dual Youla parameter given. Some applications of the dual Youla parameterisation are considered in connection with the design of controllers and model/performance validation....

  12. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  13. International Family Migration and the Dual-Earner Model

    DEFF Research Database (Denmark)

    Munk, Martin D.; Nikolka, Till; Poutvaara, Panu

    2018-01-01

    Gender differences in labor force participation are exceptionally small in Nordic countries. We investigate how couples emigrating from Denmark self-select and sort into different destinations and whether couples pursue the dual-earner model, in which both partners work, when abroad. Female labor...

  14. Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

    Directory of Open Access Journals (Sweden)

    Lianpeng Zhang

    2016-08-01

    Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.

  15. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    Science.gov (United States)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  16. An integrated treatment model for dual diagnosis of psychosis and addiction.

    Science.gov (United States)

    Minkoff, K

    1989-10-01

    A model that integrates the treatment of patients with a dual diagnosis of psychosis and addiction has been developed on a general hospital psychiatric unit. The model emphasizes the parallels between the standard biopsychosocial illness-and-rehabilitation model for treatment of serious psychiatric disorders and the 12-step disease-and-recovery model of Alcoholics Anonymous for treatment of addiction. Dual-diagnosis patients are viewed as having two primary, chronic, biologic mental illnesses, each requiring specific treatment to stabilize acute symptoms and engage the patient in a recovery process. An integrated treatment program is described, as are the steps taken to alleviate psychiatric clinicians' concerns about patient involvement in AA and addiction clinicians' discomfort with patients' use of medication.

  17. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  18. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  19. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process

    International Nuclear Information System (INIS)

    Altaee, Ali; Zaragoza, Guillermo; Drioli, Enrico; Zhou, John

    2017-01-01

    Highlights: •Single and dual stage PRO was evaluated at different membrane configurations. •Impact of increasing module area or numbers on the power efficiency was studied. •DSPRO reduced the impact of CP & restored the osmotic potential of salinity gradient. •DSPRO outperforms single stage PRO process but depends on salinity gradient type. -- Abstract: Power generation by means of Pressure Retarded Osmosis (PRO) has been proposed for harvesting the energy of a salinity gradient. Energy recovery by the PRO process decreases along the membrane module due to depleting of the chemical potential across the membrane and concentration polarization effects. A dual stage PRO (DSPRO) design can be used to rejuvenate the chemical potential difference and reduce the concentration polarization on feed solution. Several design configurations were suggested for the membrane module arrangements in the first and second stage of the PRO process. PRO performance was evaluated for a number of salinity gradients proposed by coupling Dead Sea water or Reverse Osmosis (RO) brine with seawater or wastewater effluent. Maximum specific energy of inlet and outlet feeds was calculated using a developed computer model to identify the amount of recovered and remaining energy. Initially, specific power generation by the PRO process increased by increasing the number of modules of the first stage. Maximum specific energy is calculated along the PRO module to understand the degradation of the maximum specific energy in each module before introducing a second stage PRO process. Adding a second stage PRO process resulted in a sharp increase of the chemical potential difference and the specific energy yield of the process. Between 10% and 13% increase of the specific power generation was achieved by the DSPRO process for the Dead Sea-seawater salinity gradient depending on the dual stage design configuration. For Dead Sea-RO brine, 12–16% increase of the specific power generation was

  20. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

  1. THE BANKRUPT RISK IN FEED DISTRIBUTION BRANCH IN DOLJ DISTRICT – FDR MODEL

    Directory of Open Access Journals (Sweden)

    Ovidiu CĂPRARIU

    2010-01-01

    Full Text Available Abstract:In this article, we are intending to present a score function in order to calculate the bankrupt risk for a special domain: feed distribution.All analysis models of the bankruptcy risk have at their basis a score function according to which it is determined with approximation whether the company would get bankruptcy or would have performing economic results, in a period immediately following the analysis.Having a personal analysis in feed distribution branch, I elaborated a score function for counting bankrupt risk, based on financial and non-financial studies of many companies and we called this modelFeed Distribution Risk Model” (FDR. The target was to obtain a high level of precision, so I choose the feed industry and more specific only feed distribution branch and I analyzed statistics about the evolution of the feed distribution companies in Romania and about the normal level of some financial or non-financial indicators for these companies.I have choose five feed distribution companies and I counted two international score functions and two Romanian score function with FDR function. Finally, I concluded that the three main differences between the classic models and this one are that the FDR model is for a specified branch – the feed distribution, it uses an important number of indicators and uses non-financial indicators, which explain the shareholders bonity. As directions to continue the investigations, I propose the elaboration of another models for other branches and adjust the financial information with true dates.

  2. Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian

    Directory of Open Access Journals (Sweden)

    A. Zabrodin

    2018-02-01

    Full Text Available We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable glN Ruijsenaars–Schneider model. It is based on the first order equations in N+M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars–Schneider model. In the elliptic case it holds M=N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero–Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars–Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero–Moser models arise from ordinary intermediate long wave and Benjamin–Ono equations.

  3. Scale-invariant inclusive spectra in a dual model

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Jenkovsky, L.L.; Martynov, E.S.

    1979-01-01

    One-particle inclusive distributions at large transverse momentum phisub(tr) are shown to scale, Edσ/d 3 phi approximately phisub(tr)sup(-N)(1-Xsub(tr))sup(1+N/2)lnphisub(tr), in a dual model with Mandelstam analyticity if the Regge trajectories are logarithmic asymptotically

  4. A dual system model of preferences under risk.

    Science.gov (United States)

    Mukherjee, Kanchan

    2010-01-01

    This article presents a dual system model (DSM) of decision making under risk and uncertainty according to which the value of a gamble is a combination of the values assigned to it independently by the affective and deliberative systems. On the basis of research on dual process theories and empirical research in Hsee and Rottenstreich (2004) and Rottenstreich and Hsee (2001) among others, the DSM incorporates (a) individual differences in disposition to rational versus emotional decision making, (b) the affective nature of outcomes, and (c) different task construals within its framework. The model has good descriptive validity and accounts for (a) violation of nontransparent stochastic dominance, (b) fourfold pattern of risk attitudes, (c) ambiguity aversion, (d) common consequence effect, (e) common ratio effect, (f) isolation effect, and (g) coalescing and event-splitting effects. The DSM is also used to make several novel predictions of conditions under which specific behavior patterns may or may not occur.

  5. Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic.

    Science.gov (United States)

    Neumayr, Bernd; Schuetz, Christoph G; Jeusfeld, Manfred A; Schrefl, Michael

    2018-01-01

    An enterprise database contains a global, integrated, and consistent representation of a company's data. Multi-level modeling facilitates the definition and maintenance of such an integrated conceptual data model in a dynamic environment of changing data requirements of diverse applications. Multi-level models transcend the traditional separation of class and object with clabjects as the central modeling primitive, which allows for a more flexible and natural representation of many real-world use cases. In deep instantiation, the number of instantiation levels of a clabject or property is indicated by a single potency. Dual deep modeling (DDM) differentiates between source potency and target potency of a property or association and supports the flexible instantiation and refinement of the property by statements connecting clabjects at different modeling levels. DDM comes with multiple generalization of clabjects, subsetting/specialization of properties, and multi-level cardinality constraints. Examples are presented using a UML-style notation for DDM together with UML class and object diagrams for the representation of two-level user views derived from the multi-level model. Syntax and semantics of DDM are formalized and implemented in F-Logic, supporting the modeler with integrity checks and rich query facilities.

  6. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.

    2010-01-01

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape...... is attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  7. The dual-electrode DC arc furnace-modelling brush arc conditions

    OpenAIRE

    Reynolds, Q.G.

    2012-01-01

    The dual-electrode DC arc furnace, an alternative design using an anode and cathode electrode instead of a hearth anode, was studied at small scale using computational modelling methods. Particular attention was paid to the effect of two key design variables, the arc length and the electrode separation, on the furnace behaviour. It was found that reducing the arc length to brush arc conditions was a valid means of overcoming several of the limitations of the dual-electrode design, namely high...

  8. Apparatus for concentrating by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    Improvements in an apparatus for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. The first fluid is a vaporizable liquid and the auxiliary fluid a gas, the apparatus having means for cascading the auxiliary fluid and the feed fluid in vapor and preferably also in liquid form. The apparatus also contains new combinations of means for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations of the system. The reactants in the example given are hydrogen sulfide gas and liquid water

  9. Numerical modeling of liquid feeding in the liquid-fed ceramic melter

    International Nuclear Information System (INIS)

    Hjelm, R.L.; Donovan, T.E.

    1979-10-01

    A modeling scheme developed by the Pacific Northwest Laboratory numerically simulates the behavior of the Liquid-Fed Ceramic Melter (LFCM) during liquid feeding. The computer code VECTRA (Vorticity Energy Code for TRansport Analysis) was used to simulate the LFCM in the idling and liquid feeding modes. Results for each simulation include molten glass temperature profiles and isotherm contour plots, stream function contour plots, heat generation rate contour plots, refractory isotherms, and heat balances. The results indicated that the model showed no major deviations from real LFCM behavior and that high throughput should be attainable. They also indicated that reboil was a possibility as a steady liquid feeding state was approached, very steep temperature gradients exist in the Monofrax K-3, and that phase separation could occur in the bottom corners during liquid feeding and over the entire floor while idling

  10. A Dual-Stage Two-Phase Model of Selective Attention

    Science.gov (United States)

    Hubner, Ronald; Steinhauser, Marco; Lehle, Carola

    2010-01-01

    The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…

  11. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  12. Phase-field modeling of corrosion kinetics under dual-oxidants

    Science.gov (United States)

    Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.

    2012-04-01

    A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.

  13. Model-assisted measurements of suspension-feeding flow velocities.

    Science.gov (United States)

    Du Clos, Kevin T; Jones, Ian T; Carrier, Tyler J; Brady, Damian C; Jumars, Peter A

    2017-06-01

    Benthic marine suspension feeders provide an important link between benthic and pelagic ecosystems. The strength of this link is determined by suspension-feeding rates. Many studies have measured suspension-feeding rates using indirect clearance-rate methods, which are based on the depletion of suspended particles. Direct methods that measure the flow of water itself are less common, but they can be more broadly applied because, unlike indirect methods, direct methods are not affected by properties of the cleared particles. We present pumping rates for three species of suspension feeders, the clams Mya arenaria and Mercenaria mercenaria and the tunicate Ciona intestinalis , measured using a direct method based on particle image velocimetry (PIV). Past uses of PIV in suspension-feeding studies have been limited by strong laser reflections that interfere with velocity measurements proximate to the siphon. We used a new approach based on fitting PIV-based velocity profile measurements to theoretical profiles from computational fluid dynamic (CFD) models, which allowed us to calculate inhalant siphon Reynolds numbers ( Re ). We used these inhalant Re and measurements of siphon diameters to calculate exhalant Re , pumping rates, and mean inlet and outlet velocities. For the three species studied, inhalant Re ranged from 8 to 520, and exhalant Re ranged from 15 to 1073. Volumetric pumping rates ranged from 1.7 to 7.4 l h -1 for M . arenaria , 0.3 to 3.6 l h -1 for M . m ercenaria and 0.07 to 0.97 l h -1 for C . intestinalis We also used CFD models based on measured pumping rates to calculate capture regions, which reveal the spatial extent of pumped water. Combining PIV data with CFD models may be a valuable approach for future suspension-feeding studies. © 2017. Published by The Company of Biologists Ltd.

  14. Experimental and numerical investigation of the acoustic response of multi-slit Bunsen burners

    NARCIS (Netherlands)

    Kornilov, V.N.; Rook, R.; Thije Boonkkamp, ten J.H.M.; Goey, de L.P.H.

    2009-01-01

    Experimental and numerical techniques to characterize the response of premixed methane-air flames to acoustic waves are discussed and applied to a multi-slit Bunsen burner. The steady flame shape, flame front kinematics and flow field of acoustically exited flames, as well as the flame transfer

  15. Optical diagnostics to adjust burners. Een optische diagnostiek voor het instellen van branders

    Energy Technology Data Exchange (ETDEWEB)

    Braam, A L.H.; Hulshof, H J.M.; De Jongh, W [NV KEMA, Arnhem (Netherlands)

    1991-05-01

    The most efficient method to reduce nitrogen oxides in a natural gas flame or a coal flame is a correct adjustment of the burners. A newly developed optical method to measure the temperature distribution in the flame is discussed. KEMA (a Dutch Electrotechnical Equipment Testing Agency) developed the measuring method to control the combustion process in each burner of a natural gas- or coal-fired power plant for NOx formation for a constant energy production, and for the stability of the combustion. By means of data from the temperature distribution measurements some important parameters concerning NOx formation can be determined. Attention is paid to several active and passive spectroscopic methods to measure temperatures in flames. Passive spectroscopy is considered to be the best measuring method. Concentrations of radicals (CH, CN, NH) and temperature distribution are determined by means of a spectroheliograph and a camera, flame temperatures are measured by means of metal tracers. Experimental measurements carried out in the Flevo plant (EPON) are discussed. 8 figs.

  16. Carcass and meat quality of dual-purpose chickens (Lohmann Dual, Belgian Malines, Schweizerhuhn) in comparison to broiler and layer chicken types.

    Science.gov (United States)

    Mueller, S; Kreuzer, M; Siegrist, M; Mannale, K; Messikommer, R E; Gangnat, I D M

    2018-05-18

    Currently, there is an intensive ethical discussion about the practice of culling day-old layer cockerels. One solution to avoid this practice could be using dual-purpose types, where males are fattened for meat and females used for egg production. The aim of the present study was to compare fattening performance, carcass conformation, and composition as well as meat quality of Lohmann Dual, a novel dual-purpose type, and 2 traditional dual-purpose types (Belgian Malines and Schweizerhuhn) with 2 broiler types and 1 layer type (Lohmann Brown Plus). Broilers included a conventional line (Ross PM3) and a slower-growing line (Sasso 51) fulfilling requirements of organic farming. Nine birds of each type were fed on a conventional broiler diet. Feed intake and metabolizability of nitrogen and energy were recorded per pen (n = 3), the latter through excreta sampling. For each bird, carcass conformation was assessed, and weights of body, carcass, breast meat, legs, wings, and inner organs were determined. Additionally, breast angle, an indicator for carcass appeal, and skin color were recorded. Meat quality assessment included determinations of thaw and cooking loss, shear force, meat color, and proximate composition of the breast meat. None of the dual-purpose types (20 to 30 g ADG) performed as well in growth as the intensively growing broiler line (68 g ADG). However, Lohmann Dual could compete with the slower-growing broiler line (slower growth but better feed efficiency, similar in carcass weight and breast proportion). Also breast angle was quite similar between Lohmann Dual (100°) and the extensive broiler type (115°C) compared to the intensive broiler line (180°). Meat quality was most favorable in the intensive broilers with the smallest shear force and thawing loss, whereas meat quality was not different between the other types. The Schweizerhuhn performed only at the level of the layer hybrid, and the Belgian Malines was ranked only slightly better.

  17. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    Science.gov (United States)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  18. Measurement of OH radical density in DBD-enhanced premixed burner flame by laser-induced fluorescence

    Science.gov (United States)

    Zaima, Kazunori; Sasaki, Koichi

    2013-09-01

    We examined OH density in DBD-enhanced premixed burner flame by laser-induced fluorescence (LIF). We ignited a premixed flame with CH4 /O2 / Ar mixture using a burner which worked as the ground electrode. The upper part of the flame was covered with a quartz tube, and we attached an aluminum electrode on the outside of the quartz tube. DBD inside the quartz tube was obtained between the aluminum electrode and the burner nozzle. The planar beam from a pulsed tunable laser excited OH in X2 Π (v'' = 0) to A2Σ+ (v' = 0) , and we captured two-dimensional distribution of the LIF intensity using an ICCD camera. We employed three pump lines of Q1(J=4, 8 and 10), and the rotational temperature of OH(X) was deduced from the ratio of the LIF intensities. The total density of OH was obtained from the LIF intensities and the rotational temperature. A principal experimental result was that no remarkable increase was observed in the OH density by the superposition of DBD. The correlation between the pulsed discharge current and the temporal variation of the OH density was not clear, suggesting that the oscillation of the OH density with a small amplitude is related to the transittion time constant between equilibrium and nonequilibrium combustion chemistries.

  19. Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2013-01-01

    Dual-frequency capacitive discharges are widespread in the semiconductor industry and are used, for example, in etching of semiconductor materials to manufacture microchips. In low-pressure dual radio-frequency capacitive discharges, stochastic heating is an important phenomenon. Recent theoretical work on this problem using several different approaches has produced results that are broadly in agreement insofar as scaling with the discharge parameters is concerned, but there remains some disagreement in detail concerning the absolute size of the effect for the case of dual-frequency capacitive discharges. In this work, we investigate the dependence of stochastic heating on various discharge parameters with the help of particle-in-cell (PIC) simulation. The dual-frequency analytical models are in fair agreement with PIC results for values of the low-frequency current density amplitude J lf (or dimensionless control parameter H lf ∼ 5) typical of many modern experiments. However, for higher values of J lf (or higher H lf ), new physical phenomena (like field reversal, reflection of ions, etc) appear and the simulation results deviate from existing dual-frequency analytical models. On the other hand, for lower J lf (or lower H lf ) again the simulation results deviate from analytical models. So this research work produces a relatively extensive set of simulation data that may be used to validate theories over a wide range of parameters. (paper)

  20. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  1. Duality in non-linear B and F models: equivalence between self-dual and topologically massive Born-Infeld B and F models

    International Nuclear Information System (INIS)

    Menezes, R.; Nascimento, J.R.S.; Ribeiro, R.F.; Wotzasek, C.

    2002-01-01

    We study the dual equivalence between the non-linear generalization of the self-dual (NSD BF ) and the topologically massive B and F models with particular emphasis on the non-linear electrodynamics proposed by Born and Infeld. This is done through a dynamical gauge embedding of the non-linear self-dual model yielding to a gauge invariant and dynamically equivalent theory. We clearly show that non-polinomial NSD BF models can be map, through a properly defined duality transformation into TM BF actions. The general result obtained is then particularized for a number of examples, including the Born-Infeld-BF (BIBF) model that has experienced a revival in the recent literature

  2. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  3. [Study on feeding behavior patterns of rats on cariogenic diet].

    Science.gov (United States)

    Sasaki, Y

    1989-03-01

    The feeding behavior patterns of Jcl:Wistar rats fed on commercial stock diet and cariogenic diet (Diet #2000) were investigated with the newly developed autorecording system. They were caged separately under a regular light-dark cycle (L:D = 12:12). The results and conclusion were as follows. All rats have a circadian feeding rhythm, and 70-85% of feeding frequency were observed during the dark period. The group on the commercial stock diet showed a dual-peak pattern of feeding at 20:30 and 4:00. On the other hand, the cariogenic diet groups showed a more frequent feeding pattern during the dark period. The feeding frequency increased from 1:00 to 3:00 in the high sucrose diet group and more frequent feeding was observed. From these results, it was suggested that dental caries in the rats was caused by not only the local effect of sucrose in the mouth but also by the changing patterns of feeding behavior with cariogenic diet.

  4. AGA answers complaints on burner tip prices

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the American Gas Association has rebutted complaints that natural gas prices have dropped at the wellhead but not at the burner tip. AGA Pres. Mike Baly the an association study of the issue found that all classes of customers paid less for gas in 1991 than they did in 1984, when gas prices were at their peak. He the, the study also shows that 100% of the wellhead price decline has been passed through to natural gas consumers in the form of lower retail prices. Baly the the average cost of gas delivered to all customers classes fell by $1.12/Mcf from 1984 to 1991, which exceeds the $1.10/Mcf decline in average wellhead prices during the same period

  5. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  6. A Test of Two Alternative Cognitive Processing Models: Learning Styles and Dual Coding

    Science.gov (United States)

    Cuevas, Joshua; Dawson, Bryan L.

    2018-01-01

    This study tested two cognitive models, learning styles and dual coding, which make contradictory predictions about how learners process and retain visual and auditory information. Learning styles-based instructional practices are common in educational environments despite a questionable research base, while the use of dual coding is less…

  7. Impact of fuel quality and burner capacity on the performance of wood pellet stove

    Directory of Open Access Journals (Sweden)

    Petrović-Bećirović Sanja B.

    2015-01-01

    Full Text Available Pellet stoves may play an important role in Serbia in the future when fossil fuel fired conventional heating appliances are replaced by more efficient and environmentally friendly devices. Experimental investigation was conducted in order to examine the influence of wood pellet quality, as well as burner capacity (6, 8 and 10 kW, used in the same stove configuration, on the performance of pellet stove with declared nameplate capacity of 8 kW. The results obtained showed that in case of nominal load and combustion of pellets recommended by the stove manufacturer, stove efficiency of 80.03% was achieved. The use of lower quality pellet caused additional 1.13 kW reduction in heat output in case of nominal load and 0.63 kW in case of reduced load. This was attributed to less favourable properties and lower bulk and particle density of lower quality pellet. The use of different burner capacity has shown to have little effect on heat output and efficiency of the stove when pre-set values in the control system of the stove were not altered. It is concluded that replacement of the burner only is not sufficient to increase/decrease the declared capacity of the same stove configuration, meaning that additional measures are necessary. These measures include a new set up of the stove control system, which needs to be properly adjusted for each alteration in stove configuration. Without the adjustment mentioned, declared capacity of the stove cannot be altered, while its CO emission shall be considerably increased.

  8. Model predictive control for a dual active bridge inverter with a floating bridge

    OpenAIRE

    Chowdhury, Shajjad; Wheeler, Patrick W.; Gerada, C.; Patel, Chintan

    2016-01-01

    This paper presents a Model Predictive Control technique applied to a dual active bridge inverter where one of the bridges is floating. The proposed floating bridge topology eliminates the need for isolation transformer in a dual inverter system and therefore reduces the size, weight and losses in the system. To achieve multilevel output voltage waveforms the floating inverter DC link capacitor is charged to the half of the main DC link voltage. A finite-set Model Predictive Control technique...

  9. Dual Education: The Win-Win Model of Collaboration between Universities and Industry

    Directory of Open Access Journals (Sweden)

    Monika Pogatsnik

    2018-05-01

    Full Text Available The purpose of this paper is to describe the new experiences of the dual training model in engineering education in Hungary. This new model has been introduced recently in the higher education and has become a focus of interest. This is a fa-vorable program for the students to experience the real industry environment pri-or to graduation and it is a good tool to motivate them to study harder. The dual education students study in the institutional academic period together with the regular full-time students at their higher education institute, and parallel to their academic education they participate in the practical training. It gives the students an opportunity to join a specific training program at an enterprise. Being involved in specific "operational" practical tasks and project-oriented work enhances inde-pendent work, learning soft skills and experiencing the culture of work. Our ob-jectives are to analyze the benefits of the dual training for all three parties: the stu-dent, the company and university. The study confirms earlier results from prior studies which show, for example, that students who choose the dual option achieve better program outcomes.

  10. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  11. The effect of control parameters to the quality of small-scale wood pellet combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. (Oulu Univ. (Finland). Contol Engineering Lab.), Email: mika.ruusunen@oulu.fi; Korpela, T.; Bjoerkqvist, T. (Tampere Univ. of Technology (Finland). Dept. of Automation Science and Engineering), Email: timo.korpela@tut.fi, Email: tomas.bjorqvist@tut.fi

    2009-07-01

    The target is to clear out control variables and requirements for clean small-scale wood pellet combustion (<100 kW{sub th}). Experimental runs were carried out in the form of design of experiments (DOE) with two commercial 15 kW pellet burners, namely a horizontal gas-burner and a conventional horizontal burner in a 20 kW commercial pellet boiler. Analysed variables were fuel power, draught, air flows, and fuel feed period, and research variables were CO, O{sub 2} and efficiency. The target was to identify and characterise separately the magnitude and direction of the effect of each factor. After process identification and variable optimisation, the results show strong influence of the studied control parameters on the efficiency and the emissions. The effects and interactions between different process variables were rather similar with both burners. The major effects for CO levels were fuel feed and additionally draught affected in case of wood gas combustion. Additionally, the effects on combustion efficiency is described by draught, air feed and fuel feed period. Furthermore, the fuel feed period affected the excess air level in case of direct combustion principle. It was noticed, however, that the combustion properties and optimal parameter values vary significantly between the two cases. (orig.)

  12. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  13. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lorenzetti, David M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    METHODS: Combustion pollutant concentrations were measured during the scripted operation of natural gas cooking burners in nine homes. In addition to a base condition of closed windows, no forced air unit (FAU) use, and no mechanical exhaust, additional experiments were conducted while operating an FAU and/or vented range hood. Test homes included a 26m2 two-room apartment, a 134m2 first floor flat, and seven detached homes of 117–226m2. There were four single-story, four two-story and one 1.5 story homes. Cooktop use entailed boiling and simmering activities, using water as a heat sink. Oven and broiler use also were simulated. Time-resolved concentrations of carbon dioxide (CO2), nitric oxide (NO), nitrogen oxides (NOX), nitrogen dioxide (NO2), particles with diameters of 6 nm or larger (PN), carbon monoxide (CO), and fine particulate matter (PM2.5) were measured in the kitchen (K) and bedroom area (BR) of each home. CO2, NO, NO2, and PN data from sequential experiments were analyzed to quantify the contribution of burner use to the highest 1h and 4h time-integrated concentrations in each room. RESULTS: Four of the nine homes had kitchen 1h NO2 exceed the national ambient air quality standard (100 ppb). Two other homes had 1h NO2 exceed 50 ppb in the kitchen, and three had 1h NO2 above 50 ppb in the bedroom, suggesting substantial exposures to anyone at home when burners are used for a single substantial event. In all homes, the highest 1h kitchen PN exceeded 2 x105 cm-3-h, and the highest 4h PN exceeded 3 x105 cm-3-hr in all homes. The lowest 1h kitchen/bedroom ratios were 1.3–2.1 for NO in the apartment and two open floor plan homes. The largest K/BR ratios of 1h NO2 were in a two-story 1990s home retrofitted for deep energy savings: ratios in this home were 3.3 to 6.6. Kitchen 1h ratios of NO, NO2 and PN to CO2 were used to calculate fuel normalized emission factors (ng J-1). Range hood use substantially reduced cooking burner pollutant concentrations both

  14. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  15. Modeling and Control of a Dual-Input Isolated Full-Bridge Boost Converter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a steady-state model, a large-signal (LS) model and an ac small-signal (SS) model for a recently proposed dual-input transformer-isolated boost converter are derived respectively by the switching flow-graph (SFG) nonlinear modeling technique. Based upon the converter’s model...

  16. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  17. Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-12-14

    We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.

  18. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  19. Dual lattice representations for O(N and CP(N−1 models with a chemical potential

    Directory of Open Access Journals (Sweden)

    Falk Bruckmann

    2015-10-01

    Full Text Available We derive dual representations for O(N and CP(N−1 models on the lattice. In terms of the dual variables the partition sums have only real and positive contributions also at finite chemical potential. Thus the complex action problem of the conventional formulation is overcome and using the dual variables Monte Carlo simulations are possible at arbitrary chemical potential.

  20. Applicability of in silico genotoxicity models on food and feed ingredients.

    Science.gov (United States)

    Vuorinen, Anna; Bellion, Phillip; Beilstein, Paul

    2017-11-01

    Evaluation of the genotoxic potential of food and feed ingredients is required in the development of new substances and for their registration. In addition to in vitro and in vivo assays, in silico tools such as expert alert-based and statistical models can be used for data generation. These in silico models are commonly used among the pharmaceutical industry, whereas the food industry has not widely adopted them. In this study, the applicability of in silico tools for predicting genotoxicity was evaluated, with a focus on bacterial mutagenicity, in vitro and in vivo chromosome damage assays. For this purpose, a test set of 27 food and feed ingredients including vitamins, carotenoids, and nutraceuticals with experimental genotoxicity data was constructed from proprietary data. This dataset was run through multiple models and the model applicability was analyzed. The compounds were generally within the applicability domain of the models and the models predicted the compounds correctly in most of the cases. Although the regulatory acceptance of in silico tools as single data source is still limited, the models are applicable and can be used in the safety evaluation of food and feed ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  2. Fuel rich and fuel lean catalytic combustion of the stabilized confined turbulent gaseous diffusion flames over noble metal disc burners

    Directory of Open Access Journals (Sweden)

    Amal S. Zakhary

    2014-03-01

    Full Text Available Catalytic combustion of stabilized confined turbulent gaseous diffusion flames using Pt/Al2O3 and Pd/Al2O3 disc burners situated in the combustion domain under both fuel-rich and fuel-lean conditions was experimentally studied. Commercial LPG fuel having an average composition of: 23% propane, 76% butane, and 1% pentane was used. The thermal structure of these catalytic flames developed over Pt/Al2O3 and Pd/Al2O3 burners were examined via measuring the mean temperature distribution in the radial direction at different axial locations along the flames. Under-fuel-rich condition the flames operated over Pt catalytic disc attained high temperature values in order to express the progress of combustion and were found to achieve higher activity as compared to the flames developed over Pd catalytic disc. These two types of catalytic flames demonstrated an increase in the reaction rate with the downstream axial distance and hence, an increase in the flame temperatures was associated with partial oxidation towards CO due to the lack of oxygen. However, under fuel-lean conditions the catalytic flame over Pd catalyst recorded comparatively higher temperatures within the flame core in the near region of the main reaction zone than over Pt disc burner. These two catalytic flames over Pt and Pd disc burners showed complete oxidation to CO2 since the catalytic surface is covered by more rich oxygen under the fuel-lean condition.

  3. Analytical modelling of waveguide mode launchers for matched feed reflector systems

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Breinbjerg, Olav; Meincke, Peter

    2016-01-01

    Matched feed horns aim to cancel cross polarization generated in offset reflector systems. An analytical method for predicting the mode spectrum generated by inclusions in such horns, e.g. stubs and pins, is presented. The theory is based on the reciprocity theorem with the inclusions represented...... by current sources. The model is supported by Method of Moments calculations in GRASP and very good agreement is seen. The model gives rise to many interesting observations and ideas for new or improved mode launchers for matched feeds.......Matched feed horns aim to cancel cross polarization generated in offset reflector systems. An analytical method for predicting the mode spectrum generated by inclusions in such horns, e.g. stubs and pins, is presented. The theory is based on the reciprocity theorem with the inclusions represented...

  4. A combined modeling approach for wind power feed-in and electricity spot prices

    International Nuclear Information System (INIS)

    Keles, Dogan; Genoese, Massimo; Möst, Dominik; Ortlieb, Sebastian; Fichtner, Wolf

    2013-01-01

    Wind power generation and its impacts on electricity prices has strongly increased in the EU. Therefore, appropriate mark-to-market evaluation of new investments in wind power and energy storage plants should consider the fluctuant generation of wind power and uncertain electricity prices, which are affected by wind power feed-in (WPF). To gain the input data for WPF and electricity prices, simulation models, such as econometric models, can serve as a data basis. This paper describes a combined modeling approach for the simulation of WPF series and electricity prices considering the impacts of WPF on prices based on an autoregressive approach. Thereby WPF series are firstly simulated for each hour of the year and integrated in the electricity price model to generate an hourly resolved price series for a year. The model results demonstrate that the WPF model delivers satisfying WPF series and that the extended electricity price model considering WPF leads to a significant improvement of the electricity price simulation compared to a model version without WPF effects. As the simulated series of WPF and electricity prices also contain the correlation between both series, market evaluation of wind power technologies can be accurately done based on these series. - Highlights: • Wind power feed-in can be directly simulated with stochastic processes. • Non-linear relationship between wind power feed-in and electricity prices. • Price reduction effect of wind power feed-in depends on the actual load. • Considering wind power feed-in effects improves the electricity price simulation. • Combined modeling of both parameters delivers a data basis for evaluation tools

  5. Forward-backward correlations in pp interactions in a dual model

    International Nuclear Information System (INIS)

    Fialkowsky, K.; Kotanski, A.; Uniwersytet Jagiellonski, Krakow

    1982-01-01

    Forward-backward correlations in lepton and hadron induced processes are compared according to the dual model. It is indicated that the effect of the chain energy spread in hadron processes is important. After including this effect the model is shown to explain the forward-backward correlations in pp data assuming no dynamical correlations within a single chain. (orig.)

  6. Slow Steps towards Dual Earner/Dual Carer Family Model: Why Do Fathers Not Take Parental Leave

    Directory of Open Access Journals (Sweden)

    Marre Karu

    2011-06-01

    Full Text Available The article looks at the transition of Estonian society towards dual earner/dual carer family model and focuses on fathers’ decision regarding taking their parental leave. Based on theory of planned behaviour by Ajzen, data from 20 qualitative interviews with fathers of small children are analysed to explore the beliefs fathers have when it comes to parental leave. The analysis distinguishes between two images of ‘good parenting’ that play a role in the fathers’ intention to take parental leave. First, there is an image of an outcome-oriented ‘project manager’ affected by failure anxiety, and second, there is a much more relaxed image of a ‘good parent’ as a ‘companion’ who values everyday contact and a close relationship with the child(ren.

  7. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  8. Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner

    Science.gov (United States)

    Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan

    2018-06-01

    The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.

  9. Effect of energetic electrons on combustion of premixed burner flame

    Science.gov (United States)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  10. Application of the dual reciprocity boundary element method for numerical modelling of solidification process

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.

  11. Resource competition and an analytical model of zooplankton feeding on phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Smith, O L; Shugart, H H; O' Neill, R V; Booth, R S; McNaught, D C

    1975-01-01

    A new consumer-resource The model was developed with specific reference to zooplankton feeding on phytoplankton. In principle, the model can be extended to any terrestrial or aquatic community in which the consumers graze nearly randomly. It is assumed that the food as relatively little escape capabity. An attempt was made to derive the consumer-resource interaction term from first principles.A general form with clearly defined parameters that represent fundamental system processes such as consumer filtering rate. model parameters describes two known forms of feeding:(1): saturation feeding in which the rate remains constant above a given food density while the filtering rate decreases, and(2) inhibited feeding in which a decline appears at high food density. From an examination of the model's equilibrium equations for strongly similar zooplankton species feeding on similar phytoplankton species, the following conclusions were drawn. The competitive exclusion principle has only limited validity. For a community in which the consumers exhibit no intraspecific competition and have identical assimilation efficiency to death-rate ratios, e/d, any number of consumer species may, in fact, coexist and compete for the same food. The equations for a complex community composed of many consumer and food species can be reduced to a single equation with form identical to that of a single-consumer, single-food system. The standard competition coefficient, ..cap alpha.., of the Volterra equation is a poor measure of competition in nonlinear systems. It exhibits incongruous variations with changes in system parameters. In a community with no intraspecific competition, allcompetition coefficients are unity. In a community with intraspecific competition, the competition coefficients C/sub in/ tend to equalize as the number of food species increases, resulting in equal competitive strength of all consumer species in systems of the type studied.

  12. Probabilistic Modeling of Seismic Risk Based Design for a Dual System Structure

    OpenAIRE

    Sidi, Indra Djati

    2017-01-01

    The dual system structure concept has gained popularity in the construction of high-rise buildings over the last decades. Meanwhile, earthquake engineering design provisions for buildings have moved from the uniform hazard concept to the uniform risk concept upon recognizing the uncertainties involved in the earthquake resistance of concrete structures. In this study, a probabilistic model for the evaluation of such risk is proposed for a dual system structure consisting of shear walls or cor...

  13. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  14. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2016-01-01

    alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame

  15. A Dual Coding Theoretical Model of Decoding in Reading: Subsuming the LaBerge and Samuels Model

    Science.gov (United States)

    Sadoski, Mark; McTigue, Erin M.; Paivio, Allan

    2012-01-01

    In this article we present a detailed Dual Coding Theory (DCT) model of decoding. The DCT model reinterprets and subsumes The LaBerge and Samuels (1974) model of the reading process which has served well to account for decoding behaviors and the processes that underlie them. However, the LaBerge and Samuels model has had little to say about…

  16. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    T N Hagawane

    2016-01-01

    Results: It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6 levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. Interpretation & conclusions: The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  17. A model of the evolution of larval feeding rate in Drosophila driven by conflicting energy demands.

    Science.gov (United States)

    Mueller, Laurence D; Barter, Thomas T

    2015-02-01

    Energy allocation is believed to drive trade-offs in life history evolution. We develop a physiological and genetic model of energy allocation that drives evolution of feeding rate in a well-studied model system. In a variety of stressful environments Drosophila larvae adapt by altering their rate of feeding. Drosophila larvae adapted to high levels of ammonia, urea, and the presence of parasitoids evolve lower feeding rates. Larvae adapted to crowded conditions evolve higher feeding rates. Feeding rates should affect gross food intake, metabolic rates, and efficiency of food utilization. We develop a model of larval net energy intake as a function of feeding rates. We show that when there are toxic compounds in the larval food that require energy for detoxification, larvae can maximize their energy intake by slowing their feeding rates. While the reduction in feeding rates may increase development time and decrease competitive ability, we show that genotypes with lower feeding rates can be favored by natural selection if they have a sufficiently elevated viability in the toxic environment. This work shows how a simple phenotype, larval feeding rates, may be of central importance in adaptation to a wide variety of stressful environments via its role in energy allocation.

  18. The early years of string theory: The dual resonance model

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-10-01

    This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story

  19. Single-Layer, Dual-Port, Dual-Band, and Orthogonal-Circularly Polarized Microstrip Antenna Array with Low Frequency Ratio

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available A single-layer, dual-port, dual-band, and dual circularly polarized (CP microstrip array is designed for satellite communication in this paper. The operating frequencies are 8.2 and 8.6 GHz with a very low ratio of 1.05. First, a rectangular patch element is fed through microstrip lines at two orthogonal edges to excite two orthogonal dominant modes of TM01 and TM10. The very low frequency ratio can be realized with high polarization isolations. Then, a 2-by-2 dual-band dual-CP subarray is constructed by two independent sets of sequentially rotated (SR feed structures. An 8-by-8 array is designed on the single-layer thin substrate. Finally, by utilizing one-to-four power dividers and semirigid coaxial cables, a 16-by-16 array is developed to achieve higher gain. Measured results show that the 16-by-16 array has 15 dB return loss (RL bandwidths of 4.81% and 6.75% and 3 dB axial ratio (AR bandwidths of 2.84% and 1.57% in the lower and the upper bands, respectively. Isolations of 18.6 dB and 19.4 dB and peak gains of 25.1 dBic and 25.6 dBic are obtained at 8.2 and 8.6 GHz, respectively.

  20. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  1. Visualisation of the velocity field in a scaled water model for validation of numerical calculations for a powder fuelled boiler

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Laurent [Luleaa Univ. of Technology (Sweden)

    2001-01-01

    Validation of numerical predictions of the flow field in a powder fired industry boiler by flow visualisation in a water model has been studied. The bark powder fired boiler at AssiDomaen Kraftliner in Piteaa has been used as a case study. A literature study covering modelling of combusting flows by water models and different flow visualisation techniques has been carried out. The main conclusion as regards the use of water models is that only qualitative information can be expected. As far as turbulent flow is assured in the model as well as the real furnace, the same Reynolds number is not required. Geometrical similarity is important but modelling of burner jets requires adaptation of the jet diameters in the model. Guidelines for this are available and are presented in the report. The review of visualisation techniques shows that a number of methods have been used successfully for validation of flow field predictions. The conclusion is that the Particle Image Velocimetry and Particle Tracking Velocimetry methods could be very suitable for validation purposes provided that optical access is possible. The numerical predictions include flow fields in a 1130 scale model of the AssiDomaen furnace with water flow as well as flow and temperature fields in the actual furnace. Two burner arrangements were considered both for the model and the actual furnace, namely the present configuration with four front burners and a proposed modification where an additional burner is positioned at a side wall below the other burners. There are many similarities between the predicted flow fields in the model and the full scale furnace but there are also some differences, in particular in the region above the burners and the effects of the low region re-circulation on the lower burner jets. The experiments with the water model have only included the arrangement with four front burners. There were problems determining the velocities in the jets and the comparisons with predictions are

  2. Parental feeding practices and socioeconomic status are associated with child adiposity in a multi-ethnic sample of children.

    Science.gov (United States)

    Cardel, Michelle; Willig, Amanda L; Dulin-Keita, Akilah; Casazza, Krista; Beasley, T Mark; Fernández, José R

    2012-02-01

    Parental feeding practices have been associated with children's weight status, but results have been inconsistent across populations. Research is needed to elucidate the relationship between parental feeding practices and adiposity in diverse populations. The present study tested if: (1) parental feeding practices differed by race/ethnicity, (2) parental pressure to eat and parental restriction were associated with adiposity levels, and (3) to investigate the relationship between parental feeding practices and/or child adiposity with socioeconomic status (SES). Structural equations modeling was conducted to test the model in 267 children aged 7-12 years self-identified as African American (AA), European American (EA), or Hispanic American (HA) from economically diverse backgrounds. Dual energy X-ray absorptiometry and computed tomography scanning were used to determine body composition and abdominal fat distribution, respectively. Parental restriction was a significant predictor of child adiposity while parental pressure to eat had an inverse relationship with child adiposity. HA parents reported significantly higher levels of restriction and pressure to eat, whereas EA parents reported the lowest. SES was positively associated with child adiposity and inversely related to parental restriction and pressure to eat. Thus, parental feeding practices differ across racial/ethnic groups and SES and may contribute to population differences in child adiposity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The Efficiency of Supplementing Mondia Whytei, Maize Germ, Lucerne and Dairy Meal on Feed Intake, milk Production and body Weight Changes in Dual Purpose goats fed on Basal Diet of Rhodes Grass Hay

    International Nuclear Information System (INIS)

    Wekesa, F.M.

    2002-01-01

    In order to exploit the productive potential of milk producing animal, supplementation is a prerequisite. However due to low purchasing power of most small scale dairy farmers some farmers use what is locally available as supplements of Mondia whytei, maize germ, lucerne and dairy meal were fed to dual purpose lactating goats in a completely randomised design. The basal diet was Rhodes grass hay. Chemical composition of feeds was done. Crude protein, CP in Mondia leaves was 187 g kg -1 DM while calcium was 69.1 g kg -1 DM. Mondia whytei is a plant which mainly grows in forests and has many valuable uses including its use as a livestock feed. It has been claimed that when farmers in western Kenya feed Mondia roots to their lactating cows there is an increase in milk production. It is against this background that this work was undertaken to compare the potential of Mondia whytei roots and leaves with other conventional feed supplements. Response to Mondia roots was quite low. There was no significant difference in rumen pH levels over time between treatments. It is recommended that more work be done on Mondia whytei to determine its potential as a feed supplement and to continue monitoring its use on-farm including its feeding methods used by farmers in western Kenya

  4. Logical Reasoning versus Information Processing in the Dual-Strategy Model of Reasoning

    Science.gov (United States)

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2017-01-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based strategies such as mental model theory and statistical strategies underlying probabilistic models. The dual-strategy model, proposed by Verschueren, Schaeken, & d'Ydewalle (2005a, 2005b), which suggests that people might have access to both…

  5. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  6. Charm production in the dual topological unitarization model

    International Nuclear Information System (INIS)

    Batunin, A.V.

    1986-01-01

    The open and hidden charm hadroproduction has been traced up to the SPS energies in the framework of the dual parton model. The free parameter (the suppression of the charmed sea) comes from the experiments on D-meson hadroproduction. Then the hidden-charm production data are described assuming that the J/ψ-meson production suggests only one cc-bar pair in the string, while the pair ψψ production suggests two cc-bar pairs

  7. The Development of a Mother’s Internal Working Model of Feeding

    Science.gov (United States)

    Brown, Lisa F; Griffin, Junyanee; Reyna, Barbara; Lewis, Mary

    2012-01-01

    Purpose The purpose of the study was to describe changes in a mother’s early internal working model (IWM) of infant feeding. Design & Methods In this qualitative study, 12 maternal responses to the semi-structured IWM interview were audio-recorded; once in the neonatal intensive care unit (NICU) after infants began oral feeding and once 2 weeks post-discharge. Interviews were analyzed using directed content analysis. Results A change between mothers’ early and later nipple feeding experiences was identified. Practice Implications Nurses and other clinicians can help mothers understand the infant’s behaviors and focus on the infant’s nutritional intake while simultaneously developing a relationship with the infant. PMID:23289455

  8. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  9. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Senosy, M.S.; Zayed, M.F.; Roberts, William L.; Mansour, M.S.

    2018-01-01

    . Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads

  10. Gaseous emissions from burning diesel, crude and prime bleachable summer yellow cottonseed oil in a burner for drying seedcotton

    International Nuclear Information System (INIS)

    Holt, G.A.; Hooker, J.D.

    2004-01-01

    Cottonseed oil has been used as a fuel source either as a blend with diesel in varying proportions or undiluted (100 %) in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-fueled burner similar to those used by cottonseed oil mills and cotton gins in their drying operations. The purpose of this study was to evaluate emissions from five fuel oil treatments while firing a multi-fueled burner in a setup similar to those used for drying operations of both cottonseed oil mills and cotton gins. For each treatment, gaseous emissions were measured while firing the burner at three fuel flow rates. The five fuel oil treatments evaluated were: (1) No.2 diesel at 28.3 deg C, (2) prime bleachable summer yellow (PBSY) cottonseed oil at 28.3 deg C (PBSY-28), (3) crude cottonseed oil at 28.3 deg C (Crude-28), (4) PBSY at 60 deg C (PBSY-60), and (5) crude at 60 deg C (Crude-60). Results indicate that PBSY treatments had the lowest overall emissions of all treatments. The other treatments varied in emission rates based on treatment and fuel flow rate. Preheating the oil to 60 deg C resulted in higher NO x emissions but displayed varying results in regards to CO. The CO emissions for the crude treatments were relatively unaffected by the 60 deg C preheat temperature whereas the preheated PBSY treatments demonstrated lower CO emissions. Overall, both cottonseed oils performed well in the multi-fueled burner and displayed a promising potential as an alternative fuel source for cottonseed oil mills and cotton gins in their drying operations. (Author)

  11. Multiparticle production in a two-component dual parton model

    International Nuclear Information System (INIS)

    Aurenche, P.; Bopp, F.W.; Capella, A.; Kwiecinski, J.; Maire, M.; Ranft, J.; Tran Thanh Van, J.

    1992-01-01

    The dual parton model (DPM) describes soft and semihard multiparticle production. The version of the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision energy, transverse-momentum distributions and the rise of average transverse momenta with the collision energy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions. For most of these quantities we find a reasonable agreement with experimental data

  12. The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition.

    Science.gov (United States)

    Andretta, I; Pomar, C; Rivest, J; Pomar, J; Lovatto, P A; Radünz Neto, J

    2014-09-01

    The impact of moving from conventional to precision feeding systems in growing-finishing pig operations on animal performance, nutrient utilization, and body and carcass composition was studied. Fifteen animals per treatment for a total of 60 pigs of 41.2 (SE = 0.5) kg of BW were used in a performance trial (84 d) with 4 treatments: a 3-phase (3P) feeding program obtained by blending fixed proportions of feeds A (high nutrient density) and B (low nutrient density); a 3-phase commercial (COM) feeding program; and 2 daily-phase feeding programs in which the blended proportions of feeds A and B were adjusted daily to meet the estimated nutritional requirements of the group (multiphase-group feeding, MPG) or of each pig individually (multiphase-individual feeding, MPI). Daily feed intake was recorded each day and pigs were weighed weekly during the trial. Body composition was assessed at the beginning of the trial and every 28 d by dual-energy X-ray densitometry. Nitrogen and phosphorus excretion was estimated as the difference between retention and intake. Organ, carcass, and primal cut measurements were taken after slaughter. The COM feeding program reduced (P carcass, and primal cut weights did not differ among treatments. Feeding growing-finishing pigs with daily tailored diets using precision feeding techniques is an effective approach to reduce nutrient excretion without compromising pig performance or carcass composition.

  13. A Dual-Process Model of the Alcohol-Behavior Link for Social Drinking

    Science.gov (United States)

    Moss, Antony C.; Albery, Ian P.

    2009-01-01

    A dual-process model of the alcohol-behavior link is presented, synthesizing 2 of the major social-cognitive approaches: expectancy and myopia theories. Substantial evidence has accrued to support both of these models, and recent neurocognitive models of the effects of alcohol on thought and behavior have provided evidence to support both as well.…

  14. Modeling hydrodynamic effects on choanoflagellate feeding

    Science.gov (United States)

    Oakes, Christian; Hguyen, Hoa; Koehl, Mimi; Fauci, Lisa

    2017-11-01

    Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. As the closest living relative to animals, they are important for both ecological and evolutionary studies. Choanoflagellates have three unicellular types: slow swimmers, fast swimmers, and thecate (attached to a surface by a stalk). Each has different morphology and feeding rate. We use the method of regularized Stokeslets to simulate cell-fluid interactions of each type and show the hydrodynamic effects on the amount and directions of fluid flow toward the collar. After validating the swimming speeds of our models with experimental data, we calculate the rate of flow across a capture zone around the collar (flux). This sheds light on how each morphological aspect of the cell aids in bacteria capture during feeding. Among the three types, the thecate cells have the largest average flux values, implying that they take advantage of the nearby surface by creating eddies that draw bacteria into their collar for ingestion. Funding Source: FASTER Grant SURF `` National Science Foundation DUE S-STEM Award 1153796, Mach Fellowship.

  15. Cathalitic burners for residential gas appliances; Bruciatori catalitici di gas naturale per apparecchi domestici

    Energy Technology Data Exchange (ETDEWEB)

    Accornero, R.; Canci, F. [Italgas Spa, Rome (Italy)

    2000-12-01

    The growing interest for the rational use of natural gas as a primary source of energy and for the reduction of pollutant emissions from combustion processes has kindled, in recent years, a widespread interest in studies and experimental investigations on the use of premix burners (either ceramic or metallic) for heat generators in domestic applications. The present paper deals with the R and D activities developed in this field by Italgas, Politecnico di Torino (Dipartimento di Scienza dei Materiali ed Ingegneria Chimica) and Merloni TermoSanitari, (an Italian gas boiler manufacturer). The technology hereby presented aims at reducing the pollutants emissions (CO, NO{sub x}, HC) in a wide range of working regimes of the burner, typical of residential heat appliances. The positive results in a lab scale experimental pilot plant have been in some cases confirmed in experimental runs performed on boiler prototypes suitable for large scale industrial production. Some projects, financially supported by the European Community and involving, beyond the above mentioned partners, also other gas distribution companies, universities, research institutes and burner manufacturers, are currently in progress to further analyse the performance of these burners. [Italian] Il crescente interesse per l'uso razionale del gas naturale quale fonte energetica primaria e quale combustibile a basso impatto ambientale, ha suscitato, nei tempi piu' recenti, un vasto interesse per gli studi e per le ricerche nel settore dei bruciatori di gas di tipo a premiscelazione, siano essi in materiale ceramico che metallico, allo scopo di rendere praticabile la loro applicazione nei generatori di calore di tipo domestico. L'articolo descrive l'attivita' di R e S sviluppata da Italgas, Politecnico di Torino - Dipartimento di Scienza dei Materiali ed Ingegneria Chimica - e da Merloni TermoSanitari. La tecnologia sperimentata e' finalizzata alla riduzione delle emissioni di

  16. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  17. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  18. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  19. Design and Implementation of Dual-Band MIMO Antenna with Low Mutual Coupling Using EBG for Handheld Applications

    Directory of Open Access Journals (Sweden)

    Duong Thanh Tu

    2017-01-01

    Full Text Available A dual-band Multiple Input Multiple Output (MIMO antenna system with enhanced isolation for LTE and WLAN applications is proposed. Using a double-rectangular Defected Ground Structure (DGS, the MIMO antenna gets two resonant frequencies of 2.6 GHz and 5.7 GHz with bandwidth of 5.7% and 4.3% respectively. To reduce much more mutual coupling between dual-band MIMO antenna ports, a novel double-side Electromagnetic Band Gap (EBG structure with equivalent circuit model is proposed. Size of t gain of the antenna is getting better, especially at the low band. he EBG unit cell is 8.6x8.6 mm2 that is built on FR4 substrate with height of 1.6 mm, so it is achieved more compact size than conventional EBG structures. With 1x7 EBG structures, the mutual coupling gets -40dB in the low frequency band and -30 dB in the high one with narrow distance of 0.11 from feeding point to feeding point. Furthermore, radiation efficiency as well as gain of the antenna is getting better, especially at the low band.

  20. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  1. Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners

    International Nuclear Information System (INIS)

    Gómez, M.A.; Porteiro, J.; Patiño, D.; Míguez, J.L.

    2015-01-01

    Highlights: • A thermally thick treatment is used to simulate of fuel the thermal conversion of solid biomass. • A dynamic subgrid scale is used to model the advance of reactive fronts inside the particle. • Efficient solution algorithms are applied to calculate the temperatures and volume of the internal layers. • Several tests were simulated and compared with experimental data. - Abstract: The thermally thick treatment of fuel particles during the thermal conversion of solid biomass is required to consider the internal gradients of temperature and composition and the overlapping of the existing biomass combustion stages. Due to the implied mixture of scales, the balance between model resolution and computational efficiency is an important limitation in the simulation of beds with large numbers of particles. In this study, a subgrid-scale model is applied to consider the intraparticle gradients, the interactions with other particles and the gas phase using a Euler–Euler CFD framework. Numerical heat transfer and mass conservation equations are formulated on a subparticle scale to obtain a system of linear equations that can be used to resolve the temperature and position of the reacting front inside the characteristic particle of each cell. To simulate the entire system, this modelling is combined with other submodels of the gas phase, the bed reaction and the interactions. The performance of the new model is tested using published experimental results for the particle and the bed. Similar temperatures are obtained in the particle-alone tests. Although the mass consumption rates tend to be underpredicted during the drying stage, they are subsequently compensated. In addition, an experimental batch-loaded pellet burner was simulated and tested with different air mass fluxes, in which the experimental ignition rates and temperatures are employed to compare the thermally thick model with the thermally thin model that was previously developed by the authors

  2. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  3. A Reformulation of the Dual Career Conceptual Model for Analysis in an Organizational Scope: Revealing new Aspects

    Directory of Open Access Journals (Sweden)

    Heliani Berlato

    2017-01-01

    Full Text Available Couples who live a dual career, in general, are characterized by their continuing professional engagement and their desire for personal growth together. It is a synergy between career aspirations and family sphere, so that they co-exist; reflecting nowadays, a challenge for people who seek to live this duality. Not exempt from it, it is possible to understand the need for management models of people who are in harmony with the desires of dual career couples who are part of organizations. If in the 1980s the existence of dual career couples was not so common in Brazil, nowadays organizations increasingly receive these couples, which impacts the need for people management models to keep up with these social changes. Therefore, the model recognizes that the personal dimension (impacts on the organizational context cannot be avoided, and also that other factors affect both spheres (personal and organizational when referring to the normative roles that permeate these areas. The main intention of this essay is to construct a theoretical model of dual career to consider the factor - organization, as vital to understand (and accept the need to consider other dimensions on the dual career analytical perspective. The first evidences of dual career studies in Brazil revealed that the look at this movement only from the individual's margin is limited. This way, to consider the existence of other dimensions and consequently the influences they may cause, favors an expansion of the perspective, and also brings a detailing about the external factors (organization, society and culture that influence the dual career couple. To consider that this couple, as well as having personal challenges in the relationship between work and family, is subject to the culture that regulates their roles (men and women and that directly influences how organizations will handle that topic reveals the merit of this study. This, in turn, draws attention to the organizational sphere

  4. Combustion stability and thermal efficiency in a porous media burner for LPG cooking in the food industry using Al_2O_3 particles coming from grinding wastes

    International Nuclear Information System (INIS)

    Herrera, Bernardo; Cacua, Karen; Olmos-Villalba, Luis

    2015-01-01

    Cooking is one of the most thermal-energy consuming processes in the food industry and development of devices that contribute to decrease the consumption of fossil fuel is a matter of great importance. This decreasing in consumption can both enlarge competitiveness in the enterprises of this sector and reduce emissions of greenhouse gases and other toxic combustion by products such as, carbon monoxide and nitrogen oxides. A porous burner made of a bed of Al_2O_3 particles coming from grinding residues and combined with ceramic foam of SiSiC has been evaluated respect to Liquefied Petroleum Gas combustion stability and thermal efficiency for cooking in food industry. The results showed that for specific heat input rate lower than 154 kW/m"2, the upper and lower equivalence ratio on the stability limit follow approximately a linear trend, as well as the wide of the range of stability remains constant. But this trend is broken when higher heat input rate is applied. Also, every equivalence ratio for stable combustion was in the lean ratio and stoichiometric combustion values were not feasible because flashback occurred. Emissions of CO were in acceptable values lower than 25 ppm for specific heat input rate lower than 154 kW/m"2 but an important rising in the CO emissions could be seen when the burner worked at higher heat input rate due to a moderate lift-off and quenching on the surface of the burner. Thermal efficiency was calculated in two different working ways: the “radiation–convection” and “conduction”. Thermal efficiency in the “radiation–convection” was between 15.7% and 23.6%, which are lower than the average thermal efficiency of the conventional free-flame burner. But the “conduction” mode showed a significant advantage respect to free flame conventional burners, since it could improve the thermal efficiency between 7% and 14%. The improvement in efficiency and the possibility of interrupting the flow of fuel in a cyclical operation

  5. Modeling and simulation of a dual-junction CIGS solar cell using Silvaco ATLAS

    OpenAIRE

    Fotis, Konstantinos

    2012-01-01

    Approved for public release; distribution is unlimited. The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell, using a CIGS bottom cell and different thin-film designs as a top cell, was conducted in order to increase the current record efficiency of 20.3% for a single CIGS cell. This was accomplished through modeling and simulation using Silvaco ATLASTM, an ad...

  6. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  7. Model independent approach to studies of the confining dual Abrikosov vortex in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Haymaker, Richard W.; Matsuki, Takayuki

    2007-01-01

    We address the problem of determining the type I, type II or borderline dual superconductor behavior in maximal Abelian gauge SU(2) through the study of the dual Abrikosov vortex. We find that significant electric currents in the simulation data call into question the use of the dual Ginzburg-Landau Higgs model in interpreting the data. Further, two definitions of the penetration depth parameter take two different values. The splitting of this parameter into two is intricately connected to the existence of electric currents. It is important in our approach that we employ definitions of flux and electric and magnetic currents that respect Maxwell equations exactly for lattice averages independent of lattice spacings. Applied to specific Wilson loop sizes, our conclusions differ from those that use the dual GLH model

  8. Do dual-route models accurately predict reading and spelling performance in individuals with acquired alexia and agraphia?

    Science.gov (United States)

    Rapcsak, Steven Z; Henry, Maya L; Teague, Sommer L; Carnahan, Susan D; Beeson, Pélagie M

    2007-06-18

    Coltheart and co-workers [Castles, A., Bates, T. C., & Coltheart, M. (2006). John Marshall and the developmental dyslexias. Aphasiology, 20, 871-892; Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256] have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper, we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult neurological patients with acquired alexia and agraphia. These findings provide empirical support for dual-route theories of written language processing.

  9. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  10. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  11. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    Science.gov (United States)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  12. Dual process interaction model of HIV-risk behaviors among drug offenders.

    Science.gov (United States)

    Ames, Susan L; Grenard, Jerry L; Stacy, Alan W

    2013-03-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected.

  13. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    Directory of Open Access Journals (Sweden)

    Haojie Wang

    2016-07-01

    Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.

  14. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Yan, Wenli

    2016-01-01

    It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...... changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control....

  15. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  16. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Toward A Dual-Learning Systems Model of Speech Category Learning

    Directory of Open Access Journals (Sweden)

    Bharath eChandrasekaran

    2014-07-01

    Full Text Available More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article we describe a neurobiologically-constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. We find an age related deficit in reflective-optimal but not reflexive-optimal auditory category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, uni-dimensional rules to more complex, reflexive, multi-dimensional rules. In a second application we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions.

  18. Nitrogen oxide formation as a function of the shape of the flame in an experimental gas burner. Stikstofoxidenvorming als functie van de vlamvorm bij experimentele gasbrander

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W

    1992-01-01

    One of the options to reduce the emission of NO[sub x] from gas-fired or coal-fired power plants is to develop new burners or to improve the control of existing burners. The purpose of this investigation is to develop a measuring method to control the combustion process in each burner of a gas-fired or coal-fired power plant concerning NO[sub x]-emission, a constant energy production and stability of the combustion. A passive spectroscopic measuring method was developed, in which use is made of the light, emitted by the flame. Based on the measured values the NO[sub x]-emissions and the shape of the flame were correlated. From the correlations it appears that flame shape and NO[sub x]-emissions correspond quite well

  19. Effects of age at first pregnancy and breast-feeding on the development of postmenopausal osteoporosis.

    Science.gov (United States)

    Schnatz, Peter F; Barker, Kathaleen G; Marakovits, Kimberly A; O'Sullivan, David M

    2010-01-01

    Although pregnancy and breast-feeding require adequate calcium mobilization, it is not known if these affect the acquisition of a healthy peak bone mass (PBM) and, hence, postmenopausal osteoporosis (OPS). The objective of this study was to analyze previous pregnancies and/or breast-feeding and their association with OPS. After obtaining institutional review board approval, postmenopausal women (>49 y) presenting for a dual-energy x-ray absorptiometry bone density scan were invited to participate. Risk factors for OPS, including previous fractures, pregnancy information, and dual-energy x-ray absorptiometry results, were collected. OPS was defined as a T score of -2.5 or lower. Data were obtained from 619 women. Of these, 49.8% were smokers, 27.2% used a bisphosphonate, 64.1% used hormone therapy, and 5.5% had used steroids. Based on PBM, ages at first pregnancy were dichotomized to younger than 27 years and 27 years or older. Women with a history of breast-feeding had a lower prevalence of OPS (7.6%) versus women who had never breast-fed (18.7%; P pregnancy when they were 27 years or older and a history of breast-feeding had the lowest prevalence of OPS (4.6%) versus women with a first pregnancy when they were younger than 27 years and no history of breast-feeding (16.3%; P = 0.001). Breast-feeding seems to significantly decrease the incidence of postmenopausal OPS. Women whose first pregnancy occurs after PBM (≥27 y of age) and who have a history of breast-feeding had the lowest prevalence of OPS. Thus, an association between OPS and both breast-feeding and age of pregnancy seems to be present.

  20. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  1. Self-dual nonsupersymmetric Type II String Compactifications

    International Nuclear Information System (INIS)

    Kachru, Shamit; Silverstein, Eva

    1998-01-01

    It has recently been proposed that certain nonsupersymmetric type II orbifolds have vanishing perturbative contributions to the cosmological constant. We show that techniques of Sen and Vafa allow one to construct dual type II descriptions of these models (some of which have no weakly coupled heterotic dual). The dual type II models are given by the same orbifolds with the string coupling S and a T 2 volume T exchanged. This allows us to argue that in various strongly coupled limits of the original type II models, there are weakly coupled duals which exhibit the same perturbative cancellations as the original models

  2. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    Science.gov (United States)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  3. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  4. Image-based spectroscopic sensor for the automatic control gas burners in the glass-processing industry. Multichannel spectral detection of flame emissions and multivariate analysis methods allow for optical quality monitoring and control of industrial burners; Bildgebende optische Spektralsensorik zur automatischen Regelung von Gasbrennern fuer die Glas verarbeitende Industrie. Durch mehrkanalige spektrale Aufnahmen der Flammenemission und multivariate Auswertemethoden kann die Qualitaet der Gasversorgung bei industriellen Brennern optisch ueberwacht und geregelt werden

    Energy Technology Data Exchange (ETDEWEB)

    Knetsch, R.; Arnold, W. [Herbert Arnold GmbH und Co. KG, Weilburg (Germany); Erfurth, F.; Scheibe, A.; Nyuyki, B.; Schmidt, W.D. [GMBU e.V., Jena (Germany). Fachsektion Photonik und Sensorik

    2009-07-01

    The precise composition of the combustion gas mixture of burners is essential for the maximum achievable flame temperature as well as for the economic use of raw material. We present a mobile device for optical flame analysis and optimization of gas supply for industrial burners. The relative fuel-oxygen-ratio can be assessed by means of spectral emission in the visible and UV region by factoring in the distribution of gas emissions along the flame. Based on spectral imaging technology our sensor allows for calculation of a flame index stating the quality of fuel supply. A laboratory sample of the flame sensor has been tested with different burners using natural gas and propane. The flame index has been determined successful for several fuel-oxygen-ratios. Practical experiments showed that uncomplicated software-based adaptation of the device to several burner configurations is possible.

  5. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  6. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  7. Thermodynamic modeling of LPG combustion in dual-fuel engines; Modelisation thermodynamique de la combustion du GPL dans les moteurs dual-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bilcan, A.; Le Corre, O.; Tazerout, M. [Ecole des Mines de Nantes, 44 (France); Ramesh, A. [Indian Institute of Technology Madras (India)

    2002-07-01

    Dual-fuel engines are modified diesel engines burning simultaneously two fuels inside the cylinder: a gaseous one, called the primary fuel and a liquid one, called the pilot fuel. The thermal efficiency of the dual-fuel engine and of the diesel engine are comparable; the level of emissions is lower compared to the diesel one. This article presents a new procedure for the combustion modeling in a LPG-diesel dual-fuel engine. The procedures deals with the ignition delay period and with the rate of heat release inside the cylinder. This procedure is validated using experimental data issued front a collaboration with the Indian Institute of Technology from Madras, India. The used engine is a single-cylinder one, air-cooled. The pilot fuel is direct injected inside the cylinder The engine was run at constant load and with different diesel substitutions, i.e. for different air to fuel ratios of the primary fuel-air mixture. The general error of the procedure is below 10%. (authors)

  8. Low void effect (CFV) core concept flexibility: from self-breeder to burner core - 15091

    International Nuclear Information System (INIS)

    Buiron, L.; Dujcikova, L.

    2015-01-01

    In the frame of the French strategy on sustainable nuclear energy, several scenarios consider fuel cycle transition toward a plutonium multi-recycling strategy in sodium cooled fast reactor (SFR). Basically, most of these scenarios consider the deployment of a 60 GWe SFR fleet in 2 steps to renew the French PWR fleet. As scenarios do investigate long term deployment configurations, some of them require tools for nuclear phase-out studies. Instead of designing new reactors, the adopted strategy does focus on adaptation of existing ones into burner configurations. This is what was done in the frame of the EFR project at the end of the 90's using the CAPRA approach (French acronym for Enhance Plutonium Consumption in Fast Reactor). The EFR burner configuration was obtained by inserting neutronic penalties inside the core (absorber material and/or diluent subassembly). Starting from the preliminary industrial image of a SFR 3600 MWth core based on Low Sodium Void concept (CFV in French), a 'CAPRA-like' approach has been studied. As the CFV self-breeding is ensured by fertile blankets, a first modification consisted in the substitution of the corresponding depleted uranium by 'inert' or absorber material leading to a 'natural burner' core with only small impacts on flux distribution. The next step forward CAPRA configuration was the substitution of 1/3 of the fuel pins by 'dummy' pins (MgO pellets). The small spectrum shift due to MgO material insertion leads to an increase Doppler constant which exceeds the value of the reference case. As the core sodium void worth value is conserved, the CFV CAPRA core 'safety' potential is quite similar to the one of the reference core. Fuel thermo-mechanical requirements are met by both nominal core power and fuel time residence reduction. However, these reduction factors are lower than those obtained for EFR core. The management of the enhanced reactivity swing is discussed

  9. Design and manufacture of an atmospheric burner of biogas with rural application; Diseno y construccion de un quemador atmosferico de biogas con aplicaciones rurales

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Nunez, Jorge; Suarez Pacheco, Jose; Novelo Navarrete, Jose H; Soto Apolinar, Efrain [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)

    2000-07-01

    In this text it's resumed the methodology that was carried out to make an atmospheric burner of biogas, as the criteria that were taken in account in order to determine the main parameters of it. It introduces a synthesis of the stages of design and manufacture of the device. The utility of this type of burner increase the efficiency of the oxidation of the biogas compared with the use of conventional burners that aren't designed for this purpose. [Spanish] En este trabajo se resume la metodologia que se llevo a cabo para la construccion de un quemador de biogas tipo atmosferico, asi como los criterios que se tomaron para la determinacion de los parametros principales del mismo. Se presenta una sintesis de las etapas de diseno y manufactura del dispositivo. El uso de este tipo de quemadores aumenta la eficiencia de la oxidacion del biogas en comparacion con el uso de quemadores convencionales que no estan disenados para quemar biogas.

  10. DUAL STATE-PARAMETER UPDATING SCHEME ON A CONCEPTUAL HYDROLOGIC MODEL USING SEQUENTIAL MONTE CARLO FILTERS

    Science.gov (United States)

    Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin

    Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.

  11. Traditional mixed linear modelling versus modern machine learning to estimate cow individual feed intake

    NARCIS (Netherlands)

    Kamphuis, C.; Riel, van J.W.; Veerkamp, R.F.; Mol, de R.M.

    2017-01-01

    Three modelling approaches were used to estimate cow individual feed intake
    (FI) using feeding trial data from a research farm, including weekly recordings
    of milk production and composition, live-weight, parity, and total FI.
    Additionally, weather data (temperature, humidity) were

  12. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  13. Operational limits of recuperative low NO{sub x}-burners using low calorific gas qualities; Einsatzgrenzen rekuperativer Low NO{sub x}-Brenner im Betrieb mit niederkalorischen Gasen

    Energy Technology Data Exchange (ETDEWEB)

    Moentmann, Dirk; Kleingries, Mirko; Pohland vom Schloss, Heide; Lucka, Klaus [OWI Oel-Waerme-Institut GmbH, An-Institut der RWTH, Aachen (Germany)

    2011-06-15

    The by products of several industrial processes are gases with lower calorific value. Rising energy prices make them a focus of interest for thermal utilization. The combuston of low calorific value gases is demanding with respect to the combustion process. The chemical composition varies depending on the application and process flow. A stable combustion has to be ensured at any time in spite of fluctuating properties like calorific value, wobbe index, flame temperature etc. Corrosive components may induce degradation of sealing materials employed in devices of the burner equipment like shut off valves. Within this research project of the research association 'Forschungsgemeinschaft Industrieofenbau (FOGI)' the operation and ignition behaviour of three commercial recuperator burners was investigated under operation with low calorific gases. It is demonstrated that these burners can basically be deployed under certain conditions. (orig.)

  14. Numerical modelling of unsteady flow behaviour in the rectangular jets with oblique opening

    Directory of Open Access Journals (Sweden)

    James T. Hart

    2016-09-01

    Full Text Available Vortex shedding in a bank of three rectangular burner-jets was investigated using a CFD model. The jets were angled to the wall and the whole burner was recessed into a cavity in the wall; the ratio of velocities between the jets varied from 1 to 3. The model was validated against experimentally measured velocity profiles and wall pressure tapings from a physical model of the same burner geometry, and was generally found to reproduce the mean flow field faithfully. The CFD model showed that vortex shedding was induced by a combination of an adverse pressure gradient, resulting from the diffuser-like geometry of the recess, and the entrainment of fluid into the spaces separating the jets. The asymmetry of the burner, a consequence of being angled to the wall, introduced a cross-stream component into the adverse pressure gradient that forced the jets to bend away from their geometric axes, the extent of which depended upon the jet velocity. The vortex shedding was also found to occur in different jets depending on the jet velocity ratio.

  15. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome.

    Science.gov (United States)

    Hagawane, T N; Gaikwad, R V; Kshirsagar, N A

    2016-05-01

    Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest x-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  16. A burner for the combustion of spent tall oil soap

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.M.; Wong, J.K.; Moffatt, B.; Belanger, G. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Soriano, D. [Brais Malouin and Associates, Montreal, PQ (Canada)

    2003-07-01

    Efficiency in industrial processes applies both to the form of energy involved and the many by-products resulting from the process. Tall oil soap (TOS) is a white frothy substance created during the pulping process. It contains chemicals that can be extracted for use in other industries. The processing of TOS results in a product called spent TOS. This study examined the incineration process to derive process heat from the calorific value in spent TOS. Brais Malouin and Associates (BMA) proposed that an atomizing nozzle should be used for use with this liquid in an incinerating burner. The efficiency of atomization of spent TOS with the BMA nozzle was determined by the Canada Centre for Mineral and Energy Technology (CANMET), which also characterized the combustion in a simulated boiler situation. The combustion tests were performed in the Pilot-Scale Research Boiler at the CANMET Energy Technology Centre (CETC). Pre-heating was done with a number 2 oil flame. Flame stability was determined by observing the flame through sight ports and by measuring the gas in the furnace. The experiments showed that spent TOS could successfully burn with a number 2 oil, in a proportion of 81 spent TOS to 19 oil mass ratio. As the amount of spent TOS was increased, the amount of sulphur dioxide, nitrogen oxide (NOx) and carbon monoxide decreased. The number 2 fuel oil was responsible for the sulphur dioxide in the exhaust. It is believed that the reduction in the carbon monoxide in the exhaust is attributable to the water-gas shift reaction. As the proportion of spent TOS increased, it was shown that the amount of NOx in the exhaust decreased rapidly. A bluish-green molten deposit formed in the furnace near the burner came from copper and manganese found in the ash of the spent TOS. 7 refs., 7 tabs., 16 figs.

  17. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

    Science.gov (United States)

    Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong

    2014-07-01

    In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

  18. Hybrid Tunable Wideband Single Feed Antenna Element for Smartphones supporting Carrier Aggregation

    DEFF Research Database (Denmark)

    Stanev, Simon Peter; Tatomirescu, Alexandru

    2016-01-01

    This paper presents a single feed antenna with a dual branch matching circuit combined with a 3dB microstrip power divider to support the carrier aggregation in LTE advanced mobile handsets. By the use of the matching circuits, an independent and versatile broadband antenna is achieved. Hence, th...

  19. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    International Nuclear Information System (INIS)

    Berry, J.; Gallaher, B.N.

    2011-01-01

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  20. Interference of Spin-2 Self-Dual Modes

    OpenAIRE

    Ilha, Anderson; Wotzasek, Clovis

    2001-01-01

    We study the effects of interference between the self-dual and anti self-dual massive modes of the linearized Einstein-Chern-Simons topological gravity. The dual models to be used in the interference process are carefully analyzed with special emphasis on their propagating spectrum. We identify the opposite dual aspects, necessary for the application of the interference formalism on this model. The soldered theory so obtained displays explicitly massive modes of the Proca type. It may also be...

  1. Experiments on the TECFLAM standard burner. Final colloquium; Experimente am TECFLAM Standard-Brenner. Abschlusskolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This year's annual seminar had two main subjects: First, the final colloquium of the CRAY-TECFLAM project in which an industrial code for simulation of combustion processes in furnaces and gas turbines was developed in cooperation with the relevant industry, and secondly, investigations on a TECFLAM standard burner which served to establish a reliable set of state variables by different methods that were applied simultaneously, as well as the validation of the mathematical models. [German] Das alljaehrliche oeffentliche Seminar stand in diesem Jahr unter zwei zentralen Themen: zum einen das Abschlusskolloquium des CRAY-TECFLAM-Projekts, in dem ein Industriecode zur Simulation der Verbrennungsvorgaenge in Feuerungen und Gasturbinen - unter Beteiligung der relevanten Industrie - entwickelt wurde, zum anderen die Untersuchungen am TECFLAM Standardbrenner, mit denen ein verlaesslicher Satz von Zustandsgroessen mit unterschiedlichen, aber simultan angewandten Messmethoden ermittelt wird und die mathematischen Modelle validiert werden. (orig.)

  2. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    Science.gov (United States)

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  3. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  4. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  5. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Hujova, Miroslava [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Pokorny, Richard [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Klouzek, Jaroslav [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Dixon, Derek R. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Cutforth, Derek A. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Lee, Seungmin [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; McCarthy, Benjamin P. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington

    2017-07-10

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feed in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.

  6. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  7. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  8. THE LOW FREQUENCY OF DUAL ACTIVE GALACTIC NUCLEI VERSUS THE HIGH MERGER RATE OF GALAXIES: A PHENOMENOLOGICAL MODEL

    International Nuclear Information System (INIS)

    Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques

    2011-01-01

    Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.

  9. Beyond dual-process models: A categorisation of processes underlying intuitive judgement and decision making

    NARCIS (Netherlands)

    Glöckner, A.; Witteman, C.L.M.

    2010-01-01

    Intuitive-automatic processes are crucial for making judgements and decisions. The fascinating complexity of these processes has attracted many decision researchers, prompting them to start investigating intuition empirically and to develop numerous models. Dual-process models assume a clear

  10. A dynamic programming model for optimising feeding and slaughter decisions regarding fattening pigs

    Directory of Open Access Journals (Sweden)

    J. K. NIEMI

    2008-12-01

    Full Text Available Costs of purchasing new piglets and of feeding them until slaughter are the main variable expenditures in pig fattening. They both depend on slaughter intensity, the nature of feeding patterns and the technological constraints of pig fattening, such as genotype. Therefore, it is of interest to examine the effect of production technology and changes in input and output prices on feeding and slaughter decisions. This study examines the problem by using a dynamic programming model that links genetic characteristics of a pig to feeding decisions and the timing of slaughter and takes into account how these jointly affect the quality-adjusted value of a carcass. The state of nature and the genotype of a pig are known in the analysis. The results suggest that producer can benefit from improvements in the pig’s genotype. Animals of improved genotype can reach optimal slaughter maturity quicker and produce leaner meat than animals of poor genotype. In order to fully utilise the benefits of animal breeding, the producer must adjust feeding and slaughter patterns on the basis of genotype. The results also suggest that the producer can benefit from flexible feeding technology. Typically, such a technology provides incentives to feed piglets with protein-rich feed. When the pig approaches slaughter maturity, the share of protein-rich feed in the diet gradually decreases and the amount of energy-rich feed increases. Generally, the optimal slaughter weight is within the weight range that pays the highest price per kilogram of pig meat. The optimal feeding pattern and the optimal timing of slaughter depend on price ratios. Particularly, an increase in the price of pig meat provides incentives to increase the growth rates up to the pig’s biological maximum by increasing the amount of energy in the feed. Price changes and changes in slaughter premium can also have large income effects.;

  11. Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning

    Science.gov (United States)

    Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han

    2017-01-01

    We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...

  12. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  13. System Thinking and Feeding Relations: Learning with a Live Ecosystem Model

    Science.gov (United States)

    Eilam, Billie

    2012-01-01

    Considering well-documented difficulties in mastering ecology concepts and system thinking, the aim of the study was to examine 9th graders' understanding of the complex, multilevel, systemic construct of feeding relations, nested within a larger system of a live model. Fifty students interacted with the model and manipulated a variable within it…

  14. Exchange mechanisms for single photo- and electroproduction using the dual fermion model

    International Nuclear Information System (INIS)

    Becker, L.; Weigt, G.

    1976-01-01

    Single pion real and virtual photoproduction data are compared with phenomenological dual fermion amplitudes, which were previously applied to quasi-two body vector and tensor meson production. The similar structures of the photon and the corresponding vector meson data (in the s-channel helicity system) such as spikes and dips, usually described by Regge pole/Regge cut interferences, are reproduced by the dual Born amplitudes. Predictions of the model for the differential cross sections, in particular their parts for natural and unnatural spin-parity t-channel exchanges as well as their mass dependence, and photon and target asymmetries are in reasonable agreement with the experimental data. (author)

  15. Performance Enhancements Under Dual-task Conditions

    Science.gov (United States)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1984-01-01

    Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.

  16. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    Science.gov (United States)

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  17. A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs

    DEFF Research Database (Denmark)

    Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard

    2016-01-01

    Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...

  18. Development of a multi-fuel burner for operation with light oil, natural gas and low calorific value gas; Entwicklung eines Mehrstoffbrenners fuer Heizoel-, Erdgas- und Schwachgasbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Giese, Anne; Tali, Eren [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-08-15

    In the course of the AiF research project 'Development of a multi-fuel burner for operation with natural gas, light oil and low calorific value gas (MSB)' (IGF Grant No. 16202 N), various burner concepts based on the principle of continuously staged air were developed, analysed by means of computational fluid dynamics, built, investigated experimentally and finally tested at a real biomass gasifier (plant). This article describes the results of this research project. (orig.)

  19. Unravelling variation in feeding, social interaction and growth patterns among pigs using an agent-based model.

    Science.gov (United States)

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M

    2018-07-01

    Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints

  20. War and peace: morphemes and full forms in a noninteractive activation parallel dual-route model.

    Science.gov (United States)

    Baayen, H; Schreuder, R

    This article introduces a computational tool for modeling the process of morphological segmentation in visual and auditory word recognition in the framework of a parallel dual-route model. Copyright 1999 Academic Press.

  1. The dual pathway model of overeating. Replication and extension with actual food consumption

    NARCIS (Netherlands)

    Ouwens, Machteld A; van Strien, T; Leeuwe, J.F.J.; van der Staak, C P F

    van Strien et al. [van Strien, T., Engels, R. C. M. E., van Leeuwe, J., Snoek, H. M. (2005). The Stice model of overeating: tests in clinical and non-clinical samples. Appetite, 45, 205-213] extended the negative affect pathway of Stice's dual pathway model of overeating Stice [Stice, E. (1994).

  2. Characterisation of heat transfer and flame length in a semi-scale industrial furnace equipped with HiTAC burner

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Nehme, W.; Biswas, A.K.; Yang, W.; Blasiak, W.; Bertin, D. [Royal Institute of Technology, Stockholm (Sweden)

    2010-09-15

    This paper investigates the effects of multiple burner nozzles on the combustion characteristics, such as flame volume, heat transfer and NOx emission in a high temperature air combustion (HiTAC) industrial furnace. Experiments were carried out in one semi-industrial furnace located in Kungliga Tekniska Hogskolan (Stockholm, Sweden). Three different types of burners were tested, including both regenerative and recuperative types. Variable flame temperature and oxygen concentration were applied in experiments. Heat transfer characteristics of HiTAC are studied in this paper, and the influences of a variety of inertial fuel/air jets are investigated for both flame length and NOx emission. One improved correlation between chemical flame length and flame Froude number is established for HiTAC with manifold nozzles. NOx emission is also correlated to the flame Froude number. The HiTAC recirculation system effects on flame shape, NOx emission and heat transfer were also examined.

  3. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  4. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  5. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  6. Effect of operating parameters of a burner of oxygen conversion on flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Glike, A P

    1980-01-01

    Combustion of high-calorie gases under pressure makes it possible to create compact fuel-burning devices. As applied to open-hearth furnaces, several types of these devices have been developed. The oxidizer used is oxygen, blowing, enriched with oxygen or compressed air. Reformation of natural gas in the chamber of the burner of oxygen conversion operating under pressure up to 2 kg-f/cm/sup 2/ makes it possible to obtain a high-temperature flame with satisfactory illumination without using mazut.

  7. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  8. Nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model

    International Nuclear Information System (INIS)

    Han, Jongmin; Jang, Jaeduk

    2005-01-01

    In this paper we prove the existence of the radially symmetric nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model. We also verify the Chern-Simons limit for those solutions

  9. Dual function of the pectoral girdle for feeding and locomotion in white-spotted bamboo sharks.

    Science.gov (United States)

    Camp, Ariel L; Scott, Bradley; Brainerd, Elizabeth L; Wilga, Cheryl D

    2017-07-26

    Positioned at the intersection of the head, body and forelimb, the pectoral girdle has the potential to function in both feeding and locomotor behaviours-although the latter has been studied far more. In ray-finned fishes, the pectoral girdle attaches directly to the skull and is retracted during suction feeding, enabling the ventral body muscles to power rapid mouth expansion. However, in sharks, the pectoral girdle is displaced caudally and entirely separate from the skull (as in tetrapods), raising the question of whether it is mobile during suction feeding and contributing to suction expansion. We measured three-dimensional kinematics of the pectoral girdle in white-spotted bamboo sharks during suction feeding with X-ray reconstruction of moving morphology, and found the pectoral girdle consistently retracted about 11° by rotating caudoventrally about the dorsal scapular processes. This motion occurred mostly after peak gape, so it likely contributed more to accelerating captured prey through the oral cavity and pharynx, than to prey capture as in ray-finned fishes. Our results emphasize the multiple roles of the pectoral girdle in feeding and locomotion, both of which should be considered in studying the functional and evolutionary morphology of this structure. © 2017 The Author(s).

  10. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mothers Coping With Bereavement in the 2008 China Earthquake: A Dual Process Model Analysis.

    Science.gov (United States)

    Chen, Lin; Fu, Fang; Sha, Wei; Chan, Cecilia L W; Chow, Amy Y M

    2017-01-01

    The purpose of this study is to explore the grief experiences of mothers after they lost their children in the 2008 China earthquake. Informed by the Dual Process Model, this study conducted in-depth interviews to explore how six bereaved mothers coped with such grief over a 2-year period. Right after the earthquake, these mothers suffered from intensive grief. They primarily coped with loss-oriented stressors. As time passed, these mothers began to focus on restoration-oriented stressors to face changes in life. This coping trajectory was a dynamic and integral process, which bereaved mothers oscillated between loss- and restoration-oriented stressors. This study offers insight in extending the existing empirical evidence of the Dual Process Model.

  12. Estimating dual deposit insurance premium rates and forecasting non-performing loans: Two new models

    OpenAIRE

    Yoshino, Naoyuki; Taghizadeh-Hesary, Farhad; Nili, Farhad

    2015-01-01

    Risky banks that endanger the stability of the financial system should pay higher deposit insurance premiums than healthy banks and other financial institutions that have shown good financial performance. It is necessary, therefore, to have at least a dual fair premium rate system. In this paper, we develop a model for calculating dual fair premium rates. Our definition of a fair premium rate in this paper is a rate that could cover the operational expenditures of the deposit insuring organiz...

  13. The dual pathway model of overeating. Replication and extension with actual food consumption

    NARCIS (Netherlands)

    Ouwens, M.A.; Strien, T. van; Leeuwe, J.F.J. van; Staak, C.P.F. van der

    2009-01-01

    van Strien et al. [van Strien, T., Engels, R. C. M. E., van Leeuwe, J., Snoek, H. M. (2005). The Stice model of overeating: tests in clinical and non-clinical samples. Appetite, 45, 205–213] extended the negative affect pathway of Stice's dual pathway model of overeating Stice [Stice, E. (1994).

  14. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  15. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  16. Improved dual sided doped memristor: modelling and applications

    Directory of Open Access Journals (Sweden)

    Anup Shrivastava

    2014-05-01

    Full Text Available Memristor as a novel and emerging electronic device having vast range of applications suffer from poor frequency response and saturation length. In this paper, the authors present a novel and an innovative device structure for the memristor with two active layers and its non-linear ionic drift model for an improved frequency response and saturation length. The authors investigated and compared the I–V characteristics for the proposed model with the conventional memristors and found better results in each case (different window functions for the proposed dual sided doped memristor. For circuit level simulation, they developed a SPICE model of the proposed memristor and designed some logic gates based on hybrid complementary metal oxide semiconductor memristive logic (memristor ratioed logic. The proposed memristor yields improved results in terms of noise margin, delay time and dynamic hazards than that of the conventional memristors (single active layer memristors.

  17. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model.

    Science.gov (United States)

    Kodippili, Kasun; Hakim, Chady H; Pan, Xiufang; Yang, Hsiao T; Yue, Yongping; Zhang, Yadong; Shin, Jin-Hong; Yang, N Nora; Duan, Dongsheng

    2018-03-01

    Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 10 13 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.

  18. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  19. Study on Complex Advertising and Price Competition Dual-Channel Supply Chain Models Considering the Overconfidence Manufacturer

    Directory of Open Access Journals (Sweden)

    Junhai Ma

    2016-01-01

    Full Text Available In order to explore how the manufacturers make decisions when two manufacturers compete for local advertising investment, we examine two noncooperative models (Stackelberg and Nash game and propose a cost sharing contract to investigate channel competition of dual-channel supply chain. The dominant power between manufacturer and retailer and the effect of channel competition strategy on price are mainly discussed. In addition, dynamic system concepts are integrated into Stackelberg game model based on bounded rational mechanism. We analyze the local stability and find that the stability level of the dual-channel supply chains depends crucially on the price adjustment speed, the level of demand uncertainty, and the risk preference. The outcome shows that, under the master-slave game model, the profits of manufacturers are greater than that under decentralized decision-making mode, and the profits of retailers under master-slave game model are less than that under decentralized decision-making mode. The profits of manufacturers and retailers in the stable region are greater than that in unstable region. Finally, the delay feedback control method is utilized and effectively controls the chaotic behavior of dual-channel supply chain model. The results have theoretical and practical significance for the game models in terms of advertising and price competition.

  20. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    Science.gov (United States)

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  1. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  2. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group; Klepeis, Neil E. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; San Diego Univ., CA (United States). Center for Behavioral Epidemiology and Community Health; Lobscheid, Agnes B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group; Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  3. Metabolite cross-feeding enhances virulence in a model polymicrobial infection.

    Directory of Open Access Journals (Sweden)

    Matthew M Ramsey

    2011-03-01

    Full Text Available Microbes within polymicrobial infections often display synergistic interactions resulting in enhanced pathogenesis; however, the molecular mechanisms governing these interactions are not well understood. Development of model systems that allow detailed mechanistic studies of polymicrobial synergy is a critical step towards a comprehensive understanding of these infections in vivo. In this study, we used a model polymicrobial infection including the opportunistic pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii to examine the importance of metabolite cross-feeding for establishing co-culture infections. Our results reveal that co-culture with S. gordonii enhances the pathogenesis of A. actinomycetemcomitans in a murine abscess model of infection. Interestingly, the ability of A. actinomycetemcomitans to utilize L-lactate as an energy source is essential for these co-culture benefits. Surprisingly, inactivation of L-lactate catabolism had no impact on mono-culture growth in vitro and in vivo suggesting that A. actinomycetemcomitans L-lactate catabolism is only critical for establishing co-culture infections. These results demonstrate that metabolite cross-feeding is critical for A. actinomycetemcomitans to persist in a polymicrobial infection with S. gordonii supporting the idea that the metabolic properties of commensal bacteria alter the course of pathogenesis in polymicrobial communities.

  4. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  5. Dual Enrollment for High School Students

    Science.gov (United States)

    Edwards, Linsey; Hughes, Katherine

    2011-01-01

    Dual enrollment programs allow high school students to enroll in college courses and potentially earn college credit. The term concurrent enrollment is sometimes used interchangeably with dual enrollment, and sometimes to refer to a particular model of dual enrollment. In some programs, students earn high school and college credit simultaneously;…

  6. User Preference-Based Dual-Memory Neural Model With Memory Consolidation Approach.

    Science.gov (United States)

    Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Nasir, Jauwairia; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2018-06-01

    Memory modeling has been a popular topic of research for improving the performance of autonomous agents in cognition related problems. Apart from learning distinct experiences correctly, significant or recurring experiences are expected to be learned better and be retrieved easier. In order to achieve this objective, this paper proposes a user preference-based dual-memory adaptive resonance theory network model, which makes use of a user preference to encode memories with various strengths and to learn and forget at various rates. Over a period of time, memories undergo a consolidation-like process at a rate proportional to the user preference at the time of encoding and the frequency of recall of a particular memory. Consolidated memories are easier to recall and are more stable. This dual-memory neural model generates distinct episodic memories and a flexible semantic-like memory component. This leads to an enhanced retrieval mechanism of experiences through two routes. The simulation results are presented to evaluate the proposed memory model based on various kinds of cues over a number of trials. The experimental results on Mybot are also presented. The results verify that not only are distinct experiences learned correctly but also that experiences associated with higher user preference and recall frequency are consolidated earlier. Thus, these experiences are recalled more easily relative to the unconsolidated experiences.

  7. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  8. Dual models with SL(2, C) symmetry

    CERN Document Server

    Brink, L

    1972-01-01

    Making use of homogeneous space techniques, the authors construct a class of dual models, which is a generalization of the Virasoro- Shapiro type of model. The integrand in the integral representation for the N-point function depends not only on the modulus of the distances between two-dimensional Koba-Nielsen variables, but also on the corresponding phases. This is in fact the most general SL(2, C) invariant amplitude that can be constructed using complex integration variables. The extra phase factors in the integrand provide a possible means of avoiding tachyons both as external particles and as intermediate states in the amplitude. When factorized in a simple- minded fashion the intercepts are fixed to be integers. Although the external particles can be chosen not to be tachyons, such states appear as intermediate states. Within this factorization one can show that there are gauge conditions for the amplitude that can provide a ghostkilling mechanism. (19 refs).

  9. Diagnosis of Alzheimer’s Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network

    Directory of Open Access Journals (Sweden)

    Debesh Jha

    2017-01-01

    Full Text Available Background. Error-free diagnosis of Alzheimer’s disease (AD from healthy control (HC patients at an early stage of the disease is a major concern, because information about the condition’s severity and developmental risks present allows AD sufferer to take precautionary measures before irreversible brain damage occurs. Recently, there has been great interest in computer-aided diagnosis in magnetic resonance image (MRI classification. However, distinguishing between Alzheimer’s brain data and healthy brain data in older adults (age > 60 is challenging because of their highly similar brain patterns and image intensities. Recently, cutting-edge feature extraction technologies have found extensive application in numerous fields, including medical image analysis. Here, we propose a dual-tree complex wavelet transform (DTCWT for extracting features from an image. The dimensionality of feature vector is reduced by using principal component analysis (PCA. The reduced feature vector is sent to feed-forward neural network (FNN to distinguish AD and HC from the input MR images. These proposed and implemented pipelines, which demonstrate improvements in classification output when compared to that of recent studies, resulted in high and reproducible accuracy rates of 90.06 ± 0.01% with a sensitivity of 92.00 ± 0.04%, a specificity of 87.78 ± 0.04%, and a precision of 89.6 ± 0.03% with 10-fold cross-validation.

  10. Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol.

    Science.gov (United States)

    Wang, Ruifei; Koppram, Rakesh; Olsson, Lisbeth; Franzén, Carl Johan

    2014-11-01

    Fed-batch simultaneous saccharification and fermentation (SSF) is a feasible option for bioethanol production from lignocellulosic raw materials at high substrate concentrations. In this work, a segregated kinetic model was developed for simulation of fed-batch simultaneous saccharification and co-fermentation (SSCF) of steam-pretreated birch, using substrate, enzymes and cell feeds. The model takes into account the dynamics of the cellulase-cellulose system and the cell population during SSCF, and the effects of pre-cultivation of yeast cells on fermentation performance. The model was cross-validated against experiments using different feed schemes. It could predict fermentation performance and explain observed differences between measured total yeast cells and dividing cells very well. The reproducibility of the experiments and the cell viability were significantly better in fed-batch than in batch SSCF at 15% and 20% total WIS contents. The model can be used for simulation of fed-batch SSCF and optimization of feed profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Pedigree and genomic analyses of feed consumption and residual feed intake in laying hens.

    Science.gov (United States)

    Wolc, Anna; Arango, Jesus; Jankowski, Tomasz; Settar, Petek; Fulton, Janet E; O'Sullivan, Neil P; Fernando, Rohan; Garrick, Dorian J; Dekkers, Jack C M

    2013-09-01

    Efficiency of production is increasingly important with the current escalation of feed costs and demands to minimize the environmental footprint. The objectives of this study were 1) to estimate heritabilities for daily feed consumption and residual feed intake and their genetic correlations with production and egg-quality traits; 2) to evaluate accuracies of estimated breeding values from pedigree- and marker-based prediction models; and 3) to localize genomic regions associated with feed efficiency in a brown egg layer line. Individual feed intake data collected over 2-wk trial periods were available for approximately 6,000 birds from 8 generations. Genetic parameters were estimated with a multitrait animal model; methods BayesB and BayesCπ were used to estimate marker effects and find genomic regions associated with feed efficiency. Using pedigree information, feed efficiency was found to be moderately heritable (h(2) = 0.46 for daily feed consumption and 0.47 for residual feed intake). Hens that consumed more feed and had greater residual feed intake (lower efficiency) had a genetic tendency to lay slightly more eggs with greater yolk weights and albumen heights. Regions on chromosomes 1, 2, 4, 7, 13, and Z were found to be associated with feed intake and efficiency. The accuracy from genomic prediction was higher and more persistent (better maintained across generations) than that from pedigree-based prediction. These results indicate that genomic selection can be used to improve feed efficiency in layers.

  12. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model.

    Science.gov (United States)

    Potretzke, Theodora A; Brace, Christopher L; Lubner, Meghan G; Sampson, Lisa A; Willey, Bridgett J; Lee, Fred T

    2015-04-01

    To compare dual-energy computed tomography (CT) with conventional CT for the detection of small-bowel ischemia in an experimental animal model. The study was approved by the animal care and use committee and was performed in accordance with the Guide for Care and Use of Laboratory Animals issued by the National Research Council. Ischemic bowel segments (n = 8) were created in swine (n = 4) by means of surgical occlusion of distal mesenteric arteries and veins. Contrast material-enhanced dual-energy CT and conventional single-energy CT (120 kVp) sequences were performed during the portal venous phase with a single-source fast-switching dual-energy CT scanner. Attenuation values and contrast-to-noise ratios of ischemic and perfused segments on iodine material-density, monospectral dual-energy CT (51 keV, 65 keV, and 70 keV), and conventional 120-kVp CT images were compared. Linear mixed-effects models were used for comparisons. The attenuation difference between ischemic and perfused segments was significantly greater on dual-energy 51-keV CT images than on conventional 120-kVp CT images (mean difference, 91.7 HU vs 47.6 HU; P conventional CT by increasing attenuation differences between ischemic and perfused segments on low-kiloelectron volt and iodine material density images. © RSNA, 2014.

  13. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    Science.gov (United States)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  14. Impact of fuel quality and burner capacity on the performance of wood pellet stove

    OpenAIRE

    Petrović-Bećirović Sanja B.; Manić Nebojša G.; Stojiljković Dragoslava D.

    2015-01-01

    Pellet stoves may play an important role in Serbia in the future when fossil fuel fired conventional heating appliances are replaced by more efficient and environmentally friendly devices. Experimental investigation was conducted in order to examine the influence of wood pellet quality, as well as burner capacity (6, 8 and 10 kW), used in the same stove configuration, on the performance of pellet stove with declared nameplate capacity of 8 kW. The results o...

  15. Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle

    Science.gov (United States)

    Jansen, Emmert T; Thorman, H Carl

    1950-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.

  16. Burner flow regulators with mechanisms performing two variable function. Meccanismi che generano una funzione di due variabili applicati alla regolazione dei bruciatori

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, L.; Tagliaferro, B. (R.B.L. Riello Bruciatori, Legnago Spa, Legnago (Italy)); Cossalter, V.; Da Lio, M. (Padua Univ. (Italy). Dip. di Ingegneria Meccanica)

    1993-08-01

    A new class of fuel oil burners has recently been developed by an Italian firm with the aim of obtaining high performances in terms of both energy efficiency and air pollution abatement. The innovative feature of these burners is that they are equipped with a device which permits the automatic and optimum regulation of the air fuel mixture independent of ambient and operating conditions. To reduce costs, the regulation system is a mechanical one instead of electronic which would require an expensive lambda probe. The mechanical regulating system controls air intake by simply taking into account two main combustion factors - ambient temperature and the nominal fuel flow rate. The special cam mechanism is thus classified as one which performs a single function with two degrees of freedom, i.e., the independent variables of ambient temperature and nominal fuel flow. One of the air intake valve's movements is governed by a temperature transducer, the other (primary), by a screw which allows the registering of the air flow during burner installation or upon completion of periodic maintenance checks. In addition to optimizing combustion control, this control technique affords the possibility to adapt the air flow to the different fuel flows obtained by changing the type of nozzle or supply pressure.

  17. Rural-urban migration: policy simulations in a dual economy model of Bangladesh.

    Science.gov (United States)

    Ahmed, S

    1986-03-01

    The process of rural-urban migration in Bangladesh is analyzed using a dual economy model. The focus is on the period 1976-1985. The main purpose of the paper is to examine alternative policies designed to reduce the level of such migration without adversely affecting the country's economy.

  18. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  19. Numerical Investigation of the Low-Caloric Gas Burning Process in a Bottom Burner

    Directory of Open Access Journals (Sweden)

    Redko A.

    2017-08-01

    Full Text Available The use of low-grade gases in the fuel and energy balance of enterprises makes it possible to increase the energy efficiency of technological processes. The volumes of low-grade gases (blast furnace and coke oven gases, synthesis gas of coal gasification processes, biogas, coal gas, etc. that are utilized more significant in technological processes but their calorific value are low. At the same time artificial gases contain ballast gaseous (СО2, H2O and mechanical impurities that are harmful gas impurities. Their use requires technological preparation. Thus coal methane is characterized of high humidity, coal dust and drip moisture, variable composition. Thus was effective burning of coal methane it is required the development of constructive and regime measures that ensure a stable and complete burning of gaseous fuels. In this article it is presented the results of computer simulation of a stationary turbulent diffusion flame in a restricted space in the process of burning natural gas and coal methane in a bottom burner. The calculation results contain the fields of gear, temperature, concentration of CH4‚ CO‚ H2O‚ CO2 and nitrogen oxides. The structural elements of the flame (recirculation zone, hot "dome", mixing layer and far trace are determined. It has been established that complete combustion of coal methane in a modified bottom burner is ensured and the numerical values of nitrogen oxide concentrations in the flame are consistent with the literature data.

  20. An analytical model for cumulative infiltration into a dual-permeability media

    Science.gov (United States)

    Peyrard, Xavier; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Simunek, Jiri

    2010-05-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model assumes that flow is governed by Richards equation in both porous regions (matrix and fractures). Water can be exchanged between the two regions following a first-order rate law. A previous study showed that the influence of the hydraulic conductivity of the matrix/macropore interface had a little influence on cumulative infiltration at the soil surface. As a result, one could consider the surface infiltration for a specific case of no water exchange between the fracture and matrix regions (a case of zero interfacial hydraulic conductivity). In such a case, water infiltration can be considered to be the sum of the cumulative infiltrations into the matrix and the fractures. On the basis of analytical models for each sub domain (matrix and fractures), an analytical model is proposed for the entire dual-porosity system. A sensitivity analysis is performed to characterize the influence of several factors, such as the saturated hydraulic conductivity ratio, the water pressure scale parameter ratio, and the saturated volumetric water content scale ratio, on the total cumulative infiltration. Such an analysis greatly helps in quantifying the impact of macroporosity and fractures on water infiltration, which can be of great interest for hydrological models.

  1. Dual model for parton densities

    International Nuclear Information System (INIS)

    El Hassouni, A.; Napoly, O.

    1981-01-01

    We derive power-counting rules for quark densities near x=1 and x=0 from parton interpretations of one-particle inclusive dual amplitudes. Using these rules, we give explicit expressions for quark distributions (including charm) inside hadrons. We can then show the compatibility between fragmentation and recombination descriptions of low-p/sub perpendicular/ processes

  2. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    Science.gov (United States)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  3. The development of a model for the prediction of feed intake and energy partitioning in dairy cows

    NARCIS (Netherlands)

    Zom, R.L.G.

    2014-01-01

    Balancing the supply of on-farm grown forages with the production targets of the dairy herd is a crucial aspect of the management of a dairy farm. Models which provides a rapid insight of the impact of the ration, feed quality and feeding management on feed intake and performance of dairy cows

  4. Dual Feed, Single Element Antenna for WiMAX MIMO Application

    Directory of Open Access Journals (Sweden)

    Frank M. Caimi

    2008-01-01

    Full Text Available A novel u-shaped single element antenna having two feed ports is compared with two equal length monopoles separated by a distance equivalent to the width. A discussion of relative performance metrics is provided for MIMO applications, and measured data is given for comparison. Good impedance match and isolation of greater than −10 dB are observed over the operating bandwidth from 2.3 to 2.39 GHz. The antenna patterns are highly uncorrelated, as illustrated by computation of the antenna pattern correlation coefficient for the two comparison monopoles.

  5. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  6. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    Full Text Available Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  7. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E

    2014-01-01

    Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  8. Personality and creativity : The dual pathway to creativity model and a research agenda

    NARCIS (Netherlands)

    Baas, Matthijs; Roskes, Marieke; Sligte, Daniel; Nijstad, Bernard A.; De Dreu, Carsten K W

    2013-01-01

    To better understand the relation between personality traits and creativity, we invoke the Dual-Pathway to Creativity model (DPCM) that identifies two pathways to creative outcomes: (1) flexible processing of information (cognitive flexibility) and (2) persistent probing, and systematically and

  9. How can we reduce carbon in ash in firing pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W. (and others)

    1992-12-01

    The article discusses solutions to the problem of reducing carbon in ash in firing pulverized coal. Suggested solutions to the problem include: reviewing air flow through the mills; examining the pulverizers for coal fineness variations; investigating air distribution in the burners; review dual-firing equations; examining the burners for slag build up; checking coal fineness is appropriate to the boiler; increasing air flow; and checking instrumentation. 2 figs., 1 photo.

  10. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  11. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  12. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  13. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

    Science.gov (United States)

    Yang, Jianfei; Poot, Dirk H. J.; Caan, Matthan W. A.; Su, Tanja; Majoie, Charles B. L. M.; van Vliet, Lucas J.; Vos, Frans M.

    2016-01-01

    Purpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL’s ball-and-stick approach. Results Monte Carlo experiments demonstrated that JARD’s volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. Conclusions The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions. PMID:27760166

  14. Tree-level equivalence between a Lorentz-violating extension of QED and its dual model in electron-electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Caixa Postal 3037, Lavras, Minas Gerais (Brazil); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)

    2017-02-15

    S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)

  15. Tree-level equivalence between a Lorentz-violating extension of QED and its dual model in electron-electron scattering

    International Nuclear Information System (INIS)

    Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T.; Scarpelli, A.P.B.

    2017-01-01

    S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)

  16. The Effect of Feeding Calliandra Calothyrus in Different Patterns as a Supplement to Rhodes Grass Hay on Intake, Nitrogen Utilization and Milk Yield of dual Purpose Goats

    International Nuclear Information System (INIS)

    Kariuki, J.N.

    2002-01-01

    Eighteen dual purpose goats were used to evaluate the effects of feeding Calliandra caryothyrus leaf meal at different patterns as a supplement to Rhodes grass hay on intake, nitrogen utilization and milk yield. A basal diet of low quality Rhodes grass hay (fed at 90% ad libitum) and 100 g maize germ were offered to the goats over a 60-day experimental period. The treatments were:- (T1) 100 g day -1 calliandra for 60 days; (T2) 200 g day -1 calliandra for 30 days followed by another 30 days where 200 g or 0 g day -1 calliandra were alternated every 5 days; and (T3) 200 g or 0 g day -1 alternated every 5 days for 60 days. Total dry matter intake (DMI) was significantly (p -1 for T1, T2 and T3, respectively.Milk Yields had similar trend and averaged 166.1, 231.8 and 201.1 g day -1 for T1, T2, and T3, respectively. The utilization of nitrogen was also significantly (p<0.05) affected by pattern of supplement feeding. It was concluded from the results that the overall animal response could be influenced by how a limited quantity of supplement was fed

  17. Assessing the roles of impulsivity, food-related cognitions, BMI, and demographics in the dual pathway model of binge eating among men and women.

    Science.gov (United States)

    Mason, Tyler B; Lewis, Robin J

    2015-08-01

    The dual pathway model is a widely accepted model of binge eating that focuses on the role of sociocultural factors, negative affect, and dietary restraint. However, less is known about demographic (e.g., gender and ethnicity) differences in the model and the role of other variables in the model. To further our understanding of the dual pathway model of binge eating, the current study examined the role of demographics (i.e., gender, race, BMI, parental education and obesity), impulsivity, and food-related cognitions in the dual pathway model. A sample of college students completed a battery of measures. Multi-group structural equation modeling was used to evaluate the dual pathway model separately for men and women. Results supported the dual pathway model of binge eating among men and women, and also supported food-related cognitions as an important variable prior to binge eating. In other words, body shame was associated with more dietary restraint and negative affect, and in turn, dietary restraint and negative affect were associated with increased negative food-related cognitions. Then, food-related cognitions predicted binge eating. Additionally impulsivity was related to body shame, negative affect, and food-related cognitions, but was unrelated to binge eating after controlling for the other variables. Racial differences existed among women in BMI and body shame, but there were no racial differences among men. Our results suggest that the dual pathway model adequately explains binge eating among men and women, but that food-related cognitions may be an imporant anteceden to binge eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dual-process models of health-related behaviour and cognition: a review of theory.

    Science.gov (United States)

    Houlihan, S

    2018-03-01

    The aim of this review was to synthesise a spectrum of theories incorporating dual-process models of health-related behaviour. Review of theory, adapted loosely from Cochrane-style systematic review methodology. Inclusion criteria were specified to identify all relevant dual-process models that explain decision-making in the context of decisions made about human health. Data analysis took the form of iterative template analysis (adapted from the conceptual synthesis framework used in other reviews of theory), and in this way theories were synthesised on the basis of shared theoretical constructs and causal pathways. Analysis and synthesis proceeded in turn, instead of moving uni-directionally from analysis of individual theories to synthesis of multiple theories. Namely, the reviewer considered and reconsidered individual theories and theoretical components in generating the narrative synthesis' main findings. Drawing on systematic review methodology, 11 electronic databases were searched for relevant dual-process theories. After de-duplication, 12,198 records remained. Screening of title and abstract led to the exclusion of 12,036 records, after which 162 full-text records were assessed. Of those, 21 records were included in the review. Moving back and forth between analysis of individual theories and the synthesis of theories grouped on the basis of theme or focus yielded additional insights into the orientation of a theory to an individual. Theories could be grouped in part on their treatment of an individual as an irrational actor, as social actor, as actor in a physical environment or as a self-regulated actor. Synthesising identified theories into a general dual-process model of health-related behaviour indicated that such behaviour is the result of both propositional and unconscious reasoning driven by an individual's response to internal cues (such as heuristics, attitude and affect), physical cues (social and physical environmental stimuli) as well as

  19. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Ji, Dongxu; Tseng, King Jet

    2017-01-01

    Highlights: •SOC and capacity are dually estimated with online adapted battery model. •Model identification and state dual estimate are fully decoupled. •Multiple timescales are used to improve estimation accuracy and stability. •The proposed method is verified with lab-scale experiments. •The proposed method is applicable to different battery chemistries. -- Abstract: Reliable online estimation of state of charge (SOC) and capacity is critically important for the battery management system (BMS). This paper presents a multi-timescale method for dual estimation of SOC and capacity with an online identified battery model. The model parameter estimator and the dual estimator are fully decoupled and executed with different timescales to improve the model accuracy and stability. Specifically, the model parameters are online adapted with the vector-type recursive least squares (VRLS) to address the different variation rates of them. Based on the online adapted battery model, the Kalman filter (KF)-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form of dual estimation. Experimental results suggest that the proposed method estimates the model parameters, SOC, and capacity in real time with fast convergence and high accuracy. Experiments on both lithium-ion battery and vanadium redox flow battery (VRB) verify the generality of the proposed method on multiple battery chemistries. The proposed method is also compared with other existing methods on the computational cost to reveal its superiority for practical application.

  20. Nonscaling parametrization of hadronic spectra and dual parton model

    International Nuclear Information System (INIS)

    Gaponenko, O.N.

    2001-01-01

    Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru