WorldWideScience

Sample records for dual-energy subtraction imaging

  1. Comparative study between rib imaging of DR dual energy subtraction technology and chest imaging

    International Nuclear Information System (INIS)

    Yu Jianming; Lei Ziqiao; Kong Xiangchuang

    2006-01-01

    Objective: To investigate the application value of DR dual energy subtraction technology in rib lesions. Methods: 200 patients were performed with chest DR dual energy subtraction, comparing the rib imaging between DR of thorax and chest imaging using ROC analysis. Results: Among the total of 200 patients, there are 50 cases of rib calcification, 7 cases of rib destruction, 22 cases of rib fracture. The calcification, destruction and fracture were displayed respectively by ribs below diaphragm and rib markings. The analytic parameter of rib imaging of DR dual energy subtraction Az is 0.9367, while that of rib imaging of chest Az is 0.6830. Conclusion: DR dual energy subtraction technology is superior to chest imaging in the displaying of rib lesion and ribs below diaphragm. (authors)

  2. Temporal subtraction of dual-energy chest radiographs

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Caligiuri, Philip; MacMahon, Heber

    2006-01-01

    Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. The purpose of this study was to evaluate whether dual-energy imaging could improve the quality of temporal subtraction images. Temporal subtraction images were generated from 100 pairs of temporally sequential standard radiographic chest images and from the corresponding 100 pairs of dual-energy, soft-tissue radiographic images. The registration accuracy demonstrated in the resulting temporal subtraction images was evaluated subjectively by two radiologists. The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained

  3. Dual-energy subtraction radiography of the breast

    International Nuclear Information System (INIS)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-01-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses. (author)

  4. Dual-energy subtraction radiography of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-06-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses.

  5. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures.

    Science.gov (United States)

    Szucs-Farkas, Zsolt; Lautenschlager, Katrin; Flach, Patricia M; Ott, Daniel; Strautz, Tamara; Vock, Peter; Ruder, Thomas D

    2011-08-01

    To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p=0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p=0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, prib fractures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures

    Energy Technology Data Exchange (ETDEWEB)

    Szucs-Farkas, Zsolt, E-mail: zsolt.szuecs@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Lautenschlager, Katrin, E-mail: katrin@students.unibe.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Flach, Patricia M., E-mail: patricia.flach@irm.unibe.ch [Institute of Forensic Medicine, University of Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Ott, Daniel, E-mail: daniel.ott@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Strautz, Tamara, E-mail: tamara.strautz@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Vock, Peter, E-mail: peter.vock@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Ruder, Thomas D., E-mail: thomas.ruder@irm.unibe.ch [Institute of Forensic Medicine, University of Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland)

    2011-08-15

    Objective: To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. Materials and methods: In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. Results: The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p = 0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p = 0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, p < 0.001). Conclusions: Despite a better image quality, adding ES bone images to standard radiographs of the chest does not provide better sensitivity or improved diagnostic confidence in the detection of rib fractures.

  7. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  8. [Quantitative image of bone mineral content--dual energy subtraction in a single exposure].

    Science.gov (United States)

    Katoh, T

    1990-09-25

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.

  9. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  10. Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography

    International Nuclear Information System (INIS)

    Deng, K.; Liu, C.; Ma, R.; Sun, C.; Wang, X.-M.; Ma, Z.-T.; Sun, X.-L.

    2009-01-01

    Aim: To evaluate the bone-subtraction effect of dual-energy bone removal in computed tomography angiography (CTA) of the head and neck in comparison with conventional bone-subtraction CTA. Material and Methods: The study comprised 52 patients who were divided into two groups at random, and examined using dual-source CT for head and neck CTA. Dual-energy bone removal CTA and conventional bone-subtraction CTA were applied to each of the two groups, respectively. The bone subtraction was performed automatically in both methods. Vascular structures, as well as brain tissue remained visible. The subtracted images were further processed with maximum intensity projection (MIP) and volume-rendering technique (VRT) for image evaluation. Two experienced radiologists reviewed the resulting subtracted and non-subtracted volume data with respect to the delineation and detection of image quality and vascular pathology. Results: The means of the weighted CT dose index (CTDIvol) for bone-removal dual-energy CTA and conventional bone-subtraction CTA were 20.56 ± 0.01 mGy and 25.57 ± 0.56 mGy, respectively. There was a significant difference between them. The percentage of carotid and vertebral arteries and all other vessels that could be successfully assessed with these two methods were 87.8, 68, and 83%, and 93.5, 91.8, and 92.6%, respectively. There were no significant differences in the visualization of the carotid arteries; however, there were significant differences in the visualization of the vertebral arteries. Conclusion: Compared with conventional bone-subtraction CTA, dual-energy bone-removal CTA had a lower radiation dose. It eliminated most bones in the head and neck successfully; however, the bone subtraction effect around the vertebral artery was unsatisfactory. Dual-energy bone-removal CTA provides a new method for detecting vascular diseases in routine clinical work.

  11. Dual energy CT intracranial angiography: image quality, radiation dose and initial application results

    International Nuclear Information System (INIS)

    Chai Xue; Zhang Longjiang; Lu Guangming; Zhou Changsheng

    2009-01-01

    Objective: To assess the clinical value of dual-energy intracranial CT angiography (CTA). Methods: Forty-one patients suspected of intracranial vascular diseases underwent dual-energy intracranial CT angiography, and 41 patients who underwent conventional subtraction CT were enrolled as the control group. Image quality of intracranial and skull base vessels and radiation dose between dual-energy CTA and conventional subtraction CTA were compared using two independent sample nonparametric test and independent-samples t test, respectively. Prevalence and size of lesions detected by dual-energy CTA and digital subtraction CTA were compared using paired-samples t test and Spearman correlative analysis. Results: The percentage of image quality scored 5 was 70.7% (29/41) for dual-energy CTA and 75.6% (31/41) for conventional subtraction CTA. There was no significant difference between the two groups (Z= -0.455, P=0.650). Image quality of vessels at the skull base in conventional subtraction CTA was superior to that in dual-energy CTA, especially for the petrosal and syphon segment (Z=-4.087, P=0.000). Radiation exposure of dual energy CTA and conventional CTA were (396.54±17.43) and (1090.95±114.29) mGy·cm respectively. Radiation exposure was decreased by 64% (t=-38.52, P=0.000) by dual energy CTA compared with conventional subtraction CTA. Out of the 41 patients, 19 patients were diagnosed as intracranial aneurysm, 2 patients as arteriovenous malformation (AVM), 3 patients with Moya-moya's disease, and the remaining 17 patients with negative results. Nine patients with intracranial aneurysm, 2 patients with AVM, 3 patients with Moya-moya's disease, and 2 patients with negative findings underwent DSA or operation, with concordant findings from both techniques. Diameter of aneurysm neck, long axis and minor axis by dual-energy CTA was (2.90±1.61), (5.23±1.68) and (3.83±1.69) mm, respectively; Diameter of aneurysm neck, long axis and minor axis by DSA was (2.95±1

  12. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  13. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    International Nuclear Information System (INIS)

    Contillo, Adriano; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2016-01-01

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  14. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2016-06-15

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  15. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  16. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging

    International Nuclear Information System (INIS)

    Cooper, D M L; Chapman, L D; Carter, Y; Zhouping, W; Wu, Y; Panahifar, A; Duke, M J M; Doschak, M; Britz, H M; Bewer, B

    2012-01-01

    The bones of many terrestrial vertebrates, including humans, are continually altered through an internal process of turnover known as remodeling. This process plays a central role in bone adaptation and disease. The uptake of fluorescent tetracyclines within bone mineral is widely exploited as a means of tracking new tissue formation. While investigation of bone microarchitecture has undergone a dimensional shift from 2D to 3D in recent years, we lack a 3D equivalent to fluorescent labeling. In the current study we demonstrate the ability of synchrotron radiation dual energy K-edge subtraction (KES) imaging to map the 3D distribution of elemental strontium within rat vertebral samples. This approach has great potential for ex vivo analysis of preclinical models and human tissue samples. KES also represents a powerful tool for investigating the pharmokinetics of strontium-based drugs recently approved in many countries around the globe for the treatment of osteoporosis. (paper)

  17. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Sawada, A [Kyoto college of medical science, Nantan, Kyoto (Japan); Uehara, T; Yuasa, Y; Koike, M; Kawamura, S [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the

  18. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    International Nuclear Information System (INIS)

    Bowman, Wesley; Sattarivand, Mike

    2016-01-01

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  19. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Wesley; Sattarivand, Mike [Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority, Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority (Canada)

    2016-08-15

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  20. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.; Jo, B.D.; Jeon, P.-H.; Kim, H.; Kim, D.

    2016-01-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  1. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual-energy

  2. Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography

    International Nuclear Information System (INIS)

    Uotani, Kensuke; Watanabe, Yoshiyuki; Higashi, Masahiro; Nakazawa, Tetsuro; Kono, Atsushi K.; Hori, Yoshiro; Fukuda, Tetsuya; Kanzaki, Suzu; Yamada, Naoaki; Naito, Hiroaki; Itoh, Toshihide; Sugimura, Kazuro

    2009-01-01

    We evaluated quantification of calcified carotid stenosis by dual-energy (DE) CTA and dual-energy head bone and hard plaque removal (DE hard plaque removal) and compared the results to those of digital subtraction angiography (DSA). Eighteen vessels (13 patients) with densely calcified carotid stenosis were examined by dual-source CT in the dual-energy mode (tube voltages 140 kV and 80 kV). Head bone and hard plaques were removed from the dual-energy images by using commercial software. Carotid stenosis was quantified according to NASCET criteria on MIP images and DSA images at the same plane. Correlation between DE CTA and DSA was determined by cross tabulation. Accuracies for stenosis detection and grading were calculated. Stenosis could be evaluated in all vessels by DE CTA after applying DE hard plaque removal. In contrast, conventional CTA failed to show stenosis in 13 out of 18 vessels due to overlapping hard plaque. Good correlation between DE plaque removal images and DSA images was observed (r 2 =0.9504) for stenosis grading. Sensitivity and specificity to detect hemodynamically relevant (>70%) stenosis was 100% and 92%, respectively. Dual-energy head bone and hard plaque removal is a promising tool for the evaluation of densely calcified carotid stenosis. (orig.)

  3. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    Science.gov (United States)

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  4. Automated materials discrimination using 3D dual energy X ray images

    International Nuclear Information System (INIS)

    Wang, Ta Wee

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV eff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  5. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  6. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  7. Small lung cancers: improved detection by use of bone suppression imaging--comparison with dual-energy subtraction chest radiography.

    Science.gov (United States)

    Li, Feng; Engelmann, Roger; Pesce, Lorenzo L; Doi, Kunio; Metz, Charles E; Macmahon, Heber

    2011-12-01

    To determine whether use of bone suppression (BS) imaging, used together with a standard radiograph, could improve radiologists' performance for detection of small lung cancers compared with use of standard chest radiographs alone and whether BS imaging would provide accuracy equivalent to that of dual-energy subtraction (DES) radiography. Institutional review board approval was obtained. The requirement for informed consent was waived. The study was HIPAA compliant. Standard and DES chest radiographs of 50 patients with 55 confirmed primary nodular cancers (mean diameter, 20 mm) as well as 30 patients without cancers were included in the observer study. A new BS imaging processing system that can suppress the conspicuity of bones was applied to the standard radiographs to create corresponding BS images. Ten observers, including six experienced radiologists and four radiology residents, indicated their confidence levels regarding the presence or absence of a lung cancer for each lung, first by using a standard image, then a BS image, and finally DES soft-tissue and bone images. Receiver operating characteristic (ROC) analysis was used to evaluate observer performance. The average area under the ROC curve (AUC) for all observers was significantly improved from 0.807 to 0.867 with BS imaging and to 0.916 with DES (both P chest radiographs. Further improvements can be achieved by use of DES radiography but with the requirement for special equipment and a potential small increase in radiation dose. © RSNA, 2011.

  8. Fourier Analysis of Single-Shot Dual-Energy X-ray Imaging Characteristics

    International Nuclear Information System (INIS)

    Kim, Jun Woo; Kim, Dong Woon; Kim, Ho Kyung

    2016-01-01

    The sandwich detector was realized by stacking two scintillator-based flat-panel detectors (FPDs) between which an intermediate copper (Cu) filter layer was placed to further enhance spectral energy separation. As a result, the proper selection of filter material and its thickness could be a trade-off between the extent of energy separation (hence, DE image quality) and image noise due to reduction in the number of x-ray quanta reaching the rear FPD. Although the conventional kVp-switching dual-shot method showed better image qualities than the single-shot method because of larger spectral energy separation, the motion-artifact-free DE image with reasonably good image quality was a potential prospect of the single-shot method. For the reliable and better use of the sandwich detector for specific imaging applications, the sandwich detector should be optimally designed with a proper selection of scintillator material and thickness in each detector layer (i.e. the front and rear detectors), and aforementioned intermediate filter material and thickness. It is noted that glue is used to adhere the fragile photodiode array onto the ceramic substrate and these glue patterns are apparent in the rear and DE images. The glue pattern in the rear image comes from the front FPD. Unlike the conventional ESF as shown in Fig. 3(a), the ESF obtained from the subtracted image showed an enhancement as shown in Fig. 3(b). Consequently, the MTF obtained from the subtraction ESF showed a bandpass filter characteristic, as shown in Fig. 3(c), unlike the conventional low-pass filter characteristic (i.e., monotonic decrease of MTF value with increasing the spatial frequency). This MTF characteristic is due to the subtraction of two images with different spatial resolving powers (i.e., different thicknesses of phosphors between the front and rear detectors) as can be seen in unsharp masking digital image processing, which subtracts Gaussian-blurred image from the original image

  9. Fourier Analysis of Single-Shot Dual-Energy X-ray Imaging Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Woo; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The sandwich detector was realized by stacking two scintillator-based flat-panel detectors (FPDs) between which an intermediate copper (Cu) filter layer was placed to further enhance spectral energy separation. As a result, the proper selection of filter material and its thickness could be a trade-off between the extent of energy separation (hence, DE image quality) and image noise due to reduction in the number of x-ray quanta reaching the rear FPD. Although the conventional kVp-switching dual-shot method showed better image qualities than the single-shot method because of larger spectral energy separation, the motion-artifact-free DE image with reasonably good image quality was a potential prospect of the single-shot method. For the reliable and better use of the sandwich detector for specific imaging applications, the sandwich detector should be optimally designed with a proper selection of scintillator material and thickness in each detector layer (i.e. the front and rear detectors), and aforementioned intermediate filter material and thickness. It is noted that glue is used to adhere the fragile photodiode array onto the ceramic substrate and these glue patterns are apparent in the rear and DE images. The glue pattern in the rear image comes from the front FPD. Unlike the conventional ESF as shown in Fig. 3(a), the ESF obtained from the subtracted image showed an enhancement as shown in Fig. 3(b). Consequently, the MTF obtained from the subtraction ESF showed a bandpass filter characteristic, as shown in Fig. 3(c), unlike the conventional low-pass filter characteristic (i.e., monotonic decrease of MTF value with increasing the spatial frequency). This MTF characteristic is due to the subtraction of two images with different spatial resolving powers (i.e., different thicknesses of phosphors between the front and rear detectors) as can be seen in unsharp masking digital image processing, which subtracts Gaussian-blurred image from the original image.

  10. Optimum allocation of imaging time and minimum detectable activity in dual isotope blood pool subtraction indium-111 platelet imaging

    International Nuclear Information System (INIS)

    Machac, J.; Horowitz, S.F.; Goldsmith, S.J.; Fuster, V.

    1984-01-01

    Indium-111 labeled platelet imaging is a tool for detection of thrombus formation in vascular spaces. Dual isotope blood pool subtraction may help differentiate focal platelet accumulation from blood pool activity. This study used a computer model to calculate the minimum excess-to-blood pool platelet ratio (EX/BP) and the optimum dual isotope imaging times under varied conditions of lesion size. The model simulated usual human imaging doses of 500 μCi of In-111 platelets and 5mCi of Tc-99m labeled RBCs giving a reference cardiac blood pool region (100cc) of 10000 cpm for Tc-99m and 500 cpm for In-111. The total imaging time was fixed at 20 minutes, while the two isotope imaging times (TIn/TTc) were varied, as were the simulated lesion size (cc) and EX/BP. The relative error of the excess counts was calculated using propagation of error theory. At the critical level of detection, where the excess lesion counts equal 3 times the standard deviation, the optimum TIn/TTc and minimum Ex/BP were determined for each lesion size. For the smallest lesion size (0.1cc), the minimum detectable EX/BP ratio was 1.6, with the best TIn/TTC ratio of 18/2 minutes, and for large lesions, an EX/BP of 0.1, with a TIn/TTc of 16/4. This model provides an estimate of the sensitivity and optimizes imaging times in dual isotope subtraction platelet imaging. The model is adaptable to varying isotope doses, total imaging times and lesion size. This information will be helpful in future in- vivo imaging studies of intravascular thrombi in humans

  11. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  12. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  13. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  14. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real

  15. Development of a dual-energy silicon X-ray diode and its application to gadolinium imaging

    International Nuclear Information System (INIS)

    Sato, Yuichi; Sato, Eiichi; Ehara, Shigeru; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2015-01-01

    To perform dual-energy X-ray imaging, we developed a dual-energy silicon X-ray diode (DE-Si-XD) consisting of two ceramic-substrate silicon X-ray diodes (Si-XD) and a 0.2-mm-thick copper filter. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-rays. In the front Si-XD, X-ray photons from an X-ray tube are directly detected. Because low-energy photons are absorbed by the front Si-XD and the filter, the average photon energy increases when the back Si-XD is used. In the front Si-XD, the photocurrents flowing through the Si-XD are converted into voltages and amplified using current–voltage and voltage–voltage (V–V) amplifiers. The output from the V–V amplifier is input to an analog-digital converter through an integrator for smoothing the voltage. The same amplification method is also used in the back Si-XD. Dual-energy computed tomography (DE–CT) is accomplished by repeated linear scans and rotations of the object, and two projection curves of the object are obtained simultaneously by linear scanning at a tube voltage of 90 kV and a current of 1.0 mA. In the DE–CT, the exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. Using gadolinium-based contrast media, energy subtraction was performed. - Highlights: • Dual-energy X-ray diode consists of two Si diodes and a Cu filter. • Low and high-energy X-rays are detected using front and back diodes. • Two-different-energy tomograms were easily obtained simultaneously. • Gd-K-edge CT was accomplished using the back diode. • Energy subtraction was performed easily to image a target object

  16. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  17. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  18. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  19. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  20. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  1. Dual energy CT of peripheral arteries: Effect of automatic bone and plaque removal on image quality and grading of stenoses

    International Nuclear Information System (INIS)

    Meyer, B.C.; Werncke, T.; Hopfenmueller, W.; Raatschen, H.J.; Wolf, K.-J.; Albrecht, T.

    2008-01-01

    Purpose: To evaluate the effect of automatic bone and plaque removal on image quality and grading of steno-occlusive lesions in patients undergoing dual energy CT angiography (CTA) of lower extremity. Materials and methods: Dual energy (DE) runoff CTA was performed in 50 patients using the following parameters: collimation 2 x 32 x 0.6; tube potentials, 80 kV and 140 kV; reconstructed slice thickness 1 mm. 100 mL iomeprol 400 and 50 mL saline were injected at 4 mL/s. Separate datasets were calculated for each of the two tubes and used to generate automatically bone-subtracted images (ABS) as well as bone and plaque subtracted images (ABPS). Residual bone in the ABS dataset was removed manually (=ABS-B dataset). In addition, a weighted average dataset from both dual energy acquisitions resembling a routine 120 kV CT acquisition was used for standard manual bone subtraction (MBS). Operator time for bone removal was measured. Effectiveness of bone subtraction and presence of vessel erosions was assessed by two readers in consensus. Stenosis grading in plaque subtracted and unsubtracted images was assessed and correlated. Results: Residual bone fragments (ribs: 46%, patella: 25%, spine: 4%, pelvis: 2%, tibia 2% of patients) were only observed with ABS. The time needed to manually remove these residual bones was 2.1 ± 1.1 min and was significantly lower than the duration of manual bone removal (6.8 ± 2.0 min, p < 0.0001, paired t-test). A total of 1159 arteries were analyzed. Compromising vessel erosions were observed less frequently in the ABS-B dataset (10.6%) than in the MBS dataset (15.2%, p < 0.001, wilcoxon's signed rank test). A total of 817 steno-occlusive lesions were assessed. While the agreement of grading of steno-occlusive lesions was good at the levels of the aorta and the pelvic arteries (κ = 0.70 in both, Cohen's kappa statistics), it was moderate at the level of the thigh arteries (κ = 0.57) and poor at the level of the calf (κ = 0.16). Conclusion

  2. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  3. Lung nodule detection by microdose CT versus chest radiography (standard and dual-energy subtracted).

    Science.gov (United States)

    Ebner, Lukas; Bütikofer, Yanik; Ott, Daniel; Huber, Adrian; Landau, Julia; Roos, Justus E; Heverhagen, Johannes T; Christe, Andreas

    2015-04-01

    The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1%±2.2% versus 85.6%±5.6% (p=0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7%±8.1% (with bone suppression, 46.1%±8%; p=0.94); for microdose CT, nodule sensitivity was 83.6%±9% without MIP (with additional MIP, 92.5%±6%; pmicrodose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (pmicrodose CT, the applied dose was 0.1323 mSv. Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.

  4. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    International Nuclear Information System (INIS)

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B 4 C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems

  5. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  6. A comparison of subtracted images from dental subtraction programs

    International Nuclear Information System (INIS)

    Han, Won Jeong

    2002-01-01

    To compare the standard deviation of gray levels on digital subtracted images obtained by different dental subtraction programs. Paired periapical films were taken at the lower premolar and molar areas of the phantoms involving human mandible. The bite registration group used Rinn XCP equipment and bite registration material, based on polyvinyl siloxane, for standardization. The no bite registration group used only Rinn XCP equipment. The periapical film images were digitized at 1200 dpi resolution and 256 gray levels by a flat bed scanner with transparency unit. Dental digital subtraction programs used for this study were Subtractor (Biomedisys Co., Korea) and Emago (Oral Diagnostic Systems, The Netherlands). To measure the similarities between the subtracted images, the standard deviations of the gray levels were obtained using a histogram of subtracted images, which were then analyzed statistically. Subtracted images obtained by using the Emago program without manual selection of corresponding points showed the lowest standard deviation of gray levels (p<0.01). And the standard deviation of gray levels was lower in subtracted images in the group of a bite registration than in the group of no use of bite registration (p<0.01). Digital radiographic subtraction without manual selection of reference points was found to be a convenient and superior method.

  7. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  8. Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

    Science.gov (United States)

    Lau, Kristen C.; Lee, Hyo Min; Singh, Tanushriya; Maidment, Andrew D. A.

    2015-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. Temporal subtraction of the post-contrast DE images from the pre-contrast DE image is performed to analyze iodine uptake. Our previous work investigated image registration methods to correct for patient motion, enhancing the evaluation of vascular kinetics. In this project we investigate a segmentation algorithm which identifies blood vessels in the breast from our temporal DE subtraction images. Anisotropic diffusion filtering, Gabor filtering, and morphological filtering are used for the enhancement of vessel features. Vessel labeling methods are then used to distinguish vessel and background features successfully. Statistical and clinical evaluations of segmentation accuracy in DE-CBT images are ongoing.

  9. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  10. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  11. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  12. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    Science.gov (United States)

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  13. PVAL breast phantom for dual energy calcification detection

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Velissarakos, K; Gkremos, D; Michail, C; Kandarakis, I; Fountos, G; Fountzoula, C; Bakas, A

    2015-01-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy. (paper)

  14. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  15. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    International Nuclear Information System (INIS)

    Sun, Hao; Hou, Xin-Yi; Xue, Hua-Dan; Li, Xiao-Guang; Jin, Zheng-Yu; Qian, Jia-Ming; Yu, Jian-Chun; Zhu, Hua-Dong

    2015-01-01

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  16. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao, E-mail: sunhao_robert@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Hou, Xin-Yi, E-mail: hxy_pumc@126.com [Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Xue, Hua-Dan, E-mail: bjdanna95@hotmail.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Li, Xiao-Guang, E-mail: xglee88@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Jin, Zheng-Yu, E-mail: zhengyu_jin@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Qian, Jia-Ming, E-mail: qjiaming57@gmail.com [Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Yu, Jian-Chun, E-mail: yu-jch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Zhu, Hua-Dong, E-mail: huadongzhu@hotmail.com [Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China)

    2015-05-15

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  17. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  18. [Development of a digital chest phantom for studies on energy subtraction techniques].

    Science.gov (United States)

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  19. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  20. Two-dimensional real-time imaging system for subtraction angiography using an iodine filter

    Science.gov (United States)

    Umetani, Keiji; Ueda, Ken; Takeda, Tohoru; Anno, Izumi; Itai, Yuji; Akisada, Masayoshi; Nakajima, Teiichi

    1992-01-01

    A new type of subtraction imaging system was developed using an iodine filter and a single-energy broad bandwidth monochromatized x ray. The x-ray images of coronary arteries made after intravenous injection of a contrast agent are enhanced by an energy-subtraction technique. Filter chopping of the x-ray beam switches energies rapidly, so that a nearly simultaneous pair of filtered and nonfiltered images can be made. By using a high-speed video camera, a pair of two 512 × 512 pixel images can be obtained within 9 ms. Three hundred eighty-four images (raw data) are stored in a 144-Mbyte frame memory. After phantom studies, in vivo subtracted images of coronary arteries in dogs were obtained at a rate of 15 images/s.

  1. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  2. Role of digital tomosynthesis and dual energy subtraction digital radiography in detecting pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvana G. [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Garg, Mandeep Kumar, E-mail: gargmandeep01@gmail.com [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Khandelwal, Niranjan; Gupta, Pankaj [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Gupta, Dheeraj; Aggarwal, Ashutosh Nath [Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Bansal, Subash Chand [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India)

    2015-07-15

    Highlights: • Accuracy of digital tomosynthesis for nodule detection is substantially higher. • Improvement in diagnostic accuracy is most pronounced for nodules <10 mm. • There is five times increase in radiation dose compared to DR. - Abstract: Objective: Digital tomosynthesis (DT) and dual-energy subtraction digital radiography (DES-DR) are known to perform better than conventional radiography in the detection of pulmonary nodules. Yet the comparative diagnostic performances of DT, DES-DR and digital radiography (DR) is not known. The present study compares the diagnostic performances of DT, DES-DR and DR in detecting pulmonary nodules. Subjects and methods: The institutional Review Board approved the study and informed written consent was obtained. Fifty-five patients (30 with pulmonary nodules, 25 with non-nodular focal chest pathology) were included in the study. DT and DES-DR were performed within14 days of MDCT. Composite images acquired at high kVp as part of DES-DR were used as DR images. Images were analyzed for presence of nodules and calcification in nodules. Interpretations were assigned confidence levels from 1 to 5 according to Five-Point rating scale. Areas under the receiver operating characteristic curves were compared using Z test. Results: A total of 110 (88 non-calcified, 22 calcified) nodules were identified on MDCT. For detection of nodules, DR showed cumulative sensitivity and specificity of 25.45% and 67.97%, respectively. DT showed a cumulative sensitivity and specificity of 60.9% and 85.07%, respectively. The performance was significantly better than DR (p < 0.003). DES-DR showed sensitivity and specificity of 27.75% and 82.64%, not statistically different from those of DR (p—0.92). In detection of calcification, there was no statistically significant difference between DT, DES-DR and DR. Conclusions: DT performs significantly better than DES-DR and DR at the cost of moderate increase in radiation dose.

  3. Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Knogler, Thomas; Pinker-Domenig, Katja; Leitner, Sabine; Helbich, Thomas H. [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Molecular and Gender Imaging, Vienna (Austria); Homolka, Peter; Leithner, Robert [Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna (Austria); Hoernig, Mathias [Siemens AG, Healthcare, X-Ray Products, Erlangen (Germany); Langs, Georg; Waitzbauer, Martin [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Computational Imaging Research Laboratory, Vienna (Austria)

    2016-06-15

    To demonstrate the feasibility of contrast-enhanced dual-energy mammography (CEDEM) using titanium (Ti) filtering at 49 kVp for high-energy images and a novel artefact reducing image-subtraction post-processing algorithm. Fifteen patients with suspicious findings (ACR BI-RADS 4 and 5) detected with digital mammography (MG) that required biopsy were included. CEDEM examinations were performed on a modified prototype machine. Acquired HE and low-energy raw data images were registered non-rigidly to compensate for possible subtle tissue motion. Subtracted CEDEM images were generated via weighted subtraction, using a fully automatic, locally adjusted tissue thickness-dependent subtraction factor to avoid over-subtraction at the breast border. Two observers evaluated the MG and CEDEM images according to ACR BI-RADS in two reading sessions. Results were correlated with histopathology. Seven patients with benign and eight with malignant findings were included. All malignant lesions showed a strong contrast enhancement. BI-RADS assessment was altered in 66.6 % through the addition of CEDEM, resulting in increased overall accuracy. With CEDEM, additional lesions were depicted and false-positive rate was reduced compared to MG. CEDEM using Ti filtering with 49 kVp for HE exposures is feasible in a clinical setting. The proposed image-processing algorithm has the potential to reduce artefacts and improve CEDEM images. (orig.)

  4. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    International Nuclear Information System (INIS)

    Molloi, S; Li, B; Yin, F; Chen, H

    2014-01-01

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  5. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  6. Quantitative evaluation of dual-energy digital mammography for calcification imaging

    International Nuclear Information System (INIS)

    Kappadath, S Cheenu; Shaw, Chris C

    2004-01-01

    Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Under ideal imaging conditions, when the mammography image data are free of scatter and other biases, DEDM could be used to determine the thicknesses of the imaged calcifications. We present quantitative evaluation of a DEDM technique for calcification imaging. The phantoms used in the evaluation were constructed by placing aluminium strips of known thicknesses (to simulate calcifications) across breast-tissue-equivalent materials of different glandular-tissue compositions. The images were acquired under narrow-beam geometry and high exposures to suppress the detrimental effects of scatter and random noise. The measured aluminium thicknesses were found to be approximately linear with the true aluminium thicknesses and independent of the underlying glandular-tissue composition. However, the dual-energy images underestimated the true aluminium thickness due to the presence of scatter from adjacent regions. Regions in the DEDM image that contained no aluminium yielded very low aluminium thicknesses (<0.07 mm). The aluminium contrast-to-noise ratio in the dual-energy images increased with the aluminium thickness and decreased with the glandular-tissue composition. The changes to the aluminium contrast-to-noise ratio and the contrast of the tissue structures between the low-energy and DEDM images are also presented

  7. Simultaneous dual-energy X-ray stereo imaging

    Czech Academy of Sciences Publication Activity Database

    Mokso, R.; Oberta, Peter

    2015-01-01

    Roč. 22, Jul (2015), 1078-1082 ISSN 0909-0495 Institutional support: RVO:68378271 Keywords : optics * crystal * imaging * dual-energy Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.736, year: 2014

  8. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    International Nuclear Information System (INIS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I.J.; George, G.N.; Gupta, M.; Chapman, D.

    2008-01-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a 'background' image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor

  9. Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results

    International Nuclear Information System (INIS)

    Sherertz, Tracy; Hoggarth, Mark; Luce, Jason; Block, Alec M.; Nagda, Suneel; Harkenrider, Matthew M.; Emami, Bahman; Roeske, John C.

    2014-01-01

    Purpose: A prospective feasibility study was conducted to investigate the utility of dual-energy (DE) imaging compared to conventional x-ray imaging for patients undergoing kV-based image guided radiation therapy (IGRT) for lung cancer. Methods and Materials: An institutional review board-approved feasibility study enrolled patients with lung cancer undergoing IGRT and was initiated in September 2011. During daily setup, 2 sequential respiration-gated x-ray images were obtained using an on-board imager. Imaging was composed of 1 standard x-ray image at 120 kVp (1 mAs) and a second image obtained at 60 kVp (4 mAs). Weighted logarithmic subtraction of the 2 images was performed offline to create a soft tissue-selective DE image. Conventional and DE images were evaluated by measuring relative contrast and contrast-to-noise ratios (CNR) and also by comparing spatial localization, using both approaches. Imaging dose was assessed using a calibrated ion chamber. Results: To date, 10 patients with stage IA to IIIA lung cancer were enrolled and 57 DE images were analyzed. DE subtraction resulted in complete suppression of overlying bone in all 57 DE images, with an average improvement in relative contrast of 4.7 ± 3.3 over that of 120 kVp x-ray images (P<.0002). The improvement in relative contrast with DE imaging was seen for both smaller (gross tumor volume [GTV] ≤5 cc) and larger tumors (GTV >5 cc), with average relative contrast improvement ratios of 3.4 ± 4.1 and 5.4 ± 3.6, respectively. Moreover, the GTV was reliably localized in 95% of the DE images versus 74% of the single energy (SE images, (P=.004). Mean skin dose per DE image set was 0.44 ± 0.03 mGy versus 0.43 ± 0.03 mGy, using conventional kV imaging parameters. Conclusions: Initial results of this feasibility study suggest that DE thoracic imaging may enhance tumor localization in lung cancer patients receiving kV-based IGRT without increasing imaging dose

  10. Detection of simulated pulmonary nodules by single-exposure dual-energy computed radiography of the chest: effect of a computer-aided diagnosis system (Part 2)

    International Nuclear Information System (INIS)

    Kido, Shoji; Kuriyama, Keiko; Kuroda, Chikazumi; Nakamura, Hironobu; Ito, Wataru; Shimura, Kazuo; Kato, Hisatoyo

    2002-01-01

    Objective: To evaluate the performance of the computer-aided diagnosis (CAD) scheme on the detection of pulmonary nodules (PNs) in single-exposure dual-energy subtraction computed radiography (CR) images of the chest, and to evaluate the effect of this CAD scheme on radiologists' detectabilities. Methods and material: We compared the detectability by the CAD scheme with the detectability by 12 observers by using conventional CR (C-CR) and bone-subtracted CR (BS-CR) images of 25 chest phantoms with a low-contrast nylon nodule. Results: Both in the CAD scheme and for the observers, the detectability of BS-CR images was superior to that of C-CR images (P<0.005). The detection performance of the CAD scheme was equal to that of the observers. The nodules detected by the CAD did not necessarily coincide with those by the observers. Thus, if observers can use the results of the CAD system as a 'second opinion', their detectabilities increase. Conclusion: The CAD system for detection of PNs in the single-exposure dual-energy subtraction method is promising for improving radiologists' detectabilities of PNs

  11. Iodine filter imaging system for subtraction angiography using synchrotron radiation

    Science.gov (United States)

    Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.

    1993-11-01

    A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.

  12. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    Science.gov (United States)

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility

  13. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm 2 . The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm 2 . Increasing filter thickness beyond 1000 mg/cm 2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 μm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  14. Optimal design of detector thickness for dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The projection of three-dimensional (3D) human body on a two-dimensional (2D) radiograph results in the superimposition of normal tissue that can obscure abnormalities and in some common cases be misread as abnormalities. To reduce or eliminate this effect, 3D depth-discrimination techniques such as computed tomography can be used. Another method for improving conspicuity of abnormalities is an energy discrimination technique such as dual-energy imaging (DEI). The DEI discriminates, or enhances, material content (e.g. bone or soft tissue) within a 2D radiograph by combining images obtained at separte low and high energies. A commercial DEI system uses the fast kilovoltage (kVp) switching technique, which acquires low and highkVp projections in successive x-ray exposure. To obtain better quality in DE images, a large energy separation between the low and high-kVp setups is typically used for chest (e.g. 60/120 kVp). The optimal CsI thickness for dual-energy chest imaging has been theoretically investigated by evaluating prewhitening observer model detectability indexes. To evaluate the PW and PWE detectability indexes, dual-energy fluence and MTF have reviewed compared to the conventional descriptions.

  15. Computed tomography lung iodine contrast mapping by image registration and subtraction

    Science.gov (United States)

    Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias

    2014-03-01

    Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction

  16. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  17. Subtraction and dynamic MR images of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yoshitaka; Aoki, Manabu; Harada, Junta (Jikei Univ., Tokyo (Japan). School of Medicine)

    1993-04-01

    The purpose of this study was to evaluate the diagnostic effectiveness of subtraction and dynamic MR imaging in patients with breast masses. In 23 breast cancers and six fibroadenomas, spin echo T1 images were obtained at 0.2 Tesla before and every minute after intravenous injection of Gd-DTPA (0.1 or 0.2 mmol/kg). Subtraction images were obtained sequentially on the CRT monitor. All breast masses were enhanced after gadolinium and stood out as bright lesions on subtraction images. The tumor margin and its extension were more precisely evaluated on subtraction MR images than on conventional postcontrast MR images. Breast cancer showed a characteristic time-intensity curve with an early peak, in contrast to fibroadenoma, which showed a gradual increase in signal intensity. Subtraction MR imaging is a simple method for the evaluation of breast masses, and further, the time-intensity curve obtained by dynamic study is helpful in the differential diagnosis of lesions. (author).

  18. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  19. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  20. Analysis on imaging features of mammography in computer radiography and investigation on gray scale transform and energy subtraction

    International Nuclear Information System (INIS)

    Feng Shuli

    2003-01-01

    In this dissertation, a novel transform method based on human visual response features for gray scale mammographic imaging in computer radiography (CR) is presented. The parameters for imaging quality on CR imaging for mammography were investigated experimentally. In addition, methods for image energy subtraction and a novel method of image registration for mammography of CR imaging are presented. Because the images are viewed and investigated by humans, the method of displaying differences in gray scale images is more convenient if the gray scale differences are displayed in a manner commensurate with human visual response principles. Through transformation of image gray scale with this method, the contrast of the image will be enhanced and the capability for humans to extract the useful information from the image will be increased. Tumors and microcalcifications are displayed in a form for humans to view more simply after transforming the image. The method is theoretically and experimentally investigated. Through measurement of the parameters of a geometrically blurred image, MTF, DQE, and ROC on CR imaging, and also comparison with the imaging quality of screen-film systems, the results indicate that CR imaging qualities in DQE and ROC are better than those of screen-film systems. In geometric blur of the image and MTF, the differences in image quality between CR and the screen-film system are very small. The results suggest that the CR system can replace the screen-film system for mammography imaging. In addition, the results show that the optimal imaging energy for CR mammography is about 24 kV. This condition indicates that the imaging energy of the CR system is lower than that of the screen-film system and, therefore, the x-ray dose to the patient for mammography with the CR system is lower than that with the screen-film system. Based on the difference of penetrability of x ray with different wavelength, and the fact that the part of the x-ray beam will pass

  1. Developments in dual-energy, single-exposure chest radiography

    International Nuclear Information System (INIS)

    Ho Jungtsuoe.

    1990-01-01

    Conventional chest radiography (CCR), the most commonly performed technique for the diagnosis of lung cancer, does not detect a high percentage of these tumors. One reason for errors is the overlap of tumor image with bone image in a chest radiograph. Dual-energy (DE) radiography has been suggested as the most effective method to eliminate bone contrast for better lung tumor visualization. DE radiography also provides a bone image from which benign nodules can be identified by the presence of nodule calcification. The purpose of this study is to evaluate the performance of a film-screen based DE, single exposure technique in lung nodule detection and to improve its performance by both hardware (HD) and software developments (SD) to increase the accuracy of lung cancer diagnosis. Previous implementation of the technique resulted in small residual tissue contrast and incomplete tissue subtraction due to screen selection and x-ray beam hardening, respectively. HD, including uses of a new screen pair (Y 2 O 2 S/CaWO 4 ) and a K-edge filter (europium), were studied to improve residual tissue contrast by increasing the energy separation. Successful SD included a three-dimensional interpolation algorithm and noise suppression methods to achieve complete tissue subtraction and noise reduction, respectively. The results show that the new screen pair performed better than LaOBr/CaWo 4 ; the use of K-edge filter produced more residual tissue contrast than that obtained without it. Even though the dual exposure technique performed better than the single exposure technique in a simulated lung nodule detection study, the difference between the two techniques was statistically insignificant and they both performed better than CCR. Based on these encouraging results, the author concludes that the film-screen based DE, single exposure technique, with the HD and SD holds promise for further clinical study

  2. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  3. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  4. Improved detection of pulmonary nodules on energy-subtracted chest radiographs with a commercial computer-aided diagnosis software: comparison with human observers

    International Nuclear Information System (INIS)

    Szucs-Farkas, Zsolt; Patak, Michael A.; Yuksel-Hatz, Seyran; Ruder, Thomas; Vock, Peter

    2010-01-01

    To retrospectively analyze the performance of a commercial computer-aided diagnosis (CAD) software in the detection of pulmonary nodules in original and energy-subtracted (ES) chest radiographs. Original and ES chest radiographs of 58 patients with 105 pulmonary nodules measuring 5-30 mm and images of 25 control subjects with no nodules were randomized. Five blinded readers evaluated firstly the original postero-anterior images alone and then together with the subtracted radiographs. In a second phase, original and ES images were analyzed by a commercial CAD program. CT was used as reference standard. CAD results were compared to the readers' findings. True-positive (TP) and false-positive (FP) findings with CAD on subtracted and non-subtracted images were compared. Depending on the reader's experience, CAD detected between 11 and 21 nodules missed by readers. Human observers found three to 16 lesions missed by the CAD software. CAD used with ES images produced significantly fewer FPs than with non-subtracted images: 1.75 and 2.14 FPs per image, respectively (p=0.029). The difference for the TP nodules was not significant (40 nodules on ES images and 34 lesions in non-subtracted radiographs, p = 0.142). CAD can improve lesion detection both on energy subtracted and non-subtracted chest images, especially for less experienced readers. The CAD program marked less FPs on energy-subtracted images than on original chest radiographs. (orig.)

  5. Dual-energy imaging in full-field digital mammography: a phantom study

    International Nuclear Information System (INIS)

    Taibi, A; Fabbri, S; Baldelli, P; Maggio, C di; Gennaro, G; Marziani, M; Tuffanelli, A; Gambaccini, M

    2003-01-01

    A dual-energy technique which employs the basis decomposition method is being investigated for application to digital mammography. A three-component phantom, made up of plexiglas, polyethylene and water, was doubly exposed with the full-field digital mammography system manufactured by General Electric. The 'low' and 'high' energy images were recorded with a Mo/Mo anode-filter combination and a Rh/Rh combination, respectively. The total dose was kept within the acceptable levels of conventional mammography. The first hybrid images obtained with the dual-energy algorithm are presented in comparison with a conventional radiograph of the phantom. Image-quality characteristics at contrast cancellation angles between plexiglas and water are discussed. Preliminary results show that a combination of a standard Mo-anode 28 kV radiograph with a Rh-anode 49 kV radiograph provides the best compromise between image-quality and dose in the hybrid image

  6. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  7. A phantom test of proton-induced dual-energy X-ray angiography using iodinated contrast media

    International Nuclear Information System (INIS)

    Oguri, Y.; Hasegawa, J.; Ogawa, M.; Kaneko, J.; Sasa, K.

    2007-01-01

    Characteristic-line radiation from heavy metal targets bombarded by MeV proton beams has been tested as an X-ray source for dual-energy K-edge subtraction imaging for human angiography (blood vessel imaging) based on iodinated contrast media. To utilize the strong absorption by iodine (Z=53) at its K-absorption edge (33.2 keV), we used K α -line of La (lanthanum, Z=57) at 33.4 keV. As a reference, also K α X emission of Sn (tin, Z=50) at 25.2 keV was employed. Metallic plates of La and Sn were irradiated by 7-MeV protons to produce these characteristic X-rays. Energy-subtraction method was tested using Lucite phantoms which contain aqueous solutions of KI (potassium iodide) with different concentrations. Also Ca(H 2 PO 4 ) 2 powder was stuffed in these phantoms to simulate bones. The transmission images of the phantoms were recorded on imaging plates. During the exposure, the energy spectra of the X-rays were monitored by a CdTe detector. We found that the contrast of images of iodide solutions taken with La X-rays was higher than that with Sn X-rays. Also the energy subtraction procedure was successfully applied to reduce the graphical noise due to the bones and inhomogeneity of the soft tissue. However, to apply the present method to actual clinical use, the X-ray intensity must be increased by several orders of magnitude. Also the transmission of the 'lower-energy' photons has to be a few orders higher for imaging of objects as thick as human chest. (author)

  8. SU-E-J-59: Feasibility of Markerless Tumor Tracking by Sequential Dual-Energy Fluoroscopy On a Clinical Tumor Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Dhont, J; Poels, K; Verellen, D; Tournel, K; Gevaert, T; Steenbeke, F; Burghelea, M; De Ridder, M [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium)

    2015-06-15

    Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to match the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in

  9. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngjin, E-mail: radioyoungj@gmail.com [Department of Radiological Science, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Amy Candy [Department of Mathematics and Statistics, McGill University (Canada); Kim, Hee-Joung [Department of Radiological Science and Radiation Convergence Engineering, Yonsei University (Korea, Republic of)

    2016-09-11

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on

  10. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  11. Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images

    International Nuclear Information System (INIS)

    Alves, H.; Lima, I.; Lopes, R.T.

    2014-01-01

    Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition

  12. Dual energy CT at the synchrotron: A piglet model for neurovascular research

    International Nuclear Information System (INIS)

    Schueltke, Elisabeth; Kelly, Michael E.; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo

    2011-01-01

    Background: Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. Materials and methods: All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360 o . CT images were reconstructed from two half-acquisitions with 720 projections each. Results: The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models.

  13. Dual energy CT at the synchrotron: a piglet model for neurovascular research.

    Science.gov (United States)

    Schültke, Elisabeth; Kelly, Michael E; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo

    2011-08-01

    Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360°. CT images were reconstructed from two half-acquisitions with 720 projections each. The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models. Copyright © 2010. Published by Elsevier Ireland Ltd.

  14. A background subtraction routine for enhancing energy-filtered plasmon images of MgAl2O4 implanted with Al+ and Mg+ ions

    International Nuclear Information System (INIS)

    Evans, N.D.; Kenik, E.A.; Bentley, J.; Zinkle, S.J.

    1995-01-01

    MgAl 2 O 4 , a candidate fusion reactor material, was irradiated with Al + or Mg + ions; electron energy-loss spectra and energy-filtered plasmon images showed that metallic Al colloids are present in the ion-irradiated regions. This paper shows the subtraction of the spinel plasmon component in images using 15-eV-loss electrons in some detail

  15. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  16. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  17. Compositional breast imaging using a dual-energy mammography protocol

    International Nuclear Information System (INIS)

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  18. Digital subtraction imaging in cardiac investigations

    International Nuclear Information System (INIS)

    Partridge, J.B.; Dickinson, D.F.

    1984-01-01

    The role of digital subtraction imaging (DSI) in the investigation of heart disease in patients of all ages, including neonates, was evaluated by the addition of a continuous fluoroscopy system to an existing, single-plane catheterisation laboratory. In some situations, DSI provided diagnostic images where conventional radiography could not and, in general, provided images of comparable quality to cineangiography. The total dose of contrast medium was usually less than that which would have been required for biplane cineangiography and the dose of radiation was always less. Digital subtraction imaging can make a significant contribution to the investigation of congenital heart disease and has some useful features in the study of acquired heart disease. (author)

  19. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  20. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  1. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Margareta; Liden, Mats; Geijer, Haakan; Andersson, Torbjoern [Dept. of Radiology, Oerebro Univ. Hospital, Oerebro Univ., Oerebro (Sweden)], E-mail: margareta.lundin@orebroll.se; Magnuson, Anders [Clinical Epidemiology and Biostatistic Unit, Oerebro Univ. Hospital, Oerebro (Sweden); Mohammed, Ahmed Abdulilah [Dept. of Radiology, Linkoeping Univ. Hospital, Linkoeping (Sweden); Persson, Anders [CMIV Center for Medical Image Science and Visualization, Linkoeping (Sweden)

    2012-07-15

    Background. Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. Purpose. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Material and Methods. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. Results. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Conclusion. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system.

  2. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study.

    Science.gov (United States)

    Lundin, Margareta; Lidén, Mats; Magnuson, Anders; Mohammed, Ahmed Abdulilah; Geijer, Håkan; Andersson, Torbjörn; Persson, Anders

    2012-07-01

    Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system.

  3. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study

    International Nuclear Information System (INIS)

    Lundin, Margareta; Liden, Mats; Geijer, Haakan; Andersson, Torbjoern; Magnuson, Anders; Mohammed, Ahmed Abdulilah; Persson, Anders

    2012-01-01

    Background. Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. Purpose. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Material and Methods. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. Results. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Conclusion. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system

  4. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    Science.gov (United States)

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  6. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  7. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  8. Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille; Marin, Daniele [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Sofue, Keitaro [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Kobe University School of Medicine, Department of Radiology, Kobe (Japan)

    2016-10-15

    Many fortuitously detected renal lesions are incompletely characterised at traditional MDCT imaging, thus posing daily challenges to radiologists and referring physicians. There is burgeoning evidence that dual-energy MDCT and multi-energy applications provide an added value over traditional MDCT imaging in renal lesion characterisation and throughput. This special report gives a vendor-neutral outlook on technical essentials, recommended protocols, high-yield clinical opportunities and reviews radiation dose aspects of dual-energy MDCT imaging and multi-energy applications in renal lesions. In addition to a guide on interpretative traps and emerging problems, we provide an update on new, potential imaging horizons. Dual-energy MDCT and multi-energy applications can facilitate the imaging interpretation and throughput of renal lesions. Conjointly with capitalisation on the benefits, familiarity with dual- and multi-energy data sets as well as continuous scrutiny of interpretative traps can be the keys to the successful implementation and enhanced clinical acceptance of this powerful technique in the imaging community. Continuous advances in hardware and computer interfaces are expected to pave the way for the further expansion of the application spectrum. (orig.)

  9. Role of digital tomosynthesis and dual energy subtraction digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Sharma, Madhurima; Sandhu, Manavjit Singh; Gorsi, Ujjwal; Gupta, Dheeraj; Khandelwal, Niranjan

    2015-01-01

    Highlights: • Digital tomosynthesis and dual energy subtraction digital radiography are modifications of digital radiography. • These modalities perform better than digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis. • Digital tomosynthesis has a sensitivity of 100% in detection of cavities. • Centrilobular nodules seen on CT in active pulmonary tuberculosis, were also demonstrated on digital tomosynthesis in our study. • Digital tomosynthesis can be used for diagnosis and follow up of patients in pulmonary tuberculosis, thereby reducing the number of CT examinations. - Abstract: Objective: To assess the role of digital tomosynthesis (DTS) and dual energy subtraction digital radiography (DES-DR) in detection of parenchymal lesions in active pulmonary tuberculosis (TB) and to compare them with digital radiography (DR). Materials and methods: This prospective study was approved by our institutional review committee. DTS and DES-DR were performed in 62 patients with active pulmonary TB within one week of multidetector computed tomography (MDCT) study. Findings of active pulmonary TB, that is consolidation, cavitation and nodules were noted on digital radiography (DR), DTS and DES-DR in all patients. Sensitivity, specificity, positive and negative predictive values of all 3 modalities was calculated with MDCT as reference standard. In addition presence of centrilobular nodules was also noted on DTS. Results: Our study comprised of 62 patients (33 males, 29 females with age range 18–82 years). Sensitivity and specificity of DTS for detection of nodules and cavitation was better than DR and DES-DR. Sensitivity and specificity of DTS for detection of consolidation was comparable to DR and DES-DR. DES-DR performed better than DR in detection of nodules and cavitation. DTS was also able to detect centrilobular nodules with sensitivity and specificity of 57.4% and 86.5% respectively. Conclusion: DTS and DES-DR perform better

  10. Role of digital tomosynthesis and dual energy subtraction digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Madhurima, E-mail: madhurimashrm88@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Sandhu, Manavjit Singh, E-mail: manavjitsandhu@yahoo.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gorsi, Ujjwal, E-mail: ujjwalgorsi@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gupta, Dheeraj, E-mail: dheeraj1910@gmail.com [Department of Pulmonary Medicine, PGIMER, Chandigarh 160012 (India); Khandelwal, Niranjan, E-mail: khandelwaln@hotmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India)

    2015-09-15

    Highlights: • Digital tomosynthesis and dual energy subtraction digital radiography are modifications of digital radiography. • These modalities perform better than digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis. • Digital tomosynthesis has a sensitivity of 100% in detection of cavities. • Centrilobular nodules seen on CT in active pulmonary tuberculosis, were also demonstrated on digital tomosynthesis in our study. • Digital tomosynthesis can be used for diagnosis and follow up of patients in pulmonary tuberculosis, thereby reducing the number of CT examinations. - Abstract: Objective: To assess the role of digital tomosynthesis (DTS) and dual energy subtraction digital radiography (DES-DR) in detection of parenchymal lesions in active pulmonary tuberculosis (TB) and to compare them with digital radiography (DR). Materials and methods: This prospective study was approved by our institutional review committee. DTS and DES-DR were performed in 62 patients with active pulmonary TB within one week of multidetector computed tomography (MDCT) study. Findings of active pulmonary TB, that is consolidation, cavitation and nodules were noted on digital radiography (DR), DTS and DES-DR in all patients. Sensitivity, specificity, positive and negative predictive values of all 3 modalities was calculated with MDCT as reference standard. In addition presence of centrilobular nodules was also noted on DTS. Results: Our study comprised of 62 patients (33 males, 29 females with age range 18–82 years). Sensitivity and specificity of DTS for detection of nodules and cavitation was better than DR and DES-DR. Sensitivity and specificity of DTS for detection of consolidation was comparable to DR and DES-DR. DES-DR performed better than DR in detection of nodules and cavitation. DTS was also able to detect centrilobular nodules with sensitivity and specificity of 57.4% and 86.5% respectively. Conclusion: DTS and DES-DR perform better

  11. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  12. Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images

    International Nuclear Information System (INIS)

    Richard, Samuel; Siewerdsen, Jeffrey H.

    2008-01-01

    Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index (d ' ) and area under the receiver operating characteristic (A Z ). Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A Z as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.

  13. Value of blood-pool subtraction in cardiac indium-111-labeled platelet imaging

    Energy Technology Data Exchange (ETDEWEB)

    Machac, J.; Vallabhajosula, S.; Goldman, M.E.; Goldsmith, S.J.; Palestro, C.; Strashun, A.; Vaquer, R.; Phillips, R.A.; Fuster, V. (Mt. Sinai Medical Center, New York, NY (USA))

    1989-09-01

    Blood-pool subtraction has been proposed to enhance {sup 111}In-labeled platelet imaging of intracardiac thrombi. We tested the accuracy of labeled platelet imaging, with and without blood-pool subtraction, in ten subjects with cardiac thrombi of varying age, eight with endocarditis being treated with antimicrobial therapy and ten normal controls. Imaging was performed early after labeled platelet injection (24 hr or less) and late (48 hr or more). Blood-pool subtraction was carried out. All images were graded subjectively by four experienced, blinded readers. Detection accuracy was measured by the sensitivity at three fixed levels of specificity estimated from receiver operator characteristic curve analysis and tested by three-way analysis of variance. Detection accuracy was generally improved on delayed images. Blood-pool subtraction did not improve accuracy. Although blood-pool subtraction increased detection sensitivity, this was offset by decreased specificity. For this population studied, blood-pool subtraction did not improve subjective detection of abnormal platelet deposition by 111In platelet imaging.

  14. Value of blood-pool subtraction in cardiac indium-111-labeled platelet imaging

    International Nuclear Information System (INIS)

    Machac, J.; Vallabhajosula, S.; Goldman, M.E.; Goldsmith, S.J.; Palestro, C.; Strashun, A.; Vaquer, R.; Phillips, R.A.; Fuster, V.

    1989-01-01

    Blood-pool subtraction has been proposed to enhance 111 In-labeled platelet imaging of intracardiac thrombi. We tested the accuracy of labeled platelet imaging, with and without blood-pool subtraction, in ten subjects with cardiac thrombi of varying age, eight with endocarditis being treated with antimicrobial therapy and ten normal controls. Imaging was performed early after labeled platelet injection (24 hr or less) and late (48 hr or more). Blood-pool subtraction was carried out. All images were graded subjectively by four experienced, blinded readers. Detection accuracy was measured by the sensitivity at three fixed levels of specificity estimated from receiver operator characteristic curve analysis and tested by three-way analysis of variance. Detection accuracy was generally improved on delayed images. Blood-pool subtraction did not improve accuracy. Although blood-pool subtraction increased detection sensitivity, this was offset by decreased specificity. For this population studied, blood-pool subtraction did not improve subjective detection of abnormal platelet deposition by 111In platelet imaging

  15. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    Science.gov (United States)

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classi-fication of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT METHODS: We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configu-ration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images exam-ining realistic configurations for both dual- and triple-energy CT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 mg/mL and 1 mg/mL, respectively. TECT outperforms DECT for multi-contrast CT imag-ing and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic

  17. Dual isotope, single acquisition parathyroid imaging

    International Nuclear Information System (INIS)

    Triantafillou, M.; McDonald, H.J.

    1998-01-01

    Full text: Nuclear Medicine parathyroid imaging using Thallium-201(TI) and Technetium-99m(Tc) is an often used imaging modality for the detection of parathyroid adenomas and hyper parathyroidism. The conventional Tl/Tc subtraction technique requires 2 separate injections and acquisitions which are then normalised and subtracted from each other. This lengthy technique is uncomfortable for patients and can result in false positive scan results due to patient movement between and during the acquisition process. We propose a simplified injection and single acquisition technique, that reduces the chance of movement and thus reduces the chance of false positive scan results. The technique involves the injection of Tc followed by the Tl injection 10 minutes later. After a further 10 min wait, imaging is performed using a dual isotope acquisition, with window (W) 1 set on 140 keV 20%W 5% off peak and W2 peaked for 70 keV 20%W., acquired for 10 minutes. We have imaged 27 patients with this technique, 15 had positive parathyroid imaging. Of the 15, 11 had positive ultrasound correlation. Of the remaining 4, 2 have had positive surgical findings for adenomas, the other 2 are awaiting follow-up. Of the 12 patients with negative parathyroid imaging, 2 have been shown to be false - negative with surgery. In conclusion, the single acquisition technique suggested by us is a valid method of imaging parathyroids that reduces the chance of false positive results due to movement

  18. Multiscale deformable registration for dual-energy x-ray imaging

    International Nuclear Information System (INIS)

    Gang, G. J.; Varon, C. A.; Kashani, H.; Richard, S.; Paul, N. S.; Van Metter, R.; Yorkston, J.; Siewerdsen, J. H.

    2009-01-01

    Dual-energy (DE) imaging of the chest improves the conspicuity of subtle lung nodules through the removal of overlying anatomical noise. Recent work has shown double-shot DE imaging (i.e., successive acquisition of low- and high-energy projections) to provide detective quantum efficiency, spectral separation (and therefore contrast), and radiation dose superior to single-shot DE imaging configurations (e.g., with a CR cassette). However, the temporal separation between high-energy (HE) and low-energy (LE) image acquisition can result in motion artifacts in the DE images, reducing image quality and diminishing diagnostic performance. This has motivated the development of a deformable registration technique that aligns the HE image onto the LE image before DE decomposition. The algorithm reported here operates in multiple passes at progressively smaller scales and increasing resolution. The first pass addresses large-scale motion by means of mutual information optimization, while successive passes (2-4) correct misregistration at finer scales by means of normalized cross correlation. Evaluation of registration performance in 129 patients imaged using an experimental DE imaging prototype demonstrated a statistically significant improvement in image alignment. Specific to the cardiac region, the registration algorithm was found to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during diastole. Modulation transfer function (MTF) analysis reveals additional advantages in DE image quality in terms of noise reduction and edge enhancement. This algorithm could offer an important tool in enhancing DE image quality and potentially improving diagnostic performance.

  19. Detection of small pulmonary nodules on chest radiographs: efficacy of dual-energy subtraction technique using flat-panel detector chest radiography

    International Nuclear Information System (INIS)

    Oda, S.; Awai, K.; Funama, Y.; Utsunomiya, D.; Yanaga, Y.; Kawanaka, K.; Nakaura, T.; Hirai, T.; Murakami, R.; Nomori, H.; Yamashita, Y.

    2010-01-01

    Aim: To investigate the effect of a double-exposure dual-energy subtraction (DES) technique on the diagnostic performance of radiologists detecting small pulmonary nodules on flat-panel detector (FPD) chest radiographs. Materials and methods: Using FPD radiography 41 sets of chest radiographs were obtained from 26 patients with pulmonary nodules measuring ≤20 mm and from 15 normal participants. Each dataset included standard and corresponding DES images. There were six non-solid, 10 part-solid, and 10 solid nodules. The mean size of the 26 nodules was 15 ± 4.8 mm. Receiver operating characteristic (ROC) analysis was performed to compare the performance of the eight board-certified radiologists. Results: For the eight radiologists, the mean value of the area under the ROC curve (AUC) without and with DES images was 0.62 ± 0.05 and 0.68 ± 0.05, respectively; the difference was statistically significant (p = 0.02). For part-solid nodules, the difference of the mean AUC value was statistically significant (AUC = 0.61 ± 0.07 versus 0.69 ± 0.05; p < 0.01); for non-solid nodules it was not (AUC = 0.62 ± 0.1 versus 0.61 ± 0.09; p = 0.73), and for solid nodules it was not (AUC = 0.75 ± 0.1 versus 0.78 ± 0.08; p = 0.23). For nodules with overlapping bone shadows, the difference of the mean AUC value was statistically significant (p = 0.03), for nodules without overlapping, it was not (p = 0.26). Conclusion: Use of a double-exposure DES technique at FPD chest radiography significantly improved the diagnostic performance of radiologists to detect small pulmonary nodules.

  20. Appearance of the canine meninges in subtraction magnetic resonance images.

    Science.gov (United States)

    Lamb, Christopher R; Lam, Richard; Keenihan, Erin K; Frean, Stephen

    2014-01-01

    The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1-weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre- and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image-anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1-weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small-rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color-encoded subtraction images on pregadolinium T1- and T2-weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges. © 2014 American College of Veterinary Radiology.

  1. The contribution of chemical shift imaging with digital subtracting images to the diagnosis of steatohepatitis

    International Nuclear Information System (INIS)

    Guo Xinghua; Wang Juanping; Zhang Chongjie; Zheng Guofang; Fan Ruiqiang; Zhu Sumei; Liu Qiwang

    2006-01-01

    Objective: To investigate the diagnosis value of chemical shift imaging with digital subtracting in steatohepatitis. Methods: The in-phase images were subtracted by the out-phase ones in 34 cases of steatohepatitis, and the CNR were measured on these subtracted images to estimate the steatosis of the liver. The relationship of CT grade of steatohepatitis and CNR from the subtracted images was analyzed to evaluate the relationship between CNR and the degree of hepatic steatosis. The sensitivity and specificity of the subtracting and eyeballing methods were compared with chi-square test. Results: On the subtracted images, the liver and spleen were seen nearly the same aspects as low signals, CNR=0.98±0.06, meanwhile the spongy vertebra and the subcutaneous or abdominal lipid were seen as obvious higher signals in 52 normal cases. On the 34 steatohepatitis, scattered high signals were seen in the liver, which made the signal of liver higher than that of spleen, CNR=3.25±0.91--14.35±6.10. There was positive correlation between CNR and CT grade in the 34 cases of steatohepatitis, r=0.893, P<0.01. The sensitivity and specificity of the subtracting method were 88.24% and 94. 23%, significantly higher than that of the eyeballing results, 32.35% and 80.77%, P<0.01 and P<0.05. Conclusion: Chemical shift imaging with digital subtracting is a sensitive, specific, objective method to diagnose steatohepatitis and it is of potential ability for quantitative diagnosis. (authors)

  2. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    International Nuclear Information System (INIS)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  3. Digital image comparison by subtracting contextual transformations—percentile rank order differentiation

    Science.gov (United States)

    Wehde, M. E.

    1995-01-01

    The common method of digital image comparison by subtraction imposes various constraints on the image contents. Precise registration of images is required to assure proper evaluation of surface locations. The attribute being measured and the calibration and scaling of the sensor are also important to the validity and interpretability of the subtraction result. Influences of sensor gains and offsets complicate the subtraction process. The presence of any uniform systematic transformation component in one of two images to be compared distorts the subtraction results and requires analyst intervention to interpret or remove it. A new technique has been developed to overcome these constraints. Images to be compared are first transformed using the cumulative relative frequency as a transfer function. The transformed images represent the contextual relationship of each surface location with respect to all others within the image. The process of differentiating between the transformed images results in a percentile rank ordered difference. This process produces consistent terrain-change information even when the above requirements necessary for subtraction are relaxed. This technique may be valuable to an appropriately designed hierarchical terrain-monitoring methodology because it does not require human participation in the process.

  4. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  5. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  6. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  7. The potential of dual-energy virtual monochromatic imaging in reducing renal cyst pseudoenhancement. A phantom study

    International Nuclear Information System (INIS)

    Yamada, Sachiko; Ueguchi, Takashi; Ukai, Isao; Nagai, Yumiko; Yamakawa, Masanobu; Shimosegawa, Eku; Shimazu, Takeshi; Hatazawa, Jun

    2012-01-01

    Renal cyst pseudoenhancement, an artifactual increase of computed tomography (CT) attenuation for cysts with increased iodine concentrations in the renal parenchyma, complicates the classification of cysts and may thus lead to the mischaracterization of a benign non-enhancing lesion as an enhancing mass. The purpose of this study was to use a phantom model to assess the ability of dual-energy virtual monochromatic imaging to reduce renal pseudoenhancement. A water-filled cylindrical cyst model suspended in varying concentrations of iodine solution, to simulate varying levels of parenchymal enhancement, was scanned with a dual-energy CT scanner using the following three scanning protocols with different combinations of tube voltage: 80 and 140 kV; 80 and 140 kV with tin filter; and 100 and 140 kV with tin filter. Virtual monochromatic images were then synthesized for each dual-energy scan. Single-energy scan with a tube voltage of 120 kV was also performed to obtain polychromatic images as controls. Mean attenuation values (in Hounsfield units) of cyst proxies were measured on both polychromatic and virtual monochromatic images. Pseudoenhancement was considered to be present when the cyst attenuation level increased by more than 10 HU (Hounsfield Unit) as the background iodine concentration increased from 0.0% to 0.4%, 1.5%, or 2.5%. Our results revealed that pseudoenhancement was not observed on any of the monochromatic images, but appeared on polychromatic images at a background iodine concentration of 2.5%. We thus conclude that dual-energy virtual monochromatic images have a potential to reduce renal pseudoenhancement. (author)

  8. Measurement of crosstalk contamination in dual isotope imaging by means of energy spectra and images

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Tsuji, Akinori; Ohyama, Yoichi; Nabeshima, Mitsuko; Kira, Tomohiro; Nakashima, Rumi; Tomiguchi, Seiji; Takahashi, Mutsumasa; Matsumoto, Masanori.

    1994-01-01

    The purpose of this study was to estimate the value of crosstalk contamination ratio (CTR) by analyzing energy spectra and scintigraphic images using a phantom and three radionuclides of 201 Tl, 99m Tc and 123 I. A 2 cm x 2 cm plate source filled with single radionuclide was placed in a water tank and its depth changed from 0 cm to 10 cm. Energy spectra and planar images were obtained using a gamma camera with either a low-energy (150 keV) or a medium-energy (200 keV) collimator. The value of CTR was calculated for two combinations : 1) 201 Tl and 99m Tc and 2) 201 Tl and 123 I. The energy window width at a photopeak was 20% for each radionuclide. The data were analyzed in two regions: a region where primary photons were mainly included in (region 1, 2 cm x 2 cm) and a region where both primary and scattered photons were included in (region 2, 10 cm x 10 cm). The results from analyses of the images showed that the CTR of Tl/Tc and Tl/I (0.064-0.101) were almost equal to those of Tc/Tl and I/Tl (0.056-0.148) for the region 1, but the CTR of Tl/Tc and Tl/I (0.212-0.381) were 2 times greater than those of Tc/Tl and I/Tl (0.092-0.172) for the region 2. Furthermore, these results showed good agreement between the CTR by energy spectra and those by images. For imaging with 123 I the medium-energy collimator had less blur than the low-energy collimator, in particular for the smaller source-to-collimator distance. In conclusion, the crosstalk contamination in dual-isotope study affects quantification of two radionuclides' activities. Our results are useful to evaluate images acquired using the dual-isotope technique and develop a new correction method for such crosstalk contamination by analyzing the energy spectra and images obtained. (author)

  9. Dual energy computer tomography. Objectve dosimetry, image quality and dose efficiency; Dual Energy Computertomographie. Objektive Dosimetrie, Bildqualitaet und Dosiseffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Schenzle, Jan Christian

    2012-05-24

    The aim of the present studies was an objective reflection of newly developed methods of modern imaging techniques concerning radiation exposure to the human body. Dual Source computed tomography has opened up a broad variety of new diagnostic possibilities. Using two X-ray sources with an angular offset of about 90 in a single gantry, images with a high spatiotemporal resolution can be achieved, for example in patients suffering acute chest pain. The Dual Energy Mode is based on the acquisition of two data sets with two different X-ray spectra which make it possible to identify certain substances with different spectral properties like bone, iodine or other organic material. [6-17] There is no doubt that this technical innovation will make an essential contribution to clinical diagnostics, but it remained to be proven that there is no additional dose. An anthropomorphic Phantom and thermoluminiscent detectors were used to objectively quantify the radiation dose resulting from the different examination protocols. For Dual Energy CT examinations, it was possible to verify dose neutrality in combination with comparable image quality and even improved contrast to noise ratio. Nowadays, this protocol is used in clinical routine examinations, e.g. for the evaluation of pulmonary embolism. A milestone in dose reduction was reached with modern triple rule out protocols. Causes of acute chest pain such as heart attack, pulmonary embolism or aortic rupture can be differentiated in a single examination with a high precision and a fractional amount of dose compared to conventional methods.

  10. Simultaneous Tc-99m/Tl-201 imaging using energy-based estimation of the spatial distributions of contaminant photons

    International Nuclear Information System (INIS)

    Moore, S.C.; Tow, D.E.; English, R.J.; Syravanh, C.; Zimmerman, R.E.; Chan, K.H.; Kijewski, M.F.; Brigham and Women's Hospital, Boston, MA

    1995-01-01

    The advantages of simultaneous acquisition of TC-99m and Tl-201 myocardial perfusion SPECT images can be fully realized only if the effects of the Tc-99m agent can be accurately removed from the Tl-201 image. The authors and others have previously reported simultaneous dual-isotope techniques for cardiac studies which make use of a third energy-window to estimate the Tc-99m scatter to be subtracted from the Tl-201 window. The authors have recently demonstrated, however, using a Monte Carlo program which simulates all details of the photon transport, that lead x-rays produced in the collimator may also contribute significantly to contamination in the Tl-201 window. The spatial distribution of the Tc-99m scattered photons differs from that of the lead x-rays. Therefore, the authors modified their correction technique so that, at each projection angle, the contaminant image to be subtracted from the image in the Tl-201 window was estimated as a linear combination of a scatter-window (90--110 keV) image, blurred by a 2D Gaussian filter, and the Tc-99m photopeak image, blurred by a different Gaussian filter. For simulated data which included 'liver' activity and non-uniform 'lung' attenuation, the improved dual-window subtraction technique provided a more accurate estimate of the true Tl-201 image, with less image noise, than did the single-window correction

  11. Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.

    Science.gov (United States)

    Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi

    2018-07-01

    Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  13. Computed tomography with energy-resolved detection: a feasibility study

    Science.gov (United States)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the

  14. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  15. A study of transverse image reconstruction with digital subtraction angiography

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Terasawa, Yuuji; Oda, Masahiko; Gotou, Hiroshi; Nasada, Toshiya; Tanooka, Masao

    1995-01-01

    For digital subtraction angiography (DSA) with C-type equipment, it is possible to radiate an X-ray during rotation and to collect data at different angular settings. We tried to reconstruct transverse image from data obtained by scanning DSA images at different angular settings. 88 projection data were obtained by rotating the object at 180deg during radiation. Reconstruction was made using the convolution method with pixel value distribution for each projection. Similarly, the image quality of the reconstructed images were compared with the unsubtracted and subtracted ones. In case a part object was outside the calculating region, artifacts were generally produced. However, the artifacts were reduced by subtracting the background from the image. In addition, the cupping phenomenon caused by beam hardening was relaxed and high-quality imaging could be achieved. This method will become even more effective, if we will use it with selective angiography in which the limited area is enhanced. (author)

  16. A temporal subtraction method for thoracic CT images based on generalized gradient vector flow

    International Nuclear Information System (INIS)

    Miyake, Noriaki; Kim, H.; Maeda, Shinya; Itai, Yoshinori; Tan, J.K.; Ishikawa, Seiji; Katsuragawa, Shigehiko

    2010-01-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes (such as formation of new lesions and changes in existing abnormalities) on medical images by removing most of the normal structures. If image registration is incorrect, not only the interval changes but also the normal structures would be appeared as some artifacts on the temporal subtraction image. In a temporal subtraction technique for 2-D X-ray image, the effectiveness is shown through a lot of clinical evaluation experiments, and practical use is advancing. Moreover, the MDCT (Multi-Detector row Computed Tomography) can easily introduced on medical field, the development of a temporal subtraction for thoracic CT Images is expected. In our study, a temporal subtraction technique for thoracic CT Images is developed. As the technique, the vector fields are described by use of GGVF (Generalized Gradient Vector Flow) from the previous and current CT images. Afterwards, VOI (Volume of Interest) are set up on the previous and current CT image pairs. The shift vectors are calculated by using nearest neighbor matching of the vector fields in these VOIs. The search kernel on previous CT image is set up from the obtained shift vector. The previous CT voxel which resemble standard the current voxel is detected by voxel value and vector of the GGVF in the kernel. And, the previous CT image is transformed to the same coordinate of standard voxel. Finally, temporal subtraction image is made by subtraction of a warping image from a current one. To verify the proposal method, the result of application to 7 cases and the effectiveness are described. (author)

  17. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  18. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging

    International Nuclear Information System (INIS)

    Yao, Yuan; Pelc, Norbert J.; Ng, Joshua M.; Megibow, Alec J.

    2016-01-01

    Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition may be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly

  19. Diagnosis value of dual-phase contrast enhancement CT combined with virtual non-enhanced images by dual-energy CT in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    Ma Zhoupeng; Zhou Jianjun; Liu Xueling; Wang Chun; Zhang Shunzhuang

    2012-01-01

    Objective: To explore the diagnostic value of dual-phase contrast enhancement CT combined with virtual non-enhanced images by dual-energy CT in clear cell renal cell carcinoma. Methods: Sixty patients who were suspected of clear cell renal cell carcinoma underwent non-enhanced CT and contrast enhancement CT of early interface-phase between cortex -medulla and parenchymal phase on a dual-energy CT. The true non-enhanced kidney CT (TNCT) was performed in a single-energy acquisition mode, but the dual-phase contrast enhancement CT were performed in a dual-energy mode of 80 kV and 140 kV respectively. The virtual non-enhanced CT (VNCT) images were derived from the data of early interface phase using liver virtual non-contrast software. The diagnose according to VNCT combined dual-phase contrast enhancement CT and dual-phase contrast enhancement CT only were made respectively and compared with χ 2 test. Between the true non-contrast CT and the virtual non-contrast CT, the image quality was compared with Wilcoxon test; The radiation dose of volume CT dose index (CTDIvol) and dose length product(DLP) in a single-phase and total examination, the mean CT HU values of the tumours were compared with t test. Results: The accuracy of VNCT combined dual-phase contrast enhancement CT was higher than that of dual-phase contrast enhancement CT only [93.3% (56/60) vs.78.3% (47/60); χ 2 =5.6, P<0.05]. The detective ability (score) of VNCT was near to that of TNCT and the difference was not obvious (Z=0.00, P>0.05). The radiation dose of volume CT dose index (CTDIvol) and dose length product (DLP) in a single phase and total examination of VNCT [(8.85 ± 1.28) mGy, (196.45 ±21.12) mGy·cm, (17.69±2.35) mGy, (392.90±42.25) mGy · cm] were lower than that of TNCT [(10.20 ± 1.44) mGy,(218.29 ± 29.60) mGy · cm, (30.61 ± 3.27) mGy and (654.86 ± 88.81) mGy ·cm], t=4.21, 3.58, 23.63, 16.12 respectively, P<0.05. The mean CT HU values of tumours on VNCT images was higher than that

  20. Incidence of ischemic lesions in diffusion-weighted imaging after transbrachial digital subtraction angiography

    International Nuclear Information System (INIS)

    Aschenbach, R.; Majeed, A.; Eger, C.; Basche, S.; Kerl, J.M.; Vogl, T.J.

    2008-01-01

    Purpose: to evaluate the frequency of ischemia after transbrachial digital subtraction angiography under ambulant conditions using diffusion-weighted imaging. Materials and methods: 200 patients were included in a prospective study design and received transbrachial digital subtraction angiography under ambulant conditions. Before and after digital subtraction angiography, diffusion-weighted imaging of the brain was performed. Results: in our study population no new lesions were found in diffusion-weighted imaging after digital subtraction angiography during the 3-hour window after angiography. One new lesion was found 3 days after angiography as a late onset complication. Therefore, the frequency of neurological complications is at the level of the confidence interval of 0 - 1.5%. Conclusion: the transbrachial approach under ambulant conditions is a safe method for digital subtraction angiography resulting in a low rate of ischemic lesions in diffusion-weighted imaging. (orig.)

  1. Dual-energy CT for the evaluation of urinary calculi: Image interpretation, pitfalls and stone mimics

    International Nuclear Information System (INIS)

    Jepperson, M.A.; Cernigliaro, J.G.; Sella, D.; Ibrahim, E.; Thiel, D.D.; Leng, S.; Haley, W.E.

    2013-01-01

    Urolithiasis is a common disease with a reported prevalence between 4% and 20% in developed countries. Determination of urinary calculi composition is a key factor in preoperative evaluation, treatment, and stone recurrence prevention. Prior to the introduction of dual-energy computed tomography (DECT), available methods for determining urinary stone composition were only available after stone extraction, and thereby unable to aid in optimized stone management prior to intervention. DECT utilizes the attenuation difference produced by two different x-ray energy spectra to quantify urinary calculi composition as uric acid or non-uric acid (with likely further classification in the future) while still providing the information attained with a conventional CT. Knowledge of DECT imaging pitfalls and stone mimics is important, as the added benefit of dual-energy analysis is the determination of stone composition, which in turn affects all aspects of stone management. This review briefly describes DECT principles, scanner types and acquisition protocols for the evaluation of urinary calculi as they relate to imaging pitfalls (inconsistent characterization of small stones, small dual-energy field of view, and mischaracterization from surrounding material) and stone mimics (drainage devices) that may adversely impact clinical decisions. We utilize our clinical experience from scanning over 1200 patients with this new imaging technique to present clinically relevant examples of imaging pitfalls and possible mechanisms for resolution

  2. Dual-Source Dual-Energy CT Angiography of the Supra-Aortic Arteries with Tin Filter: Impact of Tube Voltage Selection.

    Science.gov (United States)

    Korn, Andreas; Bender, Benjamin; Schabel, Christoph; Bongers, Malte; Ernemann, Ulrike; Claussen, Claus; Thomas, Christoph

    2015-06-01

    Automatic bone and plaque subtraction (BPS) in computed tomographic angiographic (CTA) examinations using dual-energy CT (DECT) remains challenging because of beam-hardening artifacts in the shoulder region and close proximity of the internal carotid artery to the base of the skull. The selection of the tube voltage combination in dual-source CT influences the spectral separation and the susceptibility for artifacts. The purpose of this study was to assess which tube voltage combination leads to an optimal image quality of head and neck DECT angiograms after bone subtraction. Fifty-one patients received tin-filter-enhanced DECT angiograms of the supra-aortic arteries using two voltage protocols: 24 patients were studied using 80/Sn140 kV and 27 using a 100/Sn140 kV protocol, both protocols with an additional tin filter. A commercially available DE-CTA BPS algorithm was used. Artificial vessel erosions in BPS maximum intensity projections (four-level Likert scale with CTA source data as reference) and vessel signal-to-noise ratio (SNR) were assessed in the level of the shoulders and the base of the skull in each patient and compared. At the level of the shoulder, 100/Sn140 kV achieved higher SNR (23.4 ± 6.4 at 80/Sn140 kV vs. 35.1 ± 11.8 at 100/Sn140 kV; P supra-aortic arteries than the 80/Sn140 kV protocol. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  3. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.

    Science.gov (United States)

    Saito, Masatoshi

    2007-11-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  4. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2007-01-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm 2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues

  5. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  6. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    International Nuclear Information System (INIS)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung

    2014-01-01

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  7. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung [Yonsei University, Wonju (Korea, Republic of)

    2014-06-15

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  8. A vector Wiener filter for dual-radionuclide imaging

    International Nuclear Information System (INIS)

    Links, J.M.; Prince, J.L.; Gupta, S.N.

    1996-01-01

    The routine use of a single radionuclide for patient imaging in nuclear medicine can be complemented by studies employing two tracers to examine two different processes in a single organ, most frequently by simultaneous imaging of both radionuclides in two different energy windows. In addition, simultaneous transmission/emission imaging with dual-radionuclides has been described, with one radionuclide used for the transmission study and a second for the emission study. There is thus currently considerable interest in dual-radionuclide imaging. A major problem with all dual-radionuclide imaging is the crosstalk between the two radionuclides. Such crosstalk frequently occurs, because scattered radiation from the higher energy radionuclide is detected in the lower energy window, and because the lower energy radionuclide may have higher energy emissions which are detected in the higher energy window. The authors have previously described the use of Fourier-based restoration filtering in single photon emission computed tomography (SPECT) and positron emission tomography (PET) to improve quantitative accuracy by designing a Wiener or other Fourier filter to partially restore the loss of contrast due to scatter and finite spatial resolution effects. The authors describe here the derivation and initial validation of an extension of such filtering for dual-radionuclide imaging that simultaneously (1) improves contrast in each radionuclide's direct image, (2) reduces image noise, and (3) reduces the crosstalk contribution from the other radionuclide. This filter is based on a vector version of the Wiener filter, which is shown to be superior [in the minimum mean square error (MMSE) sense] to the sequential application of separate crosstalk and restoration filters

  9. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  10. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3rd generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    International Nuclear Information System (INIS)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander

    2017-01-01

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  11. Advanced virtual monochromatic reconstruction of dual-energy unenhanced brain computed tomography in children: comparison of image quality against standard mono-energetic images and conventional polychromatic computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juil [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Pak, Seong Yong [Siemens Healthineers, Seoul (Korea, Republic of); Krauss, Bernhard [Siemens Healthineers, Forchheim (Germany)

    2017-11-15

    Advanced virtual monochromatic reconstruction from dual-energy brain CT has not been evaluated in children. To determine the most effective advanced virtual monochromatic imaging energy level for maximizing pediatric brain parenchymal image quality in dual-energy unenhanced brain CT and to compare this technique with conventional monochromatic reconstruction and polychromatic scanning. Using both conventional (Mono) and advanced monochromatic reconstruction (Mono+) techniques, we retrospectively reconstructed 13 virtual monochromatic imaging energy levels from 40 keV to 100 keV in 5-keV increments from dual-source, dual-energy unenhanced brain CT scans obtained in 23 children. We analyzed gray and white matter noise ratios, signal-to-noise ratios and contrast-to-noise ratio, and posterior fossa artifact. We chose the optimal mono-energetic levels and compared them with conventional CT. For Mono+maximum optima were observed at 60 keV, and minimum posterior fossa artifact at 70 keV. For Mono, optima were at 65-70 keV, with minimum posterior fossa artifact at 75 keV. Mono+ was superior to Mono and to polychromatic CT for image-quality measures. Subjective analysis rated Mono+superior to other image sets. Optimal virtual monochromatic imaging using Mono+ algorithm demonstrated better image quality for gray-white matter differentiation and reduction of the artifact in the posterior fossa. (orig.)

  12. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  13. Preliminary study of lateral cerebral angiography with reverse rotation in the digital image registration and subtraction

    International Nuclear Information System (INIS)

    Shen Zhenglin; Liu Dongyang; Shen Zhenghai; Li Shuping; Zhang Ziyan; Wu Yongjuan; Liu Peijun

    2012-01-01

    Objective: Investigate the value and feasibility of image registration with reverse rotation in lateral cerebral DSA. Methods: (1) Experimental study: the target images were subtracted directly, and subtracted again after reverse rotation. Software of registration and subtraction with reverse rotation edited by the author utilizing Visual Basic. The function of the automatic angle detection by the software were evaluated to see whether it detected the angle of line. The subtraction function of DSA by the software was evaluated. (2) Clinical retrospective study: the untreated mask and target images of 15 patients with motion along vertical axis during lateral cerebral DSA were uploaded to the software. The target images were processed with and without the software to get two sets of images. (3) Evaluation: four experienced radiologists read and compared the two sets of the images,and graded their findings. Results: (1) The automatic detection by the software suggested that the target images should be rotated counterclockwise 1.3°. The subtraction result of the software was satisfactory. (2) In the 15 sets of images, there were only three sets of images deemed optimal after traditional subtraction. After reverse rotation, artifacts were significantly reduced and the image sharper. There were ten cases with significant artifacts after traditional subtraction, and those images were sharper and showed more peripheral vessels after reverse rotation. The traditional subtraction images of two sets could not be interpreted,the reverse rotation registration images reached the diagnostic quality. (3) Subjective evaluation: there were more information and less noise and distortion in the registration images with reverse rotation than in the traditional subtraction. But the image resolution decreased slightly after reverse rotation registration. Conclusion: The registration of digital angiography with reverse rotation can improve the image quality in lateral cerebral DSA

  14. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  15. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  16. Measurements of image characteristics of DSA installations

    International Nuclear Information System (INIS)

    Busch, H.P.; Strauss, L.G.; Freimarck, R.D.

    1984-01-01

    Measurements for quantifying the image characteristics were carried out on three DSA installations (DVI 1 - Philips, Angiotron - Siemens and DF 3000 - General Eletric). Contrast resolution was measured with a vessel phantom (General Electric) and spatial resolution with a lead grid. A further parameter was the dose entering the image intensifier. The Angiotron was used with an intensifier with 53 cm. diameter and the DF 3000 with temporal subtraction of the video images and the subtraction of dual energy images (hybrid technique). These measurements can be carried out quickly and easily and are a step towards standardisation of measurements of image characteristics of DSA installations. (orig.) [de

  17. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3{sup rd} generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander [Univ. Hospital Wuerzburg (Germany). Inst. of Diagnostic and Interventional Radiology

    2017-06-15

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  18. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  19. Nonlinear image blending for dual-energy MDCT of the abdomen: can image quality be preserved if the contrast medium dose is reduced?

    Science.gov (United States)

    Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Marin, Daniele; Alfaro-Cordoba, Marcela; Eusemann, Christian D; Scribano, Emanuele; Blandino, Alfredo; Mazziotti, Silvio; Ascenti, Giorgio

    2014-10-01

    The objective of this study was to compare the image quality of a dual-energy nonlinear image blending technique at reduced load of contrast medium with a simulated 120-kVp linear blending technique at a full dose during portal venous phase MDCT of the abdomen. Forty-five patients (25 men, 20 women; mean age, 65.6 ± 9.7 [SD] years; mean body weight, 74.9 ± 12.4 kg) underwent contrast-enhanced single-phase dual-energy CT of the abdomen by a random assignment to one of three different contrast medium (iomeprol 400) dose injection protocols: 1.3, 1.0, or 0.65 mL/kg of body weight. The contrast-to-noise ratio (CNR) and noise at the portal vein, liver, aorta, and kidney were compared among the different datasets using the ANOVA. Three readers qualitatively assessed all datasets in a blinded and independent fashion. Nonlinear blended images at a 25% reduced dose allowed a significant improvement in CNR (p < 0.05 for all comparisons), compared with simulated 120-kVp linear blended images at a full dose. No statistically significant difference existed in CNR and noise between the nonlinear blended images at a 50% reduced dose and the simulated 120-kVp linear blended images at a full dose. Nonlinear blended images at a 50% reduced dose were considered in all cases to have acceptable image quality. The dual-energy nonlinear image blending technique allows reducing the dose of contrast medium up to 50% during portal venous phase imaging of the abdomen while preserving image quality.

  20. WE-FG-207B-10: Dual-Energy CT Monochromatic Image Consistency Across Vendors and Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, M; Wood, C; Cody, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Although dual-energy CT provides improved sensitivity of HU for certain tissue types at lower simulated energy levels, if these values vary by scanner type they may impact clinical patient management decisions. Each manufacturer has selected a specific dual-energy CT approach (or in one case, three different approaches); understanding HU variability among low monochromatic images may be required when more than one dual-energy CT scanner type is available for use. Methods: A large elliptical dualenergy quality control phantom (Gammex Inc.; Middleton, WI) containing several standard tissue type materials was scanned at least three times on each of the following systems: GE HD750, prototype GE Revolution CT with GSI, Siemens Flash, Siemens Edge, Siemens AS 128, and Philips IQon. Images were generated at 50, 70, and 140 keV. Soft tissue and Iodine HU were measured on a single central 5mm-thick image; NIST constants were used to calculate the ideal HU for each material. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were held as consistent as possible (thickness, kernel, no noise reduction). Results: Measured soft tissue (29 HU at 120 kVp) varied from 28 HU to 44 HU at 50 keV (excluding one outlier), from 21 HU to 31 HU at 70 keV, and from 19 HU to 32 HU at 140 keV. Measured iodine (5mg/ml, 106 HU at 120 kVp) varied from 246 HU to 280 HU at 50 keV, from 123 HU to 129 HU at 70 keV, and from 22 HU to 32 HU at 140 keV. Conclusion: Measured HU in standard rods across 3 dual-energy CT manufacturers and 6 scanner models varied directly with monochromatic level, with the most variability was observed at 50 keV and least variability at 70keV. Future work will include additional scanner platforms and how measurement variability impacts radiologists. This research has been supported by funds from Dr. William Murphy, Jr., the John S. Dunn, Sr. Distinguished Chair in Diagnostic Imaging at MD Anderson Cancer Center.

  1. A method for dynamic subtraction MR imaging of the liver

    Directory of Open Access Journals (Sweden)

    Setti Ernesto

    2006-06-01

    Full Text Available Abstract Background Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time. Methods Nineteen consecutive patients (median age 45 years; range 37–67 were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a rigid 3D translation using maximization of normalized mutual information (NMI, and (b fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI. Results The new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 ± 0.031 vs. 0.078 ± 0.031, n.s., paired t-test and by a further 23% (0.096 ± 0.035 vs. 0.078 ± 0.031, p t-test after non-rigid realignment. The overall average NMI increase was 31%. Conclusion This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions.

  2. Subtraction imaging of the ECG gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Tanegashima, K.; Fukui, M.; Hyodo, H.

    1987-05-01

    The subtracting manipulation of contrast-enhanced gated cardiac CT (GCCT) images was experimentally studied with TCT 60A - 30 type (Toshiba) for clinical use, thereby reducing the amount of contrast medium (CM). Initially the optimum relationship between the concentration of CM and its injected velocity was determined using the model of resected canine hearts and in actual dogs. The emphasized good-subtracted images were obtained when the difference of CT values was approximately 40 H.U. between cardiac cavity and myocardium. Such condition was feasible in the use of 25 % Diatrizoic acid and its injected velocity of 0.02 ml/kg/sec. Finally the reduction of the amount of CM by 1/3 became possible in clinical settings. The method is applicable to multi-slice GCCT in various heart diseases.

  3. Digital subtraction in gadolinium-enhanced MR imaging of the brain: a method to reduce contrast dosage

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Chan, C.Y.; Lai, K.F.; Cheung, Y.K.; Wong, K.P.C.; Yuen, M.K.; Chau, L.F.; Fong, D.; Mok, C.K.

    2002-01-01

    The aim of the study was to investigate the feasibility of using digital subtraction in contrast-enhanced MR imaging of the brain to reduce the MR contrast dosage without jeopardizing patient care. Fifty-two patients with intracranial lesions, either intra-axial or extra-axial, detected by computerized tomography were selected for contrast-enhanced MR imaging with half-dose and full-dose of gadopentetate dimeglumine. The half-dose unsubtracted, full-dose unsubtracted, and half-dose subtracted MR images were visually assessed by counting the number of enhancing brain lesions in the images and quantitatively analyzed by computing their lesion contrast-to-background ratios (CBR). The visual conspicuity of the half-dose subtracted MR images was comparable to that of the full-dose unsubtracted MR images (p>0.05), whereas the CBR of the half-dose subtracted images was approximately two to three times higher than that of the full-dose unsubtracted images. The half-dose subtracted T1-weighted spin-echo images might be able to replace the conventional standard-dose T1-weighted spin-echo images in MR imaging of the brain. (orig.)

  4. Dual-Energy Computed Tomography Angiography of the Lower Extremity Runoff: Impact of Noise-Optimized Virtual Monochromatic Imaging on Image Quality and Diagnostic Accuracy.

    Science.gov (United States)

    Wichmann, Julian L; Gillott, Matthew R; De Cecco, Carlo N; Mangold, Stefanie; Varga-Szemes, Akos; Yamada, Ricardo; Otani, Katharina; Canstein, Christian; Fuller, Stephen R; Vogl, Thomas J; Todoran, Thomas M; Schoepf, U Joseph

    2016-02-01

    The aim of this study was to evaluate the impact of a noise-optimized virtual monochromatic imaging algorithm (VMI+) on image quality and diagnostic accuracy at dual-energy computed tomography angiography (CTA) of the lower extremity runoff. This retrospective Health Insurance Portability and Accountability Act-compliant study was approved by the local institutional review board. We evaluated dual-energy CTA studies of the lower extremity runoff in 48 patients (16 women; mean age, 63.3 ± 13.8 years) performed on a third-generation dual-source CT system. Images were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monochromatic (VMI) algorithms at 40 to 120 keV in 10-keV intervals. Vascular attenuation and image noise in 18 artery segments were measured; signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used to subjectively evaluate vascular attenuation and image noise. In a subgroup of 21 patients who underwent additional invasive catheter angiography, diagnostic accuracy for the detection of significant stenosis (≥50% lumen restriction) of F_0.5, 50-keV VMI+, and 60-keV VMI data sets were assessed. Objective image quality metrics were highest in the 40- and 50-keV VMI+ series (SNR: 20.2 ± 10.7 and 19.0 ± 9.5, respectively; CNR: 18.5 ± 10.3 and 16.8 ± 9.1, respectively) and were significantly (all P traditional VMI technique and standard linear blending for evaluation of the lower extremity runoff using dual-energy CTA.

  5. SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Eunbin [Department of Medical Science, Ewha Womans University, Seoul (Korea, Republic of); Ahn, SoHyun; Cho, Samju; Keum, Ki Chang [Department of Radiation Oncology, School of Medicine, Yonsei Univeristy, Seoul (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize such an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.

  6. IMPROVED BACKGROUND SUBTRACTION FOR THE SLOAN DIGITAL SKY SURVEY IMAGES

    International Nuclear Information System (INIS)

    Blanton, Michael R.; Kazin, Eyal; Muna, Demitri; Weaver, Benjamin A.; Price-Whelan, Adrian

    2011-01-01

    We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a smooth function to the variation of the sky background. This procedure has been applied to all SDSS-III Data Release 8 images, and the results are available as part of that data set. We have tested the effect of our background subtraction on the photometry of large galaxies by inserting fake galaxies into the raw pixels, reanalyzing the data, and measuring them after background subtraction. Our technique results in no size-dependent bias in galaxy fluxes up to half-light radii r 50 ∼ 100 arcsec; in contrast, for galaxies of that size the standard SDSS photometric catalog underestimates fluxes by about 1.5 mag. Our results represent a substantial improvement over the standard SDSS catalog results and should form the basis of any analysis of nearby galaxies using the SDSS imaging data.

  7. Clinical utility of Gd-DTPA subtraction MR imaging for spinal bone metastasis

    International Nuclear Information System (INIS)

    Ando, Keiichi; Murakami, Masao; Kuroda, Yasumasa

    1993-01-01

    Based on reports that Gd-DTPA contributes to the detection of tumors, we used it in 31 cases (97 lesions) of spinal bone metastases. The result was that Gd-DTPA increased the intensity of tumors and the surrounding bone marrow to almost the same level in 53%. To show the metastases clearly, an existing subtraction command system was utilized. The technique included the pixel-by-pixel method, to obtain a Gd-DTPA T1-weighted image (T1WI) subtracted by the original T1WI. The detectability of the subtraction image was improved up to 96%, but was less than the original T1WI (99%). Because of the different imaging rationale between two methods, a means to assess the quality of diagnosis must be proposed. To check the normal background, the same kind of postprocessing was performed in 21 patients without malignancy. Gd-DTPA prefusion was highest in the paravertebral veins, moderate in muscles and epidural fat, and lowest in the spinal cord, intervertebral disk and bone cortex. Gd-DTPA enhanced subtraction MR imaging provides a new diagnostic tool to detect and to assess bone metastasis. (author)

  8. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software

    International Nuclear Information System (INIS)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck; Park, Kwan Kyu

    2012-01-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. circle Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). circle Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution circle GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. circle However image quality is influenced by the prosthesis composition and other parameters. circle We should be aware about potential overcorrection when using GSI-MARs. (orig.)

  9. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    International Nuclear Information System (INIS)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J

    2016-01-01

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  10. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  11. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    Science.gov (United States)

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface

  12. Clinical application of subtraction CT imaging for evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Toshihiko; Yatagai, Shigeo; Oonuma, Noboru; Ohno, Kunihiko; Nakamoto, Takaaki; Iizuka, Masahiko

    1991-01-01

    In this clinical study, one normal subject, one patient with primary interstitial pneumonia, one patient with segmental pneumonia due to Staphylococcus aureus, one patient with post-operative esophageal carcinoma, and two patients with mitral stenosis were studied. Dynamic CT scan images under continuous injection of low osmotic contrast medium were analyzed in series, in an attempt to evaluate vascular permeability quantitatively. The following results were obtained. Subtraction CT scan image 10 minutes after the start of contrast medium injection in two patients with pneumonia, showed a reduction of pulmonary vascular permeability following therapy. Subtraction CT scan image of the patient with post-operative esophageal carcinoma treated with 25 Gy radiation showed a discrepancy between pulmonary vascular permeability and other findings. In hemodynamically stable patients with mitral stenosis, subtraction CT images demonstrated that pulmonary vascular permeability was not affected by pulmonary congestion, irrespective of its severity. (author)

  13. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  14. Utility of noise addition image made by using water phantom and image addition and subtraction software

    International Nuclear Information System (INIS)

    Watanabe, Ryo; Aoki, Takahiro; Hayano, Mizuho; Ogawa, Masato; Mituzono, Hiroki; Watanabe, Yuka

    2010-01-01

    In optimizing exposures, it is very important to evaluate the impact of image noise on image quality. To realize this, there is a need to evaluate how much image noise will make the subject disease invisible. But generally it is very difficult to shoot images of different quality in a clinical examination. Thus, a method to create a noise addition image by adding the image noise to raw data has been reported. However, this approach requires a special system, so it is difficult to implement in many facilities. We have invented a method to easily create a noise addition image by using the water phantom and image add-subtract software that accompanies the device. To create a noise addition image, first we made a noise image by subtracting the water phantom with different standard deviation (SD). A noise addition image was then created by adding the noise image to the original image. By using this method, a simulation image with intergraded SD can be created from the original. Moreover, the noise frequency component of the created noise addition image is as same as the real image. Thus, the relationship of image quality to SD in the clinical image can be evaluated. Although this method is an easy method of LDSI creation on image data, a noise addition image can be easily created by using image addition and subtraction software and water phantom, and this can be implemented in many facilities. (author)

  15. Improvement in visibility of simulated lung nodules on computed radiography (CR) chest images by use of temporal subtraction technique

    International Nuclear Information System (INIS)

    Oda, Nobuhiro; Fujimoto, Keiji; Murakami, Seiichi; Katsuragawa, Shigehiko; Doi, Kunio; Nakata, Hajime

    1999-01-01

    A temporal subtraction image obtained by subtraction of a previous image from a current one can enhance interval change on chest images. In this study, we compared the visibility of simulated lung nodules on CR images with and without temporal subtraction. Chest phantom images without and with simulated nodules were obtained as previous and current images, respectively, by a CR system. Then, subtraction images were produced with an iterative image warping technique. Twelve simulated nodules were attached on various locations of the chest phantom. The diameter of nodules having a CT number of 47 ranged from 3 mm to 10 mm. Seven radiologists subjectively evaluated the visibility of simulated nodules on CR images with and without temporal subtraction using a three-point rating scale (0: invisible, +1: questionable, +2:visible). The minimum diameter of simulated nodules visible at a frequency greater than 50% was 4 mm on the CR images with temporal subtraction and 6 mm on those without. Our results indicated that the subtraction images clearly improved the visibility of simulated nodules. (author)

  16. Two-pass dual-energy CT imaging for simultaneous detection, characterization, and volume measurement of urinary stones with excretory-phase CT urography alone. A phantom study

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Niikawa, Hidekazu; Shikata, Atsushi; Murakami, Emi; Tsunoda, Hiroshi; Yoshioka, Toshiaki; Yamamoto, Hiroshi; Itoh, Toshihide; Tsujihata, Masao

    2013-01-01

    The purpose of this study was to evaluate if two-pass dual-energy CT imaging - id est (i.e.), simultaneous three-material and two-material decomposition analysis - can depict and characterize urinary stones in various concentrations of iodine solution in vitro. Twelve urinary stones were scanned with a dual-source CT scanner. First, each stone (in a saline-filled tube) underwent single- and dual-energy mode CT scans in order to measure the volume of the stone. Each stone was then placed in various concentrations of contrast medium and scanned in dual-energy mode to calculate its volume via three-material decomposition analysis. Two-pass dual-energy CT imaging analysis software for the Matlab environment, which was developed specifically to process simultaneous three-material and two-material decomposition, was applied to characterize and calculate the volume of each stone. Although the virtual non-contrast images from three-material decomposition analysis clearly visualized all of the stones in contrast medium with up to 80 mgI/mL, the volumes of the uric acid stones were overestimated. Two-pass dual-energy CT imaging was able to depict and characterize non-uric-acid stones in diluted contrast medium with up to 80 mgI/mL, whereas uric acid stones were correctly evaluated in diluted contrast medium with 40 mgI/mL or less. Two-pass dual-energy CT imaging is able to depict and characterize urinary stones in contrast medium. (author)

  17. Quantitative analysis of planar technetium-99m-sestamibi myocardial perfusion images using modified background subtraction

    International Nuclear Information System (INIS)

    Koster, K.; Wackers, F.J.; Mattera, J.A.; Fetterman, R.C.

    1990-01-01

    Standard interpolative background subtraction, as used for thallium-201 ( 201 Tl), may create artifacts when applied to planar technetium-99m-Sestamibi ( 99m Tc-Sestamibi) images, apparently because of the oversubtraction of relatively high extra-cardiac activity. A modified background subtraction algorithm was developed and compared to standard background subtraction in 16 patients who had both exercise-delayed 201 Tl and exercise-rest 99m Tc-Sestamibi imaging. Furthermore, a new normal data base was generated. Normal 99m Tc-Sestamibi distribution was slightly different compared to 201 Tl. Using standard background subtraction, mean defect reversibility was significantly underestimated by 99m Tc-Sestamibi compared to 201 Tl (2.8 +/- 4.9 versus -1.8 +/- 8.4, p less than 0.05). Using the modified background subtraction, mean defect reversibility on 201 Tl and 99m Tc-Sestamibi images was comparable (2.8 +/- 4.9 versus 1.7 +/- 5.2, p = NS). We conclude, that for quantification of 99m Tc-Sestamibi images a new normal data base, as well as a modification of the interpolative background subtraction method should be employed to obtain quantitative results comparable to those with 201 Tl

  18. Pulmonary imaging using dual-energy CT, a role of the assessment of iodine and air distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: e-mail@fnplzen.cz [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Ferdova, Eva; Mirka, Hynek; Baxa, Jan; Bednarova, Alena [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Flohr, Thomas; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography, 91301 Siemensstr. 1, Forchheim (Germany); Matejovic, Martin [1st Internal Department, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Kreuzberg, Boris [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic)

    2011-02-15

    Aim: The aim of the study is to present the feasibility of using dual-energy CT and the evaluation of iodine and air distribution in differentiation of pathological conditions. Material and method: We used the data of 50 CT examinations performed due to suspected pulmonary embolism with any pathological finding except consolidation of the parenchyma. The patients underwent CT angiography of the pulmonary arteries on a dual-source CT (DSCT), with the two tubes independently operated at 140 and 80 kV. By exploiting the dual-energy information, iodine distribution maps were obtained in addition to the conventional CT images which served as a marker of pulmonary perfusion. Minimum intensity projections (MinIP) were used as a marker of air content. Results: By comparing the iodine distribution maps and MinIP images, it was possible to differentiate between the following templates of lung parenchyma: A - normal iodine and air distribution; B - iodine content deficit with minimal or with no redistribution of air; C - reduced iodine content and increased content of air; D - deficit of iodine content and increased content of air; E - increased iodine content and normal content of air; F - increased iodine content and reduced content of air; G - reduced perfusion and reduced content of air. The type A (five cases) was typical for the pulmonary embolism with preserved normal conditions of perfusion and ventilation. Type B (18 cases) occurred in pulmonary embolism; type C was found in case of inflammation of small respiratory airways (five cases); emphysema was typical for type D (nine cases); increased perfusion was observed in the parenchyma preserved from emphysema or preserved from embolism in cases of emphysema or pulmonary embolism; type F occurred in pulmonary interstitial edema (four cases) both with pulmonary infection; finally type G was found in interstitial lung diseases (five cases). Conclusion: Imaging of the pulmonary circulation by means of dual-energy CT opens

  19. Adrenal incidentaloma triage with single source (fast kVp switch) dual energy CT

    Science.gov (United States)

    Glazer, Daniel I; Keshavarzi, Nahid R; Parker, Robert A; Kaza, Ravi K; Platt, Joel F; Francis, Isaac R

    2015-01-01

    Purpose To evaluate single source dual energy CT (DECT) for distinguishing benign and indeterminate adrenal nodules, with attention to effects of phase of intravenous contrast enhancement. Materials and methods An IRB-approved, HIPAA-compliant retrospective review revealed 273 contrast-enhanced abdominal DECTs from November 2009–March 2012. 50 adrenal nodules ≥ 0.8 cm were identified in 41 patients: 22 female, 19 male, average age 66 (range 36–88 years). CT post-processing and measurements were independently performed by two radiologists (R1 and R2) for each nodule: (1) HU on true non-contrast images; (2) post-contrast HU on monochromatic spectral images at 40, 75, and 140 keV; (3) post-contrast material density (mg/cc) on virtual non-contrast (VNC) images. Nodules were separated into benign (VNC images, benign nodules had significantly lower material density (R1: 992.4 mg/cc ± 9.9; R2: 992.7 mg/cc ±9.6) than indeterminate nodules (R1: 1001.1mg/cc ±20.5 (p .038); R2: 1007.6 HU ±13.4 (p <.0001). Conclusion DECT tools can mathematically subtract iodine or minimize its effects in high energy reconstructions, approximating non-contrast imaging and potentially reducing the need for additional studies to triage adrenal nodules detected on post-contrast DECT exams. PMID:25055267

  20. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  1. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  2. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  3. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  4. Dual-energy contrast-enhanced mammography.

    Science.gov (United States)

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  5. Recent developments of dual-energy CT in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Simons, David; Schlemmer, Heinz-Peter [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Kachelriess, Marc [Department of Medical Physics in Radiology, Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-15

    Dual-energy computed tomography (DECT) can amply contribute to support oncological imaging: the DECT technique offers promising clinical applications in oncological imaging for tumour detection and characterisation while concurrently reducing the radiation dose. Fast image acquisition at two different X-ray energies enables the determination of tissue- or material-specific features, the calculation of virtual unenhanced images and the quantification of contrast medium uptake; thus, tissue can be characterised and subsequently monitored for any changes during treatment. DECT is already widely used, but its potential in the context of oncological imaging has not been fully exploited yet. The technology is the subject of ongoing innovation and increasingly with respect to its clinical potential, particularly in oncology. This review highlights recent state-of-the-art DECT techniques with a strong emphasis on ongoing DECT developments relevant to oncologic imaging, and then focuses on clinical DECT applications, especially its prospective uses in areas of oncological imaging. circle Dual-energy CT (DECT) offers fast, robust, quantitative and functional whole-body imaging. (orig.)

  6. Systematic radiation dose optimization of abdominal dual-energy CT on a second-generation dual-source CT scanner: assessment of the accuracy of iodine uptake measurement and image quality in an in vitro and in vivo investigations.

    Science.gov (United States)

    Schindera, Sebastian T; Zaehringer, Caroline; D'Errico, Luigia; Schwartz, Fides; Kekelidze, Maka; Szucs-Farkas, Zsolt; Benz, Matthias R

    2017-10-01

    To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDI vol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDI vol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p dual-energy and the single-energy protocol. A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.

  7. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  8. Tumor scintigraphy by the method for subtracting the initial image with technetium-99m labeled antibody

    International Nuclear Information System (INIS)

    Karube, Yoshiharu; Katsuno, Kentaro; Ito, Sanae; Matsunaga, Kazuhisa; Takata, Jiro; Kuroki, Masahide; Murakami, Masaaki; Matsuoka, Yuji

    1999-01-01

    The method for subtracting the initial image from the localization image was evaluated for radioimmunoscintigraphy of tumors with technetium-99m (Tc-99m) labeled antibodies. Monoclonal antibodies were parental mouse and mouse-human chimeric antibodies to carcinoembryonic antigen (CEA), designated F11-39 and ChF11-39, respectively, both of which have been found to discriminate CEA in tumor tissues from the CEA-related antigens. After reduction of the intrinsic disulfide bonds, these antibodies were labeled with Tc-99m. In vivo studies were performed on athymic nude mice bearing the human CEA-producing gastric carcinoma xenografts. Though biodistribution results showed selective and progressive accumulation of Tc-99m labeled antibodies at the tumor site, high radioactivity in blood was inappropriate for scintigraphic visualization of the tumors within a few hours. We examined the subtraction of the initial Tc-99m image from the Tc-99m localization image after a few hours. Subtracted images of the same count reflected the in vivo behavior of the Tc-99m radioactivity. The subtracted scintigrams revealed excellent tumor images with no significant extrarenal background. Visualization of the tumor site was dependent on antigen-specific binding and nonspecific exudation. These results demonstrate that a method of subtraction of the initial image may serve as a potentially useful diagnostic method for an abnormal site for agents with a low pharmacokinetic value. (author)

  9. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging.

    Science.gov (United States)

    Kaufmann, Sascha; Sauter, Alexander; Spira, Daniel; Gatidis, Sergios; Ketelsen, Dominik; Heuschmid, Martin; Claussen, Claus D; Thomas, Christoph

    2013-05-01

    To measure and compare the objective image quality of true noncontrast (TNC) images with virtual noncontrast (VNC) images acquired by tin-filter-enhanced, dual-source, dual-energy computed tomography (DECT) of upper abdomen. Sixty-three patients received unenhanced abdominal CT and enhanced abdominal DECT (100/140 kV with tin filter) in portal-venous phase. VNC images were calculated from the DECT datasets using commercially available software. The mean attenuation of relevant tissues and image quality were compared between the TNC and VNC images. Image quality was rated objectively by measuring image noise and the sharpness of object edges using custom-designed software. Measurements were compared using Student two-tailed t-test. Correlation coefficients for tissue attenuation measurements between TNC and VNC were calculated and the relative deviations were illustrated using Bland-Altman plots. Mean attenuation differences between TNC and VNC (HUTNC - HUVNC) image sets were as follows: right liver lobe -4.94 Hounsfield units (HU), left liver lobe -3.29 HU, vena cava -2.19 HU, spleen -7.46 HU, pancreas 1.29 HU, fat -11.14 HU, aorta 1.29 HU, bone marrow 36.83 HU (all P VNC and TNC series were observed for liver, vena portae, kidneys, pancreas, muscle and bone marrow (Pearson's correlation coefficient ≥0.75). Mean image noise was significantly higher in TNC images (P VNC and TNC images (P = .19). The Hounsfield units in VNC images closely resemble TNC images in the majority of the organs of the upper abdomen (kidneys, liver, pancreas). In spleen and fat, Hounsfield numbers in VNC images are tend to be higher than in TNC images. VNC images show a low image noise and satisfactory edge sharpness. Other criteria of image quality and the depiction of certain lesions need to be evaluated additionally. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  10. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  11. Dynamic gadolinium-enhanced subtraction MR imaging - a simple technique for the early diagnosis of Legg-Calve-Perthes disease: preliminary results

    International Nuclear Information System (INIS)

    Sebag, G.; Ducou Le Pointe, H.; Klein, I.; Maiza, D.; Mazda, K.; Bensahel, H.; Hassan, M.

    1997-01-01

    To determine whether the simple technique of dynamic gadolinium-enhanced subtraction MR imaging, which is available on standard MR units, can detect ischemia of the femoral head in children with early Legg-Calve-Perthes disease (LCP). Bone perfusion of eight hips in four patients (mean age 7.5 years) was studied using dynamic gadolinium-enhanced substraction MR imaging at the onset of proven LCP (with initial negative plain films). Enhancement of subtracted images was compared with that on standard MR images and with bone scintigraphy findings. Subtraction MR imaging depicted ischemia as a widespread absence of enhancement and was in good agreement with bone scintigraphy. The subtraction technique improved the sensitivity and the specificity of MR imaging in two children. Furthermore, subtraction MR imaging allowed recognition of the pattern of early reperfusion. Our preliminary results indicate that dynamic gadolinium-enhanced subtraction MRI is a simple and promising means of early recognition of ischemia in LCP. (orig.)

  12. Clinical Application of Colour Modulation of Gamma Energy and Depth by Dual-Channel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Ben-Porath, M. [Veterans Administration Hospital, Hines, IL (United States)

    1969-01-15

    A dual-channel scanning system has been described permitting the simultaneous imaging in individual color of the distribution of two gamma-emitting radioisotopes. In those cases where two organs are adjacent and concentrate the same isotope, they may be displayed in separate color if one of the organs concentrates another gamma-emitting isotope with a different energy. This is accomplished by individual color readout of this isotope and the display of the subtraction of this isotope from the common isotope in another color. By using two facing scintillation probes on either side of the individual being scanned, two overlapping organs at different depths concentrating the same isotope can be color differentiated by a dual-channel playout of each probe. The principal application of these dual-channel scanning methods to date has been the simultaneous display of the liver and pancreas in individual colors using {sup 198}Au and {sup 75}selenomethionine. Characteristic scans have been obtained which differentiate a number of disease states from the normal pancreas and liver. The pancreatic and liver diseases studied and characterized are carcinoma of the pancreas, pancreatic insufficiency, acute recurrent pancreatitis, pancreatic pseudocyst and Laennec's cirrhosis, hepatoma and metastatic malignancy in the liver. The uptake of {sup 75}selenomethionine in malignant lesions in many instances produces positive scans of these tumors in contrasting color to the liver. Depth discrimination in color with the two-probe system has permitted the lateralization of intracranial lesions, the color of the display being proportional to the depth of the lesion. The discrimination of depth and gamma-ray energy by dual-channel color scanning and its general application in visualizing other organs has been accomplished. (author)

  13. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism

    International Nuclear Information System (INIS)

    Okada, Munemasa; Kunihiro, Yoshie; Nakashima, Yoshiteru; Nomura, Takafumi; Kudomi, Shohei; Yonezawa, Teppei; Suga, Kazuyoshi; Matsunaga, Naofumi

    2015-01-01

    Purpose: To investigate the added value of lung perfused blood volume (LPBV) using dual-energy CT for the evaluation of intrapulmonary clot (IPC) in patients suspected of having acute pulmonary embolism (PE). Materials and methods: Institutional review board approval was obtained for this retrospective study. Eighty-three patients suspected of having PE who underwent CT pulmonary angiography (CTPA) using a dual-energy technique were enrolled in this study. Two radiologists who were blinded retrospectively and independently reviewed CTPA images alone and the combined images with color-coded LPBV over a 4-week interval, and two separate sessions were performed with a one-month interval. Inter- and intraobserver variability and diagnostic accuracy were evaluated for each reviewer with receiver operating characteristic (ROC) curve analysis. Results: Values for inter- and intraobserver agreement, respectively, were better for CTPA combined with LPBV (ICC = 0.847 and 0.937) than CTPA alone (ICC = 0.748 and 0.861). For both readers, diagnostic accuracy (area under the ROC curve [A z ]) were also superior, when CTPA alone (A z = 0.888 [reader 1] and 0.912 [reader 2]) was compared with that after the combination with LPBV images (A z = 0.966 [reader 1] and 0.959 [reader 2]) (p < 0.001). However, A z values of both images might not have significant difference in statistics, because A z value of CTPA alone was high and 95% confidence intervals overlapped in both images. Conclusion: Addition of dual-energy perfusion CT to CTPA improves detection of peripheral IPCs with better interobserver agreement

  14. Dual energy CT of the chest: how about the dose?

    Science.gov (United States)

    Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C

    2010-06-01

    New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 m

  15. SU-E-I-39: Combining Conventional Tomographic Imaging Strategy and Interior Tomography for Low Dose Dual-Energy CT (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Xiong, G; Elmore, K; Min, J [Dalio Institute of Cardiovascular Imaging, New York- Presbyterian Hospital and Weill Cornell Medical College, New York, NY (United States)

    2015-06-15

    Purpose: Dual-energy CT (DECT) affords quantitative information of tissue density and provides a new dimension for disease diagnosis and treatment planning. The technique, however, increases the imaging dose because of the doubled scans, and thus hinders its widespread clinical applications. The purpose of this work is to develop a novel hybrid DECT image acquisition and reconstruction strategy, in which one of the energies is dealt by interior tomography while the other one is obtained using conventional tomography approach. Methods: In the proposed hybrid imaging strategy, the projection data of one of the energies (e.g., high-energy) were acquired and processed in an interior scanning model, whereas the other energy in the conventional tomographic approach. It known that, if the ROI is piecewise constant or polynomial, the interior ROI can be reconstructed with TV or HOT minimization. Here we extend the TV based interior reconstruction method into dual-energy situation. The ROI images so obtained were overlaid in the context of conventional CT of the companion energy. A material based composition in ROI was used in the proposed reconstruction framework. Results: In the simulation experiment with a diagnostic DECT geometry and energies, we were able to derive the densities of soft-tissues and bones in the ROI with high fidelity. In the experimental CBCT study, both kV and MV data were collected using the on-board kV and MV imaging system. The MV data were truncated only across the ROI. Using the interior tomography reconstruction above, we were able to obtain the ROI images as that obtained using un-truncated MV data with known tissue densities. Conclusion: The proposed DECT imaging strategy provides an effective way to extract tissue density information in the ROI and in the context of anatomical images of CT imaging, with much reduced imaging dose.

  16. SU-E-I-45: Feasibility for Using Iodine Quantification to Assist Diagnosis in Dual Energy Contrast-Enhanced Digital Mammography

    International Nuclear Information System (INIS)

    Hwang, Y; Lin, Y; Tsai, C; Cheung, Y

    2015-01-01

    Purpose: The objective of this study is to develop quantitative calibration between image quality indexes and iodine concentration with dual-energy (DE) contrast-enhanced digital mammography (CEDM) techniques and further serve as the assistance for diagnosis. Methods: Custom-made acrylic phantom with dimensions of 24×30 cm 2 simulated breast thickness from 2 to 6 cm was used in the calibration. The phantom contained matrix of four times four holes of 3 mm deep with a diameter of 15 mm for filling contrast agent with area density ranged from 0.1 to 10 mg/cm 2 . All the image acquisitions were performed on a full-field digital mammography system (Senographe Essential, GE) with dual energy acquisitions. Mean pixel value (MPV), and contrast-to-noise ratio (CNR) were used for evaluating the relationship between image quality indexes and iodine concentration. Iodine map and CNR map could further be constructed with these calibration curves applied pixel by pixel utilized MATLAB software. Minimum iodine concentration could also be calculated with the visibility threshold of CNR=5 according the Rose model. Results: When evaluating the DE subtraction images, MPV increased linearly as the iodine concentration increased with all the phantom thickness surveyed (R 2 between 0.989 and 0.992). Lesions with increased iodine uptake could thus be enhanced in the color-encoded iodine maps, and the mean iodine concentration could be obtained through the ROI measurements. As for investigating CNR performance, linear relationships were also shown between the iodine concentration and CNR (R 2 between 0.983 and 0.990). Minimum iodine area density of 1.45, 1.73, 1.80, 1.73 and 1.72 mg/cm 2 for phantom thickness of 2, 3, 4, 5, 6 cm were calculated based on Rose’s visualization criteria. Conclusion: Quantitative calibration between image quality indexes and iodine concentrations may further serving as the assistance for analyzing contrast enhancement for patient participating the dual

  17. Dual-Energy CT in Enhancing Subdural Effusions that Masquerade as Subdural Hematomas: Diagnosis with Virtual High-Monochromatic (190-keV) Images.

    Science.gov (United States)

    Bodanapally, U K; Dreizin, D; Issa, G; Archer-Arroyo, K L; Sudini, K; Fleiter, T R

    2017-10-01

    Extravasation of iodinated contrast into subdural space following contrast-enhanced radiographic studies results in hyperdense subdural effusions, which can be mistaken as acute subdural hematomas on follow-up noncontrast head CTs. Our aim was to identify the factors associated with contrast-enhancing subdural effusion, characterize diffusion and washout kinetics of iodine in enhancing subdural effusion, and assess the utility of dual-energy CT in differentiating enhancing subdural effusion from subdural hematoma. We retrospectively analyzed follow-up head dual-energy CT studies in 423 patients with polytrauma who had undergone contrast-enhanced whole-body CT. Twenty-four patients with enhancing subdural effusion composed the study group, and 24 randomly selected patients with subdural hematoma were enrolled in the comparison group. Postprocessing with syngo.via was performed to determine the diffusion and washout kinetics of iodine. The sensitivity and specificity of dual-energy CT for the diagnosis of enhancing subdural effusion were determined with 120-kV, virtual monochromatic energy (190-keV) and virtual noncontrast images. Patients with enhancing subdural effusion were significantly older (mean, 69 years; 95% CI, 60-78 years; P subdural effusions was reached within the first 8 hours of contrast administration with a mean of 0.98 mg/mL (95% CI, 0.81-1.13 mg/mL), and complete washout was achieved at 38 hours. For the presence of a hyperdense subdural collection on 120-kV images with a loss of hyperattenuation on 190-keV and virtual noncontrast images, when considered as a true-positive for enhancing subdural effusion, the sensitivity was 100% (95% CI, 85.75%-100%) and the specificity was 91.67% (95% CI, 73%-99%). Dual-energy CT has a high sensitivity and specificity in differentiating enhancing subdural effusion from subdural hematoma. Hence, dual-energy CT has a potential to obviate follow-up studies. © 2017 by American Journal of Neuroradiology.

  18. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  19. Initial use of fast switched dual energy CT for coronary artery disease

    Science.gov (United States)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  20. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  1. The reduction of motion artifacts in digital subtraction angiography by geometrical image transformation

    International Nuclear Information System (INIS)

    Fitzpatrick, J.M.; Pickens, D.R.; Mandava, V.R.; Grefenstette, J.J.

    1988-01-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with the problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes a technique for determining an optimal transformation. The authors employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. They choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process they use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. They present the experimental results of the application of their registration system to mask-contrast pairs, for images acquired from a specially designed phantom, and for clinical images

  2. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  3. Dual energy CT

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Drue, Henrik Christian; Steele, Robert

    2017-01-01

    and inaccurate with existing methods. Dual Energy Computed Tomography (DECT) enables qualitative tissue differentiation by simultaneous scanning with different levels of energy. We aimed to assess the feasibility of DECT in quantifying tumor response to neoadjuvant therapy in loco-advanced rectal cancer. METHODS...... to determine the average quantitative parameters; effective-Z, water- and iodine-concentration, Dual Energy Index (DEI), and Dual Energy Ratio (DER). These parameters were compared to the regression in the resection specimen as measured by the pathologist. RESULTS: Changes in the quantitative parameters...

  4. Dual-energy CTA in patients with symptomatic peripheral arterial occlusive disease. Study of diagnostic accuracy and impeding factors

    Energy Technology Data Exchange (ETDEWEB)

    Klink, Thorsten [Wuerzburg Univ. (Germany). Inst. of Diagnostic and Interventional Radiology; Bern Univ. (Switzerland). Univ. Inst. of Diagnostic, Interventional, and Pediatric Radiology; Wilhelm, Theresa; Roth, Christine [Univ. Hospital Giessen and Marburg, Marburg (Germany). Dept. of Diagnostic and Interventional Radiology; Heverhagen, Johannes T. [Bern Univ. (Switzerland). Univ. Inst. of Diagnostic, Interventional, and Pediatric Radiology

    2017-05-15

    The purpose of this study was to assess the diagnostic performance of dual-energy CT angiography (DE-CTA) in patients with symptomatic peripheral artery occlusive disease (PAOD) and to identify factors that impede its diagnostic accuracy. Dual-source DE-CTA scans of the lower extremities of 94 patients were retrospectively compared to the diagnostic reference standard, digital subtraction angiography (DSA). Two independent observers assessed PAOD incidence, image quality, artifacts, and diagnostic accuracy of DE-CTA in 1014 arterial segments on axial, combined 80/140 kVp reconstructions and on 3 D maximum intensity projections (MIP) after automated bone and plaque removal. The impact of calcifications, image quality, and image artifacts on the diagnostic accuracy was evaluated using Fisher's exact test. Furthermore, interobserver agreement was analyzed. Two observers achieved sensitivities of 98.0% and 93.9%, respectively, and specificities of 75.0% and 66.7%, respectively, for detecting stenoses of >50% of the lower extremity arteries. Calcifications impeded specificity, e.g. from 81.2% to 46.2% for reader 1 (p<0.001). Specificity increased with higher image quality, e.g. from 70.0% to 76.4% for reader 1 (p<0.001). Artifacts decreased the specificity of reader 2 (p<0.001). The overall interobserver agreement ranged between moderate and substantial for stenosis detection and calcified plaques. Conclusion DE-CTA is accurate in the detection of arterial stenoses of >50% in symptomatic PAOD patients. Calcified atherosclerotic plaques, image quality, and artifacts may impede specificity.

  5. Evaluation of the utility of temporal subtraction images in successive whole-body bone scans: a prospective clinical study

    International Nuclear Information System (INIS)

    Shiraishi, J.; Appelbaum, D.; Pu, Y.; Engelmann, R.; Li Qiang; Doi, K.

    2007-01-01

    We have begun a prospective clinical study for evaluating the clinical utility of temporal subtraction images in successive whole-body bone scans. The computerized temporal subtraction technique has been developed in order to highlight interval changes of abnormal lesions due to skeletal metastases, primary bone tumors, osteomyelitis, and fractures. In our initial preliminary results of the prospective study which was started on November 22, 2006 in our hospital, radiologists reported some interval changes which were not recognized in the initial standard readings, but were obvious when temporal subtraction images were viewed. The usefulness of the temporal subtraction images will be investigated in terms of its clinical utility by the prospective clinical study. (orig.)

  6. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay.

    Science.gov (United States)

    Ascenti, Giorgio; Mazziotti, Silvio; Lamberto, Salvatore; Bottari, Antonio; Caloggero, Simona; Racchiusa, Sergio; Mileto, Achille; Scribano, Emanuele

    2011-06-01

    The purpose of our study was to evaluate the value of dual-source dual-energy CT with colored iodine overlay for detection of endoleaks after endovascular abdominal aortic aneurysm repair. We also calculated the potential dose reduction by using a dual-energy CT single-phase protocol. From November 2007 to November 2009, 74 patients underwent CT angiography 2-7 days after endovascular repair during single-energy unenhanced and dual-energy venous phases. By using dual-energy software, the iodine overlay was superimposed on venous phase images with different percentages ranging between 0 (virtual unenhanced images) and 50-75% to show the iodine in an orange color. Two blinded readers evaluated the data for diagnosis of endoleaks during standard unenhanced and venous phase images (session 1, standard of reference) and virtual unenhanced and venous phase images with colored iodine overlay images (session 2). We compared the effective dose radiation of a single-energy biphasic protocol with that of a single-phase dual-energy protocol. The diagnostic accuracy of session 2 was calculated. The mean dual-energy effective dose was 7.27 mSv. By using a dual-energy single-phase protocol, we obtained a mean dose reduction of 28% with respect to a single-energy biphasic protocol. The diagnostic accuracy of session 2 was: 100% sensitivity, 100% specificity, 100% negative predictive value, and 100% positive predictive value. Statistically significant differences in the level of confidence for endoleak detection between the two sessions were found by reviewers for scores 3-5. Dual-energy CT with colored iodine overlay is a useful diagnostic tool in endoleak detection. The use of a dual-energy single-phase study protocol will lower radiation exposure to patients.

  7. The comparison of Tc99m-pertechnetate/mibi subtraction and double phase Tc99m-mibi techniques in parathyroid imaging

    International Nuclear Information System (INIS)

    Bilkay, Ue.; Erinc, R.; Karapolat, I.; Kumanlioglu, K.

    2001-01-01

    Experienced parathyroid surgeons can localize nearly %90-95 of the abnormal parathyroid glands with total thyroid bed exploration. For this reason, for the first surgical exploration preoperative imaging of the gland could be considered unnecessary. However, localization of the abnormal parathyroid tissue preoperatively could be beneficial in ectopic adenomas which consists %20 of all adenomas and also in shortening surgical procedure in single adenomas with the use of unilateral exploration. Re-exploration after an unsuccessful surgery is the most widely accepted indication for parathyroid imaging. Today, although Tc99m-MIBI is the accepted radionuclide with the advantages of giving better image quality with lower radiation dose over Tl-201, for imaging hyper functioning parathyroid tissue, there is no consensus on the ideal imaging protocol. Single-tracer double-phase imaging (STDP) and dual-tracer subtraction technique (Tc99m-pertechnetate/Tc99m-MIBI) (DTST) are proposed protocols using Tc99m-MIBI. The aim of this ongoing study is; to compare STDP imaging with DTST and to compare sensitivity of pinhole and high resolution parallel hole images in STDP protocol

  8. Performance of a video-image-subtraction-based patient positioning system

    International Nuclear Information System (INIS)

    Milliken, Barrett D.; Rubin, Steven J.; Hamilton, Russell J.; Johnson, L. Scott; Chen, George T.Y.

    1997-01-01

    Purpose: We have developed and tested an interactive video system that utilizes image subtraction techniques to enable high precision patient repositioning using surface features. We report quantitative measurements of system performance characteristics. Methods and Materials: Video images can provide a high precision, low cost measure of patient position. Image subtraction techniques enable one to incorporate detailed information contained in the image of a carefully verified reference position into real-time images. We have developed a system using video cameras providing orthogonal images of the treatment setup. The images are acquired, processed and viewed using an inexpensive frame grabber and a PC. The subtraction images provide the interactive guidance needed to quickly and accurately place a patient in the same position for each treatment session. We describe the design and implementation of our system, and its quantitative performance, using images both to measure changes in position, and to achieve accurate setup reproducibility. Results: Under clinical conditions (60 cm field of view, 3.6 m object distance), the position of static, high contrast objects could be measured with a resolution of 0.04 mm (rms) in each of two dimensions. The two-dimensional position could be reproduced using the real-time image display with a resolution of 0.15 mm (rms). Two-dimensional measurement resolution of the head of a patient undergoing treatment for head and neck cancer was 0.1 mm (rms), using a lateral view, measuring the variation in position of the nose and the ear over the course of a single radiation treatment. Three-dimensional repositioning accuracy of the head of a healthy volunteer using orthogonal camera views was less than 0.7 mm (systematic error) with an rms variation of 1.2 mm. Setup adjustments based on the video images were typically performed within a few minutes. The higher precision achieved using the system to measure objects than to reposition

  9. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  10. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography.

    Science.gov (United States)

    Tanaka, Ray; Hayashi, Takafumi; Ike, Makiko; Noto, Yoshiyuki; Goto, Tazuko K

    2013-06-01

    The aim of this study was to evaluate the usefulness of hypothetical monoenergetic images after dual-energy computed tomography (DECT) for assessment of the bone encircling dental implant bodies. Seventy-two axial images of implantation sites clipped out from image data scanned using DECT in dual-energy mode were used. Subjective assessment on reduction of dark-band-like artifacts (R-DBAs) and diagnosability of adjacent bone condition (D-ABC) in 3 sets of DECT images-a fused image set (DE120) and 2 sets of hypothetical monoenergetic images (ME100, ME190)-was performed and the results were statistically analyzed. With regards to R-DBAs and D-ABC, significant differences among DE120, ME100, and ME190 were observed. The ME100 and ME190 images revealed more artifact reduction and diagnosability than those of DE120. DECT imaging followed by hypothetical monoenergetic image construction can cause R-DBAs and increase D-ABC and may be potentially used for the evaluation of postoperative changes in the bone encircling implant bodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Digital contrast subtraction radiography for proximal caries diagnosis

    International Nuclear Information System (INIS)

    Kang, Byung Cheol; Yoon, Suk Ja

    2002-01-01

    To determine whether subtraction images utilizing contrast media can improve the diagnostic performance of proximal caries diagnosis compared to conventional periapical radiographic images. Thirty-six teeth with 57 proximal surfaces were radiographied using a size no.2 RVG-ui sensor (Trophy Radiology, Marne-la-Vallee, France). The teeth immersed in water-soluble contrast media and subtraction images were taken. Each tooth was then sectioned for histologic examination. The digital radiographic images and subtraction images were examined and interpreted by three dentists for proximal caries. The results of the proximal caries diagnosis were then verified with the results of the histologic examination. The proximal caries sensitivity using digital subtraction radiography was significantly higher than simply examining a single digital radiograph. The sensitivity of the proximal dentinal carious lesion when analyzed with the subtraction radiograph and the radiograph together was higher than with the subtraction radiograph or the radiograph alone. The use of subtraction radiography with contrast media may be useful for detecting proximal dentinal carious lesions.

  13. On the usefulness of portal monitor unit subtraction in radiation therapy

    International Nuclear Information System (INIS)

    Kuperman, Vadim Y; Lubich, Leslie M

    2003-01-01

    In order to avoid additional dose to patients caused by portal imaging with megavoltage x-rays, portal monitor units (MUs) are frequently subtracted from the actual treatment MUs. This study examines the usefulness of portal MU subtraction in radiation therapy. For 11 prostate cancer patients treated with 23 MV photons, dose to prostate due to portal filming with 6 MV photons was determined. In all 11 patients subtraction of portal MU values from the actual treatment MUs resulted in a small underdosing of the prostate with an average treatment error of -0.5%. Portal filming without MU subtraction would cause small overdosing of the prostate with an average treatment error of 1.2%. The results of this study indicate that the benefits of portal MU subtraction are in doubt if (a) the energy of treatment x-rays is much higher than that of the portal x-rays and/or (b) when radiotherapy is performed with physical wedges. Based on the obtained results, we argue against unconditional use of the portal MU subtraction method to eliminate the dose from portal imaging

  14. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  15. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  16. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  17. Late iodine enhancement computed tomography with image subtraction for assessment of myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Kouchi, Takanori; Fukuyama, Naoki; Yokoi, Takahiro; Miyagawa, Masao; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon City, Ehime (Japan); Uetani, Teruyoshi [Department of Cardiology, Ehime University Graduate School of Medicine, Toon City, Ehime (Japan); Yamashita, Natsumi [National Hospital Organization Shikoku Cancer Center, Department of Clinical Biostatistics, Section of Cancer Prevention and Epidemiology, Clinical Research Center, Matsuyama City, Ehime (Japan)

    2018-03-15

    To evaluate the feasibility of image subtraction in late iodine enhancement CT (LIE-CT) for assessment of myocardial infarction (MI). A comprehensive cardiac CT protocol and late gadolinium enhancement MRI (LGE-MRI) was used to assess coronary artery disease in 27 patients. LIE-CT was performed after stress CT perfusion (CTP) and CT angiography. Subtraction LIE-CT was created by subtracting the mask volume of the left ventricle (LV) cavity from the original LIE-CT using CTP dataset. The %MI volume was quantified as the ratio of LIE to entire LV volume, and transmural extent (TME) of LIE was classified as 0%, 1-24%, 25-49%, 50-74% or 75-100%. These results were compared with LGE-MRI using the Spearman rank test, Bland-Altman method and chi-square test. One hundred twenty-five (29%) of 432 segments were positive on LGE-MRI. Correlation coefficients for original and subtraction LIE-CT to LGE-MRI were 0.79 and 0.85 for %MI volume. Concordances of the 5-point grading scale between original and subtraction LIE-CT with LGE-MRI were 75% and 84% for TME; concordance was significantly improved using the subtraction technique (p <0.05). Subtraction LIE-CT allowed more accurate assessment of MI extent than the original LIE-CT. (orig.)

  18. Dual energy MDCT assessment of renal lesions: an overview

    International Nuclear Information System (INIS)

    Mileto, Achille; Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T.; Ascenti, Giorgio

    2014-01-01

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  19. Dual energy MDCT assessment of renal lesions: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy); Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Ascenti, Giorgio [University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy)

    2014-02-15

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  20. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    Science.gov (United States)

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  1. Simplified derivation of stopping power ratio in the human body from dual-energy CT data.

    Science.gov (United States)

    Saito, Masatoshi; Sagara, Shota

    2017-08-01

    The main objective of this study is to propose an alternative parameterization for the empirical relation between mean excitation energies (I-value) and effective atomic numbers (Z eff ) of human tissues, and to present a simplified formulation (which we called DEEDZ-SPR) for deriving the stopping power ratio (SPR) from dual-energy (DE) CT data via electron density (ρ e ) and Z eff calibration. We performed a numerical analysis of this DEEDZ-SPR method for the human-body-equivalent tissues of ICRU Report 46, as objects of interest with unknown SPR and ρ e . The attenuation coefficients of these materials were calculated using the XCOM photon cross-sections database. We also applied the DEEDZ-SPR conversion to experimental DECT data available in the literature, which was measured for the tissue-characterization phantom using a dual-source CT scanner at 80 kV and 140 kV/Sn. It was found that the DEEDZ-SPR conversion enables the calculation of SPR simply by means of the weighted subtraction of an electron-density image and a low- or high-kV CT image. The simulated SPRs were in excellent agreement with the reference values over the SPR range from 0.258 (lung) to 3.638 (bone mineral-hydroxyapatite). The relative deviations from the reference SPR were within ±0.6% for all ICRU-46 human tissues, except for the thyroid that presented a -1.1% deviation. The overall root-mean-square error was 0.21%. Application to experimental DECT data confirmed this agreement within the experimental accuracy, which demonstrates the practical feasibility of the method. The DEEDZ-SPR conversion method could facilitate the construction of SPR images as accurately as a recent DECT-based calibration procedure of SPR parameterization based directly on the CT numbers in a DECT data set. © 2017 American Association of Physicists in Medicine.

  2. Procedures for imaging of hemodialysis fistulas with particular reference to digital subtraction angiography (DSA)

    International Nuclear Information System (INIS)

    Neufang, K.F.R.; Erasmi-Koerber, H.; Wimmer, G.; Koeln Univ.

    1983-01-01

    All angiographic procedures established for imaging of hemodialysis fistulas, such as direct venous angiography, intravenous subtraction angiography and arteriography by direct puncture of the brachial artery of by Seldinger's transfemoral technique, can also be effected with digital image processing. Depending on the angiographic technique, the use of digital subtraction angiography has several advantages: lower doses and concentrations of the contrast agent, lower risk of complications (thrombosis of the fistula, vasospasm) and freedom from pain. In addition, there is a marked reduction of examination time and film cost. (orig.)

  3. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  4. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis.

    Science.gov (United States)

    Cheung, Yun-Chung; Lin, Yu-Ching; Wan, Yung-Liang; Yeow, Kee-Min; Huang, Pei-Chin; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chang, Chee-Jen

    2014-10-01

    To analyse the accuracy of dual-energy contrast-enhanced spectral mammography in dense breasts in comparison with contrast-enhanced subtracted mammography (CESM) and conventional mammography (Mx). CESM cases of dense breasts with histological proof were evaluated in the present study. Four radiologists with varying experience in mammography interpretation blindly read Mx first, followed by CESM. The diagnostic profiles, consistency and learning curve were analysed statistically. One hundred lesions (28 benign and 72 breast malignancies) in 89 females were analysed. Use of CESM improved the cancer diagnosis by 21.2 % in sensitivity (71.5 % to 92.7 %), by 16.1 % in specificity (51.8 % to 67.9 %) and by 19.8 % in accuracy (65.9 % to 85.8 %) compared with Mx. The interobserver diagnostic consistency was markedly higher using CESM than using Mx alone (0.6235 vs. 0.3869 using the kappa ratio). The probability of a correct prediction was elevated from 80 % to 90 % after 75 consecutive case readings. CESM provided additional information with consistent improvement of the cancer diagnosis in dense breasts compared to Mx alone. The prediction of the diagnosis could be improved by the interpretation of a significant number of cases in the presence of 6 % benign contrast enhancement in this study. • DE-CESM improves the cancer diagnosis in dense breasts compared with mammography. • DE-CESM shows greater consistency than mammography alone by interobserver blind reading. • Diagnostic improvement of DE-CESM is independent of the mammographic reading experience.

  5. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J. [Department of Radiology, ' ' Aretaieion' ' Hospital,University of Athens Medical School, Athens (Greece); Voumvourakis, C.; Sfagos, C. [Department of Neurology, ' ' Eginiteion' ' Hospital, University of Athens Medical School, Athens (Greece)

    2004-03-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  6. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    International Nuclear Information System (INIS)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J.; Voumvourakis, C.; Sfagos, C.

    2004-01-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  7. Theory and applications of the dual energy technique

    International Nuclear Information System (INIS)

    Chuang, K.S.K.

    1986-01-01

    Three important principles in the dual energy technique applied to radiography are studied in this dissertation: the decomposition method, x-ray scatter consideration, and the selection of an optimal energy pair. First, two new methods namely, iso-transmission lines and sub-region direct approximation methods, are proposed for dual energy decomposition calculation. These two methods are compared with two other conventional techniques, i.e. nonlinear equations and direct approximation. The accuracy, efficiency, and smoothness are used as indices for comparison. The authors conclude that the two new proposed methods, iso-transmission lines and sub-region, are superior than the nonlinear equations and direct approximation methods. In this dissertation, a method to perform scatter correction based on the knowledge of scatter primary ratio is presented. First, the relation between scatter primary ratio and attenuation coefficient is determined by a Monte Carlo simulation. The selection of an optimal energy pair for a dual energy system is described in this dissertation. The selection is based on the calculation of an optimum factor which takes into consideration of the noise in the high and low energy images, the radiation dose to the patient, as well as the error produced during the dual energy decomposition process. The calculation of this optimum factor is obtained using monoenergetic radiation sources on various sizes of water phantom. In addition to these three aspects, this dissertation also addresses some clinical applications of the dual energy techniques and shows some of the results

  8. Evaluation of carotid vessel wall enhancement with image subtraction after gadobenate dimeglumine-enhanced MR angiography

    International Nuclear Information System (INIS)

    Sardanelli, Francesco; Di Leo, Giovanni; Aliprandi, Alberto; Flor, Nicola; Papini, Giacomo D.E.; Roccatagliata, Luca; Cotticelli, Biagio; Nano, Giovanni; Cornalba, Gianpaolo

    2009-01-01

    Objectives: This study was aimed at testing the value of image subtraction for evaluating carotid vessel wall enhancement in contrast-enhanced MR angiography (MRA). Materials and methods: IRB approval was obtained. The scans of 81 consecutive patients who underwent carotid MRA with 0.1 mmol/kg of gadobenate dimeglumine were reviewed. Axial carotid 3D T1-weighted fast low-angle shot sequence before and 3 min after contrast injection were acquired and subtracted (enhanced minus unenhanced). Vessel wall enhancement was assigned a four-point score using native or subtracted images from 0 (no enhancement) to 3 (strong enhancement). Stenosis degree was graded according to NASCET. Results: With native images, vessel wall enhancement was detected in 20/81 patients (25%) and in 20/161 carotids (12%), and scored 2.0 ± 0.6 (mean ± standard deviation); with subtracted images, in 21/81 (26%) and 22/161 (14%), and scored 2.5 ± 0.6, respectively (P < 0.001, Sign test). The overall stenosis degree distribution was: mild, 41/161 (25%); moderate, 77/161 (48%); severe, 43/161 (27%). Carotids with moderate stenosis showed vessel wall enhancement with a frequency (17/77, 22%) significantly higher than that observed in carotids with mild stenosis (1/41, 2%) (P = 0.005, Fisher exact test) and higher, even though with borderline significance (P = 0.078, Fisher exact test), than that observed in carotids with severe stenosis (4/43, 9%). Conclusion: Roughly a quarter of patients undergoing carotid MRA showed vessel wall enhancement. Image subtraction improved vessel wall enhancement conspicuity. Vessel wall enhancement seems to be an event relatively independent from the degree of stenosis. Further studies are warranted to define the relation between vessel wall enhancement and histopathology, inflammatory status, and instability.

  9. Quantitative image of bone mineral content

    International Nuclear Information System (INIS)

    Katoh, Tsuguhisa

    1990-01-01

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiographing system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within ±4% and that the propagation of the film noise was within ±11 mg/cm 2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of ±10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease. (author)

  10. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    International Nuclear Information System (INIS)

    Fíla, T.; Koudelka, P.; Zlámal, P.; Jiroušek, O.; Kumpová, I.; Vavřík, D.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi 7 Mg 0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation

  11. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  12. Postmortem validation of breast density using dual-energy mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer

  13. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  14. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  15. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons

    International Nuclear Information System (INIS)

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. -- Highlights: ► Scanning electron (SE) images contain many kind of information on material surfaces. ► We investigate energy-filtered SE images for practical materials. ► The brightness of the images is divided into two parts by the bias voltage. ► Topographic and material contrasts are extracted by subtracting the filtered images.

  16. [Myocardial perfusion imaging by digital subtraction angiography].

    Science.gov (United States)

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    NARCIS (Netherlands)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    OBJECTIVE: To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. METHODS: Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic

  18. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Usefulness of computerized method for lung nodule detection on digital chest radiographs using similar subtraction images from different patients

    International Nuclear Information System (INIS)

    Aoki, Takatoshi; Oda, Nobuhiro; Yamashita, Yoshiko; Yamamoto, Keiji; Korogi, Yukunori

    2012-01-01

    Purpose: The purpose of this study is to evaluate the usefulness of a novel computerized method to select automatically the similar chest radiograph for image subtraction in the patients who have no previous chest radiographs and to assist the radiologists’ interpretation by presenting the “similar subtraction image” from different patients. Materials and methods: Institutional review board approval was obtained, and the requirement for informed patient consent was waived. A large database of approximately 15,000 normal chest radiographs was used for searching similar images of different patients. One hundred images of candidates were selected according to two clinical parameters and similarity of the lung field in the target image. We used the correlation value of chest region in the 100 images for searching the most similar image. The similar subtraction images were obtained by subtracting the similar image selected from the target image. Thirty cases with lung nodules and 30 cases without lung nodules were used for an observer performance test. Four attending radiologists and four radiology residents participated in this observer performance test. Results: The AUC for all radiologists increased significantly from 0.925 to 0.974 with the CAD (P = .004). When the computer output images were available, the average AUC for the residents was more improved (0.960 vs. 0.890) than for the attending radiologists (0.987 vs. 0.960). Conclusion: The novel computerized method for lung nodule detection using similar subtraction images from different patients would be useful to detect lung nodules on digital chest radiographs, especially for less experienced readers.

  20. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    International Nuclear Information System (INIS)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni; Suntharalingam, Mohan; Yu, Cedric

    2009-01-01

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information from a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.

  1. A Feature Subtraction Method for Image Based Kinship Verification under Uncontrolled Environments

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    The most fundamental problem of local feature based kinship verification methods is that a local feature can capture the variations of environmental conditions and the differences between two persons having a kin relation, which can significantly decrease the performance. To address this problem...... the feature distance between face image pairs with kinship and maximize the distance between non-kinship pairs. Based on the subtracted feature, the verification is realized through a simple Gaussian based distance comparison method. Experiments on two public databases show that the feature subtraction method...

  2. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Polychromaticity correction

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, Ferrara I-44122 (Italy)

    2015-11-15

    Purpose: Contrast-enhanced digital mammography is an image subtraction technique that is able to improve the detectability of lesions in dense breasts. One of the main sources of error, when the technique is performed by means of commercial mammography devices, is represented by the intrinsic polychromaticity of the x-ray beams. The aim of the work is to propose an iterative procedure, which only assumes the knowledge of a small set of universal quantities, to take into account the polychromaticity and correct the subtraction results accordingly. Methods: In order to verify the procedure, it has been applied to an analytical simulation of a target containing a contrast medium and to actual radiographs of a breast phantom containing cavities filled with a solution of the same medium. Results: The reconstructed densities of contrast medium were compared, showing very good agreement between the theoretical predictions and the experimental results already after the first iteration. Furthermore, the convergence of the iterative procedure was studied, showing that only a small number of iterations is necessary to reach limiting values. Conclusions: The proposed procedure represents an efficient solution to the polychromaticity issue, qualifying therefore as a viable alternative to inverse-map functions.

  3. Left-right subtraction of brain CT

    International Nuclear Information System (INIS)

    Ishiguchi, Tsuneo; Sakuma, Sadayuki

    1986-01-01

    A new image-processing method to obtain a left-right subtraction image of CT was designed for the automated detection of abnormalities in brain CT. An original CT image was divided in two by a centerline. Then the right half of the image was subtracted from the left half by calculating the absorption value of the pixels on the symmetrical positions against the centerline. The mean and the standard deviation of the absorption value of the pixels in the subtraction image were used as parameters for analysis, and the detectability of abnormal CT findings was evaluated in 100 cases - 50 cases each with normal and abnormal CT. The presence of abnormalities could be diagnosed with a sensitivity of 86 %, a specificity of 90 %, and an overall accuracy of 88 % when the borderline of these parameters between normal and abnormal CT was set at the mean + 2SD in the normal group. As a further analysis, the CT image was subdivided into several areas from a functional or anatomical viewpoint, such as cerebral vascular territories, and the left-right subtraction image of each area was obtained. The possibilities of diagnosing the location of an abnormality and of detecting smaller lesions with this method were shown. Left-right subtraction was considered to be a useful method for the detection of asymmetric abnormalities in the automated diagnosis of brain CT. (author)

  4. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  5. In vitro differentiation of renal stone composition using dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Zhou Changsheng; Zhang Longjiang; Xu Feng; Qi Li; Zhao Yan'e; Zheng Ling; Huang Wei; Liu Youhuang; Lu Guangming

    2012-01-01

    Objective: To evaluate the ability of dual-source. dual-energy CT in differentiating uric acid stones from non-uric acid stones with infrared spectroscopy as reference standard. Materials and Methods: Urinary calculus from 308 patients were scanned in first generation dual-source CT with dual-energy mode between July 2011 and June 2012. Renal Stone application was used to analyze their composition. The uric acid stones color were coded red and non-uric acid stones were blue. CT values were measured in 60 selective urinary calculus including 30 uric acid stones and 30 non-uric acid stones. The accuracy of dual energy CT to differentiate uric acid and no-uric acid stones was calculated. Results: Of 308 patients, 60 patients had uric acid stones and 248 non-uric acid stones. No difference was found for uric acid stone at 80 kV and 140 kV (375.8±69.2 HU vs. 374.1±69.4 HU; t=-0.217, P=0.830), while CT values of non-uric acid stones were higher at 80 kV than those at 140 kV (1455.1±312.4 HU vs. 1039.6±194.4 HU; t=-12.16. P<0.001). CT values of non-uric acid stones at 80 kV, 140 kV, and average weighted images (1455.1±312.4 HU, 1 039.6±194.4 HU, and 882.0±176.4 HU, respectively) were higher than those of uric acid stones (375.8±69.2 HU, 374.1±69.4 HU, and 366.3±80.1 HU, respectively; P<0.001). With infrared spectrum findings as reference standard, the accuracy of dual energy CT in differentiating uric acid stones from non-uric acid stones was 100%. Conclusions: Dual-source, dual-energy CT can accurately differentiate uric acid stones from non-uric acid stones, and plays an important role in treatment planning of renal stones. (authors)

  6. Differentiation of uric acid versus non-uric acid kidney stones in the presence of iodine using dual-energy CT

    Science.gov (United States)

    Wang, J.; Qu, M.; Leng, S.; McCollough, C. H.

    2010-04-01

    In this study, the feasibility of differentiating uric acid from non-uric acid kidney stones in the presence of iodinated contrast material was evaluated using dual-energy CT (DECT). Iodine subtraction was accomplished with a commercial three material decomposition algorithm to create a virtual non-contrast (VNC) image set. VNC images were then used to segment stone regions from tissue background. The DE ratio of each stone was calculated using the CT images acquired at two different energies with DECT using the stone map generated from the VNC images. The performance of DE ratio-based stone differentiation was evaluated at five different iodine concentrations (21, 42, 63, 84 and 105 mg/ml). The DE ratio of stones in iodine solution was found larger than those obtained in non-iodine cases. This is mainly caused by the partial volume effect around the boundary between the stone and iodine solution. The overestimation of the DE ratio leads to substantial overlap between different stone types. To address the partial volume effect, an expectation-maximization (EM) approach was implemented to estimate the contribution of iodine and stone within each image pixel in their mixture area. The DE ratio of each stone was corrected to maximally remove the influence of iodine solutions. The separation of uric-acid and non-uric-acid stone was improved in the presence of iodine solution.

  7. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  8. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  9. Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)

    International Nuclear Information System (INIS)

    Ito, Masako; Hayashi, Kuniaki; Yamada, Naoyuki.

    1989-01-01

    The purpose of this study was twofold: to investigate the precision and accuracy of dual energy quantitative computed tomography (QCT) and to investigate age-related changes of bone marrow density (BMD) in patients without metabolic disorders. Rapid kilovolt peak switching system, with which SOMATOM DR-H CT is equipped, allows dual energy scanning. KV-separated images and material-separated images were calculated from dual energy scan data. KV-separated data was regarded as single energy QCT. In phantom studies, dipotassium hydrogen phosphate solution, water, and ethanol were used to simulate bone mineral, lean soft tissue, and fat, respectively. Values of BMD obtained by dual energy scanning method had an error of 5.5% per 10% increase of fat, as compared with 12% for BMD values obtained by single energy scanning method. However, single energy scanning method had a higher precision than dual energy scanning method in determining BMD. The selection of CT section is considered most important in the clinical determination of BMD. In a study of age-related changes of BMD in the vertebral trabecular and cortical bones in 161 patients, BMD was found to have two peaks for women in their twenties and thirties, and one peak for men in their twenties. Bone marrow density rapidly declined among women aged 50 years or more. These results suggest that the content of fat in the trabecular bone may increase progressively after the age of 40, regardless of sex. (N.K.)

  10. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual-energy

  11. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  12. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  13. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  14. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  15. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  16. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  17. Feasibility of dual radionuclide brain imaging with I-123 and Tc-99m

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Loncaric, S.; Franceschi, D.

    1994-01-01

    A study was conducted to evaluate the feasibility of simultaneous dual radionuclide brain imaging with 123 I and 99m Tc using photopeak image subtraction techniques or offset photopeak image acquisition. The contribution of the photons from one radionuclide to a second radionuclide's photopeak energy window (crosstalk) was evaluated for SPECT and planar imaging of a brain phantom containing 123 I and 99m Tc for a range of activity levels and distribution properties approximating those in rCBF images of the adult human brain. Crosstalk was evaluated for 10% symmetrical energy windows centered on the 123 I and 99m Tc photopeaks and for 10% energy windows asymmetrically placed to the left and right of the center of the respective photopeaks. It was observed that the centered photopeak windows, 99m Tc crosstalk in the 123 I window is 8.9% of the 99m Tc seen in the 99m Tc window and ranges from 37.5% to 75.0% of the 123 I in the 123 I window. 123 I crosstalk is 37.8% of the 123 I seen in the 123 I window and ranges from 4.4% to 8.9% of the 99m Tc seen in the 99m Tc window. The spatial distribution of a radionuclide's crosstalk photons differs from that observed in the radionuclide's photopeak window. A 99m Tc photopeak window offset to the left does not decrease 123 I crosstalk, and the percentage of 99m Tc scattered photons is significantly increased in the window. Offsetting the 123 I window to the right decreases 99m Tc crosstalk to 9.0% to 17.9% of the 123 I counts, but decreases 123 I sensitivity by 39.9%. Offsetting both photopeak windows to the right decreases the 99m Tc scattered photons in the 99m Tc window, but increases 123 I crosstalk to 17.0% to 33.8% of the 99m Tc counts

  18. Subtracted versus non-subtracted digital imaging in peripheral angiography

    International Nuclear Information System (INIS)

    Fink, U.; Heywang, S.; Mayr, B.; Berger, H.

    1989-01-01

    Digital subtraction angiography (DSA) plays an important role in the management of vascular diseases of the lower extremities. A disadvantage is the lack of an automatically moving table top. We used a 1,024x1,024 matrix with a large-screen intensifier system and an automated 'stepping' facility. In 161 examinations of the arteries of the lower extremity digital peripheral arteriography was performed with and without the subtraction technique. We compared the influence of different iodine concentrations in DA and DSA. Peripheral DA proved to be equal to peripheral DSA in the region of the pelvis, thigh and knee, with no adequate contrasting being obtained merely in the region of the lower leg arteries in about 45%. It is necessary to use contrast medium at a concentration of 300 mg I/ml. The installation of an automated 'stepping' facility reduces the amount of contrast' medium needed and the exposure time. (orig.)

  19. Digital subtraction angiography system evaluation with phantoms

    International Nuclear Information System (INIS)

    Wenstrup, R.S.; Sweeney, K.P.; Scholz, F.J.

    1985-01-01

    Advances in digital subtraction angiography imaging demonstrate the need for critical evaluation of the performance of digital subtraction equipment. The design of a phantom set for noninvasive assessment of the imaging quality of digital subtraction equipment is described; components include a remotely controlled transport system and individual patterns to evaluate the contrast and detail properties of the image intensifier, low-contrast sensitivity and resolution of the system, geometric distortion of image, linearity, mechanical and electronic stability of equipment, and effects of bone and bowel gas on iodine perception. The performance of an add-on digital radiographic system is presented, along with radiation exposure levels at the image intensifier for a range of radiographic techniques

  20. Dual energy CT of the peripheral arteries. A phantom study to assess the effect of automatic plaque removal on stenosis grading

    Energy Technology Data Exchange (ETDEWEB)

    Werncke, T.; Wolf, K.J.; Meyer, B.C. [Charite Universitaetsmedizin Berlin (Germany). Klinik und Hochschulambulanz fuer Radiologie und Nuklearmedizin; Albrecht, T. [Institut fuer Radiologie und Interventionelle Therapie, Vivantes, Neukoelln (Germany)

    2010-08-15

    Purpose: To evaluate the accuracy of dual energy (DE)-based plaque removal in a vessel phantom. Materials and Methods: Acrylic vessel phantoms of different diameters (3, 5, 8 mm), degrees of stenoses (25 - 100 %) and plaque densities (300 - 750 HU) were filled with contrast-enhanced blood (150 - 450 HU). Dual source CT was used for simultaneous image acquisition at 80 and 140 kV. Beside a DE-based plaque-subtracted dataset (DE-PS), a virtual 120 kV non-plaque subtracted dataset (N-PS) was generated. Agreement between the known and measured luminal diameter in both datasets was determined using Lin's concordance correlation coefficient (KLin). Results: A total of 8260 measurements were taken. The correlation of measured diameter in DE-PS images was excellent (KLin = 0.83 - 0.96) for 5 - 8 mm vessel phantoms with high luminal enhancement (300 - 450 HU) and plaque density (500 - 750 HU), moderate (KLin = 0.6 - 0.67) for 5 mm vessels with lower luminal enhancement and plaque density and poor (KLin = 0.10 - 0.64) in the 3 mm vessels. The correlation of N-PS-based stenosis quantification was excellent (KLin = 0.86 - 0.99) for 5 - 8 mm vessel phantoms if the contrast between lumen and plaque was above 100 HU. The correlation decreased in 3 mm vessels (KLin = 0.45 - 0.93), while the lowest correlation was observed for the lowest contrast between plaque and vessel lumen. Conclusion: Automatic DE-based plaque removal is highly effective for heavily calcified plaques and high luminal enhancement in larger diameter vessels {>=} 5 mm. However, accuracy is limited for low density calcified plaque, lower luminal enhancement and smaller caliber vessels mainly due to poor specificity. (orig.)

  1. Motion subtraction of the larynx using digital radiography

    International Nuclear Information System (INIS)

    Kumakawa, Kohzoh; Miyakawa, Kouichi

    1990-01-01

    The development of digital radiography (DR) has made it possible to analyze the contour of the laryngeal soft tissue structures in more detail than the conventional screen-film method. The authors first used the DR system for time subtraction of the larynx during inspiration and phonation. The images are acquired by means of frontal tomography of the larynx using the imaging plate during inspiration and phonation separately, and stored into the memory of the DR system. The thickness of the slices is 5.0 mm. Time subtraction between the mask image during inspiration and the live image during phonation is performed using digital processing on CRT. Superimposing the two images at the upper trachea and the thyroid cartilage of the same depth, makes it possible to measure movement of the vocal cord and false vocal cord quantitatively in three dimensions. The authors named this time subtraction as motion subtraction of the larynx. This motion subtraction image can be obtained by on-line digital processing without complicated development technique, but has so high spatial resolution. This image processing seems to be useful in functional radiographic analysis of laryngeal diseases. (author)

  2. Split-bolus CT-urography using dual-energy CT: Feasibility, image quality and dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuru, E-mail: m2rbimn@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Kawai, Tatsuya; Ito, Masato; Ogawa, Masaki [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Hara, Masaki; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan)

    2012-11-15

    Purpose: To prospectively evaluate the feasibility of dual-energy (DE) split-bolus CT-urography (CTU) and the quality of virtual non-enhanced images (VNEI) and DE combined nephrographic-excretory phase images (CNEPI), and to estimate radiation dose reduction if true non-enhanced images (TNEI) could be omitted. Patients and methods: Between August and September 2011, 30 consecutive patients with confirmed or suspected urothelial cancer or with hematuria underwent DE CT. Single-energy TNEI and DE CNEPI were obtained. VNEI was reconstructed from CNEPI. Image quality of CNEPI and VNEI was evaluated using a 5-point scale. The attenuation of urine in the bladder on TNEI and VNEI was measured. The CT dose index volume (CTDI (vol)) of the two scans was recorded. Results: The mean image quality score of CNEPI and VNEI was 4.7 and 3.3, respectively. The mean differences in urine attenuation between VNEI and TNEI were 14 {+-} 15 [SD] and -16 {+-} 29 in the anterior and posterior parts of the bladder, respectively. The mean CTDI (vol) for TNEI and CNEPI was 11.8 and 10.9 mGy, respectively. Omission of TNEI could reduce the total radiation dose by 52%. Conclusion: DE split-bolus CTU is technically feasible and can reduce radiation exposure; however, an additional TNEI scan is necessary when the VNEI quality is poor or quantitative evaluation of urine attenuation is required.

  3. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    Science.gov (United States)

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Myocardial perfusion imaging by digital subtraction angiography

    International Nuclear Information System (INIS)

    Kadowaki, Hiroyuki; Ishikawa, Kinji; Ogai, Toshihiro; Katori, Ryo

    1986-01-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; 1) at the R wave of the electrocardiogram, 2) 100 msec before the R wave, and 3) 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery. In all patients with anterior myocardial infarction, low perfusion was observed at the infarcted portion compared to the non-infarcted myocardium. In patients with inferior myocardial infarction, this low perfusion area was not observed because right coronary angiography was not subjected to DSA in this study. (J.P.N.)

  5. Crowded Field Photometry and Moving Object Detection with Optimal Image Subtraction

    Science.gov (United States)

    Lee, Austin A. T.; Scheulen, F.; Sauro, C. M.; McMahon, C. T.; Berry, S. J.; Robinson, C. H.; Buie, M. W.; Little, P.

    2010-05-01

    High precision photometry and moving object detection are essential in the study of Pluto and the Kuiper Belt. In particular, the New Horizons mission would benefit from an accurate and fast method of performing image subtraction to locate faint Kuiper Belt Objects (KBO) among large data sets. The optimal image subtraction (OIS) algorithm was optimized for IDL to decrease execution time by a factor of about 140 from a previous implementation (Miller 2008, PASP, 120, 449). In addition, a powerful image transformation and interpolation routine was written to provide OIS with well-aligned input images using astrometric fit data. The first half of this project is complete including the code optimization and the alignment routine. The second half of the project is focused on using these tools to search a 5 x 10 degree search area to find KBOs for possible targets for the New Horizons mission. We will present examples of how these tools work and along with resulting Pluto photometry and KBO target lists. The optimized OIS and transformation routines are available in Marc Buie's IDL library at http://www.boulder.swri.edu/ buie/idl/ as ois.pro and dewarp.pro. This project was conducted for Harvey Mudd College's Clinic Program with financial support from the NASA Planetary Astronomy Program grant number NNX09AB43G.

  6. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model.

    Science.gov (United States)

    Potretzke, Theodora A; Brace, Christopher L; Lubner, Meghan G; Sampson, Lisa A; Willey, Bridgett J; Lee, Fred T

    2015-04-01

    To compare dual-energy computed tomography (CT) with conventional CT for the detection of small-bowel ischemia in an experimental animal model. The study was approved by the animal care and use committee and was performed in accordance with the Guide for Care and Use of Laboratory Animals issued by the National Research Council. Ischemic bowel segments (n = 8) were created in swine (n = 4) by means of surgical occlusion of distal mesenteric arteries and veins. Contrast material-enhanced dual-energy CT and conventional single-energy CT (120 kVp) sequences were performed during the portal venous phase with a single-source fast-switching dual-energy CT scanner. Attenuation values and contrast-to-noise ratios of ischemic and perfused segments on iodine material-density, monospectral dual-energy CT (51 keV, 65 keV, and 70 keV), and conventional 120-kVp CT images were compared. Linear mixed-effects models were used for comparisons. The attenuation difference between ischemic and perfused segments was significantly greater on dual-energy 51-keV CT images than on conventional 120-kVp CT images (mean difference, 91.7 HU vs 47.6 HU; P conventional CT by increasing attenuation differences between ischemic and perfused segments on low-kiloelectron volt and iodine material density images. © RSNA, 2014.

  7. In vivo optical imaging of amblyopia: Digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography.

    Science.gov (United States)

    Guo, Lei; Tao, Jun; Xia, Fan; Yang, Zhi; Ma, Xiaoli; Hua, Rui

    2016-09-01

    Amblyopia is a visual impairment that is attributed to either abnormal binocular interactions or visual deprivation. The retina and choroids have been shown to be involved in the development of amblyopia. The purpose of this study was to investigate the retinal and choroidal microstructural abnormalities of amblyopia using digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography (SSADA) approaches. This prospective study included 44 eyes of 22 patients with unilateral amblyopia. All patients who received indirect ophthalmoscopy, combined depth imaging spectral domain optical coherence tomography (OCT), SSADA-OCT, and macular blue light (BL-) and near-infrared (NIR-) autofluorescences underwent pupil dilation. The subfoveal choroidal thickness (SFCT) was measured. BL- and NIR-autofluorescences were determined for all patients and used to generate subtraction images with ImageJ software. The superficial, deep layers of the retina, and inner choroid layer were required for SSADA-OCT. For the normal eyes, a regularly increasing signal was observed in the central macula based on the subtraction images. In contrast, a decreased signal for the central patch or a reduced peak was detected in 16 of 22 amblyopic eyes (72.7%). The mean SFCT of the amblyopic eyes was greater than that of the fellow normal eyes (399.25 ± 4.944 µm vs. 280.58 ± 6.491 µm, respectively, P autofluorescence. The mechanistic relationship of a thicker choroid and choroidal capillary atrophy with amblyopia remains to be described. The digital subtraction image confirmed the changes in the microstructure of the amblyopic retina as a supplementary approach to detect the progression of amblyopia. Lasers Surg. Med. 48:660-667, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Temporal subtraction in chest radiography: Automated assessment of registration accuracy

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Croteau, Charles L.; MacMahon, Heber

    2006-01-01

    Radiologists routinely compare multiple chest radiographs acquired from the same patient over time to more completely understand changes in anatomy and pathology. While such comparisons are achieved conventionally through a side-by-side display of images, image registration techniques have been developed to combine information from two separate radiographic images through construction of a 'temporal subtraction image'. Although temporal subtraction images provide a powerful mechanism for the enhanced visualization of subtle change, errors in the clinical evaluation of these images may arise from misregistration artifacts that can mimic or obscure pathologic change. We have developed a computerized method for the automated assessment of registration accuracy as demonstrated in temporal subtraction images created from radiographic chest image pairs. The registration accuracy of 150 temporal subtraction images constructed from the computed radiography images of 72 patients was rated manually using a five-point scale ranging from '5-excellent' to '1-poor'; ratings of 3, 4, or 5 reflected clinically acceptable subtraction images, and ratings of 1 or 2 reflected clinically unacceptable images. Gray-level histogram-based features and texture measures are computed at multiple spatial scales within a 'lung mask' region that encompasses both lungs in the temporal subtraction images. A subset of these features is merged through a linear discriminant classifier. With a leave-one-out-by-patient training/testing paradigm, the automated method attained an A z value of 0.92 in distinguishing between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. A second linear discriminant classifier yielded an A z value of 0.82 based on a feature subset selected from an independent database of digitized film images. These methods are expected to advance the clinical utility of temporal subtraction images for chest

  9. Dual-energy contrast-enhanced spectral mammography (CESM).

    Science.gov (United States)

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  10. Development of Shimadzu digital subtraction system

    International Nuclear Information System (INIS)

    Nishioka, Hiroyuki; Shibata, Koichi; Shimizu, Yasumitsu; Shibata, Kenji; Wani, Hidenobu

    1985-01-01

    Shimadzu has recently developed a digital subtraction system. It can perform intra-arterial digital subtraction angiography (DSA) using low concentration of contrast medium, or can visualize arteries with intravenuous injection. It can extremely reduce patient's pain in angiography. Image quality of DSA has been much improved by the development of high quality image amplifiers, improvement of signal-to-noise ratio of the x-ray television unit and the development of digital disk recorders. The peak-hold subtraction method that is now under clinical study presents images of blood vessels as the trace of the flow of contrast medium. The maximum-hold memory where the maximum value of the brightness in some period is stored for every picture element is subtracted from the minimum-hold memory where the minimum value is stored, and thus images of blood vessels can be obtained. Hardware of this method is rather simple and it is expected that the amount of contrast medium may be reduced or x-ray dose of the patient may be decreased. (author)

  11. Evaluation of sacroiliitis: contrast-enhanced MRI with subtraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Algin, Oktay; Gokalp, Gokhan; Baran, Bulent; Ocakoglu, Gokhan; Yazici, Zeynep [Uludag University, Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey)

    2009-10-15

    The purpose of the study was to investigate the diagnostic value of contrast-enhanced MRI using the subtraction technique in the detection of active sacroiliitis. Magnetic resonance imaging was performed in 8 asymptomatic volunteers and 50 patients with clinically suspected active sacroiliitis. On precontrast MR images, T1-weighted spin-echo images with and without fat saturation (T1WFS and T1W), STIR and 3D-FLASH images with fat saturation were obtained in the semicoronal plane using a 1.5 Tesla imager. Postcontrast MRI was performed using the same T1WFS sequence as before contrast injection for all volunteers and patients. Postcontrast images were subtracted from fat-suppressed precontrast images. Enhancement within the joint space and bone marrow was considered to demonstrate active sacroiliitis. In 50 patients (100 sacroiliac joints [SIJs]), 40 (76 SIJs) were considered to have active sacroiliitis based on MR images. Bone marrow edema was present in 33 patients (62 SIJs) on STIR images. Routine MRI allowed identification of contrast enhancement in SIJs on postcontrast T1WFS images in 31 patients (49 SIJs). Contrast enhancement was observed in 40 patients (76 SIJs) who were examined by MRI using the subtraction technique. Contrast enhancement was significantly more conspicuous on subtraction images than on non-subtracted postcontrast T1WFS images (Mann-Whitney U test, p<0.001). Contrast-enhanced MRI with subtraction technique may be useful for early detection of active sacroiliitis. (orig.)

  12. Dual-energy CT myelography on detection of spontaneous spinal cerebrospinal fluid leaks: initial study

    International Nuclear Information System (INIS)

    Zhang Qiaowei; Wang Dan; Zhang Jinhua; Wang Jin; Zhang Shizheng

    2011-01-01

    Objective: To assess the value of dual-energy computed tomography myelography (CTM) on detecting leaks of cerebrospinal fluid (CSF) in patients with spontaneous intracranial hypotension (SIH). Methods: Six patients with SIH underwent spinal CTM on a 2nd generation dual-source CT with tube voltage set at 100 and 140 kVp (with tin filter). The virtual non-contrast (VNC) and iodine map images were calculated from dual-energy images. The average weighted (AW) CTM images were mixed from two kVp images with mix factor of 0.5. Two radiologists evaluated CSF leak using two sets of images respectively: VNC + iodine map images and AW-CTM images. The results from two reading methods were compared. The level of CSF leaks along the nerve roots, C1-2 retrospinal CSF collections, epidural CSF collections and spinal epidural venous plexus were marked. The consensus about leak sites and CSF collections was made by two radiologists in the third session. Kappa statistics were used to measure the agreement between the two methods. Results: Forty-one leaks were detected using VNC + iodine map images. Forty-three leaks were detected on AW images. The agreement between two methods was excellent (Kappa = 0.997, P<0.01). There were no differences in the detection of C1-2 retrospinal CSF collections (n=2), epidural CSF collections (n=3) or spinal epidural venous plexus (n=1). VNC and iodine map images demonstrated superior visual effects than AW images. Conclusion: Dual-energy CTM can be used to diagnose spontaneous spinal cerebrospinal fluid leaks in SIH patient, (authors)

  13. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    International Nuclear Information System (INIS)

    Elder, E; Schreibmann, E; Dhabaan, A

    2016-01-01

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  14. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    Energy Technology Data Exchange (ETDEWEB)

    Elder, E; Schreibmann, E; Dhabaan, A [Department of Radiation Oncology and Winship Cancer Institute of Emory University Atlanta, GA (United States)

    2016-06-15

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  15. Use of images of ictal-inter-ictal SPECT subtraction superimposed on MRI in pharmaco-resistant partial epilepsies in infants

    International Nuclear Information System (INIS)

    Vera, P.; Kaminska, A.; Cieuta, C.; Mangin, F.; Frouin, V.; Dulac, O.; Chiron, C.

    1997-01-01

    To study the significance of ictal SPECT in the pre-surgical examination of infant epilepsies we have explored 16 infants aged 3 months to 18 years presenting partial pharmaco-resistant epilepsy. All of them have had an ictal SPECT under EEG - video recording than, two days after, an inter-ictal SPECT coupled to a 3D cerebral MRI. The perfusion tracer, the 99m Tc - ECD, was injected in average at 15 seconds after the outset of crisis. The image processing implied a matching of the two SPECT examinations by a 3D rigid superposition method, a normalization and than a inter-ictal-ictal image subtraction. Finally, the subtraction was matched and superimposed on the MRI. The SPECT subtraction image showed one or several centres of ictal hyper-output in 15 patients, while the separated visual ictal and inter-ictal images were contributory in 8 cases only. The 16. infant presented very short crises (<10 sec). In the cases when the outset point of crises could be established clinically (12 cases) and/or on EEG (8 cases) a hyper-output of concordant localization was recorded. In 5 infants who have had an electrocorticography, a concordance was obtained in all the cases except in an infant having very short crises the subtraction image did not show hyper-output. These preliminary results show that the ictal - inter-ictal SPECT subtraction images, adjusted on MRI, appears to be reliable in detecting the outset point of crises in infants and at the same time useful in guiding the positioning of intra-cranial electrodes prior to surgery intervention

  16. 双源CT双能量虚拟平扫在结直肠病变的应用%Preliminary Application of Dual-energy Dual-source CT Virtual Non-contrast Imaging in Colorectal Lesions

    Institute of Scientific and Technical Information of China (English)

    王勇; 雷静; 韩丹; 赵卫; 杨石平; 熊倩

    2014-01-01

    Purpose To assess the feasibility of applying dual-energy dual-source CT virtual non-contrast (VNC) imaging in the diagnosis of colorectal diseases. Materials and Methods Eighty-ifve patients with clinically suspected colorectal lesions underwent abdominal CT scan as well as arterial and venous phase dual-energy enhanced scan, VCN images of arterial and venous phase were obtained using the dual-energy software, the differences of image quality, radiation dose and diagnostic coincidence rate between the true non-contrast scan and VNC images were compared. Results The radiation dose of two-phase dual-energy scan was 34.8%lower when compared with the conventional three-phase scans. The CT values of the intestinal lesions, metastasis lymph nodes and intestinal fat in VNC were lower than the true unenhanced scan (P0.05), and neither was the diagnostic coincidence rate for intestinal diseases (P>0.05). The noise level of images obtained from VNC was lower than that of the real non-contrast scan (P0.05). Conclusion For colorectal lesions, the virtual non-contrast images from the dual-energy dual-source CT scan can be used to reduce the radiation dose without effecting image quality and diagnosis accuracy.%目的:探讨双源CT双能量虚拟平扫(VNC)技术在结直肠病变诊断中应用的可行性。资料与方法对85例临床疑诊结直肠病变患者行腹部CT平扫及动、静脉期双能量增强扫描,经双能软件处理得到动、静脉期VNC图,比较真实平扫与VNC在图像质量、辐射剂量及诊断符合率方面的差异。结果双能双期扫描辐射剂量较常规三期扫描辐射剂量降低约34.8%。VNC CT值在肠道病变、转移淋巴结、肠周脂肪中低于真实平扫(P0.05)。真实平扫及动、静脉期VNC观察到的肠壁厚度、淋巴结大小、周围侵犯及肝转移差异无统计学意义(P>0.05),对肠道疾病的诊断符合率差异无统计学意义(P>0.05

  17. A new method for crosstalk correction in simultaneous dual-isotope myocardial imaging with Tl-201 and I-123

    International Nuclear Information System (INIS)

    Tsuji, Akinori; Kojima, Akihiro; Oyama, Yoichi; Tomiguchi, Seiji; Kira, Tomohiro; Takagi, Yoshikazu; Shimomura, Osamu; Takahashi, Mutsumasa; Matsumoto, Masanori

    1999-01-01

    We have developed a new method of crosstalk correction in simultaneous dual-isotope imaging with Tl-201 and I-123 by using crosstalk ratios and a blurring filter. Single isotope myocardial studies (10 for Tl-201 and 7 for I-123) were performed with a dual energy window acquisition mode and two low energy general-purpose collimators. Then two planar images acquired with dual energy windows for a Tl-201 line source and an I-123 line source were obtained to measure line spread functions (LSFs) and crosstalk ratios for each image. The line source experiments showed that the LSFs for the Tl-201 imaging window from the single Tl-201 source were very similar to those for the I-123 imaging window from the single Tl-201 source, but the LSFs for the Tl-201 imaging window from the single I-123 source had broad shapes which differed from those for the I-123 imaging window from the single I-123. To obtain accurate I-123 crosstalk images in the Tl-201 imaging window from the I-123 images in the I-123 imaging window, we designed a low-pass blurring filter. In 7 clinical I-123 MIBG studies, I-123 window images processed with this filter became very similar to the Tl-201 window image from the single I-123 source. The method proposed in this study can accurately correct the crosstalk in dual isotope studies with Tl-201 and I-123 and is easily applicable to conventional gamma camera systems with any dual energy window acquisition mode. (author)

  18. Single-source dual-energy CT angiography with reduced iodine load in patients referred for aortoiliofemoral evaluation before transcatheter aortic valve implantation: impact on image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Dubourg, Benjamin; Caudron, Jerome; Lefebvre, Valentin; Dacher, Jean-Nicolas [Rouen University Hospital, Department of Radiology, Rouen (France); UFR Medecine Pharmacie, INSERM U1096, Rouen (France); Lestrat, Jean-Pierre [Rouen University Hospital, Department of Radiology, Rouen (France); Bubenheim, Michael [Rouen University Hospital, Department of Biostatistics, Rouen (France); Godin, Matthieu; Tron, Christophe [Rouen University Hospital, Department of Cardiology, Rouen (France); Eltchaninoff, Helene; Bauer, Fabrice [Rouen University Hospital, Department of Cardiology, Rouen (France); UFR Medecine Pharmacie, INSERM U1096, Rouen (France)

    2014-11-15

    To compare image quality and radiation dose of pre-transcatheter aortic valve implantation (TAVI) aortoiliofemoral CT angiography (AICTA) provided by standard vs. dual-energy mode with reduced iodine load protocols. One hundred and sixty-one patients underwent a two-step CTA protocol before TAVI including cardiac CTA with injection of 65 mL of iodinated contrast agent (ICA), immediately followed by AICTA. From this second acquisition, the following three different patient groups were identified: Group 1: 52 patients with standard AICTA (60 mL ICA, 100 kVp, mA automodulation); Group 2: 48 patients with dual-energy AICTA with 50 % iodine load reduction (30 mL ICA, fast kVp switching, 600 mA); Group 3: 61 patients with an identical protocol to Group 2, but exposed to 375 mA. The qualitative/subjective image quality (13-point score) and quantitative/objective image quality (contrast attenuation and image noise) were evaluated. The radiation dose was recorded. There was no significant difference in non-diagnostic images between the three protocols. Contrast attenuation, signal-to-noise ratio and contrast-to-noise ratio were significantly higher, whereas noise was significantly lower in the standard protocol (all P < 0.05). The radiation dose was lower in the dual-energy protocol at 375 mA (P < 0.05). Dual-energy AICTA before TAVI results in a reduction of iodine load while maintaining sufficient diagnostic information despite increased noise. (orig.)

  19. Decreased stage migration rate of early gastric cancer with a new reconstruction algorithm using dual-energy CT images: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cen [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); First Affiliated Hospital of Soochow University, Department of Radiology, Suzhou (China); Zhang, Huan; Du, Lianjun; Pan, Zilai; Yan, Fuhua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Yan, Jing [Siemens Medical System, Shanghai (China); Wang, Baisong [Shanghai Jiao Tong University School of Medicine, Department of Biological Statistics, Shanghai (China)

    2017-02-15

    To evaluate the potential value of advanced monoenergetic images (AMEIs) on early gastric cancer (EGC) using dual-energy CT (DECT). 31 EGC patients (19 men, 12 women; age range, 38-81 years; mean age, 57.19 years) were retrospectively enrolled in this study. Conventionally reconstructed polyenergetic images (PEIs) at 120 kV and virtual monoenergetic images (MEIs) and AMEIs at six different kiloelectron volt (keV) levels (from 40 to 90 keV) were evaluated from the 100 and Sn 140 kV dual energy image data, respectively. The visibility and stage migration of EGC for all three image data sets were evaluated and statistically analyzed. The objective and subjective image qualities were also evaluated. AMEIs at 40 keV showed the best visibility (80.7 %) and the lowest stage migration (35.5 %) for EGC. The stage migration for AMEIs at 40 keV was significantly lower than that for PEIs (p = 0.026). AMEIs at 40 keV had statistically higher CNR in the arterial and portal phases, gastric-specific diagnostic performance and visual sharpness compared with other AMEIs, MEIs and PEIs (all p < 0.05). AMEIs at 40 keV with MPR increase the CNR of EGC and thus potentially lower the stage migration of EGC. (orig.)

  20. A study on the geometric correction for the digital subtraction radiograph

    International Nuclear Information System (INIS)

    Lim, Suk Young; Koh, Kwang Joon

    2001-01-01

    To develop a new subtraction program for registering digital images based on the correspondence of anatomic structures. The digital periapical images were obtained by Digora system with Rinn XCP equipment after translation of 1-16 mm, and rotation of 2-20 at the premolar and molar areas of the human dried mandible. The new subtraction program, NIH Image program and Emago/Advanced program were compared by the peak-signal -to noise ratio (PSNR). The new subtraction program was superior to NIH Images program and Emago/Advanced program up to 16 mm translation and horizontal angulation up to 4. The new subtraction program can be used for subtracting digital periapical images

  1. Experimental determination of the weighting factor for the energy window subtraction-based downscatter correction for I-123 in brain SPECT studies

    DEFF Research Database (Denmark)

    de Nijs, Robin; Holm, Søren; Thomsen, Gerda

    2010-01-01

    Correction for downscatter in I-123 SPECT can be performed by the subtraction of a secondary energy window from the main window, as in the triple-energy window method. This is potentially noise sensitive. For studies with limited amount of counts (e.g. dynamic studies), a broad subtraction window...... were investigated in this study. Energy windows with a width of 32 keV were centered at 159 keV and 200 keV. The weighting factor was measured both with an I-123 point source and in a dopamine transporter brain SPECT study in 10 human subjects (5 healthy subjects and 5 patients) by minimizing...... the background outside the head. Weighting factors ranged from 1.11 to 1.13 for the point source and from 1.16 to 1.18 for human subjects. Point source measurements revealed no position dependence. After correction, the measured specific binding ratio (image contrast) increased significantly for healthy subjects...

  2. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  3. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility.

    Science.gov (United States)

    Han, Seung Chol; Chung, Yong Eun; Lee, Young Han; Park, Kwan Kyu; Kim, Myeong Jin; Kim, Ki Whang

    2014-10-01

    The objective of our study was to determine the feasibility of using Metal Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with metal hip prostheses. This retrospective study included 33 patients (male-female ratio, 19:14; mean age, 63.7 years) who received total hip replacements and 20 patients who did not have metal prostheses as the control group. All of the patients underwent dual-energy CT. The quality of the images reconstructed using the MAR algorithm and of those reconstructed using the standard reconstruction was evaluated in terms of the visibility of the bladder wall, pelvic sidewall, rectal shelf, and bone-prosthesis interface and the overall diagnostic image quality with a 4-point scale. The mean and SD attenuation values in Hounsfield units were measured in the bladder, pelvic sidewall, and rectal shelf. For validation of the MAR interpolation algorithm, pelvis phantoms with small bladder "lesions" and metal hip prostheses were made, and images of the phantoms both with and without MAR reconstruction were evaluated. Image quality was significantly better with MAR reconstruction than without at all sites except the rectal shelf, where the image quality either had not changed or had worsened after MAR reconstruction. The mean attenuation value was changed after MAR reconstruction to its original expected value at the pelvic sidewall (p software with dual-energy CT decreases metal artifacts and increases diagnostic confidence in the assessment of the pelvic cavity but also introduces new artifacts that can obscure pelvic structures.

  4. Ability of subtraction and dynamic MR imaging to detect breast tumors. Comparison with ultrasonography and mammography

    International Nuclear Information System (INIS)

    Terao, Eri; Takeuchi, Hiroaki; Iwamura, Akira; Murakami, Yoshitaka; Harada, Junta; Tada, Shinpei

    1994-01-01

    We evaluated the ability of subtraction and dynamic MR imaging to accurately detect breast tumors. Sixty-five breast carcinomas and 24 fibroadenomas were examined by an SE pulse sequence using a 0.2 Tesla unit. Subtraction MR images were obtained every minute during dynamic study with Gd-DTPA. Almost all breast tumors were seen as very bright masses, and the margin of the mass was clearly demonstrated on subtraction MR images. Breast carcinomas and fibroadenomas showed characteristic time-intensity curves on dynamic study. Time-intensity curves of the early peak type and plateau type were seen in 97% of breast carcinomas, while the gradually increasing type was seen in 92% of fibroadenomas. The detectability of breast carcinoma was 98% by MRI, 98% by ultrasonography, and 87% by mammography. That of fibroadenoma was 95% by MRI, 91% by ultrasonography and 60% by mammography. Sensitivity and specificity for breast carcinoma were 98% and 92% for MRI and 97% and 71% for ultrasonography. For fibroadenoma, they were 96% and 98% for MRI and 89% and 92% for ultrasonography. (author)

  5. Ability of subtraction and dynamic MR imaging to detect breast tumors. Comparison with ultrasonography and mammography

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Eri; Takeuchi, Hiroaki; Iwamura, Akira; Murakami, Yoshitaka; Harada, Junta; Tada, Shinpei (Jikei Univ., Tokyo (Japan). School of Medicine)

    1994-09-01

    We evaluated the ability of subtraction and dynamic MR imaging to accurately detect breast tumors. Sixty-five breast carcinomas and 24 fibroadenomas were examined by an SE pulse sequence using a 0.2 Tesla unit. Subtraction MR images were obtained every minute during dynamic study with Gd-DTPA. Almost all breast tumors were seen as very bright masses, and the margin of the mass was clearly demonstrated on subtraction MR images. Breast carcinomas and fibroadenomas showed characteristic time-intensity curves on dynamic study. Time-intensity curves of the early peak type and plateau type were seen in 97% of breast carcinomas, while the gradually increasing type was seen in 92% of fibroadenomas. The detectability of breast carcinoma was 98% by MRI, 98% by ultrasonography, and 87% by mammography. That of fibroadenoma was 95% by MRI, 91% by ultrasonography and 60% by mammography. Sensitivity and specificity for breast carcinoma were 98% and 92% for MRI and 97% and 71% for ultrasonography. For fibroadenoma, they were 96% and 98% for MRI and 89% and 92% for ultrasonography. (author).

  6. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  7. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    Science.gov (United States)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  8. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study.

    Science.gov (United States)

    Martens, Roland M; Bechten, Arianne; Ingala, Silvia; van Schijndel, Ronald A; Machado, Vania B; de Jong, Marcus C; Sanchez, Esther; Purcell, Derk; Arrighi, Michael H; Brashear, Robert H; Wattjes, Mike P; Barkhof, Frederik

    2018-03-01

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. • Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. • The value of ARIA-E detection, classification and monitoring using subtraction was assessed. • Validation of an established ARIA-E rating scale, recommendations for improvement are reported. • Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement.

  9. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  10. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.S., E-mail: jinsong-wu@northwestern.edu [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Kim, A.M. [Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Bleher, R. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Myers, B.D. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Marvin, R.G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Inada, H.; Nakamura, K. [Hitachi High-Technologies Corporation, Ibaraki 312-8504 (Japan); Zhang, X.F. [Hitachi High Technologies America, Inc., 5960 Inglewood Drive, Pleasanton, California 94588 (United States); Roth, E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Li, S.Y. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); and others

    2013-05-15

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed.

  11. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Wu, J.S.; Kim, A.M.; Bleher, R.; Myers, B.D.; Marvin, R.G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed

  12. Ion range estimation by using dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huenemohr, Nora; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Krauss, Bernhard [Siemens AG, Forchheim (Germany). Imaging and Therapy; Dinkel, Julien [German Cancer Research Center (DKFZ), Heidelberg (Germany). Radiology; Massachusetts General Hospital, Boston, MA (United States). Radiology; Gillmann, Clarissa [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; University Hospital Heidelberg (Germany). Radiation Oncology; Ackermann, Benjamin [Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg (Germany). Radiation Oncology

    2013-07-01

    Inaccurate conversion of CT data to water-equivalent path length (WEPL) is one of the most important uncertainty sources in ion treatment planning. Dual energy CT (DECT) imaging might help to reduce CT number ambiguities with the additional information. In our study we scanned a series of materials (tissue substitutes, aluminum, PMMA, and other polymers) in the dual source scanner (Siemens Somatom Definition Flash). Based on the 80 kVp/140Sn kVp dual energy images, the electron densities Q{sub e} and effective atomic numbers Z{sub eff} were calculated. We introduced a new lookup table that translates the Q{sub e} to the WEPL. The WEPL residuals from the calibration were significantly reduced for the investigated tissue surrogates compared to the empirical Hounsfield-look-up table (single energy CT imaging) from (-1.0 {+-} 1.8)% to (0.1 {+-} 0.7)% and for non-tissue equivalent PMMA from -7.8% to -1.0%. To assess the benefit of the new DECT calibration, we conducted a treatment planning study for three different idealized cases based on tissue surrogates and PMMA. The DECT calibration yielded a significantly higher target coverage in tissue surrogates and phantom material (i.e. PMMA cylinder, mean target coverage improved from 62% to 98%). To verify the DECT calibration for real tissue, ion ranges through a frozen pig head were measured and compared to predictions calculated by the standard single energy CT calibration and the novel DECT calibration. By using this method, an improvement of ion range estimation from -2.1% water-equivalent thickness deviation (single energy CT) to 0.3% (DECT) was achieved. If one excludes raypaths located on the edge of the sample accompanied with high uncertainties, no significant difference could be observed. (orig.)

  13. Dual-energy CT can detect malignant lymph nodes in rectal cancer.

    Science.gov (United States)

    Al-Najami, I; Lahaye, M J; Beets-Tan, R G H; Baatrup, G

    2017-05-01

    There is a need for an accurate and operator independent method to assess the lymph node status to provide the most optimal personalized treatment for rectal cancer patients. This study evaluates whether Dual Energy Computed Tomography (DECT) could contribute to the preoperative lymph node assessment, and compared it to Magnetic Resonance Imaging (MRI). The objective of this prospective observational feasibility study was to determine the clinical value of the DECT for the detection of metastases in the pelvic lymph nodes of rectal cancer patients and compare the findings to MRI and histopathology. The patients were referred to total mesorectal excision (TME) without any neoadjuvant oncological treatment. After surgery the rectum specimen was scanned, and lymph nodes were matched to the pathology report. Fifty-four histology proven rectal cancer patients received a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. DECT scanning showed statistical difference between malignant and benign lymph nodes in the measurements of iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value. Dual energy CT classified 42% of the cases correctly according to N-stage compared to 40% for MRI. This study showed statistical difference in several quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality.

    Science.gov (United States)

    Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S

    2018-06-05

    To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (ptraditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Self-masking subtraction tomosynthesis

    International Nuclear Information System (INIS)

    Chakraborty, D.P.; Yester, M.V.; Barnes, G.T.; Lakshminarayanan, A.V.

    1984-01-01

    The authors tested the image quality and dose savings of self-masking subtraction tomosynthesis (SST), which combines digital tomosynthesis with subtraction of a blurred self-mask. High-quality images of the inner ear of a head phantom were obtained at moderate dose savings. Although they were taken with linear motion, they did not exhibit the streaking due to off-fulcrum objects that is characteristic of conventional linear tomography. SST could reduce patient dose by a factor of at least 12 in examinations of the inner ear, and the mechanical aspects can be implemented with moderate modifications of existing instrumentation

  16. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  17. Aerial Triangulation Close-range Images with Dual Quaternion

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-05-01

    Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.

  18. Digital subtraction angiography in patients with central vertigo

    International Nuclear Information System (INIS)

    Inamori, Toru; Takayasu, Yukio; Umetani, Yoshio; Taruoka, Akinori.

    1985-01-01

    Digital subtraction angiography (DSA) is a recently developed non-invasive intravenous angiography which has become possible through real time digital subtraction of x-ray transmission data from an image intensifier and television system. The output signals of the image intensifier-television camera system are digitized by an analog-digital converter. The digital information, 512x512 pixels and 9 bits deep, is fed into the image processing assembly after logarithmic amplification, where 2-8 frames are added and subtracted from mask images for the final digital images. Intravenous digital subtraction angiography was performed in 21 patients with intractable dizzy spells of central origin resistant to treatment. These patients showed some signs of CNS disturbance, although there were no significant findings on CT scans. Surprisingly, findings were abnormal in 14 of 21 patients (66.7%). DSA is, therefore, considered to be an important aid in the diagnosis of vertigo of the central type. (J.P.N.)

  19. Digital subtraction cerebral angiography by intraarterial injection: comparison with conventional angiography

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Gould, R.; Norman, D.; Newton, T.H.; Lane, B.

    1983-01-01

    For 4 months, a prototype digital subtraction system was used to obtain images of the cerebral vasculature after intraarterial contrast injections. In 12 instances, the intraarterial injections were recorded with both a digital subtraction unit and conventional direct magnification film-screen system. The digital subtraction and conventional film subtraction images were compared and graded for quality and information content by three skilled observers. In addition, quantitative measurements of contrast-detail performance and spatial resolution were obtained on both the digital system and the screen-film imaging chain. In a clinical setting, both the digital subtraction and conventional film-screen systems provided similar quality images and angiographic information. Contrast-detail curves demonstrated that digital subtraction angiography outperformed conventional film technique for low-contrast objects. Digital subtraction angiography also reduced the time required to obtain the angiogram, markedly reduced film cost, and lowered the contrast agent burden

  20. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  1. PCA-based approach for subtracting thermal background emission in high-contrast imaging data

    Science.gov (United States)

    Hunziker, S.; Quanz, S. P.; Amara, A.; Meyer, M. R.

    2018-03-01

    Aims.Ground-based observations at thermal infrared wavelengths suffer from large background radiation due to the sky, telescope and warm surfaces in the instrument. This significantly limits the sensitivity of ground-based observations at wavelengths longer than 3 μm. The main purpose of this work is to analyse this background emission in infrared high-contrast imaging data as illustrative of the problem, show how it can be modelled and subtracted and demonstrate that it can improve the detection of faint sources, such as exoplanets. Methods: We used principal component analysis (PCA) to model and subtract the thermal background emission in three archival high-contrast angular differential imaging datasets in the M' and L' filter. We used an M' dataset of β Pic to describe in detail how the algorithm works and explain how it can be applied. The results of the background subtraction are compared to the results from a conventional mean background subtraction scheme applied to the same dataset. Finally, both methods for background subtraction are compared by performing complete data reductions. We analysed the results from the M' dataset of HD 100546 only qualitatively. For the M' band dataset of β Pic and the L' band dataset of HD 169142, which was obtained with an angular groove phase mask vortex vector coronagraph, we also calculated and analysed the achieved signal-to-noise ratio (S/N). Results: We show that applying PCA is an effective way to remove spatially and temporarily varying thermal background emission down to close to the background limit. The procedure also proves to be very successful at reconstructing the background that is hidden behind the point spread function. In the complete data reductions, we find at least qualitative improvements for HD 100546 and HD 169142, however, we fail to find a significant increase in S/N of β Pic b. We discuss these findings and argue that in particular datasets with strongly varying observing conditions or

  2. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C [Mayo Clinic, Rochester, MN (United States); Halaweish, A [Siemens Healthcare, Rochester, MN (United States)

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  3. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma

  4. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  5. The effect of Moidal non-linear blending function for dual-energy CT on CT image quality

    International Nuclear Information System (INIS)

    Zhang Fan; Yang Li

    2011-01-01

    Objective: To compare the difference between linear blending and non-linear blending function for dual-energy CT, and to evaluate the effect on CT image quality. Methods: The model was made of a piece of fresh pork liver inserted with 5 syringes containing various concentrations of iodine solutions (16.3, 26.4, 48.7, 74.6 and 112.3 HU). Linear blending images were automatically reformatted after the model was scanned in the dual-energy mode. Non-linear blending images were reformatted using the software of optimal contrast in Syngo workstation. Images were divided into 3 groups, including linear blending group, non-linear blending group and 120 kV group. Contrast noise ratio (CNR) were measured and calculated respectively in the 3 groups and the different figure of merit (FOM) values between the groups were compared using one-way ANOVA. Twenty patients scanned in the dual-energy mode were randomly selected and the SNR of their liver, renal cortex, spleen, pancreas and abdominal aorta were measured. The independent sample t test was used to compare the difference of signal to noise ratio (SNR) between linear blending group and non linear blending group. Two readers' agreement score and single-blind method were used to investigate the conspicuity difference between linear blending group and non linear blending group. Results: With models of different CT values, the FOM values in non-linear blending group were 20.65± 8.18, 11.40±4.25, 1.60±0.82, 2.40±1.13, 45.49±17.86. In 74.6 HU and 112.3 HU models, the differences of the FOM values observed among the three groups were statistically significant (P<0.05), which were 0.30±0.06 and 14.43±4.59 for linear blending group, and 0.22±0.05 and 15.31±5.16 for 120 kV group. And non-linear blending group had a better FOM value. The SNR of renal cortex and abdominal aorta were 19.2±5.1 and 36.5±13.9 for non-linear blending group, while they were 12.4±3.8 and 22.6±7.0 for linear blending group. There were statistically

  6. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values

    International Nuclear Information System (INIS)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J.; Ringl, Helmut

    2012-01-01

    Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Materials and methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0–1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n = 43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. Results: For all phantoms, mean attenuation in VNC was 5.3 ± 18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of −3.6 ± 8.3 HU. In 91.5% (n = 2412) of all cases, absolute differences between TNC and VNC were under 15 HU, and, in 75.3% (n = 1986), differences were under 10 HU. Conclusions: Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta.

  7. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values.

    Science.gov (United States)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J; Ringl, Helmut

    2012-03-01

    To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. For all phantoms, mean attenuation in VNC was 5.3±18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of -3.6±8.3 HU. In 91.5% (n=2412) of all cases, absolute differences between TNC and VNC were under 15HU, and, in 75.3% (n=1986), differences were under 10 HU. Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  9. Development of a quality assurance protocol for peripheral subtraction imaging applications

    International Nuclear Information System (INIS)

    Walsh, C.; Murphy, D.; O'Hare, N.

    2002-01-01

    Peripheral subtraction scanning is used to trace the blood vessels of upper and lower extremities. In some modern C-arm fluoroscopy systems this function is performed automatically. In this mode the system is programmed to advance and stop in a series of steps taking a mask image at each point. The system then repeats each step after the contrast agent has been injected, and produces a DSA image at each point. Current radiographic quality assurance protocols do not address this feature. This note reviews methods of measuring system vibration while images are being acquired in automated peripheral stepping. The effect on image quality pre- and post-image processing is assessed. Results show that peripheral stepping DSA does not provide the same degree of image quality as static DSA. In examining static test objects, the major cause of the reduction in image quality is misregistration due to vibration of the image intensifier during imaging. (author)

  10. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    Science.gov (United States)

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  11. Digital subtraction radiographic evaluation of the standardize periapical intraoral radiographs

    International Nuclear Information System (INIS)

    Cho, Bong Hae; Nah, Kyung Soo

    1993-01-01

    The geometrically standardized intraoral radiographs using 5 occlusal registration material were taken serially from immediate, 1 day, 2, 4, 8, 12 and 16 weeks after making the bite blocks. The qualities of those subtracted images were evaluated to check the degree of reproducibility of each impression material. The results were as follows: 1. The standard deviations of the grey scales of the overall subtracted images were 4.9 for Exaflex, 7.2 for Pattern resin, 9.0 for Tooth Shade Acrylic, 12.2 for XCP only, 14.8 for Impregum. 2. The standard deviation of the grey scales of the overall subtracted images were grossly related to those of the localized horizontal line of interest. 3. Exaflex which showed the best subtracted image quality had 15 cases of straight, 14 cases of wave, 1 case of canyon shape. Impregum which showed the worst subtracted image quality had 4 cases of straight, 8 cases of wave, 18 cases of canyon shape respectively.

  12. Window selection for dual photopeak window scatter correction in Tc-99m imaging

    International Nuclear Information System (INIS)

    Vries, D.J. de; King, M.A.

    1994-01-01

    The width and placement of the windows for the dual photopeak window (DPW) scatter subtraction method for Tc-99m imaging is investigated in order to obtain a method that is stable on a multihead detector system for single photon emission computed tomography (SPECT) and is capable of providing a good scatter estimate for extended objects. For various window pairs, stability and noise were examined with experiments using a SPECT system, while Monte Carlo simulations were used to predict the accuracy of scatter estimates for a variety of objects and to guide the development of regression relations for various window pairs. The DPW method that resulted from this study was implemented with a symmetric 20% photopeak window composed of a 15% asymmetric photopeak window and a 5% lower window abutted at 7 keV below the peak. A power function regression was used to relate the scatter-to-total ratio to the lower window-to-total ratio at each pixel, from which an estimated scatter image was calculated. DPW demonstrated good stability, achieved by abutting the two windows away from the peak. Performance was assessed and compared with Compton window subtraction (CWS). For simulated extended objects, DPW generally produced a less biased scatter estimate than the commonly used CWS method with k = 0.5. In acquisitions of a clinical SPECT phantom, contrast recovery was comparable for both DPW and CWS; however, DPW showed greater visual contrast in clinical SPECT bone studies

  13. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  14. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  15. Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses.

    Science.gov (United States)

    Slebocki, Karin; Kraus, Bastian; Chang, De-Hua; Hellmich, Martin; Maintz, David; Bangard, Christopher

    To assess correlation between attenuation measurements of incidental findings in abdominal second generation dual-energy computed tomography (CT) on true noncontrast (TNC) and virtual noncontrast (VNC) images. Sixty-three patients underwent arterial dual-energy CT (Somatom Definition Flash, Siemens; pitch factor, 0.75-1.0; gantry rotation time, 0.28 seconds) after endovascular aneurysm repair, consisting of a TNC single energy CT scan (collimation, 128 × 0.6 mm; 120 kVp) and a dual-energy arterial phase scan (collimation, 32 × 0.6 mm, 140 and 100 kVp; blended, 120 kVp data set). Attenuation measurements in Hounsfield units (HU) of liver parenchyma and incidental findings like renal and hepatic cysts and adrenal masses on TNC and VNC images were done by drawing regions of interest. Statistical analysis was performed by paired t test and Pearson correlation. Incidental findings were detected in 56 (89%) patients. There was excellent correlation for both renal (n = 40) and hepatic cysts (n = 12) as well as adrenal masses (n = 6) with a Pearson correlation of 0.896, 0.800, and 0.945, respectively, and mean attenuation values on TNC and VNC images of 10.6 HU ± 12.8 versus 5.1 HU ± 17.5 (attenuation value range from -8.8 to 59.1 HU vs -11.8 to 73.4 HU), 6.4 HU ± 5.8 versus 6.3 HU ± 4.6 (attenuation value range from 2.0 to 16.2 HU vs -3.0 to 15.9 HU), and 12.8 HU ± 11.2 versus 12.4 HU ± 10.2 (attenuation value range from -2.3 to 27.5 HU vs -2.2 to 23.6 HU), respectively. As proof of principle, liver parenchyma measurements also showed excellent correlation between TNC and VNC (n = 40) images with a Pearson correlation of 0.839 and mean attenuation values on TNC and VNC images of 47.2 HU ± 10.5 versus 43.8 HU ± 8.7 (attenuation value range from 21.9 to 60.2 HU vs 4.5 to 65.3 HU). In conclusion, attenuation measurements of incidental findings like renal cysts or adrenal masses on TNC and VNC images derived from second generation dual-energy CT scans show excellent

  16. A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery

    Science.gov (United States)

    Rogers, Thomas W.; Jaccard, Nicolas; Griffin, Lewis D.

    2017-05-01

    Previously, we investigated the use of Convolutional Neural Networks (CNNs) to detect so-called Small Metallic Threats (SMTs) hidden amongst legitimate goods inside a cargo container. We trained a CNN from scratch on data produced by a Threat Image Projection (TIP) framework that generates images with realistic variation to robustify performance. The system achieved 90% detection of containers that contained a single SMT, while raising 6% false positives on benign containers. The best CNN architecture used the raw high energy image (single-energy) and its logarithm as input channels. Use of the logarithm improved performance, thus echoing studies on human operator performance. However, it is an unexpected result with CNNs. In this work, we (i) investigate methods to exploit material information captured in dual-energy images, and (ii) introduce a new CNN training scheme that generates `spot-the-difference' benign and threat pairs on-the-fly. To the best of our knowledge, this is the first time that CNNs have been applied directly to raw dual-energy X-ray imagery, in any field. To exploit dual-energy, we experiment with adapting several physics-derived approaches to material discrimination from the cargo literature, and introduce three novel variants. We hypothesise that CNNs can implicitly learn about the material characteristics of objects from the raw dual-energy images, and use this to suppress false positives. The best performing method is able to detect 95% of containers containing a single SMT, while raising 0.4% false positives on benign containers. This is a step change improvement in performance over our prior work

  17. Thermoacoustic Molecular Imaging of Small Animals

    Directory of Open Access Journals (Sweden)

    Robert A. Kruger

    2003-04-01

    Full Text Available We have designed, constructed, and tested a thermoacoustic computed tomography (TCT scanner for imaging optical absorption in small animals in three dimensions. The device utilizes pulsed laser irradiation (680–1064 nm and a unique, 128-element transducer array. We quantified the isotropic spatial resolution of this scanner to be 0.35 mm. We describe a dual-wavelength subtraction technique for isolating optical dyes with TCT. Phantom experiments demonstrate that we can detect 5 fmol of a near-infrared dye (indocyanine green, ICG in a 1-ML volume using dual-wavelength subtraction. Initial TCT imaging in phantoms and in two sacrificed mice suggests that three-dimensional, optical absorption patterns in small animals can be detected with an order of magnitude better spatial resolution and an order of magnitude better low-contrast detectability in small animals when compared to fluorescence imaging or diffusion optical tomography.

  18. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    International Nuclear Information System (INIS)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge

    2014-01-01

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  19. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-15

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  20. Bone marrow edema pattern identification in patients with lytic bone lesions using digital subtraction angiography-like bone subtraction on large-area detector computed tomography.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Hossu, Gabriela; Lecocq, Sophie; Razeto, Marco; Louis, Matthias; Blum, Alain

    2014-03-01

    The objective of this study was to evaluate the performance of digital subtraction angiography (DSA)-like bone subtraction with 2 different registration methods for the identification of bone marrow edema pattern (BMEP) in patients with lytic bone lesions, using magnetic resonance imaging as the criterion standard. Fifty-five patients with a lytic bone lesion were included in this prospective study with approval from the ethics committee. All patients underwent magnetic resonance imaging and low-dose computed tomographic (CT) perfusion after signing an informed consent. Two CT volumes were used for bone subtraction, which was performed with 2 different algorithms (rigid and nonrigid). Enhancement at the nonlytic bone marrow was considered as a sign of BMEP. Two readers evaluated the images blindly. The presence of BMEP on bone-subtracted CT images was evaluated subjectively and quantitatively. Image quality was assessed. Magnetic resonance imaging was used as the criterion standard. Using a rigid registration method, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of CT with DSA-like bone subtraction BMEP was 77%, 100%, 100%, 68%, and 85%, respectively. The interobserver agreement was good (κ, 0.782). Image quality was better using a nonrigid registration. With this algorithm, artifacts interfered with image interpretation in only 5% of cases. However, there was a noticeable drop in sensitivity and negative predictive value when a nonrigid algorithm was used: 56% and 52%, respectively. The interobserver agreement was average with a nonrigid subtraction algorithm. Computed tomography with DSA-like bone subtraction is sensitive and highly specific for the identification of BMEP associated with lytic bone lesions. Rigid registering should be preferred, but nonrigid algorithms can be used as a second option when artifacts interfere with image interpretation.

  1. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    International Nuclear Information System (INIS)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon

    2013-01-01

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  2. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon [School of Medicine, Ewha Womans University, Seou (Korea, Republic of)

    2013-06-15

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  3. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images.

    Science.gov (United States)

    Yoo, Seon Young; Kim, Yookyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon

    2013-01-01

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  4. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    International Nuclear Information System (INIS)

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-01-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p 1 and p 2 are obtained as functions of the measured attenuation data q 1 and q 2 (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical μ values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  5. Digital subtraction angiography in ischemic cerebrovascular accidents

    Energy Technology Data Exchange (ETDEWEB)

    Manelfe, C.; Bonafe, A.; Ducos de Lahitte, M.; Rascol, A.; Prere, J.; Guiraud, B.; Marc-Vergnes, J.P. (Hopital Purpan, 31 - Toulouse (France))

    1983-12-29

    Recent advances in computer and radiological technology have permitted reassessment of intravenous angiography in the evaluation of cerebrovascular disorders. Although digital subtraction angiography is a relatively new technique, it has rapidly gained a widespread acceptance. It has extended the use of angiography to outpatients and to people in whom conventional angiography is contraindicated. This reliable, safe, and relatively noninvasive technique offers the user two benefits: real-time subtraction and enhanced image quality. The system allows angiographic evaluation of the extracranial and intracranial vessels by means of intravenous injection of contrast material. Extracranial studies clearly demonstrate stenoses and occlusions of the major cervicocephalic arteries. Intracranial studies usually detect major cerebrovascular occlusions and provide insight into the collateral flow patterns. Intravenous digital subtraction angiography permits accurate assessment of cervicocephalic vessels after surgical repair. Although intravenous digital subtraction angiography obviates the need for conventional angiography in many cases, movements from the patients, or superimposition of vascular structures can substantially degrade the quality of the images. Digital subtraction angiography with intra-arterial injection of contrast medium will be contemplated in patients with poor intravenous digital subtraction angiography studies prior to surgery.

  6. Digital subtraction angiography in ischemic cerebrovascular accidents

    International Nuclear Information System (INIS)

    Manelfe, C.; Bonafe, A.; Ducos de Lahitte, M.; Rascol, A.; Prere, J.; Guiraud, B.; Marc-Vergnes, J.P.

    1983-01-01

    Recent advances in computer and radiological technology have permitted reassessment of intravenous angiography in the evaluation of cerebrovascular disorders. Although digital subtraction angiography is a relatively new technique, it has rapidly gained a widespread acceptance. It has extended the use of angiography to outpatients and to people in whom conventional angiography is contraindicated. This reliable, safe, and relatively noninvasive technique offers the user two benefits: real-time subtraction and enhanced image quality. The system allows angiographic evaluation of the extracranial and intracranial vessels by means of intravenous injection of contrast material. Extracranial studies clearly demonstrate stenoses and occlusions of the major cervicocephalic arteries. Intracranial studies usually detect major cerebrovascular occlusions and provide insight into the collateral flow patterns. Intravenous digital subtraction angiography permits accurate assessment of cervicocephalic vessels after surgical repair. Although intravenous digital subtraction angiography obviates the need for conventional angiography in many cases, movements from the patients, or superimposition of vascular structures can substantially degrade the quality of the images. Digital subtraction angiography with intra-arterial injection of contrast medium will be contemplated in patients with poor intravenous digital subtraction angiography studies prior to surgery [fr

  7. Scaphoid fracture: Bone marrow edema detected with dual-energy CT virtual non-calcium images and confirmed with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dareez, Nazeer M.; Engesland, Eirin; Lindland, Elisabeth S. [Department of Radiology, SSHF Arendal, Arendal (Norway); Dahlslett, Kristine H. [Haukelands Universitetssjukehus, Department of Radiology, Bergen (Norway)

    2017-12-15

    We aimed to determine whether bone marrow edema (BME) in acute traumatic scaphoid fracture could be demonstrated with dual-energy CT (DECT) using MRI as the gold standard. In recent years, virtual non-calcium (VNCa) images have been used to demonstrate BME in trauma cases, for example, in vertebral compression fractures, hip trauma to detect occult fractures and knee fractures. We present three cases of acute scaphoid trauma. Two patients had subtle or invisible fractures on x-ray and conventional CT images, while DECT VNCa images clearly visualized the BME, which was confirmed by MRI. One patient had negative findings on both VNCa and MRI images. The DECT VNCa algorithm is a promising technique to demonstrate BME in scaphoid fractures, with potential for increasing the diagnostic value of CT in this type of injury. (orig.)

  8. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  9. Dual-Energy Computed Tomography in Stroke Imaging: Technical and Clinical Considerations of Virtual Noncontrast Images for Detection of the Hyperdense Artery Sign.

    Science.gov (United States)

    Winklhofer, Sebastian; Vittoria De Martini, Ilaria; Nern, Chrisitian; Blume, Iris; Wegener, Susanne; Pangalu, Athina; Valavanis, Antonios; Alkadhi, Hatem; Guggenberger, Roman

    The technical feasibility of virtual noncontrast (VNC) images from dual-energy computed tomography (DECT) for the detection of the hyperdense artery sign (HAS) in ischemic stroke patients was investigated. True noncontrast (TNC) scans of 60 patients either with or without HAS (n = 30 each) were investigated. Clot presence and characteristics were assessed on VNC images from DECT angiography and compared with TNC images. Clot characterization included the level of confidence for diagnosing HAS, a qualitative clot burden score, and quantitative attenuation (Hounsfield unit [HU]) measurements. Sensitivity, specificity, and accuracy of VNC for diagnosing HAS were 97%, 90%, and 93%, respectively. No significant differences were found regarding the diagnostic confidence (P = 0.18) and clot burden score (P = 0.071). No significant HU differences were found among vessels with HAS in VNC (56 ± 7HU) and TNC (57 ± 8HU) (P = 0.691) images. Virtual noncontrast images derived from DECT enable an accurate detection and characterization of HAS.

  10. Optimization of breast cancer detection in Dual Energy X-ray Mammography using a CMOS imaging detector

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Fountos, G; Michail, C; Kalyvas, N; Valais, I; Kandarakis, I; Bakas, A; Kounadi, E

    2015-01-01

    Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNR tc ) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNR tc while minimizing the entrance dose. The best compromise between SNR tc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNR tc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications

  11. Updates to Constituent Subtraction in Heavy Ions at CMS

    CERN Document Server

    CMS Collaboration

    2018-01-01

    The latest upgrades and performance of constituent subtraction in 5.02 TeV PbPb collisions is presented. The constituent subtraction is extended through the full tracker acceptance, increasing the rapidity reach of correctly subtracted jets. A modulation in azimuthal angle is added to the subtraction, accounting for flow on an event-by-event basis and improving jet energy resolution. Closure of jet energy scale after corrections and jet energy resolution is shown for R=0.4 and R=0.8 jets, the latter for the first time in CMS Heavy-Ions.

  12. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    Science.gov (United States)

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  13. Multinuclide digital subtraction imaging in symptomatic prostnetic joints

    International Nuclear Information System (INIS)

    Chafetz, N.; Hattner, R.S.; Ruarke, W.C.; Helms, C.A.; Genant, H.K.; Murray, W.R.

    1985-01-01

    One hundred eleven patients with symptomatic prosthetic joints (86 hips, 23 knees, and two shoulders) were evaluated for prosthetic loosening and infection by combined technetium-99m-MDP/gallium-67 digital subtraction imaging. Clinical correlation was based on the assessment of loosening and bacterial cultures obtained at the time of surgery in 54 patients, joint aspiration cultures obtained in 37 patients, and long-term clinical follow-up for greater than 1.5 years in an additional 15 patients. Results revealed an 80-90% predictive value of a positive test for loosening, and a 95% predictive value of a negative test for infection. However, because of the low sensitivities and specificities observed, this approach to the evaluation of symptomatic prosthetic joints does not seem cost effective

  14. Processing of interlaced images in 4–10 MeV dual energy customs system for material recognition

    Directory of Open Access Journals (Sweden)

    S. Ogorodnikov

    2002-10-01

    Full Text Available The aim of this article is to demonstrate the practical value of radioscopic differentiation of materials in the 1–10 MeV energy range to the work of customs services. The proposed method for achieving singling out and identifying four basic groups of materials according to an atomic number is complex. Atomic numbers are identified using high- and low-energy profiles obtained through the irradiation of materials on an alternate pulse-by-pulse basis. This is done using a bremsstrahlung beam with 8   MeV/4   MeV dual boundary energies and by using scintillating crystals coupled with silicon photodiodes as detecting elements. An image segmentation technique is then used to discern the distribution of an atomic number on any given image. The color visualization of integral absorption and a material’s atomic composition is carried out according to the intensity hue saturation (IHS colorization scheme. The experiments were carried out on a full-scale prototype of an 8 MeV customs inspection system developed by the Efremov Research Institute.

  15. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    International Nuclear Information System (INIS)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C

    2016-01-01

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare

  16. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.

  17. Arthrography of painful hips following arthroplasty: Digital versus plain film subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C W; FitzRandolph, R L; Dalrymple, G V [Arkansas Univ. for Medical Sciences, Little Rock, AR (USA). Dept. of Radiology John McClellan Memorial Veterans Hospital, Little Rock, AR (USA); Collins, D N [Arkansas Univ. for Medical Sciences, Little Rock, AR (USA). Dept. of Orthopedics John McClellan Memorial Veterans Hospital, Little Rock, AR (USA)

    1991-08-01

    Digital and manual subtraction images obtained during the arthrographic evaluation of 78 painful hip prostheses were reviewed retrospectively. Revision arthroplasty was performed in 53 of these cases, and the arthrographic and surgical findings were correlated. The digital and manual subtraction images were evaluated without knowledge of the surgical results using established criteria for component loosening. The difference between detection of femoral component loosening on digital as opposed to manual subtraction images was statistically significant (P < 0.05). This study demonstrates that digital subtraction improves the evaluation of femoral component loosening in painful hip prostheses. (orig./GDG).

  18. Comparison of the diagnostic accuracy of direct digital radiography system, filtered images, and subtraction radiography

    Directory of Open Access Journals (Sweden)

    Wilton Mitsunari Takeshita

    2013-01-01

    Full Text Available Background: To compare the diagnostic accuracy of three different imaging systems: Direct digital radiography system (DDR-CMOS, four types of filtered images, and a priori and a posteriori registration of digital subtraction radiography (DSR in the diagnosis of proximal defects. Materials and Methods: The teeth were arranged in pairs in 10 blocks of vinyl polysiloxane, and proximal defects were performed with drills of 0.25, 0.5, and 1 mm diameter. Kodak RVG 6100 sensor was used to capture the images. A posteriori DSR registrations were done with Regeemy 0.2.43 and subtraction with Image Tool 3.0. Filtered images were obtained with Kodak Dental Imaging 6.1 software. Images (n = 360 were evaluated by three raters, all experts in dental radiology. Results: Sensitivity and specificity of the area under the receiver operator characteristic (ROC curve (Az were higher for DSR images with all three drills (Az = 0.896, 0.979, and 1.000 for drills 0.25, 0.5, and 1 mm, respectively. The highest values were found for 1-mm drills and the lowest for 0.25-mm drills, with negative filter having the lowest values of all (Az = 0.631. Conclusion: The best method of diagnosis was by using a DSR. The negative filter obtained the worst results. Larger drills showed the highest sensitivity and specificity values of the area under the ROC curve.

  19. Dual-energy digital radiography for the assessment of bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, Paeivi S.; Lammentausta, Eveliina; Tervonen, Osmo; Jaemsae, Timo; Nieminen, Miika T. (Dept. of Diagnostic Radiology, Univ. of Oulu, Oulu (Finland)), e-mail: paivi.tahvanainen@oulu.fi; Pulkkinen, Pasi (Dept. of Medical Technology, Univ. of Oulu, Oulu (Finland))

    2010-06-15

    Background: Bone mineral density (BMD) is usually determined by dual-energy X-ray absorptiometry (DXA). Digital radiography (DR) has enabled the application of dual-energy techniques for separating bone and soft tissue, but it is not clear yet whether BMD information can reliably be obtained using DR. Purpose: To determine the ability of dual-energy digital radiography (DEDR) to predict BMD as determined by DXA. Material and Methods: Reindeer femora (n=15) were imaged in a water bath at a typical clinical imaging voltage of 79 kVp and additionally at 100 kVp on a DR system. BMD was determined in four segmented regions (femoral neck, trochanter, inter-trochanter, Ward's triangle) from these images using the DXA calculation principle. BMD results as determined by DEDR were compared with BMD values as determined by DXA. Results: Significant moderate to high linear correlations (0.66-0.76) were observed at the femoral neck, Ward's triangle, and trochanter between BMD values as determined by the two techniques. The coefficient of variation (CVRMS) ranged between 2.2 and 4.7% and 0.2 and 1.8% for DEDR and DXA analyses, respectively. Conclusion: DXA-based BMD information can be obtained with moderate precision and accuracy using DEDR. In future, combining BMD measurements using DEDR with structural and geometrical information available on digital radiographs could enable a more comprehensive assessment of bone . Keywords: BMD, DXA, bone assessment

  20. Dual energy computed tomography for the head.

    Science.gov (United States)

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  1. Optical image encryption based on real-valued coding and subtracting with the help of QR code

    Science.gov (United States)

    Deng, Xiaopeng

    2015-08-01

    A novel optical image encryption based on real-valued coding and subtracting is proposed with the help of quick response (QR) code. In the encryption process, the original image to be encoded is firstly transformed into the corresponding QR code, and then the corresponding QR code is encoded into two phase-only masks (POMs) by using basic vector operations. Finally, the absolute values of the real or imaginary parts of the two POMs are chosen as the ciphertexts. In decryption process, the QR code can be approximately restored by recording the intensity of the subtraction between the ciphertexts, and hence the original image can be retrieved without any quality loss by scanning the restored QR code with a smartphone. Simulation results and actual smartphone collected results show that the method is feasible and has strong tolerance to noise, phase difference and ratio between intensities of the two decryption light beams.

  2. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients. An interobserver study

    International Nuclear Information System (INIS)

    Martens, Roland M.; Bechten, Arianne; Ingala, Silvia; Schijndel, Ronald A. van; Machado, Vania B.; Jong, Marcus C. de; Sanchez, Esther; Wattjes, Mike P.; Purcell, Derk; Arrighi, Michael H.; Brashear, Robert H.; Barkhof, Frederik

    2018-01-01

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. (orig.)

  3. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients. An interobserver study

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Roland M.; Bechten, Arianne; Ingala, Silvia; Schijndel, Ronald A. van; Machado, Vania B.; Jong, Marcus C. de; Sanchez, Esther; Wattjes, Mike P. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (Netherlands); Purcell, Derk [California Pacific Medical Center, Department of Radiology, San Francisco, CA (United States); BioClinica Inc, Newark, CA (United States); Arrighi, Michael H.; Brashear, Robert H. [Janssen Alzheimer Immunotherapy Research and Development, LLC, South San Francisco, CA (United States); Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (Netherlands); University College London, Institutes of Neurology and Healthcare Engineering, London (United Kingdom)

    2018-03-15

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. (orig.)

  4. Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang; Zhou, Chang Sheng; Zhao, Yan E.; Han, Zong Hong; Qi, Li; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Mangold, Stefanie; Ball, B.D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2017-04-15

    To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p < 0.001) and accuracy (p < 0.01), but lower specificity (p < 0.001), were found for lung PBV compared with CTPA. Dual-energy CT can detect PFE earlier than CTPA (all p < 0.01). Dual-energy CT provided higher sensitivity and accuracy in the detection of PFE as well as earlier detection compared with conventional CTPA in this animal model study. (orig.)

  5. Dual-Energy CT of Rectal Cancer Specimens

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Beets-Tan, Regina G H; Madsen, Gunvor

    2016-01-01

    is represented by a certain effective Z value, which allows for information on its composition. OBJECTIVE: We wanted to standardize a method for dual-energy scanning of rectal specimens to evaluate the sensitivity and specificity of benign versus malignant lymph node differentiation. Histopathological evaluation...... cancer. MAIN OUTCOME MEASURES: We measured accuracy of differentiating benign from malignant lymph nodes by investigating the following: 1) gadolinium, iodine, and water concentrations in lymph nodes; 2) dual-energy ratio; 3) dual-energy index; and 4) effective Z value. RESULTS: Optimal discriminations...... between benign and malignant lymph nodes were obtained using the following cutoff values: 1) effective Z at 7.58 (sensitivity, 100%; specificity, 90%; and accuracy, 93%), 2) dual-energy ratio at 1.0 × 10 (sensitivity, 96%; specificity, 87%; and accuracy, 90%), 3) dual-energy index at 0.03 (sensitivity, 97...

  6. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    International Nuclear Information System (INIS)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia; Halaweish, Ahmed

    2016-01-01

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE

  7. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia, E-mail: mccollough.cynthia@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Halaweish, Ahmed [Siemens Medical Solutions, Malvern, Pennsylvania 19355 (United States)

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.

  8. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Hardie, Andrew D.; Felmly, Lloyd M.; Perry, Jonathan D.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Mangold, Stefanie [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Caruso, Damiano [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncological and Pathological Sciences, Latina (Italy); Canstein, Christian [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Siemens Medical Solutions USA, Malvern, PA (United States); Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-02-15

    To compare single-energy (SECT) and dual-energy (DECT) abdominal CT examinations in matched patient cohorts regarding differences in radiation dose and image quality performed with second- and third-generation dual-source CT (DSCT). We retrospectively analysed 200 patients (100 male, 100 female; mean age 61.2 ± 13.5 years, mean body mass index 27.5 ± 3.8 kg/m{sup 2}) equally divided into four groups matched by gender and body mass index, who had undergone portal venous phase abdominal CT with second-generation (group A, 120-kV-SECT; group B, 80/140-kV-DECT) and third-generation DSCT (group C, 100-kV-SECT; group D, 90/150-kV-DECT). The radiation dose was normalised for 40-cm scan length. Dose-independent figure-of-merit (FOM) contrast-to-noise ratios (CNRs) were calculated for various organs and vessels. Subjective overall image quality and reader confidence were assessed. The effective normalised radiation dose was significantly lower (P < 0.001) in groups C (6.2 ± 2.0 mSv) and D (5.3 ± 1.9 mSv, P = 0.103) compared to groups A (8.8 ± 2.3 mSv) and B (9.7 ± 2.4 mSv, P = 0.102). Dose-independent FOM-CNR peaked for liver, kidney, and portal vein measurements (all P ≤ 0.0285) in group D. Subjective image quality and reader confidence were consistently rated as excellent in all groups (all ≥1.53 out of 5). With both DSCT generations, abdominal DECT can be routinely performed without radiation dose penalty compared to SECT, while third-generation DSCT shows improved dose efficiency. (orig.)

  9. Digital subtraction cardiopulmonary angiography using FCR (Fuji computed radiography)

    International Nuclear Information System (INIS)

    Tanimura, Shigeo; Tomoyasu, Hiroshi; Banba, Jiro; Masaki, Mikio; Kanno, Yukio; Abe, Kazuo

    1987-01-01

    Digital subtraction cardiopulmonary angiography using FCR was performed on 46 patients including lung cancer, mediastinal tumor, giant bullous formation and others. The images of digital subtraction for pulmonary artery, pulmonary vein and thoracic aorta were studied by comparing to the conventional pulmonary angiogram. Good images of pulmonary artery due to digital subtraction were obtained in 80 % of the 45 cases. This method needed only half volume of contrast media compared to the conventional for obtaining good images and thus reduced side effect. Therefore this method seems to be an usefull pre-operative examination in various chest diseases, especially in case of lung cancer. (author)

  10. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    Science.gov (United States)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  11. Implementation and applications of dual-modality imaging

    Science.gov (United States)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  12. Krypton ventilation imaging using dual-energy CT in chronic obstructive pulmonary disease patients: initial experience.

    Science.gov (United States)

    Hachulla, Anne-Lise; Pontana, François; Wemeau-Stervinou, Lidwine; Khung, Suonita; Faivre, Jean-Baptiste; Wallaert, Benoit; Cazaubon, Jean-François; Duhamel, Alain; Perez, Thierry; Devos, Patrick; Remy, Jacques; Remy-Jardin, Martine

    2012-04-01

    To evaluate the tolerance and level of enhancement achievable after inhalation of stable krypton. This study was approved by the institutional review board and the local ethics committee. Written informed consent was obtained from all subjects. The study was planned as a Fleming two-stage design, enabling one to assess the effectiveness of a newer treatment or technique on a small number of patients. At the end of each stage, the results are computed, and the trial can be stopped if the effectiveness is less than a minimum success rate or greater than an expected success rate. After informed consent was obtained, a total of 32 patients (ie, two successive series of 16 patients each) with severe emphysema underwent a dual-source, dual-energy chest computed tomographic (CT) examination after inhalation of a mixture of stable krypton (80%) and oxygen (20%), with reconstruction of diagnostic and ventilation images. For each patient, two regions of interest were selected on a diagnostic image, one in a region of severe emphysema (presumed to be poorly ventilated or not ventilated) and a second one in a region devoid of structural abnormalities (presumed to be normally ventilated), with measurements of attenuation values on the corresponding ventilation image. All examinations were successfully performed, without adverse effects. Differences in attenuation between normal lung and emphysematous areas were found in 28 patients (88%; 95% confidence interval: 71%, 96.5%). The maximal level of attenuation within normal lung was 18.5 HU. Krypton attenuation difference between normal and emphysematous lung was significant, with a median value of 51.8% (P krypton and its excellent clinical tolerance makes this gas eligible for ventilation CT examinations. © RSNA, 2012.

  13. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  14. Dual-Modality PET/Ultrasound imaging of the Prostate

    International Nuclear Information System (INIS)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-01-01

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems

  15. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT.

    Science.gov (United States)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    2017-09-01

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.

  16. Dual-phase CT for the assessment of acute vascular injuries in high-energy blunt trauma: the imaging findings and management implications.

    Science.gov (United States)

    Iacobellis, Francesca; Ierardi, Anna M; Mazzei, Maria A; Magenta Biasina, Alberto; Carrafiello, Gianpaolo; Nicola, Refky; Scaglione, Mariano

    2016-01-01

    Acute vascular injuries are the second most common cause of fatalities in patients with multiple traumatic injuries; thus, prompt identification and management is essential for patient survival. Over the past few years, multidetector CT (MDCT) using dual-phase scanning protocol has become the imaging modality of choice in high-energy deceleration traumas. The objective of this article was to review the role of dual-phase MDCT in the identification and management of acute vascular injuries, particularly in the chest and abdomen following multiple traumatic injuries. In addition, this article will provide examples of MDCT features of acute vascular injuries with correlative surgical and interventional findings.

  17. Imaging of the digital arteries: Digital subtraction angiography versus conventional angiography

    International Nuclear Information System (INIS)

    Menanteau, B.P.; Treutenaere, J.M.; Marcus, C.; Ladam, V.; Gausserand, F.

    1986-01-01

    The authors report their experience with the use of digital subtraction angiography (DSA) and conventional angiography of the hand. Of the 95 patients in the study group, 80 underwent conventional angiography and 15 underwent DSA. They analyzed the studies with regard to the type and amount of contrast agent used, the number of radiographs needed, and the diagnostic quality of the images. Conventional angiography often requires general anesthesia, magnification, and pharmaco-angiographic techniques to improve the image-based diagnosis. In comparison with conventional angiography, intraarterial DSA is characterized by improved contrast sensitivity and inferior spatial resolution. However, DSA provides images as acceptable as those of conventional angiography. Smaller catheters can be used, and the examination is performed under local anesthesia. The authors conclude that intraarterial DSA is now the technique of choice for examining patients with chronic ischemia of the hand

  18. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast

    International Nuclear Information System (INIS)

    Albrecht, Moritz H.; Scholtz, Jan-Erik; Huesers, Kristina; Beeres, Martin; Bucher, Andreas M.; Kaup, Moritz; Martin, Simon S.; Fischer, Sebastian; Bodelle, Boris; Bauer, Ralf W.; Lehnert, Thomas; Vogl, Thomas J.; Wichmann, Julian L.

    2016-01-01

    To compare quantitative image quality parameters in abdominal dual-energy computed tomography angiography (DE-CTA) using an advanced image-based (Mono+) reconstruction algorithm for virtual monoenergetic imaging and standard DE-CTA. Fifty-five patients (36 men; mean age, 64.2 ± 12.7 years) who underwent abdominal DE-CTA were retrospectively included. Mono + images were reconstructed at 40, 50, 60, 70, 80, 90 and 100 keV levels and as standard linearly blended M 0 .6 images (60 % 100 kV, 40 % 140 kV). The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the common hepatic (CHA), splenic (SA), superior mesenteric (SMA) and left renal arteries (LRA) were objectively measured. Mono+ DE-CTA series showed a statistically superior CNR for 40, 50, 60, 70 and 80 keV (P < 0.031) compared to M 0 .6 images for all investigated arteries except SMA at 80 keV (P = 0.08). CNR at 40 keV revealed a mean relative increase of 287.7 % compared to linearly blended images among all assessed arteries (P < 0.001). SNR of Mono+ images was consistently significantly higher at 40, 50, 60 and 70 keV compared to M 0 .6 for CHA and SA (P < 0.009). Compared to linearly blended images, Mono+ reconstructions at low keV levels of abdominal DE-CTA datasets significantly improve quantitative image quality. (orig.)

  19. A novel dual mode neutron-gamma imager

    International Nuclear Information System (INIS)

    Cooper, Robert Lee; Gerling, Mark; Brennan, James S.; Mascarenhas, Nicholas; Mrowka, Stanley; Marleau, Peter

    2010-01-01

    The Neutron Scatter Camera (NSC) can image fission sources and determine their energy spectra at distances of tens of meters and through significant thicknesses of intervening materials in relatively short times (1). We recently completed a 32 element scatter camera and will present recent advances made with this instrument. A novel capability for the scatter camera is dual mode imaging. In normal neutron imaging mode we identify and image neutron events using pulse shape discrimination (PSD) and time of flight in liquid scintillator. Similarly gamma rays are identified from Compton scatter in the front and rear planes for our segmented detector. Rather than reject these events, we show it is possible to construct a gamma-ray image by running the analysis in a 'Compton mode'. Instead of calculating the scattering angle by the kinematics of elastic scatters as is appropriate for neutron events, it can be found by the kinematics of Compton scatters. Our scatter camera has not been optimized as a Compton gamma-ray imager but is found to work reasonably. We studied imaging performance using a Cs137 source. We find that we are able to image the gamma source with reasonable fidelity. We are able to determine gamma energy after some reasonable assumptions. We will detail the various algorithms we have developed for gamma image reconstruction. We will outline areas for improvement, include additional results and compare neutron and gamma mode imaging.

  20. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping

    Energy Technology Data Exchange (ETDEWEB)

    Dunet, Vincent; Bernasconi, Martine; Hajdu, Steven David; Meuli, Reto Antoine; Zerlauth, Jean-Baptiste [Lausanne University Hospital, Department of Diagnostic and Interventional Radiology, Lausanne (Switzerland); Daniel, Roy Thomas [Lausanne University Hospital, Department of Neurosurgery, Lausanne (Switzerland)

    2017-09-15

    We aimed to assess the impact of metal artifact reduction software (MARs) on image quality of gemstone spectral imaging (GSI) dual-energy (DE) cerebral CT angiography (CTA) after intracranial aneurysm clipping. This retrospective study was approved by the institutional review board, which waived patient written consent. From January 2013 to September 2016, single source DE cerebral CTA were performed in 45 patients (mean age: 60 ± 9 years, male 9) after intracranial aneurysm clipping and reconstructed with and without MARs. Signal-to-noise (SNR), contrast-to-noise (CNR), and relative CNR (rCNR) ratios were calculated from attenuation values measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Volume of clip and artifacts and relative clip blurring reduction (rCBR) ratios were also measured at each energy level with/without MARs. Variables were compared between GSI and GSI-MARs using the paired Wilcoxon signed-rank test. MARs significantly reduced metal artifacts at all energy levels but 130 and 140 keV, regardless of clips' location and number. The optimal rCBR was obtained at 110 and 80 keV, respectively, on GSI and GSI-MARs images, with up to 96% rCNR increase on GSI-MARs images. The best compromise between metal artifact reduction and rCNR was obtained at 70-75 and 65-70 keV for GSI and GSI-MARs images, respectively, with up to 15% rCBR and rCNR increase on GSI-MARs images. MARs significantly reduces metal artifacts on DE cerebral CTA after intracranial aneurysm clipping regardless of clips' location and number. It may be used to reduce radiation dose while increasing CNR. (orig.)

  1. Techniques for combining isotopic images obtained at different energies

    International Nuclear Information System (INIS)

    Soussaline, F.; Di Paola, R.; Bazin, J.P.

    1976-01-01

    The technique described should be considered as a first step towards the classification of scintigraphic data where the energy is included. As in all such studies the interpretation of the resulting images is not necessarily at first evident, and certain experience needs to be established. This applies in particular to the images obtained with the higher factors. It is possible that the use of this technique may resolve, without requiring a priori information, the problem previously encountered using the other 'subtraction' type techniques [fr

  2. Image registration for a UV-Visible dual-band imaging system

    Science.gov (United States)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  3. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner [Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-11-15

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P {<=} 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 {+-} 12.8 Hounsfield Units (HU), 204.8 {+-} 14.4 HU, 267.5 {+-} 18.6 HU, 311.9 {+-} 22.3 HU, 347.3 {+-} 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the

  4. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    International Nuclear Information System (INIS)

    Paul, Jijo; Bauer, Ralf W.; Maentele, Werner; Vogl, Thomas J.

    2011-01-01

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P ≤ 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 ± 12.8 Hounsfield Units (HU), 204.8 ± 14.4 HU, 267.5 ± 18.6 HU, 311.9 ± 22.3 HU, 347.3 ± 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the weighting factor 0

  5. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    International Nuclear Information System (INIS)

    Thieme, Sven F.; Becker, Christoph R.; Hacker, Marcus; Nikolaou, Konstantin; Reiser, Maximilian F.; Johnson, Thorsten R.C.

    2008-01-01

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam

  6. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Becker, Christoph R. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Hacker, Marcus [Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich (Germany); Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Johnson, Thorsten R.C. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany)], E-mail: thorsten.johnson@med.uni-muenchen.de

    2008-12-15

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam.

  7. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging.

    Science.gov (United States)

    Chizhik, Anna M; Ruhlandt, Daja; Pfaff, Janine; Karedla, Narain; Chizhik, Alexey I; Gregor, Ingo; Kehlenbach, Ralph H; Enderlein, Jörg

    2017-12-26

    The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

  8. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul

    2000-01-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.=20

  9. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.

  10. Hardware Implementation of a Bilateral Subtraction Filter

    Science.gov (United States)

    Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven

    2009-01-01

    A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for

  11. Simulation and evaluation of the absorption edge subtraction technique in energy-resolved X-ray radiography applied to the cultural heritage studies

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana E.; Pinnera Hernandez, Ibrahin; Leyva Fabelo, Antonio; Abreu Alfonso, Yamiel; Espen, Piet Van

    2011-01-01

    In this work the mathematical simulation of photon transport in the matter was used to evaluate the potentials of a new energy-resolved X-ray radiography system. The system is intended for investigations of cultural heritage object, mainly painting. The radiographic system uses polychromatic radiation from an X-ray tube and measures the spectrum transmitted through the object with an energy-dispersive X-ray detector on a pixel-by-pixel basis. Manipulation of the data-set obtained allows constructing images with enhanced contrast for certain elements. Here the use of the absorption edge subtraction technique was emphasized. The simulated results were in good agreement with the experimental data.(author)

  12. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer.

    Science.gov (United States)

    Chen, Xiaoliang; Xu, Yanyan; Duan, Jianghui; Li, Chuandong; Sun, Hongliang; Wang, Wu

    2017-07-01

    To investigate the potential relationship between perfusion parameters from first-pass dual-input perfusion computed tomography (DI-PCT) and iodine uptake levels estimated from dual-energy CT (DE-CT).The pre-experimental part of this study included a dynamic DE-CT protocol in 15 patients to evaluate peak arterial enhancement of lung cancer based on time-attenuation curves, and the scan time of DE-CT was determined. In the prospective part of the study, 28 lung cancer patients underwent whole-volume perfusion CT and single-source DE-CT using 320-row CT. Pulmonary flow (PF, mL/min/100 mL), aortic flow (AF, mL/min/100 mL), and a perfusion index (PI = PF/[PF + AF]) were automatically generated by in-house commercial software using the dual-input maximum slope method for DI-PCT. For the dual-energy CT data, iodine uptake was estimated by the difference (λ) and the slope (λHU). λ was defined as the difference of CT values between 40 and 70 KeV monochromatic images in lung lesions. λHU was calculated by the following equation: λHU = |λ/(70 - 40)|. The DI-PCT and DE-CT parameters were analyzed by Pearson/Spearman correlation analysis, respectively.All subjects were pathologically proved as lung cancer patients (including 16 squamous cell carcinoma, 8 adenocarcinoma, and 4 small cell lung cancer) by surgery or CT-guided biopsy. Interobserver reproducibility in DI-PCT (PF, AF, PI) and DE-CT (λ, λHU) were relatively good to excellent (intraclass correlation coefficient [ICC]Inter = 0.8726-0.9255, ICCInter = 0.8179-0.8842; ICCInter = 0.8881-0.9177, ICCInter = 0.9820-0.9970, ICCInter = 0.9780-0.9971, respectively). Correlation coefficient between λ and AF, and PF were as follows: 0.589 (P input CT perfusion analysis method can be applied to assess blood supply of lung cancer patients. Preliminary results demonstrated that the iodine uptake relevant parameters derived from DE-CT significantly correlated with perfusion

  13. The diagnostic value of dual energy virtual non-contrast images of dual-source CT in the diagnosis of com-mon benign liver diseases%双源CT双能量虚拟平扫对肝脏常见良性病变的诊断价值

    Institute of Scientific and Technical Information of China (English)

    刘盼; 王凤; 李邦国; 罗显丽; 王梦; 王荣品

    2017-01-01

    Objective To investigate the diagnostic value and limitations of dual-energy virtual non-con-trast images of dual-source CT in common benign liver diseases. Methods Dual-source CT was performed on 226 upper abdomen pathogenesis patients. The conventional non-contrast (CNC) scan was performed with single-energy mode, the arterial phase and portal phase scans were performed with dual-energy mode. The virtual non-contrast (VNC) images were derived from the portal data using liver virtual non-contrast software. 117 patients with common benign liver diseases were retrospectively analyzed in CNC and VNC. The lesion detectability, effective radiation doses for single-energy mode and dual-energy mode were compared. Results Among 117 patients, there were 28 (73.6%) hemangiomas, 58 (85.3%) calcifications or stones in VNC, but the hemangiomas, calcifications or stones in CNC were 37 (97.3%) and 68 (100%), respectively. The hemangiomas, calcifications or stones in VNC and CNC were significantly different (P 0.05). The CTDIvol, DLP and ED of dual-energy mode were obviously lower than those of single-energy mode (P 0.05);双能模式下CTDI、DLP及ED均低于单能模式,差异有统计学意义(P<0.05).结论:虚拟平扫对血管瘤、钙化或结石的检出低于常规平扫,对囊肿及脂肪肝的检出无差异.VNC技术可减低CT检查的辐射剂量,具有潜在的临床应用价值.

  14. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  15. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    Science.gov (United States)

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  16. Temporal subtraction of chest radiographs compensating pose differences

    Science.gov (United States)

    von Berg, Jens; Dworzak, Jalda; Klinder, Tobias; Manke, Dirk; Kreth, Adrian; Lamecker, Hans; Zachow, Stefan; Lorenz, Cristian

    2011-03-01

    Temporal subtraction techniques using 2D image registration improve the detectability of interval changes from chest radiographs. Although such methods are well known for some time they are not widely used in radiologic practice. The reason is the occurrence of strong pose differences between two acquisitions with a time interval of months to years in between. Such strong perspective differences occur in a reasonable number of cases. They cannot be compensated by available image registration methods and thus mask interval changes to be undetectable. In this paper a method is proposed to estimate a 3D pose difference by the adaptation of a 3D rib cage model to both projections. The difference between both is then compensated for, thus producing a subtraction image with virtually no change in pose. The method generally assumes that no 3D image data is available from the patient. The accuracy of pose estimation is validated with chest phantom images acquired under controlled geometric conditions. A subtle interval change simulated by a piece of plastic foam attached to the phantom becomes visible in subtraction images generated with this technique even at strong angular pose differences like an anterior-posterior inclination of 13 degrees.

  17. Megavoltage cargo radiography with dual energy material decomposition

    Science.gov (United States)

    Shikhaliev, Polad M.

    2018-02-01

    Megavoltage (MV) radiography has important applications in imaging large cargos for detecting illicit materials. A useful feature of MV radiography is the possibility of decomposing and quantifying materials with different atomic numbers. This can be achieved by imaging cargo at two different X-ray energies, or dual energy (DE) radiography. The performance of both single energy and DE radiography depends on beam energy, beam filtration, radiation dose, object size, and object content. The purpose of this work was to perform comprehensive qualitative and quantitative investigations of the image quality in MV radiography depending on the above parameters. A digital phantom was designed including Fe background with thicknesses of 2cm, 6cm, and 18cm, and materials samples of Polyethylene, Fe, Pb, and U. The single energy images were generated at x-ray beam energies 3.5MV, 6MV, and 9MV. The DE material decomposed images were generated using interlaced low and high energy beams 3.5/6MV and 6/9MV. The X-ray beams were filtered by low-Z (Polyethylene) and high-Z (Pb) filters with variable thicknesses. The radiation output of the accelerator was kept constant for all beam energies. The image quality metrics was signal-to-noise ratio (SNR) of the particular sample over a particular background. It was found that the SNR depends on the above parameters in a complex way, but can be optimized by selecting a particular set of parameters. For some imaging setups increased filter thicknesses, while strongly absorbing the beams, increased the SNR of material decomposed images. Beam hardening due to polyenergetic x-ray spectra resulted in material decomposition errors, but this could be addressed using region of interest decomposition. It was shown that it is not feasible to separate the materials with close atomic numbers using the DE method. Particularly, Pb and U were difficult to decompose, at least at the dose levels allowed by radiation source and safety requirements.

  18. Sci-Fri AM: Imaging - 09: Serial estimation of cross-talk for correction in dual-isotope imaging with dynamic tracers.

    Science.gov (United States)

    Wells, R G; Lockwood, J; Wei, L; Duan, D; Fernando, P; Bensimon, C; Ruddy, T D

    2012-07-01

    The recent radioisotope shortage has led to interest in non-Tc99m-based tracers. We have developed a novel I-123-labelled myocardial perfusion imaging tracer. We compare the I123-tracer to the clinical standard of Tc99m tetrofosmin in vivo in a rat model using a small-animal SPECT/CT camera. SPECT distinguishes different isotopes based on the different energies of the emitted gamma rays and thus allows simultaneous comparison of two tracer distributions in the same animal. Dual-isotope imaging is complicated by cross-talk between the energy windows of the isotopes. Standard energy-window-based correction methods are difficult to employ because of the proximity in energy of Tc99m (140keV) and I123 (159keV). Imaging the second tracer's energy window prior to its injection provides an estimate of the cross-talk. However, this estimate is only accurate if the tracer distribution is static. We use serial imaging prior to the introduction of the second tracer to estimate the dynamics of the first tracer and interpolate the cross-talk images to provide a more accurate correction. We used rat models of myocardial disease (n=3). I123 tracer was injected and imaged for one hour at 20min intervals. The Tc99m tetrofosmin was then injected and 30min later, a dual-isotope image was obtained. The impact of this approach is assessed by comparing the differences in the Tc99m-tetrofosmin image using this method with correction by simple correction for physical decay. The interpolative approach improves the accuracy of the correction by 2%-5% and thereby enhances the comparison of the two tracers. © 2012 American Association of Physicists in Medicine.

  19. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  20. Evaluation of the minimum iodine concentration for contrast-enhanced subtraction mammography

    International Nuclear Information System (INIS)

    Baldelli, P; Bravin, A; Maggio, C Di; Gennaro, G; Sarnelli, A; Taibi, A; Gambaccini, M

    2006-01-01

    Early manifestation of breast cancer is often very subtle and is displayed in a complex and variable pattern of normal anatomy that may obscure the disease. The use of dual-energy techniques, that can remove the structural noise, and contrast media, that enhance the region surrounding the tumour, could help us to improve the detectability of the lesions. The aim of this work is to investigate the use of an iodine-based contrast medium in mammography with two different double exposure techniques: K-edge subtraction mammography and temporal subtraction mammography. Both techniques have been investigated by using an ideal source, like monochromatic beams produced at a synchrotron radiation facility and a clinical digital mammography system. A dedicated three-component phantom containing cavities filled with different iodine concentrations has been developed and used for measurements. For each technique, information about the minimum iodine concentration, which provides a significant enhancement of the detectability of the pathology by minimizing the risk due to high dose and high concentration of contrast medium, has been obtained. In particular, for cavities of 5 and 8 mm in diameter filled with iodine solutions, the minimum concentration needed to obtain a contrast-to-noise ratio of 5 with a mean glandular dose of 2 mGy has been calculated. The minimum concentrations estimated with monochromatic beams and K-edge subtraction mammography are 0.9 mg ml -1 and 1.34 mg ml -1 for the biggest and smallest details, respectively, while for temporal subtraction mammography they are 0.84 mg ml -1 and 1.31 mg ml -1 . With the conventional clinical system the minimum concentrations for the K-edge subtraction mammography are 4.13 mg ml -1 (8 mm diameter) and 5.75 mg ml -1 (5 mm diameter), while for the temporal subtraction mammography they are 1.01 mg ml -1 (8 mm diameter) and 1.57 mg ml -1 (5 mm diameter)

  1. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    Science.gov (United States)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  2. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration.

    Science.gov (United States)

    Thomas, Christoph; Krauss, Bernhard; Ketelsen, Dominik; Tsiflikas, Ilias; Reimann, Anja; Werner, Matthias; Schilling, David; Hennenlotter, Jörg; Claussen, Claus D; Schlemmer, Heinz-Peter; Heuschmid, Martin

    2010-07-01

    In dual energy (DE) computed tomography (CT), spectral shaping by additional filtration of the high energy spectrum can theoretically improve dual energy contrast. The aim of this in vitro study was to examine the influence of an additional tin filter for the differentiation of human urinary calculi by dual energy CT. A total of 36 pure human urinary calculi (uric acid, cystine, calciumoxalate monohydrate, calciumoxalate dihydrate, carbonatapatite, brushite, average diameter 10.5 mm) were placed in a phantom and imaged with 2 dual source CT scanners. One scanner was equipped with an additional tin (Sn) filter. Different combinations of tube voltages (140/80 kV, 140/100 kV, Sn140/100 kV, Sn140/80 kV, with Sn140 referring to 140 kV with the tin filter) were applied. Tube currents were adapted to yield comparable dose indices. Low- and high energy images were reconstructed. The calculi were segmented semiautomatically in the datasets and DE ratios (attenuation@low_kV/attenuation@high_kV) and were calculated for each calculus. DE contrasts (DE-ratio_material1/DE-ratio_material2) were computed for uric acid, cystine and calcified calculi and compared between the combinations of tube voltages. Using exclusively DE ratios, all uric acid, cystine and calcified calculi (as a group) could be differentiated in all protocols; the calcified calculi could not be differentiated among each other in any examination protocol. The highest DE ratios and DE contrasts were measured for the Sn140/80 protocol (53%-62% higher DE contrast than in the 140/80 kV protocol without additional filtration). The DE ratios and DE contrasts of the 80/140 kV and 100/Sn140 kV protocols were comparable. Uric acid, cystine and calcified calculi could be reliably differentiated by any of the protocols. A dose-neutral gain of DE contrast was found in the Sn-filter protocols, which might improve the differentiation of smaller calculi (Sn140/80 kV) and improve image quality and calculi differentiation in

  3. ECG-gating in non-cardiac digital subtraction angiography

    International Nuclear Information System (INIS)

    Gattoni, F.; Baldini, V.; Cairo, F.

    1987-01-01

    This paper reports the results of the ECG-gating in non-cardiac digital subtraction angiography (DSA). One hundred and fifteen patients underwent DSA (126 examinations); ECG-gating was applied in 66/126 examinations: images recorded at 70% of R wave were subtracted. Artifacts produced by vascular movements were evaluated in all patients: only 40 examinations, carried out whithout ECG-gating, showed vascular artifacts. The major advantage of the ECG-gated DSA is the more efficent subtraction because of the better images superimposition: therefore, ECG-gating can be clinically helpful. On the contrary, it could be a problem in arrhytmic or bradycardic patients. ECG-gating is helpful in DSA imaging of the thoracic and abdominal aorta and of the cervical and renal arteries. In the examinations of peripheral vessels of the limbs it is not so efficent as in the trunk or in the neck

  4. WE-FG-207B-08: Dual-Energy CT Iodine Accuracy Across Vendors and Platforms

    International Nuclear Information System (INIS)

    Jacobsen, M; Wood, C; Cody, D

    2016-01-01

    Purpose: Although a major benefit of dual-energy CT is its quantitative capabilities, it is critical to understand how results vary by scanner manufacturer and/or model before making clinical patient management decisions. Each manufacturer utilizes a specific dual-energy CT approach; cross-calibration may be required for facilities with more than one dual-energy CT scanner type. Methods: A solid dual-energy quality control phantom (Gammex, Inc.; Appleton, WI) representing a large body cross-section containing three Iodine inserts (2mg/ml, 5mg/ml, 15 mg/ml) was scanned on these CT systems: GE HD-750 (80/140kVp), prototype GE Revolution CT with GSI (80/140kVp), Siemens Flash (80/140kVp and 100/140kVp), and Philips IQon (120kVp and 140kVp). Iodine content was measured in units of concentration (mg/ml) from a single 5mm-thick central image. Three to five acquisitions were performed on each scanner platform in order to compute standard deviation. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were as consistent as possible (thickness, kernel, no noise reduction applied). Results: Iodine measurement error ranges were −0.24-0.16 mg/ml for the 2mg/ml insert (−12.0 − 8.0%), −0.28–0.26 mg/ml for the 5mg/ml insert (−5.6 − 5.2%), and −1.16−0.99 mg/ml for the 15mg/ml insert (−7.7 − 6.6%). Standard deviations ranged from 0 to 0.19 mg/ml for the repeated acquisitions from each scanner. The average iodine measurement error and standard deviation across all systems and inserts was −0.21 ± 0.48 mg/ml (−1.5 ± 6.48%). The largest absolute measurement error was found in the 15mg/ml iodine insert. Conclusion: There was generally good agreement in Iodine quantification across 3 dual-energy CT manufacturers and 4 scanner models. This was unexpected given the widely different underlying dual-energy CT mechanisms employed. Future work will include additional scanner platforms, independent verification of the Iodine

  5. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  6. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging

    International Nuclear Information System (INIS)

    Lell, M.; Anders, K.; Bautz, W.; Klotz, E.; Ditt, H.; Tomandl, B.F.

    2006-01-01

    Fifty-one patients were examined with bone subtraction CT angiography (BSCTA). Data were acquired on 4-and 64-slice spiral CT systems. The post-processing method is based on fully automatic registration of non-enhanced and contrast-enhanced CT data and subsequent selective bone removal. Vascular structures and brain tissue are retained with the original CTA noise level. Image quality and delineation of the pathologic process were assessed and artifacts introduced by the bone removal process recorded. The bone subtraction algorithm worked successfully in all examinations. The processing time was 6 min on average. Image quality was rated excellent in 20 (39%), good in 26 (51%) and acceptable in 5 (10%) patients. Ophthalmic arteries were visible in 12 (24%) patients bilaterally, in 13 (25%) patients unilaterally and in 26 (51%) patients at least at the origin. BSCTA improved visualization of the infraclinoid ICA and the vertebral arteries. The depiction of stenosis of the extracranial ICA and supraclinoid aneurysms was not significantly improved. In patients with suspicion of sinus thrombosis, BSCTA and conventional CTA yielded similar results. To conclude, BSCTA improves the visualization of vessels with close contact to bone and can improve the diagnostic accuracy and therapy planning of infraclinoid aneurysms. (orig.)

  7. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  8. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng, E-mail: mengwu@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  9. Image noise reduction algorithm for digital subtraction angiography: clinical results.

    Science.gov (United States)

    Söderman, Michael; Holmin, Staffan; Andersson, Tommy; Palmgren, Charlotta; Babic, Draženko; Hoornaert, Bart

    2013-11-01

    To test the hypothesis that an image noise reduction algorithm designed for digital subtraction angiography (DSA) in interventional neuroradiology enables a reduction in the patient entrance dose by a factor of 4 while maintaining image quality. This clinical prospective study was approved by the local ethics committee, and all 20 adult patients provided informed consent. DSA was performed with the default reference DSA program, a quarter-dose DSA program with modified acquisition parameters (to reduce patient radiation dose exposure), and a real-time noise-reduction algorithm. Two consecutive biplane DSA data sets were acquired in each patient. The dose-area product (DAP) was calculated for each image and compared. A randomized, blinded, offline reading study was conducted to show noninferiority of the quarter-dose image sets. Overall, 40 samples per treatment group were necessary to acquire 80% power, which was calculated by using a one-sided α level of 2.5%. The mean DAP with the quarter-dose program was 25.3% ± 0.8 of that with the reference program. The median overall image quality scores with the reference program were 9, 13, and 12 for readers 1, 2, and 3, respectively. These scores increased slightly to 12, 15, and 12, respectively, with the quarter-dose program imaging chain. In DSA, a change in technique factors combined with a real-time noise-reduction algorithm will reduce the patient entrance dose by 75%, without a loss of image quality. RSNA, 2013

  10. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    Science.gov (United States)

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  11. Dual-energy CT characteristics of colon and rectal cancer allows differentiation from stool by dual-source CT.

    Science.gov (United States)

    Özdeniz, İlknur; İdilman, İlkay S; Köklü, Seyfettin; Hamaloğlu, Erhan; Özmen, Mustafa; Akata, Deniz; Karçaaltıncaba, Muşturay

    2017-01-01

    We aimed to determine dual-energy computed tomography (DECT) characteristics of colorectal cancer and investigate effectiveness of DECT method in differentiating tumor from stool in patients with colorectal cancer. Fifty consecutive patients with colorectal tumors were enrolled. Staging was performed by DECT (80-140 kV) using dual-source CT after rectal air insufflation and without bowel preparation. Both visual and quantitative analyses were performed at 80 kV and 140 kV, on iodine map and virtual noncontrast (VNC) images. All colorectal tumors had homogeneous pattern on iodine map. Stools demonstrated heterogeneous pattern in 86% (43/50) and homogeneous pattern in 14% (7/50) on iodine maps and were less visible on VNC images. Median density of tumors was 54 HU (18-100 HU) on iodine map and 28 HU (11-56 HU) on VNC images. Median density of stool was 36.5 HU (8-165 HU) on iodine map and -135.5 HU (-438 HU to -13 HU) on VNC images. The density of stools was significantly lower than tumors on both iodine map and VNC images (P VNC images was -1 HU with area under the curve of 1 and a sensitivity and specificity of 100%. Density or visual analysis of iodine map and VNC DECT images allow accurate differentiation of tumor from stool.

  12. Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: Effects on image quality, artefacts and diagnostic performance for the detection of stenosis.

    Science.gov (United States)

    Leithner, Doris; Mahmoudi, Scherwin; Wichmann, Julian L; Martin, Simon S; Lenga, Lukas; Albrecht, Moritz H; Booz, Christian; Arendt, Christophe T; Beeres, Martin; D'Angelo, Tommaso; Bodelle, Boris; Vogl, Thomas J; Scholtz, Jan-Erik

    2018-02-01

    To investigate the impact of traditional (VMI) and noise-optimized virtual monoenergetic imaging (VMI+) algorithms on quantitative and qualitative image quality, and the assessment of stenosis in carotid and intracranial dual-energy CTA (DE-CTA). DE-CTA studies of 40 patients performed on a third-generation 192-slice dual-source CT scanner were included in this retrospective study. 120-kVp image-equivalent linearly-blended, VMI and VMI+ series were reconstructed. Quantitative analysis included evaluation of contrast-to-noise ratios (CNR) of the aorta, common carotid artery, internal carotid artery, middle cerebral artery, and basilar artery. VMI and VMI+ with highest CNR, and linearly-blended series were rated qualitatively. Three radiologists assessed artefacts and suitability for evaluation at shoulder height, carotid bifurcation, siphon, and intracranial using 5-point Likert scales. Detection and grading of stenosis were performed at carotid bifurcation and siphon. Highest CNR values were observed for 40-keV VMI+ compared to 65-keV VMI and linearly-blended images (P evaluation at shoulder and bifurcation height. Suitability was significantly higher in VMI+ and VMI compared to linearly-blended images for intracranial and ICA assessment (P performance. 40-keV VMI+ showed improved quantitative image quality compared to 65-keV VMI and linearly-blended series in supraaortic DE-CTA. VMI and VMI+ provided increased suitability for carotid and intracranial artery evaluation with excellent assessment of stenosis, but did not translate into increased diagnostic performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Digital subtraction angiography

    International Nuclear Information System (INIS)

    Neuwirth, J. Jr.; Bohutova, J.

    1987-01-01

    The quality of radiodiagnostic methods to a great extent depends on the quality of the resulting image. The basic technical principles are summed up of the different parts of digital subtraction angiography apparatus and of methods of improving the image. The instrument is based on a videochain consisting of an X-ray tube, an intensifier of the radiographic image, optical parts, a video camera, an analog-to-digital converter and a computer. The main advantage of the digitally processed image is the possibility of optimizing the image into a form which will contain the biggest amount of diagnostically valuable information. Described are the mathematical operations for improving the digital image: spatial filtration, pixel shift, time filtration, image integration, time interval differentation and matched filtering. (M.D.). 8 refs., 3 figs

  14. Hybrid intravenous digital subtraction angiography of the carotid bifurcation

    International Nuclear Information System (INIS)

    Burbank, F.H.; Enzmann, D.; Keyes, G.S.; Brody, W.R.

    1984-01-01

    A hybrid digital subtraction angiography technique and noise-reduction algorithm were used to evaluate the carotid bifurcation. Temporal, hybrid, and reduced-noise hybrid images were obtained in right and left anterior oblique projections, and both single- and multiple-frame images were created with each method. The resulting images were graded on a scale of 1 to 5 by three experienced neuroradiologists. Temporal images were preferred over hybrid images. The percentage of nondiagnostic examinations, as agreed upon by two readers, was higher for temporal alone than temporal + hybrid. In addition, also by agreement between two readers, temporal + hybrid images significantly increased the number of bifurcations seen in two views (87%) compared to temporal subtraction alone

  15. OPTIMIZING ENERGY CONSUMPTION IN VEHICULAR SENSOR NETWORKS BY CLUSTERING USING FUZZY C-MEANS AND FUZZY SUBTRACTIVE ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. Ebrahimi

    2017-09-01

    Full Text Available Traffic monitoring and managing in urban intelligent transportation systems (ITS can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs; moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH, and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  16. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  17. Tomosynthesis applied to digital subtraction angiography

    International Nuclear Information System (INIS)

    Kruger, R.A.; Sedaghati, M.; Roy, D.G.; Liu, P.; Nelson, J.A.; Kubal, W.; Del Rio, P.

    1984-01-01

    This extension of the author's previous work on tomographic digital subtraction angiography (DSA) describes the theory of tomosynthetic DSA image reconstruction techniques. In addition to developing the resolution limits resulting from x-ray exposure length and image intensifier field curvature, the authors describe one method of image formation and show tomosynthetic DSA images of animal and human anatomy. Methods for improving the present technique are discussed

  18. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: Optimization of energy level viewing significantly increases lesion contrast

    International Nuclear Information System (INIS)

    Patel, B.N.; Thomas, J.V.; Lockhart, M.E.; Berland, L.L.; Morgan, D.E.

    2013-01-01

    Aim: To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. Materials and methods: The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Results: Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40–77). The mean ± SD lesion contrast values (non-tumoural pancreas – tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 ke

  19. Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    Energy Technology Data Exchange (ETDEWEB)

    Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.; Fullagar, W. K.; Myers, G. M. [Department of Applied Mathematics, Research School of physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-06-07

    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (

  20. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    International Nuclear Information System (INIS)

    Lell, Michael M.; Hinkmann, Fabian; Nkenke, Emeka; Schmidt, Bernhard; Seidensticker, Peter; Kalender, Willi A.; Uder, Michael; Achenbach, Stephan

    2010-01-01

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations 10% resulting in a total luminal reduction 50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously reported. The ophthalmic artery still cannot be adequately visualized.

  1. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  2. Digital subtraction angiography (DSA)

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Eikelboom, B.C.; Van Schaik, C.C.; Taams, A.J.; Teeuwen, C.

    1985-01-01

    Besides the non-invasive techniques, angiography remains essential. The disadvantages of angiography are the complexity of the procedure and the possibility of complications. Digital subtraction angiography (DSA) is a considerable improvement in the examination of vessels. In DSA, subtraction combined with enhancement of the signals allows the use of intravenous injection to obtain good images of the arteries. However, when the contrast material is supplied intravenously, a rather large amount of contrast material is necessary to obtain images of good quality. Quantities of 30-40 cc of contrast material are required. The advantage of the intravenous injection of contrast material rather than the use of a catheter to deliver the contrast material in loco is that it is almost non-invasive thus circumventing the complications caused by catheter manipulation in the arterial system. This makes it possible to apply this method on an out-patient basis. DSA can also be applied with intra-arterial selective injection of the contrast material. In this case, the strong enhancement with DSA allows the use of a small quantity of contrast material while still obtaining images of the vessels with good contrast definition

  3. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Côté, Nicolas [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4 (Canada); Bedwani, Stéphane [Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada and Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada)

    2016-05-15

    Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HU of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D

  4. The research progress of dual-modality probes for molecular imaging

    International Nuclear Information System (INIS)

    Cao Feng; Chen Yue

    2010-01-01

    Various imaging modalities have been exploited to investigate the anatomic or functional dissemination of tissues in the body. However, no single imaging modality allows overall structural, functional, and molecular information as each imaging modality has its own unique strengths and weaknesses. The combination of two imaging modalities that investigates the strengths of different methods might offer the prospect of improved diagnostic abilities. As more and more dual-modality imaging system have become clinically adopted, significant progress has been made toward the creation of dual-modality imaging probes, which can be used as novel tools for future multimodality systems. These all-in-one probes take full advantage of two different imaging modalities and could provide comprehensive information for clinical diagnostics. This review discusses the advantages and challenges in developing dual-modality imaging probes. (authors)

  5. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  6. Pre-reconstruction dual-energy, X-ray computerized tomography (CT): theory, implementation, results, and clinical use

    International Nuclear Information System (INIS)

    Oravez, W.T.

    1986-01-01

    For the task of bone mineral measurement, single-energy quantitative CT has demonstrated its worth in terms of precision for most longitudinal clinical studies. However, for cross-sectional clinical studies, known inaccuracy exists due to less than robust beam-hardening corrections, and negatively biased bone mineral measurement, due to the effect of unknown variable concentration of bone marrow fat within the metabolically active trabecular bone space. A dual-energy measurement technique provides a solution to these deficiencies of single-energy measurements. The fundamental theory of dual-energy measurement techniques is based on a Compton-photoelectric approximation and the mixture rule for the total attenuation coefficient. Resolution of atomic composition and electron density components of attenuation should then be possible. To take full advantage of these principles, the raw dual-energy projection values are operated on before reconstruction. This method beam-hardening and composition-selective imaging. Rapid kilovoltage switching between projection measurements, rather than serial measurements, assures the best measurement quality

  7. Dual Energy CT (DECT) Monochromatic Imaging: Added Value of Adaptive Statistical Iterative Reconstructions (ASIR) in Portal Venography.

    Science.gov (United States)

    Zhao, Liqin; Winklhofer, Sebastian; Jiang, Rong; Wang, Xinlian; He, Wen

    2016-01-01

    To investigate the effect of the adaptive statistical iterative reconstructions (ASIR) on image quality in portal venography by dual energy CT (DECT) imaging. DECT scans of 45 cirrhotic patients obtained in the portal venous phase were analyzed. Monochromatic images at 70keV were reconstructed with the following 4 ASIR percentages: 0%, 30%, 50%, and 70%. The image noise (IN) (standard deviation, SD) of portal vein (PV), the contrast-to-noise-ratio (CNR), and the subjective score for the sharpness of PV boundaries, and the diagnostic acceptability (DA) were obtained. The IN, CNR, and the subjective scores were compared among the four ASIR groups. The IN (in HU) of PV (10.05±3.14, 9.23±3.05, 8.44±2.95 and 7.83±2.90) decreased and CNR values of PV (8.04±3.32, 8.95±3.63, 9.80±4.12 and 10.74±4.73) increased with the increase in ASIR percentage (0%, 30%, 50%, and 70%, respectively), and were statistically different for the 4 ASIR groups (pASIR percentages (pASIR (pASIR addition in DECT portal venography could improve the 70 keV monochromatic image quality.

  8. A study on crosstalk correction in dual energy acquisition of 123I-MIBG and 201TlCl in myocardial SPECT

    International Nuclear Information System (INIS)

    Onoguchi, Masahisa; Satoh, Keiko; Murata, Hajime; Takao, Yuji; Ohtake, Eiji; Katoh, Kenichi; Saitoh, Kyoko; Toyama, Hinako; Ueno, Takashi.

    1991-01-01

    In the simultaneous dual energy acquisition, energy spectrums of two radionuclides crosstalk each other and this phenomenon is a cause of the poor quality of images. In order to obtain the image of high quality in dual energy acquisition of 123 I-MIBG and 201 TlCl, a crosstalk correction method was originated. The crosstalk from 201 Tl to 123 I window (RI) and the crosstalk from 123 I to 201 Tl window (R2) were determined by the cardiac phantom studies. R1 and R2 showed almost constant value throughout the myocardial wall. The crosstalk correction was performed using R1 and R2. After the crosstalk correction, the defect region placed in the cardiac phantom was detected more clearly both in visual interpretation and in quantitative analysis. The crosstalk correction method with R1 and R2 was applied to some clinical cases. By the crosstalk correction, the quality of image was improved and a false defect caused by crosstalk disappeared in a clinical case. The crosstalk correction was considered to be useful for improving the quality of image on dual energy acquisition. (author)

  9. Digital subtraction radiography in the study of the lacrimal system

    International Nuclear Information System (INIS)

    Falaschi, F.; Pieri, L.; Perri, G.; Signorini, G.; Genovese Ebert, F.

    1988-01-01

    The authors emphasize the usefulness of digital dacrycystography (DCG), as compared with various current technoques. Utilizing a radiographic unit equipped with a video-fluoroscopic system and interfaced to a digital video-processor, several digitalized images are acquired before, during and after the injection of contrast medium. Final images are obtained by subtraction of suitable pairs of source frames. Twenty-six patients affected by epiphora have been examined so far. In 21 cases digital subtraction DCG allowed an accurate visualization of the lacrimal system; in the other five patients the amount of information was acceptable. This methodology allows the assessment of both the normal anatomy of the lacrimal passages and their pathological patterns, such as obstructions, stenoses, fistulas, chronic dacrycystites, lacrimal stones. The examination is easy and quick to perform, with no discomfort for the patient. Digital subtraction DCG proves thus to be a very valuable technique thanks to its possible electronic elaboration - i.e. the subtraction and the magnification of images - to its better contrast resolution, and to the possibility it yields of dynamic studies under radioscopic control

  10. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  11. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    Science.gov (United States)

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  12. Postmortem validation of breast density using dual-energy mammography

    OpenAIRE

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...

  13. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons.

    Science.gov (United States)

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Diagnostic and Interventional Radiology, Suita, Osaka (Japan); Yoshiya, Kazuhisa; Shimazu, Takeshi [Osaka University Graduate School of Medicine, Department of Traumatology and Acute Critical Medicine, Osaka (Japan)

    2014-04-15

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage. (orig.)

  15. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage.

    Science.gov (United States)

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Yoshiya, Kazuhisa; Shimazu, Takeshi; Tomiyama, Noriyuki

    2014-04-01

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage.

  16. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Tomiyama, Noriyuki; Yoshiya, Kazuhisa; Shimazu, Takeshi

    2014-01-01

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage. (orig.)

  17. Dual mode operation, highly selective nanohole array-based plasmonic colour filters

    Science.gov (United States)

    Fouladi Mahani, Fatemeh; Mokhtari, Arash; Mehran, Mahdiyeh

    2017-09-01

    Taking advantage of nanostructured metal films as plasmonic colour filters (PCFs) has been evolved remarkably as an alternative to the conventional technologies of chemical colour filtering. However, most of the proposed PCFs depict a poor colour purity focusing on generating either the additive or subtractive colours. In this paper, we present dual mode operation PCFs employing an opaque aluminium film patterned with sub-wavelength holes. Subtractive colours like cyan, magenta, and yellow are the results of reflection mode of these filters yielding optical efficiencies as high as 70%-80% and full width at half maximum of the stop-bands up to 40-50 nm. The colour selectivity of the transmission mode for the additive colours is also significant due to their enhanced performance through the utilization of a relatively thick aluminium film in contact with a modified dielectric environment. These filters provide a simple design with one-step lithography in addition to compatibility with the conventional CMOS processes. Moreover, they are polarization insensitive due to their symmetric geometry. A complete palette of pure subtractive and additive colours has been realized with potential applications, such as multispectral imaging, CMOS image sensors, displays, and colour printing.

  18. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Clinical Evaluation.

    Science.gov (United States)

    Hyodo, Tomoko; Yada, Norihisa; Hori, Masatoshi; Maenishi, Osamu; Lamb, Peter; Sasaki, Kosuke; Onoda, Minori; Kudo, Masatoshi; Mochizuki, Teruhito; Murakami, Takamichi

    2017-04-01

    Purpose To assess the clinical accuracy and reproducibility of liver fat quantification with the multimaterial decomposition (MMD) algorithm, comparing the performance of MMD with that of magnetic resonance (MR) spectroscopy by using liver biopsy as the reference standard. Materials and Methods This prospective study was approved by the institutional ethics committee, and patients provided written informed consent. Thirty-three patients suspected of having hepatic steatosis underwent non-contrast material-enhanced and triple-phase dynamic contrast-enhanced dual-energy computed tomography (CT) (80 and 140 kVp) and single-voxel proton MR spectroscopy within 30 days before liver biopsy. Percentage fat volume fraction (FVF) images were generated by using the MMD algorithm on dual-energy CT data to measure hepatic fat content. FVFs determined by using dual-energy CT and percentage fat fractions (FFs) determined by using MR spectroscopy were compared with histologic steatosis grade (0-3, as defined by the nonalcoholic fatty liver disease activity score system) by using Jonckheere-Terpstra trend tests and were compared with each other by using Bland-Altman analysis. Real non-contrast-enhanced FVFs were compared with triple-phase contrast-enhanced FVFs to determine the reproducibility of MMD by using Bland-Altman analyses. Results Both dual-energy CT FVF and MR spectroscopy FF increased with increasing histologic steatosis grade (trend test, P algorithm quantifying hepatic fat in dual-energy CT images is accurate and reproducible across imaging phases. © RSNA, 2017 Online supplemental material is available for this article.

  19. MO-FG-204-03: Using Edge-Preserving Algorithm for Significantly Improved Image-Domain Material Decomposition in Dual Energy CT

    International Nuclear Information System (INIS)

    Zhao, W; Niu, T; Xing, L; Xiong, G; Elmore, K; Min, J; Zhu, J; Wang, L

    2015-01-01

    Purpose: To significantly improve dual energy CT (DECT) imaging by establishing a new theoretical framework of image-domain material decomposition with incorporation of edge-preserving techniques. Methods: The proposed algorithm, HYPR-NLM, combines the edge-preserving non-local mean filter (NLM) with the HYPR-LR (Local HighlY constrained backPRojection Reconstruction) framework. Image denoising using HYPR-LR framework depends on the noise level of the composite image which is the average of the different energy images. For DECT, the composite image is the average of high- and low-energy images. To further reduce noise, one may want to increase the window size of the filter of the HYPR-LR, leading resolution degradation. By incorporating the NLM filtering and the HYPR-LR framework, HYPR-NLM reduces the boost material decomposition noise using energy information redundancies as well as the non-local mean. We demonstrate the noise reduction and resolution preservation of the algorithm with both iodine concentration numerical phantom and clinical patient data by comparing the HYPR-NLM algorithm to the direct matrix inversion, HYPR-LR and iterative image-domain material decomposition (Iter-DECT). Results: The results show iterative material decomposition method reduces noise to the lowest level and provides improved DECT images. HYPR-NLM significantly reduces noise while preserving the accuracy of quantitative measurement and resolution. For the iodine concentration numerical phantom, the averaged noise levels are about 2.0, 0.7, 0.2 and 0.4 for direct inversion, HYPR-LR, Iter- DECT and HYPR-NLM, respectively. For the patient data, the noise levels of the water images are about 0.36, 0.16, 0.12 and 0.13 for direct inversion, HYPR-LR, Iter-DECT and HYPR-NLM, respectively. Difference images of both HYPR-LR and Iter-DECT show edge effect, while no significant edge effect is shown for HYPR-NLM, suggesting spatial resolution is well preserved for HYPR-NLM. Conclusion: HYPR

  20. Linear iterative near-field phase retrieval (LIPR) for dual-energy x-ray imaging and material discrimination.

    Science.gov (United States)

    Li, Heyang Thomas; Kingston, Andrew M; Myers, Glenn R; Beeching, Levi; Sheppard, Adrian P

    2018-01-01

    Near-field x-ray refraction (phase) contrast is unavoidable in many lab-based micro-CT imaging systems. Quantitative analysis of x-ray refraction (a.k.a. phase retrieval) is in general an under-constrained problem. Regularizing assumptions may not hold true for interesting samples; popular single-material methods are inappropriate for heterogeneous samples, leading to undesired blurring and/or over-sharpening. In this paper, we constrain and solve the phase-retrieval problem for heterogeneous objects, using the Alvarez-Macovski model for x-ray attenuation. Under this assumption we neglect Rayleigh scattering and pair production, considering only Compton scattering and the photoelectric effect. We formulate and test the resulting method to extract the material properties of density and atomic number from single-distance, dual-energy imaging of both strongly and weakly attenuating multi-material objects with polychromatic x-ray spectra. Simulation and experimental data are used to compare our proposed method with the Paganin single-material phase-retrieval algorithm, and an innovative interpretation of the data-constrained modeling phase-retrieval technique.

  1. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  2. Nonenhanced magnetic resonance angiography (MRA) of the calf arteries at 3 Tesla: intraindividual comparison of 3D flow-dependent subtractive MRA and 2D flow-independent non-subtractive MRA.

    Science.gov (United States)

    Knobloch, Gesine; Lauff, Marie-Teres; Hirsch, Sebastian; Schwenke, Carsten; Hamm, Bernd; Wagner, Moritz

    2016-12-01

    To prospectively compare 3D flow-dependent subtractive MRA vs. 2D flow-independent non-subtractive MRA for assessment of the calf arteries at 3 Tesla. Forty-two patients with peripheral arterial occlusive disease underwent nonenhanced MRA of calf arteries at 3 Tesla with 3D flow-dependent subtractive MRA (fast spin echo sequence; 3D-FSE-MRA) and 2D flow-independent non-subtractive MRA (balanced steady-state-free-precession sequence; 2D-bSSFP-MRA). Moreover, all patients underwent contrast-enhanced MRA (CE-MRA) as standard-of-reference. Two readers performed a per-segment evaluation for image quality (4 = excellent to 0 = non-diagnostic) and severity of stenosis. Image quality scores of 2D-bSSFP-MRA were significantly higher compared to 3D-FSE-MRA (medians across readers: 4 vs. 3; p Tesla with significantly higher image quality and diagnostic accuracy compared to 3D flow-dependent subtractive MRA (3D-FSE-MRA). • 2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust NE-MRA technique at 3T • 2D-bSSFP-MRA outperforms 3D flow-dependent subtractive MRA (3D-FSE-MRA) as NE-MRA of calf arteries • 2D-bSSFP-MRA is a promising alternative to CE-MRA for calf PAOD evaluation.

  3. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  4. Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study

    Science.gov (United States)

    Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas

    2016-03-01

    This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, pwomen and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.

  5. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    International Nuclear Information System (INIS)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto; Patrie, James T.; Wintermark, Max

    2016-01-01

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  6. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto [University of Virginia, Department of Radiology, Division of Neuroradiology, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2016-11-15

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  7. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, M-J; Brandan, M-E [Instituto de Fisica, Universidad Nacional Autonom de Mexico, Mexico, Distrito Federal (Mexico); Gastelum, A; Marquez, J [Centro de Ciencias Aplicadas y Desarrollo Tecnologico Universidad Nacional Autonoma de Mexico, Mexico, Distrito Federal (Mexico)

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  8. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences.

    Science.gov (United States)

    Reagan, Adrian C; Mallinson, Paul I; O'Connell, Timothy; McLaughlin, Patrick D; Krauss, Bernhard; Munk, Peter L; Nicolaou, Savvas; Ouellette, Hugue A

    2014-01-01

    Computed tomography (CT) is often used to assess the presence of occult fractures when plain radiographs are equivocal in the acute traumatic setting. While providing increased spatial resolution, conventional computed tomography is limited in the assessment of bone marrow edema, a finding that is readily detectable on magnetic resonance imaging (MRI).Dual-energy CT has recently been shown to demonstrate patterns of bone marrow edema similar to corresponding MRI studies. Dual-energy CT may therefore provide a convenient modality for further characterizing acute bony injury when MRI is not readily available. We report our initial experiences of 4 cases with imaging and clinical correlation.

  9. Preoperative imaging in primary hyperparathyroidism. Role of thallium-technetium subtraction scintigraphy

    International Nuclear Information System (INIS)

    Foster, G.S.; Bekerman, C.; Blend, M.J.; Byrom, E.; Pinsky, S.M.

    1989-01-01

    Primary hyperparathyroidism, although often silent clinically, may lead to significant morbidity if it remains untreated. In more than 95% of all cases the cause is a parathyroid adenoma or glandular hyperplasia. Regression of disease follows successful surgical excision of the abnormal parathyroid gland. Recurrent or persistent hyperparathyroidism is most commonly caused by solitary adenomas, which may have an ectopic location. Preoperative localization of lesions may improve postoperative cure rates and decrease morbidity. Thallium T1 201 chloride-technetium Tc 99m pertechnetate subtraction scintigraphy was performed on 15 patients with primary hyperparathyroidism. The sensitivity and specificity for detection of abnormal glands were 90% and 95%, respectively. False-positive or false-negative results were minimize by strict adherence to a protocol and by the use of well-defined diagnostic criteria. Because of the superior sensitivity and specificity, this modality should be the primary imaging method of choice for preoperative evaluation of primary hyperparathyroidism. The relative role of other imaging modalities is also discussed. 31 references

  10. Subtractive Leadership

    Science.gov (United States)

    Larwin, K. H.; Thomas, Eugene M.; Larwin, David A.

    2015-01-01

    This paper introduces a new term and concept to the leadership discourse: Subtractive Leadership. As an extension of the distributive leadership model, the notion of subtractive leadership refers to a leadership style that detracts from organizational culture and productivity. Subtractive leadership fails to embrace and balance the characteristics…

  11. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast.

    Science.gov (United States)

    Patel, B N; Thomas, J V; Lockhart, M E; Berland, L L; Morgan, D E

    2013-02-01

    To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40-77). The mean ± SD lesion contrast values (non-tumoural pancreas - tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 keV was 31 ± 25 HU (p = 0

  12. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Energy-resolved computed tomography: first experimental results

    International Nuclear Information System (INIS)

    Shikhaliev, Polad M

    2008-01-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  14. WE-G-BRF-05: Feasibility of Markerless Motion Tracking Using Dual Energy Cone Beam Computed Tomography (DE-CBCT) Projections

    International Nuclear Information System (INIS)

    Panfil, J; Patel, R; Surucu, M; Roeske, J

    2014-01-01

    Purpose: To compare markerless template-based tracking of lung tumors using dual energy (DE) cone-beam computed tomography (CBCT) projections versus single energy (SE) CBCT projections. Methods: A RANDO chest phantom with a simulated tumor in the upper right lung was used to investigate the effectiveness of tumor tracking using DE and SE CBCT projections. Planar kV projections from CBCT acquisitions were captured at 60 kVp (4 mAs) and 120 kVp (1 mAs) using the Varian TrueBeam and non-commercial iTools Capture software. Projections were taken at approximately every 0.53° while the gantry rotated. Due to limitations of the phantom, angles for which the shoulders blocked the tumor were excluded from tracking analysis. DE images were constructed using a weighted logarithmic subtraction that removed bony anatomy while preserving soft tissue structures. The tumors were tracked separately on DE and SE (120 kVp) images using a template-based tracking algorithm. The tracking results were compared to ground truth coordinates designated by a physician. Matches with a distance of greater than 3 mm from ground truth were designated as failing to track. Results: 363 frames were analyzed. The algorithm successfully tracked the tumor on 89.8% (326/363) of DE frames compared to 54.3% (197/363) of SE frames (p<0.0001). Average distance between tracking and ground truth coordinates was 1.27 +/− 0.67 mm for DE versus 1.83+/−0.74 mm for SE (p<0.0001). Conclusion: This study demonstrates the effectiveness of markerless template-based tracking using DE CBCT. DE imaging resulted in better detectability with more accurate localization on average versus SE. Supported by a grant from Varian Medical Systems

  15. Performance of computed tomography for contrast agent concentration measurements with monochromatic x-ray beams: comparison of K-edge versus temporal subtraction

    International Nuclear Information System (INIS)

    Elleaume, H.; Charvet, A.M.; Corde, S.; Esteve, F.; Le Bas, J.F.

    2002-01-01

    We investigated the performance of monochromatic computed tomography for the quantification of contrast agent concentrations. Two subtraction methods (K-edge subtraction and temporal subtraction) were evaluated and compared theoretically and experimentally in terms of detection limit, precision and accuracy. Measurements were performed using synchrotron x-rays with Lucite phantoms (10 cm and 17.5 cm in diameter) containing iodine or gadolinium solutions ranging from 50 μg ml -1 to 5 mg ml -1 . The experiments were carried out using monochromators developed at the European Synchrotron Radiation Facility (ESRF) medical beamline. The phantoms were imaged either above and below the contrast agent K-edge, or before and after the addition of the contrast agent. Both methods gave comparable performance for phantoms less than 10 cm in diameter. For large phantoms, equivalent to a human head, the temporal subtraction is more suitable for detecting elements such as iodine, keeping a reasonable x-ray dose delivered to the phantom. A good agreement was obtained between analytical calculations, simulations and measurements. The beam harmonic content was taken into account in the simulations. It explains the performance degradation with high contrast agent concentrations. The temporal subtraction technique has the advantage of energy tunability and is well suited for imaging elements, such as iodine or gadolinium, in highly absorbing samples. For technical reasons, the K-edge method is preferable when the imaged organ is moving since the two measurements can be performed simultaneously, which is mandatory for obtaining a good subtraction. (author)

  16. Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans

    Science.gov (United States)

    Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen

    2017-01-01

    Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p  0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce ionizing radiation dose and contrast dose. PMID:28281789

  17. Introduction to the principles of Digital Subtraction Angiography (DSA)

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, P [Medical Physics Department, Nicosia General Hospital, Nicosia (Cyprus)

    1998-12-31

    Medical applications of advanced technology have rapidly become more sophisticated and more widespread. The field of diagnostic imaging is by no means an exception. There has been a number of breathtaking developments in the field of medical imaging in recent years. Today higher quality, greater clarity and more minute precision are considered not advantages but necessities. Hence new developments are concentrated in the data acquisition and image processing based on the microprocessor controlled modules interfaced with state of the art radiological imaging equipment. One such development is the subtraction of x-rays vis a computer for better visualization of blood vessels, cavities of the heart and of the coronary and pulmonary vascular system. This procedure is termed Digital Subtraction Angiography (DSA). (author). 5 refs, 3 figs.

  18. Introduction to the principles of Digital Subtraction Angiography (DSA)

    International Nuclear Information System (INIS)

    Kaplanis, P.

    1997-01-01

    Medical applications of advanced technology have rapidly become more sophisticated and more widespread. The field of diagnostic imaging is by no means an exception. There has been a number of breathtaking developments in the field of medical imaging in recent years. Today higher quality, greater clarity and more minute precision are considered not advantages but necessities. Hence new developments are concentrated in the data acquisition and image processing based on the microprocessor controlled modules interfaced with state of the art radiological imaging equipment. One such development is the subtraction of x-rays vis a computer for better visualization of blood vessels, cavities of the heart and of the coronary and pulmonary vascular system. This procedure is termed Digital Subtraction Angiography (DSA). (author)

  19. Digital chest radiography: an update on modern technology, dose containment and control of image quality

    International Nuclear Information System (INIS)

    Schaefer-Prokop, Cornelia; Venema, Henk W.; Neitzel, Ulrich; Uffmann, Martin; Prokop, Mathias

    2008-01-01

    The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems. (orig.)

  20. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Experimental Validation.

    Science.gov (United States)

    Hyodo, Tomoko; Hori, Masatoshi; Lamb, Peter; Sasaki, Kosuke; Wakayama, Tetsuya; Chiba, Yasutaka; Mochizuki, Teruhito; Murakami, Takamichi

    2017-02-01

    Purpose To assess the ability of fast-kilovolt-peak switching dual-energy computed tomography (CT) by using the multimaterial decomposition (MMD) algorithm to quantify liver fat. Materials and Methods Fifteen syringes that contained various proportions of swine liver obtained from an abattoir, lard in food products, and iron (saccharated ferric oxide) were prepared. Approval of this study by the animal care and use committee was not required. Solid cylindrical phantoms that consisted of a polyurethane epoxy resin 20 and 30 cm in diameter that held the syringes were scanned with dual- and single-energy 64-section multidetector CT. CT attenuation on single-energy CT images (in Hounsfield units) and MMD-derived fat volume fraction (FVF; dual-energy CT FVF) were obtained for each syringe, as were magnetic resonance (MR) spectroscopy measurements by using a 1.5-T imager (fat fraction [FF] of MR spectroscopy). Reference values of FVF (FVF ref ) were determined by using the Soxhlet method. Iron concentrations were determined by inductively coupled plasma optical emission spectroscopy and divided into three ranges (0 mg per 100 g, 48.1-55.9 mg per 100 g, and 92.6-103.0 mg per 100 g). Statistical analysis included Spearman rank correlation and analysis of covariance. Results Both dual-energy CT FVF (ρ = 0.97; P iron. Phantom size had a significant effect on dual-energy CT FVF after controlling for FVF ref (P iron concentrations, the linear coefficients of dual-energy CT FVF decreased and those of MR spectroscopy FF increased (P iron, dual-energy CT FVF led to underestimateion of FVF ref to a lesser degree than FF of MR spectroscopy led to overestimation of FVF ref . © RSNA, 2016 Online supplemental material is available for this article.

  1. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography.

    Science.gov (United States)

    Schwarz, Florian; Nance, John W; Ruzsics, Balazs; Bastarrika, Gorka; Sterzik, Alexander; Schoepf, U Joseph

    2012-09-01

    To evaluate the feasibility of using virtual noncontrast material-enhanced (VNC) computed tomographic (CT) series derived from dual-energy CT imaging studies for coronary artery calcium quantification. This HIPAA-compliant study was institutional review board approved; all patients provided written informed consent. Thirty-six patients prospectively underwent noncontrast-enhanced CT calcium scoring followed by coronary CT angiography performed in dual-energy mode. By using different reconstruction algorithms, three VNC series were generated and evaluated for noise and efficiency of virtual iodine removal. Two readers independently quantified calcium on VNC images and true noncontrast-enhanced conventional calcium scoring series. A leave-one-out cross validation was used to assess the accuracy of calcium score prediction from VNC series by means of linear regression. CT value histograms of the VNC series closely resembled the profile in the true noncontrast-enhanced series. There was excellent correlation between calcium volumes on the VNC series and true noncontrast-enhanced series on a per-patient (r = 0.94, P VNC series was excellent (r = 0.82). Multiethnic Study of Atherosclerosis rankings that were derived from the predicted calcium scores also showed excellent agreement (intraclass correlation coefficient = 0.909). Coronary artery calcium identification and quantification based on dual-energy coronary CT angiographic studies may obviate the need for dedicated CT calcium scoring studies. © RSNA, 2012

  2. Clinical usefulness of subtraction scintigraphy of the liver with Ga-67-citrate and Tc-99m-colloid

    International Nuclear Information System (INIS)

    Oyamada, H.; Terui, S.; Nagaiwa, K.; Kawai, H.; Fukukita, H.

    1983-01-01

    Subtraction scintigraphy of the liver with Ga-67-citrate and Tc-99m-colloid was performed for the radionuclide image diagnosis of intrahepatic masses, especially hepatoma. In this method the Tc-99m image was subtracted from the Ga-67 image. After normalizing both images, 4 different factors (0.6, 0.8, 1.0, and 1.2) were applied to the Tc-99m image before the subtraction. Finally, 4 subtraction images with different contrasts were obtained in one X-ray film. This method was found to be very useful in the assessment of intrahepatic focal accumulation of Ga-67, especially in cases with hepatoma, because it eliminated the uncertainty in the former method in which only visual judgment was done

  3. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    Energy Technology Data Exchange (ETDEWEB)

    Lell, Michael M., E-mail: Michael.lell@uk-erlangen.de [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Hinkmann, Fabian [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Nkenke, Emeka [Department of Maxillofacial Surgery, University Erlangen (Germany); Schmidt, Bernhard [Bayer-Schering Healthcare, Berlin (Germany); Seidensticker, Peter [Siemens Healthcare, CT-Division, Forchheim (Germany); Kalender, Willi A. [Institute of Medical Physics, University Erlangen (Germany); Uder, Michael [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Achenbach, Stephan [Department of Cardiology, University Erlangen (Germany)

    2010-11-15

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations <10%, 27 segments (3.1%) lumen alterations >10% resulting in a total luminal reduction <50%, 17 segments (2%) lumen alterations of more than 10% resulting in a total luminal reduction >50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously

  4. Vertebral morphometry by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Boyanov, M.

    2002-01-01

    Vertebral fractures are a key feature of overt osteoporosis. Different X-ray morphometric techniques have been developed for quantification of changes in vertebral body shape. In recent years, a new method was implemented based on dual-energy X-ray absorptiometry. Morphometric X-ray absorptiometry, MXA, is a source of lower radiation and there is no image distortion. Several aspects of its application are under heavy discussion: image quality, accuracy and precision, reference databases, age changes in vertebral shape. The differential diagnosis of vertebral fracture/deformity is difficult. MXA has prove its value in large epidemiological studies on prevalence of vertebral deformities, as well in assessing the effects of different diseases and medications on vertebral body architecture. MXA is a promising method for future research and clinical work. (author)

  5. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  6. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites

    Science.gov (United States)

    Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-03-01

    Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.

  7. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring.

    Science.gov (United States)

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  8. Imaging of the ventricular septal wall and the portal vein by digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kyoichi; Harashima, Haruhiko; Yamada, Hiromi; Hiraishi, Takahisa; Mikami, Fumio [National Medical Center of Hospital, Tokyo (Japan)

    1983-06-01

    Digital subtraction angiography (DSA) was performed in 2 cases of hypertrophic cardiomyopathy and 2 cases of portal vein disorder. In hypertrophic cardiomyopathy, DSA with the infusion of isopaque 370 at the speed of 5 to 7 ml/sec produced the image of the ventricular septal wall, showing a small ejection fraction. Of portal vein disorders, DSA revealed the portal vein and was helpful in diagnosing tumoral thrombosis of the portal vein in a case of liver carcinoma and portal hypertension.

  9. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    International Nuclear Information System (INIS)

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-01-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases

  10. Single- and dual-energy quantitative CT adjacent to acetabular prosthetic components

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    2017-01-01

    and to compare BMD measurements in single and dual energy CT (SECT and DECT). Methods and Materials: 10 male patients with uncemented hip prosthetics were scanned and rescanned using 120 kVp SECT and DECT with virtual monochromatic images reconstructed at 130 keV. Hemispherical ROIs were defined slice...... that the intraobserver agreement of the scan modes is equal. BMD cannot be measured interchangeably with SECT and DECT....

  11. Dual-tree complex wavelet for medical image watermarking

    International Nuclear Information System (INIS)

    Mavudila, K.R.; Ndaye, B.M.; Masmoudi, L.; Hassanain, N.; Cherkaoui, M.

    2010-01-01

    In order to transmit medical data between hospitals, we insert the information for each patient in the image and its diagnosis, the watermarking consist to insert a message in the image and try to find it with the maximum possible fidelity. This paper presents a blind watermarking scheme in wavelet transform domain dual tree (DTT), who increasing the robustness and preserves the image quality. This system is transparent to the user and allows image integrity control. In addition, it provides information on the location of potential alterations and an evaluation of image modifications which is of major importance in a medico-legal framework. An example using head magnetic resonance and mammography imaging illustrates the overall method. Wavelet techniques can be successfully applied in various image processing methods, namely in image de noising, segmentation, classification, watermarking and others. In this paper we discussed the application of dual tree complex wavelet transform (D T-CWT), which has significant advantages over classic discrete wavelet transform (DWT), for certain image processing problems. The D T-CWT is a form of discreet wavelet transform which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The main part of the paper is devoted to profit the exceptional quality for D T-CWT, compared to classical DWT, for a blind medical image watermarking, our schemes are using for the performance bivariate shrinkage with local variance estimation and are robust of attacks and favourably preserves the visual quality. Experimental results show that embedded watermarks using CWT give good image quality and are robust in comparison with the classical DWT.

  12. Meta-analysis of dual-energy computed tomography virtual non-calcium imaging to detect bone marrow edema.

    Science.gov (United States)

    Li, Mou; Qu, Yali; Song, Bin

    2017-10-01

    This meta-analysis aimed to evaluate the accuracy of dual-energy CT (DECT) virtual non-calcium (VNC) imaging for the detection of bone marrow edema (BME). A systematic literature search up to March 2017 was performed to find relevant original studies. Two reviewers independently selected studies, assessed literature quality, and extracted data. Pooled sensitivity, specificity, area under receiver operating characteristic (AUROC) curve, and other measures of DECT accuracy for detecting BME were calculated using random effects models. Risk of heterogeneity was assessed for the appropriateness of meta-analysis. Fourteen studies involving 2205 regions of vertebrae, hips, knees, and ankles were included. To evaluate the accuracy of BME detection using DECT, calculations were performed to obtain a pooled sensitivity of 0.812 (95% confidence interval [CI], 0.780-0.841) and specificity of 0.951 (95% CI, 0.940-0.960). The AUROC value was 0.9635. The major potential cause of heterogeneity was bone position. No significant publication bias was present. DECT VNC imaging gives very good diagnostic performance for BME detection and will likely be an important and common modality for acute assessment in the future. Copyright © 2017. Published by Elsevier B.V.

  13. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  14. A novel dual energy method for enhanced quantitative computed tomography

    Science.gov (United States)

    Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.

    2018-01-01

    Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.

  15. Optimal Scanning Protocols for Dual-Energy CT Angiography in Peripheral Arterial Stents: An in Vitro Phantom Study

    Directory of Open Access Journals (Sweden)

    Abdulrahman Almutairi

    2015-05-01

    Full Text Available Objective: To identify the optimal dual-energy computed tomography (DECT scanning protocol for peripheral arterial stents while achieving a low radiation dose, while still maintaining diagnostic image quality, as determined by an in vitro phantom study. Methods: Dual-energy scans in monochromatic spectral imaging mode were performed on a peripheral arterial phantom with use of three gemstone spectral imaging (GSI protocols, three pitch values, and four kiloelectron volts (keV ranges. A total of 15 stents of different sizes, materials, and designs were deployed in the phantom. Image noise, the signal-to-noise ratio (SNR, different levels of adaptive statistical iterative reconstruction (ASIR, and the four levels of monochromatic energy for DECT imaging of peripheral arterial stents were measured and compared to determine the optimal protocols. Results: A total of 36 scans with 180 datasets were reconstructed from a combination of different protocols. There was a significant reduction of image noise with a higher SNR from monochromatic energy images between 65 and 70 keV in all investigated preset GSI protocols (p < 0.05. In addition, significant effects were found from the main effect analysis for these factors: GSI, pitch, and keV (p = 0.001. In contrast, there was significant interaction on the unstented area between GSI and ASIR (p = 0.015 and a very high significant difference between keV and ASIR (p < 0.001. A radiation dose reduction of 50% was achieved. Conclusions: The optimal scanning protocol and energy level in the phantom study were GSI-48, pitch value 0.984, and 65 keV, which resulted in lower image noise and a lower radiation dose, but with acceptable diagnostic images.

  16. Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT

    Directory of Open Access Journals (Sweden)

    Baojun Li

    2013-01-01

    Full Text Available Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material density images (e.g., water and iodine at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc with a maximum of 58.7% (or 8.97 mg/cc in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc with a maximum of 7.6% (or 1.31 mg/cc. The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion. The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm.

  17. Noise-optimized virtual monoenergetic images and iodine maps for the detection of venous thrombosis in second-generation dual-energy CT (DECT): an ex vivo phantom study.

    Science.gov (United States)

    Bongers, Malte N; Schabel, Christoph; Krauss, Bernhard; Tsiflikas, Ilias; Ketelsen, Dominik; Mangold, Stefanie; Claussen, Claus D; Nikolaou, Konstantin; Thomas, Christoph

    2015-06-01

    Deep venous thrombosis (DVT) can be difficult to detect using CT due to poor and heterogeneous contrast. Dual-energy CT (DECT) allows iodine contrast optimization using noise-optimized monoenergetic extrapolations (MEIs) and iodine maps (IMs). Our aim was to assess whether MEI and IM could improve the delineation of thrombotic material within iodine-enhanced blood compared to single-energy CT (SECT). Six vessel phantoms, including human thrombus and contrast media-enhanced blood and one phantom without contrast, were placed in an attenuation phantom and scanned with DECT 100/140 kV and SECT 120 kV. IM, virtual non-contrast images (VNC), mixed images, and MEI were calculated. Attenuation of thrombi and blood were measured. Contrast and contrast-to-noise-ratios (CNRs) were calculated and compared among IM, VNC, mixed images, MEI, and SECT using paired t tests. MEI40keV and IM showed significantly higher contrast and CNR than SE120kV from high to intermediate iodine concentrations (contrast:pMEI40keV VNC images showed significantly higher contrast and CNR than SE120kV with inverted contrasts (contrast:pMEI190keV < 0.008,pVNC < 0.002;CNR:pMEI190keV < 0.003,pVNC < 0.002). Noise-optimized MEI and IM provide significantly higher contrast and CNR in the delineation of thrombosis compared to SECT, which may facilitate the detection of DVT in difficult cases. • Poor contrast makes it difficult to detect thrombosis in CT. • Dual-energy-CT allows contrast optimization using monoenergetic extrapolations (MEI) and iodine maps (IM). • Noise-optimized-MEI and IM are significantly superior to single-energy-CT in delineation of thrombosis. • Noise-optimized-MEI and IM may facilitate the detection of deep vein thrombosis.

  18. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications

    International Nuclear Information System (INIS)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M.N.; Fabbri, A.; Pellegrini, R.; Frantellizzi, V.; Vincentis, G. De; Pani, R.

    2017-01-01

    The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019 . The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction.

  19. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications

    Science.gov (United States)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.

    2017-01-01

    The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019. The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction.

  20. Proximal caries detection using digital subtraction radiography in the artificial caries activity model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hoon; Lee, Gi Ja; Choi, Sam Jin; Park, Young Ho; Kim, Kyung Soo; Jin, Hyun Seok; Hong, Kyung Won; Oh, Berm Seok; Park, Hun Kuk [Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Choi, Yong Suk; Hwang, Eui Hwan [Department of Oral and Maxillofacial Radiology, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    2009-03-15

    The purpose of the experiment was to evaluating the diagnostic ability of dental caries detection using digital subtraction in the artificial caries activity model. Digital radiographs of five teeth with 8 proximal surfaces were obtained by CCD sensor (Kodak RVG 6100 using a size no.2). The digital radiographic images and subtraction images from artificial proximal caries were examined and interpreted. In this study, we proposed novel caries detection method which could diagnose the dental proximal caries from single digital radiographic image. In artificial caries activity model, the range of lesional depth was 572-1,374 {mu}m and the range of lesional area was 36.95-138.52 mm{sup 2}. The lesional depth and the area were significantly increased with demineralization time (p<0.001). Furthermore, the proximal caries detection using digital subtraction radiography showed high detection rate compared to the proximal caries examination using simple digital radiograph. The results demonstrated that the digital subtraction radiography from single radiographic image of artificial caries was highly efficient in the detection of dental caries compared to the data from simple digital radiograph.

  1. Proximal caries detection using digital subtraction radiography in the artificial caries activity model

    International Nuclear Information System (INIS)

    Park, Jong Hoon; Lee, Gi Ja; Choi, Sam Jin; Park, Young Ho; Kim, Kyung Soo; Jin, Hyun Seok; Hong, Kyung Won; Oh, Berm Seok; Park, Hun Kuk; Choi, Yong Suk; Hwang, Eui Hwan

    2009-01-01

    The purpose of the experiment was to evaluating the diagnostic ability of dental caries detection using digital subtraction in the artificial caries activity model. Digital radiographs of five teeth with 8 proximal surfaces were obtained by CCD sensor (Kodak RVG 6100 using a size no.2). The digital radiographic images and subtraction images from artificial proximal caries were examined and interpreted. In this study, we proposed novel caries detection method which could diagnose the dental proximal caries from single digital radiographic image. In artificial caries activity model, the range of lesional depth was 572-1,374 μm and the range of lesional area was 36.95-138.52 mm 2 . The lesional depth and the area were significantly increased with demineralization time (p<0.001). Furthermore, the proximal caries detection using digital subtraction radiography showed high detection rate compared to the proximal caries examination using simple digital radiograph. The results demonstrated that the digital subtraction radiography from single radiographic image of artificial caries was highly efficient in the detection of dental caries compared to the data from simple digital radiograph.

  2. Three-dimensional image reconstruction using rotational digital subtraction technique: the initial experience of the clinical application

    International Nuclear Information System (INIS)

    Ouyang Zhongnan; Tang Jun; He Jianjun; Lu Xiaohe; Xun Yanping

    2002-01-01

    Objective: To evaluate the benefit of three-dimensional (3D) reconstruction images with rotational digital subtraction technique for the clinical applications. Methods: Conventional two-dimensional digital substraction angiography (2D DSA) was obtained on A-P and lateral view. Three-dimensional digital subtraction angiography (3D DSA) images were obtained by reconstruction of a rotational acquisition on a C-arm (LCV +, GE Medical Systems) spinning at 40 degrees per second. 53 cases of cerebral angiographies were performed (32 men and 21 women; the age ranged from 19 to 72 years, mean 46.3 years). Results: In this series of 53 cases of cerebral angiographies, 5 cases of arteriovenous malformation were all correctly diagnosed by 3D DSA and 2D DSA. Seven cases were misdiagnosed as intracranial aneurysms at conventional 2D DSA but confirmed to be kinking of the vessel by 3D DSA. 41 cases were confirmed to be intracranial aneurysms. Of the 41 cases, 5 cases were diagnosed as normal at 2D DSA but confirmed to be intracranial aneurysms at 3D DSA. The total consistency rate of 3D DSA and 2D DSA for the diagnosis of intracranial aneurysm is 77.4% (41/53). The consistent test shows that there was consistency between the two modalities (chi-square test, χ 2 = 5.267, P < 0.05). 29 cases were treated with endovascular coil embolization. Among them only 3 cases of the aneurysm's neck could be best visualized by 2D DSA but 29 cases by 3D DSA. Conclusion: 3D reconstruction images with rotational digital subtraction technique is a useful tool to study the vascular diseases using less contrast agent and a lower radiation dose and shortening the examination process. It is replenishment for conventional 2D DSA. This technique enables better diagnosis for intracranial vascular lesion and visualization of complex vascular relationships and structures. It is valuable for surgical planning and interventional procedure

  3. Physical principles of cardiac digital subtraction angiography

    International Nuclear Information System (INIS)

    Buonocore, E.; Pavlicek, W.

    1986-01-01

    Advances in the applications of computers with standard radiologic equipment have resulted in the development of electronic, or so-called ''film-less'' imaging. This technique, discussed by the authors, has become of particular value in the visualization of the central vascular system and has become known as digital subtraction angiography (DSA). Commercial products have become increasingly available and are capable of converting T.V. signals, obtained by conventional fluorography, to a computed array of digital values. Addition, subtraction, and averaging of this data, result in images with adequate signal-to-noise ratios that achieve detection of low concentrations of contrast media not possible with conventional screen film techniques. Computer subtraction of unnecessary background information improves the conspicuity of the opacified vessels to permit detection of vascular structures containing a concentration of no more than 1-3 percent of contrast media. This improved visualization is possible even with intravenous peripheral injections or reduced amounts of contrast media given intraarterially. With either method of contrast media administration, DSDA has become an excellent means of anatomic demonstration of the heart and great vessels with decreased morbidity and at lower cost

  4. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  5. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

    Science.gov (United States)

    Kanamori, Katsuhiro

    2016-07-01

    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  6. Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT.

    Science.gov (United States)

    Yunaga, Hiroto; Ohta, Yasutoshi; Kaetsu, Yasuhiro; Kitao, Shinichiro; Watanabe, Tomomi; Furuse, Yoshiyuki; Yamamoto, Kazuhiro; Ogawa, Toshihide

    2017-07-01

    Multi-detector-row computed tomography angiography (MDCTA) plays an important role in the assessment of patients with suspected coronary artery disease. However, MDCTA tends to overestimate stenosis in calcified coronary artery lesions. The aim of our study was to evaluate the diagnostic performance of calcification-suppressed material density (MD) images produced by using a single-detector single-source dual-energy computed tomography (ssDECT). We enrolled 67 patients with suspected or known coronary artery disease who underwent ssDECT with rapid kilovolt-switching (80 and 140 kVp). Coronary artery stenosis was evaluated on the basis of MD images and virtual monochromatic (VM) images. The diagnostic performance of the two methods for detecting coronary artery disease was compared with that of invasive coronary angiography as a reference standard. We evaluated 239 calcified segments. In all the segments, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting significant stenosis were respectively 88%, 88%, 75%, 95% and 88% for the MD images, 91%, 71%, 56%, 95% and 77% for the VM images. PPV was significantly higher on the MD images than on the VM images (P < 0.0001). Calcification-suppressed MD images improved PPV and diagnostic performance for calcified coronary artery lesions. • Computed tomography angiography tends to overestimate stenosis in calcified coronary artery. • Dual-energy CT enables us to suppress calcification of coronary artery lesions. • Calcification-suppressed material density imaging reduces false-positive diagnosis of calcified lesion.

  7. The value of attenuation correction in dual-head coincidence imaging

    International Nuclear Information System (INIS)

    Shi Yiping; Huang Gang; Liu Jianjun

    2004-01-01

    Objective: To elucidate the value of attenuation correction (AC) in dual-head coincidence imaging by comparison of phantom and patients images with and without AC. Methods: We used a 20-cm-diameter cylindrical phantom, which contains four spheres of inside diameters of 1.4-2.9 cm for phantom study (1.4 cm, n=2; 2.0 cm, n=l; 2.9 cm, n=1). The axial length of the phantom was 30 cm. The wall thickness of the spheres was 1 mm. Both the phantom and spheres were filled with a solution that contained 18F-FDG. Three acquisitions were performed with the concentrations adjusted to provide a ratio of sphere-to-background activity of 3:1, 5:1 and 10:1. There were 38 patients (30 men and 8 women, age range 31 to 78 years) with suspected lung cancer included in clinical study. All patients were performed pneumonectomies and verified by histopathology. The histological tumor types were adenocarcinoma (n=11), squamous carcinoma (n=8), adenosquamous carcinoma (n=4), large cell carcinoma (n=2), neuroendocrine carcinoma (n=l), metastatic carcinoma (n=4), bronchiolo-alveolar carcinoma (n=1) and benign mass (n=7). The patients were fasted for at least 6 hours before the start of the study. Sixty minutes after intravenous administration of 111-185MBq (3-5mCi) 18F-FDG, emission scanning was performed using a dual-head gamma camera with a 128x128x16 matrix, with energy windows of 511 keV, 180 degree rotation, 32 steps and an acquisition time of 40 s per step. Subsequently, transmission scanning was performed with energy windows of 662 keV, 360 degree rotation, 96 steps and an acquisition time of 2s per step. The coincidence gamma camera imaging data were reconstructed by MCD iterative Methods with a Wiener filter (noise factor 0.75, pixel size 3.95 mm 3 ). Visual analysis and semiquantitative analysis were performed in AC and NAC images. For visual interpretation, a positive lesion was defined as any activity above local background. The count ratio of tumor to surrounded normal tissue (T

  8. A Theoretical and Experimental Study of the Subtraction of Two Scintigraphic Images - As Applied to Visualization of the Pancreas; Etude Theorique et Experimentale de la Soustraction de Deux Images Scintigraphiques

    Energy Technology Data Exchange (ETDEWEB)

    Desgrez, A.; Razafindramamba, V.; Saint-Laurent, J. de; Kellershohn, C. [CEA, Service Hospitalier Frederic Joliot, Orsay (France)

    1969-05-15

    Some scintigraphic studies are limited because the tissue being depicted is not selective with respect to the radioactive product available. For example, the radioactivity of the circulating blood interferes with mercury scanning of bucco-pharyngeal tumours. Scintigraphy of the pancreas is likewise impeded by localization of selenomethionine in the liver. Similarly, certain types of liver incorporation impair the visualization of insufficiency in the right kidney. One solution to this problem is to use two different labelled compounds to produce two images and then subtract one from the other so as to separate out the tissue to be depicted. The paper deals with the various problems involved in such subtraction. For example, exact spatial coincidence ofthedata to be subtracted can be ensured only by simultaneous recording of the two images; aconsecutive recording, even if it is fast, may be detrimental. The operation often consists in a double technique: suppression of the unwanted tissue by subtraction and amplification of the contrast between the tissue under investigation and residual background noise. These two operations, subtraction and amplification, relate to variable magnitudes; the resolution of the final image is thus a function of certain statistical parameters, which are also discussed. In studies carried out on the pancreas, attention is paid to the respective advantages and conditions of spectrometric separation of the various products which can be used for subtraction; the value of labelled rose bengal, which can also be used for eliminating certain intestinal loops, is stressed. A description is given of two types of apparatus which can be used in making the subtraction. The first and cheaper device involves storing the data obtained on four-track magnetic tape; the second and more rapid method utilizes the memory of a 4096-channel analyser. With both of these devices it is possible to make several subtractions during a single examination and the

  9. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  10. Dual-energy computed tomography in patients with cutaneous malignant melanoma: Comparison of noise-optimized and traditional virtual monoenergetic imaging.

    Science.gov (United States)

    Martin, Simon S; Wichmann, Julian L; Weyer, Hendrik; Albrecht, Moritz H; D'Angelo, Tommaso; Leithner, Doris; Lenga, Lukas; Booz, Christian; Scholtz, Jan-Erik; Bodelle, Boris; Vogl, Thomas J; Hammerstingl, Renate

    2017-10-01

    The aim of this study was to investigate the impact of noise-optimized virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with cutaneous malignant melanoma at thoracoabdominal dual-energy computed tomography (DECT). Seventy-six patients (48 men; 66.6±13.8years) with metastatic cutaneous malignant melanoma underwent DECT of the thorax and abdomen. Images were post-processed with standard linear blending (M_0.6), traditional virtual monoenergetic (VMI), and VMI+ technique. VMI and VMI+ images were reconstructed in 10-keV intervals from 40 to 100keV. Attenuation measurements were performed in cutaneous melanoma lesions, as well as in regional lymph node, subcutaneous and in-transit metastases to calculate objective signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Five-point scales were used to evaluate overall image quality and lesion delineation by three radiologists with different levels of experience. Objective indices SNR and CNR were highest at 40-keV VMI+ series (5.6±2.6 and 12.4±3.4), significantly superior to all other reconstructions (all Ptraditional VMI in patients with cutaneous malignant melanoma at thoracoabdominal DECT. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Digital subtraction angiography in the assessment of cardiovascular disease

    International Nuclear Information System (INIS)

    Harrington, D.P.; Boxt, L.M.

    1985-01-01

    Digital subtraction angiography (DSA) is a new radiographic method for evaluating the cardiovascular system. It represents another in a continuing series of computer-assisted diagnostic imaging modalities. The advantages of this technique are its relatively noninvasive nature combined with diagnostically acceptable angiographic images of a variety of cardiovascular structures. Major clinical applications of DSA include its use in imaging of localized regions of peripheral arterial disease and as a screening procedure in evaluating extracranial carotid and vertebral artery disease and renovascular hypertension. Cardiac applications of DSA include assessment of ventricular function, recognition and quantification of intracardiac shunts, visualization of coronary artery bypass grafts, and the study of complex congenital cardiac malformations. Digital subtraction angiography may also be used to evaluate intracranial aneurysms and vascular tumors

  12. Dynamic subtraction magnetic resonance venography: a new real time imaging technique for the detection of dural sinus thrombosis

    International Nuclear Information System (INIS)

    Mandel, C.; Birchall, D.; Connolly, D.; English, P.

    2002-01-01

    Full text: Requests for imaging suspected dural sinus thrombosis are increasing. Conventional magnetic imaging (MRI) and magnetic resonance venography (MRV) are often used to detect venous sinus thrombosis, but these techniques are prone to technical problems. Catheter angiography is sometimes required as the final arbiter in the evaluation of the dural venous sinuses. Recent technical developments in MR scanning have allowed the development of dynamic subtraction MRA. This technique is beginning to be applied to the assessment of intracranial vascular malformations. We have recently applied the technique to the imaging of the dural venous sinuses, and describe our early experience with the technique. Imaging was performed on a Philips Intera 1.5T scanner with gradient strength 33 mT and slew rate 130 T/m/sec. T1-weighed fast field echo imaging was performed (flip angle 400, TR 1.5 msec) during bolus injection of gadolinium (5ml gadolinium followed by a 10 ml saline chaser) at 5-6 ml/sec using a MRI-compatible pump injector. Slice thickness depended on the plane of acquisition, but was between 100- 150 mm. Images were acquired in three orthogonal projections in each case, using 3 separate contrast injections. Mask images were obtained before the arrival of contrast, and subtracted reconstructed images were obtained in real time, providing a dynamic display of the intracranial circulation including the dural venous sinuses. Frame rate was 1 frame per 0.8 seconds. We will present dynamic MR angiographic images in a number of patients. Normal appearances and those seen in venous sinus thrombosis will be presented in the video display. Dynamic MR venography is a new technique for the imaging of dural venous sinuses. In our practice, it has proved a valuable adjunct for the imaging of patients with dural venous sinus thrombosis. Copyright (2002) Blackwell Science Pty Ltd

  13. Virtual non-contrast of liver from dual energy CT: a clinical application

    International Nuclear Information System (INIS)

    Qian Yu'e; Hu Hongjie; Zhang Qiaowei; Hu Peng; Shen Guohui

    2011-01-01

    Objective: To assess the virtual non-contrast liver CT from dual-energy CT for the clinical application. Methods: In total, 51 patients were included in the study, and all patients underwent multi-phase liver CT on a dual-source CT. The True non-contrast liver CT (TNCT) was performed in a single-energy acquisition mode, but the arterial and portovenous liver CT (VNCT) were performed in a dual- energy mode of 110 kV and 140 kV respectively. The virtual non-contrast CT images were derived from the arterial data using liver virtual non-contrast software. Between the true non-contrast CT and the virtual non- contrast CT, the image quality, mean CT HU values in the liver and muscle, signal to noise (SNR), the radiation dose of volume CT dose index (CTDIvol) and dose length product (DLP) in a single phase and total examination were compared with t test. Results: There was no significant difference in the detection of' liver lesions between TNCT and VNCT. The CT Hu values of muscle on both TNCT and VNCT images were almost equal. The CT HU values of liver on VNCT images were higher than that on TNCT images and the difference was significant [61.32±6.04 vs. (56.85±4.80) HU, t=-3.927, P<0.01]. There was also significant difference of SNR between TNCT (11.28±2.78) and VNCT (8.65±1.56) images (t=-5.590, P<0.01). The CTDIvol and DLP of single phase were (7.07±0.85) mGy and (155.11± 22.52) mGy · cm respectively in TNCT, and (7.05±0.87) mGy and (154.48±23.12) mGy · cm in VNCT. The total CTDIvol and DLP in VNCT were (14.35±1.66) mGy and (313.91±45.08) mGy · cm respectively, but in TNCT the total CTDIvol and DLP reached (21.43±2.46) mGy and (469.02± 66.22) mGy · cm. The difference of CTDIvol and DLP in single phase between TNCT and VNCT showed no significance, but the total CTDIvol and DLP were significantly different (t=16.168 and 13.132, P< 0.01). Conclusion: With the consequent reduction in radiation dose, the VNCT can replace TNCT as an imaging protocol in multi

  14. Optimisation of window settings for traditional and noise-optimised virtual monoenergetic imaging in dual-energy computed tomography pulmonary angiography

    International Nuclear Information System (INIS)

    D'Angelo, Tommaso; ''G. Martino'' University Hospital, Messina; Bucher, Andreas M.; Lenga, Lukas; Arendt, Christophe T.; Peterke, Julia L.; Martin, Simon S.; Leithner, Doris; Vogl, Thomas J.; Wichmann, Julian L.; Caruso, Damiano; University Hospital, Latina; Mazziotti, Silvio; Blandino, Alfredo; Ascenti, Giorgio; University Hospital, Messina; Othman, Ahmed E.

    2018-01-01

    To define optimal window settings for displaying virtual monoenergetic images (VMI) of dual-energy CT pulmonary angiography (DE-CTPA). Forty-five patients who underwent clinically-indicated third-generation dual-source DE-CTPA were retrospectively evaluated. Standard linearly-blended (M 0 .6), 70-keV traditional VMI (M70), and 40-keV noise-optimised VMI (M40+) reconstructions were analysed. For M70 and M40+ datasets, the subjectively best window setting (width and level, B-W/L) was independently determined by two observers and subsequently related with pulmonary artery attenuation to calculate separate optimised values (O-W/L) using linear regression. Subjective evaluation of image quality (IQ) between W/L settings were assessed by two additional readers. Repeated measures of variance were performed to compare W/L settings and IQ indices between M 0 .6, M70, and M40+. B-W/L and O-W/L for M70 were 460/140 and 450/140, and were 1100/380 and 1070/380 for M40+, respectively, differing from standard DE-CTPA W/L settings (450/100). Highest subjective scores were observed for M40+ regarding vascular contrast, embolism demarcation, and overall IQ (all p<0.001). Application of O-W/L settings is beneficial to optimise subjective IQ of VMI reconstructions of DE-CTPA. A width slightly less than two times the pulmonary trunk attenuation and a level approximately of overall pulmonary vessel attenuation are recommended. (orig.)

  15. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  16. Dynamic contrast-enhanced subtraction MR angiography in intracranial vascular abnormalities

    International Nuclear Information System (INIS)

    Takano, K.; Ono, H.; Utsunomiya, H.; Okazaki, M.; Tanaka, A.

    1999-01-01

    We present our clinical experience with dynamic contrast-enhanced MR angiography (MRA) with subtraction for assessing intracranial vascular abnormalities. Ten patients with various cerebrovascular disorders underwent dynamic contrast-enhanced MRA on a 1.0-T system. Thirty sections (2 mm) were acquired in 29-30 s. Maximum intensity projection images and subtracted source images were compared with those obtained by conventional angiography. In all cases, the presence or absence of abnormalities in the targeted vessels, as well as the morphology of the sagittal sinuses, was clearly visualized as in conventional angiography, without any obstructions such as hyperintense hematomas or thrombi, or intraluminal turbulence. Although the temporal and spatial resolutions with current hardware are insufficient, these preliminary results suggest that dynamic contrast-enhanced MRA with subtraction may be useful for assessing vascular lesions with hemorrhage or thrombus, and the dural sinuses. (orig.)

  17. Coherent multiscale image processing using dual-tree quaternion wavelets.

    Science.gov (United States)

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  18. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring

    OpenAIRE

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    Objective To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. Materials and Methods This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated V...

  19. A study on computer-aided diagnosis based on temporal subtraction of sequential chest radiographs (in Japanese)

    International Nuclear Information System (INIS)

    Kano, Akiko

    2001-01-01

    An automated digital image subtraction technique for use with pairs of temporally sequential chest radiographs has been developed to aid radiologists in the detection of interval changes. Automated image registration based on nonlinear geometric warping is performed prior to subtraction in order to deal with complicated radiographic misregistration. Processing includes global matching, to achieve rough registration between the entire lung fields in the two images, and local matching, based on a cross-correlation method, to determine local shift values for a number of small regions. A proper warping of x,y-coordinates is determined by fitting two-dimensional polynomials to the distributions of the shift values. One image is warped and then subtracted from the other. The resultant subtraction images were able to enhance the conspicuity of various types of interval changes. Improved global matching based on a weighted template matching method achieved robust registration even with photofluorographs taken in chest mass screening programs, which had previously presented us with a relatively large number of poor-registration images. The new method was applied to 129 pairs of chest mass screening images, and offered registration accuracy as good as manual global matching. An observer test using 114 cases including 57 lung cancer cases presented better sensitivity and specificity on average compared to conventional comparison readings. In addition, newly developed image processing that eliminates the rib edge artifacts in subtraction images was applied to 26 images having pathological interval changes; results showed the potential for application to automated schemes for the detection of interval change patterns. With its capacity to improve the diagnostic accuracy of chest radiographs, the chest temporal subtraction technique promises to become an important element of computer-aided diagnosis (CAD) systems

  20. The study of myocardial ischemic quality with weighted-subtraction-bull's-eye analysis

    International Nuclear Information System (INIS)

    Chen Wuduan; Tian Jiahe; Hou Qingtian

    1993-01-01

    Weighted-Subtraction-Bull's-eye analysis was studied in 33 normal subjects and 58 patients with coronary artery disease after dipyridamole 99m Tc-MIBI myocardial SPECT imaging. Two kinds of Bull's-eye were produced: (1) subtract rest from 1.2 times dipyridamole from 1.2 times rest Bull's-eye; (2) subtract dipyridamole Bull's-eye. The results showed that the weighted-subtraction-Bull's-eye could clearly displayed the location and puality of ischemic myocardium. And also 74% segments showed so called combined ischemic i.e the blood perfusion reduced, increased and sustained simultaneously after dipyridamole. Therefore weighted-subtraction-Bull's-eye analysis had provided a new method for determination of the quality of ischemia

  1. Dual-source dual-energy CT for the differentiation of urinary stone composition: preliminary study

    International Nuclear Information System (INIS)

    Yang Qifang; Zhang Wanshi; Meng Limin; Shi Huiping; Wang Dong; Bi Yongmin; Li Xiangsheng; Fang Hong; Guo Heqing; Yan Jingmin

    2011-01-01

    Objective: To evaluate dual-source dual-energy CT (DSCT) for the differentiation of' urinary stone composition in vitro. Methods: Ninety-seven urinary stones were obtained by endoscopic lithotripsy and scanned using dual-source dual-energy CT. The stones were divided into six groups according to infrared spectroscopy stone analysis: uric acid (UA) stones (n=10), cystine stones (n=5), struvite stones (n=6), calcium oxalate (CaOx) stones (n=22), mixed UA stones (n=7) and mixed calcium stones (n=47). Hounsfield units (HU) of each stone were recorded for the 80 kV and the 140 kV datasets by hand-drawing method. HU difference, HU ratio and dual energy index (DEI) were calculated and compared among the stone groups with one-way ANOVA. Using dual energy software to determine the composition of all stones, results were compared to infrared spectroscopy analysis. Results: There were statistical differences in HU difference [(-17±13), (229±34), (309±45), (512±97), (201±64) and (530±71) HU respectively], in HU ratio (0.96±0.03, 1.34±0.04, 1.41±0.03, 1.47±0.03, 1.30±0.07, and 1.49±0.03 respectively), and DEI (-0.006±0.004, 0.064±0.007, 0.080± 0.007, 0.108±0.011, 0.055±0.014 and 0.112±0.008 respectively) among different stone groups (F= 124.894, 407.028, 322.864 respectively, P<0.01). There were statistical differences in HU difference, HU ratio and DEI between UA stones and the other groups (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between CaOx or mixed calcium stones and the other four groups (P< 0.01). There was statistical difference in HU ratio between cystine and struvite stones (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between struvite and mixed UA stones (P< 0.05). Dual energy software correctly characterized 10 UA stones, 4 cystine stones, 22 CaOx stones and 6 mixed UA stones. Two struvite stones were considered to contain cystine. One cystine stone, 1 mixed UA stone, 4

  2. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, Konstantin; Wintersperger, Bernd J.; Rist, Carsten; Buhmann, Sonja; Reiser, Maximilian F.; Becker, Christoph R.; Leber, Alexander W.; Ziegler, Franz von; Knez, Andreas

    2006-01-01

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  3. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    Science.gov (United States)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three

  4. Dual-energy CT in the evaluation of solitary pulmonary nodules by virtual non-enhanced images: initial experience

    International Nuclear Information System (INIS)

    Guo Xing; Ding Wei; Qin Huijuan

    2011-01-01

    Objective: To determine the accuracy and radiation dose of dual-energy computed tomography (CT) in evaluating solitary pulmonary nodules (SPNs) by virtual non-enhanced images. Methods: Sixty-one patients with SPNs including 39 malignant and 18 benign nodules proved by pathology underwent DECT scans. The CT values of SPNs on enhanced weighted average and virtual non-enhanced images were compared by using Liver VNC processing unit in terms of their diagnostic accuracy for distinguishing malignant and benign nodules with a 20 HU threshold. Diagnostic accuracy was compared. In 28 patients of all patients, image noise and quality score of the non-enhanced and virtual non-enhanced images were compared, and radiation doses of each patient were recorded. The paired t test was used to analyze the noise difference between the plain scan and virtual non-enhanced scan. The Mann-Whitney U test. was used to analyze statistically significant differences of the image quality score and radiation dose between the non-enhanced scan and virtual non-enhanced scan. Results: The sensitivity, specificity and accuracy for distinguishing benign and malignant nodules by using the virtual non-enhanced image of were 89.7% (35/39), 72.2% (13/18), 84.2% (48/57) respectively. The noise of common CT and virtual non- enhanced images were (8.49±1.94) HU and (10.14±2.18) HU, and there were statistically difference (t=9.45, P 0.05). The radiation doses of common CT and DECT were (3.72±0.48) mSv and (3.78±0.45) mSv, and there were no statistical difference (U= 350.50, P>0.05). Conclusion: DECT by using virtual non-enhanced images is useful tool to distinguish the benign and malignant SPN without additional radiation dose. (authors)

  5. Accuracy of digital subtraction radiography in combination with a contrast media in assessment of proximal caries depth

    Directory of Open Access Journals (Sweden)

    Farzad Esmaeili

    2008-07-01

    Full Text Available Background and aims. Radiography is used to diagnose the demineralization process and carious lesions; however, conventional radiography and direct digital images do not show these lesions when the amount of demineralization is less than 40%. Digital subtraction radiography has recently been used to improve the diagnostic quality of these lesions. The purpose of this study was to compare the caries depth estimated by digital subtraction radiography in combination with barium sulfate in diagnosing proximal dental caries with histopathologic evaluation. Materials and methods. In this study 30 molars and premolars (24 demineralized lesions with cavity, 8 without cavity were studied. Direct digital images were taken (kVp: 68, mA: 8; t: 0.12 for premolars and t: 0.16 for molars whereas the position of X-ray tube and CCD receptor and teeth was fixed. To prepare the second images 135 gr/L barium sulfate was used. The images obtained with the same exposure and geometry and then subtracted. The depth of the lesions in direct digital and subtracted images were assessed and compared with the depth measured in histopathologic assessments. Results. The mean depths (± SD of the lesions were 1.80 ± 0.77 mm in direct digital radiography, 2.32 ± 0.76 mm in subtracted images after barium sulfate treatment, and 2.51 ± 0.43 mm in histopathologic sections. The statistical difference between direct digital radiography and the other methods was significant (P < 0.05. However, the differences were not statistically significant between subtracted images and histopathologic sections. The average intra-class correlation coefficient was 0.7241 (CI: 95%. Conclusion. The present study has demonstrated that digital subtraction radiography images have the potential to measure the depth of proximal caries with no significant difference with histopathologic evaluation.

  6. Thallium-201 and technetium-99m pertechnetate subtraction scintigraphy in patients with hyperparathyroidism

    International Nuclear Information System (INIS)

    Kuwashima, Shigeko; Koizumi, Mitsuru; Goto, Masafumi; Nomura, Toshiharu; Fujioka, Mutsuhisa; Watari, Tsutomu

    1992-01-01

    A reliable technique for detecting and localizing abnormal parathyroid tissue has been a persistent problem. We evaluated thallium-technetium (Tl/Tc) subtraction scintigraphy in 16 patients with clinical biochemical evidence of hyperparathyroidism prior to other diagnostic methods and surgery. Seven patients had surgery and were confirmed to have parathyroid adenoma or hyperplasia. The other methods included ultrasonography (US) in 6 patients, computed tomography (CT) in 10 patients, magnetic resonance imaging (MRI) in 8 patients, and bone scintigraphy in 7 patients. In patients who had several imaging modalities, the detection rate was significantly better for Tl/Tc subtraction scan than for US, CT or MRI. Bote scintigraphy, though not so sensitive as Tl/Tc subtraction studies, was an important tool for evaluating metabolic bone disorder including hyperparathyroidism and renal osteodystrophy. Thus, Tl/Tc subtraction scan is more useful for diagnosis when hyperparathyroidism is suspected if both Tl/Tc subtraction scan and bone scan are performed. The detectability depended on the mass size, and detection of abnormal glands was greater for adenoma than for hyperplasia. The results suggest that Tl/Tc subtraction scan is a simple, non-invasive and useful tool for locating parathyroid abnormality even when compared with MRI. (author)

  7. Improvements in the management of rheumatic patients from vertebral image obtained through dual-energy X-ray absorptiometry

    Directory of Open Access Journals (Sweden)

    D. Gatti

    2011-09-01

    Full Text Available The diagnosis of asymptomatic vertebral fracture is clinically useful and the identification of new fractures may influences the choice of appropriate therapeutic measures. In order to identify moderate and asymptomatic vertebral deformities in an objective and reproducible manner, vertebral morphometry is performed. This method measures the vertebral body’s anterior, middle and posterior heights at the dorsal and lumbar level. Currently this technique is performed on lateral images of the spine obtained through the traditional X-ray method (radiological morphometry or morphometric X-ray radiography, MRX and, more recently from images obtained through dual-energy X-ray absorptiometry (DXA machines (visual assessment of x-ray absoptiometry scans or morphometric X-ray absorptiometry, MXA, commonly used to measure bone mineral density. The main advantage of MXA relative to MRX is the lower radiation dose to which the patient is exposed during the exam. In addition, MXA scans offers the advantage of acquiring a single image of thoracic and lumbar spine, without any distortion (e.g.: coning. The most obvious advantage of MXA is the opportunity of obtaining during the same session a bone mineral density evaluation, and digital images that are easily processable, manageable, recordable and comparable for the patient’s follow up. A limitation of the MXA technique is the inferior quality of the images, that make often impossible the detection of the vertebral edges, and the impossibility to visualize the upper thoracic vertebral bodies. MXA, despite its intrinsic limitations, when carried out by trained personnel may provide substantial improvements in the management (diagnosis and follow-up of rheumatic patients.

  8. Dual Energy CT (DECT Monochromatic Imaging: Added Value of Adaptive Statistical Iterative Reconstructions (ASIR in Portal Venography.

    Directory of Open Access Journals (Sweden)

    Liqin Zhao

    Full Text Available To investigate the effect of the adaptive statistical iterative reconstructions (ASIR on image quality in portal venography by dual energy CT (DECT imaging.DECT scans of 45 cirrhotic patients obtained in the portal venous phase were analyzed. Monochromatic images at 70keV were reconstructed with the following 4 ASIR percentages: 0%, 30%, 50%, and 70%. The image noise (IN (standard deviation, SD of portal vein (PV, the contrast-to-noise-ratio (CNR, and the subjective score for the sharpness of PV boundaries, and the diagnostic acceptability (DA were obtained. The IN, CNR, and the subjective scores were compared among the four ASIR groups.The IN (in HU of PV (10.05±3.14, 9.23±3.05, 8.44±2.95 and 7.83±2.90 decreased and CNR values of PV (8.04±3.32, 8.95±3.63, 9.80±4.12 and 10.74±4.73 increased with the increase in ASIR percentage (0%, 30%, 50%, and 70%, respectively, and were statistically different for the 4 ASIR groups (p<0.05. The subjective scores showed that the sharpness of portal vein boundaries (3.13±0.59, 2.82±0.44, 2.73±0.54 and 2.07±0.54 decreased with higher ASIR percentages (p<0.05. The subjective diagnostic acceptability was highest at 30% ASIR (p<0.05.30% ASIR addition in DECT portal venography could improve the 70 keV monochromatic image quality.

  9. Dual energy virtual non-contrast technique of dual-source head CT angiography in diagnosis of meningiomas%双源CT双能量颅脑CTA虚拟平扫诊断脑膜瘤

    Institute of Scientific and Technical Information of China (English)

    谢晓洁; 邓亚敏; 曾宪春; 康绍磊; 韩丹

    2012-01-01

    Objective To investigate the clinical value of the dual energy virtual non-contrast technique of dual-source head CT angiography (CTA) in preoperative examination of meningioma. Methods CT images of 49 patients with pathologically confirmed meningiomas were retrospectively analyzed. Conventional non-contrast (CNC) and dual energy CTA scan were performed, and virtual non-contrast (VNC) and iodine-enhanced images were obtained with postprocessed technology. The mean CT value, signal-to-noise ratio (SNR), image quality, lesions detectability and radiation dose were compared between VNC and CNC images. The supply artery of tumor and relationship between tumor and adjacent intracranial vessel were observed on head CTA image from head bone removal using dual energy technique. Results CT value, SNR, and image quality scores of CNC were higher than those of VNC (all P<0. 05). The image quality scores of VNC were all above 3, which could meet the diagnostic requirements. There was no statistical difference in the size, shape, intratumoral calcification, necrosis and peritumoral edema of lesions between CNC and VNC images. The ability of VNC to display calcification inside meningioma was somehow limited compared with CNC. The radiation dose of dual energy CTA was 1. 71 mSv (61. 07%) , lower than that of CNC and conventional enhancement scan. Conclusion Dual-source CT dual energy technique can obtain VNC, iodine-enhanced and CTA images by single enhanced scan, and is excellent in preoperative examination for meningioma.%目的 探讨双源CT(DSCT)双能量颅脑CTA虚拟平扫在脑膜瘤术前检查中的临床价值.方法 回顾性分析经手术病理证实的49例脑膜瘤患者的CT图像,包括常规平扫(CNC)及双能量增强图像,经处理得到虚拟平扫(VNC)图和碘图;对比两组平扫病灶平均CT值、SNR、图像质量评分、病灶形态及辐射剂

  10. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Michail, C; Kalyvas, N; Kandarakis, I; Fountos, G

    2015-01-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNR tc ) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNR tc /MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection. (paper)

  11. Dual Energy Computed Tomography to Evaluate Hepatocellular Carcinoma Treated with Transcatheter Arterial Chemo-Embolization: Comparison between the Linear Blending and Nonlinear Moidal Blending Methods

    International Nuclear Information System (INIS)

    Shin, Sang Soo; Kim, Hyeong Wook; Lee, Daun; Kang, Heoung Keun; Kim, Jin Woong; Heo, Suk Hee; Jeong, Yong Yeon; Seon, Hyun Ju

    2012-01-01

    To compare the linear blending image with the nonlinear moidal blending image using dual energy CT for the evaluation of the viable portion of hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). One-hundred and twenty three HCC patients incompletely treated after TACE were enrolled in this study. The dual energy mode (80 kVp and Sn140 kVp) was only applied in the late arterial phase scanning. A paired t-test was used to compare the lesion-to-liver contrast-to-noise ratio (CNR) and the image noise between the two blending images. Lesion conspicuity, image sharpness, image noise and the overall image quality between the two blending images were compared using the Wilcoxon matched-pair signed-ranks test. The lesion-to-liver CNR was significantly higher on the moidal blending image (5.6 ± 3.2) than on the linear blending image (2.7 ± 1.6) (p < 0.001). The image noise was significantly lower on the moidal blending image (10.9 ± 3.5) than on the linear blending image (17.5 ± 5.5) (p < 0.001). The lesion conspicuity and overall image quality were significantly better on the moidal blending image for both reviewers (p < 0.001). However, with respect to image sharpness, the linear blending image was significantly better for both reviewers (p < 0.01). The nonlinear moidal blending image of dual energy CT showed an increased lesion-to-liver CNR, decreased noise and improved overall image quality for the evaluation of the viable portion of HCC after TACE.

  12. Detection of Bone Marrow Edema in Nondisplaced Hip Fractures: Utility of a Virtual Noncalcium Dual-Energy CT Application.

    Science.gov (United States)

    Kellock, Trenton T; Nicolaou, Savvas; Kim, Sandra S Y; Al-Busaidi, Sultan; Louis, Luck J; O'Connell, Tim W; Ouellette, Hugue A; McLaughlin, Patrick D

    2017-09-01

    Purpose To quantify the sensitivity and specificity of dual-energy computed tomographic (CT) virtual noncalcium images in the detection of nondisplaced hip fractures and to assess whether obtaining these images as a complement to bone reconstructions alters sensitivity, specificity, or diagnostic confidence. Materials and Methods The clinical research ethics board approved chart review, and the requirement to obtain informed consent was waived. The authors retrospectively identified 118 patients who presented to a level 1 trauma center emergency department and who underwent dual-energy CT for suspicion of a nondisplaced traumatic hip fracture. Clinical follow-up was the standard of reference. Three radiologists interpreted virtual noncalcium images for traumatic bone marrow edema. Bone reconstructions for the same cases were interpreted alone and then with virtual noncalcium images. Diagnostic confidence was rated on a scale of 1 to 10. McNemar, Fleiss κ, and Wilcoxon signed-rank tests were used for statistical analysis. Results Twenty-two patients had nondisplaced hip fractures and 96 did not have hip fractures. Sensitivity with virtual noncalcium images was 77% and 91% (17 and 20 of 22 patients), and specificity was 92%-99% (89-95 of 96 patients). Sensitivity increased by 4%-5% over that with bone reconstruction images alone for two of the three readers when both bone reconstruction and virtual noncalcium images were used. Specificity remained unchanged (99% and 100%). Diagnostic confidence in the exclusion of fracture was improved with combined bone reconstruction and virtual noncalcium images (median score: 10, 9, and 10 for readers 1, 2, and 3, respectively) compared with bone reconstruction images alone (median score: 9, 8, and 9). Conclusion When used as a supplement to standard bone reconstructions, dual-energy CT virtual noncalcium images increased sensitivity for the detection of nondisplaced traumatic hip fractures and improved diagnostic confidence in

  13. X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection

    Directory of Open Access Journals (Sweden)

    Tsutomu Gomi

    2011-01-01

    Full Text Available The purpose of this paper is to identify indications for volumetric X-ray digital linear tomosynthesis (DLT with single- and dual-energy subtraction techniques for artificial pulmonary nodule detection and compare X-ray DLT, X-ray digital radiography, and computed tomography.

  14. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  15. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    International Nuclear Information System (INIS)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee; Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC

  16. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  17. Dual-energy digital mammography: Calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2003-01-01

    Breast cancer may manifest as microcalcifications in x-ray mammography. Small microcalcifications, essential to the early detection of breast cancer, are often obscured by overlapping tissue structures. Dual-energy imaging, where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Transmission measurements at two different kVp values were made on breast-tissue-equivalent materials under narrow-beam geometry using an indirect flat-panel mammographic imager. The imaging scenario consisted of variable aluminum thickness (to simulate calcifications) and variable glandular ratio (defined as the ratio of the glandular-tissue thickness to the total tissue thickness) for a fixed total tissue thickness--the clinical situation of microcalcification imaging with varying tissue composition under breast compression. The coefficients of the inverse-mapping functions used to determine material composition from dual-energy measurements were calculated by a least-squares analysis. The linear function poorly modeled both the aluminum thickness and the glandular ratio. The inverse-mapping functions were found to vary as analytic functions of second (conic) or third (cubic) order. By comparing the model predictions with the calibration values, the root-mean-square residuals for both the cubic and the conic functions were ∼50 μm for the aluminum thickness and ∼0.05 for the glandular ratio

  18. The dual sustainability of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jonathan B.; Venkateswaran, Anand [413 Hayden Hall, College of Business, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States)

    2009-06-15

    Academics, practitioners, and policy makers continue to debate the benefits and costs of alternative sources of energy. Environmental and economic concerns have yet to be fully reconciled. One view is that decisions that incorporate both society's concern with the environment and investors' desire for shareholder value maximization are more likely to be truly sustainable. We coin the term dual sustainability to mean the achievement of environmental and financial sustainability simultaneously. Many experts believe that wind energy can help to meet society's needs without harming future generations. It is clean and renewable. Because the fuel is free it provides the ultimate in energy independence. Wind energy has emerged as a leading prospect, in part, because it is considered by many to be environmentally sustainable. However, a key question that remains is whether wind energy is financially sustainable without the extensive government support that has helped to create and nurture this growth industry. Using reliable, proprietary data from field research, our analysis employs a capital budgeting framework to evaluate the financial economics of investments in wind energy. We find that because of the convergence of improved technology, greater efficiency, and with the increasing cost of traditional, competing sources such as oil and natural gas, wind energy is close to becoming self-sustaining financially without the extensive federal government support that exists today. Wind energy can provide the best of both worlds. It is sustainable from an environmental perspective and it is becoming sustainable financially. In short, those companies investing in wind energy will be able to do well by doing good. Perhaps the achievement of dual sustainability is true sustainability. Our research findings and dual sustainability have several interesting and important implications for public policy towards wind energy. All imply that public policy can now be

  19. Dual-energy CT can detect malignant lymph nodes in rectal cancer

    DEFF Research Database (Denmark)

    Al-Najami, I.; Lahaye, M. J.; Beets-Tan, Regina G H

    2017-01-01

    a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. Results DECT scanning showed statistical difference between...... quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI....

  20. The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping

    International Nuclear Information System (INIS)

    Boellaard, T.N.; Henneman, O.D.F.; Streekstra, G.J.; Venema, H.W.; Nio, C.Y.; Dorth-Rombouts, M.C. van; Stoker, J.

    2013-01-01

    Aim: To assess the feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping and without bowel preparation or bowel distension. Materials and methods: Consecutive patients scheduled for preoperative staging computed tomography (CT) because of diagnosed or high suspicion for colorectal cancer were prospectively included in the study. A single contrast-enhanced abdominal CT acquisition using dual-source mode (100 kV/140 kV) was performed without bowel preparation. Weighted average 120 kV images and iodine maps were created with post-processing. Two observers performed a blinded read for colorectal lesions after being trained on three colorectal cancer patients. One observer performed an unblinded read for lesion detectability and placed a region of interest (ROI) within each lesion. Results: In total 21 patients were included and 18 had a colorectal cancer at the time of the CT acquisition. Median cancer size was 43 mm [interquartile range (IQR) 27–60 mm] and all 18 colorectal cancers were visible on the 120 kV images and iodine map during the unblinded read. During the blinded read, observers found 90% (27/30) of the cancers with 120 kV images only and 96.7% (29/30) after viewing the iodine map in addition (p = 0.5). Median enhancement of colorectal cancers was 29.9 HU (IQR 23.1–34.6). The largest benign lesions (70 and 25 mm) were visible on the 120 kV images and iodine map, whereas four smaller benign lesions (7–15 mm) were not. Conclusion: Colorectal cancers are visible on the contrast-enhanced dual-energy CT without bowel preparation or insufflation. Because of the patient-friendly nature of this approach, further studies should explore its use for colorectal cancer detection in frail and elderly patients