WorldWideScience

Sample records for dual-emissive-materials design concept

  1. KALIMER design concept report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kyu; Kim, Young Cheol; Kim, Young In; Kim, Young Gyun; Kim, Eui Kwang; Song, Hoon; Chung, Hyun Tai; Hwang, Woan; Nam, Cheol; Sim Yoon Sub; Kim, Yeon Sik; Wim Myung Whan; Min, Byung Tae; Yoo, Bong; Lee, Jae Han; Lee, Hyeong Yeon; Kim, Jong Bum; Koo, Gyeong Hoi; Ham, Chang Shik; Kwon, Kee Choon; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Lee, Yong Hee; Kim, Chang Hwoi; Sim, Bong Shick; Hahn, Do Hee; Choi, Jong Hyeun; Kwon, Sang Woon

    1997-07-01

    KAERI is working for the development of KALIMER and work is being done for methodology development, experimental facility set up and design concept development. The development target of KALIMER has been set as to make KALIMER safer, more economic, more resistant to nuclear proliferation, and yield less impact on the environment. To achieve the target, study has been made for setting up the design concept of KALIMER including the assessment of various possible design alternatives. This report is the results of the study for the KALIMER concept study and describes the design concept of KALIMER. The developed design concept study and describes the design concept of KALIMER. The developed design concept is to be used as the starting point of the next development phase of conceptual design and the concept will be refined and modified in the conceptual design phase. The scope of the work has been set as the NSSS and essential BOP systems. For systems, NSSS and functionally related major BOP are covered. Sizing and specifying conceptual structure are covered for major equipment. Equipment and piping are arranged for the parts where the arrangement is critical in fulfilling the foresaid intention of setting up the KALIMER design concept. This report consists of 10 chapters. Chapter 2 is for the top level design requirements of KALIMER and it serves as the basis of KALIMER design concept development. Chapter 3 summarizes the KALIMER concept and describes the general design features. The remaining chapters are for specific systems. (author). 29 tabs., 37 figs.

  2. The Seismographic Design Concept

    DEFF Research Database (Denmark)

    Salamon, Karen Lisa; Engholm, Ida

    2015-01-01

    or seismograph, teetering back and forth between Romanticist and Scientist ideological positions. The gradual marginalization of certain understandings of design, and the inclusion of other understandings formerly external to the design concept’s application range are also addressed. The article conclusively......This article gives an overview of the theoretical development of the design concept through two centuries in Europe and North America. Drawing on the academic disciplines of design history and anthropology, the authors present seminal moments in the theorization of “design”. Historically formative...

  3. Learning Design: Concepts

    NARCIS (Netherlands)

    Koper, Rob; Bennett, Sue

    2006-01-01

    Koper, E. J. R., & Bennet, S. (2008). Learning Design: Concepts. In H. H. Adelsberger, Kinshuk, J. M. Pawlowski & D. Sampson, Handbook on Information Technologies for Education and Training (2th ed., pp. 135-154). Springer, Berlin Heidelberg 2008: International Handbook on Information Systems Series

  4. Designing concepts and strategies

    DEFF Research Database (Denmark)

    Kiib, Hans

    2012-01-01

    In urban transformation some of the most interesting and complex design challenges are related to redevelopment of city centres and waterfronts. Here the conflicts between ‘the old’ and ‘the new’ are the largest, and here the potentials for mistakes are at a critical level. One of the problems is......, that new developments often employ very modest research on the subject and often very little has been done in order to challenge traditional concepts and to invent new sustainable concepts for redevelopment. In order to avoid mistakes in urban redevelopment we need to learn from research and evaluation...... and strategies are briefly described in the article, and the adaption by city planners and developers has been critical reviewed....

  5. Designing concepts and strategies

    DEFF Research Database (Denmark)

    Kiib, Hans

    2012-01-01

    of the best planning practice. But what might be just as important is to learn from concept development practice, which can give us a comprehensive understanding of our complex cities and make us develop a way of experiencing the unique qualities of the architectural typologies at the site. Finally...... and strategies are briefly described in the article, and the adaption by city planners and developers has been critical reviewed....

  6. ETHICAL FASHION CONCEPT AND DESIGNERS

    Directory of Open Access Journals (Sweden)

    Pinar GOKLUBERK OZLU

    2015-01-01

    Full Text Available Some problems like rapidly developing industrialization, irregular population growth, environmental pollution and to feel the impact of global warming as seriously, has been giving significant damage to the earth. People has realized that, after polluting to clean is harder than polluting of the measures to be taken before. And again people showed the sensitivity to the environment through different reactions and sanctions, took measures and created the new concepts about the enviroment. "Ethical Fashion" concept was created by the conscious and responsible individuals in the last two decades. However, that are being implemented as a concept is noticeable. Textile and fashion industry cover "Ethical Fashion"; ecological product, working conditions, fair trade and sustainable product are all in that concept. "Ethical Fashion" appeared and developed especially in United Kingdom, the USA and the other European countries. Nowadays, we may see a lot of textile and fashion designers, fabric and clothing collections, fairs and some specific courses at the universities about "Ethical Fashion". In this research contains "Ethical Fashion" concept, it's development processes and fashion designers who is working for this concept at the present time, also the main target is in this research, semtinizing "Ethical Fashion" concept.

  7. IVVS probe mechanical concept design

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it; Neri, Carlo; De Collibus, Mario Ferri; Mugnaini, Giampiero; Pollastrone, Fabio; Crescenzi, Fabio

    2015-10-15

    Highlights: • ENEA designed, developed and tested a laser based In Vessel Viewing System (IVVS). • IVVS mechanical design has been revised from 2011 to 2013 to meet ITER requirements. • Main improvements are piezoceramic actuators and a step focus system. • Successful qualification activities validated the concept design for ITER environment. - Abstract: ENEA has been deeply involved in the design, development and testing of a laser based In Vessel Viewing System (IVVS) required for the inspection of ITER plasma-facing components. The IVVS probe shall be deployed into the vacuum vessel, providing high resolution images and metrology measurements to detect damages and possible erosion. ENEA already designed and manufactured an IVVS probe prototype based on a rad-hard concept and driven by commercial micro-step motors, which demonstrated satisfying viewing and metrology performances at room conditions. The probe sends a laser beam through a reflective rotating prism. By rotating the axes of the prism, the probe can scan all the environment points except those present in a shadow cone and the backscattered light signal is then processed to measure the intensity level (viewing) and the distance from the probe (metrology). During the last years, in order to meet all the ITER environmental conditions, such as high vacuum, gamma radiation lifetime dose up to 5 MGy, cumulative neutron fluence of about 2.3 × 10{sup 17} n/cm{sup 2}, temperature of 120 °C and magnetic field of 8 T, the probe mechanical design was significantly revised introducing a new actuating system based on piezo-ceramic actuators and improved with a new step focus system. The optical and mechanical schemes have been then modified and refined to meet also the geometrical constraints. The paper describes the mechanical concept design solutions adopted in order to fulfill IVVS probe functional performance requirements considering ITER working environment and geometrical constraints.

  8. Analysis of digester design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gas cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.

  9. Concept Car Design and Ability Training

    Science.gov (United States)

    Lv, Jiefeng; Lu, Hairong

    The concept design as a symbol of creative design thinking, reflecting on the future design of exploratory and prospective, as a vehicle to explore the notion of future car design, design inspiration and creativity is not only a bold display, more through demonstrate the concept, reflects the company's technological strength and technological progress, and thus enhance their brand image. Present Chinese automobile design also has a very big disparity with world level, through cultivating students' concept design ability, to establish native design features and self-reliant brand image is practical and effective ways, also be necessary and pressing.

  10. Towards Advanced Interaction Design Concepts

    OpenAIRE

    Dijkman, Remco; Dirgahayu, Teduh; Quartel, Dick

    2006-01-01

    In this paper we analyse the interaction mechanisms provided by Web Services technology and by CORBA. Specifically we analyse the request/response, callback, polling and (multicasr) message passing mechanisms. As a result we present Coloured Petri Nets that capture the behaviour of these mechanisms precisely. Based on our analysis we define concepts for representing the Web Services and CORBA interactions in a suitable and platform independent manner. These concepts can be used for platfonn i...

  11. Design of Concept Libraries for C++

    KAUST Repository

    Sutton, Andrew

    2012-01-01

    We present a set of concepts (requirements on template arguments) for a large subset of the ISO C++ standard library. The goal of our work is twofold: to identify a minimal and useful set of concepts required to constrain the library\\'s generic algorithms and data structures and to gain insights into how best to support such concepts within C++. We start with the design of concepts rather than the design of supporting language features; the language design must be made to fit the concepts, rather than the other way around. A direct result of the experiment is the realization that to simply and elegantly support generic programming we need two kinds of abstractions: constraints are predicates on static properties of a type, and concepts are abstract specifications of an algorithm\\'s syntactic and semantic requirements. Constraints are necessary building blocks of concepts. Semantic properties are represented as axioms. We summarize our approach: concepts = constraints + axioms. This insight is leveraged to develop a library containing only 14 concepts that encompassing the functional, iterator, and algorithm components of the C++ Standard Library (the STL). The concepts are implemented as constraint classes and evaluated using Clang\\'s and GCC\\'s Standard Library test suites. © 2012 Springer-Verlag.

  12. Isomer Energy System Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, D

    2003-09-01

    Isomer energy supplies offer the potential to increase the output power over time to accommodate varying power needs. Other materials with similar energy density (for example isotopic energy sources such as {sup 238}Pu) do not offer the potential to increase power with time. Often the design life of an energy source is significant when compared to the half-life of the isotope. As a result, the conventional isotopic energy supplies operate with significant excess power at start of life to meet the power needs at end-of-life. For example a {sup 238}Pu radioisotope energy supply with a 35-year design life must account for radioactive decay losses of about 25% of the plutonium present at the start of life. This decay loss is significant if the required output power from the device is constant with time. If the required power output from the device increases with time (such as some space applications), significant increases in power supply weight are required to meet design power requirements. Isomer energy supplies offer the potential to increase the output power over time to meet varying power needs, thereby offering a significant advantage over conventional systems. Isomer energy supplies also offer the possibility of being ''turned on'' based on need at a specific time. These characteristics offer distinct advantages to isomer energy supplies. This report examines the basic engineering characteristics of a hypothetical isomer energy supply in order to gain insight into properties of isomers that will make them potentially useful as energy sources in engineered systems. These isomer properties provide a basis for identification of candidate isomers and provide a basis for an isomer search.

  13. Design Concepts in Set Parts Supply Implementation

    Directory of Open Access Journals (Sweden)

    Suhartini Mohd Jainury

    2013-10-01

    Full Text Available The increasing number of parts variants on an assembly line requires an improvement for a cost efficient and flexible parts supply system. For that reason, the Set Parts Supply (SPS system was introduced by Toyota as a new material handling system for supplying parts in sets based on the kitting concept. In this study, we investigate the consideration of design concepts in SPS implementation at one of Malaysia’s automotive manufacturers through a case study in a mixed-model assembly line that contains many parts to be assembled to the car body. From our case study, we found that the design of the ‘parts only’ or minomi concept on the component racks contributes to the elimination of waste; mura, muri and muda. Finally, we present the lean approach in the minomi concepts that used in designing the component racks.

  14. Concept Design for SOAR Telescope

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.; Moretto, G.

    1998-12-01

    The Southern Astrophysical Research (SOAR) telescope is a \\$28M collaboration between Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill. NOAO will operate the telescope for 20 years in exchange for 30 astronomers.) The project is now fully funded. This f/16 telescope is optimized for high-quality images across the isokinetic field (0."17 FWHM degradation from the telescope+facility over a field of 7.5' diameter.) It is being designed to take up to 2 Gemini-class (2100 kg) instruments, or a combination of lighter instruments at 7 Nasmyth and bent Cassegrain foci. The facility is now under construction atop Cerro Pachon, 400m from Gemini-S. First light is currently scheduled for early 2002. Corning Inc. is preparing to fabricate the 4.2m-diameter, 7.5-10 cm thick primary mirror from ULE glass. In early 1999 contacts will be awarded for 2 major subsystems: active optics (which includes optics polishing), and the alt.-az. telescope mount. We will outline the novel strategies that are being used to control project costs while optimizing telescope performance. Instrumentation plans will also be summarized.

  15. Extending Sociotechnical design to project conception

    DEFF Research Database (Denmark)

    Kampf, Constance

    2009-01-01

    This paper argues for an extension of the application for socio-technical design from interaction design to project conception in technology projects. Since project management process are increasingly used to introduce technological developments and changes in the workplace, project management pr...

  16. Design Concepts. Teacher Edition. Marketing Education LAPs.

    Science.gov (United States)

    Hawley, Jana

    This learning activity packet is designed to help prepare students to acquire a competency: how to use design concepts in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys. Activities include a…

  17. Extending Sociotechnical Design to Project Conception

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    2011-01-01

    Project management processes offer specific sites for understanding the interplay of the social and the technical. This article focuses on the connection between knowledge and technology through knowledge communication processes, cultural & rhetorical contexts in projects, and the iterative process...... and the Aarhus School of Business, University of Aarhus, Denmark. The analysis demonstrates the potential of knowledge communication concepts for social technical design and highlights the cultural context of the designers as a key factor to consider in socio-technical design....

  18. Antireflection design concepts with equivalent layers.

    Science.gov (United States)

    Schallenberg, Uwe B

    2006-03-01

    Some novel concepts of designing antireflection (AR) coatings with equivalent layers are presented. As an introduction, essential papers concerning thin-film optics and AR designs are cited, and the AR problem and a previously introduced AR-hard design type are discussed. Based on the known matrix formalism, a potential AR region, an equivalent stack index, and an equivalent substrate index are defined to use the theory of stop-band suppression as a starting point for the design of broadband AR coatings. The known multicycle AR design type is identified as a typical solution to the AR problem if the presented approach is used.

  19. A new concept in Bitter disk design

    Energy Technology Data Exchange (ETDEWEB)

    Gao, B.J.; Schneider-Muntau, H.J.; Eyssa, Y.M.; Bird, M.D. [National High Magnetic Field Lab., Tallahassee, FL (United States)

    1996-07-01

    A new concept in cooling hole design in Bitter disks that allows for much higher power densities and results in considerably lower hoop stresses has been developed and successfully tested at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The new cooling hole shape allows for extreme power densities (up to 12 W.mm{sup 3}) at a moderate heat flux of only 5 W/mm{sup 2}. The new concept also reduces the hoop stress by about 30--50% by making a Bitter disk compliant in the radial direction through staggering small width and closely spaced elongated cooling holes. Finally, the design is optimized for equal temperature.

  20. Level design concept, theory, and practice

    CERN Document Server

    Kremers, Rudolf

    2009-01-01

    Good or bad level design can make or break any game, so it is surprising how little reference material exists for level designers. Beginning level designers have a limited understanding of the tools and techniques they can use to achieve their goals, or even define them. This book is the first to use a conceptual and theoretical foundation to build such a set of practical tools and techniques. It is tied to no particular technology or genre, so it will be a useful reference for many years to come. Kremers covers many concepts universal to level design, such as interactivity, world building, im

  1. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  2. Concept design of the cassette toroidal mover

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, H., E-mail: harri.makinen@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Jaervenpaeae, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Valkama, P.; Vaeyrynen, J.; Amjad, F. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Mattila, J. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Semeraro, L.; Esque, S. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)

    2011-10-15

    A full scale physical development and test facility, Divertor Test Platform 2 (DTP2), has been established in Finland for the purpose of demonstrating and developing the remote handling (RH) equipment designs for ITER using prototypes and virtual models. The major objective of the DTP2 environment is to verify and develop ITER divertor RH devices and operations. In practice this means various test trials and measurements of performance characteristics. This paper describes the design process of the Cassette Toroidal Mover (CTM). The main purpose of this design task was the development of the CTM concept. The goal of the design process was to achieve compatibility between CTM and the latest ITER divertor design. The design process was based on using a variety of tools, i.e. Catia V5, Delmia, Ansys, Mathcad and project management tools. Applicable European Standards were applied to the concept design. CTM is the cassette transporter, which carries divertor cassettes on the toroidal rails inside the ITER Vacuum Vessel (VV) during the divertor maintenance. The operation environment differs from a common industrial environment. Radiation level is 100 Gy/h. The temperature during RH operations can be 50 {sup o}C. Clearances are less than 20 mm and the loads carried weigh 9000 kg. These conditions require special solutions during the product development process. The design process consisted of defining and developing of the CTM operational sequence. This sequence includes the procedure of how the CTM - with it is onboard manipulator - prepares for and handles the divertor cassettes during RH operations. RH operations are essential part when defining CTM functions. High reliability is required in order to carry out RH tasks successfully. The recoverability of CTM is also an important design criteria. This paper describes the design process and the structure of the CTM concept.

  3. Mechatronic Systems Design Methods, Models, Concepts

    CERN Document Server

    Janschek, Klaus

    2012-01-01

    In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of th...

  4. Extending Sociotechnical design to project conception

    DEFF Research Database (Denmark)

    Kampf, Constance

    2009-01-01

    This paper argues for an extension of the application for socio-technical design from interaction design to project conception in technology projects. Since project management process are increasingly used to introduce technological developments and changes in the workplace, project management...... the students were asked to design and plan projects to situate a mobile phone game in the social context around a museum in Helsinki or their online course management system.   The paper traces the evolution of students' project goals and objectives with respect to knowledge communication theory, demonstrating...

  5. Educational Videogames: Concept, Design And Evaluation

    Science.gov (United States)

    Rohrlick, D.; Yang, A.; Kilb, D. L.; Ma, L.; Ruzic, R.; Peach, C. L.; Layman, C. C.

    2013-12-01

    Videogames have historically gained popularity thanks to their entertainment rather than their educational value. This may be due, in part, to the fact that many educational videogames present academic concepts in dry, quiz-like ways, without the visual experiences, interactivity, and excitement of non-educational games. The increasing availability of tools that allow designers to easily create rich experiences for players now makes it simpler than ever for educational game designers to generate the visual experiences, interactivity, and excitement that gamers have grown to expect. Based on data from our work, when designed effectively, educational games can engage players, teach concepts, and tear down the stereotype of the stuffy, boring educational game. Our team has been experimenting with different ways to present scientific and mathematical concepts to middle and high school students through engaging, interactive games. When designing a gameplay concept, we focus on what we want the player to learn and experience as well as how to maintain a learning environment that is fun and engaging. Techniques that we have found successful include the use of a series of fast-paced 'minigames,' and the use of a 'simulator' learning method that allows a player to learn by completing objectives similar to those completed by today's scientists. Formative evaluations of our games over the past year have revealed both design strengths and weaknesses. Based on findings from a systematic evaluation of game play with diverse groups, with data collected through in-person observations of game play, knowledge assessments, focus groups, interviews with players, and computer tracking of students' game play behavior, we have found that players are uniformly enthusiastic about the educational tools. At the same time, we find there is more work to be done to make our tools fully intuitive, and to effectively present complex mathematical and scientific concepts to learners from a wide

  6. Accelerator design concept for future neutrino facilities

    Energy Technology Data Exchange (ETDEWEB)

    Apollonio, M [Imperial College London, London (United Kingdom); Berg, J S; Fernow, R; Gallardo, J [Brookhaven National Laboratory, Upton, Long Island, NY (United States); Blondel, A [University of Geneva, Geneva (Switzerland); Bogacz, A [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brooks, S; Edgecock, R [Rutherford Appleton Laboratory, Chilton, Didcot Oxon (United Kingdom); Campagne, J-E [LAL, University Paris-Sud, IN2P3/CNRS, Orsay (France); Caspar, D [University of California-Irvine, Irvine, CA (United States); Cavata, C [CEA, CEN Saclay, Gif-sur-Yvette (France); Chimenti, P [University of Trieste and INFN, Trieste (Italy); Cobb, J [University of Oxford, Oxford (United Kingdom); Dracos, M [Institut de Recherches Subatomiques, Universite Louis Pasteur, Strasbourg (France); Efthymiopoulos, I; Fabich, A; Garoby, R [CERN, Geneva (Switzerland); Filthaut, F [NIKHEF, Amsterdam (Netherlands); Geer, S [Fermi National Accelerator Laboratory, Batavia, IL (United States)], E-mail: mszisman@lbl.gov (and others)

    2009-07-15

    This document summarizes the work of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The main goal of the activity was to reach consensus on a baseline design for a Neutrino Factory complex, including proton driver parameters, choice of target, front-end design, acceleration system design, and decay ring geometry. Another goal was to explore the commonality, if any, between the proton driver for a Neutrino Factory and those for a Superbeam or Beta Beam facility. In general, the requirements for either of the latter facilities are less stringent than those for a Neutrino Factory. Here, we discuss concepts, parameters, and expected performance of the required subsystems for our chosen baseline design of a Neutrino Factory. We also give an indication of the main R and D tasks - many of which are already under way - that must be carried out to finalize facility design approaches.

  7. Comparative design of structures concepts and methodologies

    CERN Document Server

    Lin, Shaopei

    2016-01-01

    This book presents comparative design as an approach to the conceptual design of structures. Primarily focusing on reasonable structural performance, sustainable development and architectural aesthetics, it features detailed studies of structural performance through the composition and de-composition of these elements for a variety of structures, such as high-rise buildings, long-span crossings and spatial structures. The latter part of the book addresses the theoretical basis and practical implementation of knowledge engineering in structural design, and a case-based fuzzy reasoning method is introduced to illustrate the concept and method of intelligent design. The book is intended for civil engineers, structural designers and architects, as well as senior undergraduate and graduate students in civil engineering and architecture. Shaopei Lin and Zhen Huang are both Professors at the Department of Civil Engineering, Shanghai Jiao Tong University, China.

  8. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  9. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    NARCIS (Netherlands)

    Quartel, Dick

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an

  10. Retrievable storage concept designs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1979-03-01

    Three tasks related to the reference design of retrievable storage canisters for radioactive waste have been completed. The three tasks consist of the reference design itself, the definition of failure modes most appropriate for structural integrity determinations for the reference canister, and the development of a failure methodology for the structural integrity of the containers. The reference design is a sealed storage canister concept based upon the waste isolation pilot plant (WIPP) design, with slight modifications. The modifications consist of an alternate lifting yoke arrangement for the top head and a revised bottom head design for absorption of impact energy. Welded closures provide the seal at each end. Overpacking is considered as a possibility, but is not included in the preliminary reference design. The four failure modes that are deemed the most appropriate for the design of the reference canister are: (i) a loss of functional capability; (ii) ductile rupture of the canister; (iii) buckling of the structural members; and (iv) stress corrosion cracking. Failure scenarios are provided for each of the relevant failure modes. In addition, a failure methodology based upon the distribution of demand and the distribution of capacity for the structural members, with respect to each failure mode, is proffered.

  11. Current fusion power plant design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes.

  12. Identifying and Overcoming Threshold Concepts and Conceptions: Introducing a Conception-Focused Curriculum to Course Design

    Science.gov (United States)

    Burch, Gerald F.; Burch, Jana J.; Bradley, Thomas P.; Heller, Nathan A.

    2015-01-01

    Educators have been challenged to identify threshold concepts and develop transformed students. This stands in stark contrast to many curriculum design and delivery models that currently view students as repositories of knowledge. In this article, we argue that educators can reach both goals, identify stumbling blocks and transforming students,…

  13. International Design Concepts for the SKA

    Science.gov (United States)

    Tarter, J.

    2001-12-01

    In August of 2000, representatives of eleven countries signed a Memorandum of Understanding to Establish the International Square Kilometre Array Steering Committee (ISSC). Arguably, the SKA could be built today, but without question it would be unaffordable. Increasing collecting area by a factor of 100 beyond today's largest array cannot be done cost effectively by simple extensions of what has been done before. New concepts, new designs, and new technologies will be required, as well as a paradigm shift. It will be necessary to heavily exploit emerging communications and consumer market technologies; to "hammer" them into shapes required to solve the SKA challenges, rather than inventing our own solutions from scratch. Or if we do invent ab initio solutions, we should look at creating consumer markets to embrace them, so that the full benefits of mass production and manufacturing can be realized. The strawman science goals of the SKA are extremely ambitious. Today there are six primary design concepts being studied that attempt to meet some or all of these goals; phased arrays of active elements embedded into flat tiles, "super Arecibo" antennas constructed in individual limestone karst sinkholes and arrayed together, large arrays of small, spherical (or hemispherical) Luneberg lenses, large deformable apertures with long focal ratios and aerostat-borne focal plane array receivers, arrays of large parabolic antennas constructed from steel "ropes," and large arrays of small parabolic dishes derived from the TVRO industry. This talk summarizes the strengths and weaknesses of these various designs in their current, incomplete state. In the US, the US SKA Consortium of 10 academic and research organizations has generated a roadmap to guide and assess the technology development that will be required to produce a successful SKA design, with well understood costs, performance, and minimal risk. The design and construction efforts for the ATA, LOFAR and the EVLA will

  14. Contemporary Web Graphic Design Course Concept

    OpenAIRE

    Landa, Štěpán

    2016-01-01

    The aim of this thesis is to suggest a course concept that would describe the basic rules, trends and processes of the contemporary visual design of creating web pages, present this knowledge to students in an efficient way and support the increase of quality and diversity of study options at the Department of Multimedia in Economic Practice. Theoretical part brings out factual grounds of the topic from the point of view of an independent entrepreneur from the initial communication with a cli...

  15. Multimedia foundations core concepts for digital design

    CERN Document Server

    Costello, Vic; Youngblood, Susan

    2012-01-01

    Understand the core concepts and skills of multimedia production and digital storytelling using text, graphics, photographs, sound, motion, and video. Then, put it all together using the skills that you have developed for effective project planning, collaboration, visual communication, and graphic design. Presented in full color with hundreds of vibrant illustrations, Multimedia Foundations trains you in the principles and skill sets common to all forms of digital media production, enabling you to create successful, engaging content, no matter what tools you are using. Companion website

  16. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  17. Deep Space Habitat ECLSS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  18. SAFARI optical system architecture and design concept

    Science.gov (United States)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  19. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  20. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  1. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  2. Mathematical concepts for mechanical engineering design

    CERN Document Server

    Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli

    2013-01-01

    PrefaceIntroductionHeat Flow: From Theory to PracticeDispersed Fluid and Ideal Fluid MechanicsModeling for Pressure Wave into Water PipelineHeat Transfer and Vapor BubbleMathematical Concepts and Computational Approaches on Hydrodynamics InstabilityMathematical Concepts and Dynamic ModelingModeling for Predictions of Air Entrance into Water PipelineIndex

  3. MPACT Fast Neutron Multiplicity System Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  4. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H. Philip

    2017-01-01

    Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image and characterize planetary systems around Sun-like stars. In addition to the search for life on Earth-like exoplanets, HabEx will enable a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. HabEx is one of four mission concepts currently being studied for the 2020 Astrophysics Decadal Survey.

  5. Concept Generation for Design Creativity A Systematized Theory and Methodology

    CERN Document Server

    Taura, Toshiharu

    2013-01-01

    The concept generation process seems like an intuitional thought: difficult to capture and perform, although everyone is capable of it. It is not an analytical process but a synthetic process which has yet to be clarified. Furthermore, new research methods for investigating the concept generation process—a very difficult task since the concept generation process is driven by inner feelings deeply etched in the mind—are necessary to establish its theory and methodology.  Concept Generation for Design Creativity—A Systematized Theory and Methodology presents the concept generation process both theoretically and methodologically. Theoretically, the concept generation process is discussed by comparing metaphor, abduction, and General Design Theory from the perspective of similarities and dissimilarities. Property mapping, concept blending, and concept integration in thematic relation have been explained methodologically. So far, these theories and methods have been discussed independently, and the relation...

  6. Project Design Concept for Monitoring and Control System

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    2000-10-02

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations.

  7. Application and Research of Concept Design for Modern Enterprise

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Facing with the ever changing effect of internation al and domestic environments, purely new questions, higher requirements, more chal lenges and opportunities, the conventional management pattern of enterprise seem s to be very limited. Concept design is a modern design method of sustainable de velopment strategy rather than a simple design of a certain level within an ente rprise. The digital virtual integration system, which is established on the basi s of concept design, focuses on the comprehensive ba...

  8. The workspace design concept: A new framework of participatory ergonomics

    DEFF Research Database (Denmark)

    Broberg, Ole

    2007-01-01

    The concept of Workspace Design is presented as a potential new approach for ergonomists and consultants in the occupational health service. The concept is aimed as an intervention and facilitation strategy in the early stages of design processes leading to new workplaces. Preliminary results fro...

  9. Development of the Biological Experimental Design Concept Inventory (BEDCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gulnur

    2014-01-01

    Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non-expert-like thinking in students and to evaluate the…

  10. Applying and incorporating user driven innovation when designing concepts

    DEFF Research Database (Denmark)

    Thorp Hansen, Claus; Brønnum, Louise

    . This paper is based on practical experience working with theoretical concept frameworks, which have induced new perspectives in a reframing. We will account for the concept design process and why a reframing is called for when working with user research, leading to a proposal for new dimensions......This paper addresses the difficulties seen when working within the user driven innovation [UDI] paradigm. We examine some of the circumstances that often make it difficult to work with user insights in concept design. UDI has become a recognized design approach, but has not yet accommodated...... insights have been produced but at the same time to abstract when integrated in the design process. We will discuss and propose a framework for working with user insights in concept design, based on existing concept frameworks but actively addressing and incorporating user insights as a new type of input...

  11. Application Design Library With gamification concept

    Directory of Open Access Journals (Sweden)

    Nisaul Barokati

    2017-03-01

    Full Text Available The library is an effort to maintain and improve the efficiency and effectiveness of the learning process. Various means have been used to enhance the library's role in community development. One way is to develop a concept and a different orientation in the management system or the library. The concept in question is gamification. Gamification is a process with the aim of changing jobs or activities that usually go tedious and less enjoyable to be more interesting and fun to do. One approach taken is to reward both virtual and non-virtual that can increase people's motivation to do something, in this case, is to visit and take advantage of the functions and library facilities. This research resulted in a model that features a library application with the concept of gamification. The model can be implemented into an application that will increase visits and activities at the library. Thus the function and the main purpose of the library be met..

  12. Advanced Modeling Concepts for Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary design of aircraft structures is multidisciplinary, involving knowledge of structural mechanics, aerodynamics, aeroelasticity, structural dynamics and...

  13. Development of the Biological Experimental Design Concept Inventory (BEDCI)

    OpenAIRE

    2014-01-01

    Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non–expert-like thinking in students and to evaluate the success of teaching strategies that target conceptual changes. We used BEDCI to diagnose non–expert-like student thinking in experimental design at the p...

  14. Advanced design concepts for open distributed systems

    NARCIS (Netherlands)

    Pires, L.F.; Ferreira Pires, Luis; van Sinderen, Marten J.; Vissers, C.A.

    1993-01-01

    Experience with the engineering of large scale open distributed systems has shown that their design should be specified at several well defined levels of abstractions, where each level aims at satisfying specific user, architectural and implementation purposes. Therefore designers should dispose of

  15. Teaching, Designing, and Organizing: Concept Mapping for Librarians

    Directory of Open Access Journals (Sweden)

    April Colosimo

    2012-06-01

    Full Text Available Concept maps are graphical representations of relationships among concepts that can be an effective tool for teaching, designing, and organizing information in a variety of library settings. First, concept mapping can be used wherever training or formal teaching occurs as a visual aid to explain complex ideas. They can also help learners articulate their understanding of a subject area when they create their own concept maps. When using concept mapping as a teaching tool, students may have a more meaningful learning experience when they add information to a concept map that is based on their current knowledge. Next, concept maps are an effective design tool for librarians who are planning projects. They can also serve as a reference point for project implementation and evaluation. The same is true for the design of courses, presentations, and library workshops. A concept map based on the content of a course, for example, is valuable when selecting learning outcomes and strategies for teaching and assessment. Finally, concept mapping can used as a method for capturing tacit or institutional knowledge through the creation and organization of ideas and resources. Librarians can collaborate on concept maps with each other or with non-librarian colleagues to facilitate communication. Resulting maps can be published online and link to documentation and relevant resources. This paper provides an overview of the literature related to concept mapping in libraries. Concrete applications and examples of concept mapping for teaching and learning, designing, and organizing in library settings are then elaborated. The authors draw from their own success and experience with different concept mapping methods and software programs.

  16. Engineering study for ISSTRS design concept

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  17. An Integrated Decision Making Model for Evaluation of Concept Design

    Directory of Open Access Journals (Sweden)

    G. Green

    2004-01-01

    Full Text Available The Conceptual design phase generates various design concepts and these are then evaluated in order to identify the 'Best’ concept. Identifying the Best concept is important because much of the product life cycle cost is decided in this phase. Various evaluation techniques are performed so as to aid decision-making. Different criteria are weighted against concepts for the comparison. This paper describes the research being carried out at the University of Glasgow on design evaluation. It presents the Application of fuzzy logic for design evaluation and proposes an integrated decision-making model for design evaluation. This is a part of research project that aims at developing a computer tool for evaluation process to aid decision-making.

  18. Designing a Multichannel Map Service Concept

    Directory of Open Access Journals (Sweden)

    Hanna-Marika Halkosaari

    2013-01-01

    Full Text Available This paper introduces a user-centered design process for developing a multichannel map service. The aim of the service is to provide hikers with interactive maps through several channels. In a multichannel map service, the same spatial information is available through various channels, such as printed maps, Web maps, mobile maps, and other interactive media. When properly networked, the channels share a uniform identity so that the user experiences the different channels as a part of a single map service. The traditional methods of user-centered design, such as design probes, personas, and scenarios, proved useful even in the emerging field of developing multichannel map services. The findings emphasize the need to involve users and multidisciplinary teams in the conceptual phases of designing complex services aimed at serving various kinds of users.

  19. A concept for global optimization of topology design problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi

    2006-01-01

    on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline......We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...

  20. 4MOST fiber feed concept design

    Science.gov (United States)

    Haynes, D. M.; Winkler, R.; Saviauk, Allar; Haynes, R.; Barden, S.; Bellido-Tirado, O.; Bauer, S.; de Jong, Roelof S.; Depagne, E.; Dionies, F.; Ehrlich, K.; Kelz, Andreas; Saunders, W.; Woche, M.

    2014-08-01

    4MOST, the 4m Multi-Object Spectroscopic Telescope, features a 2.5 degree diameter field-of-view with ~2400 fibers in the focal plane that are configured by a fiber positioner based on the tilting spine principle (Echidna/FMOS) arranged in a hexagonal pattern. The fibers feed two types of spectrographs; ~1600 fibers go to two spectrographs with resolution R>5000 and ~800 fibers to a spectrograph with R>18,000. Part of the ongoing optimization of the fiber feed subsystem design includes early prototyping and testing of key components such as fiber connectors and fiber cable management. Performance data from this testing will be used in the 4MOST instrument simulator (TOAD) and 4MOST system design optimization. In this paper we give an overview of the current fiber feed subsystem design, simulations and prototyping plans.

  1. The content and nature of a design concept

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2002-01-01

    According to the design methodology literature "conceptual design" and "concepts" increase the effectiveness and efficiency of the early phases of a product development project, because conceptual thinking allows the engineering designer to identify or synthesise new unique solutions and allows h...

  2. Human-centered incubator: beyond a design concept

    NARCIS (Netherlands)

    Goossens, R.H.M.; Willemsen, H.

    2013-01-01

    We read with interest the paper by Ferris and Shepley1 on a human-centered design project with university students on neonatal incubators. It is interesting to see that in the design solutions and concepts as presented by Ferris and Shepley,1 human-centered design played an important role. In 2005,

  3. Architectural design - Conception and specification of interactive systems

    NARCIS (Netherlands)

    Vissers, C.A.; Ferreira Pires, Luis; Quartel, Dick; van Sinderen, Marten J.

    2016-01-01

    This book presents a design methodology that is practically applicable to the architectural design of a broad range of systems. It is based on fundamental design concepts to conceive and specify the required functional properties of a system, while abstracting from the specific implementation

  4. Extending Sociotechnical design to project conception

    DEFF Research Database (Denmark)

    Kampf, Constance

    2009-01-01

    the students were asked to design and plan projects to situate a mobile phone game in the social context around a museum in Helsinki or their online course management system.   The paper traces the evolution of students' project goals and objectives with respect to knowledge communication theory, demonstrating...

  5. Designerly Visualisation: Conceptions, Methods, Models, Perceptions

    NARCIS (Netherlands)

    Breen, J.L.H.

    2013-01-01

    If we wish to reach a deeper, more objective understanding of the phenomena of Architectural and Environmental Design, we need to develop and apply working methods that allow us to imaginatively analyse and consequently envision the formal issues which are at (inter)play: demonstrating their working

  6. Interpretive Research Design. Concepts and Processes

    NARCIS (Netherlands)

    Schwartz-Shea, P.; Yanow, D.

    2012-01-01

    Research design is fundamental to all scientific endeavors, at all levels and in all institutional settings. In many social science disciplines, however, scholars working in an interpretive-qualitative tradition get little guidance on this aspect of research from the positivist-centered training the

  7. Additive manufacturing for freeform mechatronics design: from concepts to applications

    NARCIS (Netherlands)

    Baars, G. van; Smeltink, J.; Werff, J. van der; Limpens, M.; Barink, M.; Berg, D. van den; Vreugd, J. de; Witvoet, G.; Galaktionov, O.S.

    2015-01-01

    This article presents developments of freeform mechatronics concepts, enabled by industrial Additive Manufacturing (AM), aiming at breakthroughs for precision engineering challenges such as lightweight, advanced thermal control, and integrated design. To assess potential impact in future application

  8. Additive manufacturing for freeform mechatronics design: from concepts to applications

    NARCIS (Netherlands)

    Baars, G. van; Smeltink, J.; Werff, J. van der; Limpens, M.; Barink, M.; Berg, D. van den; Vreugd, J. de; Witvoet, G.; Galaktionov, O.S.

    2015-01-01

    This article presents developments of freeform mechatronics concepts, enabled by industrial Additive Manufacturing (AM), aiming at breakthroughs for precision engineering challenges such as lightweight, advanced thermal control, and integrated design. To assess potential impact in future application

  9. Structural Design and Sizing of a Metallic Cryotank Concept

    Science.gov (United States)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  10. Review: BNL graphite blanket design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Powell, J.R.

    1976-03-01

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage.

  11. Structural concepts and details for seismic design

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This manual discusses building and building component behavior during earthquakes, and provides suggested details for seismic resistance which have shown by experience to provide adequate performance during earthquakes. Special design and construction practices are also described which, although they might be common in some high-seismic regions, may not be common in low and moderate seismic-hazard regions of the United States. Special attention is given to describing the level of detailing appropriate for each seismic region. The UBC seismic criteria for all seismic zones is carefully examined, and many examples of connection details are given. The general scope of discussion is limited to materials and construction types common to Department of Energy (DOE) sites. Although the manual is primarily written for professional engineers engaged in performing seismic-resistant design for DOE facilities, the first two chapters, plus the introductory sections of succeeding chapters, contain descriptions which are also directed toward project engineers who authorize, review, or supervise the design and construction of DOE facilities. 88 refs., 188 figs.

  12. Accelerator design concept for future neutrino facilities

    CERN Document Server

    Apollonio, M; Blondel, A; Bogacz, A; Brooks, S; Campagne, Jean-Eric; Caspar, D; Cavata, C; Chimenti, P; Cobb, J; Dracos, M; Edgecock, R; Efthymiopoulos, I; Fabich, A; Fernow, R; Filthaut, F; Gallardo, J; Garoby, R; Geer, S; Gerigk, F; Hanson, G; Johnson, R; Johnstone, C; Kaplan, D; Keil, E; Kirk, H; Klier, A; Kurup, A; Lettry, J; Long, K; Machida, S; McDonald, K; Mot, F; Mori, Y; Neuffer, D; Palladino, V; Palmer, R; Paul, K; Poklonskiy, A; Popovic, M; Prior, C; Rees, G; Rossi, C; Rovelli, T; Sandstrom, R; Sevior, R; Sievers, P; Simos, N; Torun, Y; Vretenar, M; Yoshimura, K; Zisman, M S

    2009-01-01

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and super-beam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  13. Accelerator Design Concept for Future Neutrino Facilities

    Energy Technology Data Exchange (ETDEWEB)

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  14. Operational resilience: concepts, design and analysis

    Science.gov (United States)

    Ganin, Alexander A.; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M.; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today’s complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks.

  15. Fractal design concepts for stretchable electronics.

    Science.gov (United States)

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  16. Fractal design concepts for stretchable electronics

    Science.gov (United States)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  17. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  18. Third Generation of AHSS: Microstructure Design Concepts

    Science.gov (United States)

    Matlock, David K.; Speer, John G.

    In recent years there has been an increased emphasis on the development of new advanced high strength sheet steels (AHSS), particularly for automotive applications. Descriptive terminology has evolved to describe the “First Generation” of AHSS, i.e. steels that possess primarily ferrite-based microstructures, and the “Second Generation” of AHSS, i.e. austenitic steels with high manganese contents which include steels that are closely related to austenitic stainless steels. First generation AHSS have been referred to by a variety of names including dual phase (DP), transformation induced plasticity (TRIP), complex-phase (CP), and martensitic (MART). Second generation austenitic AHSS include twinninginduced plasticity (TWIP) steels, Al-added lightweight steels with induced plasticity (L-IP®), and shear band strengthened steels (SIP steels). Recently there has been increased interest in the development of the “Third Generation” of AHSS, i.e. steels with strength-ductility combinations significantly better than exhibited by the first generation AHSS but at a cost significantly less than required for second generation AHSS. Approaches to the development of third generation AHSS will require unique alloy/microstructure combinations to achieve the desired properties. Results from a recent composite modeling analysis have shown that the third generation of AHSS will include materials with complex microstructures consisting of a high strength phase (e.g. ultra-fine grained ferrite, martensite, or bainite) and significant amounts of a constituent with substantial ductility and work hardening (e.g. austenite). In this paper, design methodologies based on considerations of fundamental strengthening mechanisms are presented and evaluated to assess the potential for developing new materials. Several processing routes will be assessed, including the recently identified Quenching & Partitioning (Q&P) process developed in the authors’ own laboratory.

  19. Ceramic design concepts based on stress distribution analysis.

    Science.gov (United States)

    Esquivel-Upshaw, J F; Anusavice, K J

    2000-08-01

    This article discusses general design concepts involved in fabricating ceramic and metal-ceramic restorations based on scientific stress distribution data. These include the effects of ceramic layer thickness, modulus of elasticity of supporting substrates, direction of applied loads, intraoral stress, and crown geometry on the susceptibility of certain restoration designs to fracture.

  20. A New Structural Design Concept for Blended Wing Body Cabins

    NARCIS (Netherlands)

    Vos, R.; Geuskens, F.J.J.M.M.; Hoogreef, M.F.M.

    2012-01-01

    This paper outlines a new concept for a pressure cabin design for blended-wing-body aircraft. An overview is presented of the wide oval cabin and why it is believed to be a possible alternative to existing designs of non-circular pressurized cabins. The perimeter of the oval cross section is formed

  1. Techniques for Conducting Effective Concept Design and Design-to-Cost Trade Studies

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Concept design plays a central role in project success as its product effectively locks the majority of system life cycle cost. Such extraordinary leverage presents a business case for conducting concept design in a credible fashion, particularly for first-of-a-kind systems that advance the state of the art and that have high design uncertainty. A key challenge, however, is to know when credible design convergence has been achieved in such systems. Using a space system example, this paper characterizes the level of convergence needed for concept design in the context of technical and programmatic resource margins available in preliminary design and highlights the importance of design and cost evaluation learning curves in determining credible convergence. It also provides techniques for selecting trade study cases that promote objective concept evaluation, help reveal unknowns, and expedite convergence within the trade space and conveys general practices for conducting effective concept design-to-cost studies.

  2. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  3. Symmetric achromatic low-beta collider interaction region design concept

    CERN Document Server

    Morozov, V S; Lin, F; Johnson, R P

    2012-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations to the particle trajectory. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chr...

  4. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  5. Structural concept trends for commercial supersonic cruise aircraft design

    Science.gov (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  6. A design concept for an MMIC microstrip phased array

    Science.gov (United States)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  7. Concept design on RH maintenance of CFETR Tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Wu, Songtao; Wan, Yuanxi; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Ye, Minyou [University of Science and Technology of China, Hefei (China); Zheng, Jinxing; Cheng, Yong; Zhao, Wenlong; Wei, Jianghua [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-10-15

    Highlights: •We discussed the concept design of the RH maintenance system based on the main design work of the key components for CFETR. •The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. •The technical problems encountered in the design process were discussed. •The present concept design of remote maintenance system in this paper can meet the physical and engineering requirement of CFETR. -- Abstract: CFETR which stands for Chinese Fusion Engineering Testing Reactor is a superconducting Tokamak device. The concept design on RH maintenance of CFETR has been done in the past year. It is known that, the RH maintenance is one of the most important parts for Tokamak reactor. The fusion power was designed as 50–200 MW and its duty cycle time (or burning time) was estimated as 30–50%. The center magnetic field strength on the TF magnet is 5.0 T, the maximum capacity of the volt seconds provided by center solenoid winding will be about 160 VS. The plasma current will be 10 MA and its major radius and minor radius is 5.7 m and 1.6 m respectively. All the components of CFETR which provide their basic functions must be maintained and inspected during the reactor lifetime. Thus, the remote handling (RH) maintenance system should be a key component, which must be detailedly designed during the concept design processing of CFETR, for the operation of reactor. The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. What is more, the technical problems encountered in the design process will also be discussed.

  8. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong

    2017-01-01

    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  9. DESIGN REUSE METHOD FOR ASSEMBLIES IN CONCEPT DESIGN

    Institute of Scientific and Technical Information of China (English)

    Dong Yan; Tan Jianrong; Xu Jing

    2005-01-01

    Aiming at difficult sorting and retrieving complicated structure assemblies in assembly lib,a method for compartmentalizing assembly design resource by conceptual product structure model is presented. The similar assembly retrieval mechanisms of symbol assembly relation graph matching and symbol assembly relation graph similarity are discussed. The method is validated by taking valve rod assemblies as example.

  10. Concept of Intelligent Mechanical Design for Autonomous Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    Amir A. F. Nassiraei; Kazuo Ishii

    2007-01-01

    The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.

  11. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts......An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... with responsive building elements. The (Dutch) Toolkit Sustainable Residential Buildings is one of the examples of tools for an integrated design process....

  12. Conceptional Design of the Laser Ion Source based Hadrontherapy Facility

    OpenAIRE

    Xie, Xiucui; Song, Mingtao; Zhang, Xiaohu

    2013-01-01

    Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be pres...

  13. Mars Surveyor '98 MVACS Robotic Arm Control System Design Concepts

    Science.gov (United States)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Novel solutions are presented to some of the unique problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing power.

  14. Research on green building design based on ecological concept

    Directory of Open Access Journals (Sweden)

    Zhang Ping Qing

    2016-01-01

    Full Text Available At present, the protection of the ecological environment and the promotion of green building has been recognized and widely promoted.With the rapid development of the construction industry, Architecture design will inevitably require the resentation of its unique form and charm to reflect the ecological concept and ecological culture, because of the unique nature of the art and the particularity of the environment. To establish the ecological concept of green building design and vigorously develop the green green building has a complementary role to alleviate the pressure on resources,and to speed up the eco city planning design, and to realize the sustainable development of the city, and to protect the urban ecological environmental.

  15. Investigating the Act of Design in Discharge Concept Using PMRI

    Directory of Open Access Journals (Sweden)

    Lestariningsih

    2015-07-01

    Full Text Available The goal of this research is to investigate the act of design in discharge concept using Pendidikan Matematika Realistik Indonesia (PMRI approach with Lapindo's Mud phenomenon as a context. Design research was chosen as method used in this research that consist of three phases, namely preparing for the experiment, teaching experiment, and retrospective analysis. Based on the result of investigating from findings and the data obtained in this research, it can be concluded that the use of instructional design using PMRI can support students' understanding in learning the concept of discharge. Observing activities Lapindo mud photos, watching videos Lapindo mud, observing miniature discharge of Lapindo mud, volume of water and time of data collection are needed, and finding discharge of Lapindo mud are conducted in this research.

  16. Concepts of creation: historiography and design in Gottfried Semper

    Directory of Open Access Journals (Sweden)

    Sonja Hildebrand

    2014-12-01

    Full Text Available In drawing on Gottfried Semper’s archaeological work on the one hand and his design theory on the other this paper questions the contrasting juxtaposition of scientific practice and design practice. It argues that Semper succeeded in making the tension between historiography and design productive for both fields. The linking methodological context is hermeneutics as developed around 1800 and its adaptation in archaeology and the natural sciences. During his formation Semper was introduced into a scientific practice that was based on a combination of empirical research and poetic imagination. Semper integrated this approach into his archaeological and historiographical work, which formed the basis of his design theory. His design theory in turn combined rational and scientific with creative aspects. Semper’s historiography of architecture and his subsequent design theory are finally referred to concepts of evolutionary biology.

  17. Conceptional design of the laser ion source based hadrontherapy facility

    Science.gov (United States)

    Xie, Xiu-Cui; Song, Ming-Tao; Zhang, Xiao-Hu

    2014-04-01

    A laser ion source (LIS), which can provide a carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. The proposed LIS based hadrontherapy facility has the advantages of short linac length, simple injection scheme, and small synchrotron size. With the experience from the DPIS and HITFiL projects that have been conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be presented, with special attention given to APF type IH DTL design and simulation.

  18. Conceptional Design of the Laser Ion Source based Hadrontherapy Facility

    CERN Document Server

    Xie, Xiucui; Zhang, Xiaohu

    2013-01-01

    Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be present with special dedication to APF type IH DTL design and simulation.

  19. Water-responsive shape memory hybrid: Design concept and demonstration

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Shape memory materials are featured by their ability to recover their original shapes when a particular stimulus, such as heat, light, magnetic field, even moisture/water, etc. is applied. However, it is not an easy task for non-professionals to synthesize a shape memory material which can meet all the requirements of a particular application. Even for professionals, like materials researchers, it could involve tedious trial and error procedures. In this paper, the concept of water-responsive shape memory hybrid is proposed and the advantages are demonstrated by two examples. The hybrid concept is versatile and can be easily accessed by those even without much polymer/chemistry background. Moreover, the performance of such hybrids can be well-predicted. This concept can be further extended into solvent-responsive shape memory hybrids, which can be routinely designed and realized in a Do-It-Yourself manner by almost anyone.

  20. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  1. Automatic Voltage Control (AVC) of Danish Transmission System - Concept design

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Lund, P.

    2014-01-01

    , objectives, constraints, algorithms for optimal power flow and some special functions in particular systems, which inspires the concept design of a Danish AVC system to address the future challenges of voltage control. In the concept, the Danish AVC design is based on a centralized control scheme. All....... Another consequence is the public way of generally thinking green which have led to a national decision of undergrounding not only all of the Danish distribution system but also the future transmission system. These issues initiate the infrastructure constructions of the transmission system i.e. a large...... the substation loses the telecommunications to the control center. RPCs will be integrated to the AVC system as normative regulators in the later stage. Distributed generation units can be organized as virtual power plants and participate in voltage control at transmission level. Energinet.dk as the Danish TSO...

  2. 3D CAD for concept design - a case study

    Directory of Open Access Journals (Sweden)

    S.K. Mandal

    2013-07-01

    Full Text Available Generally for any new design initially a concept layout in 2D CAD is generated. But sometimes if the geometry of product becomes complicated, then 3D CAD model is preferred. Because 3D CAD model can give us a complete all side view at a time like a real product, but in a virtual world. The present case study will show the utilization of 3D CAD at the concept design stage of a complicated shaped product for a new system. This will also give an idea about cost and time comparison. Thus this paper will describe about the importance of 3D CAD tools for product development. 

  3. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  4. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Spadling, Steve [Oklahoma State Univ., Stillwater, OK (United States)

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  5. Design, Analysis and Test Concept for Prototype Cryoline of Iter

    Science.gov (United States)

    Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch.

    2008-03-01

    The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P & I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.

  6. Concept design of a new generation military vehicle

    Science.gov (United States)

    Cantemir, Codrin-Gruie; Ursescu, Gabriel; Serrao, Lorenzo; Rizzoni, Giorgio; Bechtel, James; Udvare, Thomas; Letherwood, Mike

    2006-05-01

    This paper presents the development of an advanced concept for a next generation military vehicle based on state of the art technologies. The vehicle's platform will be directly suitable for high mobility applications for instance: Special Forces missions, Marine reconnaissance missions, and commercial racing in events such as Bajas and the Paris - Dakar. The platform will be a 10000 -14000 lbs high-speed multi-purpose vehicle, designed for extreme off-road operation. A completely new suspension concept is expected to be developed and the new vehicle topology will accommodate a new generation hybrid-electric power train. The dynamic performance targets are 125 mph off-road and 0-60 in 7 seconds. The concept design will focus also on survivability mainly through the use of a new vehicle topology (herein referred to as "island") specifically designed to enhance crew protection. The "island" topology consists in locating the powertrain and other vehicle equipment and subsystems around the crew compartment. Thus, even in the event of an external shield penetration the crew compartment remains protected by the surrounding equipment which serves in an additional role as a secondary shield. The paper presents vehicle specifications, performance capabilities, simulation models and virtual models of the vehicle.

  7. Implementing Firm Dynamic Capabilities Through the Concept Design Process

    DEFF Research Database (Denmark)

    Nedergaard, Nicky; Jones, Richard

    2011-01-01

    It is well understood that firms operating in highly dynamic and fluid markets need to possess strong dynamic capabilities of sensing (market trajectories), seizing (to capitalise on these trajectories), and transformation (in order to implement sustainable strategies). Less understood is how firms...... actually implement these capabilities. A conceptual model showing how managing concept design processes can help firms systematically develop dynamic capabilities and help bridge the gap between the market-oriented and resource-focused strategic perspectives is presented. By placing this model in a design...

  8. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  9. Automating expert role to determine design concept in Kansei Engineering

    Science.gov (United States)

    Lokman, Anitawati Mohd; Haron, Mohammad Bakri Che; Abidin, Siti Zaleha Zainal; Khalid, Noor Elaiza Abd

    2016-02-01

    Affect has become imperative in product quality. In affective design field, Kansei Engineering (KE) has been recognized as a technology that enables discovery of consumer's emotion and formulation of guide to design products that win consumers in the competitive market. Albeit powerful technology, there is no rule of thumb in its analysis and interpretation process. KE expertise is required to determine sets of related Kansei and the significant concept of emotion. Many research endeavors become handicapped with the limited number of available and accessible KE experts. This work is performed to simulate the role of experts with the use of Natphoric algorithm thus providing sound solution to the complexity and flexibility in KE. The algorithm is designed to learn the process by implementing training datasets taken from previous KE research works. A framework for automated KE is then designed to realize the development of automated KE system. A comparative analysis is performed to determine feasibility of the developed prototype to automate the process. The result shows that the significant Kansei is determined by manual KE implementation and the automated process is highly similar. KE research advocates will benefit this system to automatically determine significant design concepts.

  10. Advanced steel body concepts for automotive lightweight design

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.G. [DaimlerChrysler AG, Stuttgart (Germany). Research Body and Powertrain

    2005-07-01

    Lightweight design is a must for future vehicle concepts due to the self-commitment on the reduction of fleet consumption. Body concepts for mid- and high-volume vehicles demand smart lightweight solutions without increasing costs and without sacrificing the high level of safety (e.g. future passive safety standards). Furthermore, all lightweight activities have to comply with requirements in terms of reliability (no additional efforts for maintenance), NVH (no additional weight for e.g. damping) and future stricter recycling quotas. Successful lightweight design solutions are determined by the best relation between weight-saving and additional costs as a function of the annual production volume. Using advanced high-strength steels (TWIP-steels) seems to be a very promising approach for cost-optimized lightweight design of body structures. In addition, by applying bionic optimization, the weight of body-structures can be significantly reduced. As a consequence, only a holistic approach for lightweight design combining the three areas materials, design and manufacturing is needed in order to use the full potential of cost-optimized weight-reduction. (orig.)

  11. Conception Innovation Design System Based on PDM Framework

    Institute of Scientific and Technical Information of China (English)

    TANWu-zheng; MALi-zhuang; ZHAOMing-xi; XIAOShuang-jiu

    2004-01-01

    The system is based on the globally shared product model conforming to VRML Standard, and uses SmarTeam (PDM) system to integrate and encapsulate CAD, CAE and other application software for product development. The system takes sugarcane harvester, mobile telephone design analysis and evaluation as an example, and utilizes fuzzy evaluation principle to evaluate the design and simulation analysis results for decisions making. The platform provides a collaborative intelligent environment for the design of products, aiming at integrating people, process and data in the virtual product development. The multi-layered system architecture provides capability for KBM and conception innovation design process with a single unified data and process model so as to achieve true process streamlining and data integrity throughout the entire product development lifecycle, and hence improves enterprises efficiency.

  12. Systems design and comparative analysis of large antenna concepts

    Science.gov (United States)

    Garrett, L. B.; Ferebee, M. J., Jr.

    1983-01-01

    Conceptual designs are evaluated and comparative analyses conducted for several large antenna spacecraft for Land Mobile Satellite System (LMSS) communications missions. Structural configurations include trusses, hoop and column and radial rib. The study was conducted using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. The current capabilities, development status, and near-term plans for the IDEAS system are reviewed. Overall capabilities are highlighted. IDEAS is an integrated system of computer-aided design and analysis software used to rapidly evaluate system concepts and technology needs for future advanced spacecraft such as large antennas, platforms, and space stations. The system was developed at Langley to meet a need for rapid, cost-effective, labor-saving approaches to the design and analysis of numerous missions and total spacecraft system options under consideration. IDEAS consists of about 40 technical modules efficient executive, data-base and file management software, and interactive graphics display capabilities.

  13. System Concept Design for the New Worlds Observer

    Science.gov (United States)

    Simmons, W.; Kasdin, N. J.; Vanderbei, R. J.; Cash, W.

    2003-12-01

    The New Worlds Observer (NWO) is a proposed space mission to provide high resolution spectroscopy from the far UV to the near IR of extra-solar terrestrial sized planets. The design of NWO is based on the concept of a large space-based pinhole camera made up of two spacecraft flying in formation. The first spacecraft is a large, thin occulting shield (perhaps 100's of meters in diameter) with a ``pinhole'' aperture about 10m in diameter. The second spacecraft is a conventional-quality space telescope (possibly with a 10m primary mirror) which "flies" in the focal plane of the camera to observe the image of the extra-solar planets. In this paper we describe the design of the two spacecraft system. In particular, the pinhole design utilizes the shaped pupil coronagraph pioneered for the Terrestrial Planet Finder. We describe the analysis and design of shaped ``pinholes'' to achieve the high contrast necessary for planet finding.

  14. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  15. Design Concepts for Cooled Ceramic Composite Turbine Vane

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  16. 3MI OPD optical design: concept and performances

    Science.gov (United States)

    Gabrieli, Riccardo; Bartoli, Alessandro; Maiorano, Michele; Bruno, Umberto; Belli, Fabio; Bove, Giuseppe; Caruso, Alberto; Calamai, Luciano; Manolis, Ilias; Labate, Demetrio

    2015-09-01

    The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MetOp-SG programme. Based on the heritage of POLDER/PARASOL, 3MI will collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a push-broom scanning concept. In order to mitigate any technological risks associated with the 3MI instrument development, an Elegant Breadboard of representative form, function and performance to the 3MI VNIR lens was foreseen in the frame of the Optics Pre- Development (OPD) activity. The optical design and the performance results of the OPD VNIR lens are presented, from the top level requirements flow-down to the optical design solution and concept adopted. The large FOV and image irradiance uniformity, the extended VNIR spectral range, combined with the demanding polarisation and stray-light requirements are the main design drivers. The design concept is based on a Galilean telescope coupled to a focusing group. The aperture stop, placed in between, is located in such a way that the system is telecentric in image space. The system exhibits a fine control of the entrance pupil size as a function of the FOV, low distortion and correction of lateral chromatic aberration. Polarisation related performances are achieved by low polarisation sensitivity and low retardance anti-reflection coatings, as well as by a proper selection of glass material properties.

  17. Fast High Capacity Annular Gas Puff Valve Design Concept

    Science.gov (United States)

    Ruden, Edward

    2000-10-01

    A fast opening gas valve design concept is presented that can theoretically inject a few grams of D2 gas radially outward into a coaxial annular vacuum region with a radius of about 10 cm in less that 100 μ s. The concept employs a single turn 20-30 T pulsed magnetic field coil that axially accelerates an Mg alloy ring, which seals a gas plenum, to high velocity, releasing the gas. Both coil and ring are profiled to minimize stress in the ring. Such a device could be used to supply the initial gas load for a proposed 5 MJ Dense Plasma Focus driven by AFRL's Shiva Star Capacitor bank. The intent here is keep the vacuum current feed insulator under high vacuum during the discharge to avoid surface breakdown. Alternatively, a high energy rep ratable plasma flow opening switch could be supplied with such a valve. This work is funded by the USAF.

  18. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  19. Living closer to the environment: Housing design concept

    Directory of Open Access Journals (Sweden)

    Kosorić Vesna

    2011-01-01

    Full Text Available The main idea of this design concept is to strengthen the relationship and understanding between a man - resident and his environment. Residents are separated from the outdoor environment by glazing, which enables constant observation of environment from nearly all points of indoor space, encouraging positive feelings towards external world and understanding of the fragility of biosphere. Care for the environment should become a part of a man's nature and way of living, and it is the people who are expected to become the driving force of positive global changes towards sustainable development. The semisphere-like single family house of 14m in diameter has a multifunctional, multi-layer 'active' facade envelope. The envelope ensures constant visual contact of residents with the whole surroundings, while still providing comfort. The living space of the house reflects natural shapes which are organic rather than rectangular. Such indoor space becomes a part of the environment, rather than being protected, distanced and isolated from it. The house is designed to use solar energy 'passively' by absorption through insulated glazed envelope and 'actively' by outer skin layer on the first floor, made of stripes of flat semi-transparent polycrystalline photovoltaic (PV panels. In addition to its constructive role, the concrete core of the house acts as thermal mass and enables absorption and accumulation of thermal energy. The developed housing concept is applicable in different urban-design units and sets.

  20. Conceptional design of test loop for FIV in fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Sim, W. G.; Yang, J. S.; Kim, S. W. [Hannam Univ., Taejeon (Korea)

    2001-01-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model. Because of this reason, it is required to design proper test loop. Using the optimized test loop, with the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 23 figs., 2 tabs. (Author)

  1. A solar vehicle based on sustainable design concept

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Sah, J.M.; Passarella, R.; Ghazilla, R.A.R.; Ahmad, N.; Jen, Y.H.; Khai, T.T.; Kassim, Z.; Hasanuddin, I.; Yunus, M. [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering, Centre for Product Design and Manufacture

    2009-07-01

    This paper described a newly constructed solar vehicle that was built specifically for the 2009 World Solar Challenge (WSC) using off-the-shelf parts. Researchers at the Centre for Product Design and Manufacture at the University of Malaya designed and built the solar car which uses solar energy to charge its batteries. Although the total investment for this sustainable product concept is small compared to other solar vehicles, the car's performance has met expectations. Most of the electrical and mechanical parts can be recycled and reused after the WSC event. The photovoltaic (PV) and maximum power point trackers (MPPT) can be re-used for home applications. The DC motor and the controller can be attached to a bicycle and the aluminium parts which make-up the main body structure can be recycled. The design will result in nearly zero waste. The study showed that the process of combining mechanical and electrical components is not an easy task, particularly at the design stage because of the specific characteristics and functions of the individual parts. This paper described how readily available, off-the-shelf mechanical and electrical components were integrated for the solar vehicle. The conceptual design and the performance of the prototype were also presented. 11 refs., 5 tabs., 11 figs.

  2. SuperSpec: design concept and circuit simulations

    CERN Document Server

    Kovács, Attila; Bradford, Charles M; Chattopadhyay, Goutam; Day, Peter; Doyle, Simon; Hailey-Dunsheath, Steve; Hollister, Matthew; McKenney, Christopher; LeDuc, Henry G; Llombart, Nuria; Marrone, Daniel P; Mauskopf, Philip; O'Brient, Roger; Padin, Stephen; Swenson, Loren J; Zmuidzinas, Jonas; 10.1117/12.927160

    2012-01-01

    SuperSpec is a pathfinder for future lithographic spectrometer cameras, which promise to energize extra-galactic astrophysics at (sub)millimeter wavelengths: delivering 200--500 km/s spectral velocity resolution over an octave bandwidth for every pixel in a telescope's field of view. We present circuit simulations that prove the concept, which enables complete millimeter-band spectrometer devices in just a few square-millimeter footprint. We evaluate both single-stage and two-stage channelizing filter designs, which separate channels into an array of broad-band detectors, such as bolometers or kinetic inductance detector (KID) devices. We discuss to what degree losses (by radiation or by absorption in the dielectric) and fabrication tolerances affect the resolution or performance of such devices, and what steps we can take to mitigate the degradation. Such design studies help us formulate critical requirements on the materials and fabrication process, and help understand what practical limits currently exist ...

  3. Hybrid propulsion technology program. Volume 1: Conceptional design package

    Science.gov (United States)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  4. Design concepts for the Centrifuge Facility Life Sciences Glovebox

    Science.gov (United States)

    Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.

    1989-01-01

    The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.

  5. A solar powered wireless computer mouse. Industrial design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; Van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Veefkind, M.; Silvester, S. [Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft (Netherlands)

    2009-02-15

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared the following: appropriate selection of integrated PV type, battery capacity and type, possible electronic circuitries for PV-battery coupling, and material properties concerning mechanical incorporation of PV into the encasing. Besides technical requirements, ergonomic aspects and design aesthetics with respect to good 'sun-harvesting' properties influenced the design process. This is particularly important as simulations show users can positively influence energy balances by 'sun-bathing' the PV mouse. A total of 15 SPM prototypes were manufactured and tested by actual users. Although user satisfaction proved the SPM concept to be feasible, future research still needs to address user acceptance related to product dimensions and user willingness to pro-actively 'sun-bath' PV powered products in greater detail. (author)

  6. Facilitating the Concept of Universal Design Among Design Students - Changes in Teaching in the Last Decade.

    Science.gov (United States)

    Vavik, Tom

    2016-01-01

    This short paper describes and reflects on how the teaching of the concept of Universal Design (UD) has developed in the last decade at the Institute of Design at the Oslo School of Architecture and Design (AHO). Four main changes are described. Firstly, the curriculum has evolved from teaching guidelines and principles to focusing on design processes. Secondly, an increased emphasis is put on cognitive accessibility. Thirdly, non-stigmatizing aesthetics expressions and solutions that communicate through different senses have become more important subjects. Fourthly the teaching of UD has moved from the second to the first year curriculum.

  7. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  8. Multitopic ligand design: a concept for single-source precursors.

    Science.gov (United States)

    Gschwind, Fabienne; Sereda, Olha; Fromm, Katharina M

    2009-11-16

    The multitopic ligand O,O'-bisnicotinic acid tetraethylene glycol, L, was designed for the coordination of two distinct types of metal ions. In this work, we describe how the O-donor part of L is used to coordinate to alkaline earth metal ions and that the N-donor atoms of L bind to group 11 elements. This makes L a suitable ligand for the combination of both metal ion types within the same compound. This concept will be exemplified by highlighting the pure Ca(2+) complexes, a Cu(+)-coordination polymer network, as well as the mixed-metal compound, which can be used as a single-source precursor for mixed-metal oxide materials.

  9. The Oxford Conception Study design and recruitment experience.

    Science.gov (United States)

    Pyper, Cecilia; Bromhall, Lise; Dummett, Sarah; Altman, Douglas G; Brownbill, Pat; Murphy, Michael

    2006-11-01

    The Oxford Conception Study is a randomised controlled trial that aims to determine whether or not information about potential fertility from a device that monitors urinary hormones will increase the conception rate in women wishing to conceive. Three modified versions of a fertility monitor have been developed for the study. The monitor measures the levels of urinary oestrone-3-glucuronide (E3G) and luteinising hormone (LH), and the display indicates high or low fertility. The monitor requests all women to test their urine from day 6 to day 25 of the menstrual cycle inclusive. One-third of women are randomised to receive information from the fertility monitor about the early fertile time (from the first rise in E3G until the LH surge is detected), one-third receive information about the late fertile time (the onset of the LH surge and the following 2 days), and a third do not receive any information (control group). All the women are followed up for 6 months or until they are pregnant. A total of 1453 women have been recruited into the study, reaching the study recruitment goal for 80% power to detect a 10% difference in three-cycle pregnancy rate between the Late Fertile Time group (50%) and the Control group (40%), allowing for a 15% non-pregnancy drop-out rate. Follow-up of the women is currently ongoing. The primary analysis will compare the cumulative three-cycle pregnancy rate between each of the study arms. Time-specific conception probabilities will be estimated from coitus information recorded in 12-h intervals. The data from this study will also allow many additional questions to be addressed, including changes in intercourse patterns with feedback about the fertile days and other questions in relation to menstrual cycle function, sexual intercourse, stress, exposures to tobacco products, alcohol, caffeine and medications, fertility and pregnancy outcomes. In addition to presenting the study design, we review the recruitment experience for the Oxford

  10. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  11. Design flood estimation in ungauged basins: probabilistic extension of the design-storm concept

    Science.gov (United States)

    Berk, Mario; Špačková, Olga; Straub, Daniel

    2016-04-01

    Design flood estimation in ungauged basins is an important hydrological task, which is in engineering practice typically solved with the design storm concept. However, neglecting the uncertainty in the hydrological response of the catchment through the assumption of average-recurrence-interval (ARI) neutrality between rainfall and runoff can lead to flawed design flood estimates. Additionally, selecting a single critical rainfall duration neglects the contribution of other rainfall durations on the probability of extreme flood events. In this study, the design flood problem is approached with concepts from structural reliability that enable a consistent treatment of multiple uncertainties in estimating the design flood. The uncertainty of key model parameters are represented probabilistically and the First-Order Reliability Method (FORM) is used to compute the flood exceedance probability. As an important by-product, the FORM analysis provides the most likely parameter combination to lead to a flood with a certain exceedance probability; i.e. it enables one to find representative scenarios for e.g., a 100 year or a 1000 year flood. Possible different rainfall durations are incorporated by formulating the event of a given design flood as a series system. The method is directly applicable in practice, since for the description of the rainfall depth-duration characteristics, the same inputs as for the classical design storm methods are needed, which are commonly provided by meteorological services. The proposed methodology is applied to a case study of Trauchgauer Ach catchment in Bavaria, SCS Curve Number (CN) and Unit hydrograph models are used for modeling the hydrological process. The results indicate, in accordance with past experience, that the traditional design storm concept underestimates design floods.

  12. AVID - A design system for technology studies of advanced transportation concepts. [Aerospace Vehicle Interactive Design

    Science.gov (United States)

    Wilhite, A. W.; Rehder, J. J.

    1979-01-01

    The basic AVID (Aerospace Vehicle Interactive Design) is a general system for conceptual and preliminary design currently being applied to a broad range of future space transportation and spacecraft vehicle concepts. AVID hardware includes a minicomputer allowing rapid designer interaction. AVID software includes (1) an executive program and communication data base which provide the automated capability to couple individual programs, either individually in an interactive mode or chained together in an automatic sequence mode; and (2) the individual technology and utility programs which provide analysis capability in areas such as graphics, aerodynamics, propulsion, flight performance, weights, sizing, and costs.

  13. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    Science.gov (United States)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  14. The Large Synoptic Survey Telescope concept design overview

    Science.gov (United States)

    Krabbendam, Victor L.

    2008-07-01

    The Large Synoptic Survey Telescope Project is a public-private partnership that has successfully completed the Concept Design of its wide-field ground based survey system and started several long-lead construction activities using private funding. The telescope has a 3-mirror wide field optical system with an 8.4 meter primary, 3.4 meter secondary, and 5 meter tertiary mirror. The reflective optics feed three refractive elements and a 64 cm 3.2 gigapixel camera. The telescope will be located on the summit of Cerro Pachón in Chile. The LSST data management system will reduce, transport, alert, archive the roughly 15 terabytes of data produced nightly, and will serve the raw and catalog data accumulating at an average of 7 petabytes per year to the community without any proprietary period. This survey will yield contiguous overlapping imaging of 20,000 square degrees of sky in 6 optical filter bands covering wavelengths from 320 to 1080nm. The project continues to attract institutional partners and has acquired non-federal funding sufficient to construct the primary mirror, already in progress at the University of Arizona, and fund detector prototype efforts, two of the longest lead items in the LSST. The project has submitted a proposal for construction to the National Science Foundation Major Research Equipment and Facilities Construction (MREFC) program and is preparing for a 2011 funding authorization.

  15. Sub-mSV breast XACT scanner: concept and design

    Science.gov (United States)

    Tang, Shanshan; Ren, Liqiang; Samant, Pratik; Chen, Jian; Liu, Hong; Xiang, Liangzhong

    2016-04-01

    Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.

  16. Application of concept selection methodology in IC process design

    Science.gov (United States)

    Kim, Myung-Kul

    1993-01-01

    Search for an effective methodology practical in IC manufacturing process development led to trial of quantitative 'concept selection' methodology in selecting the 'best' alternative for interlevel dielectric (ILD) processes. A cross-functional team selected multi-criteria with scoring guidelines to be used in the definition of the 'best'. The project was targeted for the 3 level metal backend process for sub-micron gate array product. The outcome of the project showed that the maturity of the alternatives has strong influence on the scores, because scores on the adopted criteria such as yield, reliability and maturity will depend on the maturity of a particular process. At the same time, the project took longer than expected since it required data for the multiple criteria. These observations suggest that adopting a simpler procedure that can analyze total inherent controllability of a process would be more effective. The methodology of the DFS (design for simplicity) tools used in analyzing the manufacturability of such electronics products as computers, phones and other consumer electronics products could be used as an 'analogy' in constructing an evaluation method for IC processes that produce devices used in those electronics products. This could be done by focusing on the basic process operation elements rather than the layers that are being built.

  17. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx

  18. The Concepts of Accessibility and Equality in Design Education: The Universal Design Approach

    Directory of Open Access Journals (Sweden)

    Guliz Mugan Akıncı

    2014-06-01

    Full Text Available Universal design approach aims to design products and environments that provide equal access for everyone to the variety of activities. Universal design applications and research and discussions related to these applications can be seen in different fields very often especially in the last years. Concerning the fact that its possibility of application is very new in Turkey, on the one hand, one of the aims of this study is to introduce and explain this new approach. On the other hand, the study aims to exemplify how the new information related to the philosophy of universal design approach can be integrated to the design education and find the ways of application in the university environment where the next expert generation has been coached. Within this framework, it is aimed to introduce the content and the way of application of the course of “Universal Design” which have been taught in the curriculum of the Architecture and Interior Architecture Departments of Okan University. Within the scope of the course, the students are expected to investigate and analyze the reflections of seven principles of universal design in real-life settings for the different and varied groups of human beings. While integrating the universal design approach to the design education, the things that is wanted to be emphasized is, this new and different approach is an inspiring fact for the new generation of designers concerning the concepts of accessibility and equality. The designs, organizations, suggestions, studies and researches of the design students of the course has demonstrated that if the universal design principles has become a component of the design education, it would also be achieving as a rewarding and fostering attempt.

  19. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    Science.gov (United States)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  20. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    Science.gov (United States)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  1. The Role of Design Concepts in the Development of Industrial Services

    DEFF Research Database (Denmark)

    Pekkala, Janne; Ylirisku, Salu

    2017-01-01

    B-to-B industrial manufacturing organisations are moving focus from designing products to services. This transition challenges the management of innovating, which is increasingly collaborative and networked. Organisations need to be able to tackle the related uncertainty in order to prepare, secure......-to-B industrial manufacturing. Eight roles for design concepts are identified in the 11-month study, and these are presented as stories concretising how design concepts functioned. Design concepts were utilised in 1) anticipating future, 2) implementing design, 3) training, 4) engaging in dialogue, 5) setting......, and plan their use of resources. Design concepts are known to have various beneficial roles in product and service development in various development contexts. In this article we study how design concepts were utilised within, and between, three development projects in a Finnish company in the context of B...

  2. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    Science.gov (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    800 nanometers with three additional discrete near infrared (NIR) and shortwave infrared (SWIR) ocean aerosol correction bands. Also, to avoid drift in sensor sensitivity from being interpreted as environmental change, climate change research requires rigorous monitoring of sensor stability. For SeaWiFS, monthly lunar imaging accurately tracked stability at an accuracy of approximately 0.1% that allowed the data to be used for climate studies [2]. It is now acknowledged by the international community that future missions and sensor designs need to accommodate lunar calibrations. An overview of ocean color remote sensing and a review of the progress made in ocean color remote sensing and the variety of research applications derived from global satellite ocean color data are provided. The purpose of this chapter is to discuss the design options for ocean color satellite radiometers, performance and testing criteria, and sensor components (optics, detectors, electronics, etc.) that must be integrated into an instrument concept. These ultimately dictate the quality and quantity of data that can be delivered as a trade against mission cost. Historically, science and sensor technology have advanced in a "leap-frog" manner in that sensor design requirements for a mission are defined many years before a sensor is launched and by the end of the mission, perhaps 15-20 years later, science applications and requirements are well beyond the capabilities of the sensor. Section 3 provides a summary of historical mission science objectives and sensor requirements. This progression is expected to continue in the future as long as sensor costs can be constrained to affordable levels and still allow the incorporation of new technologies without incurring unacceptable risk to mission success. The IOCCG Report Number 13 discusses future ocean biology mission Level-1 requirements in depth.

  3. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2009-01-01

    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  4. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  5. A new mix design concept for earth-moist concrete: A theoretical and experimental study

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.

    2008-01-01

    This paper addresses experiments on earth-moist concrete (EMC) based on the ideas of a new mix design concept. First, a brief introduction into particle packing and relevant packing theories is given. Based on packing theories for geometric packing, a new concept for the mix design of earth-moist co

  6. A new mix design concept for earth-moist concrete: A theoretical and experimental study

    NARCIS (Netherlands)

    Hüsken, Götz; Brouwers, Jos

    2008-01-01

    This paper addresses experiments on earth-moist concrete (EMC) based on the ideas of a new mix design concept. First, a brief introduction into particle packing and relevant packing theories is given. Based on packing theories for geometric packing, a new concept for the mix design of earth-moist

  7. A Control Systems Concept Inventory Test Design and Assessment

    Science.gov (United States)

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  8. A Control Systems Concept Inventory Test Design and Assessment

    Science.gov (United States)

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  9. Design Concepts for a Global Telemetered Seismograph Network

    Science.gov (United States)

    Peterson, Jon; Orsini, Nicholas A.

    1982-01-01

    INTRODUCTION This study represents a first step in developing an integrated, real-tlme global seismic data acquisition system -- a Global Telemetered Seismograph Network (GTSN). The principal objective of the GTSN will be to acquire reliable, high-quality, real-time seismic data for rapid location and analysis of seismic events. A secondary, but important, objective of the GTSN is to augment the existing off-line seismic data base available for research. The deployment of the GTSN will involve a variety of interrelated activities -- development of the data acquisition and receiving equipment, establishment of satellite and terrestrial communication links, site selection and preparation, training of station personnel, equipment installation, and establishment of support facilities. It is a complex program and the develop- ment of a sound management plan will be essential. The purpose of this study is not to fix design goals or dictate avenues of approach but to develop work- ing concepts that may be used as a framework for program planning. The international exchange of seismic data has been an important factor in the progress that has been made during the past two decades in our under- standing of earthquakes and global tectonics. The seismic data base available for analysis and research is derived principally from the Global Seismograph Network (GSN), which is funded and managed by the U.S. Geological Survey (USGS). The GSN comprises some 120 seismograph stations located in more than 60 countries of the world. Established during the 1960's with the installation of the World-Wide Standardized Seismograph Network (WWSSN), the GSN has been augmented in recent years by the installation of more advanced data systems, such as the Seismic Research Observatories (SRO), the modified High-Gain Long- Period (ASRO) seismographs, and the digital WWSSN (DWWSSN). The SRO, ASRO, and DWWSSN stations have the common, distinctive feature of digital data recording, so they are known

  10. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies

  11. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies multi-chann

  12. CONCEPT OF ECODESIGN APPLIED TO THE DESIGN AND PROCESSES EQUIPMENT MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Andra-Raluca DABIJA

    2012-11-01

    Full Text Available The Ecodesign concept involves the integration of product design in the work of the environmental component that is integrated with other components such as: management costs, technical performance, customer requirements. Environmental conditions must be applied throughout all phases of product life cycle (conception, design, manufacturing, transportation, use and disposal, the product or service on the packaging. This paper deals with the issue of applying the concept of Ecodesign in the design process and equipment design and manufacturing technology in the field of machine building.

  13. Novel natural convection heat sink design concepts from first principles

    OpenAIRE

    Fletcher, Derek E.

    2016-01-01

    Approved for public release; distribution is unlimited This was a two-part numerical study using ANSYS Fluent to develop novel heat sink concepts from first principles. The objective of this research was to highlight geometric structures that incorporate the principles of the stack effect to improve the heat transfer capability of a heat sink under natural convection. The first part investigated the heat transfer/fluid flow characteristics of vertically aligned tubes. The gaps between tube...

  14. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    Public Affairs Office and is releasaole to the National Technical Information Services (NTIS). At NTIS, it will be available to the general public...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept...reactor core at the top and discharged at the Dotton while the reactor is in operation. The discharged fuel can then b inspected to see if it can De used

  15. Trajectory Design for the Europa Clipper Mission Concept

    Science.gov (United States)

    Buffington, Brent

    2014-01-01

    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si).

  16. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  17. Essential Concepts of Engineering Design Curriculum in Secondary Technology Education

    Science.gov (United States)

    Wicklein, Robert; Smith, Phillip Cameron, Jr.; Kim, Soo Jung

    2009-01-01

    Technology education is a field of study that seeks to promote technological literacy for all students. Wright and Lauda defined technology education as a program designed to help students "develop an understanding and competence in designing, producing, and using technological products and systems, and in assessing the appropriateness of…

  18. Design Concepts for Optimum Energy Use in HVAC Systems.

    Science.gov (United States)

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  19. Research by Design - a Research and Teaching Concept

    DEFF Research Database (Denmark)

    Hauberg, Jørgen; Tamke, Martin; Ramsgaard Thomsen, Mette

    2012-01-01

    Abstract. Interweaving research and design-based architectural education is an important effort in most architect schools. All good design is informed by some kind of research – research-based design. And all architect schools involve research in their teaching – research based education. Research...... models in which architectural theory emerges from a direct engagement in practice and proposes that the manifestos and writings of Le Corbusier, exemplified by his theorisation of “The 5 Points for a New Architecture” can be seen as theory-building based on practical experiments and parallel to research...... by design. The paper asks how “the new” in architectural production emerges and aims to find similarities between the tradition of practice based proposals and theorisation, and our own research and teaching practice. Grounded in this practice the paper investigates how research by design contributes...

  20. A Summary of Environmentally Friendly Turbine Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Odeh, Mufeed [United States Geological Survey - BRD, Turners Falls, MA (United States)

    1999-07-01

    The Advanced Hydropower Turbine System Program (AHTS) was created in 1994 by the U.S. Department of Energy, Electric Power Research Institute, and the Hydropower Research Foundation. The Program’s main goal is to develop “environmentally friendly” hydropower turbines. The Program’s first accomplishment was the development of conceptual designs of new environmentally friendly turbines. In order to do so, two contractors were competitively selected. The ARL/NREC team of engineers and biologists provided a conceptual design for a new turbine runner*. The new runner has the potential to generate hydroelectricity at close to 90% efficiency. The Voith team produced new fish-friendly design criteria for Kaplan and Francis turbines that can be incorporated in units during rehabilitation projects or in new hydroelectric facilities**. These include the use of advanced plant operation, minimum gap runners, placement of wicket gates behind stay vanes, among others. The Voith team will also provide design criteria on aerating Francis turbines to increase dissolved oxygen content. Detailed reviews of the available literature on fish mortality studies, causation of injuries to fish, and available biological design criteria that would assist in the design of fish-friendly turbines were performed. This review identified a need for more biological studies in order to develop performance criteria to assist turbine manufacturers in designing a more fish-friendly turbine.

  1. Oil-points - Designers means to evaluate sustainability of concepts

    DEFF Research Database (Denmark)

    Bey, Niki; Lenau, Torben Anker

    1998-01-01

    Designers have an essential influence on product design and are therefore one target group for environmental evaluation methods. This implies, that such evaluation methods have to meet designers requirements. Evaluation of sustainability of products is often done using formal Life Cycle Assessment....... This is investigated by means of three case studies where environmental impact is estimated using the EDIP method, the Eco-indicator 95 method, and the Oil Point method proposed by the authors. It is found that the results obtained using Oil Points are in acceptable conformity with the results obtained with more...

  2. Design concept for a Multifunctional Hygiene Cabin 2014

    OpenAIRE

    Casadesus Baldursson, Jordi Hans

    2013-01-01

    The project  is related to the design of a new type of Public Toilets from the company Danfo for the year 2014.   The proper project follows asequential order to show how to create solution to the existing problems of these Service  and re-design the product itself to create a new look and new core values to the existing service , creating   a new product line for this kind of service in the market in this particular case the re-design  of a new type of Public Toilets for the year 2014.   Fol...

  3. Oil-points - Designers means to evaluate sustainability of concepts

    DEFF Research Database (Denmark)

    Bey, Niki; Lenau, Torben Anker

    1998-01-01

    Designers have an essential influence on product design and are therefore one target group for environmental evaluation methods. This implies, that such evaluation methods have to meet designers requirements. Evaluation of sustainability of products is often done using formal Life Cycle Assessment....... This is investigated by means of three case studies where environmental impact is estimated using the EDIP method, the Eco-indicator 95 method, and the Oil Point method proposed by the authors. It is found that the results obtained using Oil Points are in acceptable conformity with the results obtained with more...

  4. Square Kilometre Array: a concept design for Phase 1

    CERN Document Server

    Garrett, M A; Deboer, D R; Jonas, J L; Rawlings, S; Schilizzi, R T

    2010-01-01

    The SKA at mid and low frequencies will be constructed in two distinct phases, the first being a subset of the second. This document defines the main scientific goals and baseline technical concept for the SKA Phase 1 (SKA_1). The major science goals for SKA_1 will be to study the history and role of neutral Hydrogen in the Universe from the dark ages to the present-day, and to employ pulsars as probes of fundamental physics. The baseline technical concept of SKA_1 will include a sparse aperture array operating at frequencies up to 450 MHz, and an array of dishes, initially operating at frequencies up to 3 GHz but capable of 10 GHz in terms of antenna surface accuracy. An associated Advanced Instrumentation Program (AIP) allows further development of new technologies currently under investigation. Construction will take place in 2016-2019 at a total capital cost of 350M\\texteuro, including an element for contingency. The cost estimates of the SKA_1 telescope are now the subject of a more detailed and thorough...

  5. Inverse Quantum Chemistry: Concepts and Strategies for Rational Compound Design

    CERN Document Server

    Weymuth, Thomas

    2014-01-01

    The rational design of molecules and materials is becoming more and more important. With the advent of powerful computer systems and sophisticated algorithms, quantum chemistry plays an important role in rational design. While traditional quantum chemical approaches predict the properties of a predefined molecular structure, the goal of inverse quantum chemistry is to find a structure featuring one or more desired properties. Herein, we review inverse quantum chemical approaches proposed so far and discuss their advantages as well as their weaknesses.

  6. Ocean thermal energy conversion cold water pipe preliminary design project. Task 2. Analysis for concept selection

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    The successful performance of the CWP is of crucial importance to the overall OTEC system; the pipe itself is considered the most critical part of the entire operation. Because of the importance the CWP, a project for the analysis and design of CWP's was begun in the fall of 1978. The goals of this project were to study a variety of concepts for delivering cold water to an OTEC plant, to analyze and rank these concepts based on their relative cost and risk, and to develop preliminary design for those concepts which seemed most promising. Two representative platforms and sites were chosen: a spar buoy of a Gibbs and Cox design to be moored at a site off Punta Tuna, Puerto Rico, and a barge designed by APL/Johns Hopkins University, grazing about a site approximately 200 miles east of the coast of Brazil. The approach was to concentrate on the most promising concepts and on those which were either of general interest or espoused by others (e.g., steel and concrete concepts). Much of the overall attention, therefore, focused on analyzing rigid and compliant wall design, while stockade (except for the special case of the FRP stockade) and bottom-mounted concepts received less attention. A total of 67 CWP concepts were initially generated and subjected to a screening process. Of these, 16 were carried through design analysis, costing, and ranking. Study results are presented in detail. (WHK)

  7. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  8. Design of experiments applications in bioprocessing: concepts and approach.

    Science.gov (United States)

    Kumar, Vijesh; Bhalla, Akriti; Rathore, Anurag S

    2014-01-01

    Most biotechnology unit operations are complex in nature with numerous process variables, feed material attributes, and raw material attributes that can have significant impact on the performance of the process. Design of experiments (DOE)-based approach offers a solution to this conundrum and allows for an efficient estimation of the main effects and the interactions with minimal number of experiments. Numerous publications illustrate application of DOE towards development of different bioprocessing unit operations. However, a systematic approach for evaluation of the different DOE designs and for choosing the optimal design for a given application has not been published yet. Through this work we have compared the I-optimal and D-optimal designs to the commonly used central composite and Box-Behnken designs for bioprocess applications. A systematic methodology is proposed for construction of the model and for precise prediction of the responses for the three case studies involving some of the commonly used unit operations in downstream processing. Use of Akaike information criterion for model selection has been examined and found to be suitable for the applications under consideration.

  9. Design concepts for a continuously rotating active magnetic regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus;

    2011-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the active magnetic regenerator (AMR) from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33−xSrxMn1.05O3, gives both a low pressure drop and allows...... grading of the Curie temperature along the plates. This may be accomplished by a novel technique where a compositionally-graded material is tape cast in one piece. The magnet assembly is based on a novel design strategy, to create alternating high- and low magnetic field regions within a magnet assembly....... Focus is on maximising the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....

  10. Design Concepts for a Continuously Rotating Active Magnetic Regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus;

    2010-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperature...... along the plates. This may be accomplished by a novel technique where a compositionally graded material may be tape cast in one piece. The magnet assembly is based on a novel design strategy, to create alternating high- and low magnetic field regions within a magnet assembly. Focus is on maximising...... the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....

  11. Design Concepts for a Continuously Rotating Active Magnetic Regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus

    2010-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperature...... the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....... along the plates. This may be accomplished by a novel technique where a compositionally graded material may be tape cast in one piece. The magnet assembly is based on a novel design strategy, to create alternating high- and low magnetic field regions within a magnet assembly. Focus is on maximising...

  12. The Huber concept in device modeling, circuit diagnosis and |design centering

    DEFF Research Database (Denmark)

    Bandler, John W.; Biernacki, Radek M.; Chen, Steve H.

    1994-01-01

    We present exciting applications of the Huber concept in circuit modeling and optimization. By combining the desirable properties of the l1 and l2 norms, the Huber function is robust against gross errors and smooth w.r.t. small variations in the data. We extend the Huber concept by introducing a ...... identification, design optimization, statistical modeling, analog fault location and yield optimization...

  13. The Conceptions about Teamwork Questionnaire: Design, Reliability and Validity with Secondary Students

    Science.gov (United States)

    Martinez-Fernandez, J. Reinaldo; Corcelles, Mariona; Cerrato-Lara, Maria

    2011-01-01

    In this study, we present the conceptions about teamwork questionnaire designed to evaluate the conceptions that secondary students have about teamwork. Participants were 309 students aged 15-16 from eight secondary schools, seven from Barcelona and one from Girona (Spain). The original 27-item questionnaire was reduced according to expert…

  14. Trainee Teachers' Conceptions of Teaching and Learning, Classroom Layout and Exam Design

    Science.gov (United States)

    Betoret, Fernando Domenech; Artiga, Amparo Gomez

    2004-01-01

    The objective of this study centres on identifying and classifying the conceptions of teaching and learning held by future secondary school teachers, and on analysing the relationship between these conceptions and the way classroom space is organized and exams are designed. The test instruments used were applied to a sample of 138 graduates, who…

  15. The Conceptions about Teamwork Questionnaire: Design, Reliability and Validity with Secondary Students

    Science.gov (United States)

    Martinez-Fernandez, J. Reinaldo; Corcelles, Mariona; Cerrato-Lara, Maria

    2011-01-01

    In this study, we present the conceptions about teamwork questionnaire designed to evaluate the conceptions that secondary students have about teamwork. Participants were 309 students aged 15-16 from eight secondary schools, seven from Barcelona and one from Girona (Spain). The original 27-item questionnaire was reduced according to expert…

  16. Periodic Virtual Cell Manufacturing (P-VCM) - Concept, Design and Operation

    NARCIS (Netherlands)

    Slomp, Jannes; Krushinsky, Dimitry; Caprihan, Rahul

    2011-01-01

    This paper presents and discusses the concept of Periodic Virtual Cell Manufacturing (P-VCM). After giving an illustrative example of the operation and design complexity of a P-VCM system, we present an industrial case to study the applicability of the concept. The illustrative example and the

  17. Experimental design unified concepts, practical applications, and computer implementation

    CERN Document Server

    Bowerman, Bruce L

    2014-01-01

    This book is a concise and innovative book that gives a complete presentation of the design and analysis of experiments in approximately one half the space of competing books. With only the modest prerequisite of a basic (non-calculus) statistics course, this text is appropriate for the widest possible audience. Two procedures are generally used to analyze experimental design data-analysis of variance (ANOVA) and regression analysis. Because ANOVA is more intuitive, this book devotes most of its first three chapters to showing how to use ANOVA to analyze balanced (equal sample size) experiment

  18. Architectural design and energy performance; Conception architecturale et performance energetique

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, (ADEME), 06 - Valbonne (France); Pouget, A. [Bureau Etude Thermique, 75 - Paris (France); Sesolis, B. [TRIBU, 75 - Paris (France)] [and others

    2000-07-01

    This day was organized around the energy performance of the architecture in three parts. A first time dealt with the design of new buildings and private houses. Simulation tools for the energy optimization and practice of design are discussed. The second part was devoted to the new 2000 regulation with an open discussion on the regulatory costs. The last part forecasted the evolution until 2015 taking into account the french program of fight against the greenhouse effect, the limitation of the air conditioning consumption and the definition of a quality label concerning the energy performances. (A.L.B.)

  19. Using an On-Line Tool To Investigate Chemical Engineering Seniors' Concept of the Design Process.

    Science.gov (United States)

    Streveler, Ruth A.; Miller, Ronald L.; Boyd, Thomas M.

    In this study, multidimensional scaling (MDS) was used to measure how 23 chemical engineering seniors categorized key design terms at the beginning and end of a capstone design course. An on-line method was developed to collect the MDS data. The results suggest that some important design concepts were not well understood, even at the end of the…

  20. The ATLAS Data Acquisition and Trigger concept, design and status

    CERN Document Server

    Kordas, K; Alexandrov, I; Amorim, A; Aracena, I; Armstrong, S; Badescu, E; Baines, J T M; Barros, N; Beck, H P; Bee, C; Bellomo, M; Biglietti, M; Blair, R; Bogaerts, J A C; Bold, T; Bosman, M; Burckhart-Chromek, D; Caprini, M; Caramarcu, C; Carlino, G; Caron, B; Casado, M P; Cataldi, G; Ciobotaru, M; Comune, G; Conde-Muíño, P; Conventi, F; Corso-Radu, A; Cranfield, R; Cranmer, K; Crone, G; Damazio, D; Dawson, J; De Santo, A; Del Prete, T; Della Pietra, M; Di Mattia, A; Diaz-Gomaz, M; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Dotti, A; Drake, G; Ellis, Nick; Emeliyanov, D; Ermoline, Y; Ertorer, E; Falciano, S; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Garitaonandia, H; Gaudio, G; Gaumer, O; George, S; Gesualdi-Mello, A; Goncalo, R; Gorini, B; Gorini, E; Green, B; Haas, S; Haberichter, W N; Hadavand, H; Haeberli, C; Haller, J; Hansen, J; Hauser, R; Hillier, S J; Höcker, A; Hughes-Jones, R E; Joos, M; Kabana, S; Kazarov, A; Khomich, A; Kieft, G; Kilvington, G; Kirk, J; Klous, S; Kohno, T; Kolos, S; Konstantinidis, N P; Kootz, A; Korcyl, K; Kotov, V; Kugel, A; Landon, M; Lankford, A; Leahu, L; Leahu, M; Lehmann-Miotto, G; Le Vine, M J; Liu, W; Lowe, A; Luminari, L; Maeno, T; Männer, R; Mapelli, L; Martin, B; Marzano, F; Masik, J; McLaren, R; McMahon, T; Meessen, C; Meirosu, C; Mineev, M; Misiejuk, A; Moore, R; Morettini, P; Mornacchi, G; Müller, M; Murillo-García, R; Nagasaka, Y; Negri, A; Nisati, A; Osuna, C; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pauly, T; Perera, V; Pérez-Réale, V; Petersen, J; Pinfold, J L; Pope, B; Portes de Albuquerqu, M; Potter, C; Pretzl, K; Prigent, D; Primavera, M; Rheaum, P; Robertson, S; Roda, C; Ryabov, Yu; Salvatore, D; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Schlereth, J L; Scholtes, I; Seixas, M; Sidoti, A; Sivoklokov, S Yu; Sloper, J; Sole-Segura, E; Soloviev, I; Soluk, R A; Spagnolo, S; Spiwoks, R; Stamen, R; Stancu, S; Stefanidis, E; Strong, J; Sushkov, S; Sutton, M; Szymocha, T; Tapprogge, S; Tarem, S; Tarem, Z; Teixeira-Dias, P; Thomas, E; Torres, R; Touchard, F; Tremblet, L; Unel, N G; Usai, G; Vachon, B; Van Wasen, J; Vandelli, W; Vaz-Gil-Lopes, L; Ventura, A; Vercesi, V; Vermeulen, J; von der Schmitt, H; Warburton, A; Watson, A; Wengler, T; Werner, P; Wheeler, S; Wickens, F; Wiedenmann, W; Wielers, M; Wiesmann, M; Woerling, E E; Wu, X; Yasu, Y; Yu, M; Zema, F; Zobernig, H; 10th Topical Seminar on Innovative Particle and Radiation Detectors

    2007-01-01

    This article presents the base-line design and implementation of the ATLAS Trigger and Data Acquisition system, in particular the Data Flow and High Level Trigger components. The status of the installation and commissioning of the system is also presented.

  1. Designing concept on lightning protection of overhead power distribution line

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shigeru [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)], E-mail: yokoyama@criepi.denken.or.jp

    2007-07-01

    The principle is shown for lightning protection of power distribution lines taking the effects of surge arresters, overhead ground wires and their combined use into consideration. Moreover an outline of a rational design method targeting direct lightning hits, induced over voltages and back flow currents from high structures. (author)

  2. The content and nature of a design concept

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2002-01-01

    . What is seen as conceptual depends upon what is already created in the actual area concerning solving the task or concerning the principles or design of the artefact. So the conceptual new aspect could very well be e.g. man/machine interaction, form features, or choice of material. A consequence...

  3. Experience as Meaning: Some Underlying Concepts and Implications for Design

    NARCIS (Netherlands)

    Vyas, Dhaval; van der Veer, Gerrit C.; Rizzo, Antonio; Grote, Gudela; Wong, William

    2006-01-01

    As the current computing systems move from desktop and work settings into our everyday lives (e.g. mobile and ubiquitous systems) a growing interest is seen for designing interactive systems with experiential support. Some conceptual work already exists that tries to analyze and understand users’

  4. A new design concept for nodule mining system

    Digital Repository Service at National Institute of Oceanography (India)

    Janakiraman, G.; Venkatesan, R.; Rajaraman, V.S.

    An overview is presented on the hazards associated with various types of equipment to be used for the commercial mining of nodules from the seabed. The design of a suitable mining collector and the various options available are discussed. A novel...

  5. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    Van Breukelen, D.H.J.; De Vries, M.J.; Schure, F.A.

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning, teachi

  6. Concept Learning by Direct Current Design Challenges in Secondary Education

    Science.gov (United States)

    van Breukelen, Dave H. J.; de Vries, Marc J.; Schure, Frank A.

    2017-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning, teaching skills and teacher training. LBD uses the…

  7. Early Synthetic Prototyping: Exploring Designs and Concepts Within Games

    Science.gov (United States)

    2014-12-01

    and capable design trade-off analysis environment that effectively meets these goals for evaluation and visualization ( Velazquez , 2014). FACT offers...2014.pdf. Velazquez , Luis. (2014, April 14) Framework for Assessing Cost and Technology [Video file]. Retrieved from https://www.youtube.com/watch?v

  8. Preliminary design concept of a subcritical reactor using available resources

    Energy Technology Data Exchange (ETDEWEB)

    Churnetski, E.L. [Oak Ridge Y-12 Plant, TN (United States); Hoyny, V.; Chaudhuri, B.R.; Taprantzis, A.; Yavas, A. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    1993-12-31

    During the Fall 1993 semester, a project was initiated within the Nuclear Engineering Department of the University of Tennessee with the objective of developing a design for a subcritical reactor with maximized multiplication factor using materials currently available. Such a device, if constructed, would serve as a teaching tool for the Department of Nuclear Engineering. Design work was conducted as a large number of computer calculations, with trial pile configurations based on fundamental nuclear engineering principles, in an effort to maximize multiplication factor through fuel element geometry, moderator type, fissile/moderator ratio, and reflector character. The principal objective of the design group for the early phase of this project was to present several possible ``baseline`` reactor designs and identify directions for improvements. For the sake of calculational ease, the cores analyzes to date have been of nearly cubic shape. The SCALE CSAS25 software which runs KENO.Va, a Monte Carlo code, was used for all neutronics calculations. The baseline reactors resulting from work to date are cuboidal in shape and graphite reflected. Two types of fuel element geometries are proposed, a typical triangular pitch rod lattice and an arrangement of discrete fuel slugs placed in a lattice corresponding to body centered cubic packing. The latter arrangement provides slightly higher multiplication factors than the former. Calculations were performed for both graphite and heavy water moderation with heavy water moderation producing considerably higher multiplication factors, as expected. In general, the maximum k{sub eff} for the reactors are in the range of 0.5 to 0.9, well subcritical, except in the cases of the extreme possible values of fuel assay where critical configurations are possible. In these cases, designs with reduced fuel loading are recommended to assure a subcritical multiplication factor.

  9. Summary of Design Concepts Proc. eeFACT2016 Daresbury, UK, October 2016

    CERN Document Server

    Assmann, Ralph; Zimmermann, Frank

    2017-01-01

    This paper summarizes the session on design concepts at the ICFA workshop on future circular electron-positron factories "eeFACT2016" held at the Cockcroft Institute, Daresbury, from 24 to 27 October 2016.

  10. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  11. A Short Review of U. S. Naval Ship Concept Design Technology Development Features

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In present study, a history analysis and review of last 30 years for U.S. naval ship concept design development trend is proposed. Based on the development of naval ship concept design model history, the three features of development process are further summarized. The first is that model-based system engineering (MBSE becomes the basic of naval ship concept design, while the second one is that the multi-discipline crossing and combination becomes a general innovation model. And the third one is that systematization oriented naval system integration is the developing goal. Some detailed examples are presented to illustrate these three characteristics. Finally, the technology difficulties in naval ship concept design are also presented.

  12. CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2006-01-01

    of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from...... mechatronics design, and advantages as well as challenges are identified and discussed. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed....

  13. Mobile Learning Applications Designing Concepts and Challenges: Survey

    Directory of Open Access Journals (Sweden)

    Zuhair Elkheir

    2015-06-01

    Full Text Available The aim of this study is to discuss the mobile learning, for we know that mobile learning now a days play an important role in education and learning, most of people all over the world nowadays using smart mobile phone, PDAs through wireless mobile technology anywhere and at anytime, each new generation of mobile has new features and applications, the usage of mobile devices are continually increasing, one of these usage within last decades is Mobile learning, people learn material from different locations and sources and the freely control their on learning by choosing what they want to learn and what time and what source, many work have been done in the area of mobile learning and it consider to be one of the future learning techniques, this study discusses the general concept of mobile learning and the proposed works and the effective of M-learning in the life, discuss the essential role of mobile learning process and then it will investigate the Comparison between mobile learning and other types of learning. And also we will discuss witch evaluation and selection criteria of M-learning applications are being used and then we will investigate if the criteria used by the users are enough or we need more criteria to insure the usability of the M-learning application according to the Human Computer Interaction theories (HCI and ISO standards.

  14. Adaptability Feature's Concept, Modeling and Application in Product Design

    Institute of Scientific and Technical Information of China (English)

    BaiYuewei; ChenZhuoning; WeiShuangyu; BinHongzan

    2003-01-01

    The current 3D CAD/CAM system, both research prototypes and commercial systems, based on traditional feature modeling are always hampered by the problems in their complicated modeling and difficult maintaining. This paper introduces a new method for modeling parts by using adaptability feature (AF), by which the consistent relationship among parts and assemblies can be maintained in whole design process. In addition, the design process, can be speeded, time-to-market shortened, and product quality improved. Some essential issues of the strategy are discussed. A system, KMCAD3D, by taking advantages of AF has been developed. It is shown that the method discussed is a feasible and effective way to improve current feature modeling technology.

  15. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cetiner, N. O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; McDuffee, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.

  16. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    Appendix B. Upon the conclusion of this study, Plunkett Associates used a Direct Metal Laser Sintering process to construct novel heat sinks that...on the design, pin-fins in the horizontal and upward vertical direction can be comparable while the downward vertical direction provides the worst...number of tubes were varied and all additional variations are a direct result of the manipulation of these three parameters. Table 1. Governing

  17. Prototyping with your hands: the many roles of gesture in the communication of design concepts

    DEFF Research Database (Denmark)

    Cash, Philip; Maier, Anja

    2016-01-01

    There is an on-going focus exploring the use of gesture in design situations; however, there are still significant questions as to how this is related to the understanding and communication of design concepts. This work explores the use of gesture through observing and video-coding four teams...... sequences occurred at critical periods during the design session, such as idea evolution and developing shared understanding. They are used to act out design concepts, repeat and learn from sequences, and establish shared understanding. Finally, a number of implications are identified for both researchers...

  18. Home health monitoring – EyKos HealthHub (product design concept)

    OpenAIRE

    Phillips, Mark; Dulake, Nick; Willox, Matt; Gwilt, Ian; Craig, Claire; Auton, Kevin

    2015-01-01

    This work focused on creating a product design concept for a home health monitoring system, known as EyKos HealthHub, which is intended to be a ‘crossover product’ in the emerging medical/consumer product space. Working collaboratively with Aseptika Ltd, the team carried out product concept design and interaction design for the EyKos system, and undertook further design and prototyping work to create an object for use in research. Aseptika is carrying out technical development of this project...

  19. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

  20. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  1. SABR fusion-fission hybrid transmutation reactor design concept

    Science.gov (United States)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  2. Rotorcraft flight-propulsion control integration: An eclectic design concept

    Science.gov (United States)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  3. Advanced vehicle concepts systems and design analysis studies

    Science.gov (United States)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  4. New concepts in the design of high field systems

    Energy Technology Data Exchange (ETDEWEB)

    Schneider-Muntau, H.J. (Hochfeld-Magnetlabor Grenoble, 38 - Grenoble (France))

    1984-01-01

    A polyhelix magnet with a Bitter coil (duplex magnet) or with a superconducting coil (hybrid magnet) for the background field generation, is known to produce the highest magnetic fields. Numerical calculations involving system parameters established in the course of 1000 hours of operation of the Grenoble duplex magnet are used for designing the 30 T hybrid magnet. It is demonstrated that with a power of 10 MW continuous magnetic fields of 30 T with a duplex magnet and 40 T with a hybrid magnet are feasible.

  5. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 3 - Design of the Concept Demonstrator

    Science.gov (United States)

    Abbott, David; Ables, Jon; Batten, Adam; Carpenter, David; Collings, Tony; Doyle, Briony; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Isaacs, Peter; Johnson, Mark; Joshi, Bhautik; Lewis, Chris; Poilton, Geoff; Price, Don; Prokopenko, Mikhail; Reda, Torsten; Rees, David; Scott, Andrew; Seneviratne, Sarath; Valencia, Philip; Wang, Peter; Whitnall, Denis

    2008-01-01

    This report provides an outline of the essential features of a Structural Health Monitoring Concept Demonstrator (CD) that will be constructed during the next eight months. It is emphasized that the design cannot be considered to be complete, and that design work will continue in parallel with construction and testing. A major advantage of the modular design is that small modules of the system can be developed, tested and modified before a commitment is made to full system development. The CD is expected to develop and evolve for a number of years after its initial construction. This first stage will, of necessity, be relatively simple and have limited capabilities. Later developments will improve all aspects of the functionality of the system, including sensing, processing, communications, intelligence and response. The report indicates the directions this later development will take.

  6. N+3 Aircraft Concept Designs and Trade Studies. Volume 1

    Science.gov (United States)

    Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.; Mody, P.; Pertuze, J. A.; Sato, S.; Spakovszky, Z. S.; Tan, C. S.; Hollman, J. S.; Duda, J. E.; Fitzgerald, N.; Houghton, J.; Kerrebrock, J. L.; Kiwada, G. F.; Kordonowy, D.; Parrish, J. C.; Tylko, J.; Wen, E. A.

    2010-01-01

    MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.

  7. From Concept to Realization: Designing Miniature Humanoids for Running

    Directory of Open Access Journals (Sweden)

    Youngbum Jun

    2010-02-01

    Full Text Available Humanoid robots present exciting research possibilities such as human gaits, social interaction, and even creativity. Full-size humanoid designs have shown impressive capabilities, yet are custom-built and expensive. Cost and sophistication barriers make reproducing and verifying results very difficult. The recent proliferation of mini-humanoids presents an affordable alternative, in that smaller robots are cheaper to own and simpler to operate. At less than 2000 USD, these robots are capable of human-like motion, yet lack precision sensors and processing power. The authors' goal is to produce a miniature humanoid robot that is both small and affordable, while capable of advanced dynamic walking and running. This requires sensing of the robot's inertia and velocity, the forces on its feet, and the ability to generate and modify motion commands in real time. The presented design uses commercial parts and simple machining methods to minimize cost. A power-efficient mobile x86 computer on-board leverages existing operating systems and simplifies software development. Preliminary results demonstrate controlled walking and feedback control.

  8. Computer control of large accelerators, design concepts and methods

    Science.gov (United States)

    Beck, F.; Gormley, M.

    1985-03-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. This presentation is an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies, and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented, since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided.

  9. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  10. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  11. CFRP panel concept design study for the CCAT

    Science.gov (United States)

    Martin, Robert N.; Romeo, Robert C.; Kingsley, Jeffrey S.

    2006-06-01

    Under contract from the Cornell-Caltech Atacama Telescope Project (CCAT), Composite Mirror Applications, Inc. (CMA) has undertaken a feasibility design study for the use of Carbon Fiber Reinforced Plastic (CFRP) panels in forming the primary mirror surface. We review some of the past projects using CFRP panel technology for millimeter and submillimeter wavelength radio astronomy telescopes. Pros and cons of the technology are discussed. A particular panel configuration was proposed and computer modeled with finite element analysis (FEA). The technology of replicated CFRP panels for short wavelength radio astronomical telescopes is mature and cost effective. For shorter wavelengths into the IR and visible, it is becoming a very attractive alternative to traditional, heavy glass or metal technologies.

  12. The optical design concept of SPICA-SAFARI

    Science.gov (United States)

    Jellema, Willem; Kruizinga, Bob; Visser, Huib; van den Dool, Teun; Pastor Santos, Carmen; Torres Redondo, Josefina; Eggens, Martin; Ferlet, Marc; Swinyard, Bruce; Dohlen, Kjetil; Griffin, Doug; Gonzalez Fernandez, Luis Miguel; Belenguer, Tomas; Matsuhara, Hideo; Kawada, Mitsunobu; Doi, Yasuo

    2012-09-01

    The Safari instrument on the Japanese SPICA mission is a zodiacal background limited imaging spectrometer offering a photometric imaging (R ≍ 2), and a low (R = 100) and medium spectral resolution (R = 2000 at 100 μm) spectroscopy mode in three photometric bands covering the 34-210 μm wavelength range. The instrument utilizes Nyquist sampled filled arrays of very sensitive TES detectors providing a 2’x2’ instantaneous field of view. The all-reflective optical system of Safari is highly modular and consists of an input optics module containing the entrance shutter, a calibration source and a pair of filter wheels, followed by an interferometer and finally the camera bay optics accommodating the focal-plane arrays. The optical design is largely driven and constrained by volume inviting for a compact three-dimensional arrangement of the interferometer and camera bay optics without compromising the optical performance requirements associated with a diffraction- and background-limited spectroscopic imaging instrument. Central to the optics we present a flexible and compact non-polarizing Mach-Zehnder interferometer layout, with dual input and output ports, employing a novel FTS scan mechanism based on magnetic bearings and a linear motor. In this paper we discuss the conceptual design of the focal-plane optics and describe how we implement the optical instrument functions, define the photometric bands, deal with straylight control, diffraction and thermal emission in the long-wavelength limit and interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end.

  13. A VLSI design concept for parallel iterative algorithms

    Directory of Open Access Journals (Sweden)

    C. C. Sun

    2009-05-01

    Full Text Available Modern VLSI manufacturing technology has kept shrinking down to the nanoscale level with a very fast trend. Integration with the advanced nano-technology now makes it possible to realize advanced parallel iterative algorithms directly which was almost impossible 10 years ago. In this paper, we want to discuss the influences of evolving VLSI technologies for iterative algorithms and present design strategies from an algorithmic and architectural point of view. Implementing an iterative algorithm on a multiprocessor array, there is a trade-off between the performance/complexity of processors and the load/throughput of interconnects. This is due to the behavior of iterative algorithms. For example, we could simplify the parallel implementation of the iterative algorithm (i.e., processor elements of the multiprocessor array in any way as long as the convergence is guaranteed. However, the modification of the algorithm (processors usually increases the number of required iterations which also means that the switch activity of interconnects is increasing. As an example we show that a 25×25 full Jacobi EVD array could be realized into one single FPGA device with the simplified μ-rotation CORDIC architecture.

  14. Global Cost and Weight Evaluation of Fuselage Side Panel Design Concepts

    Science.gov (United States)

    Polland, D. R.; Finn, S. R.; Griess, K. H.; Hafenrichter, J. L.; Hanson, C. T.; Ilcewicz, L. B.; Metschan, S. L.; Scholz, D. B.; Smith, P. J.

    1997-01-01

    This report documents preliminary design trades conducted under NASA contracts NAS1 18889 (Advanced Technology Composite Aircraft Structures, ATCAS) and NAS1-19349 (Task 3, Pathfinder Shell Design) for a subsonic wide body commercial aircraft fuselage side panel section utilizing composite materials. Included in this effort were (1) development of two complete design concepts, (2) generation of cost and weight estimates, (3) identification of technical issues and potential design enhancements, and (4) selection of a single design to be further developed. The first design concept featured an open-section stringer stiffened skin configuration while the second was based on honeycomb core sandwich construction. The trade study cost and weight results were generated from comprehensive assessment of each structural component comprising the fuselage side panel section from detail fabrication through airplane final assembly. Results were obtained in three phases: (1) for the baseline designs, (2) after global optimization of the designs, and (3) the results anticipated after detailed design optimization. A critical assessment of both designs was performed to determine the risk associated with each concept, that is the relative probability of achieving the cost and weight projections. Seven critical technical issues were identified as the first step towards side panel detailed design optimization.

  15. Progress towards the Detailed Baseline Design for the SiD Detector Concept

    CERN Document Server

    White, Andy

    2012-01-01

    This paper summarizes the status of the SiD Detector Concept with respect to the Detailed Baseline Design document to be prepared by the end of 2012. Each area of the SiD design is described with emphasis on the results expected for the DBD, R&D priorities, and areas of concern.

  16. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    Science.gov (United States)

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  17. Space Design for the Acitc Educational technology Office Area Using a Workplace neighborhood Concept

    OpenAIRE

    Zhu, Ping

    1997-01-01

    Today, the workplace is undergoing dramatic changes, featuring increased team activities and informal interactions. The work place neighborhood is a design concept derived from a city planning theory that may solve the workplace design problems arising from these changes, and provided a focus for this project. The Educational Technology office area of the Advanced Communication and Information Technology Center...

  18. New "persona" concept helps site designers cater to target user segments' needs.

    Science.gov (United States)

    2004-09-01

    Using the relatively new "persona" design concept, Web strategists create a set of archetypical user characters, each one representing one of their site's primary audiences. Then, as their site is constructed or upgraded, they champion the personas, arguing on their behalf and forcing the design team to take each audience's needs and wants into account.

  19. Extending Concepts of Tourism and Place for HCI and Design Research

    DEFF Research Database (Denmark)

    Bødker, Mads; Browning, David

    no lack of technical concepts for ubiquitous, pervasive and ambient technologies for tourism put forward. We outline theories of tourism and the tourist intending to provoke a deeper designerly enquiry into the role of digital interactive technologies in tourism. We suggest that designing for tourism...

  20. Essential concepts in Toy Design Education: Aimlessness, Empathy and Play Value

    NARCIS (Netherlands)

    Gielen, M.A.

    2009-01-01

    The paper aims at contributing to the professional development of toy design education programs. It draws from the practice of a children’s toy design course at Delft University of Technology. It identifies three major concepts that greatly influence toy quality and that students find difficult to u

  1. Essential concepts in Toy Design Education: Aimlessness, Empathy and Play Value

    NARCIS (Netherlands)

    Gielen, M.A.

    2009-01-01

    The paper aims at contributing to the professional development of toy design education programs. It draws from the practice of a children’s toy design course at Delft University of Technology. It identifies three major concepts that greatly influence toy quality and that students find difficult to

  2. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    Science.gov (United States)

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  3. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    Science.gov (United States)

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  4. Concept design and key technology of new deep-water SPAR and TLP

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ The study of Concept Design and Key Technology of New DeepWater SPAR and TLP came to an end successfully after scientific and technical personnel had made two years' endeavor.The study, which was sponsored by CSIC Ship Design and Research Center Company with the participation of CSIC no 702 Institute, Shanghai LICE Company and Dalian SHI, is part of the national hi-tech study program (863), category Ocean Technology, project key technology and equipment for deep-sea oil and gas prospecting and exploration in South China Sea, subject concept design and key technology of new deepwater SPAR and TLP.

  5. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    Directory of Open Access Journals (Sweden)

    J. Obedt Figueroa-Cavazos

    2016-01-01

    Full Text Available This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material. Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

  6. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO/sub 2/ fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject.

  7. Design, manufacture and testing of the IFMIF lithium target bayonet concept

    Energy Technology Data Exchange (ETDEWEB)

    Micciche, G. [ENEA CR Brasimone, via bacino del Brasimone, I-40035 Camugnano, Bo (Italy)]. E-mail: gioacchino.micciche@brasimone.enea.it; Riccardi, B. [Associazione EURATOM ENEA sulla Fusione, I-00044 Frascati, Rome (Italy)

    2005-11-15

    In the frame of the IFMIF R and D activities program a prototype of a replaceable backplate, based on the so called ' bayonet concept', has been developed, manufactured and tested. This concept allows the backplate replacement inside the target assembly while working laterally to the target, using a set of dedicated devices. The prototype design utilises an innovative closing and tightening system. The feasibility of the bayonet concept has been assessed and the remote handling trials carried out during 2003 have successfully demonstrated the maintainability requirements and procedures specification. This paper focuses on the design and manufacturing of the bayonet concept prototype and on the related remote handling trials carried out. The overall results of the activities are also reported.

  8. Foundations of mechanism design: A tutorial Part 1 – Key concepts and classical results

    Indian Academy of Sciences (India)

    Dinesh Garg; Y Narahari; Sujit Gujar

    2008-04-01

    Mechanism design, an important tool in microeconomics, has found widespread applications in modelling and solving decentralized design problems in many branches of engineering, notably computer science, electronic commerce, and network economics. Mechanism design is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision when the agents exhibit strategic behaviour. The objective of this paper is to provide a tutorial introduction to the foundations and key results in mechanism design theory. The paper is in two parts. Part 1 focuses on basic concepts and classical results which form the foundation of mechanism design theory. Part 2 presents key advanced concepts and deeper results in mechanism design

  9. Application of Sensitivity Analysis in Design of Integrated Building Concepts

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Hesselholt, Allan Tind

    2007-01-01

    Building performance can be expressed by different indicators as primary energy use, environmental load and/or the indoor environmental quality and a building performance simulation can provide the decision maker with a quantitative measure of the extent to which a design solution satisfies...... the design requirements and objectives. In the design of integrated building concepts it is beneficial to identify the most important design parameters in order to more efficiently develop alternative design solutions or more efficiently perform an optimization of the building performance. The sensitivity...... analysis makes it possible to identify the most important parameters in relation to building performance and to focus design and optimization of integrated building concepts on these fewer, but most important parameters. The sensitivity analyses will typically be performed at a reasonably early stage...

  10. The 5 MW DeepWind floating offshore vertical wind turbine concept design - status and perspective

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Kragh, Knud Abildgaard

    2014-01-01

    Floating vertical-axis wind turbines for offshore wind energy present a concept with novelty and potentials for reducing COE. Cost reduction for offshore wind power plants is an industrial challenge, and DeepWind is - as the analysis of the current design shows-believed to be a good candidate...... in achieving this. In the paper the current design status of the 5 MW DeepWind concept is presented. The intended siting for the turbine is off the Norwegian west coast at about 250 m of sea depth. Focus is set on the integrated design highlighting structural benefits of the light rotor, the hydrodynamic...... in generator design. The paper presents new developments in the current design of a novel rotor shape with overspeed control. Rotor performance, design structural key figures and upscaling potential are reported. New results implemented on permanent magnets generator and - bearing technology show...

  11. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  12. An experimental school prototype: Integrating 3rs (reduce, reuse & recycle) concept into architectural design

    OpenAIRE

    Kong Seng Yeap; Sreenivasaiah Purushothama Rao

    2012-01-01

    The authors conducted a design project to examine the use of school as an ecological learning hub for children. Specifically, this study explores the ecological innovations that transform physical environment into three-dimensional textbooks for environmental education. A series of design workshops were carried out to gain interdisciplinary input for ecological school design. The findings suggest to integrate the concept of 3Rs (Reduce, Reuse & Recycle) into the physical environment. As a res...

  13. Preliminary Design of ICI-based Multimedia for Reconceptualizing Electric Conceptions at Universitas Pendidikan Indonesia

    Science.gov (United States)

    Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.

    2016-08-01

    Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.

  14. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  15. Operational concepts and implementation strategies for the design configuration management process.

    Energy Technology Data Exchange (ETDEWEB)

    Trauth, Sharon Lee

    2007-05-01

    This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

  16. Divertor remote handling for DEMO: Concept design and preliminary FMECA studies

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Di Gironimo, G. [ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2015-10-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor mover: hydraulic telescopic boom concept design. • An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • FMECA studies started on the DEMO divertor mover. - Abstract: The paper describes a concept design of a remote handling (RH) system for replacing divertor cassettes and cooling pipes in future DEMO fusion power plant. In DEMO reactor design important considerations are the reactor availability and reliable maintenance operations. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative designs of the end effector to grip and manipulate the divertor cassette are presented in this work. Both concepts are hydraulically actuated, based on ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. Taking advantage of the ITER RH background and experience, the proposed hydraulic RH system is compared with the rack and pinion system currently designed for ITER and is an object of simulations at Divertor Test Platform (DTP2) in VTT's Labs of Tampere, Finland. Pros and cons will be put in evidence.

  17. Improving concept design of divertor support system for FAST tokamak using TRIZ theory and AHP approach

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Carfora, D.; Esposito, G.; Labate, C.; Mozzillo, R.; Renno, F.; Lanzotti, A. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Siuko, M. [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland)

    2013-11-15

    Highlights: • Optimization of the RH system for the FAST divertor using TRIZ. • Participative design approach using virtual reality. • Comparison of product alternatives in an immersive virtual reality environment. • Prioritization of concept alternatives based on AHP. -- Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP)

  18. From Concepts of Motivation to Its Application in Instructional Design: Reconsidering Motivation from an Instructional Design Perspective

    Science.gov (United States)

    Cheng, Yi-Chia; Yeh, Hsin-Te

    2009-01-01

    This paper explores the concepts of motivation, including extrinsic motivation and intrinsic motivation. It describes how motivation becomes a major concern in the field of instructional design (ID). Furthermore, a motivation model--the ARCS model--is identified and discussed. Finally, it provides an example of how to apply the motivational design…

  19. From Concepts of Motivation to Its Application in Instructional Design: Reconsidering Motivation from an Instructional Design Perspective

    Science.gov (United States)

    Cheng, Yi-Chia; Yeh, Hsin-Te

    2009-01-01

    This paper explores the concepts of motivation, including extrinsic motivation and intrinsic motivation. It describes how motivation becomes a major concern in the field of instructional design (ID). Furthermore, a motivation model--the ARCS model--is identified and discussed. Finally, it provides an example of how to apply the motivational design…

  20. Lithium-thionyl chloride battery design concepts for maximized power applications

    Science.gov (United States)

    Kane, P.; Marincic, N.

    The need for primary batteries configured to deliver maximized power has been asserted by many different procuring activities. Battery Engineering Inc. has developed some specific design concepts and mastered some specialized techniques utilized in the production of this type of power source. The batteries have been successfully bench tested during the course of virtually all of these programs, with ultimate success coming in the form of two successful test launches under the USAF Plasma Effects Decoy Program. This paper briefly discusses some of these design concepts and the rationale behind them.

  1. Taking a Concept to Commercialization: Designing Relevant Tests to Address Safety.

    Science.gov (United States)

    Ferrara, Lisa A

    2016-04-01

    Taking a product from concept to commercialization requires careful navigation of the regulatory pathway through a series of steps: (A) moving the idea through proof of concept and beyond; (B) evaluating new technologies that may provide added value to the idea; (C) designing appropriate test strategies and protocols; and (D) evaluating and mitigating risks. Moving an idea from the napkin stage of development to the final product requires a team effort. When finished, the product rarely resembles the original design, but careful steps throughout the product life cycle ensure that the product meets the vision.

  2. Robert Lacoste's the darker side practical applications for electronic design concepts from circuit cellar

    CERN Document Server

    Lacoste, Robert

    2009-01-01

    Robert Lacoste's The Darker Side column has quickly become a must read among Circuit Cellar devotees. His column provides readers with succinct theoretical concepts and practical applications on topics as far reaching as digital modulation to antenna basics. Difficult concepts are demystified as Robert shines a light on complex topics within electronic design.This book collects sixteen Darker Side articles that have been enriched with new, exclusive content from the author. An intro into The Darker Side will give examples of material that can enhance and optimize the way you design. A

  3. Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Directory of Open Access Journals (Sweden)

    M. Richard

    2011-05-01

    Full Text Available This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot.

  4. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Science.gov (United States)

    Anuar, Nuraslinda; Muhamad Pauzi, Anas

    2016-01-01

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the βmin is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the βmin, resulting in a list of candidate designs that possess the β value that is larger than the βmin. The proposed methodology can also be applied to purposes other than technological foresight.

  5. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Muhamad Pauzi, Anas, E-mail: anas@uniten.edu.my [College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β{sub min} is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β{sub min}, resulting in a list of candidate designs that possess the β value that is larger than the β{sub min}. The proposed methodology can also be applied to purposes other than technological foresight.

  6. Design Concepts and Design Practices in Policy-Making and Public Management

    DEFF Research Database (Denmark)

    Junginger, Sabine

    2012-01-01

    : US Personnel Department; National University in Australia; SITRA in Finland; Mindlab in Denmark and the Innovation & Improvement in the NHS in the UK). They are part of an effort to bring in new design approaches to policy-making and policy-implementation that promise to innovate and transform...... how and what makes design relevant to policy-makers and public managers. Although policy-making, in its essence, constitutes a design activity, policy-making is not widely discussed in design terms. Literature on policy-making processes and policy design has treated design almost exclusively...

  7. Design Concepts and Design Practices in Policy-Making and Public Management

    DEFF Research Database (Denmark)

    Junginger, Sabine

    2012-01-01

    : US Personnel Department; National University in Australia; SITRA in Finland; Mindlab in Denmark and the Innovation & Improvement in the NHS in the UK). They are part of an effort to bring in new design approaches to policy-making and policy-implementation that promise to innovate and transform...... how and what makes design relevant to policy-makers and public managers. Although policy-making, in its essence, constitutes a design activity, policy-making is not widely discussed in design terms. Literature on policy-making processes and policy design has treated design almost exclusively...

  8. Design of vision concepts to explore the future: Nature, context and design techniques

    NARCIS (Netherlands)

    Mejia Sarmiento, J.R.; Simonse, W.L.

    2015-01-01

    Industrial firms are facing a constant dilemma, to be ready for the future, have a vision, and at the same time act within the current situation, exploit current products efficiently. This research examines visions that embody future opportunities and ideas, “vision concepts” such as concept cars an

  9. Design of vision concepts to explore the future: Nature, context and design techniques

    NARCIS (Netherlands)

    Mejia Sarmiento, J.R.; Simonse, W.L.

    2015-01-01

    Industrial firms are facing a constant dilemma, to be ready for the future, have a vision, and at the same time act within the current situation, exploit current products efficiently. This research examines visions that embody future opportunities and ideas, “vision concepts” such as concept cars

  10. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  11. Radiation Constraints in the Design and Conception of LHC Control Systems

    CERN Document Server

    Pignard, Christian; Rausch, R; Tsoulou, A; Wijnands, Thijs

    2003-01-01

    The radiation constraint for the design and conception of LHC controls systems is described. One of the criteria when selecting electronic components is their radiation tolerance. Complete control systems are designed to operate reliable even when data is occasionally being corrupted by high energetic particles. Radiation also has an impact on the architecture, layout and integration of a control system. Finally, development costs, system functionality, reliability and the overall life span of a radiation tolerant control system are discussed.

  12. Revisiting the Concepts "Approach", "Design" and "Procedure" According to the Richards and Rodgers (2011) Framework

    Science.gov (United States)

    Cumming, Brett

    2012-01-01

    The three concepts Approach, Design and Procedure as proposed in Rodgers' Framework are considered particularly effective as a framework in second language teaching with the specific aim of developing communication as well as for better understanding methodology in the use of communicative language use.

  13. An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques

    Science.gov (United States)

    Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.

    2007-01-01

    Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…

  14. Comparing Understanding of Programming Design Concepts Using Visual Basic and Traditional Basic.

    Science.gov (United States)

    Bishop-Clark, Cathy

    1998-01-01

    A study of 89 computer programming students in two instructional groups found that those using Visual Basic (VB) mastered programming design concepts as well as those using traditional BASIC. Concludes that VB is an excellent choice for a first programming course (high school or university) emphasizing sequence, selection, iteration, variables,…

  15. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  16. An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques

    Science.gov (United States)

    Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.

    2007-01-01

    Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…

  17. Does sketching stand alone as a communication tool during concept generation in design teams?

    NARCIS (Netherlands)

    Nik Ahmad Ariff, N.S.; Badke-Schaub, P.G.; Eris, O.

    2012-01-01

    The present study investigates the relation between sketching and communication in teams during the idea generation process in early concept generation. A quasi-experiment study has been conducted with Masters students of Industrial Design Engineering at Delft University of Technology, Netherlands.

  18. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    Science.gov (United States)

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  19. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    Science.gov (United States)

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  20. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    Science.gov (United States)

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  1. Reuse of ideas and concepts for creative stimuli in engineering design

    DEFF Research Database (Denmark)

    Howard, Thomas J.; Culley, Steve J.; Dekoninck, Elies A.

    2011-01-01

    Creative idea generation is essential to novel concept development and ultimately innovation. The following paper describes an extensive industry-based study investigating the use of creative stimuli during a brainstorming session at the conceptual stages of design.A new approach to retrieving...

  2. A Cylindrical Shielding Design Concept for the Prototype Gen-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sunghwan; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR), a metal fueled, blanket-free, pool type SFR concept is adopted to acquire the inherent safety characteristics and high proliferation-resistance. In the pool type fast reactor, the intermediate heat exchangers (IHXs), which transfer heat from the primary sodium pool to a secondary sodium loop, are placed inside of the reactor vessel. Hence, secondary sodium passing the IHXs can be radioactivated by a {sup 23}Na(n,g){sup 24}Na reaction, and radioactivated secondary sodium causes a significant dose in the Steam Generator Building (SGB). Therefore, a typical core of a pool type fast reactor is usually surrounded by a massive quantity of shields. In addition, the blanket composed of depleted uranium plays a role as superior shielding material; a significant increase in shields is required in the blanket-free pool type SFR. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR. In a conventional shielding design, massive axial shields are required to prevent irradiation of secondary sodium passing IHXs and they should be replaced according to the subassembly replacement in spite of negligible depletion of the shielding material. The proposed shielding design concept minimizes the quantity of shields without their replacement. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR such as a PGSFR. The proposed design concept satisfied the dose limit in the steam generator building successfully without introducing a large quantity of B{sub 4}C shielding inside the subassembly.

  3. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  4. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  5. The Concepts of Accessibility and Equality in Design Education: The Universal Design Approach

    OpenAIRE

    Mugan Akıncı, Guliz

    2014-01-01

    Universal design approach aims to design products and environments that provide equal access for everyone to the variety of activities. Universal design applications and research and discussions related to these applications can be seen in different fields very often especially in the last years. Concerning the fact that its possibility of application is very new in Turkey, on the one hand, one of the aims of this study is to introduce and explain this new approach. On the other hand, the stu...

  6. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  7. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows, namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal waverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed ex- plores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  8. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    YOU YanCheng; LIANG DeWang

    2009-01-01

    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows,namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal wsverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed explores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  9. CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2006-01-01

    The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and desig...... mechatronics design, and advantages as well as challenges are identified and discussed. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed.......The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and design...... of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from...

  10. Infrared fiber-optic fire sensors - Concepts and designs for Space Station applications

    Science.gov (United States)

    Tapphorn, Ralph M.; Porter, Alan R.

    1990-01-01

    Various design configurations used for testing IR fiber-optic (IFO) fire-sensor concepts are presented. Responsibility measurements conducted to select the best concept are reviewed. The results indicate that IFO fire-sensor systems based on distributed fiber sensors are feasible for future aerospace applications. For Space Station Freedom, these systems offer alternative fire detectors for monitoring areas within equipment or stage compartments where the ventilation may be inadequate for proper operation of smoke detectors. They also allow a large number of areas to be monitored by a single central detector unit, which reduces the associated cost and weight.

  11. Shark - new motor design concept for energy saving-applied to Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Tataru, Ana Mari

    The aim of this thesis is to document and promote a relatively new concept of designing electrical machine with improved efficiency, without using more or better material. The concept, called Shark, consists in replacing the cylindrical air gap by a non-linear shape obtained by translating specific...... of quick analysis tools, an analytical model of the Shark Switched Reluctance Machine is also proposed in this thesis. This model is conceived by modifying one of the existing models of cylindrical air gap Switched Reluctance Machines, such as to account for the presence of the Shark profiles in the air...

  12. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  13. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Science.gov (United States)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  14. The Huber concept in device modeling, circuit diagnosis and |design centering

    DEFF Research Database (Denmark)

    Bandler, John W.; Biernacki, Radek M.; Chen, Steve H.

    1994-01-01

    We present exciting applications of the Huber concept in circuit modeling and optimization. By combining the desirable properties of the l1 and l2 norms, the Huber function is robust against gross errors and smooth w.r.t. small variations in the data. We extend the Huber concept by introducing...... a one-sided Huber function tailored to design optimization with upper and lower specifications. We demonstrate the advantages of Huber optimization in the presence of faults, large and small measurement errors, bad starting points and statistical uncertainties. Circuit applications include parameter...

  15. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  16. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    Science.gov (United States)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-02-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  17. Applications of fatigue and fracture tolerant design concepts in the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.; Marston, T.U.; Tagart, S.W.; Norris, D.M.; Nickell, R.E.

    1982-01-01

    To assure the integrity of nuclear power plant components, fatigue and fracture tolerant design concepts have been incorporated in Sections III and XI of the ASME Code; these contain requirements for nuclear power plant design, construction, and in-service inspection. The methods used in the Code to design against fatigue and brittle fracture are described together with the fracture mechanics based procedure suggested in Sections XI for the evaluation of flaws detected by in-service inspections. Some aspects of the present Code methods that could probably be improved are identified. 19 refs.

  18. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    Science.gov (United States)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  19. A generalized concept for cost-effective structural design. [Statistical Decision Theory applied to aerospace systems

    Science.gov (United States)

    Thomas, J. M.; Hawk, J. D.

    1975-01-01

    A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.

  20. Extending Concepts of Tourism and Place for HCI and Design Research

    DEFF Research Database (Denmark)

    Bødker, Mads; Browning, David

    Increasingly numerous mobile digital devices, a proliferation of information infrastructure and services, and the adoption of social networking technologies have seen a more integrated, continuous use of IT by tourists. Some aspects of this is reflected in the HCI and design literature, there being...... no lack of technical concepts for ubiquitous, pervasive and ambient technologies for tourism put forward. We outline theories of tourism and the tourist intending to provoke a deeper designerly enquiry into the role of digital interactive technologies in tourism. We suggest that designing for tourism...

  1. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    Science.gov (United States)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  2. An Artificial-Gravity Space-Settlement Ground-Analogue Design Concept

    Science.gov (United States)

    Dorais, Gregory A.

    2016-01-01

    The design concept of a modular and extensible hypergravity facility is presented. Several benefits of this facility are described including that the facility is suitable as a full-scale artificial-gravity space-settlement ground analogue for humans, animals, and plants for indefinite durations. The design is applicable as an analogue for on-orbit settlements as well as those on moons, asteroids, and Mars. The design creates an extremely long-arm centrifuge using a multi-car hypergravity vehicle travelling on one or more concentric circular tracks. This design supports the simultaneous generation of multiple-gravity levels to explore the feasibility and value of and requirements for such space-settlement designs. The design synergizes a variety of existing technologies including centrifuges, tilting trains, roller coasters, and optionally magnetic levitation. The design can be incrementally implemented such that the facility can be operational for a small fraction of the cost and time required for a full implementation. Brief concept of operation examples are also presented.

  3. Designing health care environments: Part I. Basic concepts, principles, and issues related to evidence-based design.

    Science.gov (United States)

    Cesario, Sandra K

    2009-06-01

    A 2001 Institute of Medicine report captured the nation's attention regarding the dangers that can result from the health care environment. This report, fueled by the need for new facilities to be constructed, led to an explosion of research that now links the physical structure and design of health care facilities to the health and well-being of patients, nurses, other health care workers, and visitors. Continuing nursing education that highlights the importance of evidence-based design has been associated with measurable improvement in health care facilities' clinical outcomes, economic performance, employee productivity, customer satisfaction, and cultural congruency. Three major categories of outcomes can be impacted by evidence-based design: stress reduction, safety, and overall health care quality and ecology. In this article, Part I of a two-part series, the basic concepts, principles, and issues related to evidence-based design are introduced. Part II will describe continuing education programs available for nurses.

  4. Safety analysis for key design features of KALIMER-600 design concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong-Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Joeng, H. Y.; Ha, K. S.; Heo, S

    2005-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents, containment design basis accidents, and flow blockages in the KALIMER design are presented. First, the basic approach to achieve the safety goal and main design features of KALIMER-600 are introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2, In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. The objectives of Chapter 4, are to assess the response of KALIMER-600 containment to the design basis accidents and to evaluate whether the consequences are acceptable or not in the aspect of structural integrity and the exposure dose rate. In Chapter 5, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly, are described. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed.

  5. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  6. Automated a complex computer aided design concept generated using macros programming

    Science.gov (United States)

    Rizal Ramly, Mohammad; Asrokin, Azharrudin; Abd Rahman, Safura; Zulkifly, Nurul Ain Md

    2013-12-01

    Changing a complex Computer Aided design profile such as car and aircraft surfaces has always been difficult and challenging. The capability of CAD software such as AutoCAD and CATIA show that a simple configuration of a CAD design can be easily modified without hassle, but it is not the case with complex design configuration. Design changes help users to test and explore various configurations of the design concept before the production of a model. The purpose of this study is to look into macros programming as parametric method of the commercial aircraft design. Macros programming is a method where the configurations of the design are done by recording a script of commands, editing the data value and adding a certain new command line to create an element of parametric design. The steps and the procedure to create a macro programming are discussed, besides looking into some difficulties during the process of creation and advantage of its usage. Generally, the advantages of macros programming as a method of parametric design are; allowing flexibility for design exploration, increasing the usability of the design solution, allowing proper contained by the model while restricting others and real time feedback changes.

  7. An experimental school prototype: Integrating 3rs (reduce, reuse & recycle concept into architectural design

    Directory of Open Access Journals (Sweden)

    Kong Seng Yeap

    2012-06-01

    Full Text Available The authors conducted a design project to examine the use of school as an ecological learning hub for children. Specifically, this study explores the ecological innovations that transform physical environment into three-dimensional textbooks for environmental education. A series of design workshops were carried out to gain interdisciplinary input for ecological school design. The findings suggest to integrate the concept of 3Rs (Reduce, Reuse & Recycle into the physical environment. As a result, an experimental school prototype is developed. It represents a series of recommendations that are rendered by novel ideas through the amalgamation of architecture, ecology and education. These findings promote the development of sustainable and interactive learning spaces through cross-disciplinary investigations in school architecture. Designers and practitioners interested in educational facilities design would find this article useful.

  8. Pretesting Mathematical Concepts with the Mobile Phone: Implications for Curriculum Design

    Directory of Open Access Journals (Sweden)

    Rita Ndagire Kizito

    2012-01-01

    Full Text Available One of the neglected elements when teaching at a distance is establishing what learners already know at the beginning of the course or module. Unlike the face-to-face environment, in distance learning there is no opportunity for administering diagnostic activities just before the onset of instruction. This means that both the weak and more advanced students receive the same level of support since there is no mechanism for differentiating their learning needs. This paper describes the characteristics of a diagnostic test aimed at determining student understanding of the basic calculus concepts of the derivative and the integral, using the mobile phone as the method of delivery. As a proof-of-concept exercise, 10 questions designed to test concept attributes and procedural knowledge involving the two basic calculus concepts were given to a sample of 30 students at the beginning of the course. The implications for curriculum design were then analysed in terms of the didactical functionalities and the communication strategy that could be developed with reference to the mobile phone.

  9. Embracing the concepts of memory and forgetting through poetical thought in Italian design

    DEFF Research Database (Denmark)

    Tanderup, Sisse

    2015-01-01

    This paper concerns the Italian art of memory since the 18th century with special reference to design and architecture. The philosopher Giambat- tista Vico and the architect and designer Aldo Rossi provide the theo- retical backbone of the analyses together with interviews with Italian designers ...... in this context. Both Alessi and Babet- to see poetry and memory as very important components in the design process, providing their products with value and aim.......This paper concerns the Italian art of memory since the 18th century with special reference to design and architecture. The philosopher Giambat- tista Vico and the architect and designer Aldo Rossi provide the theo- retical backbone of the analyses together with interviews with Italian designers...... and design theorists such as Paolo Portoghesi, Alessandro Mendini, Gianni Braghieri, Alba Cappellieri and Giampaolo Babetto. The question of how the concepts of memory and forgetting can be enfold- ed by poetical thought in design is addressed, and design examples by Alessi and Babetto are introduced...

  10. Energy distribution design on the photovoltaic cell array of the SSPS-OMEGA concept

    Science.gov (United States)

    Yang, Yang; Zhang, Yiqun; Fan, Guanheng; Wang, Dongxu; Li, Xun

    2017-05-01

    Solar energy collection and conversion is of great significance to the power transmission of the Space Solar Power Station (SSPS), and has influences on the overall system, technologically and economically. For the proposed SSPS-OMEGA concept, the original conceptual design had non-uniform energy distribution and excessive energy density in local areas, which would cause decreases in its optical and electric performance. Aiming at this point, firstly, this paper evaluates the optical performance of the OMEGA concept via ray trace technique. Secondly, the generatrix geometry design of the photovoltaic (PV) cell array based on Bézier curve is carried out to obtain optimal optical performance available for efficient response to sunrays. After that numerical examples achieve good collection efficiency and suitable energy distribution. Finally, modular construction for the main concentrator and its influence on optical performance are investigated. Moreover, the effect of the orbital motion and tracking error are analyzed to provide reference for the realization of the OMEGA.

  11. Concepts for the magnetic design of the MITICA neutral beam test facility ion acceleratora)

    Science.gov (United States)

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  12. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  13. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  14. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    Science.gov (United States)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study

  15. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    Science.gov (United States)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  16. Assessment concept for the building design process using the Eco-factor method

    DEFF Research Database (Denmark)

    Wahlström, Åsa; Brohus, Henrik

    2006-01-01

    During the last years the pressure for energy improvement has increased. However, a one-sided focus on energy efficiency might be introduced at the expense of indoor climate. Therefore, it is essential that energy optimisation is integrated with assessment of indoor climate. A guideline tool with...... with an assessment concept based on the so-called Eco-factor method been developed for an integrated design process....

  17. Design concept of radiation control system for the high intensity proton accelerator facility

    CERN Document Server

    Miyamoto, Y; Harada, Y; Ikeno, K

    2002-01-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics.

  18. A VUV-FEL for 4GLS Design Concept and Simulation Results

    CERN Document Server

    Thompson, N

    2005-01-01

    A Free-Electron Laser operating in the photon energy range 3-10eV is a component of the 4th Generation Light Source (4GLS) proposal at Daresbury Laboratory in the UK. In this paper we present a current design proposal which is based on the Regenerative Amplifier Free-Electron Laser (RAFEL) concept. We also present simulation results which illustrate the potential performance of the device.

  19. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  20. Concept design of the high voltage transmission system for the collider tunnel

    Science.gov (United States)

    Norman, L. S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations--such as the Channel Tunnel--demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design.

  1. Concepts of the mosaic array of numerous ultra-small lens (MANUL) design

    Science.gov (United States)

    Pál, A.; Mészáros, L.

    2016-08-01

    In order to provide a continuous, multi-color time-domain surveying of the brightest regime of the naked-eye optical sky, we designed the Mosaic Array of Numerous Ultrasmall Lens (MANUL). This device is a palm-sized "astronomical observatory," featuring optics, filters and all necessary electronics (including a TCP/IP-based downlink), all are mounted on 2-inch printed circuit boards. Based on these units, a modular and mosaic arrangement of CMOS imaging sensors with an effective resolution of 1'/pixel can be built. Here we introduce the main design concepts, the early prototyping and the results of the preliminary photometric quality analysis of this initiative.

  2. ZBrush creature design creating dynamic concept imagery for film and games

    CERN Document Server

    Spencer, Scott

    2012-01-01

    Zero in on the most cutting-edge trend in creature design for film and games: ZBrush! ZBrush allows you to develop a creature for film and games in realistic, 3D format. With this book, you will learn how to create a unique creature from start to finish and search for and repair any foreseeable problems. Clear instructions guide you through using Photoshop in combination with ZBrush to finely render a creature so you can see how it will appear on screen. Experienced ZBrush author and designer Scott Spencer shows you how to start with your concept in ZBrush as a preliminary digital model and th

  3. CDLP: Interactive Educational Software for a Course on Compiler Design Concepts

    Directory of Open Access Journals (Sweden)

    Narges Bathaeian

    2012-06-01

    Full Text Available In this paper, we present educational software named CDLP (Compiler Design Lab Package to educate andlearn compiler design concepts. This tool is developed by Java programming language at Bu-Ali Sina University. CDLP is an interactive and visual system, suitable for doing and viewing exercises. In this system, problems and examples are defined by user as well as they are solved by user too. Though in each step of the solution, users receive a feedback from CDLP to warn their faults or guide them to the next step.

  4. Prototyping with your hands: the many roles of gesture in the communication of design concepts

    DEFF Research Database (Denmark)

    Cash, Philip; Maier, Anja

    2016-01-01

    There is an on-going focus exploring the use of gesture in design situations; however, there are still significant questions as to how this is related to the understanding and communication of design concepts. This work explores the use of gesture through observing and video-coding four teams...... of engineering graduates during an ideation session. This was used to detail the relationship between the function behaviour structure elements and individual gestures as well as to identify archetypal gesture sequences – compound reflective, compound directed one-way, mirroring, and modification. Gesture...

  5. Design of low noise wind turbine blades using Betz and Joukowski concepts

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hrgovan, Iva; Okulov, Valery

    2014-01-01

    /reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using......This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline...

  6. Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-01

    Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the power coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.

  7. The Design of a Primary Flight Trainer using Concurrent Engineering Concepts

    Science.gov (United States)

    Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.

    1993-01-01

    Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.

  8. Advanced Helicopter Structural Design Investigation. Volume I. Investigation of Advanced Structural Component Design Concepts

    Science.gov (United States)

    1976-03-01

    Design I, K 3 r 8 C6 Std Day — K f I1 4 Troop Payload ~ (9601b) ^^^s^^^ Condition ~ *^jP(P/L = 9601b) ■a 1 4 Xmsn^^ / Limit...POST JoiWTMtMBBS,SILL MEWSE«»,! ACC.E55 DOO« SUPPORT STRUCT f PjMfC 1 IM MASTER MALE MOLD DIAQSC Ailo MSCMALC ,1 nif -i» INTO ^s(.R

  9. Structural design concept and static analysis of CANDU spent fuel compact dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y. [Korea Hydro and Nuclear Power Company, Taejon (Korea, Republic of)

    2003-07-01

    In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses.

  10. Concept and design of a virtual reality work environment for industrial designers; Konzeption und Entwurf eines VR Arbeitsplatzes im Bereich des Industrial Design

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, T.; Bruder, R. [Universitaet Essen (Germany). Institut fuer Ergonomie und Designforschung

    2002-07-01

    This concept of a working environment for industrial designers is based on the use of Virtual Reality. The project aims at making the design process using new technologies just as intuitive as the work involving traditional tools. Basis of the development is a human centered principle, not the concentration on available technologies. The project was developed in cooperation with the Fraunhofer Gesellschaft (Institute for media communication) in Sankt Augustin, Germany. (orig.)

  11. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos

    2017-07-01

    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  12. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  13. Conceptions of Learning: The Design and Validation of a Questionnaire for Trainee Teachers

    Directory of Open Access Journals (Sweden)

    Silvia L. Vilanova

    2007-11-01

    Full Text Available Teachers as well as trainee teachers have conceptions of teaching and learning that do not correspond to the learning theories studied within the university course programs. The predominating ideas in this paradigmatic context, which are based upon the fact that subjects understand an action scenario, posses an implicit character and differ from the notion that they are expressed explicitly most of times. The objective of this article is to introduce the adaption and validation of an instrument designed to research on the conceptions of trainee teachers of the School of Humanities as well as the School of Exact and Natural Sciences of the National University of Mar del Plata (Universidad Nacional de Mar del Plata in Argentina about learning. Also, it intends to conduct a first analysis of the results obtained after it has been administered. The instrument is an adaption of a dilemma questionnaire designed by Martín, Mateos, Pérez-Echeverría, Pozo, Pecharromán, Martínez, and Villalón, which they administered to 120 students. Cronbach’s Alpha was used to determine factor analysis reliability, and consequently construct validity. The following data analysis shows the application of the interpretative theory of learning based on an epistemological conception related to critical realism.

  14. Photovoltaic reliability engineering: quantification testing and probabilistic-design-reliability concept

    Science.gov (United States)

    Suhir, Ephraim; Bechou, Laurent; Bensoussan, Alain; Nicolics, Johann

    2013-09-01

    Qualification testing (QT) is the major means for making a viable photovoltaic (PV) device into a reliable and marketable product. It is well known, however, that the today's PV modules (PVM) that passed the existing QT often exhibit premature field failures. Could the existing QT specifications and testing procedures be improved to an extent that if a PV device, module or a system passed the QT, there is a quantifiable and consistent way to assure that its performance in the field will be satisfactory and that its projected lifetime will indeed take place with the given confidence? The application of the probabilistic design for reliability (PDfR) concept enables one to provide an affirmative answer to this question. The attributes and challenges of this concept and the roles of its major constituents - failure oriented accelerated testing (FOAT) and physically meaningful predictive modeling (PM) - are addressed and discussed in detail.

  15. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    Science.gov (United States)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  16. Novel Geometrical Concept of a High Performance Brain PET Scanner Principle, Design and Performance Estimates

    CERN Document Server

    Séguinot, Jacques; Chesi, Enrico Guido; Joram, C; Mathot, S; Weilhammer, P; Chamizo-Llatas, M; Correia, J G; Ribeiro da Silva, M; Garibaldi, F; De Leo, R; Nappi, E; Corsi, F; Dragone, A; Schoenahl, F; Zaidi, H

    2006-01-01

    We present the principle, a possible implementation and performance estimates of a novel geometrical concept for a high resolution positron emission tomograph. The concept, which can for example be implemented in a brain PET device, promisses to lead to an essentially parallax free 3D image reconstruction with excellent spatial resolution and constrast, uniform over the complete field of view. The key components are matrices of long axially oriented scintillator crystals which are read out at both extremities by segmented Hybrid Photon Detectors. We discuss the relevant design considerations for a 3D axial PET camera module, motivate parameter and material choices, and estimate its performance in terms of spatial and energy resolution. We support these estimates by Monte Carlo simulations and in some cases by first experimental results. From the performance of a camera module, we extrapolate to the reconstruction resolution of a 3D axial PET scanner in a semi-analytical way and compare it to an existing state...

  17. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    Science.gov (United States)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  18. Preconceptual engineering design for the APT {sup 3}He target/blanket concept

    Energy Technology Data Exchange (ETDEWEB)

    Mensink, D.L. [Babcock & Wilcox Co., Naval Nuclear Fuel Division, P.O. Box 785, Mt. Athos Rd., Lynchburg, Virginia 24505-0785 (United States); Rose, S.C. Jr. [Reactor Design and Analysis, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    1995-01-20

    A preconceptual engineering design has been developed for the {sup 3}He Target/Blanket (T/B) System for the Accelerator Production of Tritium Project. This concept uses an array of pressure tubes containing tungsten rods for the neutron spallation source and {sup 3}He gas contained in a metal tank and blanket tubes as the tritium production material. The engineering design is based on a physics model optimized for efficient tritium production. Principle engineering consideration were: provisions for cooling all materials including the {sup 3}He gas; containment of the gas and radionuclides; remote handling; material compatibility; minimization of {sup 3}He, D{sub 2}O, and activated waste; modularity; and manufacturability. The design provides a basis for estimating the cost to implement the system.

  19. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculator design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.

  20. Concept design and simulation of a concentration lens with uniform square irradiance

    Science.gov (United States)

    Li, Dianhong; Xuan, Yimin

    2017-10-01

    A planar concentration lens comprised of square and rectangular lenses for solar concentration application is presented. The design of the concentration lens was based on the concept of Fresnel lens and the layout of the square light spot was proposed to match the receiving area. The uniformity of the light spot was determined by the structure of the concentration lens, which has different structures for different design wavelengths. The uniformity of the light spot and concentration ratio of the concentration lens were simulated. The numerical results indicate that the concentration ratio and uniformity of the light spot decrease with the increment of the wavelength. In order to improve the performance of the concentration lens, a novel hybrid wavelength structures was designed. The analysis results reveal that both the spot uniformity and concentration ratio of such a novel concentration lens were insensitive to the wavelengths variation. In addition, the angular tolerance of the concentration lens was discussed for different incident angles.

  1. Abadia de Goias repository: design conception; Repositorio de Abadia de Goias: concepcao de projeto

    Energy Technology Data Exchange (ETDEWEB)

    Martin Alves, Antonio Sergio de; Santos, Cicero Durval Pacifici dos; Passos, Erivaldo Mario dos; Coutinho, Fernando Paulo Millen [NUCLEN, Rio de Janeiro, RJ (Brazil)

    1995-12-31

    In this paper have been presented the criteria, the methodologies and the parameters that were utilized for the design of Abadia de Goias Repository. Hereby the purpose is to show in a succinct way the know how that has been acquired for the design of a LLW and ILW repository. This paper presents information and details concerning to the various phases of the design, beginning with the data collecting activity, the safety analysis elaboration up to the definition of the final concept of the repository and of the required infrastructure work. The safety analysis, based on the Cs-137 migration through the groundwater, made possible at first to determine the places of the repository site where the population is not allowed to drill wells. The analysis allowed also the institutional control period calculation based on the maximum concentration of Cs-137 in the aquifer as well as in the intrusion models. (author). 16 refs., 3 figs., 1 tab.

  2. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    Science.gov (United States)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  3. An autonomous long-term fast reactor system and the principal design limitations of the concept

    Science.gov (United States)

    Tsvetkova, Galina Valeryevna

    The objectives of this dissertation were to find a principal domain of promising and technologically feasible reactor physics characteristics for a multi-purpose, modular-sized, lead-cooled, fast neutron spectrum reactor fueled with an advanced uranium-transuranic-nitride fuel and to determine the principal limitations for the design of an autonomous long-term multi-purpose fast reactor (ALM-FR) within the principal reactor physics characteristic domain. The objectives were accomplished by producing a conceptual design for an ALM-FR and by analysis of the potential ALM-FR performance characteristics. The ALM-FR design developed in this dissertation is based on the concept of a secure transportable autonomous reactor for hydrogen production (STAR-H2) and represents further refinement of the STAR-H2 concept towards an economical, proliferation-resistant, sustainable, multi-purpose nuclear energy system. The development of the ALM-FR design has been performed considering this reactor within the frame of the concept of a self-consistent nuclear energy system (SCNES) that satisfies virtually all of the requirements for future nuclear energy systems: efficient energy production, safety, self-feeding, non-proliferation, and radionuclide burning. The analysis takes into consideration a wide range of reactor design aspects including selection of technologically feasible fuels and structural materials, core configuration optimization, dynamics and safety of long-term operation on one fuel loading, and nuclear material non-proliferation. Plutonium and higher actinides are considered as essential components of an advanced fuel that maintains long-term operation. Flexibility of the ALM-FR with respect to fuel compositions is demonstrated acknowledging the principal limitations of the long-term burning of plutonium and higher actinides. To ensure consistency and accuracy, the modeling has been performed using state-of-the-art computer codes developed at Argonne National

  4. Optimization of size controlled poly (lactide-co-glycolic acid nanoparticles using quality by design concept

    Directory of Open Access Journals (Sweden)

    Padmanabha R. V. Reddy

    2015-01-01

    Full Text Available Quality by design (QbD is a risk management and science-based approach laid down by the ICH as well as other Regulatory agencies to enhance pharmaceutical development throughout a product′s lifecycle. Poly(lactide-co-glycolic acid (PLGA is the material of choice for development of depot particulate formulations due to its biodegradable nature and is also considered as the ′green′ eco-friendly material due its biocompatibility and non-toxic properties. Further, PLGA based formulations are approved by regulatory agencies and currently in clinical practice. The aim of the current investigation involves formulation, optimization and in vitro characterization of size controlled PLGA based nanoparticles by employing modified nanoprecipitation technique. An initial risk-assessment analysis was conducted with different formulation and process variables along with their impact on critical quality attributes of the formulation which were identified as particle size and percentage process yield. The Ishikawa diagram was employed to determine the potential risk factors and subsequently optimized by statistical experimental design concept. Box-Behnken design was utilized to optimize nanoparticles and further characterizing the optimized nanoparticulate formulation in vitro. From the present study, it can be concluded that PLGA based nanoparticles with controlled particle size and process yield can be obtained by inculcating the concept of QbD in the product development.

  5. Design and Analysis of a Formation Flying System for the Cross-Scale Mission Concept

    Science.gov (United States)

    Cornara, Stefania; Bastante, Juan C.; Jubineau, Franck

    2007-01-01

    The ESA-funded "Cross-Scale Technology Reference Study has been carried out with the primary aim to identify and analyse a mission concept for the investigation of fundamental space plasma processes that involve dynamical non-linear coupling across multiple length scales. To fulfill this scientific mission goal, a constellation of spacecraft is required, flying in loose formations around the Earth and sampling three characteristic plasma scale distances simultaneously, with at least two satellites per scale: electron kinetic (10 km), ion kinetic (100-2000 km), magnetospheric fluid (3000-15000 km). The key Cross-Scale mission drivers identified are the number of S/C, the space segment configuration, the reference orbit design, the transfer and deployment strategy, the inter-satellite localization and synchronization process and the mission operations. This paper presents a comprehensive overview of the mission design and analysis for the Cross-Scale concept and outlines a technically feasible mission architecture for a multi-dimensional investigation of space plasma phenomena. The main effort has been devoted to apply a thorough mission-level trade-off approach and to accomplish an exhaustive analysis, so as to allow the characterization of a wide range of mission requirements and design solutions.

  6. Design concept and preliminary experimental demonstration of MEMS gyroscopes with 4-DOF master-slave architecture

    Science.gov (United States)

    Acar, Cenk; Shkel, Andrei M.

    2002-07-01

    This paper reports a design concept for MEMS gyroscopes that shifts the complexity of the design from control architecture to system dynamics, utilizing the passive disturbance rejection capability of the 4-DOF dynamical system. Specifically, a novel wide-bandwidth micromachined gyroscope design approach based on increasing the degrees-of-freedom of the oscillatory system by the use of two independently oscillating interconnected proof masses is presented along with preliminary experimental demonstration of implementation feasibility. With the concept of using a 4-DOF system, inherent disturbance rejection is achieved due to the wide operation frequency range of the dynamic system, providing reduced sensitivity to structural and thermal parameter fluctuations. Thus, less demanding active control strategies are required for operation under presence of perturbations. The fabricated prototype dual-mass gyroscopes successfully demonstrated a dramatically wide driving frequency range within where the drive direction oscillation amplitude varies insignificantly without any active control, in contrast to the conventional gyroscopes where the mass has to be sustained in constant amplitude oscillation in a very narrow frequency band. Mechanical amplification of driven mass oscillation by the sensing element was also experimentally demonstrated, providing large oscillation amplitudes, which is crucial for sensor performance.

  7. Interval-valued intuitionistic fuzzy multi-criteria model for design concept selection

    Directory of Open Access Journals (Sweden)

    Daniel Osezua Aikhuele

    2017-09-01

    Full Text Available This paper presents a new approach for design concept selection by using an integrated Fuzzy Analytical Hierarchy Process (FAHP and an Interval-valued intuitionistic fuzzy modified TOP-SIS (IVIF-modified TOPSIS model. The integrated model which uses the improved score func-tion and a weighted normalized Euclidean distance method for the calculation of the separation measures of alternatives from the positive and negative intuitionistic ideal solutions provides a new approach for the computation of intuitionistic fuzzy ideal solutions. The results of the two approaches are integrated using a reflection defuzzification integration formula. To ensure the feasibility and the rationality of the integrated model, the method is successfully applied for eval-uating and selecting some design related problems including a real-life case study for the selec-tion of the best concept design for a new printed-circuit-board (PCB and for a hypothetical ex-ample. The model which provides a novel alternative, has been compared with similar computa-tional methods in the literature.

  8. A review of design concepts for the Advanced Fluids Module (AFM) project

    Science.gov (United States)

    Hill, Myron E.; Tschen, Peter S.

    1993-01-01

    This paper reviews preliminary fluid module design concepts for the Advanced Fluids Module (AFM) project. The objective of this effort is to provide a facility that can handle a wide variety of fluids experiments. Sample science requirements were written and conceptual designs were subsequently generated during the last year. Experiments from the following fluid physics subject areas were used as conceptual design drivers: static and dynamic interfacial phenomena; bubble/droplet thermocapillary migration; surface tension convection and instabilities; thermal/solutal convection; pool boiling; and multiphase flow. After the conceptual designs were completed, the next phase attempted to combine experiments capabilities into a multipurpose, multiuser apparatus configured for the Space Station Freedom. It was found that all the fluid subject areas considered could be accommodated by three basic types of fluids modules. These modules are the Static Fluid Cell Module, the Dynamic Fluid Cell Module, and the Multiphase Flow Module. Descriptions of these preliminary modules designs and their particular sub-systems (e.g., fluid and thermal systems) are discussed. These designs will be refined as the nature of the flight program becomes clearer over the next six to twelve months.

  9. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    Science.gov (United States)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and

  10. The P326 (NA48/3) Gigatracker: Requirements and design concept

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy)]. E-mail: fiorini@fe.infn.it; Anelli, G. [CERN, CH-1211 Geneva 23 (Switzerland); Bifani, S. [Dipartimento di Fisica dell' Universita and Sezione INFN, 10125 Turin (Italy); Boscardin, M. [ITC-irst, 38050 Povo (Trento) (Italy); Cattai, A. [CERN, CH-1211 Geneva 23 (Switzerland); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Chiozzi, S. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Cotta Ramusino, A. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Dalpiaz, P. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Damiani, C. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Derre, J. [CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Doble, N. [Dipartimento di Fisica dell' Universita and Sezione INFN, 56127 Pisa (Italy); Formenti, F. [CERN, CH-1211 Geneva 23 (Switzerland); Gatignon, L. [CERN, CH-1211 Geneva 23 (Switzerland); Gianoli, A. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Jarron, P. [CERN, CH-1211 Geneva 23 (Switzerland); Kluge, A. [CERN, CH-1211 Geneva 23 (Switzerland); Malaguti, R. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Marchetto, F. [Dipartimento di Fisica dell' Universita and Sezione INFN, 10125 Turin (Italy); Martini, M.; Milano, L.; Petrucci, F.; Scarpa, M.; Wahl, H. [Dipartimento di Fisica dell' Universita and Sezione INFN, 44100 Ferrara (Italy); Martoiu, S.; Mazza, G.; Rivetti, A. [Dipartimento di Fisica dell' Universita and Sezione INFN, 10125 Turin (Italy); Peyaud, B. [CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Piemonte, C.; Pozza, A. [ITC-irst, 38050 Povo (Trento) (Italy); Riedler, P.; Ruggiero, G.; Stefanini, G.; Tiuraniemi, S. [CERN, CH-1211 Geneva 23 (Switzerland); Zorzi, N. [ITC-irst, 38050 Povo (Trento) (Italy)

    2007-03-01

    P326 aims at measuring the very rare decay K{sup +}{yields}{pi}{sup +}{nu}{nu}-bar at the CERN SPS. The Gigatracker should track every particle of the 75GeV/c hadron beam at a rate of about 1GHz with time resolution in the 100ps range and good momentum and angle resolution. The calculated fluence in 100 days of data taking is comparable to the one expected in the inner layers of the silicon trackers in LHC experiments during 10 years of operation. The physics requirements on the Gigatracker performance are overviewed and the preliminary design concept is outlined.

  11. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  12. Nanosystem trends in drug delivery using quality-by-design concept.

    Science.gov (United States)

    Li, Jing; Qiao, Yanjiang; Wu, Zhisheng

    2017-06-28

    Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multi-board concept - a scenario based approach for supporting product quality and life cycle oriented design

    DEFF Research Database (Denmark)

    Robotham, Antony John; Hertzum, Morten

    2000-01-01

    This paper will describe the multi-board concept, which is a working approach for supporting life cycle oriented design and product quality. Aspects of this concept include construction of a common working environment where multiple display boards depict scenarios of the product life cycle......, creating a shared quality mindset amongst design-ers, and developing creativity and synthesis in product design. The appropriateness of scenarios for supporting life cycle oriented design will be ar-gued and preliminary results from early experi-mentation will be presented.Initial results lead us...... to believe that the multi-board concept promises to be a useful means of communication amongst the design team. We be-lieve that it fosters a thorough understanding of life cycle events, which, in turn, inspires the design of innovative products of the highest quality....

  14. Multi-board concept - a scenario based approach for supporting product quality and life cycle oriented design

    DEFF Research Database (Denmark)

    Robotham, Antony John; Hertzum, Morten

    2000-01-01

    This paper will describe the multi-board concept, which is a working approach for supporting life cycle oriented design and product quality. Aspects of this concept include construction of a common working environment where multiple display boards depict scenarios of the product life cycle......, creating a shared quality mindset amongst design-ers, and developing creativity and synthesis in product design. The appropriateness of scenarios for supporting life cycle oriented design will be ar-gued and preliminary results from early experi-mentation will be presented.Initial results lead us...... to believe that the multi-board concept promises to be a useful means of communication amongst the design team. We be-lieve that it fosters a thorough understanding of life cycle events, which, in turn, inspires the design of innovative products of the highest quality....

  15. A study on the design concepts of the PBMR and the GT-MHR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The major application of the nuclear power in the energy sector has been to produce the electricity. However, a growing concern on the environment and the expected shortage of the fossil energy resources is demanding the expansion of nuclear energy's role in the energy sectors. The High Temperature Gas cooled Reactor (HTGR) has been expected to expand the role of nuclear energy because of its high temperature capability. Especially, the interest on the HTGR has been sharply increased recently related with the production of the hydrogen. About 5 HTGRs had been operated by the end of 1980s. However, all of them had been terminated permanently at the end of 1980s because of their poor system economy and frequent technical troubles. A new concept called MHTGR (Modular High Temperature Gas cooled Reactor) emerged in early of 1990s. Two MHTGR concepts on commercial basis have been developed since then; one is the PBMR (Pebble Bed Modular Reactor) developed by Eskom in South Africa and another is GT-MHR (Gas Turbine Modular High-temperature Reactor) developed by both GA in USA and OKBM in Russia. In this report, the design concepts for the PBMR and GT-MHR were reviewed.

  16. Review of an initial concept of the manual `Sustainably Safe Road Design'. Report on request of the World Bank

    NARCIS (Netherlands)

    Dijkstra, A. Janssen, S.T.M.C. & Wegman, F.C.M.

    2005-01-01

    This report contains the review of an initial concept of the manual entitled Sustainably Safe Road Design, written by DHV Environment and Transportation in the Netherlands. The review focusses on three questions: 1) Does the manual reflect and represent the Dutch 'Sustainable Safety Concept'? 2) Can

  17. Design Concept and Parameters of a 15 T $Nb_{3}Sn$ Dipole Demonstrator for a 100 TEV Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Barzi, E. [Fermilab; Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab

    2015-06-01

    FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale hadron collider. This paper describes the design concept and parameters of the 15 T $Nb_{3}Sn$ dipole demonstrator. The dipole magnetic, mechanical and quench protection concept and parameters are presented and discussed.

  18. Recontextualising Cellular Respiration : Designing an learning-and-teaching strategy for developing biological concepts as flexible tools

    NARCIS (Netherlands)

    Wierdsma, M.D.M.

    2012-01-01

    This thesis reports on a design-research study on recontextualising biological concepts. The term ‘recontextualising’ is based in socio-cultural activity theory and was proposed by van Oers in 1998 as a change of perspective on the idea of knowledge-transfer. Within this view concepts are tools to b

  19. Recontextualising Cellular Respiration : Designing an learning-and-teaching strategy for developing biological concepts as flexible tools

    NARCIS (Netherlands)

    Wierdsma, M.D.M.|info:eu-repo/dai/nl/337617058

    2012-01-01

    This thesis reports on a design-research study on recontextualising biological concepts. The term ‘recontextualising’ is based in socio-cultural activity theory and was proposed by van Oers in 1998 as a change of perspective on the idea of knowledge-transfer. Within this view concepts are tools to

  20. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    Science.gov (United States)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  1. Proof of Concept Study of Trade Space Configuration Tool for Spacecraft Design

    Science.gov (United States)

    Glidden, Geoffrey L.

    2009-01-01

    Spacecraft design is a very difficult and time consuming process because requirements and criteria are often changed or modified as the design is refined. Accounting for these adjustments in the design constraints plays a significant role in furthering the overall progress. There are numerous aspects and variables that hold significant influence on various characteristics of the design. This can be especially frustrating when attempting to conduct rapid trade space analysis on system configurations. Currently, the data and designs considered for trade space evaluations can only be displayed by using the traditional interfaces of Excel spreadsheets or CAD (Computer Aided Design) models. While helpful, these methods of analyzing the data from a systems engineering approach can be rather complicated and overwhelming. As a result, a proof of concept was conducted on a dynamic data visualization software called Thinkmap SDK (Software Developer Kit) to allow for better organization and understanding of the relationships between the various aspects that make up an entire design. The Orion Crew Module Aft Bay Subsystem was used as the test case for this study because the design and layout of many of the subsystem components will be significant in ensuring the overall center of gravity of the capsule is correct. A simplified model of this subsystem was created and programmed using Thinkmap SDK to create a preliminary prototype application of a Trade Space Configuration Tool. The completed application ensures that the core requirements for the Tool can be met. Further development is strongly suggested to produce a full prototype application to allow final evaluations and recommendations of the software capabilities.

  2. The Assessment Supplement: A Faculty-Designed Addition to NCC's Manual, "Concepts & Procedures for Academic Assessment." First Edition.

    Science.gov (United States)

    Nassau Community Coll., Garden City, NY.

    This document is the first in a series of annual, faculty-designed supplements to Nassau Community College's (NCC's) (New York) manual, "Concepts & Procedures for Academic Assessment." The supplements are intended to provide faculty a forum through which they can communicate assessment designs and the impacts of those designs on…

  3. Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms.

    Science.gov (United States)

    Liu, B D; Chen, C Y; Tsao, J Y

    2001-01-01

    In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design.

  4. Application of quality by design concepts in the development of fluidized bed granulation and tableting processes.

    Science.gov (United States)

    Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana

    2013-06-01

    This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed.

  5. U-Shaped development of Newtonian concepts: Implications for pedagogical design and research practice

    CERN Document Server

    Camp, Paul J

    2010-01-01

    In the years 2002-2004, the Learning by Design^{TM} group at Georgia Tech conducted an investigation of the development of qualitative Newtonian concepts as a function of time. The classroom context and method for this investigation are described, involving the coordination of multiple measures including diagnostic quizzes, structured interviews, ethnographic observations in class and performance assessments. This paper specifically concerns the results from the diagnostic quizzes, relying on other measures as supporting evidence. The data shows a clear non-monotonic conceptual development process in which there is a period of apparent regression of understanding following apparent satisfactory understanding. After an extensive description of prior work on this phenomenon from developmental psychology I propose an interpretation of the cognitive processes at work in the development of Newtonian reasoning. This paper makes three arguments: I show that Learning by Design produces significant normalized gain on ...

  6. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Yang, Ming; Zhang, Zhijian; Hashim, Muhammad [Harbin Engineering University, Harbin (China); Lind, Morten [Technical University of Denmark, Kongens Lyngby (Djibouti); Tamayama, Kiyoshi; Okusa, Kyoichi [Japan Atomic Energy Agency, Tsuruga (Japan)

    2011-08-15

    A new concept is first proposed of distributed human interface system to integrate both operation and maintenance of nuclear power plant. Then, a method of constructing human interface system is introduced by integrating the plant knowledge database system based on Multilevel Flow Model (MFM) with the risk monitor to watch Defense-in Depth plant safety functions. The proposed concept is applied for a liquid metal fast reactor Monju and necessary R and D subjects are reviewed to realize human interface system for the maintenance work in Monju plant. Because of using high temperature liquid sodium as reactor coolant in Monju plant, the maintenance for Monju should utilize more automated equipment of remote control and robotics than that of light water reactor. It is necessary to design optimum task allocation between human and automated machine as the requisites for good communication design of human interface systems to support the collaboration work between workers at local workplace and the main control room. In this paper, the general issues are reviewed on how to configure the whole human interface system for helping proactive trouble prevention and risk evaluation on the basis of the presented target plant model before the concrete proposition of the hardware and software systems development to be used by both the staffs of operation and maintenance of NPP.

  7. Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    Directory of Open Access Journals (Sweden)

    Remco Looman

    2017-01-01

    Full Text Available In climate-responsive design the building becomes an intermediary in its own energy housekeeping, forming a link between the harvest of climate resources and low energy provision of comfort. Essential here is the employment of climate-responsive building elements, defined as structural and architectural elements in which the energy infrastructure is far-reaching integrated. This thesis presents the results of research conducted on what knowledge is needed in the early stages of the design process and how to transfer and transform that knowledge to the field of the architect in order for them to successfully implement the principles of climate-responsive design. The derived content, form and functional requirements provide the framework for a design decision support tool. These requirements were incorporated into a concept tool that has been presented to architects in the field, in order to gain their feedback.Climate-responsive design makes the complex task of designing even more complex. Architects are helped when sufficient information on the basics of climate-responsive design and its implications are provided as informative support during decision making in the early design stages of analysis and energy concept development. This informative support on climate-responsive design should address to different design styles in order to be useful to any type of architects.What is defined as comfortable has far-reaching implications for the way buildings are designed and how they operate. This in turn gives an indication of the energy used for maintaining a comfortable indoor environment. Comfort is not a strict situation, but subjective. Diversity is appreciated and comfort is improved when users have the ability to exert influence on their environment. Historically, the provision of comfort has led to the adoption of mechanical climate control systems that operate in many cases indifferent from the building space and mass and its environment

  8. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.

  9. Design concept of K-DEMO for near-term implementation

    Science.gov (United States)

    Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G.-S.; Neilson, G.; Kessel, C.; Brown, T.; Titus, P.; Mikkelsen, D.; Zhai, Y.

    2015-05-01

    A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb3Sn-based superconducting conductor is adopted, providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.

  10. System design in an evolving system-of-systems architecture and concept of operations

    Science.gov (United States)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  11. From conception to evaluation of mobile services for people with head injury: A participatory design perspective.

    Science.gov (United States)

    Groussard, Pierre-Yves; Pigot, Hélène; Giroux, Sylvain

    2015-12-17

    Adults with cognitive impairments lack the means to organise their daily life, plan their appointments, cope with fatigue, and manage their budget. They manifest interest in using new technologies to be part of society. Unfortunately, the applications offered on smart phones are often beyond their cognitive abilities. The goal of this study was to design a mobile cognitive assistant to enhance autonomy of people living with acquired traumatic brain injury. Participatory design methodologies guided this research by involving adults with cognitive impairments (CI) and their caregivers in the early stages of the design process. The population of the study is composed of four male adults who present cognitive impairments (three with head injury and one with stroke) and three caregivers. The first phase of this research was to design the Services Assistance Mobile and Intelligent (SAMI) application based on the needs expressed by the participants. During three focus groups, needs emerged concerning planning, health monitoring and money management and led to the implementation of assistive solutions on an Android mobile phone. During the second phase, the participants evaluated the mobile assistant SAMI at home for eight weeks. The results demonstrate that the participants were able to participate actively in the conception of SAMI and to use it successfully. People with CI showed a slight improvement in their life satisfaction. Due to the small number of participants, these promising results need to be confirmed by a larger-scale study.

  12. IT-based wellness tools for older adults: Design concepts and feedback.

    Science.gov (United States)

    Joe, Jonathan; Hall, Amanda; Chi, Nai-Ching; Thompson, Hilaire; Demiris, George

    2017-03-28

    To explore older adults' preferences regarding e-health applications through use of generated concepts that inform wellness tool design. The 6-8-5 method and affinity mapping were used to create e-health design ideas that were translated into storyboards and scenarios. Focus groups were conducted to obtain feedback on the prototypes and included participant sketching. A qualitative analysis of the focus groups for emerging themes was conducted, and sketches were analyzed. Forty-three older adults participated in six focus group sessions. The majority of participants found the wellness tools useful. Preferences included features that supported participants in areas of unmet needs, such as ability to find reliable health information, cognitive training, or maintaining social ties. Participants favored features such as use of voice navigation, but were concerned over cost and the need for technology skills and access. Sketches reinforced these wants, including portability, convenience, and simplicity. Several factors were found to increase the desirability of such devices including convenient access to their health and health information, a simple, accessible interface, and support for memory issues. Researchers and designers should incorporate the feedback of older adults regarding wellness tools, so that future designs meet the needs of older adults.

  13. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    Science.gov (United States)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    , configuration, and materials of the nozzle must meet many severe requirements. The configuration would focus, in a conical manner, the Deuterium-Tritium (D-T) fuel and Lithium-6/7 liner fluid to meet at a specific point that acts as a cathode so the Li-6 can serve as a current return path to complete the circuit. In addition to serving as a current return path, the Li liner also serves as a radiation shield. The advantage to this configuration is the reaction between neutrons and Li-6 results in the production of additional Tritium, thus adding further fuel to the fusion reaction and boosting the energy output. To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it. The propulsion system significantly impacts the design of the electrical, thermal control, avionics, radiation shielding, and structural subsystems of a vehicle. The design reference mission is the transport of crew and cargo to Mars and back, with the intention that the vehicle be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study called Human Outer Planet Exploration (HOPE), which employed a Magnetized Target Fusion (MTF) propulsion concept. Analysis of this propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. This along with a greater than 30% predicted payload mass fraction certainly warrants further development of enabling technologies. The vehicle is designed for multiple interplanetary missions and conceivably may be suited for an automated one-way interstellar voyage.

  14. Major Design Drivers for LEO Space Surveillance in Europe and Solution Concepts

    Science.gov (United States)

    Krag, Holger; Flohrer, Tim; Klinkrad, Heiner

    Europe is preparing for the development of an autonomous system for space situational aware-ness. One important segment of this new system will be dedicated to surveillance and tracking of space objects in Earth orbits. First concept and capability analysis studies have led to a draft system proposal. This proposal foresees, in a first deployment step, a groundbased system consisting of radar sensors and a network of optical telescopes. These sensors will be designed to have the capability of building up and maintaining a catalogue of space objects. A number of related services will be provided, including collision avoidance and the prediction of uncontrolled reentry events. Currently, the user requirements are consolidated, defining the different services, and the related accuracy and timeliness of the derived products. In this consolidation process parameters like the lower diameter limit above which catalogue coverage is to be achieved, the degree of population coverage in various orbital regions and the accuracy of the orbit data maintained in the catalogue are important design drivers for the selection of number and location of the sensors, and the definition of the required sensor performance. Further, the required minimum time for the detection of a manoeuvre, a newly launched object or a fragmentation event, significantly determines the required surveillance performance. In the requirement consolidation process the performance to be specified has to be based on a careful analysis which takes into account accuracy constraints of the services to be provided, the technical feasibility, complexity and costs. User requirements can thus not be defined with-out understanding the consequences they would pose on the system design. This paper will outline the design definition process for the surveillance and tracking segment of the European space situational awareness system. The paper will focus on the low-Earth orbits (LEO). It will present the core user

  15. A breed and burn reshuffling scheme for an Astrid-like reactor concept design

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois L, J. L., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2016-09-15

    The greenhouse emissions has a serious impact on environmental terms, reason why energy supply needs to be provided by low carbon emission technologies. Nuclear power is and environmentally friendly energy with future concepts and designs that ensure safety, and in this paper is taken as a solution to be considered in the energy supply mix. This study presents an extension on the operation of the Advanced Sodium Technological Reactor for Industrial demonstration (Astrid) nuclear reactor through a breed and burn operation to extend the operation of the reactor. The Astrid nuclear reactor is a fourth generation sodium-cooled fast reactor of 1500 MWt h, and it considers an innovative design: the low void effect core (Cfv: Coeur a Faible effet de Vidange sodium) due to the reactor configuration and the radial and axial position of the fuel subassemblies. Previous research in the Astrid-like cores aimed the model validation of a conventional oxide-fueled core and its comparison with a proposed metallic-fueled core. Taking into account the amount of fissile material (mainly 239-Pu) after the first cycle, a reshuffling scheme was suggested, which consists in changing strategically the position of the nuclear fuel assemblies when the reactivity drops near to the critical state of the reactor. Two different reshuffling schemes were simulated in every developed model, having operation extensions of 805 days and 1775 days for the oxide and metallic designs respectively. The implementation of the reshuffling schemes in the developed models enhanced the fuel utilization and could save up to 2.20 and 5.96 tons of plutonium for oxide and metallic designs respectively, which has an economic impact. The breeding of 239-Pu achieved in the fertile zone of the metallic design reached half of the initial concentration of the 239-Pu in the fissile zone and for the oxide design, the breeding reached one third of the initial concentration of the 239-Pu in the fissile zone. (Author)

  16. Design for multipurpose use: an application of DfE concept in a developing economy

    Science.gov (United States)

    Dunmade, Israel

    2004-12-01

    Design for Environment (DfE) has been defined as the systematic integration of environmental considerations into product and process design. And it has been discovered that material and space can be saved when several functions are integrated into a single product by taking advantage of common components. In this design and development project, a multipurpose thresher was designed based on an integrated concept of design for modularity, disassembly, demanufacturing and remanufacturing. The machine can be used to thresh various types of farm produce such as rice, sorghum, cowpea and rye by changing the concave and the cylinder (threshing drum). The configuration of the machine enables access to most of the component parts without changing the tools needed for disassembly because the same type of fasteners was used. Furthermore, the functional units (the shelling unit, the separation unit and the grading unit) were assembled into modules such that only the faulty part needs to be replaced if necessary. The design was so simplified that the operator can make the changes for different uses without any difficulty. The machine has been successfully tested with a number of these products and it is scheduled for tests with other produce like corn and peanuts. The modularity of the functional unit will facilitate multi-lifecycle use of machine and/or its component parts. The uniformity of the liaisons and simplification of the configuration will reduce both the disassembly times and maintenance cost. By this integration, the material requirements for four different machines are conserved, environmental emissions that would be associated with the manufacture, transportation and disposal of four machines are eliminated while the capital requirements by farmers for machinery are reduced to about a quarter. Consequently the total lifecycle cost is kept minimum while the eco-efficiency is maximized.

  17. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  18. Designing and Implementing Basic Sciences Ontology Based on Concepts and Relationships of Relevant Thesauri

    Directory of Open Access Journals (Sweden)

    Molouk Sadat Hosseini Beheshti

    2015-05-01

    Full Text Available Currently, the main portion of knowledge is stored in electronic texts and documents and for transferring that knowledge effectively, we must use proper methods to gather and retrieve relevant information. Ontologies provide means to produce structured documents and use intelligent search instead of keyword search. Ontology defines the common words and concepts used to describe and represent an area of knowledge. However, developing ontologies is a time consuming and labor work, so many ontology developers try to facilitate and speed up this process by reusing other resources. In fact, thesaurus contains semantic information and hierarchical structure that make it an appropriate resource for ontology construction. Therefore, we determined to use the thesauri previously developed at Iranian Research Institute for Information Science and Technology (IRANDOC to construct ontology in basic sciences domain. At first, we synchronized common concepts in thesauri before integrating them as a macro thesaurus and removed inconsistencies. To reduce the amount of time and human resources which were needed for synchronizing process, Thesaurus Synchronizer was developed to illustrate differences between matched cases of two thesauri. It provides powerful tools for demonstrating differences and suggestions for each of the existing matters. Thus, domain experts synchronized each two thesaurus semi-automatically. Then we merged thesauri and transform the data format into ISO 25964 standard. The conceptual model have been designed based on the terms and their relationships in the integrated thesaurus and the concept maps that were designed by domain experts for each of basic sciences (Chemistry, Physics, Biology, Geology and Mathematics. We used the methodology called METHONTOLOGY in this stage. The main activity in this methodology is conceptualization and it enables the construction of ontologies at the knowledge level. Ultimately, the ontology was generated by

  19. 2009 Melbourne metropolitan sewerage strategy: a portfolio of decentralised and on-site concept designs.

    Science.gov (United States)

    Brown, V; Jackson, D W; Khalifé, M

    2010-01-01

    The bulk and retail water companies of the greater Melbourne area are developing the 2009 Metropolitan Sewerage Strategy to provide sustainable sewerage services to 2060. The objective of the strategy is to establish long term principles and near term actions to produce a robust sewage management system for Melbourne. Melbourne's existing sewerage system is largely centralised and discharges to two major treatment plants. Several small satellite treatment plants service local urban areas generally more distant from the centralised system. Decentralised and on-site wastewater systems are options for future sewage management and could play a role in local recycling. A portfolio of 18 on-site and decentralised concept designs was developed, applicable to the full range of urban development types in Melbourne. The concepts can be used in evaluation of metropolitan system configurations as part of future integrated water cycle planning. The options included secondary and tertiary treatment systems incorporating re-use of water for non potable uses, urine separation, black and greywater separation and composting toilets. On-site and cluster treatment systems were analysed. Each option is described by its indicative capital and operating costs, energy use and water and nutrient balances. This paper summarises and compares the portfolio mix of decentralized and on-site options in Melbourne's context.

  20. The Concept, Design and Performance of a Novel Rotary Kiln Type Air-Staged Biomass Gasifier

    Directory of Open Access Journals (Sweden)

    Huiyuan Shi

    2016-01-01

    Full Text Available Tar formation is the main bottleneck for biomass gasification technology. A novel rotary kiln type biomass gasification process was proposed. The concept design was based on air staging and process separation. This concept was demonstrated on a pilot scale rotary kiln reactor under ambient pressure and autothermic conditions. The pilot scale gasifier was divided into three different reaction regions, which were oxidative degradation, partial oxidation and char gasification. A series of tests was conducted to investigate the effect of key parameters. The results indicate that under optimum operating conditions, a fuel gas with high heat value of about 5500 kJ/Nm3 and gas production rate of 2.32 Nm3/kg could be produced. Tar concentration in the fuel gas could be reduced to 108 mg/Nm3 (at the gasifier outlet and 38 mg/Nm3 (after gas conditioning. The cold gas efficiency and carbon conversion rate reached 75% and 78%, respectively. The performance of this gasification system shows considerable potential for implementation in distributed electricity and heat supply projects.

  1. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    Science.gov (United States)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  2. Concept and design of charged particle optics using energy Fourier plane collimation

    Directory of Open Access Journals (Sweden)

    Guojun Yang

    2014-09-01

    Full Text Available Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  3. Spaceflight Holography Investigation in a Virtual Apparatus (SHIVA) Ground Experiments and Concepts for Flight Design

    Science.gov (United States)

    Miernik, Janie H.; Trolinger, James D.; Lackey, Jeffrey D.; Milton, Martha E.; Waggoner, Jason; Pope, Regina D.

    2002-01-01

    This paper discusses the development and design of an experimental test cell for ground-based testing to provide requirements for the Spaceflight Holography Investigation in a Virtual Apparatus (SHIVA) experiment. Ground-based testing of a hardware breadboard set-up is being conducted at Marshall Space Flight Center in Huntsville, Alabama. SHIVA objectives are to test and validate new solutions of the general equation of motion of a particle in a fluid, including particle-particle interaction, wall effects, motion at higher Reynolds Number, and a motion and dissolution of a crystal moving in a fluid. These objectives will be achieved by recording a large number of holograms of particle motion in the International Space Station (ISS) glove box under controlled conditions, extracting the precise three- dimensional position of all the particles as a function of time, and examining the effects of all parameters on the motion of the particles. This paper will describe the mechanistic approach to enabling the SHIVA experiment to be performed in a ISS glove box in microgravity. Because the particles are very small, surface tension becomes a major consideration in designing the mechanical method to meet the experiments objectives in microgravity, To keep a particle or particles in the center of the test cell long enough to perform and record the experiment and to preclude contribution to particle motion, requires avoiding any initial velocity in particle placement. A Particle Injection Mechanism (PIM) designed for microgravity has been devised and tested to enable SHIVA imaging. Also, a test cell capture mechanism, to secure the test cell during vibration on a specially designed shaker table for the SHIVA experiment will be described. Concepts for flight design are also presented.

  4. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    Science.gov (United States)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  5. New Lithium Solid Electrolytes, Thio-Lisicon Materials Design Concept and Application to Solid State Battery

    Science.gov (United States)

    Kanno, Ryoji; Murayama, Masahiro; Sakamoto, Kazuyuki

    2002-12-01

    Materials design concept of the new crystalline 'thio-LlSICON' (LIthium Superlonic CONductor) family was discussed. The thio-LISICON was found in the ternary systems, Li2S-MS2-M'xSy (M=Si, Ge, M'=P, Sb, Al, Zn, etc), and showed the highest conductivity of 2.2 × 10-3 Scm-1 at 25°C of any sintered ceramic, together with negligible electronic conductivity, high electrochemical stability, no reaction with lithium metal, and no phase transition up to 300°C. The advantage and disadvantage of the crystalline materials were discussed based on the ionic conduction, chemical stability and electrochemical potential window.

  6. Designing Adaptive-Content trough E-learning on Electromagnetic Concept

    Science.gov (United States)

    Hakim, L.; Setiawan, A.; Sinaga, P.

    2017-02-01

    Teacher competence development is a national education agenda. Although teachers have adequate learning experience, based on UKA (Academic Competence Test) 2013 results, the content mastery of teachers is still low. In order to reach the maximum development of teacher, it is a must to consider the knowledge level of teachers and the difficulty of content given. This study used a questionnaire given to 40 teachers but only 25 teachers who returned the questionnaire. According to the research, 82% of teachers stated that the electromagnetic is a difficult content. There are several factors why electro magnetic content is considered to be difficult by teachers such as it is abstract, uses a lot of mathematical equations, and correlation with other concepts and content material. From these results, adaptive e-learning design for teacher to learn electromagneticis created.

  7. Multidisciplinary Design Optimization of a Morphing Wingtip Concept with Multiple Morphing Stages at Cruise

    Science.gov (United States)

    Leahy, Michael

    Morphing an aircraft wingtip can provide substantial performance improvement. Most civil transport aircraft are optimized for range but for other flight conditions such as take-off and climb they are used as constraints. These constraints could potentially reduce the performance of an aircraft at cruise. By altering the shape of the wingtip, we can force the load distribution to adapt to the required flight condition to improve performance. Using a Variable Geometry Truss Mechanism (VGTM) concept to morph the wingtip of an aircraft with a Multidisciplinary Design Optimization (MDO) framework, the current work will attempt to find an optimal wing and wingtip shape to minimize fuel consumption for multiple morphing stages during cruise. This optimization routine was conducted with a Particle Swarm Optimization (PSO) algorithm using different fidelity tools to analyze the aerodynamic and structural disciplines.

  8. The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    Science.gov (United States)

    Brinkman, P. W.; Kretz, D.

    1992-01-01

    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.

  9. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications.

    Science.gov (United States)

    Kannan, R M; Nance, E; Kannan, S; Tomalia, D A

    2014-12-01

    Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious

  10. Concept design of the DEMO divertor cassette-to-vacuum vessel locking system adopting a systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Carfora, D. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); VTT Technical Research Centre of Finland, Tekniikankatu 1, PO Box 1300, FI-33101 Tampere (Finland); Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Esposito, G.; Lanzotti, A.; Marzullo, D. [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Siuko, M. [VTT Technical Research Centre of Finland, Tekniikankatu 1, PO Box 1300, FI-33101 Tampere (Finland)

    2015-05-15

    Highlights: • An iterative and incremental design process for cassette-to-VV locking system of DEMO divertor is presented. • Three different concepts have been developed with a systematic design approach. • The final concept has been selected with Fuzzy-Analytic Hierarchy Process in virtual reality. - Abstract: This paper deals with pre-concept studies of DEMO divertor cassette-to-vacuum vessel locking system under the work program WP13-DAS-07-T06: Divertor Remote Maintenance System pre-concept study. An iterative design process, consistent with Systems Engineering guidelines and named Iterative and Participative Axiomatic Design Process (IPADeP), is used in this paper to propose new innovative solutions for divertor locking system, which can overcome the difficulties in applying the ITER principles to DEMO. The solutions conceived have been analysed from the structural point of view using the software Ansys and, eventually, evaluated using the methodology known as Fuzzy-Analytic Hierarchy Process. Due to the lack and the uncertainty of the requirements in this early conceptual design stage, the aim is to cover a first iteration of an iterative and incremental process to propose an innovative design concept to be developed in more details as the information will be completed.

  11. Teaching Art a Greener Path: Integrating Sustainability Concepts of Interior Design Curriculum into the Art Education Curriculum

    Science.gov (United States)

    Hasio, Cindy; Crane, Tommy J.

    2014-01-01

    Interior design is seldom integrated within the general art education curriculum because the subject matter is generally segregated as a commercial art. However, the importance of interior design concepts of sustainability in art education can really help a student understand the scale and proportion of space and mass, and how sustainability is…

  12. Teaching Art a Greener Path: Integrating Sustainability Concepts of Interior Design Curriculum into the Art Education Curriculum

    Science.gov (United States)

    Hasio, Cindy; Crane, Tommy J.

    2014-01-01

    Interior design is seldom integrated within the general art education curriculum because the subject matter is generally segregated as a commercial art. However, the importance of interior design concepts of sustainability in art education can really help a student understand the scale and proportion of space and mass, and how sustainability is…

  13. A formal account of the dual extension of knowledge and concept in C-K design theory

    NARCIS (Netherlands)

    L. Hendriks; A.O. Kazakci

    2010-01-01

    The paper presents a contribution to the formalization efforts of C-K design theory. First, we analyze the notion of "dual expansion of concepts and knowledge" in C-K design theory and we discuss how such a reasoning process can be modeled using first-order logic. Then, we present a basic formal acc

  14. Incorporating Sustainability and Green Design Concepts into Engineering and Technology Curricula

    Directory of Open Access Journals (Sweden)

    Radian G. Belu

    2016-05-01

    Full Text Available Human society is facing an uncertain future due to the present day unsustainable use of natural resources and the growing imbalance with our natural environment. Sustainability is an endeavour with uncertain outcomes requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions, as well as with governments, local communities, political and civic organizations. The creation of a sustainable society is a complex and multi-stage endeavour that will dominate twenty first century.  Sustainability has four basic aspects: environment, technology, economy, and societal organization. Schools with undergraduate engineering or engineering technology programs are working to include sustainability and green design concepts into their curricula. Teaching sustainability and green design has increasingly become an essential feature of the present day engineering education. It applies to all of engineering, as all engineered systems interact with the environment in complex and important ways. Our project main goals are to provide the students with multiple and comprehensive exposures, to what it mean to have a sustainable mindset and to facilitate the development of the passion and the skills to integrate sustainable practices into engineering tools and methods. In this study we are describing our approaches to incorporating sustainability and green design into our undergraduate curricula and to list a variety of existing resources that can easily be adopted or adapted by our faculty for this purpose. Our approaches are: (1 redesigning existing courses through development of new curricular materials that still meet the objectives of the original course and (2 developing upper division elective courses that address specific topics related to sustainability, green design, green manufacturing and life-cycle assessment. 

  15. Designing problem-based curricula: The role of concept mapping in scaffolding learning for the health sciences

    Directory of Open Access Journals (Sweden)

    Susan M. Bridges

    2015-03-01

    Full Text Available While the utility of concept mapping has been widely reported in primary and secondary educational contexts, its application in the health sciences in higher education has been less frequently noted. Two case studies of the application of concept mapping in undergraduate and postgraduate health sciences are detailed in this paper. The case in undergraduate dental education examines the role of concept mapping in supporting problem-based learning and explores how explicit induction into the principles and practices of CM has add-on benefits to learning in an inquiry-based curriculum. The case in postgraduate medical education describes the utility of concept mapping in an online inquiry-based module design. Specific attention is given to applications of CMapTools™ software to support the implementation of Novakian concept mapping in both inquiry-based curricular contexts.

  16. New Concepts in Fish Ladder Design, Volume II of IV, Results of Laboratory and Field Research on New Concepts in Weir and Pool Fishways, 1982-1984 Final Project Report.

    Energy Technology Data Exchange (ETDEWEB)

    Aaserude, Robert G.; Orsborn, John F.

    1985-08-01

    A comprehensive review of fishway design practice led to new design concepts that had previously been untested. This concept was based on the observation that fish can be stimulated to leap when presented with certain hydraulic conditions. A laboratory test program was conducted to develop this concept into a new fishway configuration. Field testing revealed that components of the new design improved fish passage. Verification of the initial premise that fish can be stimulated to leap needs further study.

  17. Conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees

    Directory of Open Access Journals (Sweden)

    Wilson Carlos da Silva Júnior

    Full Text Available Introduction Modern transfemoral knee prostheses are designed to offer comfort and self-confidence to amputees. These prostheses are mainly based upon either a passive concept, with a damping system, or an active computational intelligent design to control knee motion during the swing phase. In Brazil, most lower extremity amputees are unable to afford modern prostheses due to their high cost. In this work, we present the conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees. Methods The concept of the prosthesis is based on a control system with sensors for loads, which are installed on the amputee’s preserved leg and used as a mirror for the movement of the prosthesis. Mechanical strength analysis, using the Finite Element Method, electromechanical tests for the sensors and actuators and verification of data acquisition, signal conditioning and data transferring to the knee prosthesis were performed. Results The laboratory tests performed showed the feasibility of the proposed design. The electromechanical concept that was used enabled a controlled activation of the knee prosthesis by the two load cells located on the shoe sole of the preserved leg. Conclusions The electromechanical design concept and the resulting knee prosthesis show promising results concerning prosthesis activation during walking tests, thereby showing the feasibility of a reduced manufacturing cost compared to the modern prostheses available on the market.

  18. Analysis on concept of appearance design%产品外观设计的理念解析

    Institute of Scientific and Technical Information of China (English)

    刘静宇

    2013-01-01

    Innovation on product appearance Incomes more im-portanl during the process of the product development. Different design concept has different impact on styling of the products. This article analyze the concept of humanization design, green design and experience - based design, and discuss the influence on appearance innovation of the degree of understanding on design concept, also e-laborate the practical application of experience-based design concept and its methods in design of product appearance in order to provide some ideas for product innovation%产品开发过程中,外观创新越来越重要,不同的设计理念对产品的造型风格有较大的影响从人性化设计、绿色设计、体验设计等理念解析出发,探讨了理念理解深度对于外观创新的影响,重点阐述了体验设计理念与方法在产品外观设计中的具体应用,为产品创新提供一定的思路.

  19. Materials Design and System Construction for Conventional and New‐Concept Supercapacitors

    Science.gov (United States)

    Wu, Zhong; Li, Lin

    2017-01-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long‐term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state‐of‐the‐art development on the fabrication of high‐performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material‐design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new‐concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li‐/Na‐ion supercapacitors composed of battery‐type electrodes and capacitor‐type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high‐performance supercapacitors. PMID:28638780

  20. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.

    Science.gov (United States)

    Wu, Zhong; Li, Lin; Yan, Jun-Min; Zhang, Xin-Bo

    2017-06-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long-term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state-of-the-art development on the fabrication of high-performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material-design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new-concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li-/Na-ion supercapacitors composed of battery-type electrodes and capacitor-type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high-performance supercapacitors.

  1. Design optimization of cementless metal-backed cup prostheses using the concept of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N [Production Engineering and M/C Design Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)

    2006-09-15

    Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.

  2. Design concept and its requirements of the integrated SMART nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  3. The Significance of Small Cracks in Fatigue Design Concepts as Related to Rotorcraft Metallic Dynamic Components

    Science.gov (United States)

    Everett, R. A., Jr.; Elber, W.

    2000-01-01

    In this paper the significance of the "small" crack effect as defined in fracture mechanics will be discussed as it relates to life managing rotorcraft dynamic components using the conventional safe-life, the flaw tolerant safe-life, and the damage tolerance design philosophies. These topics will be introduced starting with an explanation of the small-crack theory, then showing how small-crack theory has been used to predict the total fatigue life of fatigue laboratory test coupons with and without flaws, and concluding with how small cracks can affect the crack-growth damage tolerance design philosophy. As stated in this paper the "small" crack effect is defined in fracture mechanics where it has been observed that cracks on the order of 300 microns or less in length will propagate at higher growth rates than long cracks and also will grow at AK values below the long crack AK threshold. The small-crack effect is illustrated herein as resulting from a lack of crack closure and is explained based on continuum mechanics principles using crack-closure concepts in fracture mechanics.

  4. Design optimization of cementless metal-backed cup prostheses using the concept of functionally graded material.

    Science.gov (United States)

    Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N

    2006-09-01

    Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.

  5. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  6. The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum

    Science.gov (United States)

    Iveland, Ashley

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories

  7. New Concepts in Fish Ladder Design, Part I of IV, Summary Report, 1982-1984 Final Project Report.

    Energy Technology Data Exchange (ETDEWEB)

    Orsborn, John F.

    1985-08-01

    The report looks at the most active periods of fishway research since 1938 as background for a project to apply fundamental fluid and bio-mechanics to fishway design, and develop more cost effective fish passage facilities with primary application to small scale hydropower facilities. Also discussed are new concepts in fishway design, an assessment of fishway development and design, and an analysis of barriers to upstream migration. (ACR)

  8. Changing Concepts in Activity: Descriptive and Design Studies of Consequential Learning in Conceptual Practices

    Science.gov (United States)

    Hall, Rogers; Jurow, A. Susan

    2015-01-01

    Concepts and conceptual change have been studied extensively as phenomena of individual thinking and action, but changing circumstances of social or cultural groups using concepts are treated as external conditions. We describe research on consequential learning in conceptual practices, where concepts include representational infrastructure that…

  9. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    Science.gov (United States)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  10. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    Science.gov (United States)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  11. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz, E-mail: ambrozin@agh.edu.pl; Stepinski, Tadeusz, E-mail: ambrozin@agh.edu.pl; Uhl, Tadeusz, E-mail: ambrozin@agh.edu.pl [AGH University of Science and technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  12. Application of a concept development process to evaluate process layout designs using value stream mapping and simulation

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2011-07-01

    Full Text Available Purpose: We propose and demonstrate a concept development process (CDP as a framework to solve a value stream mapping (VSM related process layout design optimization problem.Design/methodology/approach: A case study approach was used to demonstrate the effectiveness of CDP framework in a portable fire extinguisher manufacturing company. To facilitate the CDP application, we proposed the system coupling level index (SCLI and simulation to evaluate the process layout design concepts.Findings: As part of the CDP framework application, three process layout design concepts - current layout (CL, express lane layout (ELL and independent zone layout (IZL - were generated. Then, the SCLI excluded CL and simulation selected IZL as the best concept. The simulation was also applied to optimize the performance of IZL in terms of the number of pallets. Based on this case study, we concluded that CDP framework worked well.Research limitations/implications: The process layout design optimization issue has not been well addressed in the VSM literature. We believe that this paper initiated the relevant discussion by showing the feasibility of CDP as a framework in this issue.Practical implications: The CDP and SCLI are very practice-oriented approaches in the sense that they do not require any complex analytical knowledge.Originality/value: We discussed a not well-addressed issue with a systematic framework. In addition, the SCLI presented was also unique.

  13. A review on two previous divertor target concepts for DEMO: mutual impact between structural design requirements and materials performance

    Science.gov (United States)

    You, Jeong-Ha

    2015-09-01

    Development of a diverter target with a sufficient capability of power exhaust is a crucial prerequisite for the realization of a fusion power plant. While the design and technology for divertor target has been successfully developed for ITER, the applicability of this concept is not necessarily assured yet for DEMO mainly because the neutron irradiation dose expected for the DEMO divertor will be an order of magnitude higher than that of the ITER divertor. The possible embrittlement of structural heat sink materials due to irradiation is likely to restrict the structural performance and the operational flexibility of a target component to a considerable extent. For judgment of design feasibility of a target concept a quantitative evaluation of the thermal and structure mechanical performance is needed. In this article, a review on two representative target design concepts considered for the DEMO divertor is presented. Emphasis is put on the mutual impact between the design requirements and the performance of structural materials. Water-cooled and helium-cooled concepts are discussed considering two baseline heat sink materials, CuCrZr alloy and tungsten, respectively. Conclusions are derived from the critical features of the heat sink performance in terms of structural reliability, design/material interface and further R&D needs.

  14. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    Science.gov (United States)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  15. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation.

    Science.gov (United States)

    Pallagi, Edina; Ambrus, Rita; Szabó-Révész, Piroska; Csóka, Ildikó

    2015-08-01

    Regulatory science based pharmaceutical development and product manufacturing is highly recommended by the authorities nowadays. The aim of this study was to adapt regulatory science even in the nano-pharmaceutical early development. Authors applied the quality by design (QbD) concept in the early development phase of nano-systems, where the illustration material was meloxicam. The meloxicam nanoparticles produced by co-grinding method for nasal administration were studied according to the QbD policy and the QbD based risk assessment (RA) was performed. The steps were implemented according to the relevant regulatory guidelines (quality target product profile (QTPP) determination, selection of critical quality attributes (CQAs) and critical process parameters (CPPs)) and a special software (Lean QbD Software(®)) was used for the RA, which represents a novelty in this field. The RA was able to predict and identify theoretically the factors (e.g. sample composition, production method parameters, etc.) which have the highest impact on the desired meloxicam-product quality. The results of the practical research justified the theoretical prediction. This method can improve pharmaceutical nano-developments by achieving shorter development time, lower cost, saving human resource efforts and more effective target-orientation. It makes possible focusing the resources on the selected parameters and area during the practical product development.

  16. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    Institute of Scientific and Technical Information of China (English)

    LUO Huan-Li; XU Yu-Cun; WANG Xiang-Qi; XU Hong-Liang

    2013-01-01

    In the recent decades of particle accelerator R&D area,the fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost,although there are still some technical challenges.In this paper,the FFAG accelerator is adopted to accelerate a helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of the FFAG accelerator and exploring the possibility of developing high power FFAG accelerators.The conventional period focusing unit of the helium ion FFAG accelerator and threedimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given.For low energy and low revolution frequency,induction acceleration is proposed to replace conventional radio frequency (RF) acceleration for the helium ion FFAG accelerator,which avoids the potential breakdown of the acceleration field caused by the wake field and improves the acceleration repetition frequency to gain higher beam intensity.The main parameters and three-dimensional model of induction cavity are given.Two special constraint waveforms are proposed to refrain from particle accelerating time slip (AT) caused by accelerating voltage drop of flat top and energy deviation.The particle longitudinal motion in two waveforms is simulated.

  17. Designs and concept reliance of a fully automated high-content screening platform.

    Science.gov (United States)

    Radu, Constantin; Adrar, Hosna Sana; Alamir, Ab; Hatherley, Ian; Trinh, Trung; Djaballah, Hakim

    2012-10-01

    High-content screening (HCS) is becoming an accepted platform in academic and industry screening labs and does require slightly different logistics for execution. To automate our stand-alone HCS microscopes, namely, an alpha IN Cell Analyzer 3000 (INCA3000), originally a Praelux unit hooked to a Hudson Plate Crane with a maximum capacity of 50 plates per run, and the IN Cell Analyzer 2000 (INCA2000), in which up to 320 plates could be fed per run using the Thermo Fisher Scientific Orbitor, we opted for a 4 m linear track system harboring both microscopes, plate washer, bulk dispensers, and a high-capacity incubator allowing us to perform both live and fixed cell-based assays while accessing both microscopes on deck. Considerations in design were given to the integration of the alpha INCA3000, a new gripper concept to access the onboard nest, and peripheral locations on deck to ensure a self-reliant system capable of achieving higher throughput. The resulting system, referred to as Hestia, has been fully operational since the new year, has an onboard capacity of 504 plates, and harbors the only fully automated alpha INCA3000 unit in the world.

  18. The concept design and dynamics analysis of a novel vehicle suspension mechanism with invariable orientation parameters

    Science.gov (United States)

    Zhao, Jing-Shan; Li, Lingyang; Chen, Liping; Zhang, Yunqing

    2010-12-01

    This paper starts with a classical mechanism synthesis problem and focuses on the concept design and dynamics analysis of an independent suspension that has invariable orientation parameters when the wheel moves up (jounces) and down (rebounds). The paper first proposes a symmetric redundant constraint suspension structure that has invariable orientation parameters. And then, it analyses the mechanism mobility with the reciprocal screw theory, after which it establishes the displacement constraint equations of the suspension. This type of suspension has all the advantages of the sliding pillar suspension but overcomes its disadvantage of over-wearing. Through differentiating the constraint equations with respect to time, it obtains the kinematics relationship and builds up the dynamics equations of the suspension via Newton-Euler method. Numerical simulations indicate that this kind of independent suspensions should not only eliminate the shambling shocks induced by the jumping of wheels but also decrease the abrasion of the wheels. Therefore, this kind of independent suspensions can obviously improve the ride and handling properties of advanced automobiles.

  19. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  20. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  1. Shark, new motor design concept for energy saving applied to switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Tataru Kjaer, A.M.

    2005-07-01

    The aim of this thesis is to document and promote a relatively new concept of designing electrical machine with improved efficiency, without using more or better material. The concept, called Shark, consists in replacing the cylindrical air gap by a non-linear shape obtained by translating specific geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap shapes and of their influence on the magnetic performance has been reported. Due to a simple geometry, the Switched Reluctance Machine has been selected for demonstration of the Shark principle. Initially, linear and finite element analyses are considered. They provide the basic knowledge of the manner in which various Shark air gap, having different dimensions, influence the energy conversion in the machine. The saturation mechanisms, specific to each Shark profile are analysed and optimum Shark profile and its dimensions are selected for implementation in a demonstration machine. Due to the lack of quick analysis tools, an analytical model of the Shark Switched Reluctance Machine is also proposed in this thesis. This model is conceived by modifying one of the existing models of cylindrical air gap Switched Reluctance Machines, such as to account for the presence of the Shark profiles in the air gap. The calculations are verified by measurement on two demonstration machines, having cylindrical and Shark air gaps. The measurement proved the theory right and

  2. Optical design of the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Science.gov (United States)

    Barnes, Stuart I.; Fżrész, Gábor; Simcoe, Robert A.; Shectman, Stephen A.; Woods, Deborah F.

    2016-08-01

    The WISDOM instrument concept was developed at MIT as part of a NASA-NSF funded study to equip the 3.5m WIYN telescope with an extremely precise radial velocity spectrometer. The spectrograph employs an asymmetric white pupil optical design, where the instrument is split into two nearly identical "Short" (380 to 750 nm) and "Long"" (750 to 1300 nm) wavelength channels. The echelle grating and beam sizes are R3.75/125mm and R6/80mm in the short and long channels respectively. Together with the pupil slicer, and octagonal to rectangular fibre coupling, this permits resolving powers over R = 120k with a 1.2" diameter fibre on the sky. A factor of two reduction in the focal length between the main collimator OAP and the transfer collimator ensures a very compact instrument, with a small white pupil footprint, thereby enabling small cross-dispersing and camera elements. A dichroic is used near the white pupil to split each of the long and short channels into two, so that the final spectrograph has 4 channels; namely "Blue," "Green," "Red" and "NIR." Each of these channels has an anamorphic VPH grism for cross-dispersion, and a fully dioptric all-spherical camera objective. The spectral footprints cover 4k×4k and 6k×6k CCDs with 15 µm pixels in the short "Blue" and "Green" wavelength channels, respectively. A 4k×4k CCD with 15 μm pixels is used in the long "Red" channel, with a HgCdTe 1.7 μm cutoff 4k×4k detector with 10um pixels is to be used in the long "NIR" channel. The white pupil relay includes a Mangin mirror very close to the intermediate focus to correct the white pupil relay Petzval curvature before it is swept into a cylinder by the cross-dispersers. This design decision allows each of the dioptric cameras to be fully optimised and tested independently of the rest of the spectrograph. The baseline design for the cameras also ensures that the highest possible (diffraction limited) image quality is achieved across all wavelengths, while also ensuring

  3. Evaluation of Process Capability in Gas Carburizing Process to Achieve Quality through Limit Design Concept

    Institute of Scientific and Technical Information of China (English)

    K. Palaniradja; N. Alagumurthi; V. Soundararajan

    2004-01-01

    Steel is the most important metallic material used in industry. This is because of the versatility of its engineering properties under different conditions. In one condition it can be very mild, soft and suitable for any forming operation. In another condition the same steel can be very hard and strong. This versatility is made possible by the different heat treatments that the steel can be subject to. One such treatment is Gas carburizing. This is the most widely used process for surface hardening of low carbon steels. In this method the surface composition of the steel changes by diffusion of carbon and or nitrogen and result in hard outer surface with good wear resistance properties. A striking feature of Gas Carburizing process is that in this process the original toughness and ductility remains unaffected even after heat treatment. 3% nickel chromium case hardened low carbon steels are widely used for critical automotive and machine applications such as rack and pinion, gears, camshaft, valve rocker shafts and axles which requires high fatigue resistance. Fatigue behaviour of case carburized parts depends to a great extent on the correct combination of Hardness Penetration Depth (HPD) and the magnitude of hardness at the surface and beneath the surface with low size and shape distortion. In order to reduce the manufacturing costs in terms of material consumption and elimination of the number of processing steps, the effect of Gas carburizing parameters on the fatigue behaviour should already be considered in the parameter design stage. Therefore it is of importance to optimize the gas carburizing process variables to attain quality products with respect to hardness and case depth. In the present paper, the evaluation of process capability was carried out through a Limit Design Concept called orthogonal array design of experiment. To optimize the process variables the influence of several parameters (Holding time,Carbon potential, Furnace temperature and Quench

  4. Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem.

    Science.gov (United States)

    Arabnejad Khanoki, Sajad; Pasini, Damiano

    2013-06-01

    A methodology is proposed to design a spatially periodic microarchitectured material for a two-dimensional femoral implant under walking gait conditions. The material is composed of a graded lattice with controlled property distribution that minimizes concurrently bone resorption and interface failure. The periodic microstructure of the material is designed for fatigue fracture caused by cyclic loadings on the hip joint as a result of walking. The bulk material of the lattice is Ti6AL4V and its microstructure is assumed free of defects. The Soderberg diagram is used for the fatigue design under multiaxial loadings. Two cell topologies, square and Kagome, are chosen to obtain optimized property gradients for a two-dimensional implant. Asymptotic homogenization (AH) theory is used to address the multiscale mechanics of the implant as well as to capture the stress and strain distribution at both the macro and the microscale. The microstress distribution found with AH is also compared with that obtained from a detailed finite element analysis. For the maximum value of the von Mises stress, we observe a deviation of 18.6% in unit cells close to the implant boundary, where the AH assumption of spatial periodicity of the fluctuating fields ceases to hold. In the second part of the paper, the metrics of bone resorption and interface shear stress are used to benchmark the graded cellular implant with existing prostheses made of fully dense titanium implant. The results show that the amount of initial postoperative bone loss for square and Kagome lattice implants decreases, respectively, by 53.8% and 58%. In addition, the maximum shear interface failure at the distal end is significantly reduced by about 79%. A set of proof-of-concepts of planar implants have been fabricated via Electron Beam Melting (EBM) to demonstrate the manufacturability of Ti6AL4V into graded lattices with alternative cell size. Optical microscopy has been used to measure the morphological parameters

  5. 绿色建筑设计理念与技术应用%Green building design concepts and applications

    Institute of Scientific and Technical Information of China (English)

    李奕河

    2015-01-01

    文章介绍了绿色建筑理念并梳理绿色建筑设计技术措施,以设计出更为完善的绿色建筑,营造良好的人居环境。%The article introduces the concept of green building and green building design and technical measures, in order to design a more perfect green building, create a good living environment.

  6. High Coverage Point to Point Transit (HCPPT): A New Design Concept and Simulation-Evaluation of Operational Schemes

    OpenAIRE

    2003-01-01

    This dissertation research proposes the development and evaluation of a new concept for high coverage point-to-point transit systems (HCPPT). Overall, three major contributions can be identified as the core of this research: the proposed scheme design, the development of sophisticated routing rules that can be updated in real-time to implement and optimize the operation of such a design, and the implementation of a multi-purpose simulation platform in order to simulate and evaluate such a des...

  7. Ocean thermal energy conversion cold water pipe preliminary design project. Appendices to Task 2. Analysis for concept selection

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Appendices include (A) TRW CWP/hull dynamics computer model (HULPIPE); (B) environmental data; (C) structural analysis methods; (D) work breakdown structure; (E) costing worksheets; (F) thermal design of the cold water pipe; (G) CWP/Platform transition ROM costs; (H) installation scenarios and costs; (I) cost uncertainty assessment; (J) risk assessment; and (K) OTEC cold water pipe concept catalog. (WHK)

  8. Designing the Self: The Transformation of the Relational Self-Concept through Social Encounters in a Virtual Immersive Environment

    Science.gov (United States)

    Knutzen, K. Brant; Kennedy, David M.

    2012-01-01

    This article describes the findings of a 3-month study on how social encounters mediated by an online Virtual Immersive Environment (VIE) impacted on the relational self-concept of adolescents. The study gathered data from two groups of students as they took an Introduction to Design and Programming class. Students in group 1 undertook course…

  9. Blended Learning in Vocational Education: Teachers' Conceptions of Blended Learning and Their Approaches to Teaching and Design

    Science.gov (United States)

    Bliuc, Ana-Maria; Casey, Grant; Bachfischer, Agnieszka; Goodyear, Peter; Ellis, Robert A.

    2012-01-01

    This paper presents research exploring teachers' experiences of using blended learning in vocational education. Teachers involved in designing and teaching using blended learning from a major Australian vocational education provider participated in the study. They received open-ended questionnaires asking to describe their conceptions of blended…

  10. Blended Learning in Vocational Education: Teachers' Conceptions of Blended Learning and Their Approaches to Teaching and Design

    Science.gov (United States)

    Bliuc, Ana-Maria; Casey, Grant; Bachfischer, Agnieszka; Goodyear, Peter; Ellis, Robert A.

    2012-01-01

    This paper presents research exploring teachers' experiences of using blended learning in vocational education. Teachers involved in designing and teaching using blended learning from a major Australian vocational education provider participated in the study. They received open-ended questionnaires asking to describe their conceptions of blended…

  11. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    Science.gov (United States)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-11-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  12. Designing an image retrieval interface for abstract concepts within the domain of journalism

    NARCIS (Netherlands)

    Besseling, R.

    2011-01-01

    Research has shown that users have difficulties finding images which illustrate abstract concepts. We carried out a user study that confirms the finding that the selection of search terms is perceived difficult and that users find the subjectivity of abstract concepts problematic. In addition, we fo

  13. Designing scheduling concept and computer support in the food processing industries

    NARCIS (Netherlands)

    van Donk, DP; van Wezel, W; Gaalman, G; Bititci, US; Carrie, AS

    1998-01-01

    Food processing industries cope with a specific production process and a dynamic market. Scheduling the production process is thus important in being competitive. This paper proposes a hierarchical concept for structuring the scheduling and describes the (computer) support needed for this concept.

  14. Designing an image retrieval interface for abstract concepts within the domain of journalism

    NARCIS (Netherlands)

    R. Besseling (Ron)

    2011-01-01

    htmlabstractResearch has shown that users have difficulties finding images which illustrate abstract concepts. We carried out a user study that confirms the finding that the selection of search terms is perceived difficult and that users find the subjectivity of abstract concepts problematic. In

  15. Fiber link design for the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Science.gov (United States)

    Fżrész, Gábor; Pawluczyk, Rafal; Fournier, Paul; Simcoe, Robert; Woods, Deborah F.

    2016-08-01

    We describe the design of the fiber-optic coupling and light transfer system of the WISDOM (WIYN Spectrograph for DOppler Monitoring) instrument. As a next-generation Precision Radial Velocity (PRV) spectrometer, WISDOM incorporates lessons learned from HARPS about thermal, pressure, and gravity control, but also takes new measures to stabilize the spectrograph illumination, a subject that has been overlooked until recently. While fiber optic links provide more even illumination than a conventional slit, careful engineering of the interface is required to realize their full potential. Conventional round fiber core geometries have been used successfully in conjunction with optical double scramblers, but such systems still retain a memory of the input illumination that is visible in systems seeking sub-m/s PRV precision. Noncircular fibers, along with advanced optical scramblers, and careful optimization of the spectrograph optical system itself are therefore necessary to study Earth-sized planets. For WISDOM, we have developed such a state-of-the-art fiber link concept. Its design is driven primarily by PRV requirements, but it also manages to preserve high overall throughput. Light from the telescope is coupled into a set of six, 32 μm diameter octagonal core fibers, as high resolution is achieved via pupil slicing. The low-OH, step index, fused silica, FBPI-type fibers are custom designed for their numerical aperture that matches the convergence of the feeding beam and thus minimizes focal ratio degradation at the output. Given the demanding environment at the telescope the fiber end tips are mounted in a custom fused silica holder, providing a perfect thermal match. We used a novel process, chemically assisted photo etching, to manufacture this glass fiber holder. A single ball-lens scrambler is inserted into the 25m long fibers. Employing an anti-reflection (AR) coated, high index, cubic-zirconia ball lens the alignment of the scrambler components are

  16. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  17. The Differential Phase Experiment: experimental concept, design analysis, and data reduction analysis

    Science.gov (United States)

    Tyler, Glenn A.; Brennan, Terry J.; Browne, Stephen L.; Dueck, Robert H.; Lodin, Michael S.; Roberts, Phillip H.; Vaughn, Jeffrey L.

    1997-08-01

    This paper describes the differential phase experiment (DPE) which formed a major part of the ABLE ACE suite of experiments conducted by the Air Force. The work described covers the rationale for the experiment, the basic experimental concept, the analysis of the differential phase, the optical and software design analysis, a discussion of the polarization scrambling characteristics of the optics, calibration of the equipment and a presentation of some of the major results of the data reduction effort to date. The DPE was a propagation experiment conducted between two aircraft flying at an altitude of 40,000 feet whose purpose was to measure the phase difference between two beams propagating at slightly different angels through the atmosphere. A four bin polarization interferometer was used to measure the differential phase. Due to the high level of scintillation that was presented branch points were present in the phase function. Rytov theory, wave optics simulation and the experimental measurements are in general agreement. Self consistency checks that were performed on the data indicate a high level of confidence in the results. Values of Cn2 that are consistent with the measurements of the differential phase agree with simultaneous scintillometer measurement taken long the same path in levels of turbulence where the scintillometer is not saturated. These differential phase based Cn2 estimates do not appear to saturate as is typical of scintillometer measurements and appear to extend the range over which high levels of Cn2 can be estimated. In addition the differential phase and anisoplanatic Strehl computed from the data is consistent with Rytov theory and wave optics simulations.

  18. Advanced combustor design concepts to control NO{sub x} and air toxics. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Pershing, D.W.; Lighty, J.; Veranth, J. [Utah Univ., Salt Lake City, UT (United States). Coll. of Engineering; Sarofim, A.; Goel, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1995-04-28

    The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics; existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. To ensure effective and timely transfer of This technology, a major manufacturer (ABB) and a combustion model supplier (REI) have been included as part of the team from the early conception of the proposal. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sup x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultralow NO{sub x} conditions. Accomplishments for this quarter are presented to the solid sampling system and char nitrogen modeling.

  19. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such

  20. The concept of computer software designed to identify and analyse logistics costs in agricultural enterprises

    Directory of Open Access Journals (Sweden)

    Karol Wajszczyk

    2009-01-01

    Full Text Available The study comprised research, development and computer programming works concerning the development of a concept for the IT tool to be used in the identification and analysis of logistics costs in agricultural enterprises in terms of the process-based approach. As a result of research and programming work an overall functional and IT concept of software was developed for the identification and analysis of logistics costs for agricultural enterprises.

  1. CORTIM Project: Medical Regulation Concept Designed for Forward Field Casualty Management Based on an Information System

    Science.gov (United States)

    2010-04-01

    CORTIM, and the quality of casualty handling by the SAMU (the French Mobile Emergency Medical Service) for the RMT concept. We consider that...of crisis situations in the case of CORTIM, and the quality of casualty handling by the SAMU (the French Mobile Emergency Medical Service) for the... SAMU for the RMT concept. We consider that operational casualty management can be enhanced in at least three areas. The first concerns improvements in

  2. Teaching Threshold Concepts in Virtual Reality: Exploring the Conceptual Requirements for Systems Design.

    OpenAIRE

    Molka-Danielsen, J.; Savin-Baden, Maggi; Steed, A.; Fominykh, M.; Oyekoya, O; Hokstad, L. M.; Prasolova-Førland, E.

    2013-01-01

    In a complex world students need to be equipping with a range of capabilities that will enable them to be critical and flexible learners and citizens. The central research objective in this paper is to explore the argument that virtual reality (VR) technologies, collaborative learning approaches and recognition of the values and importance of thresholds to learning are components that can equip students in and for the future. Threshold concepts are specific concepts which are identified as es...

  3. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett C.; Bromberg, Leslie; Teter, J. P.

    2001-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications, such as Next Generation Space Telescope (NGST), the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Very fast charging and discharging of HTS tubes, as short as 100 microseconds, has been demonstrated. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSSCO 2212 with a

  4. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers

    National Research Council Canada - National Science Library

    Awad, Mariette; Khanna, Rahul

    2015-01-01

    .... Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create...

  5. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators

    Science.gov (United States)

    Song, Gangbing; Ma, Ning; Penney, Nicholas; Barr, Todd; Lee, Ho-Jun; Arnold, Steven M.

    2004-01-01

    The design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators is used to demonstrate the potential of an adaptive intake to improve the fuel efficiency of a jet engine. The Nitinol SMA material is selected for this research due to the material's ability to generate large strains of up to 5 percent for repeated operations, a high power-to-weight ratio, electrical resistive actuation, and easy fabrication into a variety of shapes. The proof-of-concept engine intake employs an overlapping leaf design arranged in a concentric configuration. Each leaf is mounted on a supporting bar that rotates upon actuation by SMA wires electrical resistive heating. Feedback control is enabled through the use of a laser range sensor to detect the movement of a leaf and determine the radius of the intake area. Due to the hysteresis behavior inherent in SMAs, a nonlinear robust controller is used to direct the SMA wire actuation. The controller design utilizes the sliding-mode approach to compensate for the nonlinearities associated with the SMA actuator. Feedback control experiments conducted on a fabricated proof-of-concept model have demonstrated the capability to precisely control the intake area and achieve up to a 25 percent reduction in intake area. The experiments demonstrate the feasibility of engine intake area control using the proposed design.

  6. Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth.

    Science.gov (United States)

    Hoeijmakers, H J; Arts, M L J; Snik, F; Keller, C U; Kuiper, J M

    2016-09-19

    We provide a proof of the technical feasibility of LOUPE, the first integral-field snapshot spectropolarimeter, designed to monitor the reflected flux and polarization spectrum of Earth. These are to be used as benchmark data for the retrieval of biomarkers and atmospheric and surface characteristics from future direct observations of exoplanets. We perform a design trade-off for an implementation in which LOUPE performs snapshot integral-field spectropolarimetry at visible wavelengths. We used off-the-shelf optics to construct a polarization modulator, in which polarization information is encoded into the spectrum as a wavelength-dependent modulation, while spatial resolution is maintained using a micro-lens array. The performance of this design concept is validated in a laboratory setup. Our proof-of-concept is capable of measuring a grid of 50 × 50 polarization spectra between 610 and 780 nm of a mock target planet - proving the merit of this design. The measurements are affected by systematic noise on the percent level, and we discuss how to mitigate this in future iterations. We conclude that LOUPE can be small and robust while meeting the science goals of this particular space application, and note the many potential applications that may benefit from our concept for doing snapshot integral-field spectropolarimetry.

  7. “慢设计”理念下的家居产品设计%HOME PRODUCT DESIGN BASED ON SLOW DESIGN CONCEPT

    Institute of Scientific and Technical Information of China (English)

    马巍伦

    2015-01-01

    In modern society, the fast pace of consumerism makes people's intemperate consumption, and therefore the "balance of design" imbalances happen. It also makes people feel stressed. People begin to reflect on their behavior, then slow design concept of design come into being, and it's valued by designers. According to the concept of "Slow-design" the home product design wil lead people to think about the essence of the design and life, rational and sustainable use of resources, more humanistic care and better emotional experience.%在快节奏的现代社会生活中,“消费主义”所引领的快设计大行其道,导致了设计天秤的失衡,也使得人们感到心力交瘁。危机使得人们开始反思自己的行为,“慢设计”理念应运而生,并受到设计师的重视。“慢设计”理念下的家居产品设计引导人们重新思考设计的本质和生活的需要,合理可持续的利用资源,提倡更多的人文关怀,从设计中给人们更好的情感体验。

  8. Analysis of preliminary design concept of stainless steel container for disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K.S.; Ku, J.H.; Park, J.H.; Choi, J.W. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    This report represents the structural, thermal and radiation shielding analysis of the basic concepts of the disposal container, that could accommodate PWR and CANDU fuels of which physical dimensions and shapes are quite different each other, with respect to the emplacement modes. Basic concepts of the disposal containers for the vertical horehole and the drift emplacement modes are proposed with their maximum allowable thermal loading. Appropriate thickness of the container to withstand the expected external pressure in the underground repository system was delivered by the structural analyses. The thermal analysis of the container containing spent fuels showed that the internal maximum temperatures of all container concepts did not reach the constraint values. Radiation dose rate from the container with 10cm thickness wall were also less than the established constraint value. (author). 9 refs., 33 figs., 12 tabs.

  9. Designing a Truly Integrated (Onsite and Online) Conference: Concept, Processes, Solutions

    CERN Document Server

    Botchkarev, Alexei; Rasouli, Hamed

    2010-01-01

    Web conferencing tools have entered the mainstream of business applications. Using web conferencing for IEEE conferences has a good potential of adding value to both organizers and participants. Authors propose a concept of Truly Integrated Conference (TIC) according to which a multi-point worldwide-distributed network of conference online authors/participants will enhance the standard (centralized) IEEE conference model, which requires attendance of the participants in person at the main conference location. The concept entails seamless integration of the onsite and online conference systems, including data/presentation, video, audio channels. Benefits and challenges of the TIC concept are analyzed. Requirements to the web conferencing system capable of supporting the TIC conference are presented and reviewed against commercial web conferencing tools. Case study of the IEEE Toronto International Conference ? Science and Technology for Humanity, which was the first realization of TIC, is presented which analy...

  10. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... challenges in the future. At the same time their policies on renewable energy, tools and action plans supporting renewables are weak. Thus, to support a local dissemination of renewable energy we suggest applying the sustainable energy planning concept to speed up the utilization of renewables in developing...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  11. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren;

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... challenges in the future. At the same time their policies on renewable energy, tools and action plans supporting renewables are weak. Thus, to support a local dissemination of renewable energy we suggest applying the sustainable energy planning concept to speed up the utilization of renewables in developing...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  12. Advanced Information Processing System (AIPS) proof-of-concept system functional design I/O network system services

    Science.gov (United States)

    1985-01-01

    The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.

  13. Computer-aided design for the Audi five-valve cylinder head concept; Rechnergestuetzte Auslegung des Audi-Fuenfventil-Zylinderkopfkonzeptes

    Energy Technology Data Exchange (ETDEWEB)

    Hannibal, W.; Lukas, F.

    1994-12-01

    Numerical methods are being used increasingly in the design of cylinder-head concepts when developing modern multi-valve automobile engine. The enclosed article illustrates calculations and methods used to design the Audi five-valve cylinder-head concept. At Audi, the necessary calculations are divided up according to their main emphasis and carried out decentrally by individual design and test departments. Complex numerical calculation procedures are developed in a central methods development department. By adopting technical calculation procedures at an early stage, development times in the cylinderhead concept phase can be reduced, risk factors assessed more accurately and costs cut. The technical calculations have had a considerable influence on the product quality of the cylinder heads. (orig.) [Deutsch] In der Entwicklung moderner Mehrventilmotoren fuer Pkw-Antriebe werden vermehrt numerische Methoden zur Auslegung des Zylinderkopfkonzeptes eingesetzt. Im vorliegenden Artikel werden Berechnungsumfaenge und Methoden dargestellt, die zur Auslegung des Audi-Fuenfventil-Zylinderkopfkonzeptes genutzt werden. Die Berechnung bei Audi werden schwerpunktmaessig dezentral in den einzelnen Konstruktions- und Versuchsabteilungen durchgefuehrt. Zusaetzlich werden in einer zentralen Abteilung fuer Methodenentwicklung aufwendige numerische Berechnungsverfahren entwickelt. Durch den fruehen Einsatz technischer Berechnungen koennen in der Konzeptphase der Entwicklung neuer Zylinderkoepfe Entwicklungszeiten verkuerzt, Risikofaktoren besser abgeschaetzt und Kosten verringert werden. Die technischen Berechnungen haben einen wesentlichen Einfluss auf die Produktqualitaet der Zylinderkoepfe gehabt. (orig.)

  14. Smart Product Design and Production Control for Effective Mass Customization in the Industry 4.0 Concept

    Directory of Open Access Journals (Sweden)

    Zawadzki Przemysław

    2016-09-01

    Full Text Available The paper presents a general concept of smart design and production control as key elements for efficient operation of a smart factory. The authors present various techniques that aid the design process of individualized products and organization of their production in the context of realization of the mass customization strategy, which allows a shortened time of development for a new product. Particular attention was paid to integration of additive manufacturing technologies and virtual reality techniques, which are a base of the so-called hybrid prototyping.

  15. Design concepts for a virtualizable embedded MPSoC architecture enabling virtualization in embedded multi-processor systems

    CERN Document Server

    Biedermann, Alexander

    2014-01-01

    Alexander Biedermann presents a generic hardware-based virtualization approach, which may transform an array of any off-the-shelf embedded processors into a multi-processor system with high execution dynamism. Based on this approach, he highlights concepts for the design of energy aware systems, self-healing systems as well as parallelized systems. For the latter, the novel so-called Agile Processing scheme is introduced by the author, which enables a seamless transition between sequential and parallel execution schemes. The design of such virtualizable systems is further aided by introduction

  16. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    DEFF Research Database (Denmark)

    Hidekazu, Yoshikawa; Ming, Yang; Zhijian, Zhang

    2011-01-01

    A new concept is first proposed of distributed human interface system to integrate both operation and maintenance of nuclear power plant. Then, a method of constructing human interface system is introduced by integrating the plant knowledge database system based on Multilevel Flow Model (MFM) wit...

  17. Introducing the Concept of Synthesis in the Software Architecture Design Process

    NARCIS (Netherlands)

    Tekinerdogan, B.; Aksit, M.

    2006-01-01

    Synthesis is a widely applied problem-solving approach of mature engineering disciplines including the sub-processes of technical problem analysis, identification and composition of solution domain concepts, and alternative-space analysis. Current software development processes do not adopt an expli

  18. Designing and Teaching Business & Society Courses from a Threshold Concept Approach

    Science.gov (United States)

    Vidal, Natalia; Smith, Renae; Spetic, Wellington

    2015-01-01

    This article examines the redesign of an undergraduate course in Business & Society using a threshold concept approach. Business & Society courses may be troublesome for students because they depart from the premise that business is limited to creating value for shareholders. We argue that Business & Society courses contain a web of…

  19. Design and Effects of a Concept Focused Discussion Environment in E-Learning

    Science.gov (United States)

    Yilmaz, Erdi Okan; Yurdugul, Halil

    2016-01-01

    Problem Statement: Within the frame of learning management systems, this study develops a concept focused discussion environment and validates the effectiveness of this environment's use through an experimental study. Purpose of the Study: Online discussion forums, which are commonly used in learning management systems (LMS), can negatively…

  20. Designing and Teaching Business & Society Courses from a Threshold Concept Approach

    Science.gov (United States)

    Vidal, Natalia; Smith, Renae; Spetic, Wellington

    2015-01-01

    This article examines the redesign of an undergraduate course in Business & Society using a threshold concept approach. Business & Society courses may be troublesome for students because they depart from the premise that business is limited to creating value for shareholders. We argue that Business & Society courses contain a web of…

  1. Designs of Concept Maps and Their Impacts on Readers' Performance in Memory and Reasoning while Reading

    Science.gov (United States)

    Tzeng, Jeng-Yi

    2010-01-01

    From the perspective of the Fuzzy Trace Theory, this study investigated the impacts of concept maps with two strategic orientations (comprehensive and thematic representations) on readers' performance of cognitive operations (such as perception, verbatim memory, gist reasoning and syntheses) while the readers were reading two history articles that…

  2. Vagueness of concepts: an issue in knowledge-based decision support systems for design?

    DEFF Research Database (Denmark)

    Galle, Per

    1998-01-01

    Many of our everyday concepts are vague. It is next to impossible, for example, to state necessary and sufficient conditions for something to be a chair, or a building. This would appear to pose a potential problem for the construction of knowledge-based decision-support systems; notably systems ...

  3. Symptom Management & Quality of Life Concept Design | Division of Cancer Prevention

    Science.gov (United States)

    This video covers a variety of practical considerations for developing a symptom management concept for clinical research. Co-sponsored by the National Cancer Institute Symptom Management and Health Related Quality of Life Steering Committee & the International Society for Quality of Life Research. |

  4. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  5. Practice based 3D Biomimetry Design Research: Sea Star Lamp Concept

    OpenAIRE

    Taylor, Andrew; Unver, Ertu

    2012-01-01

    The research explores biomimetic for surface, textiles and product design. The Sea Star lamp is one of a series of practice based collaborations; nature design experiments, product development and exhibition installations created between textile surface design researchers and 3D digital design practitioners. \\ud \\ud The strategic search for role models in nature is what discerns biomimetic from the ever existing inspiration from nature. While bio-inspiration may be limited to a morphological ...

  6. Course Reader: Food Concept Design, mapping strategic and service-oriented possibilities within food businesses, IFS-P3

    DEFF Research Database (Denmark)

    Olsen, Tenna Doktor

    This course reader is a guide to the content of the last series of FOOD DESIGN lectures and design workshops given with the course: ‘Food Concept Design: Mapping Strategic and Service‐Oriented possibilities within Food Businesses', offered at the Masters education 'Integrated Food Studies......' at Aalborg University in Copenhagen. The course reader first of all guide the students through the overall purpose and content of the course, but also give a short introduction to the various literature used in the course, as well as the demands for the final assignment and evaluation criteria...... for the individual exams. Together with the course programmes provided at the two previous semesters, this course reader is thus attempts to begin develop af theoratical framework for teaching Food Design Thinking....

  7. Conversations around design sketches: use of communication channels for sharing mental models during concept generation

    NARCIS (Netherlands)

    Nik Ahmad Ariff, N.S.; Badke-Schaub, P.G.; Eris, O.

    2012-01-01

    In this paper, we present an exploratory protocol study on the use of different communication channels during design sketching. We focus on how individual designers share their mental models with other designers in a group, and analyze their use of graphical, textual, and verbal communications

  8. Conversations around design sketches: use of communication channels for sharing mental models during concept generation

    NARCIS (Netherlands)

    Nik Ahmad Ariff, N.S.; Badke-Schaub, P.G.; Eris, O.

    2012-01-01

    In this paper, we present an exploratory protocol study on the use of different communication channels during design sketching. We focus on how individual designers share their mental models with other designers in a group, and analyze their use of graphical, textual, and verbal communications durin

  9. Concept-Driven Interaction Design Research in the domain of attractive aging: the example of Walky

    DEFF Research Database (Denmark)

    Nazzi, Elena; Bagalkot, Naveen L.; Nagargoje, Arun

    2012-01-01

    In this paper we answer the call for “designing for an attractive ageing” by designing for social interaction of senior citizens within their local community. In this vein, we present Walky, a design exploration through which we explored if, and how, augmenting the rollator that senior citizens u...

  10. Industrial design sketching for concept generation sketching: A parallel thinking process

    NARCIS (Netherlands)

    Nik Ahmad Ariff, N.S.; Badke-Schaub, P.G.

    2011-01-01

    Designers largely use freehand sketching as the one way of communicating their ideas during the design process. This research aims at investigating the sketching in the conceptual design stage and to explore what measures and procedure might be appropriate method to improve the positive influence of

  11. Foundations of mechanism design: A tutorial Part 2 – Advanced concepts and results

    Indian Academy of Sciences (India)

    Dinesh Garg; Y Narahari; Sujit Gujar

    2008-04-01

    Mechanism design, an important tool in microeconomics, has found widespread applications in modelling and solving decentralized design problems in many branches of engineering, notably computer science, electronic commerce, and network economics. In the first part of this tutorial on mechanism design (Garg et al 2008), we looked into the key notions and classical results in mechanism design theory. In the current part of the tutorial, we build upon the first part and undertake a study of several other key issues in mechanism design theory.

  12. Concepts and embodiment design of a reentry recumbent seating system for the NASA Space Shuttle

    Science.gov (United States)

    Mcmillan, Scott; Looby, Brent; Devany, Chris; Chudej, Chris; Brooks, Barry

    1993-01-01

    This report deals with the generation of a recumbent seating system which will be used by NASA to shuttle astronauts from the Russian space station Mir. We begin by examining the necessity for designing a special couch for the returning astronauts. Next, we discuss the operating conditions and constraints of the recumbent seating system and provide a detailed function structure. After working through the conceptual design process, we came up with ten alternative designs which are presented in the appendices. These designs were evaluated and weighted to systematically determine the best choice for embodiment design. A detailed discussion of all components of the selected system follows with design calculations for the seat presented in the appendices. The report concludes with an evaluation of the resulting design and recommendations for further development.

  13. Designing a concept for an IT-infrastructure for an integrated research and treatment center.

    Science.gov (United States)

    Stäubert, Sebastian; Winter, Alfred; Speer, Ronald; Löffler, Markus

    2010-01-01

    Healthcare and medical research in Germany are heading to more interconnected systems. New initiatives are funded by the German government to encourage the development of Integrated Research and Treatment Centers (IFB). Within an IFB new organizational structures and infrastructures for interdisciplinary, translational and trans-sectoral working relationship between existing rigid separated sectors are intended and needed. This paper describes how an IT-infrastructure of an IFB could look like, what major challenges have to be solved and what methods can be used to plan such a complex IT-infrastructure in the field of healthcare. By means of project management, system analyses, process models, 3LGM2-models and resource plans an appropriate concept with different views is created. This concept supports the information management in its enterprise architecture planning activities and implies a first step of implementing a connected healthcare and medical research platform.

  14. Issues in the Design of a Pilot Concept-Based Query Interface for the Neuroinformatics Information Framework

    Science.gov (United States)

    Li, Yuli; Martone, Maryann E.; Sternberg, Paul W.; Shepherd, Gordon M.; Miller, Perry L.

    2009-01-01

    This paper describes a pilot query interface that has been constructed to help us explore a “concept-based” approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface. PMID:18953674

  15. Environmental concepts in rural Honduras: A case study of their range and application within environmental education design

    Science.gov (United States)

    Bradford, Robert Sanders

    1998-12-01

    The rate of environmental degradation in the Third World continues to present residents of countries like Honduras with conditions that threaten the quality of life and ecological systems. How people conceptualize their environment could be a point of entry into a greater understanding of environmental problems. Through individual interviews and focus group discussions, this study comprises a qualitative examination of the environmental concepts of a sample of 75 rural Hondurans. Analysis of their concepts was used to construct a tentative interpretation of the rural Honduran worldview characteristics of Self, Other, Relationship, Classification, Causality, Time, and Space. The findings of this investigation indicated that rural Hondurans conceptualize their environment through the worldview lenses of survival and poverty, leading to a sense of fatalism when confronting the complex and multifaceted problems associated with quality of life and environmental quality. Analysis of concepts and worldview also indicated that rural Hondurans generally do not believe their environmental problems are solvable, nor do they appear to understand that these problems are also cultural problems whose solutions will most likely require some revision of their current worldview. An educational approach that fosters the integration of compatible environmental concepts into the rural Honduran worldview is recommended through the application of design strategies for a prospective environmental education process.

  16. Concepts for the design of a completely active helicopter isolation system using output vector feedback

    Science.gov (United States)

    Schulz, G.

    1977-01-01

    The theory of output vector feedback (a few measured quantities) is used to derive completely active oscillation isolation functions for helicopters. These feedback controller concepts are tested with various versions of the BO 105 helicopter and their performance is demonstrated. A compensation of the vibrational excitations from the rotor and harmonics of the number of blades are considered. There is also a fast and automatic trim function for maneuvers.

  17. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    Science.gov (United States)

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-07-16

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  18. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    Science.gov (United States)

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-01-01

    The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808

  19. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    Science.gov (United States)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  20. Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Richou, Marianne; Magaud, Philippe; Missirlian, Marc [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, IT-00044 Frascati (Italy); Ridolfini, Vincenzo Pericoli [EFDA-CSU Garching, PPPT department, D-85748 Garching bei München (Germany)

    2013-10-15

    In this paper water-cooled divertor concepts based on tungsten monoblock design identified in previous studies as candidate for fusion power plant have been reviewed to assess their potential and limits as possible candidates for a DEMO concept deliverable in a short to medium term (“conservative baseline design”). The rationale and technology development assumptions that have led to their selection are revisited taking into account present factual information on reactor parameters, materials properties and manufacturing technologies. For that purpose, main parameters impacting the divertor design are identified and their relevance discussed. The state of the art knowledge on materials and relevant manufacturing techniques is reviewed. Particular attention is paid to material properties change after irradiation; phenomenon thresholds (if any) and possible operating ranges are identified (in terms of temperature and damage dose). The suitability of various proposed heat sink/structural and sacrificial layer materials, as proposed in the past, are re-assessed (e.g. with regard to the possibility of reducing peak heat flux and/or neutron radiation damages). As a result, potential and limits of various proposed concepts are highlighted, ranges in which they could operate (if any) defined and possible improvements are proposed. Identified missing point in materials database and/or manufacturing techniques knowledge that should be uppermost investigated in future R and D activities are reported. This work has been carried out in the frame of EFDA PPPT Work Programme activities.

  1. Design Concept of a Gamma-gamma Higgs Factory Driven by Thin Laser Targets and Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [JLAB

    2013-06-01

    A gamma-gamma collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy gamma photons and further Higgs bosons through gamma-gamma collisions. The presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a gamma-gamma collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to gamma photon conversion rate. This new concept eliminates most useless and harmful low energy soft gamma photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a gamma-gamma collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.

  2. Architecture, design and protection of power distribution networks; Architecture, conception et protection des reseaux de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sorrel, J.P. [Schneider Electric SA, 92 - Boulogne-Billancourt (France)

    2000-10-01

    The design of all-electric ships calls for high power levels in the propulsion systems. Merchant ships and especially naval vessels demand rugged, reliable propulsion systems with high availability, low maintenance and ease of operation. These constraints imply the choice of an optimized single winding system. The design of the network topology and protection system, and the choice of operating voltage and HT neutral configuration are the main steps in the design. (author)

  3. INFLUENCE OF DESIGN EVALUATIONS ON DECISION-MAKING AND FEEDBACK DURING CONCEPT DEVELOPMENT

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster; Ahmed-Kristensen, Saeema; Restrepo-Giraldo, John Dairo

    2011-01-01

    , with the following results: evaluation methods are less than often carried out during conceptual design; failure modes motivating design decisions were repeated over time; and, feedback on robustness and reliability issues is generic when not absent. Recommendations were given to capture designers’ preference...... and insight while they are designing to address robustness and reliability in early stages, and to use this knowledge in order to support these attributes by proposing countermeasures....

  4. Neutral buoyancy testing of architectural and environmental concepts of space vehicle design

    Science.gov (United States)

    Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.

    1972-01-01

    Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.

  5. Mobile Design and Development Practical concepts and techniques for creating mobile sites and web apps

    CERN Document Server

    Fling, Brian

    2009-01-01

    Mobile devices outnumber desktop and laptop computers three to one worldwide, yet little information is available for designing and developing mobile applications. Mobile Design and Development fills that void with practical guidelines, standards, techniques, and best practices for building mobile products from start to finish. With this book, you'll learn basic design and development principles for all mobile devices and platforms. You'll also explore the more advanced capabilities of the mobile web, including markup, advanced styling techniques, and mobile Ajax. If you're a web designer,

  6. Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices.

    Science.gov (United States)

    Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter

    2012-01-01

    Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.

  7. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 2

    Science.gov (United States)

    Adams, K. M.; Lucas, J. J.

    1977-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacturer of larger helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D, was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR R-49/epoxy skin and graphite/epoxy frames and stringers. The single cure concept is made possible by the utilization of pre-molded foam cores, over which the graphite/epoxy pre-impregnated frame and stringer reinforcements are positioned. Bolted composite channel sections were selected as the optimum joint construction. The applicability of the single cure concept to larger realistic curved airframe sections, and the durability of the composite structure in a realistic spectrum fatigue environment, was described.

  8. Friends sharing opinions: users become co-researchers to evaluate design concepts

    NARCIS (Netherlands)

    Van Doorn, F.A.P.; Gielen, M.A.; Stappers, P.J.

    2013-01-01

    The role of users in design is diversifying and increasing. Besides product evaluations and idea-generation sessions, users can collaborate in research that aims to find requirements for design by acting as researchers themselves. Earlier studies have addressed a variety of reasons why giving users

  9. An Abstract Interaction Concept for Designing Interaction Behaviour of Service Compositions

    NARCIS (Netherlands)

    Dirgahayu, Teduh; Quartel, Dick; Sinderen, van Marten; Mertins, Kai; Ruggaber, Rainer; Popplewell, Keith; Xu, Xiaofei

    2008-01-01

    In a service composition, interaction behaviour specifies an information exchange protocol that must be complied with in order to guarantee interoperability between services. Interaction behaviour can be designed using a top-down design approach utilising high abstraction levels to control its desig

  10. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    Science.gov (United States)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  11. Developing organ-on-a-chip concepts using bio-mechatronic design methodology.

    Science.gov (United States)

    Christoffersson, Jonas; van Noort, Danny; Mandenius, Carl-Fredrik

    2017-05-26

    Mechatronic design is an engineering methodology for conceiving, configuring and optimising the design of a technical device or product to the needs and requirements of the final user. In this article, we show how the basic principles of this methodology can be exploited for in vitro cell cultures-often referred to as organ-on-a-chip devices. Due to the key role of the biological cells, we have introduced the term bio-mechatronic design, to highlight the complexity of designing a system that should integrate biology, mechanics and electronics in the same device structure. The strength of the mechatronic design is to match the needs of the potential users to a systematic evaluation of overall functional design alternative. It may be especially attractive for organs-on-chips where biological constituents such as cells and tissues in 3D settings and in a fluidic environment should be compared, screened and selected. Through this approach, design solutions ranked to customer needs are generated according to specified criteria, thereby defining the key constraints of the fabrication. As an example, the bio-mechatronic methodology is applied to a liver-on-a-chip based on information extrapolated from previous theoretical and experimental knowledge. It is concluded that the methodology can generate new fabrication solutions for devices, as well as efficient guidelines for refining the design and fabrication of many of today's organ-on-a-chip devices.

  12. Alternate space shuttle concepts study: Design requirements and phased programs evaluation

    Science.gov (United States)

    1971-01-01

    A study to determine program and technical alternatives to the design of the space shuttle orbiter is described. The alternatives include a phased approach, involving orbiter development and operation with an expendable booster for an interim period, as well as design variations to the basic vehicle. The space shuttle orbiter configurations and predicted performance parameters are presented.

  13. Using a Discussion about Scientific Controversy to Teach Central Concepts in Experimental Design

    Science.gov (United States)

    Bennett, Kimberley Ann

    2015-01-01

    Students may need explicit training in informal statistical reasoning in order to design experiments or use formal statistical tests effectively. By using scientific scandals and media misinterpretation, we can explore the need for good experimental design in an informal way. This article describes the use of a paper that reviews the measles mumps…

  14. Challenges And Concepts for Design of An Interaction Region With Push-Pull Arrangement of Detectors - An Interface Document

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; /Brookhaven; Herve, Alain; Osborne, J.; /CERN; Mikhailichenko, A.; /Cornell U., Phys. Dept.; Buesser, K.; /DESY; Ashmanskas, B.; Kuchler, Victor P.; Mokhov, N.; /Fermilab; Enomoto, A.; Sugimoto, Y.; Tauchi, T.; Tsuchiya, K.; /KEK, Tsukuba; Weisend, J.; /NSF, Wash., D.C.; Burrows, P.; /Oxford U.; Markiewicz, Thomas W.; Oriunno, M.; Seryi, Andrei; Sullivan, M.; /SLAC; Angal-Kalinin, D.; /Rutherford; Sanuki, T.; Yamamoto, H.; /Tohoku U.

    2011-10-14

    Two experimental detectors working in a push-pull mode has been considered for the Interaction Region of the International Linear Collider. The push-pull mode of operation sets specific requirements and challenges for many systems of detector and machine, in particular for the IR magnets, for the cryogenics and alignment system, for beamline shielding, for detector design and overall integration, and so on. These challenges and the identified conceptual solutions discussed in the paper intend to form a draft of the Interface Document which will be developed further in the nearest future. The authors of the present paper include the organizers and conveners of working groups of the workshop on engineering design of interaction region IRENG07, the leaders of the IR Integration within Global Design Effort Beam Delivery System, and the representatives from each detector concept submitting the Letters Of Intent.

  15. The Use of the Digital Smile Design Concept as an Auxiliary Tool in Aesthetic Rehabilitation: A Case Report.

    Science.gov (United States)

    Zanardi, Piero Rocha; Laia Rocha Zanardi, Raquel; Chaib Stegun, Roberto; Sesma, Newton; Costa, Bru-No; Cruz Laganá, Dalva

    2016-01-01

    The digital smile design is a practical diagnosis method that can assist the clinician to visualize and measure dentogingival discrepancies. This clinical report aims to present the associated steps, from the diagnosis of the alterations diagnosis through to the final aesthetic result. A 37-years-old female patient presented as her main complaint the tooth form and colour discrepancies. Applying the digital smile design principle, the necessary measures for a harmonic smile correction could be accurately determined. The initial diagnosis led to a wax up of the master cast that was duplicated in acrylic resin directly in the mouth. This temporary restoration guided the periodontal surgery and the final pressed ceramic crown restoration. We conclude that the digital smile design concept seems to be a useful tool to achieve a satisfactory aesthetic result.

  16. Navigating the clinical trial pathway: Conception, design, execution, and results dissemination.

    Science.gov (United States)

    Sampalis, John S; Watson, Joanne; Boukas, Stella; Boukas, Marianna; Harvey, Natalie; Machado, Sanjay; Bordeleau, Michel; Rampakakis, Emmanouil

    2017-03-01

    Rampakakis received his Ph.D. from the Department of Biochemistry from McGill University, and obtained post-doctoral training, also at McGill, in Pharmacoepidemiology. With over 15 years' experience in scientific research, he has contributed in the conception, design, analysis and interpretation of several large scale, national and international, registration and observational studies. He currently holds the position of Vice President of Scientific Affairs at JSS Medical Research Inc, overseeing a team of biostatisticians, epidemiologists, physicians, medical writers, and health economists. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  18. Robot-assisted shopping for the visually impaired: proof-of-concept design and feasibility evaluation.

    Science.gov (United States)

    Kulyukin, Vladimir; Gharpure, Chaitanya; Coster, Daniel

    2008-01-01

    This article presents RoboCart, a proof-of-concept prototype of a robotic shopping cart for the visually impaired in supermarkets. RoboCart autonomously leads shoppers to required locations and cues them through synthetic speech and a portable barcode reader to the salient features of the environment sufficient for product retrieval. In a longitudinal pilot feasibility study, visually impaired shoppers (n = 10) used the device to retrieve products in Lee's MarketPlace, a supermarket in Logan, Utah. The main finding is that RoboCart enables visually impaired shoppers to reliably and independently navigate to and retrieve products in a real supermarket.

  19. Using service design methods for B2b service brand concept development: Case company

    OpenAIRE

    Molina Escalante, Hugo

    2014-01-01

    A short time before this study was initiated, a small B2b service company had just began op-erating its business without a brand of it’s own. The company owners were looking to design an innovative brand for their business. The purpose of this thesis was to develop the brand for this service Company in the B2b context, using practical service design and Strategic design research methods. This thesis report represents a framework for developing a B2b service brand using research methods c...

  20. Data mining concepts, methods and applications in management and engineering design

    CERN Document Server

    Yin, Yong; Tang, Jiafu; Zhu, JianMing

    2011-01-01

    Data Mining introduces in clear and simple ways how to use existing data mining methods to obtain effective solutions for a variety of management and engineering design problems. Data Mining is organised into two parts: the first provides a focused introduction to data mining and the second goes into greater depth on subjects such as customer analysis. It covers almost all managerial activities of a company, including: * supply chain design, * product development, * manufacturing system design, * product quality control, and * preservation of privacy. Incorporating recent developments of data

  1. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 4: Concepts selection, conceptual designs, recommendations

    Science.gov (United States)

    Wetch, J. R.

    1988-09-01

    A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.

  2. Implementation of an active instructional design for teaching the concepts of current, voltage and resistance

    Science.gov (United States)

    Orlaineta-Agüero, S.; Del Sol-Fernández, S.; Sánchez-Guzmán, D.; García-Salcedo, R.

    2017-01-01

    In the present work we show the implementation of a learning sequence based on an active learning methodology for teaching Physics, this proposal tends to promote a better learning in high school students with the use of a comic book and it combines the use of different low-cost experimental activities for teaching the electrical concepts of Current, Resistance and Voltage. We consider that this kind of strategy can be easily extrapolated to higher-education levels like Engineering-college/university level and other disciplines of Science. To evaluate this proposal, we used some conceptual questions from the Electric Circuits Concept Evaluation survey developed by Sokoloff and the results from this survey was analysed with the Normalized Conceptual Gain proposed by Hake and the Concentration Factor that was proposed by Bao and Redish, to identify the effectiveness of the methodology and the models that the students presented after and before the instruction, respectively. We found that this methodology was more effective than only the implementation of traditional lectures, we consider that these results cannot be generalized but gave us the opportunity to view many important approaches in Physics Education; finally, we will continue to apply the same experiment with more students, in the same and upper levels of education, to confirm and validate the effectiveness of this methodology proposal.

  3. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    Science.gov (United States)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  4. Design concepts and advanced telerobotics development for facilities in the back end of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, M.J.

    1987-01-01

    In the Fuel Recycle Division at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. Five areas of the development effort are primary contributors to the goal of higher operating efficiency for major facilities for the back end of the nuclear fuel cycle. These areas are the single-cell concept, the low-flow ventilation concept, television viewing, equipment-mounting racks, and force-reflecting manipulation. These somewhat innovative directions are products of a design process where the technical scenario to be accomplished, the remote equipment to accomplish the scenario, and the facility design to house the equipment, are considered in an iterative design process to optimize performance, maximize long-term costs effectiveness, and minimize initial capital outlay. 14 refs., 3 figs.

  5. Small capacity, low cost (Ni-H2) design concept for commercial, military, and higher-volume aerospace applications

    Science.gov (United States)

    Wheeler, James R.; Cook, William D.; Smith, Ron

    1991-01-01

    Nickel Hydrogen (Ni/H2) batteries have become the technology of choice for both commercial and defense related satellites in geosynchronous orbits. Their use for low earth orbit (LEO) applications is not as advanced, but seems just as inevitable because of their inherent advantages over nickel cadmium batteries. These include superior energy density, longer cycle life, and better tolerance to over-charge and reversal. Ni/H2 cells have the added advantage in both construction and operation of not presenting the environmental possibility of cadmium pollution. Unfortunately, but necessarily, the design of these cells has been driven to high cost by the sophistication of the satellites and their uses. Now, using most of the same concepts but less costly materials and techniques, a low cost, small cell design was developed. Combined with the concept of the common pressure vessel, this new design promises to be ideal for the small-sat and commercial markets which, increasingly, are calling for large numbers of less expensive satellites.

  6. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  7. Research designs for proof-of-concept chronic pain clinical trials

    DEFF Research Database (Denmark)

    Gewandter, Jennifer S; Dworkin, Robert H; Turk, Dennis C

    2014-01-01

    indication and thus whether it is worth investing the financial resources and participant exposure necessary for a confirmatory trial of that intervention. A challenge in designing POC trials is obtaining sufficient information to make this important go/no-go decision in a cost-effective manner. An IMMPACT...... consensus meeting was convened to discuss design considerations for POC trials in analgesia, with a focus on maximizing power with limited resources and participants. We present general design aspects to consider including patient population, active comparators and placebos, study power, pharmacokinetic......-pharmacodynamic relationships, and minimization of missing data. Efficiency of single-dose studies for treatments with rapid onset is discussed. The trade-off between parallel-group and crossover designs with respect to overall sample sizes, trial duration, and applicability is summarized. The advantages and disadvantages...

  8. A high-compression electron gun for C6+ production: concept, simulations and mechanical design

    Science.gov (United States)

    Mertzig, Robert; Breitenfeldt, M.; Mathot, S.; Pitters, J.; Shornikov, A.; Wenander, F.

    2017-07-01

    In this paper we report on simulations and the mechanical design of a high-compression electron gun for an Electron Beam Ion Source (EBIS) dedicated for production of high intensity and high repetition rate pulses of bare carbon ions for injection into linac-based hadron therapy facilities. The gun is presently under construction at CERN to be retrofitted into the TwinEBIS test bench for experimental studies. We describe the design constraints, show results of numeric simulations and report on the mechanical design featuring several novel ideas. The reported design makes use of combined-function units with reduced number of mechanical joints that were carefully controlled and tuned during the manufacturing phase. The simulations addressed a wide range of topics including the influence of thermal effects, focusing optics, symmetry-breaking misalignments and injection into a full 5 T field.

  9. Using design principles to foster understanding of complex health concepts in consumer informatics tools.

    Science.gov (United States)

    Misra, Rupananda; Mark, Jessica H; Khan, Sharib; Kukafka, Rita

    2010-11-13

    Consumer health informatics tools can only be effective if patients comprehend their content. Optimal design may foster better patient comprehension and health literacy, which can improve health outcomes. We developed a patient-centric decision aid, Tailored Lifestyle Conversations (TLC), to help patients comprehend behavioral risks and set behavior change priorities for reducing risk of cardiovascular disease. The TLC decision aid was developed using a design framework based on Gestalt Principles of Perception. Further iteration was informed by qualitative user feedback. Preliminary analysis showed that the TLC decision aid helped patients understand their risk and supported their decisions on health behavior change. We identified design elements that supported patient comprehension, and other elements that were not effective, to inform iterative revision. This paper describes an effective methodology for the development of consumer health informatics tools that includes grounding in design principles complemented by iterative revision based on user testing and feedback.

  10. Design of pressure vessels. Part 2; Conception des enceintes sous pression. Partie 2

    Energy Technology Data Exchange (ETDEWEB)

    Grandemange, J.M. [Areva NP, 92 - Paris la Defense (France)

    2008-01-15

    This document deals with the classification of stresses, necessary for the implementation of the mechanical code criteria defined for the pressure vessels of PWR-type reactors. It describes the general approach of design, analysis, and in-service monitoring, the regulatory tests and the modalities of equivalence between industrial construction codes. Content: 1 - damage modes and stresses classification: context, general approach, example of application; 2 - from the design stage to the in-service monitoring: liabilities, design conditions, materials choice and dimensioning, analysis, particular case of pipes and valve parts, in-service monitoring; 3 - regulatory tests: context, tests prescribed by the design and construction rules of PWR mechanical components (RCC-M); 4 - equivalence possibilities between codes: codes for nuclear reactor equipments, convergence between industrial codes and standards; 5 - conclusion. (J.S.)

  11. Concept Model For Designing Engaging And Motivating Games For Learning - The Smiley-Model

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke

    2012-01-01

    a music learning game that teaches children to play piano using sheet music, and at the same time is fun and engaging. Although the model was originally developed for and through music, it has a more generic nature, and may be relevant for other fields as well. The Smiley-model is a condensed version...... that is believed to be an advantage when using learning games in education. In this paper the Smiley-model is presented (figure 1). The model describes which parameters and elements are important when designing a learning game. The present research is a result of a case-based action research study for designing...... of a design manual developed in a Master's thesis (Weitze, 2011), created on the basis of theoretical and empirical analysis, and is currently being applied to other research projects. The research concerning design for learning was carried out with an analysis of specific and general learning theory...

  12. New concept of aging care architecture landscape design based on sustainable development

    Science.gov (United States)

    Xu, Ying

    2017-05-01

    As the aging problem becoming serious in China, Aging care is now one of the top issuer in front of all of us. Lots of private and public aging care architecture and facilities have been built. At present, we only pay attention to the architecture design and interior design scientific, ecological and sustainable design on aged care architecture landscape. Based on the social economy, population resources, mutual coordination and development of the environment, taking the elderly as the special group, this paper follows the principles of the sustainable development, conducts the comprehensive design planning of aged care landscape architecture and makes a deeper understanding and exploration through changing the form of architectural space, ecological landscape planting, new materials and technology, ecological energy utilization.

  13. Designing an Health Insurance Scheme for Government Employees in Bangladesh: A Concept Paper

    OpenAIRE

    Hamid, Syed Abdul

    2014-01-01

    Introducing compulsory health insurance for government employees bears immense importance for stepping towards universal healthcare coverage in Bangladesh. Lack of scientific study on designing such scheme, in the Bangladesh context, motivates this paper. The study aims at designing a comprehensive insurance package simultaneously covering health, life and accident related disability risks of the public employees, where the health component would extend to all dependent family members. ...

  14. Initial design and evaluation of automatic restructurable flight control system concepts

    Science.gov (United States)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Grunberg, D. B.

    1986-01-01

    Results of efforts to develop automatic control design procedures for restructurable aircraft control systems is presented. The restructurable aircraft control problem involves designing a fault tolerance control system which can accommodate a wide variety of unanticipated aircraft failure. Under NASA sponsorship, many of the technologies which make such a system possible were developed and tested. Future work will focus on developing a methodology for integrating these technologies and demonstration of a complete system.

  15. Post-Occupancy Evaluation and Design Quality in Brazil: Concepts, Approaches and an Example of Application

    OpenAIRE

    Sheila Waber Ornstein; Rosaria Ono

    2010-01-01

    This article aims to describe the origins and evolution of post-occupancy evaluation (POE) activities in Brazil. This methodology was consolidated in the Brazilian academic field in the mid-1990s. Whenever possible, parallels between activities carried out in this country and abroad are pointed out. Emphasis is given to the possibility of using POE to improve design quality, especially in architecture, and its use in the management of designing processes. In this sense, the article shows the ...

  16. Concept - or no concept

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1999-01-01

    Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...

  17. Adapting computational optimization concepts from aeronautics to nuclear fusion reactor design

    Directory of Open Access Journals (Sweden)

    Baelmans M.

    2012-10-01

    Full Text Available Even on the most powerful supercomputers available today, computational nuclear fusion reactor divertor design is extremely CPU demanding, not least due to the large number of design variables and the hybrid micro-macro character of the flows. Therefore, automated design methods based on optimization can greatly assist current reactor design studies. Over the past decades, “adjoint methods” for shape optimization have proven their virtue in the field of aerodynamics. Applications include drag reduction for wing and wing-body configurations. Here we demonstrate that also for divertor design, these optimization methods have a large potential. Specifically, we apply the continuous adjoint method to the optimization of the divertor geometry in a 2D poloidal cross section of an axisymmetric tokamak device (as, e.g., JET and ITER, using a simplified model for the plasma edge. The design objective is to spread the target material heat load as much as possible by controlling the shape of the divertor, while maintaining the full helium ash removal capabilities of the vacuum pumping system.

  18. A Study on Design Concept for a Braille Tactile Sensor Segment Using Softness Parameters

    Science.gov (United States)

    Jiang, Zhongwei; Arabshahi, Sayyed Alireza; Watanabe, Tetsuyou

    The purpose of this report is to introduce and discuss about the design parameters for a segment of a tactile sensor reading one dot of a Braille alphabet. A sensor segment consisting of a piezoelectric (PVDF) film sandwiched between two elastic materials is designed. Experiments and simulations are used to define and examine the design parameters. With regards to the sensor structure, Free and Clamped boundary conditions are presented and the relevant equations containing the design parameters, e.g. “bending softness”, are derived. Applying different materials and thicknesses for layers surrounding the PVDF film, simulations are used to quantize the approximate values for each design parameter. The results show that the output of sensor is mostly dependent on the bending effect near the PVDF layer, and the structure encouraging more bending produces higher output. Finally, it is concluded that the real sensor has a structure which is between Free and Clamped boundary conditions, therefore design parameters are modified to compromise between the two cases and optimum values are presented.

  19. Application of the rotational path design concept to a removable partial denture with a distal-extension base.

    Science.gov (United States)

    Asher, M L

    1992-10-01

    Biomechanical considerations for use of the rotational path design concept to construct a removable partial denture for a patient with a tooth-bounded ridge on one side and a distal-extension ridge on the opposite side are presented. The various axes and arcs of rotation that occur during masticatory function are identified and their effects on the prosthesis and supporting structures are analyzed. Sequential steps in the necessary surveys of the master cast are enumerated. Critical details for the most effective and least deleterious placement of the rigid retentive element on the mesial surface of the posterior molar abutment (on the tooth-bounded ridge) are described.

  20. Developing an integrated concept for the E-ELT Multi-Object Spectrograph (MOSAIC): design issues and trade-offs

    CERN Document Server

    Rodrigues, Myriam; Fitzsimons, Ewan; Chemla, Fanny; Morris, Tim; Hammer, Francois; Puech, Mathieu; Evans, Christopher; Jagourel, Pascal

    2016-01-01

    We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC, the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments. MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared.