WorldWideScience

Sample records for dual source computed

  1. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  2. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  3. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.

    Science.gov (United States)

    Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John

    2011-04-01

    Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.

  4. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  5. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  6. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Laspas, Fotios; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John; Tsantioti, Dimitra

    2011-01-01

    Background: Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. Purpose: To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Material and Methods: Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Results: Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR =65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Conclusion: Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure

  7. A comparative study of electrocardiogram multi-segment reconstruction and dual source computed tomography using a computer controlled coronary phantom

    International Nuclear Information System (INIS)

    Ohashi, Kazuya; Higashide, Ryo; Kunitomo, Hirosi; Ichikawa, Katsuhiro

    2011-01-01

    Currently, there are two main methods for improving temporal resolution of coronary computed tomography (CT): electrocardiogram-gated multi-segment reconstruction (EMR) and dual source scanning using dual source CT (DSCT). We developed a motion phantom system for image quality assessment of cardiac CT to evaluate these two methods. This phantom system was designed to move an object at arbitrary speeds during a desired phase range in cyclic motion. By using this system, we obtained coronary CT mode images for motion objects like coronary arteries. We investigated the difference in motion artifacts between EMR and the DSCT using a 3-mm-diameter acrylic rod resembling the coronary artery. EMR was evaluated using 16-row multi-slice CT (16MSCT). To evaluate the image quality, we examined the degree of motion artifacts by analyzing the profiles around the rod and the displacement of a peak pixel in the rod image. In the 16MSCT, remarkable increases of artifacts and displacement were caused by the EMR. In contrast, the DSCT presented excellent images with fewer artifacts. The results showed the validity of DSCT to improve true temporal resolution. (author)

  8. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  9. Evaluation of an exposed-radiation dose on a dual-source cardiac computed tomography examination with a prospective electrocardiogram-gated fast dual spiral scan

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Koshida, Kichiro; Koshida, Haruka; Sakuta, Keita; Hayashi, Hiroyuki; Takata, Tadanori; Horii, Junsei; Kawai, Keiichi; Yamamoto, Tomoyuki

    2012-01-01

    We evaluated exposed-radiation doses on dual-source cardiac computed tomography (CT) examinations with prospective electrocardiogram (ECG)-gated fast dual spiral scans. After placing dosimeters at locations corresponding to each of the thoracic organs, prospective ECG-gated fast dual spirals and retrospective ECG-gated dual spiral scans were performed to measure the absorbed dose of each organ. In the prospective ECG-gated fast dual spiral scans, the average absorbed doses were 5.03 mGy for the breast, 9.96 mGy for the heart, 6.60 mGy for the lung, 6.48 mGy for the bone marrow, 9.73 mGy for the thymus, and 4.58 mGy for the skin. These values were about 5% of the absorbed doses for the retrospective ECG-gated dual spiral scan. However, the absorbed dose differed greatly at each scan, especially in the external organs such as the breast. For effective and safe use of the prospective ECG-gated fast dual spiral scan, it is necessary to understand these characteristics sufficiently. (author)

  10. Dual-source computed tomography in patients with acute chest pain: feasibility and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schertler, Thomas; Scheffel, Hans; Frauenfelder, Thomas; Desbiolles, Lotus; Leschka, Sebastian; Stolzmann, Paul; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Department of Medical Radiology, Institute of Diagnostic Radiology, Zurich (Switzerland); Seifert, Burkhardt [University of Zurich, Department of Biostatistics, Zurich (Switzerland); Flohr, Thomas G. [Computed Tomography CTE PA, Siemens Medical Solutions, Forchheim (Germany)

    2007-12-15

    The aim of this study was to determine the feasibility and image quality of dual-source computed tomography angiography (DSCTA) in patients with acute chest pain for the assessment of the lung, thoracic aorta, and for pulmonary and coronary arteries. Sixty consecutive patients (32 female, 28 male, mean age 58.1{+-}16.3 years) with acute chest pain underwent contrast-enhanced electrocardiography-gated DSCTA without prior beta-blocker administration. Vessel attenuation of different thoracic vascular territories was measured, and image quality was semi-quantitatively analyzed by two independent readers. Image quality of the thoracic aorta was diagnostic in all 60 patients, image quality of pulmonary arteries was diagnostic in 59, and image quality of coronary arteries was diagnostic in 58 patients. Pairwise intraindividual comparisons of attenuation values were small and ranged between 1{+-}6 HU comparing right and left coronary artery and 56{+-}9 HU comparing the pulmonary trunk and left ventricle. Mean attenuation was 291{+-}65 HU in the ascending aorta, 334{+-}93 HU in the pulmonary trunk, and 285{+-}66 HU and 268{+-}67 HU in the right and left coronary artery, respectively. DSCTA is feasible and provides diagnostic image quality of the thoracic aorta, pulmonary and coronary arteries in patients with acute chest pain. (orig.)

  11. Dual-source computed tomography in patients with acute chest pain: feasibility and image quality

    International Nuclear Information System (INIS)

    Schertler, Thomas; Scheffel, Hans; Frauenfelder, Thomas; Desbiolles, Lotus; Leschka, Sebastian; Stolzmann, Paul; Marincek, Borut; Alkadhi, Hatem; Seifert, Burkhardt; Flohr, Thomas G.

    2007-01-01

    The aim of this study was to determine the feasibility and image quality of dual-source computed tomography angiography (DSCTA) in patients with acute chest pain for the assessment of the lung, thoracic aorta, and for pulmonary and coronary arteries. Sixty consecutive patients (32 female, 28 male, mean age 58.1±16.3 years) with acute chest pain underwent contrast-enhanced electrocardiography-gated DSCTA without prior beta-blocker administration. Vessel attenuation of different thoracic vascular territories was measured, and image quality was semi-quantitatively analyzed by two independent readers. Image quality of the thoracic aorta was diagnostic in all 60 patients, image quality of pulmonary arteries was diagnostic in 59, and image quality of coronary arteries was diagnostic in 58 patients. Pairwise intraindividual comparisons of attenuation values were small and ranged between 1±6 HU comparing right and left coronary artery and 56±9 HU comparing the pulmonary trunk and left ventricle. Mean attenuation was 291±65 HU in the ascending aorta, 334±93 HU in the pulmonary trunk, and 285±66 HU and 268±67 HU in the right and left coronary artery, respectively. DSCTA is feasible and provides diagnostic image quality of the thoracic aorta, pulmonary and coronary arteries in patients with acute chest pain. (orig.)

  12. Image quality on dual-source computed-tomographic coronary angiography

    International Nuclear Information System (INIS)

    Rixe, Johannes; Rolf, Andreas; Conradi, Guido; Elsaesser, Albrecht; Moellmann, Helge; Nef, Holger M.; Hamm, Christian W.; Dill, Thorsten; Bachmann, Georg

    2008-01-01

    Multi-detector CT reliably permits visualization of coronary arteries, but due to the occurrence of motion artefacts at heart rates >65 bpm caused by a temporal resolution of 165 ms, its utilisation has so far been limited to patients with a preferably low heart rate. We investigated the assessment of image quality on computed tomography of coronary arteries in a large series of patients without additional heart rate control using dual-source computed tomography (DSCT). DSCT (Siemens Somatom Definition, 83-ms temporal resolution) was performed in 165 consecutive patients (mean age 64±11.4 years) after injection of 60-80 ml of contrast. Data sets were reconstructed in 5% intervals of the cardiac cycle and evaluated by two readers in consensus concerning evaluability of the coronary arteries and presence of motion and beam-hardening artefacts using the AHA 16-segment coronary model. Mean heart rate during CT was 65±10.5 bpm; visualisation without artefacts was possible in 98.7% of 2,541 coronary segments. Only two segments were considered unevaluable due to cardiac motion; 30 segments were unassessable due to poor signal-to-noise ratio or coronary calcifications (both n=15). Data reconstruction at 65-70% of the cardiac cycle provided for the best image quality. For heart rates >85 bpm, a systolic reconstruction at 45% revealed satisfactory results. Compared with earlier CT generations, DSCT provides for non-invasive coronary angiography with diagnostic image quality even at heart rates >65 bpm and thus may broaden the spectrum of patients that can be investigated non-invasively. (orig.)

  13. Assessment of radiation exposure on a dual-source computed tomography-scanner performing coronary computed tomography-angiography

    International Nuclear Information System (INIS)

    Kirchhoff, S.; Herzog, P.; Johnson, T.; Boehm, H.; Nikolaou, K.; Reiser, M.F.; Becker, C.H.

    2010-01-01

    Objective: The radiation exposure of a dual-source-64-channel multi-detector-computed-tomography-scanner (Somatom-Defintion, Siemens, Germany) was assessed in a phantom-study performing coronary-CT-angiography (CTCA) in comparison to patients' data randomly selected from routine scanning. Methods: 240 CT-acquisitions of a computed tomography dose index (CTDI)-phantom (PTW, Freiburg, Germany) were performed using a synthetically generated Electrocardiography (ECG)-signal with variable heart rates (30-180 beats per minute (bpm)). 120 measurements were acquired using continuous tube-output; 120 measurements were performed using ECG-synchronized tube-modulation. The pulsing window was set at minimum duration at 65% of the cardiac cycle between 30 and 75 bpm. From 90-180 bpm the pulsing window was set at 30-70% of the cardiac cycle. Automated pitch adaptation was always used. A comparison between phantom CTDI and two patient groups' CTDI corresponding to the two pulsing groups was performed. Results: Without ECG-tube-modulation CDTI-values were affected by heart-rate-changes resulting in 85.7 mGray (mGy) at 30 and 45 bpm, 65.5 mGy/60 bpm, 54.7 mGy/75 bpm, 46.5 mGy/90 bpm, 34.2 mGy/120 bpm, 27.0 mGy/150 bpm and 22.1 mGy/180 bpm equal to effective doses between 14.5 mSievert (mSv) at 30/45 bpm and 3.6 mSv at 180 bpm. Using ECG-tube-modulation these CTDI-values resulted: 32.6 mGy/30 bpm, 36.6 mGy/45 bpm, 31.4 mGy/60 bpm, 26.8 mGy/75 bpm, 23.7 mGy/90 bpm, 19.4 mGy/120 bpm, 17.2 mGy/150 bpm and 15.6 mGy/180 bpm equal to effective doses between 5.5 mSv at 30 bpm and 2.6 mSv at 180 bpm. Significant CTDI-differences were found between patients with lower/moderate and higher heart rates in comparison to the phantom CTDI-results. Conclusions: Dual source CTCA is particularly dose efficient at high heart rates when automated pitch adaptation, especially in combination with ECG-based tube-modulation is used. However in clinical routine scanning for patients with higher heart rates

  14. Full field image reconstruction is suitable for high-pitch dual-source computed tomography.

    Science.gov (United States)

    Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas

    2012-11-01

    The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.

  15. Assessment of left ventricular function and mass in dual-source computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Christoph J., E-mail: c.jensen@contilia.d [Department of Cardiology and Angiology, Elisabeth Hospital, Essen (Germany); Jochims, Markus [Department of Cardiology and Angiology, Elisabeth Hospital, Essen (Germany); Hunold, Peter; Forsting, Michael; Barkhausen, Joerg [Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Essen (Germany); Sabin, Georg V.; Bruder, Oliver [Department of Cardiology and Angiology, Elisabeth Hospital, Essen (Germany); Schlosser, Thomas [Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Essen (Germany)

    2010-06-15

    Purpose: To quantify left ventricular (LV) function and mass (LVM) derived from dual-source computed tomography (DSCT) and the influence of beta-blocker administration compared to cardiac magnetic resonance imaging (CMR). Methods: Thirty-two patients undergoing cardiac DSCT and CMR were included, where of fifteen received metoprolol intravenously before DSCT. LV parameters were calculated by the disc-summation method (DSM) and by a segmented region-growing algorithm (RGA). All data sets were analyzed by two blinded observers. Interobserver agreement was tested by the intraclass correlation coefficient. Results.: 1. Using DSM LV parameters were not statistically different between DSCT and CMR in all patients (DSCT vs. CMR: EF 63 {+-} 8% vs. 64 {+-} 8%, p = 0.47; EDV 136 {+-} 36 ml vs. 138 {+-} 35 ml, p = 0.66; ESV 52 {+-} 21 ml vs. 52 {+-} 22 ml, p = 0.61; SV 83 {+-} 22 ml vs. 87 {+-} 19 ml, p = 0.22; CO 5.4 {+-} 0.9 l/min vs. 5.7 {+-} 1.2 l/min, p = 0.09, LVM 132 {+-} 33 g vs. 132 {+-} 33 g, p = 0.99). 2. In a subgroup of 15 patients beta-blockade prior to DSCT resulted in a lower ejection fraction (EF), stroke volume (SV), cardiac output (CO) and increase in end systolic volume (ESV) in DSCT (EF 59 {+-} 8% vs. 62 {+-} 9%; SV 73 {+-} 17 ml vs. 81 {+-} 15 ml; CO 5.7 {+-} 1.2 l/min vs. 5.0 {+-} 0.8 l/min; ESV 52 {+-} 27 ml vs. 57 {+-} 24 ml, all p < 0.05). 3. Analyzing the RGA parameters LV volumes were not significantly different compared to DSM, whereas LVM was higher using RGA (177 {+-} 31 g vs. 132 {+-} 33 g, p < 0.05). Interobserver agreement was excellent comparing DSM values with best agreement between RGA calculations. Conclusion: Left ventricular volumes and mass can reliably be assessed by DSCT compared to CMR. However, beta-blocker administration leads to statistically significant reduced EF, SV and CO, whereas ESV significantly increases. DSCT RGA reliably analyzes LV function, whereas LVM is overestimated compared to DSM.

  16. Dual-Source Computed Tomography Evaluation of Children with Congenital Pulmonary Valve Stenosis

    International Nuclear Information System (INIS)

    Sun, Zhanguo; Xu, Wenjian; Huang, Shuran; Chen, Yueqin; Guo, Xiang; Shi, Zhitao

    2016-01-01

    Despite dual-source computed tomography (DSCT) technology has been performed well on adults or infants with heart disease, specific knowledge about children with congenital pulmonary valve stenosis (PS) remained to be established. This original research aimed to establish a professional approach of DSCT performing technology on children and to assess the image quality performed by DSCT to establish a diagnostic evaluation for children with PS. Ninety-eight children with congenital PS referred to affiliated hospital of Jining medical college were recruited from October 2013 to March 2015. Participants were divided into four groups according to different ages (0 - 1, 1 - 3, 3 - 7, 7 - 14), or three groups according to different heart rates (< 90, 90 - 110, > 110). Image quality of pulmonary valves was assessed based on a four-point grading scale (1 - 4 points). Those cases achieving a score of ≥ 3 points were selected for further investigation, which played a critical role in our analysis. Correlation analysis was used to identify the effects of age and heart rate on image quality. Additionally, the results evaluated by DSCT were compared with those evaluated from the operation, further confirming the accuracy of DSCT. Seventy-two cases (73.4%) achieved a score of ≥ 3 points based on pulmonary valve imaging, which were available for further diagnosis. There was a statistically significant difference (P < 0.05) between the four groups except 0 - 1 group and 1 - 3 group, 3 - 7 group and 7 - 14 group, and the image quality of elder group was higher than younger group. Image score was gradually decreased with increased heart rate (F = 19.05, P < 0.01). Heart rate was negatively correlated with pulmonary valve scores (r = -0.391, P < 0.001), while there was no correlation between age and scores (r = 0.185, P = 0.070). The number, shape, commissure, and opening status of pulmonary valves evaluated by DSCT were the same as the results of operation. Heart rate serves a

  17. Assessment of left ventricular function and mass in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Jensen, Christoph J.; Jochims, Markus; Hunold, Peter; Forsting, Michael; Barkhausen, Joerg; Sabin, Georg V.; Bruder, Oliver; Schlosser, Thomas

    2010-01-01

    Purpose: To quantify left ventricular (LV) function and mass (LVM) derived from dual-source computed tomography (DSCT) and the influence of beta-blocker administration compared to cardiac magnetic resonance imaging (CMR). Methods: Thirty-two patients undergoing cardiac DSCT and CMR were included, where of fifteen received metoprolol intravenously before DSCT. LV parameters were calculated by the disc-summation method (DSM) and by a segmented region-growing algorithm (RGA). All data sets were analyzed by two blinded observers. Interobserver agreement was tested by the intraclass correlation coefficient. Results.: 1. Using DSM LV parameters were not statistically different between DSCT and CMR in all patients (DSCT vs. CMR: EF 63 ± 8% vs. 64 ± 8%, p = 0.47; EDV 136 ± 36 ml vs. 138 ± 35 ml, p = 0.66; ESV 52 ± 21 ml vs. 52 ± 22 ml, p = 0.61; SV 83 ± 22 ml vs. 87 ± 19 ml, p = 0.22; CO 5.4 ± 0.9 l/min vs. 5.7 ± 1.2 l/min, p = 0.09, LVM 132 ± 33 g vs. 132 ± 33 g, p = 0.99). 2. In a subgroup of 15 patients beta-blockade prior to DSCT resulted in a lower ejection fraction (EF), stroke volume (SV), cardiac output (CO) and increase in end systolic volume (ESV) in DSCT (EF 59 ± 8% vs. 62 ± 9%; SV 73 ± 17 ml vs. 81 ± 15 ml; CO 5.7 ± 1.2 l/min vs. 5.0 ± 0.8 l/min; ESV 52 ± 27 ml vs. 57 ± 24 ml, all p < 0.05). 3. Analyzing the RGA parameters LV volumes were not significantly different compared to DSM, whereas LVM was higher using RGA (177 ± 31 g vs. 132 ± 33 g, p < 0.05). Interobserver agreement was excellent comparing DSM values with best agreement between RGA calculations. Conclusion: Left ventricular volumes and mass can reliably be assessed by DSCT compared to CMR. However, beta-blocker administration leads to statistically significant reduced EF, SV and CO, whereas ESV significantly increases. DSCT RGA reliably analyzes LV function, whereas LVM is overestimated compared to DSM.

  18. Adult congenital heart disease imaging with second-generation dual-source computed tomography: initial experiences and findings.

    Science.gov (United States)

    Ghoshhajra, Brian B; Sidhu, Manavjot S; El-Sherief, Ahmed; Rojas, Carlos; Yeh, Doreen Defaria; Engel, Leif-Christopher; Liberthson, Richard; Abbara, Suhny; Bhatt, Ami

    2012-01-01

    Adult congenital heart disease patients present a unique challenge to the cardiac imager. Patients may present with both acute and chronic manifestations of their complex congenital heart disease and also require surveillance for sequelae of their medical and surgical interventions. Multimodality imaging is often required to clarify their anatomy and physiology. Radiation dose is of particular concern in these patients with lifelong imaging needs for their chronic disease. The second-generation dual-source scanner is a recently available advanced clinical cardiac computed tomography (CT) scanner. It offers a combination of the high-spatial resolution of modern CT, the high-temporal resolution of dual-source technology, and the wide z-axis coverage of modern cone-beam geometry CT scanners. These advances in technology allow novel protocols that markedly reduce scan time, significantly reduce radiation exposure, and expand the physiologic imaging capabilities of cardiac CT. We present a case series of complicated adult congenital heart disease patients imaged by the second-generation dual-source CT scanner with extremely low-radiation doses and excellent image quality. © 2012 Wiley Periodicals, Inc.

  19. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Science.gov (United States)

    Ma, Jing; Song, Zhi-Qiang; Yan, Fu-Hua

    2014-01-01

    To explore the feasibility of dual-source dual-energy computed tomography (DSDECT) for hepatic iron and fat separation in vivo. All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA) were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, pVNC) values were negatively correlated with the fat pathology grading (r = -0.642,pVNC values (F = 25.308,pVNC values were only observed between the fat-present and fat-absent groups. Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  20. Estimation of the radiation exposure of a chest pain protocol with ECG-gating in dual-source computed tomography

    International Nuclear Information System (INIS)

    Ketelsen, Dominik; Luetkhoff, Marie H.; Thomas, Christoph; Werner, Matthias; Tsiflikas, Ilias; Reimann, Anja; Kopp, Andreas F.; Claussen, Claus D.; Heuschmid, Martin; Buchgeister, Markus; Burgstahler, Christof

    2009-01-01

    The aim of the study was to evaluate radiation exposure of a chest pain protocol with ECG-gated dual-source computed tomography (DSCT). An Alderson Rando phantom equipped with thermoluminescent dosimeters was used for dose measurements. Exposure was performed on a dual-source computed tomography system with a standard protocol for chest pain evaluation (120 kV, 320 mAs/rot) with different simulated heart rates (HRs). The dose of a standard chest CT examination (120 kV, 160 mAs) was also measured. Effective dose of the chest pain protocol was 19.3/21.9 mSv (male/female, HR 60), 17.9/20.4 mSv (male/female, HR 80) and 14.7/16.7 mSv (male/female, HR 100). Effective dose of a standard chest examination was 6.3 mSv (males) and 7.2 mSv (females). Radiation dose of the chest pain protocol increases significantly with a lower heart rate for both males (p = 0.040) and females (p = 0.044). The average radiation dose of a standard chest CT examination is about 36.5% that of a CT examination performed for chest pain. Using DSCT, the evaluated chest pain protocol revealed a higher radiation exposure compared with standard chest CT. Furthermore, HRs markedly influenced the dose exposure when using the ECG-gated chest pain protocol. (orig.)

  1. Scanning protocol of dual-source computed tomography for aortic dissection

    International Nuclear Information System (INIS)

    Zhai Mingchun; Wang Yongmei

    2013-01-01

    Objective: To find a dual-source CT scanning protocol which can obtain high image quality with low radiation dose for diagnosis of aortic dissection. Methods: Total 120 patients with suspected aortic dissection were randomly and equally assigned into three groups. Patients in Croup A were performed CTA exam with prospectively electrocardiogram- gated high pitch spiral mode (FLASH). Patients in Croup B were performed CTA exam with retrospective electrocardiogram- gated spiral mode. Patients in Croup C were performed CTA exam with conventional mode which no electrocardiogram-gated. The image quality, radiation dose, advantages and disadvantages among the three scan protocol were analyzed. Results: For image quality, seventeen, twenty two and one patients in group A were granted to grade 1, 2, 3 respectively, and none was in grade 4; thirty three and seven patients in group B were granted to grade 1, 2, respectively, and none was in grade 3 and 4; fourteen and twenty six patients in group C were granted to grade 3, 4, respectively, and none was in grade 1 and 2. There was no significant difference between group A and B in image quality. Compared with the image quality, Group A and B were significantly higher than Group C. Mean effective radiation dose of Croup A, B and C were 7.7±0.4 mSv, 33.11±3.38 mSv, and 7.6±0.68 mSv, respectively. Group B was significantly higher than Groups A and C (P<0.05, P<0.05, respectively), and there was no significant difference between Group A and C (P=0.826). Conclusions: Prospectively electrocardiogram-gated high pitch spiral mode can be the first line protocol for evaluation of aortic dissection. It can achieve high image quality with low radiation dose. Conventional mode with no electrocardiogram-gated can be selectively used for Stanford B aortic dissection. (authors)

  2. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Directory of Open Access Journals (Sweden)

    Jing Ma

    Full Text Available OBJECTIVE: To explore the feasibility of dual-source dual-energy computed tomography (DSDECT for hepatic iron and fat separation in vivo. MATERIALS AND METHODS: All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. RESULTS: The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, p<0.001. Virtual non-iron contrast (VNC values were negatively correlated with the fat pathology grading (r = -0.642,p<0.0001. Different groups showed significantly different iron enhancement values and VNC values (F = 25.308,p<0.001; F = 10.911, p<0.001, respectively. Among the groups, significant differences in iron enhancement values were only observed between the iron-present and iron-absent groups, and differences in VNC values were only observed between the fat-present and fat-absent groups. CONCLUSION: Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  3. Low tube voltage dual source computed tomography to reduce contrast media doses in adult abdomen examinations: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Thor, Daniel [Department of Diagnostic Medical Physics, Karolinska University Hospital, Stockholm 14186 (Sweden); Brismar, Torkel B., E-mail: torkel.brismar@gmail.com; Fischer, Michael A. [Department of Clinical Science, Intervention and Technology at Karolinska Institutet and Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm 14186 (Sweden)

    2015-09-15

    Purpose: To evaluate the potential of low tube voltage dual source (DS) single energy (SE) and dual energy (DE) computed tomography (CT) to reduce contrast media (CM) dose in adult abdominal examinations of various sizes while maintaining soft tissue and iodine contrast-to-noise ratio (CNR). Methods: Four abdominal phantoms simulating a body mass index of 16 to 35 kg/m{sup 2} with four inserted syringes of 0, 2, 4, and 8 mgI/ml CM were scanned using a 64-slice DS-CT scanner. Six imaging protocols were used; one single source (SS) reference protocol (120 kV, 180 reference mAs), four low kV SE protocols (70 and 80 kV using both SS and DS), and one DE protocol at 80/140 kV. Potential CM reduction with unchanged CNRs relative to the 120 kV protocol was calculated along with the corresponding increase in radiation dose. Results: The potential contrast media reductions were determined to be approximately 53% for DS 70 kV, 51% for SS 70 kV, 44% for DS 80 kV, 40% for SS 80 kV, and 20% for DE (all differences were significant, P < 0.05). Constant CNR could be achieved by using DS 70 kV for small to medium phantom sizes (16–26 kg/m{sup 2}) and for all sizes (16–35 kg/m{sup 2}) when using DS 80 kV and DE. Corresponding radiation doses increased by 60%–107%, 23%–83%, and 6%–12%, respectively. Conclusions: DS single energy CT can be used to reduce CM dose by 44%–53% with maintained CNR in adult abdominal examinations at the cost of an increased radiation dose. DS dual-energy CT allows reduction of CM dose by 20% at similar radiation dose as compared to a standard 120 kV single source.

  4. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  5. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  6. Low-dose computed tomography of the paranasal sinus and facial skull using a high-pitch dual-source system - First clinical results

    International Nuclear Information System (INIS)

    Schell, Boris; Bauer, Ralf W.; Lehnert, Thomas; Kerl, J.M.; Vogl, Thomas J.; Mack, Martin G.; Hambek, Markus; May, Angelika

    2011-01-01

    Computed tomography (CT) of the paranasal sinus is the standard diagnostic tool for a wide range of indications in mostly younger patients. This study aims to assess the image quality of CT of the sinus by using a high-pitch dual-source technique with special regard to the radiation dose. Examinations were performed on a second-generation dual-source CT with a pitch factor of 3.0 (dual-source mode). Images were compared with those with a pitch factor of 0.9 on the same system (single-source mode) and with those of 16-slice CT. Image quality was evaluated by four blinded readers using a 5-point scale (1 = poor, 5 = excellent). Comparison of the dose length product (DLP) was used to estimate radiation exposure. Seventy-three consecutive patients underwent imaging with the proposed CT protocols. The viewers rated the image quality of the dual-source image sets as nearly as good (3.62) as the single-source images on the same device (4.18) and those on 16-slice CT (3.7). DLP was cut to half of the dose [51 mGycm vs. 97.8 mGycm vs. 116.9 mGycm (p < 0.01)]. Using the proposed dual-source mode when examining the paranasal sinus, diagnostic image quality can be achieved while drastically lowering the patient's radiation exposure. (orig.)

  7. Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, D.; Werner, M.K.; Thomas, C.; Tsiflikas, I.; Reimann, A.; Claussen, C.D.; Heuschmid, M. [Tuebingen Univ. (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Koitschev, A. [Tuebingen Univ. (Germany). Abt. fuer Hals-Nasen-Ohrenheilkunde

    2009-01-15

    Purpose: Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Materials and Methods: Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). Results: In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 {+-} 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 {+-} 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). Conclusion: MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential. (orig.)

  8. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  9. Imaging of pulmonary vein anatomy using low-dose prospective ECG-triggered dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Philipp; Baumann, Tobias; Langer, Mathias; Pache, Gregor [University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany)

    2010-08-15

    To prospectively investigate the feasibility, image quality and radiation dose estimates for computed tomography angiography (CTA) of the pulmonary veins and left atrium using prospective electrocardiography (ECG)-triggered sequential dual-source (DS) data acquisition at end-systole in patients with paroxysmal atrial fibrillation undergoing radiofrequency ablation. Thirty-five patients (mean age 66.2 {+-} 12.6 years) with paroxysmal atrial fibrillation underwent prospective ECG-triggered sequential DS-CTA with tube current (250 mAs/rotation) centred 250 ms past the R-peak. Tube voltage was adjusted to the BMI (<25 kg/m{sup 2}: 100 kV, >25 kg/m{sup 2}: 120 kV). Presence of motion or stair-step artefacts was assessed. Effective radiation dose was calculated from the dose-length product. All data sets could be integrated into the electroanatomical mapping system. Twenty-two patients (63%) were in sinus rhythm (mean heart rate 69.2 {+-} 11.1 bpm, variability 1.0 {+-} 1.7 bpm) and 13 (37%) showed an ECG pattern of atrial fibrillation (mean heart rate 84.8 {+-} 16.6 bpm, variability 17.9 {+-} 7.5 bpm). Minor step artefacts were observed in three patients (23%) with atrial fibrillation. Mean estimated effective dose was 1.1 {+-} 0.3 and 3.0 {+-} 0.5 mSv for 100 and 120 kV respectively. Imaging of pulmonary vein anatomy is feasible using prospective ECG-triggered sequential data acquisition at end-systole regardless of heart rate or rhythm at the benefit of low radiation dose. (orig.)

  10. Imaging of pulmonary vein anatomy using low-dose prospective ECG-triggered dual-source computed tomography

    International Nuclear Information System (INIS)

    Blanke, Philipp; Baumann, Tobias; Langer, Mathias; Pache, Gregor

    2010-01-01

    To prospectively investigate the feasibility, image quality and radiation dose estimates for computed tomography angiography (CTA) of the pulmonary veins and left atrium using prospective electrocardiography (ECG)-triggered sequential dual-source (DS) data acquisition at end-systole in patients with paroxysmal atrial fibrillation undergoing radiofrequency ablation. Thirty-five patients (mean age 66.2 ± 12.6 years) with paroxysmal atrial fibrillation underwent prospective ECG-triggered sequential DS-CTA with tube current (250 mAs/rotation) centred 250 ms past the R-peak. Tube voltage was adjusted to the BMI ( 2 : 100 kV, >25 kg/m 2 : 120 kV). Presence of motion or stair-step artefacts was assessed. Effective radiation dose was calculated from the dose-length product. All data sets could be integrated into the electroanatomical mapping system. Twenty-two patients (63%) were in sinus rhythm (mean heart rate 69.2 ± 11.1 bpm, variability 1.0 ± 1.7 bpm) and 13 (37%) showed an ECG pattern of atrial fibrillation (mean heart rate 84.8 ± 16.6 bpm, variability 17.9 ± 7.5 bpm). Minor step artefacts were observed in three patients (23%) with atrial fibrillation. Mean estimated effective dose was 1.1 ± 0.3 and 3.0 ± 0.5 mSv for 100 and 120 kV respectively. Imaging of pulmonary vein anatomy is feasible using prospective ECG-triggered sequential data acquisition at end-systole regardless of heart rate or rhythm at the benefit of low radiation dose. (orig.)

  11. Imaging of the Coronary Venous System: Validation of Three-Dimensional Rotational Venous Angiography Against Dual-Source Computed Tomography

    International Nuclear Information System (INIS)

    Knackstedt, Christian; Muehlenbruch, Georg; Mischke, Karl; Bruners, Philipp; Schimpf, Thomas; Frechen, Dirk; Schummers, Georg; Mahnken, Andreas H.; Guenther, Rolf W.; Kelm, Malte; Schauerte, Patrick

    2008-01-01

    Information on the anatomy of the cardiac venous system (CVS) is increasingly important for cardiac resynchronization therapy or percutaneous transvenous mitral valve annuloplasty. Three-dimensional (3D) imaging can further improve the understanding of the relationship of cardiac structures. This study was performed to validate the accuracy of rotational coronary sinus angiography (CSA) displaying the 3D anatomy of the CVS compared to ECG-gated, contrast-enhanced, cardiac dual-source computed tomography (DSCT). Five domestic pigs (60 kg) underwent DSCT using a standardized examination protocol. Using a standard C-arm for fluoroscopy, a rotational CSA was obtained and 3D-image reconstructions performed. Side branches were identified using both methods and enumerated. Vessel visibility was estimated for each side branch and great cardiac vein/anterior interventricular vein. Also, vessel diameters were measured at distinct landmarks, i.e., side branching. The amount of contrast medium was determined and the effective radiation exposure of both methods was calculated. There was no significant difference regarding the vessel diameter of the great cardiac vein/anterior interventricular vein or its side branches. Also, estimation of vessel visibility was not different between the two imaging modalities. Estimated radiation exposure and amount of contrast medium were lower for rotational CSA. In conclusion, a 3D reconstruction of rotational CSA images is possible. All parts of the CVS are well depicted, allowing a 3D overview of the CVS anatomy. On-site 3D visualization might improve decision making during cardiac interventions. In contrast to DSCT, rotational CSA does not demonstrate the anatomy of the mitral annulus or the course of the left circumflex artery.

  12. Intensive lipid-lowering therapy with rosuvastatin stabilizes lipid-rich coronary plaques. Evaluation using dual-source computed tomography

    International Nuclear Information System (INIS)

    Soeda, Tsunenari; Uemura, Shiro; Okayama, Satoshi

    2011-01-01

    Clinical studies using invasive modalities have reported that statin therapy stabilizes coronary plaque vulnerability. The serial changes of lipid-rich coronary plaques (LRCPs) during rosuvastatin treatment were evaluated non-invasively in patients with acute coronary syndrome (ACS) using dual-source computed tomography (DSCT). A total of 11 consecutive ACS patients, and 13 LRCPs were serially evaluated on DSCT before and 24 weeks after rosuvastatin treatment. Compared with the baseline, there was no change in post-treatment minimal lumen diameter, lumen volume, or longitudinal length of LRCPs. By contrast, the ratio of lipid core volume to plaque volume significantly decreased from 48.0±9.9% to 43.7±10.6% (P=0.04), and plaque volume decreased from 144.5±85.5 mm 3 to 119.8±78.0 mm 3 (P=0.07). The remodeling index of target LRCPs significantly decreased from 1.16±0.10 to 1.06±0.12 (P=0.02). Percent reduction of plaque volume was significantly greater in patients with a lower ratio of low-density lipoprotein to high-density lipoprotein (L/H ratio ≤1.5) at follow-up than patients with higher L/H ratio (>1.5; median -31.7% vs. -6.8%, P=0.03). Rosuvastatin therapy reduced the volume of lipid cores and LRCPs and increased the CT attenuation value of LRCPs. DSCT is an effective modality for the non-invasive evaluation of LRCPs in patients with ACS. (author)

  13. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-04-17

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  14. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  15. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference

    Energy Technology Data Exchange (ETDEWEB)

    Diekhoff, Torsten; Kiefer, Tobias; Hamm, Bernd; Hermann, Kay-Geert A. [Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Radiology, Berlin (Germany); Ziegeler, Katharina; Feist, Eugen [Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Rheumatology and Clinical Immunology, Berlin (Germany); Mews, Juergen [Toshiba Medical Systems Europe, BV, Zoetermeer (Netherlands)

    2015-11-15

    Dual-energy computed tomography (DECT) is an emerging imaging technique for examining patients with suspected gout. Single-source dual-energy CT (S-DECT) is a new way of obtaining DECT information on conventional CT scanners rather than using special dual-source CT systems. We tested the feasibility of S-DECT (320-row CT; Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) in 6 patients (5 men, 1 woman; mean age 61.3, range 48 to 69 years) with acute arthralgia and suspected gout, and compared the S-DECT findings with the results of joint aspiration. Three patients had a diagnosis of gouty arthritis with negatively birefringent crystals in synovial fluid, in addition to gouty tophi in S-DECT. Three patients had no detectable crystals by polarization microscopy and no tophi on DECT. Their final diagnoses were rheumatoid arthritis, activated osteoarthritis, and septic arthritis in one case each. This initial experience suggests that S-DECT might be a valuable alternative to dual-source CT. Hence, more patients may benefit from its additional diagnostic abilities in the future. (orig.)

  16. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference

    International Nuclear Information System (INIS)

    Diekhoff, Torsten; Kiefer, Tobias; Hamm, Bernd; Hermann, Kay-Geert A.; Ziegeler, Katharina; Feist, Eugen; Mews, Juergen

    2015-01-01

    Dual-energy computed tomography (DECT) is an emerging imaging technique for examining patients with suspected gout. Single-source dual-energy CT (S-DECT) is a new way of obtaining DECT information on conventional CT scanners rather than using special dual-source CT systems. We tested the feasibility of S-DECT (320-row CT; Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) in 6 patients (5 men, 1 woman; mean age 61.3, range 48 to 69 years) with acute arthralgia and suspected gout, and compared the S-DECT findings with the results of joint aspiration. Three patients had a diagnosis of gouty arthritis with negatively birefringent crystals in synovial fluid, in addition to gouty tophi in S-DECT. Three patients had no detectable crystals by polarization microscopy and no tophi on DECT. Their final diagnoses were rheumatoid arthritis, activated osteoarthritis, and septic arthritis in one case each. This initial experience suggests that S-DECT might be a valuable alternative to dual-source CT. Hence, more patients may benefit from its additional diagnostic abilities in the future. (orig.)

  17. Evaluation of radiation dose in chest scan with enhanced dual-source computed tomography in children with congenital heart disease

    International Nuclear Information System (INIS)

    Hou Zhihui; Lu Bin; Tang Xiang; Han Lei

    2011-01-01

    Objective: To evaluate the radiation dose from enhanced dual-source computed Tomography (DSCT) scan on children with congenital heart disease (CHD). Methods: Seventy children with CHD, age from 1 month to 8 years old, were scanned with enhanced DSCT. Children were divided by age into 5 years old group. The differences among three groups were tested by F test. Then, the SNK test was used to compare the difference between each group. Multiple linear regression analysis was used to test the relationship of dose length product (DLP) with the age, weight, voltage, current, pitch and scan sheet. Results: The average value of DLP was (144.46± 74.07) mGy·cm for all the 70 cases, and that of effective does (ED) was (4.68±2.34) mSv. There were significant differences of DLP among the 3 groups [ 5 years (208.00±73.87) mGy · cm, F=8.26, P=0.0009]. The SNK test showed statistical differences of DLP between 5 years old group (q=5.21, 6.52, P=0.009, 0.004). The difference of DLP between 1-5 years old group and > 5 years old group did not reach significant (q=0.28, P=0.48). The differences of ED was not statistically significant among the three groups [ 5 years (3.74±1.33) mSv, F=0.54, P=0.59]. DLP was positively correlated with age (4.3 years, r=0.54186, P=0.0008), weight (12.1 kg, r=0.56371, P=0.0004), voltage [(95.48±6.99) kV, r=0.63269, P<0.01], current [(138.55±40.67) mA, r=0.79608, P< 0.0001] and scan sheet (236.10±46.51, r=0.72192, P<0.01). DLP was negative correlated with pitch (0.48±0.03, r=-0.46693, P=0.0047). Conclusion: Higher DLP was observed in children over 1 year old under enhanced DSCT scan, but ED was not statistically significant among the three groups due to the higher K value in the children under 1 year old. (authors)

  18. Assessment of regional left ventricular function by Dual Source Computed Tomography: Interobserver variability and validation to laevocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Pflederer, T. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: tobiaspflederer@web.de; Ho, K.T. [Department of Cardiology, Tan Tock Seng Hospital (Singapore)], E-mail: contact@ttsh.com.sg; Anger, T. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: thomas.anger@uk-erlangen.de; Kraehner, R. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: robert.kraehner@uk-erlangen.de; Ropers, D. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: dieter.ropers@uk-erlangen.de; Muschiol, G. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: gerd.muschiol@uk-erlangen.de; Renz, A. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: alexandra.renz@uk-erlangen.de; Daniel, W.G. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: werner.daniel@uk-erlangen.de; Achenbach, S. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: stephan.achenbach@uk-erlangen.de

    2009-10-15

    Objective: Assessment of left ventricular function is possible in contrast-enhanced cardiac CT data sets. However, rapid ventricular motion especially in systole can lead to artifacts. Dual Source Computed Tomography (DSCT) has high temporal resolution which effectively limits motion artifact. We therefore assessed the accuracy of DSCT to detect regional left ventricular wall motion abnormalities in comparison to invasive cine angiocardiography. Methods: We analyzed DSCT data sets of 50 patients (39 male, 11 female, mean age: 61 {+-} 10 years) which were acquired after intravenous injection of 55-70 mL contrast agent (rotation time: 330 ms, collimation: 2 mm x 64 mm x 0.6 mm, 120 kV, 380 mAs, ECG-correlated tube current modulation). 10 data sets consisting of transaxial slices with a slice thickness of 1.5 mm, an increment of 1.0 mm and a matrix of 256 x 256 pixels were reconstructed at 10 time instants during the cardiac cycle (0-90% in 10% increments). The data sets were analyzed visually by two independent readers, using standard left ventricular planes, concerning regional wall motion abnormalities. DSCT was verified in a blinded fashion against cine ventriculography performed during cardiac catheterization (RAO and LAO projection), using a 7-segment model. Analysis was performed on a per-patient (presence of at least one hypo-, a- or dyskinetic segment) and on a per-segment basis. Results: Concerning the presence of a wall motion abnormality, the two observers agreed in 340/350 segments (97%) and 48/50 patients (96%). In invasive cine angiocardiography, 22 of 50 patients displayed at least one segment with abnormal contraction. To detect these patients, DSCT showed a sensitivity of 95% (21/22), specificity of 96% (27/28), positive predictive value of 95% and negative predictive value of 96%. Out of a total of 350 left ventricular segments, 66 segments had abnormal contraction in cine angiocardiography (34 hypokinetic, 26 akinetic, 6 dyskinetic). For detection

  19. Single source dual-energy computed tomography in the diagnosis of gout: Diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Tobias; Diekhoff, Torsten [Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität, Berlin, Charitéplatz 1, 10117 Berlin (Germany); Hermann, Sandra [Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Charitéplatz 1, 10117 Berlin (Germany); Stroux, Andrea [Department of Medical Informatics, Biometry and Epidemiology, Freie Universität Berlin, Berlin (Germany); Mews, Jürgen; Blobel, Jörg [Toshiba Medical Systems Europe, BV, Zilverstraat 1, 2701 RP Zoetermeer (Netherlands); Hamm, Bernd [Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität, Berlin, Charitéplatz 1, 10117 Berlin (Germany); Hermann, Kay-Geert A., E-mail: kghermann@gmail.com [Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität, Berlin, Charitéplatz 1, 10117 Berlin (Germany)

    2016-10-15

    Objectives: To investigate the diagnostic value of single-source dual-energy computed tomography (SDECT) in gouty arthritis and to compare its capability to detect urate depositions with digital radiography (DR) and conventional computed tomography (CT). Methods: Forty-four patients who underwent SDECT volume scans of the feet for suspected gouty arthritis were retrospectively analyzed. SDECT, CT (both n = 44) and DR (n = 36) were scored by three blinded readers for presence of osteoarthritis, erosions, and tophi. A diagnosis was made for each imaging modality. Results were compared to the clinical diagnosis using the American College of Rheumatology (ACR) classification criteria. Results: The patient population was divided into a gout (n = 21) and control (n = 23) group based on final clinical diagnosis. Osteoarthritis was evident in 15 joints using CT and 30 joints using DR (p = 0.165). There were 134 erosions detected by CT compared to 38 erosions detected by DR (p < 0.001). In total 119 tophi were detected by SDECT, compared to 85 tophi by CT (p = 0.182) and 25 tophi by DR (p < 0.001). SDECT had best diagnostic value for diagnosis of gout compared to DR and conventional CT (sensitivity and specificity for SDECT: 71.4% and 95.7%, CT: 71.4% and 91.3% and DR: 44.4% and 83.3%, respectively). For all three readers, Cohen’s kappa for DR and conventional CT were substantial for all scoring items and ranged from 0.75 to 0.77 and 0.72–0.76, respectively. For SDECT Cohen’s kappa was good to almost perfect with 0.77–0.84. Conclusions: SDECT is capable to detect uric acid depositions with good sensitivity and high specificity in feet, therefore diagnostic confidence is improved. Using SDECT, inter-reader variance can be markedly reduced for the detection of gouty tophi.

  20. Single source dual-energy computed tomography in the diagnosis of gout: Diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet

    International Nuclear Information System (INIS)

    Kiefer, Tobias; Diekhoff, Torsten; Hermann, Sandra; Stroux, Andrea; Mews, Jürgen; Blobel, Jörg; Hamm, Bernd; Hermann, Kay-Geert A.

    2016-01-01

    Objectives: To investigate the diagnostic value of single-source dual-energy computed tomography (SDECT) in gouty arthritis and to compare its capability to detect urate depositions with digital radiography (DR) and conventional computed tomography (CT). Methods: Forty-four patients who underwent SDECT volume scans of the feet for suspected gouty arthritis were retrospectively analyzed. SDECT, CT (both n = 44) and DR (n = 36) were scored by three blinded readers for presence of osteoarthritis, erosions, and tophi. A diagnosis was made for each imaging modality. Results were compared to the clinical diagnosis using the American College of Rheumatology (ACR) classification criteria. Results: The patient population was divided into a gout (n = 21) and control (n = 23) group based on final clinical diagnosis. Osteoarthritis was evident in 15 joints using CT and 30 joints using DR (p = 0.165). There were 134 erosions detected by CT compared to 38 erosions detected by DR (p < 0.001). In total 119 tophi were detected by SDECT, compared to 85 tophi by CT (p = 0.182) and 25 tophi by DR (p < 0.001). SDECT had best diagnostic value for diagnosis of gout compared to DR and conventional CT (sensitivity and specificity for SDECT: 71.4% and 95.7%, CT: 71.4% and 91.3% and DR: 44.4% and 83.3%, respectively). For all three readers, Cohen’s kappa for DR and conventional CT were substantial for all scoring items and ranged from 0.75 to 0.77 and 0.72–0.76, respectively. For SDECT Cohen’s kappa was good to almost perfect with 0.77–0.84. Conclusions: SDECT is capable to detect uric acid depositions with good sensitivity and high specificity in feet, therefore diagnostic confidence is improved. Using SDECT, inter-reader variance can be markedly reduced for the detection of gouty tophi.

  1. Assessment of global left ventricular function with dual-source computed tomography in patients with valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Bak, So Hyeon; Jeon, Hae Jeong (Dept. of Radiology, Konkuk Univ. Hospital, Konkuk Univ. School of Medicine, Seoul (Korea, Republic of)); Ko, Sung Min (Dept. of Radiology, Konkuk Univ. Hospital, Konkuk Univ. School of Medicine, Seoul (Korea, Republic of); Research Inst. of Medical Science, Konkuk Univ. Hospital, Konkuk Univ. School of Medicine, Seoul (Korea, Republic of)), Email: 20070437@kuh.ac.kr; Yang, Hyun Suk; Hwang, Hweung Kon (Dept. of Cardiology, Konkuk Univ. Hospital, Konkuk Univ. School of Medicine, Seoul (Korea, Republic of)); Song, Meong Gun (Dept. of Thoracic Surgery, Konkuk Univ. Hospital, Konkuk Univ. School of Medicine, Seoul (Korea, Republic of))

    2012-04-15

    Background: Left ventricular (LV) function is a vital parameter for prognosis, therapy guidance, and follow-up of cardiovascular disease. Dual-source computed tomography (DSCT) provides an accurate analysis of global LV function. Purpose: To assess the performance of DSCT in the determination of global LV functional parameters in comparison with cardiovascular magnetic resonance (CMR) and two-dimensional transthoracic echocardiography (2D-TTE) in patients with valvular heart disease (VHD). Material and Methods: A total of 111 patients (58 men, mean age 49.9 years) with known VHD and who underwent DSCT, 2D-TTE, and CMR a period of 2 weeks before undergoing valve surgery were included in this study. LV end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF) were calculated by DSCT using the threshold-based technique, by 2D-TTE using a modified Simpson's method, and by CMR using Simpson's method. Agreement for parameters of LV global function was determined with the Pearson's correlation coefficient (r) and Bland-Altman analysis. All the DSCT and CMR data-sets were assessed independently by two readers. Results: Fifty of the total 111 patients had aortic VHD, 29 patients had mitral VHD, and 32 patients had mixed aortic and mitral VHD. An excellent inter-observer agreement was seen for the assessment of global LV function using DSCT (r 0.910-0.983) and CMR (r = 0.854-0.965). An excellent or good correlation (r 0.93, 0.95, 0.87, and 0.71, respectively, P < 0.001) was noted between the DSCT and 2D-TTE values for EDV, ESV, SV, and EF. EDV (33.7 mL, P < 0.001), ESV (12.1 mL, P < 0.001), SV (21.2 mL, P < 0.001), and EF (1.6%, P = 0.019) were significantly overestimated by DSCT when compared with 2D-TTE. An excellent correlation (r = 0.96, 0.97, 0.91, and 0.94, respectively, P < 0.001) between DSCT and CMR was seen in the evaluation of EDV, ESV, SV, and EF. EDV (15.9 mL, P < 0.001), ESV (7.3 mL, P < 0.001), and SV

  2. Assessment of global left ventricular function with dual-source computed tomography in patients with valvular heart disease

    International Nuclear Information System (INIS)

    Bak, So Hyeon; Jeon, Hae Jeong; Ko, Sung Min; Yang, Hyun Suk; Hwang, Hweung Kon; Song, Meong Gun

    2012-01-01

    Background: Left ventricular (LV) function is a vital parameter for prognosis, therapy guidance, and follow-up of cardiovascular disease. Dual-source computed tomography (DSCT) provides an accurate analysis of global LV function. Purpose: To assess the performance of DSCT in the determination of global LV functional parameters in comparison with cardiovascular magnetic resonance (CMR) and two-dimensional transthoracic echocardiography (2D-TTE) in patients with valvular heart disease (VHD). Material and Methods: A total of 111 patients (58 men, mean age 49.9 years) with known VHD and who underwent DSCT, 2D-TTE, and CMR a period of 2 weeks before undergoing valve surgery were included in this study. LV end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF) were calculated by DSCT using the threshold-based technique, by 2D-TTE using a modified Simpson's method, and by CMR using Simpson's method. Agreement for parameters of LV global function was determined with the Pearson's correlation coefficient (r) and Bland-Altman analysis. All the DSCT and CMR data-sets were assessed independently by two readers. Results: Fifty of the total 111 patients had aortic VHD, 29 patients had mitral VHD, and 32 patients had mixed aortic and mitral VHD. An excellent inter-observer agreement was seen for the assessment of global LV function using DSCT (r 0.910-0.983) and CMR (r = 0.854-0.965). An excellent or good correlation (r 0.93, 0.95, 0.87, and 0.71, respectively, P < 0.001) was noted between the DSCT and 2D-TTE values for EDV, ESV, SV, and EF. EDV (33.7 mL, P < 0.001), ESV (12.1 mL, P < 0.001), SV (21.2 mL, P < 0.001), and EF (1.6%, P = 0.019) were significantly overestimated by DSCT when compared with 2D-TTE. An excellent correlation (r = 0.96, 0.97, 0.91, and 0.94, respectively, P < 0.001) between DSCT and CMR was seen in the evaluation of EDV, ESV, SV, and EF. EDV (15.9 mL, P < 0.001), ESV (7.3 mL, P < 0.001), and SV (8.5 mL, P < 0

  3. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography.

    Science.gov (United States)

    May, Matthias S; Wüst, Wolfgang; Brand, Michael; Stahl, Christian; Allmendinger, Thomas; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2011-07-01

    We sought to evaluate the image quality of iterative reconstruction in image space (IRIS) in half-dose (HD) datasets compared with full-dose (FD) and HD filtered back projection (FBP) reconstruction in abdominal computed tomography (CT). To acquire data with FD and HD simultaneously, contrast-enhanced abdominal CT was performed with a dual-source CT system, both tubes operating at 120 kV, 100 ref.mAs, and pitch 0.8. Three different image datasets were reconstructed from the raw data: Standard FD images applying FBP which served as reference, HD images applying FBP and HD images applying IRIS. For the HD data sets, only data from 1 tube detector-system was used. Quantitative image quality analysis was performed by measuring image noise in tissue and air. Qualitative image quality was evaluated according to the European Guidelines on Quality criteria for CT. Additional assessment of artifacts, lesion conspicuity, and edge sharpness was performed. : Image noise in soft tissue was substantially decreased in HD-IRIS (-3.4 HU, -22%) and increased in HD-FBP (+6.2 HU, +39%) images when compared with the reference (mean noise, 15.9 HU). No significant differences between the FD-FBP and HD-IRIS images were found for the visually sharp anatomic reproduction, overall diagnostic acceptability (P = 0.923), lesion conspicuity (P = 0.592), and edge sharpness (P = 0.589), while HD-FBP was rated inferior. Streak artifacts and beam hardening was significantly more prominent in HD-FBP while HD-IRIS images exhibited a slightly different noise pattern. Direct intrapatient comparison of standard FD body protocols and HD-IRIS reconstruction suggest that the latest iterative reconstruction algorithms allow for approximately 50% dose reduction without deterioration of the high image quality necessary for confident diagnosis.

  4. Reduction of thoracic aorta motion artifact with high-pitch 128-slice dual-source computed tomographic angiography: a historical control study.

    Science.gov (United States)

    Nakagawa, Junichiro; Tasaki, Osamu; Watanabe, Yoshiyuki; Azuma, Takeo; Ohnishi, Mitsuo; Ukai, Isao; Tahara, Kenichi; Ogura, Hiroshi; Kuwagata, Yasuyuki; Hamasaki, Toshimitsu; Shimazu, Takeshi

    2013-01-01

    Electrocardiogram-gated imaging combined with multi-detector row computed tomography (MDCT) has reduced cardiac motion artifacts, but it was not practical in the emergency setting. The purpose of this study was to evaluate the ability of a high-pitch, 128-slice dual-source CT (DSCT) scanner to reduce motion artifacts in patients admitted to the emergency room. This study comprised 100 patients suspected of having thoracic aorta lesions. We examined 47 patients with the 128-slice DSCT scanner (DSCT group), and 53 patients were examined with a 64-slice MDCT scanner (MDCT group). Six anatomic areas in the thoracic aorta were evaluated. Computed tomography images in the DSCT group were distinct, and significant differences were observed in images of all areas between the 2 groups except for the descending aorta. The high-pitch DSCT scanner can reduce motion artifacts of the thoracic aorta and enable radiological diagnosis even in patients with tachycardia and without breath hold.

  5. Clinical validation of dual-source dual-energy computed tomography (DECT) for coronary and valve imaging in patients undergoing trans-catheter aortic valve implantation (TAVI).

    Science.gov (United States)

    Mahoney, R; Pavitt, C W; Gordon, D; Park, B; Rubens, M B; Nicol, E D; Padley, S P

    2014-08-01

    To assess the validity of virtual non-contrast (VNC) reconstructions for coronary artery calcium (CACS) and aortic valve calcium scoring (AVCS) in patients undergoing trans-catheter aortic valve implantation (TAVI). Twenty-three consecutive TAVI patients underwent a three-step computed tomography (CCT) acquisition: (1) traditional CACS; (2) dual-energy (DE) CT coronary angiogram (CTCA); and (3) DE whole-body angiogram. Linear regression was used to model calcium scores generated from VNC images with traditional scores to derive a conversion factor [2.2 (95% CI: 1.97-2.58)]. The effective radiation dose for the TAVI protocol was compared to a standard control group. Bland-Altman analysis and weighted k-statistic were used to assess inter-method agreement for absolute score and risk centiles. CACS and AVCS from VNC reconstructions correlated well with traditional scores (r = 0.94 and r = 0.86; both p VNC and non-contrast coronary calcium scores [mean difference -71.8 (95% limits of agreement -588.7 to 445.1)], with excellent risk stratification into risk centiles (k = 0.99). However, the agreement was weaker for the aortic valve [mean difference -210.6 (95% limits of agreement -1233.2 to 812)]. Interobserver variability was excellent for VNC CACS [mean difference of 6 (95% limits of agreement 134.1-122.1)], and AVCS [mean difference of -16.4 (95% limits of agreement 576 to -608.7)]. The effective doses for the DE TAVI protocol was 16.4% higher than standard TAVI protocol (22.7 versus 19.5 mSv, respectively) accounted for by the DE CTCA dose being 47.8% higher than that for a standard CTCA [9.9 (5.6-14.35) versus 6.7 (1.17-13.72) mSv; p VNC reconstructions. However, the dose from DE CTCA is significantly greater than the standard single-energy CTCA precluding the use of this technology in routine clinical practice. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning

    Energy Technology Data Exchange (ETDEWEB)

    Felmly, Lloyd M. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiothoracic Surgery, Department of Surgery, Charleston, SC (United States); De Cecco, Carlo N.; Varga-Szemes, Akos; McQuiston, Andrew D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J.; Litwin, Sheldon E.; Bayer, Richard R. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-05-15

    To investigate feasibility, image quality and safety of low-tube-voltage, low-contrast-volume comprehensive cardiac and aortoiliac CT angiography (CTA) for planning transcatheter aortic valve replacement (TAVR). Forty consecutive TAVR candidates prospectively underwent combined CTA of the aortic root and vascular access route (270 mgI/ml iodixanol). Patients were assigned to group A (second-generation dual-source CT [DSCT], 100 kV, 60 ml contrast, 4.0 ml/s flow rate) or group B (third-generation DSCT, 70 kV, 40 ml contrast, 2.5 ml/s flow rate). Vascular attenuation, noise, signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were compared. Subjective image quality was assessed by two observers. Estimated glomerular filtration (eGFR) at CTA and follow-up were measured. Besides a higher body-mass-index in group B (24.8±3.8 kg/m{sup 2} vs. 28.1±5.4 kg/m{sup 2}, P=0.0339), patient characteristics between groups were similar (P≥0.0922). Aortoiliac SNR (P=0.0003) was higher in group B. Cardiac SNR (P=0.0003) and CNR (P=0.0181) were higher in group A. Subjective image quality was similar (P≥0.213) except for aortoiliac image noise (4.42 vs. 4.12, P=0.0374). TAVR-planning measurements were successfully obtained in all patients. There were no significant changes in eGFR among and between groups during follow-up (P≥0.302). TAVR candidates can be safely and effectively evaluated by a comprehensive CTA protocol with low contrast volume using low-tube-voltage acquisition. (orig.)

  7. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning

    International Nuclear Information System (INIS)

    Felmly, Lloyd M.; De Cecco, Carlo N.; Varga-Szemes, Akos; McQuiston, Andrew D.; Schoepf, U.J.; Litwin, Sheldon E.; Bayer, Richard R.; Mangold, Stefanie; Vogl, Thomas J.; Wichmann, Julian L.

    2017-01-01

    To investigate feasibility, image quality and safety of low-tube-voltage, low-contrast-volume comprehensive cardiac and aortoiliac CT angiography (CTA) for planning transcatheter aortic valve replacement (TAVR). Forty consecutive TAVR candidates prospectively underwent combined CTA of the aortic root and vascular access route (270 mgI/ml iodixanol). Patients were assigned to group A (second-generation dual-source CT [DSCT], 100 kV, 60 ml contrast, 4.0 ml/s flow rate) or group B (third-generation DSCT, 70 kV, 40 ml contrast, 2.5 ml/s flow rate). Vascular attenuation, noise, signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were compared. Subjective image quality was assessed by two observers. Estimated glomerular filtration (eGFR) at CTA and follow-up were measured. Besides a higher body-mass-index in group B (24.8±3.8 kg/m 2 vs. 28.1±5.4 kg/m 2 , P=0.0339), patient characteristics between groups were similar (P≥0.0922). Aortoiliac SNR (P=0.0003) was higher in group B. Cardiac SNR (P=0.0003) and CNR (P=0.0181) were higher in group A. Subjective image quality was similar (P≥0.213) except for aortoiliac image noise (4.42 vs. 4.12, P=0.0374). TAVR-planning measurements were successfully obtained in all patients. There were no significant changes in eGFR among and between groups during follow-up (P≥0.302). TAVR candidates can be safely and effectively evaluated by a comprehensive CTA protocol with low contrast volume using low-tube-voltage acquisition. (orig.)

  8. Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.

    Science.gov (United States)

    Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi

    2018-07-01

    Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    International Nuclear Information System (INIS)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F.; Schoepf, V.; Spitzer, E.; Feuchtner, G.M.; Gyoengyoesi, M.; Uyanik-Uenal, K.; Zuckermann, A.

    2015-01-01

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  10. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  11. Ultra-low dose dual-source high-pitch computed tomography of the paranasal sinus: diagnostic sensitivity and radiation dose

    International Nuclear Information System (INIS)

    Schulz, Boris; Zangos, Stefan; Friedrichs, Ingke; Bauer, Ralf W.; Kerl, Matthias; Vogl, Thomas J.; Martin M Mack, Martin M.; Potente, Stefan

    2012-01-01

    Background: Today's gold standard for diagnostic imaging of inflammatory diseases of the paranasal sinus is computed tomography (CT). Purpose: To evaluate diagnostic sensitivity and radiation dose of an ultra-low dose dual-source CT technique. Material and Methods: Paranasal sinuses of 14 cadaveric heads were independently evaluated by two readers using a modern dual-source CT with lowest reasonable dosage in high-pitch mode (100 kV, 10 mAs, collimation 0.6 mm, pitch value 3.0). Additionally the head part of an anthropomorphic Alderson-Rando phantom was equipped with thermoluminescent detectors to measure radiation exposure to the eye lenses and thyroid gland. Results: Diagnostic accuracy regarding sinusoidal fluid, nasal septum deviation, and mucosal swelling was 100%. Mastoid fluid was detected in 76% and 92%, respectively. In the phantom study, average measured eye lens dosage was 0.64 mGy; radiation exposure of the thyroid gland was 0.085 mGy. Conclusion: Regarding evaluation of inflammatory diseases of the paranasal sinus this study indicates sufficient accuracy of the proposed CT protocol at a very low dosage level

  12. Application of dual-source-computed tomography in pediatric cardiology in children within the first year of life; Einsatz der Dual-Source-Computertomografie in der Kinderkardiologie bei Kindern im ersten Lebensjahr

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, P.; Stenger, A.; Dittrich, S.; Gloeckler, M. [Erlangen-Nuernberg Univ., Erlangen (Germany). Pediatric Cardiology; Cesnjevar, R.; Rueffer, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Congenital Heart Surgery; Hammon, M.; Uder, M.; Rompel, O. [Erlangen-Nuernberg Univ., Erlangen (Germany). Radiology

    2016-02-15

    To assess fields of application and value of dual source computed tomography (DSCT) for diagnostics and therapy in patients with congenital heart disease during their first year of life. Evaluation of image quality, surgical use and radiation exposure of 2nd and 3rd generation DSCT. DSCT was applied in 118 cases between January 2012 and October 2014 for diagnostics of congenital heart defects. 2nd generation was used in 91 cases until April 2014 and 3rd generation in 27 cases during the period thereafter. 3D reconstructions of the image data were created for clinical diagnostics and planning of interventions. Image quality was assessed using a 4-point-scale. The visibility of the mammary arteries was analyzed, and signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. The usefulness of 3D-reconstructions for surgical planning was rated using a 5-point-scale. Radiation exposure and contrast dye consumption were determined. All cases were analyzed retrospectively. DSCT was successfully used in 118 cases. All image data obtained were interpretable. More than 60 percent of cases did not show any artifacts. The mammary arteries were visible down to the diaphragmatic arch in more than 80 percent of cases. Diagnostic value and surgical benefit were evaluated as ''useful'' or as ''essential'' in all cases. Median radiation dose was 0.4 mSv and 0.27 mSv for the 2nd and 3rd generation DSCT, respectively. Consumption of contrast dye was 2 ml/kg in all cases. DSCT is a modern and extremely helpful technique for diagnostics and planning of interventions in patients with complex congenital heart defects. Extracardiac vascular structures in particular can be depicted three-dimensionally at high resolution. The use of iterative reconstruction with 3rd generation DSCT yielded image quality similar to that of 2nd generation DSCT at considerably reduced radiation exposure level compared to 2nd generation DSCT. 3rd

  13. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Low dose prospective ECG-gated delayed enhanced dual-source computed tomography in reperfused acute myocardial infarction comparison with cardiac magnetic resonance

    International Nuclear Information System (INIS)

    Wang Rui; Zhang Zhaoqi; Xu Lei; Ma Qin; He Yi; Lu Dongxu; Yu Wei; Fan Zhanming

    2011-01-01

    Purpose: To determine whether prospective electrocardiogram (ECG)-gated delayed contrast-enhanced dual-source computed tomography (DCE-DSCT) can accurately delineate the extension of myocardial infarction (MI) compared with delayed enhanced cardiac MR (DE-MR). Material and methods: Eleven patients were examined using dual-source CT and cardiac MR in 2 weeks after a first reperfused MI. DCE-DSCT scan protocol was performed with prospective ECG-gating sequential scan model 7 min after contrast administration. In a 17-model, infarcted myocardium detected by DE-MR was categorized as transmural and subendocardial extension. Segment of infarcted location and graded transmurality were compared between DCE-MDCT and DE-MR. Results: In all eleven patients, diagnostic quality was obtained for depicting delayed enhanced myocardium. Agreement between DCE-DSCT and MR was good on myocardial segment based comparison (kappa = 0.85, p < 0.001), and on transmural and subendocardial infarction type comparison (kappa = 0.82, p < 0.001, kappa = 0.52, p < 0.001, respectively). CT value was higher on infarcted region than that of normal region (100.02 ± 9.57 HU vs. 72.63 ± 7.32 HU, p < 0.001). Radiation dose of prospectively ECG-gating protocol were 0.99 ± 0.08 mSv (0.82-1.19 mSv). Conclusions: Prospective ECG-gated DCE-DSCT can accurately assess the extension and the patterns of myocardial infarction with low radiation dose.

  15. Low dose prospective ECG-gated delayed enhanced dual-source computed tomography in reperfused acute myocardial infarction comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Rui, E-mail: rui_wang1979@yahoo.cn [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Zhang Zhaoqi, E-mail: zhaoqi5000@vip.sohu.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Xu Lei, E-mail: leixu2001@hotmail.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Ma Qin, E-mail: tel1367@gmail.com [Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); He Yi, E-mail: heyi139@sina.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Lu Dongxu, E-mail: larry.hi@163.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Yu Wei, E-mail: yuwei02@gmail.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Fan Zhanming, E-mail: fanzm120@tom.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China)

    2011-11-15

    Purpose: To determine whether prospective electrocardiogram (ECG)-gated delayed contrast-enhanced dual-source computed tomography (DCE-DSCT) can accurately delineate the extension of myocardial infarction (MI) compared with delayed enhanced cardiac MR (DE-MR). Material and methods: Eleven patients were examined using dual-source CT and cardiac MR in 2 weeks after a first reperfused MI. DCE-DSCT scan protocol was performed with prospective ECG-gating sequential scan model 7 min after contrast administration. In a 17-model, infarcted myocardium detected by DE-MR was categorized as transmural and subendocardial extension. Segment of infarcted location and graded transmurality were compared between DCE-MDCT and DE-MR. Results: In all eleven patients, diagnostic quality was obtained for depicting delayed enhanced myocardium. Agreement between DCE-DSCT and MR was good on myocardial segment based comparison (kappa = 0.85, p < 0.001), and on transmural and subendocardial infarction type comparison (kappa = 0.82, p < 0.001, kappa = 0.52, p < 0.001, respectively). CT value was higher on infarcted region than that of normal region (100.02 {+-} 9.57 HU vs. 72.63 {+-} 7.32 HU, p < 0.001). Radiation dose of prospectively ECG-gating protocol were 0.99 {+-} 0.08 mSv (0.82-1.19 mSv). Conclusions: Prospective ECG-gated DCE-DSCT can accurately assess the extension and the patterns of myocardial infarction with low radiation dose.

  16. The value of coronary artery calcium score assessed by dual-source computed tomography coronary angiography for predicting presence and severity of coronary artery disease

    International Nuclear Information System (INIS)

    Almasi, Alireza; Pouraliakbar, Hamidreza; Sedghian, Ahmad; Karimi, Mohammad Ali; Firouzi, Ata; Tehrai, Mahmood

    2014-01-01

    Measuring coronary artery calcium score (CACS) using a dual-source CT scanner is recognized as a major indicator for assessing coronary artery disease. The present study aimed to validate the clinical significance of CACS in predicting coronary artery stenosis and its severity. This prospective study was conducted on 202 consecutive patients who underwent both conventional coronary angiography and dual-source (256-slice) computed tomography coronary angiography (CTA) for any reason in our cardiac imaging center from March to September 2013. CACS was measured by Agatston algorithm on non-enhanced CT. The severity of coronary artery disease was assessed by Gensini score on conventional angiography. There was a significant relationship between the number of diseased coronary vessels and mean calcium score, i.e. the mean calcium score was 202.25±450.06 in normal coronary status, 427.50±607.24 in single-vessel disease, 590.03±511.34 in two-vessel disease, and 953.35±1023.45 in three-vessel disease (p<0.001). There was a positive association between calcium score and Gensini score (r=0.636, p<0.001). In a linear regression model, calcium score was a strong determinant of the severity of coronary artery disease. Calcium scoring had an acceptable value for discriminating coronary disease from normal condition with optimal cutoff point of 350, yielding a sensitivity and specificity of 83% and 70%, respectively. Our study confirmed the strong relationship between the coronary artery calcium score and the presence and severity of stenosis in coronary arteries assessed by both the number of diseased coronary vessels and also by the Gnesini score

  17. Quantitative parameters to compare image quality of non-invasive coronary angiography with 16-slice, 64-slice and dual-source computed tomography

    International Nuclear Information System (INIS)

    Burgstahler, Christof; Reimann, Anja; Brodoefel, Harald; Tsiflikas, Ilias; Thomas, Christoph; Heuschmid, Martin; Daferner, Ulrike; Drosch, Tanja; Schroeder, Stephen; Herberts, Tina

    2009-01-01

    Multi-slice computed tomography (MSCT) is a non-invasive modality to visualize coronary arteries with an overall good image quality. Improved spatial and temporal resolution of 64-slice and dual-source computed tomography (DSCT) scanners are supposed to have a positive impact on diagnostic accuracy and image quality. However, quantitative parameters to compare image quality of 16-slice, 64-slice MSCT and DSCT are missing. A total of 256 CT examinations were evaluated (Siemens, Sensation 16: n=90; Siemens Sensation 64: n=91; Siemens Definition: n=75). Mean Hounsfield units (HU) were measured in the cavum of the left ventricle (LV), the ascending aorta (Ao), the left ventricular myocardium (My) and the proximal part of the left main (LM), the left anterior descending artery (LAD), the right coronary artery (RCA) and the circumflex artery (CX). Moreover, the ratio of intraluminal attenuation (HU) to myocardial attenuation was assessed for all coronary arteries. Clinical data [body mass index (BMI), gender, heart rate] were accessible for all patients. Mean attenuation (CA) of the coronary arteries was significantly higher for DSCT in comparison to 64- and 16-slice MSCT within the RCA [347±13 vs. 254±14 (64-MSCT) vs. 233±11 (16-MSCT) HU], LM (362±11/275 ± 12/262±9), LAD (332±17/248±19/219±14) and LCX (310±12/210±13/221±10, all p<0.05), whereas there was no significant difference between DSCT and 64-MSCT for the LV, the Ao and My. Heart rate had a significant impact on CA ratio in 16-slice and 64-slice CT only (p<0.05). BMI had no impact on the CA ratio in DSCT only (p<0.001). Improved spatial and temporal resolution of dual-source CT is associated with better opacification of the coronary arteries and a better contrast with the myocardium, which is independent of heart rate. In comparison to MSCT, opacification of the coronary arteries at DSCT is not affected by BMI. The main advantage of DSCT lies with the heart rate independency, which might have a

  18. Usefulness of electrocardiography-gated dual-source computed tomography for evaluating morphological features of the ventricles in children with complex congenital heart defects

    International Nuclear Information System (INIS)

    Nakagawa, Motoo; Hara, Masaki; Sakurai, Keita; Asano, Miki; Shibamoto, Yuta; Ohashi, Kazuya

    2011-01-01

    Improved time resolution using dual-source computed tomography (DSCT) enabled adaptation of electrocardiography (ECG)-gated cardiac CT for children with a high heart rate. In this study, we evaluated the ability of ECG-gated DSCT (ECG-DSCT) to depict the morphological ventricular features in patients with congenital heart disease (CHD). Between August 2006 and March 2010, a total of 66 patients with CHD (aged 1 day to 9 years, median 11 months) were analyzed using ECG-DSCT. The type of anomaly was ventricular septal defect (VSD) in 32 (malaligned type in 20, perimembranous type in 7, supracristal type in 3, muscular type in 2), single ventricle (SV) in 11, and corrected transposition of the great arteries (cTGA) in 3. All patients underwent ECG-DSCT and ultrasonography (US). We evaluated the accuracy of diagnosing the type of VSD. For the cases with SV and cTGA, we evaluated the ability to depict anatomical ventricular features. In all 32 cases of VSD, DSCT could confirm the VSD defects, and the findings were identical to those obtained by US. Anatomical configurations of the SV and cTGA were correctly diagnosed, similar to that on US. Our study suggests that ECG-DSCT can clearly depict the configuration of ventricles. (author)

  19. Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Kuettner, Axel; Lell, Michael M.; Wuest, Wolfgang; Scharf, Michael; Uder, Michael [University of Erlangen, Department of Radiology, Erlangen (Germany); Deak, Paul; Kalender, Willi A. [University of Erlangen, Department of Medical Physics, Erlangen (Germany); Keller, Andrea K.; Haeberle, Lothar [University of Erlangen, Department of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Achenbach, Stephan; Seltmann, Martin [University of Erlangen, Department of Cardiology, Erlangen (Germany)

    2012-03-15

    To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine. Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation. Estimates for mean relative ED was 7.1 {+-} 2.1 mSv/100 mAs for TCM and 12.5 {+-} 5.3 mSv/100 mAs for CTC (P < 0.001). Relative dose reduction at low HR ({<=}60 bpm) was highest (49 {+-} 5%) compared to intermediate (60-70 bpm, 33 {+-} 12%) and high HR (>70 bpm, 29 {+-} 12%). However lowest ED is achieved at high HR (5.2 {+-} 1.5 mSv/100 mAs), compared with intermediate (6.7 {+-} 1.6 mSv/100 mAs) and low (8.3 {+-} 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied. Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM. circle Monte Carlo simulations allow for individual radiation dose calculations. (orig.)

  20. Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch

    International Nuclear Information System (INIS)

    May, Matthias S.; Kuettner, Axel; Lell, Michael M.; Wuest, Wolfgang; Scharf, Michael; Uder, Michael; Deak, Paul; Kalender, Willi A.; Keller, Andrea K.; Haeberle, Lothar; Achenbach, Stephan; Seltmann, Martin

    2012-01-01

    To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine. Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation. Estimates for mean relative ED was 7.1 ± 2.1 mSv/100 mAs for TCM and 12.5 ± 5.3 mSv/100 mAs for CTC (P 70 bpm, 29 ± 12%). However lowest ED is achieved at high HR (5.2 ± 1.5 mSv/100 mAs), compared with intermediate (6.7 ± 1.6 mSv/100 mAs) and low (8.3 ± 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied. Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM. circle Monte Carlo simulations allow for individual radiation dose calculations. (orig.)

  1. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    International Nuclear Information System (INIS)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn; Kang, Eun Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  2. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Eun Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Ki Yeol [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-06-15

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  3. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: a phantom study.

    Science.gov (United States)

    Hwang, Sung Ho; Oh, Yu-Whan; Ham, Soo-Youn; Kang, Eun-Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 ± 0.9%, and 1.7 ± 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 ± 7.4%) was significantly greater (p volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  4. From first to latest imaging technology: Revisiting the first mummy investigated with X-ray in 1896 by using dual-source computed tomography.

    Science.gov (United States)

    Zesch, Stephanie; Panzer, Stephanie; Rosendahl, Wilfried; Nance, John W; Schönberg, Stefan O; Henzler, Thomas

    2016-01-01

    The aim of this study was to systematically reinvestigate the first human mummy that was ever analyzed with X-ray imaging in 1896, using dual-source computed tomography (DSCT) in order to compare the earliest and latest imaging technologies, to estimate preservation, age at death, sex, anatomical variants, paleopathological findings, mummification, embalming and wrapping of the child mummy from ancient Egypt. Radiocarbon dating was used to determine the mummy's age and to specify the child's living period in the Egyptian chronology. The ancient Egyptian child mummy is kept in the Senckenberg Museum of Natural History in Frankfurt am Main, Germany. An accelerator mass spectrometer (MICADAS) was used for radiocarbon dating. DSCT was performed using a 2 × 64 slice dual-source CT system (Siemens Healthineers, Forchheim, Germany). A thorough visual examination of the mummy, a systematic radiological evaluation of the DICOM datasets, and established methods in physical anthropology were applied to assess the bio-anthropological data and the post mortem treatment of the body. Radiocarbon dating yielded a calibrated age between 378 and 235 cal BC (95.4% confidence interval), corresponding with the beginning of the Ptolemaic period. The mummy was a male who was four to five years old at the time of death. Remnants of the brain and inner organs were preserved by the embalmers, which is regularly observed in ancient Egyptian child mummies. Skin tissue, inner organs, tendons and/or musculature, cartilage, nerves and vasculature could be identified on the DSCT dataset. The dental health of the child was excellent. Anatomical variants and pathological defects included a congenital Pectus excavatum deformity, hepatomegaly, Harris lines, and longitudinal clefts in the ventral cortices of both femora. Our results highlight the enormous progress achieved form earliest to latest imaging technology for advanced mummy research using the first human mummy investigated with X

  5. From first to latest imaging technology: Revisiting the first mummy investigated with X-ray in 1896 by using dual-source computed tomography

    International Nuclear Information System (INIS)

    Zesch, Stephanie; Panzer, Stephanie; Rosendahl, Wilfried; Nance, John W. Jr.; Schönberg, Stefan O.; Henzler, Thomas

    2016-01-01

    The aim of this study was to systematically reinvestigate the first human mummy that was ever analyzed with X-ray imaging in 1896, using dual-source computed tomography (DSCT) in order to compare the earliest and latest imaging technologies, to estimate preservation, age at death, sex, anatomical variants, paleopathological findings, mummification, embalming and wrapping of the child mummy from ancient Egypt. Radiocarbon dating was used to determine the mummy’s age and to specify the child’s living period in the Egyptian chronology. The ancient Egyptian child mummy is kept in the Senckenberg Museum of Natural History in Frankfurt am Main, Germany. An accelerator mass spectrometer (MICADAS) was used for radiocarbon dating. DSCT was performed using a 2 × 64 slice dual-source CT system (Siemens Healthineers, Forchheim, Germany). A thorough visual examination of the mummy, a systematic radiological evaluation of the DICOM datasets, and established methods in physical anthropology were applied to assess the bio-anthropological data and the post mortem treatment of the body. Radiocarbon dating yielded a calibrated age between 378 and 235 cal BC (95.4% confidence interval), corresponding with the beginning of the Ptolemaic period. The mummy was a male who was four to five years old at the time of death. Remnants of the brain and inner organs were preserved by the embalmers, which is regularly observed in ancient Egyptian child mummies. Skin tissue, inner organs, tendons and/or musculature, cartilage, nerves and vasculature could be identified on the DSCT dataset. The dental health of the child was excellent. Anatomical variants and pathological defects included a congenital Pectus excavatum deformity, hepatomegaly, Harris lines, and longitudinal clefts in the ventral cortices of both femora. Our results highlight the enormous progress achieved form earliest to latest imaging technology for advanced mummy research using the first human mummy investigated with X

  6. Dual-source computed tomography. Effect on regional and global left ventricular function assessment compared to magnetic resonance imaging; Untersuchung der regionalen und globalen linksventrikulaeren Funktion mit der Dual-Source-Computertomografie im Vergleich zur Magnetresonanztomografie

    Energy Technology Data Exchange (ETDEWEB)

    Lueders, F.; Seifarth, H.; Wessling, J.; Heindel, W.; Juergens, Kai Uwe [Inst. fuer Klinische Radiologie, Universitaetsklinikum Muenster (Germany); Fischbach, R. [Klinik fuer Radiologie, Nuklearmedizin und Neuroradiologie, Asklepios Klinik Altona (Germany)

    2009-10-15

    Purpose: to determine regional and global left ventricular (LV) functional parameters and to perform segmental wall thickness (SWT) and motion (WM) analysis of dual source CT (DSCT) with optimized temporal resolution versus MRI. Materials and Methods: 30 patients with known or suspected CAD, non-obstructive HCM, DCM, ARVCM, Fallot Tetralogy, cardiac sarcoidosis and cardiac metastasis underwent DSCT and MRI. The DSCT and MR images were evaluated: end-systolic (ESV), end-diastolic LV (EDV) volumes, stroke volume (SV), ejection fraction (EF), and myocardial mass (MM) as well as LV wall thickening and segmental WM applying the AHA model were obtained and statistically analyzed. Results: The mean LV-EDV (r = 0.96) and ESV (r = 0.98) as well as LV-EF (r = 0.97), SV (r = 0.83), and MM (r = 0.95) correlated well. Bland Altman analysis revealed little systematic underestimation of LV-EF (-1.1 {+-} 7.8%), EDV (-0.3 {+-} 18.2 ml), SV (-1.3 {+-} 16.7 ml) and little overestimation of ESV (1.1 {+-} 7.8 ml) and MM (12.8 {+-} 14.4 g) determined by DSCT. Systolic reconstruction time points correlated well (DSCT 32.2 {+-} 6.7 vs. MRI 35.6 {+-} 4.4% RR-interval). The LV wall thickness obtained by DSCT and MRI showed close correlation in all segments (diameter diff 0.42 {+-} 1 mm). In 413 segments (89%) WM abnormalities were equally rated, whereas DSCT tended to underestimate the degree of wall motion impairment. Conclusion: DSCT with optimized temporal resolution enables regional and global LV function analysis as well as segmental WM analysis in good correlation with MRI. However, the degree of WM impairment is slightly underestimated by DSCT. (orig.)

  7. Assessment of Double Outlet Right Ventricle Associated with Multiple Malformations in Pediatric Patients Using Retrospective ECG-Gated Dual-Source Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available To evaluate the feasibility and diagnostic accuracy of retrospective electrocardiographically (ECG-gated dual-source computed tomography (DSCT for the assessment of double outlet right ventricle (DORV and associated multiple malformations in pediatric patients.Forty-seven patients <10 years of age with DORV underwent retrospective ECG-gated DSCT. The location of the ventricular septal defect (VSD, alignment of the two great arteries, and associated malformations were assessed. The feasibility of retrospective ECG-gated DSCT in pediatric patients was assessed, the image quality of DSCT and the agreement of the diagnosis of associated malformations between DSCT and transthoracic echocardiography (TTE were evaluated, the diagnostic accuracies of DSCT and TTE were referred to surgical results, and the effective doses were calculated.Apart from DORV, 109 associated malformations were confirmed postoperatively. There was excellent agreement (κ = 0.90 for the diagnosis of associated malformations between DSCT and TTE. However, DSCT was superior to TTE in demonstrating paracardiac anomalies (sensitivity, coronary artery anomalies: 100% vs. 80.00%, anomalies of great vessels: 100% vs. 88.57%, separate thoracic and abdominal anomalies: 100% vs. 76.92%, respectively. Combined with TTE, DSCT can achieve excellent diagnostic performance in intracardiac anomalies (sensitivity, 91.30% vs. 100%. The mean image quality score was 3.70 ± 0.46 (κ = 0.76. The estimated mean effective dose was < 1 mSv (0.88 ± 0.34 mSv.Retrospective ECG-gated DSCT is a better diagnostic tool than TTE for pediatric patients with complex congenital heart disease such as DORV. Combined with TTE, it may reduce or even obviate the use of invasive cardiac catheterization, and thus expose the patients to a much lower radiation dose.

  8. Direct costs and cost-effectiveness of dual-source computed tomography and invasive coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease.

    Science.gov (United States)

    Dorenkamp, Marc; Bonaventura, Klaus; Sohns, Christian; Becker, Christoph R; Leber, Alexander W

    2012-03-01

    The study aims to determine the direct costs and comparative cost-effectiveness of latest-generation dual-source computed tomography (DSCT) and invasive coronary angiography for diagnosing coronary artery disease (CAD) in patients suspected of having this disease. The study was based on a previously elaborated cohort with an intermediate pretest likelihood for CAD and on complementary clinical data. Cost calculations were based on a detailed analysis of direct costs, and generally accepted accounting principles were applied. Based on Bayes' theorem, a mathematical model was used to compare the cost-effectiveness of both diagnostic approaches. Total costs included direct costs, induced costs and costs of complications. Effectiveness was defined as the ability of a diagnostic test to accurately identify a patient with CAD. Direct costs amounted to €98.60 for DSCT and to €317.75 for invasive coronary angiography. Analysis of model calculations indicated that cost-effectiveness grew hyperbolically with increasing prevalence of CAD. Given the prevalence of CAD in the study cohort (24%), DSCT was found to be more cost-effective than invasive coronary angiography (€970 vs €1354 for one patient correctly diagnosed as having CAD). At a disease prevalence of 49%, DSCT and invasive angiography were equally effective with costs of €633. Above a threshold value of disease prevalence of 55%, proceeding directly to invasive coronary angiography was more cost-effective than DSCT. With proper patient selection and consideration of disease prevalence, DSCT coronary angiography is cost-effective for diagnosing CAD in patients with an intermediate pretest likelihood for it. However, the range of eligible patients may be smaller than previously reported.

  9. Diagnostic accuracy of second-generation dual-source computed tomography coronary angiography with iterative reconstructions: a real-world experience.

    Science.gov (United States)

    Maffei, E; Martini, C; Rossi, A; Mollet, N; Lario, C; Castiglione Morelli, M; Clemente, A; Gentile, G; Arcadi, T; Seitun, S; Catalano, O; Aldrovandi, A; Cademartiri, F

    2012-08-01

    The authors evaluated the diagnostic accuracy of second-generation dual-source (DSCT) computed tomography coronary angiography (CTCA) with iterative reconstructions for detecting obstructive coronary artery disease (CAD). Between June 2010 and February 2011, we enrolled 160 patients (85 men; mean age 61.2±11.6 years) with suspected CAD. All patients underwent CTCA and conventional coronary angiography (CCA). For the CTCA scan (Definition Flash, Siemens), we use prospective tube current modulation and 70-100 ml of iodinated contrast material (Iomeprol 400 mgI/ ml, Bracco). Data sets were reconstructed with iterative reconstruction algorithm (IRIS, Siemens). CTCA and CCA reports were used to evaluate accuracy using the threshold for significant stenosis at ≥50% and ≥70%, respectively. No patient was excluded from the analysis. Heart rate was 64.3±11.9 bpm and radiation dose was 7.2±2.1 mSv. Disease prevalence was 30% (48/160). Sensitivity, specificity and positive and negative predictive values of CTCA in detecting significant stenosis were 90.1%, 93.3%, 53.2% and 99.1% (per segment), 97.5%, 91.2%, 61.4% and 99.6% (per vessel) and 100%, 83%, 71.6% and 100% (per patient), respectively. Positive and negative likelihood ratios at the per-patient level were 5.89 and 0.0, respectively. CTCA with second-generation DSCT in the real clinical world shows a diagnostic performance comparable with previously reported validation studies. The excellent negative predictive value and likelihood ratio make CTCA a first-line noninvasive method for diagnosing obstructive CAD.

  10. Identification of coronary artery anatomy on dual-source cardiac computed tomography before arterial switch operation in newborns and young infants. Comparison with transthoracic echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2018-02-15

    Considering inherent limitations of transthoracic echocardiography, the diagnostic accuracy of cardiac CT in identifying coronary artery anatomy before arterial switch operation needs to be investigated with recently improved coronary artery visibility using electrocardiogram (ECG)-synchronized dual-source CT. To compare diagnostic accuracy between cardiac CT using a dual-source scanner and transthoracic echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. The study included 101 infants (median age 4 days, range 0 days to 10 months; M:F=78:23) who underwent ECG-synchronized cardiac dual-source CT and transthoracic echocardiography before arterial switch operation between July 2011 and December 2016. We evaluated and classified coronary artery anatomy on cardiac CT and transthoracic echocardiography. With the surgical findings as the reference standard, we compared the diagnostic accuracy for identifying coronary artery anatomy between cardiac CT and transthoracic echocardiography. The most common coronary artery pattern was the usual pattern (left coronary artery from sinus 1 and right coronary artery from sinus 2; 64.4%, 65/101), followed by a single coronary artery from sinus 2 and a conal branch from sinus 1 (7.9%, 8/101), the inverted pattern (5.9%, 6/101), the right coronary artery and left anterior descending artery from sinus 1 and the left circumflex artery from sinus 2 (5.9%, 6/101), and others. In 96 infants with surgically proven coronary artery anatomy, the diagnostic accuracy of cardiac CT was significantly higher than that of transthoracic echocardiography (91.7%, 88/96 vs. 54.2%, 52/96; P<0.0001). Diagnostic accuracy of cardiac CT is significantly higher than that of echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. (orig.)

  11. Identification of coronary artery anatomy on dual-source cardiac computed tomography before arterial switch operation in newborns and young infants. Comparison with transthoracic echocardiography

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2018-01-01

    Considering inherent limitations of transthoracic echocardiography, the diagnostic accuracy of cardiac CT in identifying coronary artery anatomy before arterial switch operation needs to be investigated with recently improved coronary artery visibility using electrocardiogram (ECG)-synchronized dual-source CT. To compare diagnostic accuracy between cardiac CT using a dual-source scanner and transthoracic echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. The study included 101 infants (median age 4 days, range 0 days to 10 months; M:F=78:23) who underwent ECG-synchronized cardiac dual-source CT and transthoracic echocardiography before arterial switch operation between July 2011 and December 2016. We evaluated and classified coronary artery anatomy on cardiac CT and transthoracic echocardiography. With the surgical findings as the reference standard, we compared the diagnostic accuracy for identifying coronary artery anatomy between cardiac CT and transthoracic echocardiography. The most common coronary artery pattern was the usual pattern (left coronary artery from sinus 1 and right coronary artery from sinus 2; 64.4%, 65/101), followed by a single coronary artery from sinus 2 and a conal branch from sinus 1 (7.9%, 8/101), the inverted pattern (5.9%, 6/101), the right coronary artery and left anterior descending artery from sinus 1 and the left circumflex artery from sinus 2 (5.9%, 6/101), and others. In 96 infants with surgically proven coronary artery anatomy, the diagnostic accuracy of cardiac CT was significantly higher than that of transthoracic echocardiography (91.7%, 88/96 vs. 54.2%, 52/96; P<0.0001). Diagnostic accuracy of cardiac CT is significantly higher than that of echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. (orig.)

  12. Application of Dual-Source-Computed Tomography in Pediatric Cardiology in Children Within the First Year of Life.

    Science.gov (United States)

    Hausmann, P; Stenger, A; Dittrich, S; Cesnjevar, R; Rüffer, A; Hammon, M; Uder, M; Rompel, O; Glöckler, M

    2016-02-01

    To assess fields of application and value of dual source computed tomography (DSCT) for diagnostics and therapy in patients with congenital heart disease during their first year of life. Evaluation of image quality, surgical use and radiation exposure of 2nd and 3 rd generation DSCT. DSCT was applied in 118 cases between January 2012 and October 2014 for diagnostics of congenital heart defects. 2nd generation was used in 91 cases until April 2014 and 3 rd generation in 27 cases during the period thereafter. 3 D reconstructions of the image data were created for clinical diagnostics and planning of interventions. Image quality was assessed using a 4-point-scale. The visibility of the mammary arteries was analyzed, and signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. The usefulness of 3D-reconstructions for surgical planning was rated using a 5-point-scale. Radiation exposure and contrast dye consumption were determined. All cases were analyzed retrospectively. DSCT was successfully used in 118 cases. All image data obtained were interpretable. More than 60 percent of cases did not show any artifacts. The mammary arteries were visible down to the diaphragmatic arch in more than 80 percent of cases. Diagnostic value and surgical benefit were evaluated as "useful" or as "essential" in all cases. Median radiation dose was 0.4 mSv and 0.27 mSv for the 2nd and 3 rd generation DSCT, respectively. Consumption of contrast dye was 2 ml/kg in all cases. DSCT is a modern and extremely helpful technique for diagnostics and planning of interventions in patients with complex congenital heart defects. Extracardiac vascular structures in particular can be depicted three-dimensionally at high resolution. The use of iterative reconstruction with 3 rd generation DSCT yielded image quality similar to that of 2nd generation DSCT at considerably reduced radiation exposure level compared to 2nd generation DSCT. 3 rd generation DSCT is a low

  13. Quantitative analysis of pulmonary artery and pulmonary collaterals in preoperative patients with pulmonary artery atresia using dual-source computed tomography

    International Nuclear Information System (INIS)

    Yin Lei; Lu, Bin; Han Lei; Wu Runze; Johnson, Laura; Xu Zhongying; Jiang Shiliang; Dai Ruping

    2011-01-01

    Objective: To evaluate the value of dual-source computed tomography (DSCT) in quantitatively measuring pulmonary arteries and major aortopulmonary collateral vessels in comparison with conventional angiographic (CA) on preoperative patients with pulmonary artery atresia and ventricular septal defect (PAA-VSD). Materials and methods: Twenty PAA-VSD patients who had complete imaging data of DSCT, CA and echocardiography (ECHO) studies were retrospectively analyzed. Using final clinical diagnosis as the standard, results of DSCT, CA and ECHO on the detection of cardiac malformations, measurement of diameters of pulmonary artery and collateral vessel, as well as the values of McGoon ratio, pulmonary arterial index (PAI) and total neopulmonary arterial index (TNPAI) were derived and compared. Results: In 20 patients, 51 of 54 (94.4%) cardiac malformations were visualized by DSCT, whereas 42 (77.8%) by ECHO (p = 0.027). Fourteen cases with aortopulmonary collateral vessels were all (100%) detected by DSCT, whereas 5 cases (35.7%) by ECHO (p = 0.001), and 13 cases (92.9%) by CA (p = 0.995). Sixteen cases with confluence of native pulmonary arteries were diagnosed by DSCT, whereas 10 cases by CA (p = 0.024). Measurement of the diameters of pulmonary arteries, collateral vessels, and descending aorta at the level of diaphragm were correlated well between DSCT and CA (r = 0.95-0.99). McGoon ratio (DSCT = 1.18 ± 0.60, CA = 1.23 ± 0.64), PAI (DSCT = 130.96 ± 99.38 mm 2 /m 2 , CA = 140.91 ± 107.87 mm 2 /m 2 ) and TNPAI (DSCT = 160.31 ± 125.62 mm 2 /m 2 , CA = 169.14 ± 122.81 mm 2 /m 2 ) were calculated respectively, without significant differences between DSCT and CA by paired t-tests (all p > 0.05). Conclusion: DSCT was efficient for evaluating and measuring native pulmonary artery and aortopulmonary collateral vessels prior to surgical procedures in PAA-VSD patients. Combined with echocardiography, DSCT showed potential to replace CA for evaluating pulmonary artery

  14. Evaluation of image quality on a per-patient, per-vessel, and per-segment basis by noninvasive coronary angiography with 64-section computed tomography. Dual-source versus single-source computed tomography

    International Nuclear Information System (INIS)

    Nakashima, Yoshiteru; Okada, Munemasa; Washida, Yasuo; Miura, Toshiro; Fujimura, Tatsuo; Nao, Tomoko; Matsunaga, Naofumi

    2011-01-01

    The purpose of this study was to evaluate the image quality (IQ) of dual-source CT (DSCT) versus single-source CT (SSCT). A total of 100 patients underwent 64-section CT coronary angiography (50 DSCT, 50 SSCT). Three observers evaluated the IQ of each coronary segment using a four-point scale (1, excellent; 2, good; 3, fair; 4, no assessment). The IQ of DSCT coronary angiography was compared with SSCT coronary angiography on a per-patient, per-vessel, and per-segment basis using the chi-squared test. The DSCT image quality score (IQS) was significantly lower on a per-patient basis and per-vessel basis for all vessels and on a per-segment basis for some segments (1, 2, 4PD, 4AV, 7, 9, 11, 12, 13) compared with SSCT. The DSCT IQS was significantly lower for certain segments (2, 4PD, 11, 13) with high heart rates (≥70 beats/min). The DSCT IQS was significantly lower for certain segments (1, 2, 3, 4PD, 4AV, 7, 8, 9, 10, 12, 13) with low heart rates (<70 beats/min). DSCT showed a significantly better IQ than SSCT, especially in patients with low heart rates. (author)

  15. Contrast volume reduction using third generation dual source computed tomography for the evaluation of patients prior to transcatheter aortic valve implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Daniel O. [University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Department of Internal Medicine 2 (Cardiology), Erlangen (Germany); Harvard Medical School, Cardiac MR PET CT Program, Massachusetts General Hospital, Boston, MA (United States); Arnold, Martin; Klinghammer, Lutz; Schuhbaeck, Annika; Hell, Michaela M.; Muschiol, Gerd; Gauss, Soeren; Achenbach, Stephan; Marwan, Mohamed [University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Department of Internal Medicine 2 (Cardiology), Erlangen (Germany); Lell, Michael; Uder, Michael [University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Department of Radiology, Erlangen (Germany); Hoffmann, Udo [Harvard Medical School, Cardiac MR PET CT Program, Massachusetts General Hospital, Boston, MA (United States)

    2016-12-15

    Chronic renal failure is common in patients referred for transcatheter aortic valve implantation (TAVI). CT angiography is recommended and provides crucial information prior to TAVI. We evaluated the feasibility of a reduced contrast volume protocol for pre-procedural CT imaging. Forty consecutive patients were examined with prospectively ECG-triggered high-pitch spiral acquisition using a novel third-generation dual-source CT system; 38 ml contrast agent was used. Image quality was graded on a visual scale (1-4). Contrast attenuation was measured at the level of the aortic root and at the iliac bifurcation. Mean patient age was 82 ± 6 years (23 males; 58 %). Mean attenuation/average image quality was 285 ± 60 HU/1.5 at the aortic annulus compared to 289 ± 74 HU/1.8 at the iliac bifurcation (p = 0.77/p = 0.29). Mean estimated effective radiation dose was 2.9 ± 0.3 mSv. A repeat acquisition was necessary in one patient due to image quality. Out of the 35 patients who underwent TAVI, 31 (89 %) patients had no or mild aortic regurgitation. Thirty-two (91 %) patients were discharged successfully. Pre-procedural CTA with a total of 38 ml contrast volume is feasible and clinically useful, using third-generation dual-source CT, allowing comprehensive imaging for procedural success. (orig.)

  16. Image quality and radiation dose of lower extremity CT angiography at 70 kVp on an integrated circuit detector dual-source computed tomography.

    Science.gov (United States)

    Qi, Li; Zhao, Yan'E; Zhou, Chang Sheng; Spearman, James V; Renker, Matthias; Schoepf, U Joseph; Zhang, Long Jiang; Lu, Guang Ming

    2015-06-01

    Despite the well-established requirement for radiation dose reduction there are few studies examining the potential for lower extremity CT angiography (CTA) at 70 kVp. To compare the image quality and radiation dose of lower extremity CTA at 70 kVp using a dual-source CT system with an integrated circuit detector to similar studies at 120 kVp. A total of 62 patients underwent lower extremity CTA. Thirty-one patients were examined at 70 kVp using a second generation dual-source CT with an integrated circuit detector (70 kVp group) and 31 patients were evaluated at 120 kVp using a first generation dual-source CT (120 kVp group). The attenuation and image noise were measured and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Two radiologists assessed image quality. Radiation dose was compared. The mean attenuation of the 70 kVp group was higher than the 120 kVp group (575 ± 149 Hounsfield units [HU] vs. 258 ± 38 HU, respectively, P < 0.001) as was SNR (44.0 ± 22.0 vs 32.7 ± 13.3, respectively, P = 0.017), CNR (39.7 ± 20.6 vs 26.6 ± 11.7, respectively, P = 0.003) and the mean image quality score (3.7 ± 0.1 vs. 3.2 ± 0.3, respectively, P < 0.001). The inter-observer agreement was good for the 70 kVp group and moderate for the 120 kVp group. The dose-length product was lower in the 70 kVp group (264.5 ± 63.1 mGy × cm vs. 412.4 ± 81.5 mGy × cm, P < 0.001). Lower extremity CTA at 70 kVp allows for lower radiation dose with higher SNR, CNR, and image quality when compared with standard 120 kVp. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Free-breathing high-pitch 80kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose.

    Science.gov (United States)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik

    2017-04-01

    To investigate image quality, presence of motion artifacts and effects on radiation dose of 80kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1±4.9years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n=31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n=56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p>0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (pchest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Measurement of opening and closing angles of aortic valve prostheses in vivo using dual-source computed tomography: Comparison with those of manufacturers' in 10 different types

    International Nuclear Information System (INIS)

    Suh, Young Joo; Kim, Young Jin; Hong, Yoo Jin; Lee, Hye Jeong; Hur, Jin; Im, Dong Jin; Kim, Yun Jung; Choi, Byoung Wook

    2015-01-01

    The aims of this study were to compare opening and closing angles of normally functioning mechanical aortic valves measured on dual-source computed tomography (CT) with the manufacturers' values and to compare CT-measured opening angles according to valve function. A total of 140 patients with 10 different types of mechanical aortic valves, who underwent dual-source cardiac CT, were included. Opening and closing angles were measured on CT images. Agreement between angles in normally functioning valves and the manufacturer values was assessed using the interclass coefficient and the Bland-Altman method. CT-measured opening angles were compared between normal functioning valves and suspected dysfunctioning valves. The CT-measured opening angles of normally functioning valves and manufacturers' values showed excellent agreement for seven valve types (intraclass coefficient [ICC], 0.977; 95% confidence interval [CI], 0.962-0.987). The mean differences in opening angles between the CT measurements and the manufacturers' values were 1.2° in seven types of valves, 11.0° in On-X valves, and 15.5° in ATS valves. The manufacturers' closing angles and those measured by CT showed excellent agreement for all valve types (ICC, 0.953; 95% CI, 0.920-0.972). Among valves with suspected dysfunction, those with limitation of motion (LOM) and an increased pressure gradient (PG) had smaller opening angles than those with LOM only (p < 0.05). Dual-source cardiac CT accurately measures opening and closing angles in most types of mechanical aortic valves, compared with the manufacturers' values. Opening angles on CT differ according to the type of valve dysfunction and a decreased opening angle may suggest an elevated PG

  19. Technical principles of dual source CT

    International Nuclear Information System (INIS)

    Petersilka, Martin; Bruder, Herbert; Krauss, Bernhard; Stierstorfer, Karl; Flohr, Thomas G.

    2008-01-01

    During the past years, multi-detector row CT (MDCT) has evolved into clinical practice with a rapid increase of the number of detector slices. Today's 64 slice CT systems allow whole-body examinations with sub-millimeter resolution in short scan times. As an alternative to adding even more detector slices, we describe the system concept and design of a CT scanner with two X-ray tubes and two detectors (mounted on a CT gantry with a mechanical offset of 90 deg.) that has the potential to overcome limitations of conventional MDCT systems, such as temporal resolution for cardiac imaging. A dual source CT (DSCT) scanner provides temporal resolution equivalent to a quarter of the gantry rotation time, independent of the patient's heart rate (83 ms at 0.33 s rotation time). In addition to the benefits for cardiac scanning, it allows to go beyond conventional CT imaging by obtaining dual energy information if the two tubes are operated at different voltages. Furthermore, we discuss how both acquisition systems can be used to add the power reserve of two X-ray tubes for long scan ranges and obese patients. Finally, future advances of DSCT are highlighted

  20. Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2017-12-15

    Accurate evaluation of anatomy and ventricular function after the Norwood procedure in hypoplastic left heart syndrome is important for treatment planning and prognostication, but echocardiography and cardiac MRI have limitations. To assess serial changes in anatomy and ventricular function on dual-source cardiac CT after the Norwood procedure for hypoplastic left heart syndrome. In 14 consecutive patients with hypoplastic left heart syndrome, end-systolic and end-diastolic phase cardiac dual-source CT was performed before and early (average: 1 month) after the Norwood procedure, and repeated late (median: 4.5 months) after the Norwood procedure in six patients. Ventricular functional parameters and indexed morphological measurements including pulmonary artery size, right ventricular free wall thickness, and ascending aorta size on cardiac CT were compared between different time points. Moreover, morphological features including ventricular septal defect, endocardial fibroelastosis and coronary ventricular communication were evaluated on cardiac CT. Right ventricular function and volumes remained unchanged (indexed end-systolic and end-diastolic volumes: 38.9±14.0 vs. 41.1±21.5 ml/m{sup 2}, P=0.7 and 99.5±30.5 vs. 105.1±33.0 ml/m{sup 2}, P=0.6; ejection fraction: 60.1±7.3 vs. 63.8±7.0%, P=0.1, and indexed stroke volume: 60.7±18.0 vs. 64.0±15.6 ml/m{sup 2}, P=0.5) early after the Norwood procedure, but function was decreased (ejection fraction: 64.2±2.6 vs. 58.1±7.1%, P=0.01) and volume was increased (indexed end-systolic and end-diastolic volumes: 39.2±14.9 vs. 68.9±20.6 ml/m{sup 2}, P<0.003 and 107.8±36.5 vs. 162.9±36.2 ml/m{sup 2}, P<0.006, and indexed stroke volume: 68.6±21.7 vs. 94.0±21.3 ml/m{sup 2}, P=0.02) later. Branch pulmonary artery size showed a gradual decrease without asymmetry after the Norwood procedure. Right and left pulmonary artery stenoses were identified in 21.4% (3/14) of the patients. Indexed right ventricular free wall

  1. Free-breathing high-pitch 80 kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Bodelle, Boris, E-mail: bbodelle@googlemail.com; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-04-15

    Objectives: To investigate image quality, presence of motion artifacts and effects on radiation dose of 80 kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). Materials and methods: The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1 ± 4.9 years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n = 31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n = 56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Results: Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p > 0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (p < 0.01). Motion artifacts were reduced significantly (p = 0.001) with DSCT. DSCT with ADMIRE showed the highest overall IQ (p < 0.0001). Radiation dose was lower for DSCT compared to SSCT (median SSDE: 0.82 mGy vs. 0.92 mGy, p < 0.02; median ED: 0.4 mSv vs. 0.48 mSv, p = 0.02). Conclusions: High-pitch 80 kVp chest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation.

  2. Free-breathing high-pitch 80 kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose

    International Nuclear Information System (INIS)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-01-01

    Objectives: To investigate image quality, presence of motion artifacts and effects on radiation dose of 80 kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). Materials and methods: The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1 ± 4.9 years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n = 31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n = 56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Results: Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p > 0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (p < 0.01). Motion artifacts were reduced significantly (p = 0.001) with DSCT. DSCT with ADMIRE showed the highest overall IQ (p < 0.0001). Radiation dose was lower for DSCT compared to SSCT (median SSDE: 0.82 mGy vs. 0.92 mGy, p < 0.02; median ED: 0.4 mSv vs. 0.48 mSv, p = 0.02). Conclusions: High-pitch 80 kVp chest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation.

  3. Dual field theories of quantum computation

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N

  4. Influence of trigger type, tube voltage and heart rate on calcified plaque imaging in dual source cardiac computed tomography: phantom study

    International Nuclear Information System (INIS)

    Penzkofer, Tobias; Donandt, Eva; Isfort, Peter; Allmendinger, Thomas; Kuhl, Christiane K; Mahnken, Andreas H; Bruners, Philipp

    2014-01-01

    To investigate the impact of high pitch cardiac CT vs. retrospective ECG gated CT on the quantification of calcified vessel stenoses, with assessment of the influence of tube voltage, reconstruction kernel and heart rate. A 4D cardiac movement phantom equipped with three different plaque phantoms (12.5%, 25% and 50% stenosis at different calcification levels), was scanned with a 128-row dual source CT scanner, applying different trigger types (gated vs. prospectively triggered high pitch), tube voltages (100-120 kV) and heart rates (50–90 beats per minute, bpm). Images were reconstructed using different standard (B26f, B46f, B70f) and iterative (I26f, I70f) convolution kernels. Absolute and relative plaque sizes were measured and statistically compared. Radiation dose associated with the different methods (gated vs. high pitch, 100 kV vs. 120 kV) were compared. Compared to the known diameters of the phantom plaques and vessels both CT-examination techniques overestimated the degrees of stenoses. Using the high pitch CT-protocol plaques appeared larger (0.09 ± 0.31 mm, 2 ± 8 percent points, PP) in comparison to the ECG-gated CT-scans. Reducing tube voltage had a similar effect, resulting in higher grading of the same stenoses by 3 ± 8 PP. In turn, sharper convolution kernels lead to a lower grading of stenoses (differences of up to 5%). Pairwise comparison of B26f and I26f, B46f and B70f, and B70f and I70f showed differences of 0–1 ± 6–8 PP of the plaque depiction. Motion artifacts were present only at 90 bpm high pitch experiments. High-pitch protocols were associated with significantly lower radiation doses compared with the ECG-gated protocols (258.0 mGy vs. 2829.8 mGy CTDI vol , p ≤ 0.0001). Prospectively triggered high-pitch cardiac CT led to an overestimation of plaque diameter and degree of stenoses in a coronary phantom. This overestimation is only slight and probably negligible in a clinical situation. Even at higher heart rates high pitch CT

  5. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    International Nuclear Information System (INIS)

    Lell, Michael M.; Hinkmann, Fabian; Nkenke, Emeka; Schmidt, Bernhard; Seidensticker, Peter; Kalender, Willi A.; Uder, Michael; Achenbach, Stephan

    2010-01-01

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations 10% resulting in a total luminal reduction 50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously reported. The ophthalmic artery still cannot be adequately visualized.

  7. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  8. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT.

    Science.gov (United States)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    2017-09-01

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.

  9. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, Konstantin; Wintersperger, Bernd J.; Rist, Carsten; Buhmann, Sonja; Reiser, Maximilian F.; Becker, Christoph R.; Leber, Alexander W.; Ziegler, Franz von; Knez, Andreas

    2006-01-01

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  10. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    Energy Technology Data Exchange (ETDEWEB)

    Pelgrim, Gert Jan; Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, P.O. Box EB44, Groningen (Netherlands); Hamersvelt, Robbert W. van; Willemink, Martin J.; Schilham, Arnold; Leiner, Tim [Utrecht University Medical Center, Department of Radiology, Utrecht (Netherlands); Schmidt, Bernhard T.; Flohr, Thomas [Siemens Healthcare GmbH, Forchheim (Germany); Milles, Julien [Philips Healthcare, Best (Netherlands); Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, P.O. Box EB44, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen (Netherlands)

    2017-09-15

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. (orig.)

  11. SU-G-IeP4-14: Prostate Brachytherapy Activity Measurement and Source Localization by Using a Dual Photon Emission Computed Tomography System: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C; Lin, H; Chuang, K; Chiang, C [National Tsing Hua University, Hsinchu, Taiwan (China); Tsai, Y [National Taiwan University Hospital, Taipei City, Taiwan (China)

    2016-06-15

    Purpose: To monitor the activity distribution and needle position during and after implantation in operating rooms. Methods: Simulation studies were conducted to assess the feasibility of measurement activity distribution and seed localization using the DuPECT system. The system consists of a LaBr3-based probe and planar detection heads, a collimation system, and a coincidence circuit. The two heads can be manipulated independently. Simplified Yb-169 brachytherapy seeds were used. A water-filled cylindrical phantom with a 40-mm diameter and 40-mm length was used to model a simplified prostate of the Asian man. Two simplified seeds were placed at a radial distance of 10 mm and tangential distance of 10 mm from the center of the phantom. The probe head was arranged perpendicular to the planar head. Results of various imaging durations were analyzed and the accuracy of the seed localization was assessed by calculating the centroid of the seed. Results: The reconstructed images indicate that the DuPECT can measure the activity distribution and locate the seeds dwelt in different positions intraoperatively. The calculated centroid on average turned out to be accurate within the pixel size of 0.5 mm. The two sources were identified when the duration is longer than 15 s. The sensitivity measured in water was merely 0.07 cps/MBq. Conclusion: Preliminary results show that the measurement of the activity distribution and seed localization are feasible using the DuPECT system intraoperatively. It indicates the DuPECT system has potential to be an approach for dose-distribution-validation. The efficacy of acvtivity distribution measurement and source localization using the DuPECT system will evaluated in more realistic phantom studies (e.g., various attenuation materials and greater number of seeds) in the future investigation.

  12. Drive Current Enhancement in TFET by Dual Source Region

    Directory of Open Access Journals (Sweden)

    Zhi Jiang

    2015-01-01

    Full Text Available This paper presents tunneling field-effect transistor (TFET with dual source regions. It explores the physics of drive current enhancement. The novel approach of dual source provides an effective technique for enhancing the drive current. It is found that this structure can offer four tunneling junctions by increasing a source region. Meanwhile, the dual source structure does not influence the excellent features of threshold slope (SS of TFET. The number of the electrons and holes would be doubled by going through the tunneling junctions on the original basis. The overlap length of gate-source is also studied. The dependence of gate-drain capacitance Cgd and gate-source capacitance Cgs on gate-to-source voltage Vgs and drain-to-source voltage Vds was further investigated. There are simulation setups and methodology used for the dual source TFET (DS-TFET assessment, including delay time, total energy per operation, and energy-delay product. It is confirmed that the proposed TFET has strong potentials for VLSI.

  13. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    Energy Technology Data Exchange (ETDEWEB)

    Lell, Michael M., E-mail: Michael.lell@uk-erlangen.de [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Hinkmann, Fabian [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Nkenke, Emeka [Department of Maxillofacial Surgery, University Erlangen (Germany); Schmidt, Bernhard [Bayer-Schering Healthcare, Berlin (Germany); Seidensticker, Peter [Siemens Healthcare, CT-Division, Forchheim (Germany); Kalender, Willi A. [Institute of Medical Physics, University Erlangen (Germany); Uder, Michael [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Achenbach, Stephan [Department of Cardiology, University Erlangen (Germany)

    2010-11-15

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations <10%, 27 segments (3.1%) lumen alterations >10% resulting in a total luminal reduction <50%, 17 segments (2%) lumen alterations of more than 10% resulting in a total luminal reduction >50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously

  14. Coronary dual source multi detector computed tomography in patients suspected of coronary artery disease: Prevalence of incidental extra-cardiac findings

    International Nuclear Information System (INIS)

    Bendix, K.; Jensen, J.M.; Poulsen, S.; Mygind, N.; Norgaard, B.L.

    2011-01-01

    Objectives: (1) To establish the prevalence of incidental extra-cardiac findings (ECFs) in coronary multi detector computed tomography (CCT) performed in a large, homogeneous cohort of patients suspected of coronary artery disease (CAD). (2) To examine whether any association can be established between ECFs and pretest risk as determined by conventional risk factors for CAD, the Diamond-Forrester risk model or coronary artery calcium scores. (3) To assess cost related to extra-cardiac examinations. Design: Retrospective study of consecutive patients who had CCT performed. A large field of view was recreated from the non-enhanced CT scan and evaluated by a radiologist for incidental ECFs. Subjects: Patients with chest pain referred to CTA by a cardiologist. Results: In 1383 patients a total of 481 ECFs were indentified, 378 minor (meaning no follow-up was needed) and 103 major ECFs (ECF followed up clinically and/or with additional imaging), in a total of 393 (28%) patients. 85 (6%) patients had one major ECF and 9 (0.7%) patients had two major ECFs. In 19 (4 cases of malignancy) patients the major ECF had therapeutic consequences. Significant positive associations were found between age and smoking, respectively and the presence of ECFs. The cost estimate of saving one life from malignant disease based on ECF examinations is 40,190 Euro . Conclusion: Incidental extra-cardiac findings are common, sometimes revealing serious, even malignant disease. Diagnostic follow-up of major ECFs seems to be cost-effective in a Danish clinical setting. We recommend investigating a large field of view for incidental ECFs following CCT.

  15. On-chip dual comb source for spectroscopy

    OpenAIRE

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L.; Lipson, Michal

    2016-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator comb...

  16. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    International Nuclear Information System (INIS)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-01-01

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  17. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    Science.gov (United States)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used

  18. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    NARCIS (Netherlands)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    OBJECTIVE: To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. METHODS: Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic

  19. Dual Optical Comb LWIR Source and Sensor

    Science.gov (United States)

    2017-10-12

    Justin M. Brown, Mark G. Allen Physical Sciences Inc. (PSI) Pierre Jouy, Jérôme Faist Swiss Federal Institute of Technology (ETH) Markus Geiser...Research, Development & Engineering Center Name of Contractor: Physical Sciences Inc. Principal Investigator: Dr. Joel M. Hensley Business...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and

  20. Rate Control in Dual Source Evaporation

    NARCIS (Netherlands)

    Wielinga, T.; Gruisinga, W.; Leeuwis, H.; Lodder, J.C.; van Weers, J.F.; Wilmans, J.C.

    1980-01-01

    Two-component thin films are deposited in a high-vacuum system from two close sources, heated by an electron beam which is deflected between them. By using quartz-crystal monitors the evaporation rates are measured seperately, which is usually considered to be problematical. One rate signal is used

  1. A dual-parameter multichannel analyzer using a personal computer

    International Nuclear Information System (INIS)

    Akimoto, T.; Murai, I.; Chaki, S.; Ogawa, Y.; Shoji, I.

    1989-01-01

    The design of a practical system for measuring two-parameter signals is reported. To obtain constantly changing energy spectra of nuclear reactor assemblies due to repeated insertion of pulsed neutron sources, the simultaneous acquisition of time and energy data are needed. A computer-based dual-parameter multichannel pulse-height analyzer (MCA) has been developed; it employs a personal computer, two analog-to-digital converters (ADC's), and a parallel interface board for handling these signals. The system showed excellent performance characteristics with a minimum data processing time of about 14 μs; a maximum conversion gain of 2 18 channels (for example, 512 x 512 ch); a count capacity of 2 32 -1/ch(2 16 -1/ch at 512 x 512 ch); and the time required for graphic display of approximately 3 s/2 16 dots (contour display) or about 0.1 s/(2 16 /16) dots (isometric display). Large data arrays were handled dynamically with a segment register. The data processing speed was improved by transferring the data from the ADC to the central processing unit (CPU) in 16-bit words and simultaneously reading the status flag and the data. The graphic display process was speeded up by writing the data bit corresponding to the locations directly into the graphic video random access memory (VRAM). The system is simple to operate, and by changing the memory size and coincidence resolution time by software operations, it is highly flexible

  2. A novel dual energy method for enhanced quantitative computed tomography

    Science.gov (United States)

    Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.

    2018-01-01

    Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.

  3. Dual energy computed tomography for the head.

    Science.gov (United States)

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  4. In vitro differentiation of renal stone composition using dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Zhou Changsheng; Zhang Longjiang; Xu Feng; Qi Li; Zhao Yan'e; Zheng Ling; Huang Wei; Liu Youhuang; Lu Guangming

    2012-01-01

    Objective: To evaluate the ability of dual-source. dual-energy CT in differentiating uric acid stones from non-uric acid stones with infrared spectroscopy as reference standard. Materials and Methods: Urinary calculus from 308 patients were scanned in first generation dual-source CT with dual-energy mode between July 2011 and June 2012. Renal Stone application was used to analyze their composition. The uric acid stones color were coded red and non-uric acid stones were blue. CT values were measured in 60 selective urinary calculus including 30 uric acid stones and 30 non-uric acid stones. The accuracy of dual energy CT to differentiate uric acid and no-uric acid stones was calculated. Results: Of 308 patients, 60 patients had uric acid stones and 248 non-uric acid stones. No difference was found for uric acid stone at 80 kV and 140 kV (375.8±69.2 HU vs. 374.1±69.4 HU; t=-0.217, P=0.830), while CT values of non-uric acid stones were higher at 80 kV than those at 140 kV (1455.1±312.4 HU vs. 1039.6±194.4 HU; t=-12.16. P<0.001). CT values of non-uric acid stones at 80 kV, 140 kV, and average weighted images (1455.1±312.4 HU, 1 039.6±194.4 HU, and 882.0±176.4 HU, respectively) were higher than those of uric acid stones (375.8±69.2 HU, 374.1±69.4 HU, and 366.3±80.1 HU, respectively; P<0.001). With infrared spectrum findings as reference standard, the accuracy of dual energy CT in differentiating uric acid stones from non-uric acid stones was 100%. Conclusions: Dual-source, dual-energy CT can accurately differentiate uric acid stones from non-uric acid stones, and plays an important role in treatment planning of renal stones. (authors)

  5. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  6. 128-slice Dual-source Computed Tomography Coronary Angiography in Patients with Atrial Fibrillation: Image Quality and Radiation Dose of Prospectively Electrocardiogram-triggered Sequential Scan Compared with Retrospectively Electrocardiogram-gated Spiral Scan.

    Science.gov (United States)

    Lin, Lu; Wang, Yi-Ning; Kong, Ling-Yan; Jin, Zheng-Yu; Lu, Guang-Ming; Zhang, Zhao-Qi; Cao, Jian; Li, Shuo; Song, Lan; Wang, Zhi-Wei; Zhou, Kang; Wang, Ming

    2013-01-01

    Objective To evaluate the image quality (IQ) and radiation dose of 128-slice dual-source computed tomography (DSCT) coronary angiography using prospectively electrocardiogram (ECG)-triggered sequential scan mode compared with ECG-gated spiral scan mode in a population with atrial fibrillation. Methods Thirty-two patients with suspected coronary artery disease and permanent atrial fibrillation referred for a second-generation 128-slice DSCT coronary angiography were included in the prospective study. Of them, 17 patients (sequential group) were randomly selected to use a prospectively ECG-triggered sequential scan, while the other 15 patients (spiral group) used a retrospectively ECG-gated spiral scan. The IQ was assessed by two readers independently, using a four-point grading scale from excel-lent (grade 1) to non-assessable (grade 4), based on the American Heart Association 15-segment model. IQ of each segment and effective dose of each patient were compared between the two groups. Results The mean heart rate (HR) of the sequential group was 96±27 beats per minute (bpm) with a variation range of 73±25 bpm, while the mean HR of the spiral group was 86±22 bpm with a variationrange of 65±24 bpm. Both of the mean HR (t=1.91, P=0.243) and HR variation range (t=0.950, P=0.350) had no significant difference between the two groups. In per-segment analysis, IQ of the sequential group vs. spiral group was rated as excellent (grade 1) in 190/244 (78%) vs. 177/217 (82%) by reader1 and 197/245 (80%) vs. 174/214 (81%) by reader2, as non-assessable (grade 4) in 4/244 (2%) vs. 2/217 (1%) by reader1 and 6/245 (2%) vs. 4/214 (2%) by reader2. Overall averaged IQ per-patient in the sequential and spiral group showed equally good (1.27±0.19 vs. 1.25±0.22, Z=-0.834, P=0.404). The effective radiation dose of the sequential group reduced significantly compared with the spiral group (4.88±1.77 mSv vs. 10.20±3.64 mSv; t=-5.372, P=0.000). Conclusion Compared with retrospectively

  7. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  8. Dual energy computer tomography. Objectve dosimetry, image quality and dose efficiency; Dual Energy Computertomographie. Objektive Dosimetrie, Bildqualitaet und Dosiseffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Schenzle, Jan Christian

    2012-05-24

    The aim of the present studies was an objective reflection of newly developed methods of modern imaging techniques concerning radiation exposure to the human body. Dual Source computed tomography has opened up a broad variety of new diagnostic possibilities. Using two X-ray sources with an angular offset of about 90 in a single gantry, images with a high spatiotemporal resolution can be achieved, for example in patients suffering acute chest pain. The Dual Energy Mode is based on the acquisition of two data sets with two different X-ray spectra which make it possible to identify certain substances with different spectral properties like bone, iodine or other organic material. [6-17] There is no doubt that this technical innovation will make an essential contribution to clinical diagnostics, but it remained to be proven that there is no additional dose. An anthropomorphic Phantom and thermoluminiscent detectors were used to objectively quantify the radiation dose resulting from the different examination protocols. For Dual Energy CT examinations, it was possible to verify dose neutrality in combination with comparable image quality and even improved contrast to noise ratio. Nowadays, this protocol is used in clinical routine examinations, e.g. for the evaluation of pulmonary embolism. A milestone in dose reduction was reached with modern triple rule out protocols. Causes of acute chest pain such as heart attack, pulmonary embolism or aortic rupture can be differentiated in a single examination with a high precision and a fractional amount of dose compared to conventional methods.

  9. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  10. Acute vertebral fracture after spinal fusion: a case report illustrating the added value of single-source dual-energy computed tomography to magnetic resonance imaging in a patient with spinal Instrumentation

    International Nuclear Information System (INIS)

    Fuchs, M.; Putzier, M.; Pumberger, M.; Hermann, K.G.; Diekhoff, T.

    2016-01-01

    Magnetic resonance imaging (MRI) is degraded by metal-implant-induced artifacts when used for the diagnostic assessment of vertebral compression fractures in patients with instrumented spinal fusion. Dual-energy computed tomography (DECT) offers a promising supplementary imaging tool in these patients. This case report describes an 85-year-old woman who presented with a suspected acute vertebral fracture after long posterior lumbar interbody fusion. This is the first report of a vertebral fracture that showed bone marrow edema on DECT; however, edema was missed by an MRI STIR sequence owing to metal artifacts. Bone marrow assessment using DECT is less susceptible to metal artifacts than MRI, resulting in improved visualization of vertebral edema in the vicinity of fused vertebral bodies. (orig.)

  11. On-chip dual-comb source for spectroscopy.

    Science.gov (United States)

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  12. The utilization of dual source CT in imaging of polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, S. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)], E-mail: savvas.nicolaou@vch.ca; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)

    2008-12-15

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner.

  13. The utilization of dual source CT in imaging of polytrauma

    International Nuclear Information System (INIS)

    Nicolaou, S.; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L.

    2008-01-01

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner

  14. Dual-source dual-energy CT for the differentiation of urinary stone composition: preliminary study

    International Nuclear Information System (INIS)

    Yang Qifang; Zhang Wanshi; Meng Limin; Shi Huiping; Wang Dong; Bi Yongmin; Li Xiangsheng; Fang Hong; Guo Heqing; Yan Jingmin

    2011-01-01

    Objective: To evaluate dual-source dual-energy CT (DSCT) for the differentiation of' urinary stone composition in vitro. Methods: Ninety-seven urinary stones were obtained by endoscopic lithotripsy and scanned using dual-source dual-energy CT. The stones were divided into six groups according to infrared spectroscopy stone analysis: uric acid (UA) stones (n=10), cystine stones (n=5), struvite stones (n=6), calcium oxalate (CaOx) stones (n=22), mixed UA stones (n=7) and mixed calcium stones (n=47). Hounsfield units (HU) of each stone were recorded for the 80 kV and the 140 kV datasets by hand-drawing method. HU difference, HU ratio and dual energy index (DEI) were calculated and compared among the stone groups with one-way ANOVA. Using dual energy software to determine the composition of all stones, results were compared to infrared spectroscopy analysis. Results: There were statistical differences in HU difference [(-17±13), (229±34), (309±45), (512±97), (201±64) and (530±71) HU respectively], in HU ratio (0.96±0.03, 1.34±0.04, 1.41±0.03, 1.47±0.03, 1.30±0.07, and 1.49±0.03 respectively), and DEI (-0.006±0.004, 0.064±0.007, 0.080± 0.007, 0.108±0.011, 0.055±0.014 and 0.112±0.008 respectively) among different stone groups (F= 124.894, 407.028, 322.864 respectively, P<0.01). There were statistical differences in HU difference, HU ratio and DEI between UA stones and the other groups (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between CaOx or mixed calcium stones and the other four groups (P< 0.01). There was statistical difference in HU ratio between cystine and struvite stones (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between struvite and mixed UA stones (P< 0.05). Dual energy software correctly characterized 10 UA stones, 4 cystine stones, 22 CaOx stones and 6 mixed UA stones. Two struvite stones were considered to contain cystine. One cystine stone, 1 mixed UA stone, 4

  15. Computational surgery and dual training computing, robotics and imaging

    CERN Document Server

    Bass, Barbara; Berceli, Scott; Collet, Christophe; Cerveri, Pietro

    2014-01-01

    This critical volume focuses on the use of medical imaging, medical robotics, simulation, and information technology in surgery. It offers a road map for computational surgery success,  discusses the computer-assisted management of disease and surgery, and provides a rational for image processing and diagnostic. This book also presents some advances on image-driven intervention and robotics, as well as evaluates models and simulations for a broad spectrum of cancers as well as cardiovascular, neurological, and bone diseases. Training and performance analysis in surgery assisted by robotic systems is also covered. This book also: ·         Provides a comprehensive overview of the use of computational surgery and disease management ·         Discusses the design and use of medical robotic tools for orthopedic surgery, endoscopic surgery, and prostate surgery ·         Provides practical examples and case studies in the areas of image processing, virtual surgery, and simulation traini...

  16. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    Science.gov (United States)

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  17. Dual-energy CT characteristics of colon and rectal cancer allows differentiation from stool by dual-source CT.

    Science.gov (United States)

    Özdeniz, İlknur; İdilman, İlkay S; Köklü, Seyfettin; Hamaloğlu, Erhan; Özmen, Mustafa; Akata, Deniz; Karçaaltıncaba, Muşturay

    2017-01-01

    We aimed to determine dual-energy computed tomography (DECT) characteristics of colorectal cancer and investigate effectiveness of DECT method in differentiating tumor from stool in patients with colorectal cancer. Fifty consecutive patients with colorectal tumors were enrolled. Staging was performed by DECT (80-140 kV) using dual-source CT after rectal air insufflation and without bowel preparation. Both visual and quantitative analyses were performed at 80 kV and 140 kV, on iodine map and virtual noncontrast (VNC) images. All colorectal tumors had homogeneous pattern on iodine map. Stools demonstrated heterogeneous pattern in 86% (43/50) and homogeneous pattern in 14% (7/50) on iodine maps and were less visible on VNC images. Median density of tumors was 54 HU (18-100 HU) on iodine map and 28 HU (11-56 HU) on VNC images. Median density of stool was 36.5 HU (8-165 HU) on iodine map and -135.5 HU (-438 HU to -13 HU) on VNC images. The density of stools was significantly lower than tumors on both iodine map and VNC images (P VNC images was -1 HU with area under the curve of 1 and a sensitivity and specificity of 100%. Density or visual analysis of iodine map and VNC DECT images allow accurate differentiation of tumor from stool.

  18. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform.

    Science.gov (United States)

    Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-09-22

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  19. Ion range estimation by using dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huenemohr, Nora; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Krauss, Bernhard [Siemens AG, Forchheim (Germany). Imaging and Therapy; Dinkel, Julien [German Cancer Research Center (DKFZ), Heidelberg (Germany). Radiology; Massachusetts General Hospital, Boston, MA (United States). Radiology; Gillmann, Clarissa [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; University Hospital Heidelberg (Germany). Radiation Oncology; Ackermann, Benjamin [Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg (Germany). Radiation Oncology

    2013-07-01

    Inaccurate conversion of CT data to water-equivalent path length (WEPL) is one of the most important uncertainty sources in ion treatment planning. Dual energy CT (DECT) imaging might help to reduce CT number ambiguities with the additional information. In our study we scanned a series of materials (tissue substitutes, aluminum, PMMA, and other polymers) in the dual source scanner (Siemens Somatom Definition Flash). Based on the 80 kVp/140Sn kVp dual energy images, the electron densities Q{sub e} and effective atomic numbers Z{sub eff} were calculated. We introduced a new lookup table that translates the Q{sub e} to the WEPL. The WEPL residuals from the calibration were significantly reduced for the investigated tissue surrogates compared to the empirical Hounsfield-look-up table (single energy CT imaging) from (-1.0 {+-} 1.8)% to (0.1 {+-} 0.7)% and for non-tissue equivalent PMMA from -7.8% to -1.0%. To assess the benefit of the new DECT calibration, we conducted a treatment planning study for three different idealized cases based on tissue surrogates and PMMA. The DECT calibration yielded a significantly higher target coverage in tissue surrogates and phantom material (i.e. PMMA cylinder, mean target coverage improved from 62% to 98%). To verify the DECT calibration for real tissue, ion ranges through a frozen pig head were measured and compared to predictions calculated by the standard single energy CT calibration and the novel DECT calibration. By using this method, an improvement of ion range estimation from -2.1% water-equivalent thickness deviation (single energy CT) to 0.3% (DECT) was achieved. If one excludes raypaths located on the edge of the sample accompanied with high uncertainties, no significant difference could be observed. (orig.)

  20. Ultra-high pitch chest computed tomography at 70 kVp tube voltage in an anthropomorphic pediatric phantom and non-sedated pediatric patients: Initial experience with 3rd generation dual-source CT.

    Science.gov (United States)

    Hagelstein, Claudia; Henzler, Thomas; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Schoenberg, Stefan O; Neff, K Wolfgang; Weis, Meike

    2016-12-01

    Minimizing radiation dose while at the same time preserving image quality is of particular importance in pediatric chest CT. Very recently, CT imaging with a tube voltage of 70 kVp has become clinically available. However, image noise is inversely proportional to the tube voltage. We aimed to investigate radiation dose and image quality of pediatric chest CT performed at 70 kVp in an anthropomorphic pediatric phantom as well as in clinical patients. An anthropomorphic pediatric phantom, which resembles a one-year-old child in physiognomy, was scanned on the 3 rd generation dual-source CT (DSCT) system at 70 kVp and 80 kVp and a fixed ultra low tube-current of 8 mAs to solely evaluate the impact of lowering tube voltage. After the phantom measurements, 18 pediatric patients (mean 29.5 months; range 1-91 months; 21 examinations) underwent 3.2 high-pitch chest CT on the same DSCT system at 70 kVp tube voltage without any sedation. Radiation dose and presence of motion artifacts was compared to a retrospectively identified patient cohort examined at 80 kVp on a 16-slice single-source-CT (SSCT; n=15; 14/15 with sedation; mean 30.7 months; range 0-96 months; pitch=1.5) or on a 2 nd generation DSCT without any sedation (n=6; mean 32.8 months; range 4-61 months; pitch=3.2). Radiation dose in the phantom scans was reduced by approximately 40% when using a tube voltage of 70 kVp instead of 80 kVp. In the pediatric patient group examined at 70 kVp age-specific effective dose (ED; mean 0.5±0.2 mSv) was significantly lower when compared to the retrospective cohort scanned at 80 kVp on the 16-slice-SSCT (mean ED: 1.0±0.3 mSv; pCT examinations showed any motion artifacts whereas 13/15 examinations of the retrospective patient cohort scanned at 80 kVp with a pitch of 1.5 showed motion artifacts. 3.2 high-pitch chest CT performed with 70 kVp significantly reduces radiation dose when compared to 80 kVp while at the same time provides good image quality without any motion artifacts

  1. Dual-Source Swept-Source Optical Coherence Tomography Reconstructed on Integrated Spectrum

    Directory of Open Access Journals (Sweden)

    Shoude Chang

    2012-01-01

    Full Text Available Dual-source swept-source optical coherence tomography (DS-SSOCT has two individual sources with different central wavelengths, linewidth, and bandwidths. Because of the difference between the two sources, the individually reconstructed tomograms from each source have different aspect ratio, which makes the comparison and integration difficult. We report a method to merge two sets of DS-SSOCT raw data in a common spectrum, on which both data have the same spectrum density and a correct separation. The reconstructed tomographic image can seamlessly integrate the two bands of OCT data together. The final image has higher axial resolution and richer spectroscopic information than any of the individually reconstructed tomography image.

  2. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual

  3. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  4. Ultra-high pitch chest computed tomography at 70 kVp tube voltage in an anthropomorphic pediatric phantom and non-sedated pediatric patients. Initial experience with 3{sup rd} generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, Claudia; Henzler, Thomas; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Schoenberg, Stefan O.; Neff, K. Wolfgang; Weis, Meike [Univ. Medical Center Mannheim (Germany). Inst. of Clinical Radiology and Nuclear Medicine

    2016-07-01

    Minimizing radiation dose while at the same time preserving image quality is of particular importance in pediatric chest CT. Very recently, CT imaging with a tube voltage of 70 kVp has become clinically available. However, image noise is inversely proportional to the tube voltage. We aimed to investigate radiation dose and image quality of pediatric chest CT performed at 70 kVp in an anthropomorphic pediatric phantom as well as in clinical patients. An anthropomorphic pediatric phantom, which resembles a one-year-old child in physiognomy, was scanned on the 3{sup rd} generation dual-source CT (DSCT) system at 70 kVp and 80 kVp and a fixed ultra low tube-current of 8 mAs to solely evaluate the impact of lowering tube voltage. After the phantom measurements, 18 pediatric patients (mean 29.5 months; range 1-91 months; 21 examinations) underwent 3.2 high-pitch chest CT on the same DSCT system at 70 kVp tube voltage without any sedation. Radiation dose and presence of motion artifacts was compared to a retrospectively identified patient cohort examined at 80 kVp on a 16-slice single-source-CT (SSCT; n = 15; 14/15 with sedation; mean 30.7 months; range 0-96 months; pitch = 1.5) or on a 2{sup nd} generation DSCT without any sedation (n = 6; mean 32.8 months; range 4-61 months; pitch = 3.2). Radiation dose in the phantom scans was reduced by approximately 40% when using a tube voltage of 70 kVp instead of 80 kVp. In the pediatric patient group examined at 70 kVp age-specific effective dose (ED; mean 0.5 ± 0.2 mSv) was significantly lower when compared to the retrospective cohort scanned at 80 kVp on the 16-slice-SSCT (mean ED: 1.0 ± 0.3 mSv; p < 0.0001) and also considerably lower when compared to the cohort scanned at 80 kVp on the 2{sup nd} generation DSCT (mean ED: 0.9 ± 0.5 mSv). None of the prospective, sedation-free CT examinations showed any motion artifacts whereas 13/15 examinations of the retrospective patient cohort scanned at 80 kVp with a pitch of 1

  5. Dual-source CT in chest pain diagnosis

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, K.; Fink, C.; Rist, C.; Reiser, M.F.; Becker, C.R.; Becker, A.; Knez, A.

    2007-01-01

    With the depiction of pulmonary arteries, coronary arteries, and the aorta, CT angiography of the chest offers a comprehensive diagnostic work-up of unclear chest pain. The aim of this study was to assess the diagnostic accuracy of dual-source CT in this patient group. A total of 47 patients suffering from unclear chest pain were examined with a Siemens Somatom Definition. Volume and flow of contrast media (Ultravist, Schering) were adapted to the body weight. The examinations were evaluated with regard to image quality and contrast opacification and to the diagnostic accuracy with reference to the final clinical diagnosis. Adequate contrast opacification was achieved in all examinations. The depiction of the coronary arteries was diagnostic in all cases. The cause of chest pain could be identified in 41 cases. Among the diagnoses were coronary and myocardial pathologies, valvular disease, aortic aneurysms and dissections, pulmonary embolism, and pneumonic consolidation. DSCT angiography of the chest offers a very good image quality even at high heart rates so that a high diagnostic accuracy is achieved in patients with acute chest pain. (orig.) [de

  6. Closing in on the K Edge : Coronary CT Angiography at 100, 80, and 70 kV-Initial Comparison of a Second-versus a Third-Generation Dual-Source CT System

    NARCIS (Netherlands)

    Meyer, Mathias; Haubenreisser, Holger; Schoepf, U. Joseph; Vliegenthart, Rozemarijn; Leidecker, Christianne; Allmendinger, Thomas; Lehmann, Ralf; Sudarski, Sonja; Borggrefe, Martin; Schoenberg, Stefan O.; Henzler, Thomas

    2014-01-01

    Purpose: To prospectively evaluate radiation and contrast medium requirements for performing high-pitch coronary computed tomographic (CT) angiography at 70 kV using a third-generation dual-source CT system in comparison to a second-generation dual-source CT system. Materials and Methods: All

  7. High-pitch dual-source CT coronary angiography with low volumes of contrast medium

    International Nuclear Information System (INIS)

    Lembcke, Alexander; Hein, Patrick A.; Knobloch, Gesine; Durmus, Tahir; Hamm, Bernd; Schwenke, Carsten; Huppertz, Alexander

    2014-01-01

    To assess the effect of lower volumes of contrast medium (CM) on image quality in high-pitch dual-source computed tomography coronary angiography (CTCA). One-hundred consecutive patients (body weight 65-85 kg, stable heart rate ≤65 bpm, cardiac index ≥2.5 L/min/m 2 ) referred for CTCA were prospectively enrolled. Patients were randomly assigned to one of five groups of different CM volumes (G 30 , 30 mL; G 40 , 40 mL; G 50 , 50 mL; G 60 , 60 mL; G 70 , 70 mL; flow rate 5 mL/s each, iodine content 370 mg/mL). Attenuation within the proximal and distal coronary artery segments was analysed. Mean attenuation for men and women ranged from 345.0 and 399.1 HU in G 30 to 478.2 and 571.8 HU in G 70 . Mean attenuation values were higher in groups with higher CM volumes (P 30 , G 40 , G 50 , G 60 and G 70 were 89 %, 95 %, 98 %, 98 % and 99 %. CM volume of 30 mL in women and 40 mL in men proved to be sufficient to guarantee attenuation of at least 300 HU. In selected patients high-pitch dual-source CTCA can be performed with CM volumes of 40 mL in men or 30 mL in women. (orig.)

  8. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  9. Improved proton computed tomography by dual modality image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, David C., E-mail: dch@ki.au.dk; Bassler, Niels [Experimental Clinical Oncology, Aarhus University, 8000 Aarhus C (Denmark); Petersen, Jørgen Breede Baltzer [Medical Physics, Aarhus University Hospital, 8000 Aarhus C (Denmark); Sørensen, Thomas Sangild [Computer Science, Aarhus University, 8000 Aarhus C, Denmark and Clinical Medicine, Aarhus University, 8200 Aarhus N (Denmark)

    2014-03-15

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  10. Improved proton computed tomography by dual modality image reconstruction

    International Nuclear Information System (INIS)

    Hansen, David C.; Bassler, Niels; Petersen, Jørgen Breede Baltzer; Sørensen, Thomas Sangild

    2014-01-01

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  11. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  12. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    International Nuclear Information System (INIS)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.; Xu Jin; Connors, Alanna; Freeman, Peter E.; Zezas, Andreas

    2010-01-01

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error), and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper

  13. Dual computations of non-Abelian Yang-Mills theories on the lattice

    International Nuclear Information System (INIS)

    Cherrington, J. Wade; Khavkine, Igor; Christensen, J. Daniel

    2007-01-01

    In the past several decades there have been a number of proposals for computing with dual forms of non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet nontrivial case in which the gauge group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest

  14. Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source

    International Nuclear Information System (INIS)

    Escobedo, C; Vincent, S; Choudhury, A I K; Campbell, J; Gordon, R; Brolo, A G; Sinton, D

    2011-01-01

    In this paper, we demonstrate a compact integrated nanohole array-based surface plasmon resonance sensing device. The unit includes a LED light source, driving circuitry, CCD detector, microfluidic network and computer interface, all assembled from readily available commercial components. A dual-wavelength LED scheme was implemented to increase spectral diversity and isolate intensity variations to be expected in the field. The prototype shows bulk sensitivity of 266 pixel intensity units/RIU and a limit of detection of 6 × 10 −4 RIU. Surface binding tests were performed, demonstrating functionality as a surface-based sensing system. This work is particularly relevant for low-cost point-of-care applications, especially those involving multiple tests and field studies. While nanohole arrays have been applied to many sensing applications, and their suitability to device integration is well established, this is the first demonstration of a fully integrated nanohole array-based sensing device.

  15. Distributed quantum computing with single photon sources

    International Nuclear Information System (INIS)

    Beige, A.; Kwek, L.C.

    2005-01-01

    Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)

  16. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  17. The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping

    International Nuclear Information System (INIS)

    Boellaard, T.N.; Henneman, O.D.F.; Streekstra, G.J.; Venema, H.W.; Nio, C.Y.; Dorth-Rombouts, M.C. van; Stoker, J.

    2013-01-01

    Aim: To assess the feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping and without bowel preparation or bowel distension. Materials and methods: Consecutive patients scheduled for preoperative staging computed tomography (CT) because of diagnosed or high suspicion for colorectal cancer were prospectively included in the study. A single contrast-enhanced abdominal CT acquisition using dual-source mode (100 kV/140 kV) was performed without bowel preparation. Weighted average 120 kV images and iodine maps were created with post-processing. Two observers performed a blinded read for colorectal lesions after being trained on three colorectal cancer patients. One observer performed an unblinded read for lesion detectability and placed a region of interest (ROI) within each lesion. Results: In total 21 patients were included and 18 had a colorectal cancer at the time of the CT acquisition. Median cancer size was 43 mm [interquartile range (IQR) 27–60 mm] and all 18 colorectal cancers were visible on the 120 kV images and iodine map during the unblinded read. During the blinded read, observers found 90% (27/30) of the cancers with 120 kV images only and 96.7% (29/30) after viewing the iodine map in addition (p = 0.5). Median enhancement of colorectal cancers was 29.9 HU (IQR 23.1–34.6). The largest benign lesions (70 and 25 mm) were visible on the 120 kV images and iodine map, whereas four smaller benign lesions (7–15 mm) were not. Conclusion: Colorectal cancers are visible on the contrast-enhanced dual-energy CT without bowel preparation or insufflation. Because of the patient-friendly nature of this approach, further studies should explore its use for colorectal cancer detection in frail and elderly patients

  18. Development of optimized segmentation map in dual energy computed tomography

    Science.gov (United States)

    Yamakawa, Keisuke; Ueki, Hironori

    2012-03-01

    Dual energy computed tomography (DECT) has been widely used in clinical practice and has been particularly effective for tissue diagnosis. In DECT the difference of two attenuation coefficients acquired by two kinds of X-ray energy enables tissue segmentation. One problem in conventional DECT is that the segmentation deteriorates in some cases, such as bone removal. This is due to two reasons. Firstly, the segmentation map is optimized without considering the Xray condition (tube voltage and current). If we consider the tube voltage, it is possible to create an optimized map, but unfortunately we cannot consider the tube current. Secondly, the X-ray condition is not optimized. The condition can be set empirically, but this means that the optimized condition is not used correctly. To solve these problems, we have developed methods for optimizing the map (Method-1) and the condition (Method-2). In Method-1, the map is optimized to minimize segmentation errors. The distribution of the attenuation coefficient is modeled by considering the tube current. In Method-2, the optimized condition is decided to minimize segmentation errors depending on tube voltagecurrent combinations while keeping the total exposure constant. We evaluated the effectiveness of Method-1 by performing a phantom experiment under the fixed condition and of Method-2 by performing a phantom experiment under different combinations calculated from the total exposure constant. When Method-1 was followed with Method-2, the segmentation error was reduced from 37.8 to 13.5 %. These results demonstrate that our developed methods can achieve highly accurate segmentation while keeping the total exposure constant.

  19. Dual voltage source inverter topology extending machine operating range

    NARCIS (Netherlands)

    Gerrits, T.; Wijnands, C.G.E.; Paulides, J.J.H.; Duarte, J.L.

    2012-01-01

    Field weakening operation of an electrical machine is a conventional method to extend the angular velocity range of a system above the peak output voltage of the inverter. A downside, however, is that an increased reactive current is required that creates losses but no output torque. A dual voltage

  20. The dual role of external technology sourcing in technological exploration

    DEFF Research Database (Denmark)

    Vanhaverbeke, Wim; Li-Ying, Jason; van de Vrande, Vareska

    2013-01-01

    from non-partners, partners may play a role because of whom they know. That is, they inform the firm about technological opportunities beyond its corporate venturing network. The empirical analysis supports the dual role of venturing partners in facilitating the two types of explorative learning.......We refine the concept of boundary-spanning exploration, by making a distinction between explorative learning from partners and from non-partners (Partners are organizations with whom a focal firm has some kind of external venturing relations, i.e. technological alliances, corporate venturing...... capital, or M&As). These partners play a dual role: in explorative learning from partners, a firm teams up with external venturing partners to co-develop or transfer technology. Partners’ technology base (what they know) is driving explorative learning from partners. In contrast, in explorative learning...

  1. Dual Z-Source Inverter With Three-Level Reduced Common-Mode Switching

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede

    2007-01-01

    This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck......-boost power conversion to be performed over a wide modulation range, with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye-or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter....... Modulationwise, the dual inverter can be controlled using a carefully designed carrier-based pulsewidth-modulation (PWM) scheme that will always ensure balanced voltage boosting of the Z-source network while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays...

  2. Present state of the SOURCES computer code

    International Nuclear Information System (INIS)

    Shores, Erik F.

    2002-01-01

    In various stages of development for over two decades, the SOURCES computer code continues to calculate neutron production rates and spectra from four types of problems: homogeneous media, two-region interfaces, three-region interfaces and that of a monoenergetic alpha particle beam incident on a slab of target material. Graduate work at the University of Missouri - Rolla, in addition to user feedback from a tutorial course, provided the impetus for a variety of code improvements. Recently upgraded to version 4B, initial modifications to SOURCES focused on updates to the 'tape5' decay data library. Shortly thereafter, efforts focused on development of a graphical user interface for the code. This paper documents the Los Alamos SOURCES Tape1 Creator and Library Link (LASTCALL) and describes additional library modifications in more detail. Minor improvements and planned enhancements are discussed.

  3. An extended dual input dual output three level Z source inverter with improved switch loss reduction technique

    Directory of Open Access Journals (Sweden)

    N.B. Deshmukh

    2016-12-01

    Full Text Available Multilevel inverter (MLI is a proven technology used for industrial applications due to low output total harmonic distortion (THD, high power handling capability and low active device rating. Dual output inverter is a recent trend associated with inverter topologies for specialized applications. This paper deals with three phase three level dual input dual output inverter topology with minimum active device count. Reduction in switch count leads to reduction in losses and improves reliability. Both the input sources share power equally as neutral point current ripple is maintained low. For further reduction in switching losses at higher switching frequencies, the concept of “no switching zone” or discontinuous pulse width modulation (DPWM has been put forth recently. This paper proposes modification in the placement of “no switching zone” in order to optimize switching losses and output THD (output filtering requirements for low power factor load. This study also proposes novel graphical approach to analyze the loss reduction along with its effect on output THD. The sinusoidal PWM (SPWM is used which gives satisfactory switching loss reduction without complex calculations. Moreover, the proposed topology is generalized to provide dual output at higher voltage levels. It is seen that the components reduction phenomenon becomes more pronounced as number of levels goes on increasing. The proposed converter is simulated in MATLAB software environment and results are obtained.

  4. Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs.

    Science.gov (United States)

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2017-07-20

    Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction "LINE-P", a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P's accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways.

  5. High-pitch dual-source CT coronary angiography with low volumes of contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Lembcke, Alexander; Hein, Patrick A.; Knobloch, Gesine; Durmus, Tahir; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Schwenke, Carsten [SCO:SSiS - Schwenke Consulting, Berlin (Germany); Huppertz, Alexander [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); ISI - Imaging Science Institute Charite, Berlin (Germany)

    2014-01-15

    To assess the effect of lower volumes of contrast medium (CM) on image quality in high-pitch dual-source computed tomography coronary angiography (CTCA). One-hundred consecutive patients (body weight 65-85 kg, stable heart rate ≤65 bpm, cardiac index ≥2.5 L/min/m{sup 2}) referred for CTCA were prospectively enrolled. Patients were randomly assigned to one of five groups of different CM volumes (G{sub 30}, 30 mL; G{sub 40}, 40 mL; G{sub 50}, 50 mL; G{sub 60}, 60 mL; G{sub 70}, 70 mL; flow rate 5 mL/s each, iodine content 370 mg/mL). Attenuation within the proximal and distal coronary artery segments was analysed. Mean attenuation for men and women ranged from 345.0 and 399.1 HU in G{sub 30} to 478.2 and 571.8 HU in G{sub 70}. Mean attenuation values were higher in groups with higher CM volumes (P < 0.0001) and higher in women than in men (P < 0.0001). The proportions of segments with attenuation of at least 300 HU in G{sub 30}, G{sub 40}, G{sub 50}, G{sub 60} and G{sub 70} were 89 %, 95 %, 98 %, 98 % and 99 %. CM volume of 30 mL in women and 40 mL in men proved to be sufficient to guarantee attenuation of at least 300 HU. In selected patients high-pitch dual-source CTCA can be performed with CM volumes of 40 mL in men or 30 mL in women. (orig.)

  6. Assessment of hepatic fatty infiltration using dual-energy computed tomography: a phantom study

    International Nuclear Information System (INIS)

    Li, Jung-Hui; Tsai, Chang-Yu; Huang, Hsuan-Ming

    2014-01-01

    The purpose of this study was to examine the performance of dual-energy computed tomography (DECT) for the quantification of liver fat content (LFC). We prepared two phantoms: homogenized mixtures of porcine liver and fat and homogeneous mixtures of liver- and fat-equivalent solutions. Tubes containing mixtures with known fat concentrations were scanned on a dual-source CT scanner using two DE scanning protocols (80 kV/Sn140 kV and 100 kV/Sn140 kV). Attenuation curves obtained from DECT were used to describe attenuations of various degrees of LFC at different energies. LFC was calculated from DECT data and compared with the known LFC. The phantom made of liver/fat mixtures was not used for liver fat quantification because the increase of fat content did not show a decline of CT numbers. This may be due to inhomogeneity as observed in CT images. Attenuation curves obtained from two DE scanning protocols had the ability to discriminate small differences in fat concentrations. Our results also showed a strong correlation between DECT measurements and known LFC (R 2  > 0.99, P < 0.005). DECT will be a reliable tool for liver fat quantification. Furthermore, attenuation curves obtained from DECT data can be used for discriminating various degrees of LFC. (paper)

  7. Novel technique of source and drain engineering for dual-material double-gate (DMDG) SOI MOSFETS

    Science.gov (United States)

    Yadav, Himanshu; Malviya, Abhishek Kumar; Chauhan, R. K.

    2018-04-01

    The dual-metal dual-gate (DMDG) SOI has been used with Dual Sided Source and Drain Engineered 50nm SOI MOSFET with various high-k gate oxide. It has been scrutinized in this work to enhance its electrical performance. The proposed structure is designed by creating Dual Sided Source and Drain Modification and its characteristics are evaluated on ATLAS device simulator. The consequence of this dual sided assorted doping on source and drain side of the DMDG transistor has better leakage current immunity and heightened ION current with higher ION to IOFF Ratio. Which thereby vesting the proposed device appropriate for low power digital applications.

  8. Approaches to ultra-low radiation dose coronary artery calcium scoring based on 3rd generation dual-source CT : A phantom study

    NARCIS (Netherlands)

    McQuiston, Andrew D.; Muscogiuri, Giuseppe; Schoepf, U. Joseph; Meinel, Felix G.; Canstein, Christian; Varga-Szemes, Akos; Cannao, Paola M.; Wichmann, Julian L.; Allmendinger, Thomas; Vliegenthart, Rozemarijn; De Cecco, Carlo N.

    Objectives: To investigate to what extent 3rd generation dual-source computed tomography (DSCT) can reduce radiation dose in coronary artery calcium scoring. Methods: Image acquisition was performed using a stationary calcification phantom. Prospectively electrocardiogram (ECG)-triggered 120 kV

  9. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  10. Performance of turbo high-pitch dual-source CT for coronary CT angiography: first ex vivo and patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Morsbach, Fabian; Gordic, Sonja; Husarik, Daniela; Frauenfelder, Thomas; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Desbiolles, Lotus; Leschka, Sebastian [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Kantonsspital St. Gallen, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Schmidt, Bernhard; Allmendinger, Thomas [Siemens AG, Healthcare Sector, Forchheim (Germany); Wildermuth, Simon [Kantonsspital St. Gallen, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland)

    2014-08-15

    To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. (orig.)

  11. Performance of turbo high-pitch dual-source CT for coronary CT angiography: first ex vivo and patient experience

    International Nuclear Information System (INIS)

    Morsbach, Fabian; Gordic, Sonja; Husarik, Daniela; Frauenfelder, Thomas; Alkadhi, Hatem; Desbiolles, Lotus; Leschka, Sebastian; Schmidt, Bernhard; Allmendinger, Thomas; Wildermuth, Simon

    2014-01-01

    To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. (orig.)

  12. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  13. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  14. Diagnostic accuracy of dual-source computed tomography in the ...

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... stenosis in patients with an intermediate pretest likelihood for coronary artery disease. Numerous studies have .... and specificity similar to that of ICA, without the financial burden and patient risk, and recovery time inherent with .... A reporting system on patients evaluated for coronary artery disease. Report ...

  15. The role of dual-energy computed tomography in the assessment of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jeon [Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796 (Korea, Republic of); Hoffman, Eric A. [Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241 (United States); Lee, Chang Hyun; Goo, Jin Mo [Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Levin, David L. [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505 (Korea, Republic of)

    2017-01-15

    Highlights: • The dual-energy CT technique enables the differentiation of contrast materials with material decomposition algorithm. • Pulmonary functional information can be evaluated using dual-energy CT with anatomic CT information, simultaneously. • Pulmonary functional information from dual-energy CT can improve diagnosis and severity assessment of diseases. - Abstract: The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.

  16. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  17. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements

    Science.gov (United States)

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.

    2018-06-01

    Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  18. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Science.gov (United States)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  19. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  20. Dual-Source Dual-Energy CT Angiography of the Supra-Aortic Arteries with Tin Filter: Impact of Tube Voltage Selection.

    Science.gov (United States)

    Korn, Andreas; Bender, Benjamin; Schabel, Christoph; Bongers, Malte; Ernemann, Ulrike; Claussen, Claus; Thomas, Christoph

    2015-06-01

    Automatic bone and plaque subtraction (BPS) in computed tomographic angiographic (CTA) examinations using dual-energy CT (DECT) remains challenging because of beam-hardening artifacts in the shoulder region and close proximity of the internal carotid artery to the base of the skull. The selection of the tube voltage combination in dual-source CT influences the spectral separation and the susceptibility for artifacts. The purpose of this study was to assess which tube voltage combination leads to an optimal image quality of head and neck DECT angiograms after bone subtraction. Fifty-one patients received tin-filter-enhanced DECT angiograms of the supra-aortic arteries using two voltage protocols: 24 patients were studied using 80/Sn140 kV and 27 using a 100/Sn140 kV protocol, both protocols with an additional tin filter. A commercially available DE-CTA BPS algorithm was used. Artificial vessel erosions in BPS maximum intensity projections (four-level Likert scale with CTA source data as reference) and vessel signal-to-noise ratio (SNR) were assessed in the level of the shoulders and the base of the skull in each patient and compared. At the level of the shoulder, 100/Sn140 kV achieved higher SNR (23.4 ± 6.4 at 80/Sn140 kV vs. 35.1 ± 11.8 at 100/Sn140 kV; P supra-aortic arteries than the 80/Sn140 kV protocol. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  1. Feasibility of dual-energy computed tomography in radiation therapy planning

    Science.gov (United States)

    Sheen, Heesoon; Shin, Han-Back; Cho, Sungkoo; Cho, Junsang; Han, Youngyih

    2017-12-01

    In this study, the noise level, effective atomic number ( Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.

  2. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    Science.gov (United States)

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  3. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  4. A new coaxial high power microwave source based on dual beams

    International Nuclear Information System (INIS)

    Li, Yangmei; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang

    2014-01-01

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined

  5. A new coaxial high power microwave source based on dual beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangmei, E-mail: sunberry1211@hotmail.com; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined.

  6. Computation of the Short-Time Linear Canonical Transform with Dual Window

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2017-01-01

    Full Text Available The short-time linear canonical transform (STLCT, which maps the time domain signal into the joint time and frequency domain, has recently attracted some attention in the area of signal processing. However, its applications are still limited due to the fact that selection of coefficients of the short-time linear canonical series (STLCS is not unique, because time and frequency elementary functions (together known as basis function of STLCS do not constitute an orthogonal basis. To solve this problem, this paper investigates a dual window solution. First, the nonorthogonal problem that suffered from original window is fulfilled by orthogonal condition with dual window. Then based on the obtained condition, a dual window computation approach of the GT is extended to the STLCS. In addition, simulations verify the validity of the proposed condition and solutions. Furthermore, some possible applied directions are discussed.

  7. Comparison of bone volume measurements using conventional single and dual energy computed tomography

    International Nuclear Information System (INIS)

    Kim, Yung Kyoon; Park, Sang Hoon; Kim, Yon Min

    2017-01-01

    The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection( keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting( MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed 35.8±12.2 for rib, femur (16.1±24.1), pelvis(13.7±18.8), and spine(179.0±61.8). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods

  8. Comparison of bone volume measurements using conventional single and dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yung Kyoon; Park, Sang Hoon [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Yon Min [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of)

    2017-06-15

    The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection( keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting( MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed 35.8±12.2 for rib, femur (16.1±24.1), pelvis(13.7±18.8), and spine(179.0±61.8). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods.

  9. Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition.

    Science.gov (United States)

    Mahalingam, Harshavardhan; Lal, Anupam; Mandal, Arup K; Singh, Shrawan Kumar; Bhattacharyya, Shalmoli; Khandelwal, Niranjan

    2015-08-01

    This study aimed to assess the accuracy of low-dose dual-energy computed tomography (DECT) in predicting the composition of urinary calculi. A total of 52 patients with urinary calculi were scanned with a 128-slice dual-source DECT scanner by use of a low-dose protocol. Dual-energy (DE) ratio, weighted average Hounsfield unit (HU) of calculi, radiation dose, and image noise levels were recorded. Two radiologists independently rated study quality. Stone composition was assessed after extraction by Fourier transform infrared spectroscopy (FTIRS). Analysis of variance was used to determine if the differences in HU values and DE ratios between the various calculus groups were significant. Threshold cutoff values to classify the calculi into separate groups were identified by receiver operating characteristic curve analysis. A total of 137 calculi were detected. FTIRS analysis differentiated the calculi into five groups: uric acid (n=17), struvite (n=3), calcium oxalate monohydrate and dihydrate (COM-COD, n=84), calcium oxalate monohydrate (COM, n=28), and carbonate apatite (n=5). The HU value could differentiate only uric acid calculi from calcified calculi (p80% sensitivity and specificity to differentiate them. The DE ratio could not differentiate COM from COM-COD calculi. No study was rated poor in quality by either of the observers. The mean radiation dose was 1.8 mSv. Low-dose DECT accurately predicts urinary calculus composition in vivo while simultaneously reducing radiation exposure without compromising study quality.

  10. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  11. Coronary artery anomalies in adults: imaging at dual source CT coronary angiography

    International Nuclear Information System (INIS)

    Laspas, Fotios; Roussakis, Arkadios; Mourmouris, Christos; Kritikos, Nikolaos; Efthimiadou, Roxani; Andreou, John

    2013-01-01

    Congenital abnormalities of the coronary arteries have an incidence of 1%, and most of these are benign. However, a small number are associated with myocardial ischaemia and sudden death. Various imaging modalities are available for coronary artery assessment. Recently, multi-detector CT has emerged as an accurate diagnostic tool for defining coronary artery anomalies. The purpose of this pictorial essay is to review the dual source CT appearance of congenital anomalies of the coronary arteries in adults.

  12. Dual source multidetector CT-angiography before transcatheter aortic valve implantation (TAVI) using a high-pitch spiral acquisition mode

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, W.; Anders, K.; May, M.S.; Uder, M. [University of Erlangen, Department of Radiology, Erlangen (Germany); Schuhbaeck, A.; Gauss, S.; Marwan, M.; Arnold, M.; Muschiol, G.; Daniel, W.G.; Achenbach, S. [University of Erlangen, Department of Cardiology, Erlangen (Germany); Ensminger, S. [University of Erlangen, Department of Cardiac Surgery, Erlangen (Germany)

    2012-01-15

    Transcatheter Aortic Valve Implantation (TAVI) is an alternative to surgical valve replacement in high risk patients. Angiography of the aortic root, aorta and iliac arteries is required to select suitable candidates, but contrast agents can be harmful due to impaired renal function. We evaluated ECG-triggered high-pitch spiral dual source Computed Tomography (CT) with minimized volume of contrast agent to assess aortic root anatomy and vascular access. 42 patients (82 {+-} 6 years) scheduled for TAVI underwent dual source (DS) CT angiography (CTA) of the aorta using a prospectively ECG-triggered high-pitch spiral mode (pitch = 3.4) with 40 mL iodinated contrast agent. We analyzed aortic root/iliac dimensions, attenuation, contrast to noise ratio (CNR), image noise and radiation exposure. Aortic root/iliac dimensions and distance of coronary ostia from the annulus could be determined in all cases. Mean aortic and iliac artery attenuation was 320 {+-} 70 HU and 340 {+-} 77 HU. Aortic/iliac CNR was 21.7 {+-} 6.8 HU and 14.5 {+-} 5.4 HU using 100 kV (18.8 {+-} 4.1 HU and 8.7 {+-} 2.6 HU using 120 kV). Mean effective dose was 4.5 {+-} 1.2 mSv. High-pitch spiral DSCTA can be used to assess the entire aorta and iliac arteries in TAVI candidates with a low volume of contrast agent while preserving diagnostic image quality. (orig.)

  13. Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)

    International Nuclear Information System (INIS)

    Ito, Masako; Hayashi, Kuniaki; Yamada, Naoyuki.

    1989-01-01

    The purpose of this study was twofold: to investigate the precision and accuracy of dual energy quantitative computed tomography (QCT) and to investigate age-related changes of bone marrow density (BMD) in patients without metabolic disorders. Rapid kilovolt peak switching system, with which SOMATOM DR-H CT is equipped, allows dual energy scanning. KV-separated images and material-separated images were calculated from dual energy scan data. KV-separated data was regarded as single energy QCT. In phantom studies, dipotassium hydrogen phosphate solution, water, and ethanol were used to simulate bone mineral, lean soft tissue, and fat, respectively. Values of BMD obtained by dual energy scanning method had an error of 5.5% per 10% increase of fat, as compared with 12% for BMD values obtained by single energy scanning method. However, single energy scanning method had a higher precision than dual energy scanning method in determining BMD. The selection of CT section is considered most important in the clinical determination of BMD. In a study of age-related changes of BMD in the vertebral trabecular and cortical bones in 161 patients, BMD was found to have two peaks for women in their twenties and thirties, and one peak for men in their twenties. Bone marrow density rapidly declined among women aged 50 years or more. These results suggest that the content of fat in the trabecular bone may increase progressively after the age of 40, regardless of sex. (N.K.)

  14. Clinical performance of dual-source computerized tomography (DSCT) in primary diagnostics of coronary heart diseases

    International Nuclear Information System (INIS)

    Brunner, H.; Froehner, S.; Wagner, M.; Schmitt, R.; Brunn, J.; Gietzen, F.H.; Kerber, S.

    2008-01-01

    Dual-source-CT-technology (DSCT) improves temporal resolution of cardiac computed tomography to 83 ms per heart-phase. In this study, the clinical performance of this new method is evaluated. Materials and Methods: In fifty patients (33 male, 17 female; age 50±13 years) with suspected coronary heart disease, CT angiography (slice thickness 0,75 mm, contrast-agent 60-80 ml iomeprol) was performed with a Somatom Definition scanner. Based on the coronary 15-segment-model of the AHA, scores for image quality and lumen reduction were established to enable the observer, to give recommendations for further therapy. Results: Out of 750 possible AHA-segments, 655 were depicted (87,3%). 591 segments (90,2%) were assessed without any limitation of quality, 49 (7,5%) segments showed moderate, and 15 (2,3%) segments severe limitation in image quality. 508 (77,6%) segments were without pathological findings, 92 (14,0%) segments had minimal atherosclerotic lesions, 42 (6,4%) segments suffered from stenoses with lumen reduction less than 70%, and 13 (2,0%) showed significant stenoses of more than 70%. In 31 patients (62%), coronary heart disease was ruled out by CT angiography without any need for further non-invasive or invasive diagnostics. 8 patients (16%) underwent stress-testing for ischemia. In 11 (22%) patients coronary angiography was recommended, and DSCT findings were confirmed in 10 cases. Only one LCx stenosis was overestimated in DSCT. Conclusion: Contrast-enhanced DSCT is a powerful tool in diagnosis of coronary heart disease. 98% of coronary segments could be assessed in diagnostic quality, and at least 90% of haemodynamically significant coronary stenoses were detected. (orig.)

  15. Quantitative assessment of pure aortic valve regurgitation with dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z., E-mail: lzlcd01@126.com [Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Huang, L.; Chen, X.; Xia, C.; Yuan, Y.; Shuai, T. [Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2012-07-15

    Aim: To assess the severity of pure aortic regurgitation by measuring regurgitation volumes (RV) and fractions (RF) with dual-source computed tomography (DSCT) as compared to magnetic resonance imaging (MRI) and echocardiography. Materials and methods: Thirty-eight patients (15 men, 23 women; mean age 46 {+-} 11 years) with isolated aortic valve regurgitation underwent retrospectively electrocardiogram (ECG)-gated DSCT, echocardiography, and MRI. Stroke volumes of the left and right ventricles were measured at DSCT and MRI. Thus, RVs and RFs were calculated and compared. The agreement between DSCT and MRI was tested by intraclass correlation coefficient and Bland-Altman analyses. Spearman's rank order correlation and weighted {kappa} tests were used for testing correlations of AR severity between DSCT results and corresponding echocardiographic grades. Results: The RV and RF measured by DSCT were not significantly different from those measured using MRI (p = 0.71 and 0.79). DSCT correlated well with MRI for the measurement of RV (r{sub I} = 0.86, p<0.001) and calculation of the RF (r{sub I} =0.90, p<0.001). Good agreement between the techniques was obtained by using Bland-Altman analyses. The severity of regurgitation estimated by echocardiography correlated well with DSCT (r{sub s} = 0.95, p<0.001) and MRI (r{sub s} = 0.95, p<0.001). Inter-technique agreement between DSCT and two-dimensional transthoracic echocardiography (2DTTE) regarding the grading of the severity of AR was excellent ({kappa} = 0.90), and good agreement was also obtained between MRI and 2DTTE assessments of the severity of AR ({kappa} = 0.87). Conclusion: DSCT using a volume approach can be used to quantitatively determine the severity of pure aortic regurgitation when compared with MRI and echocardiography.

  16. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    International Nuclear Information System (INIS)

    Bastarrika, Gorka; Arraiza, Maria; Pueyo, Jesus C.; Cecco, Carlo N. de; Ubilla, Matias; Mastrobuoni, Stefano; Rabago, Gregorio

    2008-01-01

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1±10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1±10.4 bpm. At the best reconstruction interval, diagnostic image quality (score ≥2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04± 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03±1.06 and 2.73±1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  17. Dual-source CT coronary angiography in patients with premature heart-beats: initial experience

    International Nuclear Information System (INIS)

    Wang Yining; Zhang Zhuhua; Kong Lingyan; Song Lan; Mu Wenbin; Wang Yun; Jin Zhengyu

    2008-01-01

    Objective: To evaluate the feasibility of dual-source computed tomography (DSCT) coronary angiography in a population with premature heart-beats. Methods: Seventy patients with suspected coronary artery disease and premature heart-beats were routinely imaged on a DSCT scanner (Somatom Definition, Siemens AG, Germany). The images were reconstmcted before and after ECG editing. Two readers independently assessed image quality of all coronary segments using a four-point grading scale from excellent (1) to non-assessable (4). The results of the two groups were compared with a paired t-test, and a P value of less than 0.05 was considered significant. Results: The mean heart rate during examination ranged from 49 to 111 bpm[ mean(70.7±12.4) bpm]. Twenty-eight of 70 patients with relatively small variability of the heart rate [(41.0±18.4) bpm] got diagnostic image quality without ECG editing. In other 42 patients with larger variability of the heart rate [(71.4±28.7) bpm], the mean image quality scores were 2.09±1.27 and 1.50±0.79 before and after ECG editing, there was a significant difference (t= 13.764, P 2 =121.846, P<0.01). Finally, the diagnostic image accounted 98.0% (1014/1035) in all segments of 70 patients. Conclusion: DSCT can provide diagnostic images for patients with premature heart-beats. The image quality in patients with larger variability of the heart rate can be significantly improved through ECG editing. (authors)

  18. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    Directory of Open Access Journals (Sweden)

    Tuba Selçuk

    2016-06-01

    Full Text Available Background: Early detection of coronary artery disease (CAD is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA, has become more widely used by the improvements in detector technology. Aims: In this study, we aimed to examine the accuracy and image quality of high-pitch 128-slice dual-source CTA taking the ICA as reference technique. We also aimed to compare the accuracy and image quality between different heart rate groups of >70 beates per minute (bpm and ≤70 bpm. Study Design: Retrospective cross-sectional study. Methods: Among 450 patients who underwent coronary CTA with the FLASH spiral technique, performed with a second generation dual-source computed tomography device with a pitch value of 3.2, 102 patients without stent and/or bypass surgery history and clinically suspected coronary artery disease who underwent ICA within 15 days were enrolled. Image quality was assessed by two independent radiologists using a 4-point scale (1=absence of any artifacts- 4=non-evaluable. A stenosis >50% was considered significant on a per-segment, per-vessel, and per-patient basis and ICA was considered the reference method. Radiation doses were determined using dose length product (DLP values detected by the computed tomography (CT device. In addition, patients were classified into two groups according to their heart rates as ≤70 bpm (73 patients and >70 bpm (29 patients. The relation between the diagnostic accuracy and heart rate groups were evaluated. Results: Overall, 1495 (98% coronary segments were diagnostic in 102 patients (32 male, 70 female, mean heart rate: 65 bpm. There was a significant correlation between image quality and mean heart rate in the right coronary artery (RCA segments. The effective radiation dose was 0.98±0.09 mili Sievert (mSv. On a per-patient basis, sensitivity

  19. Reduced iodinated contrast media for abdominal imaging by dual-layer spectral detector computed tomography for patients with kidney disease

    Directory of Open Access Journals (Sweden)

    Hirokazu Saito, MD

    2018-04-01

    Full Text Available Contrast-enhanced computed tomography using iodinated contrast media is useful for diagnosis of gastrointestinal diseases. However, contrast-induced nephropathy remains problematic for kidney diseases patients. Although current guidelines recommended the use of a minimal dose of contrast media necessary to obtain adequate images for diagnosis, obtaining adequate images with sufficient contrast enhancement is difficult with conventional computed tomography using reduced contrast media. Dual-layer spectral detector computed tomography enables the simultaneous acquisition of low- and high-energy data and the reconstruction of virtual monochromatic images ranging from 40 to 200 keV, retrospectively. Low-energy virtual monochromatic images can enhance the contrast of images, thereby facilitating reduced contrast media. In case 1, abdominal computed tomography angiography at 50 keV using 40% of the conventional dose of contrast media revealed the artery that was the source of diverticular bleeding in the ascending colon. In case 2, ischemia of the transverse colon was diagnosed by contrast-enhanced computed tomography and iodine-selective imaging using 40% of the conventional dose of contrast media. In case 3, advanced esophagogastric junctional cancer was staged and preoperative abdominal computed tomography angiography could be obtained with 30% of the conventional dose of contrast media. However, the texture of virtual monochromatic images may be a limitation at low energy. Keywords: Virtual monochromatic images, Contrast-induced nephropathy

  20. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  1. Dual energy quantitative computed tomography (QCT). Precision of the mineral density measurements

    International Nuclear Information System (INIS)

    Braillon, P.; Bochu, M.

    1989-01-01

    The improvement that could be obtained in quantitative bone mineral measurements by dual energy computed tomography was tested in vitro. From the results of 15 mineral density measurements (in mg Ca/cm 3 , done on a precise lumbar spine phantom (Hologic) and referred to the values obtained on the same slices on a Siemens Osteo-CT phantom, the precision found was 0.8%, six times better than the precision calculated from the uncorrected measured values [fr

  2. Cardiac dual-source CT for the preoperative assessment of patients undergoing bariatric surgery

    International Nuclear Information System (INIS)

    Tognolini, A.; Arellano, C.S.; Marfori, W.; Sayre, J.W.; Hollada, J.L.; Goldin, J.G.; Dutson, E.P.; Ruehm, S.G.

    2013-01-01

    Aim: To assess the diagnostic value of coronary dual-source computed tomography (DSCT) as a comprehensive, non-invasive tool in the preoperative cardiac evaluation of patients undergoing bariatric surgery. Materials and methods: Thirty consecutive obese [average body mass index (BMI): 45 ± 7.6, range: 35–59] patients (24 women; six men; median age: 52 ± 15 years) were enrolled in this institutional review board (IRB)-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant prospective study. Calcium scoring (CaS) and electrocardiography (ECG)-gated images of the coronary arteries were obtained with a large body habitus protocol (120 kV; 430 mAs; 100 ml iodinated contrast medium at 7 ml/s injection rate) on a DSCT machine. Qualitative (four-point: 1 = excellent to 4 = not delineable) coronary segmental analysis, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) measurements were performed. The presence and degree of vascular disease (four-grade scale: mild to severe) was correlated with CaS and cardiovascular (CV) risk stratification blood tests. In patients with severe stenosis (>70%), findings were compared with cardiac nuclear medicine imaging (single photon-emission computed tomography; SPECT) imaging. Results: The average HR, enhancement, and quality score were 64 ± 7 beats/min, 288 ± 66 HU and 1.8 ± .5, respectively. Ninety-three percent (417/450) of the coronary segments were rated diagnostic. The SNRs and CNRs were 17 ± 9 and 12 ± 7 for the right coronary artery; 17 ± 8 and 12 ± 7 for the left main coronary artery; 16 ± 9 and 11 ± 7 for the left anterior descending coronary artery; and 15 ± 7 and 10 ± 6 for the left circumflex coronary artery. Ten of the 30 patients (33%) demonstrated coronary artery disease (CAD) of which two (6%) showed three-vessel disease. Four (13%) patients showed severe disease: in three of which the presence of significant stenosis was confirmed by SPECT and by catheter

  3. Polymeric polyelectrolytes obtained from renewable sources for biodiesel wastewater treatment by dual-flocculation

    Directory of Open Access Journals (Sweden)

    E. A. M. Ribeiro

    2017-06-01

    Full Text Available Biodiesel wastewater generally contains high levels of oils, soaps and glycerol residues. This needs wastewater treatment. In this study, the biodiesel wastewater treatment was tested (industrial wastewater (EFID and laboratory wastewater (EFLB from biodiesel by performing flocculation and dual-flocculation with renewable polymers. Tannin and cationic hemicellulose (CH were used as cationic flocculant, and cellulose acetate sulfate (CAS was used as an anionic flocculant. Polyacrylamide (PAM was used as a reference anionic flocculant for result efficiencies analysis obtained with CAS (renewable source flocculant. The treatment efficacy in wastewater was evaluated by: turbidity removal, sludge volume formed, chemical oxygen demand (COD and total suspended solids (TSS. The obtained sludge was studied using thermogravimetric analysis (TG. The dual-flocculation application condition of the 25% proportion of tannin (T and 75% proportion of cationic hemicelluloses (i.e., T25/CH75 showed EFLB turbidity removal of 89.1% and 89.5% for CAS and PAM additions respectively, and for EFID of 67% and 41% for CAS and PAM additions respectively. The dual-flocculation performance suggested that the polyelectrolytes obtained from renewable sources can be used for treating biodiesel wastewater.

  4. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  5. Effects of Dual Monitor Computer Work Versus Laptop Work on Cervical Muscular and Proprioceptive Characteristics of Males and Females.

    Science.gov (United States)

    Farias Zuniga, Amanda M; Côté, Julie N

    2017-06-01

    The effects of performing a 90-minute computer task with a laptop versus a dual monitor desktop workstation were investigated in healthy young male and female adults. Work-related musculoskeletal disorders are common among computer (especially female) users. Laptops have surpassed desktop computer sales, and working with multiple monitors has also become popular. However, few studies have provided objective evidence on how they affect the musculoskeletal system in both genders. Twenty-seven healthy participants (mean age = 24.6 years; 13 males) completed a 90-minute computer task while using a laptop or dual monitor (DualMon) desktop. Electromyography (EMG) from eight upper body muscles and visual strain were measured throughout the task. Neck proprioception was tested before and after the computer task using a head-repositioning test. EMG amplitude (root mean square [RMS]), variability (coefficients of variation [CV]), and normalized mutual information (NMI) were computed. Visual strain ( p computer workstation designs.

  6. Dual-source CT coronary angiography in patients with atrial fibrillation: Comparison with single-source CT

    International Nuclear Information System (INIS)

    Wang Yining; Zhang Zhuhua; Kong Lingyan; Song Lan; Merges, Reto D.; Chen Jiuhong; Jin Zhengyu

    2008-01-01

    Objective: To evaluate the performance of dual-source computed tomography (DSCT) for the visualization of the coronary arteries in a population with atrial fibrillation (AF) compared to single-source CT (SSCT) and to explore the impact of patients' heart rate (HR) on image quality (IQ) and reconstruction timing. Methods: Thirty consecutive patients (11 male, 19 female; 69.0 ± 9.2 years old) with suspected coronary artery disease and permanent AF were examined on a DSCT scanner (120 kV, 400 mAs/rot, 0.33 s rotation time, 64 x 0.6 mm collimation, pitch 0.20-0.28, Siemens Somatom Definition). Patients were divided into two groups: low and medium HR group (HR ≤ 80 bpm, n = 14) and high HR group (HR > 80 bpm, n = 16). Five of the patients also underwent conventional coronary angiography (CAG). The raw data from both tube detector arrays were reconstructed as DSCT data using a routine algorithm (temporal resolution of 83 ms). The raw data from one tube detector array was reconstructed separately on the same system using a routine single source algorithm (temporal resolution of 83-165 ms) and defined as virtual SSCT data. Image quality was assessed using a four-point grading scale from excellent (1) to non-assessable (4). Results: IQ of the DSCT data was significantly better than that of the virtual SSCT data (mean score 1.33 ± 0.61 vs. 1.80 ± 1.02; Z = -8.755, P = 0.000). 98.6% of the segments shown in DSCT were diagnostic, compared with 89.9% of the segments in virtual SSCT, χ 2 = 32.595, P = 0.000. In DSCT group, IQ of low HR group was also better than that of high HR group, although the difference was not as big (mean score 1.25 ± 0.52 vs. 1.38 ± 0.66; Z = -2.227, P = 0.026). The mean HR of low HR group and high HR group were 67.4 ± 8.5 beats per minute (bpm) and 94.2 ± 8.8 bpm (t = -8.499, P = 0.000). The range of the variation of HR was higher in high HR group than in low HR group (mean difference between maximum and minimum HR 79.5 ± 21.0 vs. 49.9 ± 21

  7. Dual-source CT coronary angiography in patients with atrial fibrillation: Comparison with single-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yining [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: yiningpumc@hotmail.com; Zhang Zhuhua [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: yiningpumc@sina.com; Kong Lingyan [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: klyan78@hotmail.com; Song Lan [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: sallysonglan@sina.com; Merges, Reto D. [CT Research Collaboration, Siemens Ltd. (China)], E-mail: reto.merges@siemens.com; Chen Jiuhong [CT Research Collaboration, Siemens Ltd. (China)], E-mail: jiuhong.chen@siemens.com; Jin Zhengyu [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: jin_zhengyu@sina.com

    2008-12-15

    Objective: To evaluate the performance of dual-source computed tomography (DSCT) for the visualization of the coronary arteries in a population with atrial fibrillation (AF) compared to single-source CT (SSCT) and to explore the impact of patients' heart rate (HR) on image quality (IQ) and reconstruction timing. Methods: Thirty consecutive patients (11 male, 19 female; 69.0 {+-} 9.2 years old) with suspected coronary artery disease and permanent AF were examined on a DSCT scanner (120 kV, 400 mAs/rot, 0.33 s rotation time, 64 x 0.6 mm collimation, pitch 0.20-0.28, Siemens Somatom Definition). Patients were divided into two groups: low and medium HR group (HR {<=} 80 bpm, n = 14) and high HR group (HR > 80 bpm, n = 16). Five of the patients also underwent conventional coronary angiography (CAG). The raw data from both tube detector arrays were reconstructed as DSCT data using a routine algorithm (temporal resolution of 83 ms). The raw data from one tube detector array was reconstructed separately on the same system using a routine single source algorithm (temporal resolution of 83-165 ms) and defined as virtual SSCT data. Image quality was assessed using a four-point grading scale from excellent (1) to non-assessable (4). Results: IQ of the DSCT data was significantly better than that of the virtual SSCT data (mean score 1.33 {+-} 0.61 vs. 1.80 {+-} 1.02; Z = -8.755, P = 0.000). 98.6% of the segments shown in DSCT were diagnostic, compared with 89.9% of the segments in virtual SSCT, {chi}{sup 2} = 32.595, P = 0.000. In DSCT group, IQ of low HR group was also better than that of high HR group, although the difference was not as big (mean score 1.25 {+-} 0.52 vs. 1.38 {+-} 0.66; Z = -2.227, P = 0.026). The mean HR of low HR group and high HR group were 67.4 {+-} 8.5 beats per minute (bpm) and 94.2 {+-} 8.8 bpm (t = -8.499, P = 0.000). The range of the variation of HR was higher in high HR group than in low HR group (mean difference between maximum and minimum HR

  8. Diagnostic accuracy of dual-energy computed tomography in patients with gout: A meta-analysis.

    Science.gov (United States)

    Lee, Young Ho; Song, Gwan Gyu

    2017-08-01

    This study aimed to evaluate the diagnostic performance of dual-energy computed tomography (DECT) for patients with gout. We searched the Medline, Embase, and Cochrane Library databases, and performed a meta-analysis on the diagnostic accuracy of DECT in patients with gout. A total of eight studies including 510 patients with gout and 268 controls (patients with non-gout inflammatory arthritis) were available for the meta-analysis. The pooled sensitivity and specificity of DECT were 84.7% (95% confidence interval [CI]: 81.3-87.7) and 93.7% (93.0-96.3), respectively. The positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 9.882 (6.122-15.95), 0.163 (0.097-0.272), and 78.10 (31.14-195.84), respectively. The area under the curve of DECT was 0.956 and the Q * index was 0.889, indicating a high diagnostic accuracy. Some between-study heterogeneity was found in the meta-analyses. However, there was no evidence of a threshold effect (Spearman correlation coefficient = 0.419; p = 0.035). In addition, meta-regression showed that the sample size, study design, and diagnostic criteria were not sources of heterogeneity, and subgroup meta-analyses did not change the overall diagnostic accuracy. Our meta-analysis of published studies demonstrates that DECT has a high diagnostic accuracy and plays an important role in the diagnosis of gout. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Distributed computing system with dual independent communications paths between computers and employing split tokens

    Science.gov (United States)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  10. Dual energy virtual CT colonoscopy with dual source computed tomography. Initial experience

    International Nuclear Information System (INIS)

    Karcaaltincaba, M.; Karaosmanoglu, D.; Akata, D.; Sentuerk, S.; Oezmen, M.; Alibek, S.

    2009-01-01

    Purpose: To describe the technique of DE MDCT colonoscopy and to assess its feasibility. Materials and Methods: 8 patients were scanned with DSCT with a DE scan protocol and dose modulation software. Analysis was performed using dedicated DE software. Prone non-contrast images and DE supine images after contrast injection were obtained. Results: DE colonoscopic images were successfully obtained in 7 patients, but the FOV did not cover all colonic segments in 1 patient, thus resulting in a technical success rate was 87.5%. Streak artifacts were present in the pelvic region in 2 patients. Virtual unenhanced images and iodine map images were obtained for all patients. In 1 patient a polypoid non-enhancing structure was noted on the iodine map, and conventional colonoscopy revealed impacted stool. Enhancing rectal cancer in 1 patient was correctly shown on the iodine map. Iodine maps helped to differentiate stool fragments/retained fluid by the absence of enhancement when compared to prone CT images. The major advantage of DE colonoscopy was the lack of misregistration. Conclusion: DE MDCT colonoscopy is technically feasible and may obviate the need for unenhanced prone images. It may be possible to perform noncathartic DECT colonoscopy. The major limitation is the limited FOV of tube B. The dose should be optimized to reduce streak artifacts in the pelvic region. (orig.)

  11. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  12. Commissioning of the advanced light source dual-axis streak camera

    International Nuclear Information System (INIS)

    Hinkson, J.; Keller, R.; Byrd, J.

    1997-05-01

    A dual-axis camera, Hamamatsu model C5680, has been installed on the Advanced Light Source photon-diagnostics beam-line to investigate electron-beam parameters. During its commissioning process, the camera has been used to measure single-bunch length vs. current, relative bunch charge in adjacent RF buckets, and bunchphase stability. In this paper the authors describe the visible-light branch of the diagnostics beam-line, the streak-camera installation, and the timing electronics. They will show graphical results of beam measurements taken during a variety of accelerator conditions

  13. Single- versus dual-energy quantitative computed tomography for spinal densitometry in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Laan, R.F.J.M.; Erning, L.J.Th.O. van; Lemmens, J.A.M.; Putte, L.B.A. van de; Ruijs, S.H.J.; Riel, P.L.C.M. van

    1992-01-01

    Lumbar bone mineral density was measured by both single- and dual-energy quantitative computed tomography in 109 patients with rheumatoid arthritis. The results were corrected for the age-related increase in vertebral fat content by converting them to percentages of expected densities, using sex and energy-level specific regression equations obtained in a normal reference population. The percentages of expected density are approximately 10% lower in the single- than in the dual-energy mode, both in the patients with and without prednisone therapy. This difference is statistically highly significant, and is positively correlated with the duration of the disease and with the degree of radiological joint destruction. The data suggest that the vertebral fat content may be increased in patients with rheumatoid arthritis, as a consequence of disease-dependent mechanisms. (Author)

  14. Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study.

    Science.gov (United States)

    Farshad-Amacker, Nadja A; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2013-10-01

    To evaluate the potential of high-pitch, dual-source computed tomography (DSCT) for compensation of motion artifacts. Motion artifacts were created using a moving chest/cardiac phantom with integrated stents at different velocities (from 0 to 4-6 cm/s) parallel (z direction), transverse (x direction), and diagonal (x and z direction combined) to the scanning direction using standard-pitch (SP) (pitch = 1) and high-pitch (HP) (pitch = 3.2) 128-detector DSCT (Siemens, Healthcare, Forchheim, Germany). The scanning parameters were (SP/HP): tube voltage, 120 kV/120 kV; effective tube current time product, 300 mAs/500 mAs; and a pitch of 1/3.2. Motion artifacts were analyzed in terms of subjective image quality and object distortion. Image quality was rated by two blinded, independent observers using a 4-point scoring system (1, excellent; 2, good with minor object distortion or blurring; 3, diagnostically partially not acceptable; and 4, diagnostically not acceptable image quality). Object distortion was assessed by the measured changes of the object's outer diameter (x) and length (z) and a corresponding calculated distortion vector (d) (d = √(x(2) + z(2))). The interobserver agreement was excellent (k = 0.91). Image quality using SP was diagnostically not acceptable with any motion in x direction (scores 3 and 4), in contrast to HP DSCT where it remained diagnostic up to 2 cm/s (scores 1 and 2). For motion in the z direction only, image quality remained diagnostic for SP and HP DSCT (scores 1 and 2). Changes of the object's diameter (x), length (z), and distortion vectors (d) were significantly greater with SP (overall: x = 1.9 cm ± 1.7 cm, z = 0.6 cm ± 0.8 cm, and d = 1.4 cm ± 1.5 cm) compared to HP DSCT (overall: x = 0.1 cm ± 0.1 cm, z = 0.0 cm ± 0.1 cm, and d = 0.1 cm ± 0.1 cm; each P pitch DSCT significantly decreases motion artifacts in various directions and improves image quality. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  15. Research on OpenStack of open source cloud computing in colleges and universities’ computer room

    Science.gov (United States)

    Wang, Lei; Zhang, Dandan

    2017-06-01

    In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.

  16. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  17. Top 50 Highly Cited Articles on Dual Energy Computed Tomography (DECT) in Abdominal Radiology: A Bibliometric Analysis

    Science.gov (United States)

    Gong, Bo; Wu, Yuhao; O’Keeffe, Michael E; Berger, Ferco H; McLaughlin, Patrick D; Nicolaou, Savvas

    2017-01-01

    Summary This study aims to identify the 50 most highly cited articles on dual energy computed tomography (DECT) in abdominal radiology Thomson Reuters Web of Science All Databases was queried without year or language restriction. Only original research articles with a primary focus on abdominal radiology using DECT were selected. Review articles, meta-analyses, and studies without human subjects were excluded. Fifty articles with the highest average yearly citation were identified. These articles were published between 2007 and 2017 in 12 journals, with the most in Radiology (12 articles). Articles had a median of 7 authors, with all first authors but one primarily affiliated to radiology departments. The United States of America produced the most articles (16), followed by Germany (13 articles), and China (7 articles). Most studies used Dual Source DECT technology (35 articles), followed by Rapid Kilovoltage Switching (14 articles), and Sequential Scanning (1 article). The top three scanned organs were the liver (24%), kidney (16%), and urinary tract (15%). The most commonly studied pathology was urinary calculi (28%), renal lesion/tumor (23%), and hepatic lesion/tumor (20%). Our study identifies intellectual milestones in the applications of DECT in abdominal radiology. The diversity of the articles reflects on the characteristics and quality of the most influential publications related to DECT. PMID:29657641

  18. Energy Limits in Second Generation High-pitch Dual Source CT - Comparison in an Upper Abdominal Phantom

    Directory of Open Access Journals (Sweden)

    Martin Beeres

    2015-01-01

    Full Text Available Objectives: The aim of our study was to find out how much energy is applicable in second-generation dual source high-pitch computed tomography (CT in imaging of the abdomen. Materials and Methods: We examined an upper abdominal phantom using a Somatom Definition Flash CT-Scanner (Siemens, Forchheim, Germany. The study protocol consisted of a scan-series at 100 kV and 120 kV. In each scan series we started with a pitch of 3.2 and reduced it in steps of 0.2, until a pitch of 1.6 was reached. The current was adjusted to the maximum the scanner could achieve. Energy values, image noise, image quality, and radiation exposure were evaluated. Results: For a pitch of 3.2 the maximum applicable current was 142 mAs at 120 kV and in 100 kV the maximum applicable current was 114 mAs. For conventional abdominal imaging, current levels of 200 to 260 mAs are generally used. To achieve similar current levels, we had to decrease the pitch to 1.8 at 100 kV - at this pitch we could perform our imaging at 204 mAs. At a pitch of 2.2 in 120 kV we could apply a current of 206 mAs. Conclusion: We conclude our study by stating that if there is a need for a higher current, we have to reduce the pitch. In a high-pitch dual source CT, we always have to remember where our main focus is, so we can adjust the pitch to the energy we need in the area of the body that has to be imaged, to find answers to the clinical question being raised.

  19. Dual-scan technique for the customization of zirconia computer-aided design/computer-aided manufacturing frameworks.

    Science.gov (United States)

    Andreiuolo, Rafael Ferrone; Sabrosa, Carlos Eduardo; Dias, Katia Regina H Cervantes

    2013-09-01

    The use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.

  20. Dual-energy bone removal computed tomography (BRCT): preliminary report of efficacy of acute intracranial hemorrhage detection.

    Science.gov (United States)

    Naruto, Norihito; Tannai, Hidenori; Nishikawa, Kazuma; Yamagishi, Kentaro; Hashimoto, Masahiko; Kawabe, Hideto; Kamisaki, Yuichi; Sumiya, Hisashi; Kuroda, Satoshi; Noguchi, Kyo

    2018-02-01

    One of the major applications of dual-energy computed tomography (DECT) is automated bone removal (BR). We hypothesized that the visualization of acute intracranial hemorrhage could be improved on BRCT by removing bone as it has the highest density tissue in the head. This preliminary study evaluated the efficacy of a DE BR algorithm for the head CT of trauma patients. Sixteen patients with acute intracranial hemorrhage within 1 day after head trauma were enrolled in this study. All CT examinations were performed on a dual-source dual-energy CT scanner. BRCT images were generated using the Bone Removal Application. Simulated standard CT and BRCT images were visually reviewed in terms of detectability (presence or absence) of acute hemorrhagic lesions. DECT depicted 28 epidural/subdural hemorrhages, 17 contusional hemorrhages, and 7 subarachnoid hemorrhages. In detecting epidural/subdural hemorrhage, BRCT [28/28 (100%)] was significantly superior to simulated standard CT [17/28 (61%)] (p = .001). In detecting contusional hemorrhage, BRCT [17/17 (100%)] was also significantly superior to simulated standard CT [11/17 (65%)] (p = .0092). BRCT was superior to simulated standard CT in detecting acute intracranial hemorrhage. BRCT could improve the detection of small intracranial hemorrhages, particularly those adjacent to bone, by removing bone that can interfere with the visualization of small acute hemorrhage. In an emergency such as head trauma, BRCT can be used as support imaging in combination with simulated standard CT and bone scale CT, although BRCT cannot replace a simulated standard CT.

  1. Computer program for source distribution process in radiation facility

    International Nuclear Information System (INIS)

    Al-Kassiri, H.; Abdul Ghani, B.

    2007-08-01

    Computer simulation for dose distribution using Visual Basic has been done according to the arrangement and activities of Co-60 sources. This program provides dose distribution in treated products depending on the product density and desired dose. The program is useful for optimization of sources distribution during loading process. there is good agreement between calculated data for the program and experimental data.(Author)

  2. A stochastic inventory management model for a dual sourcing supply chain with disruptions

    Science.gov (United States)

    Iakovou, Eleftherios; Vlachos, Dimitrios; Xanthopoulos, Anastasios

    2010-03-01

    As companies continue to globalise their operations and outsource significant portion of their value chain activities, they often end up relying heavily on order replenishments from distant suppliers. The explosion in long-distance sourcing is exposing supply chains and shareholder value at ever increasing operational and disruption risks. It is well established, both in academia and in real-world business environments, that resource flexibility is an effective method for hedging against supply chain disruption risks. In this contextual framework, we propose a single period stochastic inventory decision-making model that could be employed for capturing the trade-off between inventory policies and disruption risks for an unreliable dual sourcing supply network for both the capacitated and uncapacitated cases. Through the developed model, we obtain some important managerial insights and evaluate the merit of contingency strategies in managing uncertain supply chains.

  3. Performance evaluation of a 'dual-side read' dedicated mammography computed radiography system

    International Nuclear Information System (INIS)

    Fetterly, Kenneth A.; Schueler, Beth A.

    2003-01-01

    The image quality of a dedicated mammography computed radiography (CR) system was characterized. A unique feature of this system is that it collects image signals from both sides of the storage phosphor. Measurements of the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were made. This work included improvements in our measurement methods to specifically account for the detrimental effects of system glare on the MTF and to accurately characterize the low-frequency NPS components. Image quality measurements were performed using a 25 kVp beam filtered with 2 mm Al and an exposure range of 1 to 100 mR (87 to 870 μGy). The DQE was found to decrease with increasing exposure due to an increased contribution of storage phosphor structure noise. The DQE of this system was compared to similar measurements made using a standard CR system. The dual-side read system demonstrated superior DQE compared to the standard system. The decrease in DQE with increasing exposure was more severe for the standard system than the dual-side read system. This finding suggests that the CR system noise was reduced for the dual-side read system compared to the standard system

  4. Computer aided control of the Bonn Penning polarized ion source

    International Nuclear Information System (INIS)

    He, N.W.; VonRossen, P.; Eversheim, P.D.; Busch, R.

    1984-01-01

    A CBM computer system is described which has been set up to control the Bonn Polarized Ion Source. The controlling program, besides setting and logging parameters, performs an optimization of the ion source output. A free definable figure of merit, being composed of the current of the ionizer and its variance, has proven to be an effective means in directing the source optimization. The performance that has been reached during the first successful tests is reported

  5. Computation of radionuclide particulate finite area fugitive source strengths

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D E

    1983-06-01

    Atmospheric source strengths quantifying particulate re-suspension from wind and non-wind disturbance-driven processes are computed for sites of small area. These values are useful in computing downwind air concentration values to evaluate risk to exposed populations. The net source strength for the site is the sum of the wind- and disturbance-driven components. A unified source strength approach includes both classes of re-suspension processes. More research is needed to satisfactorily express the time-dependence of re-suspension parameters, especially in non-arid climates where population densities are greater. (JMT)

  6. Eucalyptus: an open-source cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Daniel; Wolski, Rich; Grzegorczyk, Chris; Obertelli, Graziano; Soman, Sunil; Youseff, Lamia; Zagorodnov, Dmitrii, E-mail: rich@cs.ucsb.ed [Computer Science Department, University of California, Santa Barbara, CA 93106 (United States) and Eucalyptus Systems Inc., 130 Castilian Dr., Goleta, CA 93117 (United States)

    2009-07-01

    Utility computing, elastic computing, and cloud computing are all terms that refer to the concept of dynamically provisioning processing time and storage space from a ubiquitous 'cloud' of computational resources. Such systems allow users to acquire and release the resources on demand and provide ready access to data from processing elements, while relegating the physical location and exact parameters of the resources. Over the past few years, such systems have become increasingly popular, but nearly all current cloud computing offerings are either proprietary or depend upon software infrastructure that is invisible to the research community. In this work, we present Eucalyptus, an open-source software implementation of cloud computing that utilizes compute resources that are typically available to researchers, such as clusters and workstation farms. In order to foster community research exploration of cloud computing systems, the design of Eucalyptus emphasizes modularity, allowing researchers to experiment with their own security, scalability, scheduling, and interface implementations. In this paper, we outline the design of Eucalyptus, describe our own implementations of the modular system components, and provide results from experiments that measure performance and scalability of a Eucalyptus installation currently deployed for public use. The main contribution of our work is the presentation of the first research-oriented open-source cloud computing system focused on enabling methodical investigations into the programming, administration, and deployment of systems exploring this novel distributed computing model.

  7. Eucalyptus: an open-source cloud computing infrastructure

    International Nuclear Information System (INIS)

    Nurmi, Daniel; Wolski, Rich; Grzegorczyk, Chris; Obertelli, Graziano; Soman, Sunil; Youseff, Lamia; Zagorodnov, Dmitrii

    2009-01-01

    Utility computing, elastic computing, and cloud computing are all terms that refer to the concept of dynamically provisioning processing time and storage space from a ubiquitous 'cloud' of computational resources. Such systems allow users to acquire and release the resources on demand and provide ready access to data from processing elements, while relegating the physical location and exact parameters of the resources. Over the past few years, such systems have become increasingly popular, but nearly all current cloud computing offerings are either proprietary or depend upon software infrastructure that is invisible to the research community. In this work, we present Eucalyptus, an open-source software implementation of cloud computing that utilizes compute resources that are typically available to researchers, such as clusters and workstation farms. In order to foster community research exploration of cloud computing systems, the design of Eucalyptus emphasizes modularity, allowing researchers to experiment with their own security, scalability, scheduling, and interface implementations. In this paper, we outline the design of Eucalyptus, describe our own implementations of the modular system components, and provide results from experiments that measure performance and scalability of a Eucalyptus installation currently deployed for public use. The main contribution of our work is the presentation of the first research-oriented open-source cloud computing system focused on enabling methodical investigations into the programming, administration, and deployment of systems exploring this novel distributed computing model.

  8. Vertebral bone mineral measurement using dual photon absorptiometry and computed tomography

    International Nuclear Information System (INIS)

    Eriksson, S.; Isberg, B.; Lindgren, U.; Huddinge Univ. Hospital

    1988-01-01

    The lumbar spine of 14 cadavers was studied both by 153 Gd dual photon absorptiometry (DPA) and quantitative computed tomography (QCT) at 96 and 125 kVp. The intact spine and the individual vertebrae were analyzed. After these measurements the ash content of the vertebral body, the posterior elements, and the transverse processes was determined. The fat content of the vertebral body as well as its volume was also measured. With DPA, the bone mineral content (BMC) determined in situ as well as on excised spine specimens correlated highly with the amount of total vertebral ash (r > 0.92, SEE 0.81, SEE 3 ). The so-called corpus density and central density determinations were less accurate. No difference in accuracy was found between measurements when using 3 mm and 4.5 mm step intervals. Variations in the distribution of mineral between the vertebral body and the posterior elements contribute to the error in predicting vertebral body mineral with DPA. QCT gave a smaller error when a cylindric portion of the vertebral body with a 20 diameter was measured compared with one with a 9 mm diameter, when the dual energy technique was used (p 3 ). Single energy QCT was insignificantly less accurate than dual energy QCT. Only small differences were found between vertebrae with high fat density of the vertebral body when single or dual QCT was used. QCT was more accurate than DPA in the prediction of the mineral density of individual vertebral bodies (p < 0.05) but no difference was found when the average values for the lumbar spine were calculated. (orig.)

  9. Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography

    International Nuclear Information System (INIS)

    Gruber, Michael; Uffmann, Martin; Weber, Michael; Balassy, Csilla; Schaefer-Prokop, Cornelia; Prokop, Mathias

    2006-01-01

    The image quality of dual-reading computed radiography and dose-reduced direct radiography of the chest was compared in a clinical setting. The study group consisted of 50 patients that underwent three posteroanterior chest radiographs within minutes, one image obtained with a dual read-out computed radiography system (CR; Fuji 5501) at regular dose and two images with a flat panel direct detector unit (DR; Diagnost, Philips). The DR images were obtained with the same and with 50% of the dose used for the CR images. Images were evaluated in a blinded side-by-side comparison. Eight radiologists ranked the visually perceivable difference in image quality using a three-point scale. Then, three radiologists scored the visibility of anatomic landmarks in low and high attenuation areas and image noise. Statistical analysis was based on Friedman tests and Wilcoxon rank sum tests at a significance level of P<0.05. DR was judged superior to CR for the delineation of structures in high attenuation areas of the mediastinum even when obtained with 50% less dose (P<0.001). The visibility of most pulmonary structures was judged equivalent with both techniques, regardless of acquisition dose and speed level. Scores for image noise were lower for DR compared with CR, with the exception of DR obtained at a reduced dose. Thus, in this clinical preference study, DR was equivalent or even superior to the most modern dual read-out CR, even when obtained with 50% dose. A further dose reduction does not appear to be feasible for DR without significant loss of image quality. (orig.)

  10. Integrating cut-and-solve and semi-Lagrangean based dual ascent for the single-source capacitated facility location problem

    DEFF Research Database (Denmark)

    Gadegaard, Sune Lauth

    polytope with generalized upper bounds. From our computational study, we show that the semi-Lagrangean relaxation approach has its merits when the instances are tightly constrained with regards to the capacity of the system, but that it is very hard to compete with a standalone implementation of the cut......This paper describes how the cut-and-solve framework and semi-Lagrangean based dual ascent algorithms can be integrated in two natural ways in order to solve the single source capacitated facility location problem. The first uses the cut-and-solve framework both as a heuristic and as an exact...... solver for the semi-Lagrangean subproblems. The other uses a semi-Lagrangean based dual ascent algorithm to solve the sparse problems arising in the cut-and-solve algorithm. Furthermore, we developed a simple way to separate a special type of cutting planes from what we denote the effective capacity...

  11. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity.

    Science.gov (United States)

    Foley, W Dennis; Shuman, William P; Siegel, Marilyn J; Sahani, Dushyant V; Boll, Daniel T; Bolus, David N; De Cecco, Carlo N; Kaza, Ravi K; Morgan, Desiree E; Schoepf, U Joseph; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the second of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography. This paper, part 2, addresses radiation dose and iodine sensitivity in dual-energy computed tomography.

  12. The peak efficiency calibration of volume source using 152Eu point source in computer

    International Nuclear Information System (INIS)

    Shen Tingyun; Qian Jianfu; Nan Qinliang; Zhou Yanguo

    1997-01-01

    The author describes the method of the peak efficiency calibration of volume source by means of 152 Eu point source for HPGe γ spectrometer. The peak efficiency can be computed by Monte Carlo simulation, after inputting parameter of detector. The computation results are in agreement with the experimental results with an error of +-3.8%, with an exception one is about +-7.4%

  13. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  14. Dual photon absorptiometry of the spine with a low activity source of gadolinium 153

    International Nuclear Information System (INIS)

    Tothill, P.; Smith, M.A.; Sutton, D.

    1983-01-01

    Apparatus and data-processing techniques were developed to measure the bone mineral content (BMC) of the lumbar spine. 153 Gd was used as the dual photon source with an activity down to 7 GBq, lower than that adopted by other workers. The compromise between resolution and sensitivity was optimised. A reproducibility in normal subjects of 1.5% (coefficient of variation) was obtained. Normalisation procedures using parameters of the scan image and other indicators of body size such as span were developed, and reduced the coefficient of variation between normal subjects to 10% for men and 8% for pre-menopausal women. The absolute values of BMC are similar to those reported by others. Cross-sectional studies in women demonstrated an accelerated loss of BMC after the menopause. (author)

  15. Dual-source virtual non-contrast CT of the head: a preliminary study

    International Nuclear Information System (INIS)

    Huang Wei; Xu Yiming; Shao Jin

    2011-01-01

    Objective: To investigate image quality and clinical value of dual-source dual energy virtual non-contrast (VNC) CT of the head. Methods: Sixty-two patients suspected of cerebrovascular diseases underwent conventional non-contrast (CNC) CT and dual energy CTA examination of the head with dual-source CT. Virtual non-contrast images were reconstructed using dual energy software. The CT values of gray matter, white matter, cerebrospinal fluid, hyperdense hemorrhagic lesion and hypodense ischemic lesion were compared between CNC and VNC images. A four-score scale was used to assess image quality subjectively. Image noise, radiation dosage and detection rate were compared between CNC and VNC images. Paired t test, Wilcoxon signed ranks test and Chi-square test (McNemar test and Kappa test) were used. Results: The CT value on CNC and VNC images, were (43.3±1.5) and (33.2±1.3) HU for gray matter (t=46.98, P 0.05, Kappa = 1.000) at per-patient level. Twenty-two patients with hypodense ischemic lesions were found on VNC images with one false positive case and two false negative cases. The sensitivity, specificity, positive predictive value and negative predictive value were 91.3% (21/23), 97.4% (38/39), 95.5% (21/22) and 95.0% (38/40) respectively. No statistical difference was found in detecting hypodense lesions between VNC and CNC images (χ 2 = 0.00, P>0.05, Kappa = 0.895). In per-lesion analysis, 53 hemorrhage lesions were found on VNC images with false negative results of four lesions and no false positive result. The sensitivity, specificity, positive predictive value and negative predictive value were 93.0% (53/57). 100.0% (38/38), 100.0% (53/.53) and 90.5% (38/42) respectively. There was no significant difference in detection rate of hyperdense lesion between VNC and CNC images (χ 2 = 2.25, P>0.05, Kappa = 0.914). Thirty-eight hypodense lesions were found on VNC images with 2 false positive lesions and 13 false negative lesions. The sensitivity, specificity

  16. Using a dual isotopic approach to trace sources and mixing of sulphate in Changjiang Estuary, China

    International Nuclear Information System (INIS)

    Li Siliang; Liu Congqiang; Patra, Sivaji; Wang Fushun; Wang Baoli; Yue Fujun

    2011-01-01

    Highlights: → Changjiang Estuary plays an important role in transportation of the water and solute. → The dual isotopic method could be used to understand sulfate biogeochemistry in estuaries. → Mixing processes should be a major factor involved in the distribution of water and sulphate. → Sulphate in the Changjiang River mainly derived from atmospheric deposition, evaporite dissolution and sulphide oxidation. - Abstract: The dual isotopic compositions of dissolved SO 4 2- in aquatic systems are commonly used to ascertain SO 4 2- sources and possible biogeochemical processes. In this study, the physical parameters, major anions and isotopic compositions of SO 4 2- in water samples from Changjiang River (Nanjin) to the East Sea in Changjiang Estuary were determined. The salinity ranged from 0 per mille to 32.3 per mille in the estuary water samples. The Cl - ,SO 4 2- concentrations and δ 18 O-H 2 O values followed the salinity variations from freshwater to seawater, which indicated that mixing processes might be a major factor involved in the distribution of water and solutes. The contents and isotopic compositions of SO 4 2- suggested that atmospheric deposition, evaporite dissolution and sulphide oxidation were the major sources of dissolved SO 4 2- in the freshwater of Changjiang River. In addition, the mixing model calculated by contents and isotopic compositions of SO 4 2- indicated that the mixing of freshwater and sea water was the major factor involved in SO 4 2- distribution in Changjiang Estuary. However, slightly elevated δ 18 O-SO 4 values were observed in the turbidity maximum zone, which suggested that biological processes might affect the O isotopic compositions of SO 4 2- there.

  17. New normative standards of conditional reasoning and the dual-source model.

    Science.gov (United States)

    Singmann, Henrik; Klauer, Karl Christoph; Over, David

    2014-01-01

    There has been a major shift in research on human reasoning toward Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998) for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer and Kleiter, 2005, 2010) exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer et al., 2010) is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches) and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task.

  18. New Normative Standards of Conditional Reasoning and the Dual-Source Model

    Directory of Open Access Journals (Sweden)

    Henrik eSingmann

    2014-04-01

    Full Text Available There has been a major shift in research on human reasoning towards Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998 for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer & Kleiter, 2005, 2010 exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer, Beller, & Hütter, 2010 is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task.

  19. Open-Source Software in Computational Research: A Case Study

    Directory of Open Access Journals (Sweden)

    Sreekanth Pannala

    2008-04-01

    Full Text Available A case study of open-source (OS development of the computational research software MFIX, used for multiphase computational fluid dynamics simulations, is presented here. The verification and validation steps required for constructing modern computational software and the advantages of OS development in those steps are discussed. The infrastructure used for enabling the OS development of MFIX is described. The impact of OS development on computational research and education in gas-solids flow, as well as the dissemination of information to other areas such as geophysical and volcanology research, is demonstrated. This study shows that the advantages of OS development were realized in the case of MFIX: verification by many users, which enhances software quality; the use of software as a means for accumulating and exchanging information; the facilitation of peer review of the results of computational research.

  20. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences.

    Science.gov (United States)

    Reagan, Adrian C; Mallinson, Paul I; O'Connell, Timothy; McLaughlin, Patrick D; Krauss, Bernhard; Munk, Peter L; Nicolaou, Savvas; Ouellette, Hugue A

    2014-01-01

    Computed tomography (CT) is often used to assess the presence of occult fractures when plain radiographs are equivocal in the acute traumatic setting. While providing increased spatial resolution, conventional computed tomography is limited in the assessment of bone marrow edema, a finding that is readily detectable on magnetic resonance imaging (MRI).Dual-energy CT has recently been shown to demonstrate patterns of bone marrow edema similar to corresponding MRI studies. Dual-energy CT may therefore provide a convenient modality for further characterizing acute bony injury when MRI is not readily available. We report our initial experiences of 4 cases with imaging and clinical correlation.

  1. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  2. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  3. Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed

    International Nuclear Information System (INIS)

    Su, Mingze; Zhao, Haibo; Ma, Jinchen

    2015-01-01

    Highlights: • CFD simulation of a 5 kW_t_h CLC reactor of coal was conducted. • Gas leakage, flow pattern and combustion efficiency of the reactor was analyzed. • Optimal condition was achieved based on operation characteristics understanding. - Abstract: A dual circulation fluidized bed system is widely accepted for chemical looping combustion (CLC) for enriching CO_2 from the utilization of fossil fuels. Due to the limitations of the measurement, the details of multiphase reactive flows in the interconnected fluidized bed reactors are difficult to obtain. Computational Fluid Dynamics (CFD) simulation provides a promising method to understand the hydrodynamics, chemical reaction, and heat and mass transfers in CLC reactors, which are very important for the rational design, optimal operation, and scaling-up of the CLC system. In this work, a 5 kW_t_h coal-fired CLC dual circulation fluidized bed system, which was developed by our research group, was first simulated for understanding gas leakage, flow pattern and combustion efficiency. The simulation results achieved good agreement with the experimental measurements, which validates the simulation model. Subsequently, to improve the combustion efficiency, a new operation condition was simulated by increasing the reactor temperature and decreasing the coal feeding. An improvement in the combustion efficiency was attained, and the simulation results for the new operation condition were also validated by the experimental measurements in the same CLC combustor. All of the above processes demonstrated the validity and usefulness of the simulation results to improve the CLC reactor operation.

  4. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  5. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    Science.gov (United States)

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  6. The Four Sources of Influence on Computer Self-Efficacy.

    Science.gov (United States)

    Smith, Sheila M.

    2001-01-01

    Using Bandura's four sources of influence on self-efficacy, 210 students rated their computer self-efficacy. Mastery experiences were most influential for white males; vicarious learning had the most influence for females and nonwhite students. (Contains 29 references.) (SK)

  7. [Clinical application of high-pitch excretory phase images during dual-source CT urography with stellar photon detector].

    Science.gov (United States)

    Sun, Hao; Xue, Hua-dan; Jin, Zheng-yu; Wang, Xuan; Chen, Yu; He, Yong-lan; Zhang, Da-ming; Zhu, Liang; Wang, Yun; Qi, Bing; Xu, Kai; Wang, Ming

    2014-10-01

    To retrospectively evaluate the clinical feasibility of high-pitch excretory phase images during dual-source CT urography with Stellar photon detector. Totally 100 patients received dual-source CT high-pitch urinary excretory phase scanning with Stellar photon detector [80 kV, ref.92 mAs, CARE Dose 4D and CARE kV, pitch of 3.0, filter back projection reconstruction algorithm (FBP)] (group A). Another 100 patients received dual-source CT high-pitch urinary excretory phase scanning with common detector(100 kV, ref.140 mAs, CARE Dose 4D, pitch of 3.0, FBP) (group B). Quantitative measurement of CT value of urinary segments (Hounsfield units), image noise (Hounsfield units), and effective radiation dose (millisievert) were compared using independent-samples t test between two groups. Urinary system subjective opacification scores were compared using Mann-Whitney U test between two groups. There was no significant difference in subjective opacification score of intrarenal collecting system and ureters between two groups (all P>0.05). The group A images yielded significantly higher CT values of all urinary segments (all P0.05). The effective radiation dose of group A (1.1 mSv) was significantly lower than that of group B (3.79 mSv) (Ppitch low-tube-voltage during excretory phase dual-source CT urography with Stellar photon detector is feasible, with acceptable image noise and lower radiation dose.

  8. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  9. Can a dual-energy computed tomography predict unsuitable stone components for extracorporeal shock wave lithotripsy?

    Science.gov (United States)

    Ahn, Sung Hoon; Oh, Tae Hoon; Seo, Ill Young

    2015-09-01

    To assess the potential of dual-energy computed tomography (DECT) to identify urinary stone components, particularly uric acid and calcium oxalate monohydrate, which are unsuitable for extracorporeal shock wave lithotripsy (ESWL). This clinical study included 246 patients who underwent removal of urinary stones and an analysis of stone components between November 2009 and August 2013. All patients received preoperative DECT using two energy values (80 kVp and 140 kVp). Hounsfield units (HU) were measured and matched to the stone component. Significant differences in HU values were observed between uric acid and nonuric acid stones at the 80 and 140 kVp energy values (penergy values (p<0.001). DECT improved the characterization of urinary stone components and was a useful method for identifying uric acid and calcium oxalate monohydrate stones, which are unsuitable for ESWL.

  10. Tophaceous Gout in an Anorectic Patient Visualized by Dual Energy Computed Tomography (DECT)

    DEFF Research Database (Denmark)

    Christensen, Heidi Dahl; Sheta, Hussam; Birger Morillon, Melanie

    2016-01-01

    BACKGROUND Gout is characterized by deposition of uric acid crystals (monosodium urate) in tissues and fluids. This can cause acute inflammatory arthritis. The 2015 ACR/EULAR criteria for the diagnosis of gout include dual energy computed tomography (DECT)-demonstrated monosodium urate crystals...... known to have anorexia nervosa. During our clinical examination, we detected plenty of tophi on both hands, but no swollen joints. The diagnosis of gout was made by visualizing crystals in a biopsy from a tophus. The first line of treatment was allopurinol, the second line was rasburicase...... and soft tissue. CONCLUSIONS DECT is an imaging modality useful to assess urate crystal deposits at diagnosis of gout and could be considered during treatment evaluation. Lack of adherence to treatment should be considered when P-urate values vary significantly and when DECT scans over years persistently...

  11. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  12. Dose calculation for iridium-192 sources by a personal computer

    International Nuclear Information System (INIS)

    Takahashi, Kenichi; Ishigaki, Hideyo; Udagawa, Kimio; Saito, Masami; Yamaguchi, Kyoko

    1988-01-01

    Recently Ir-192 sources have been used for interstitial radiotherapy instead of Ra-226 needles. One end of Ir-192 (single-pin) is formed with circlet and implanted Ir-192 sources are not always straight line. So the authors have developed a new dose calculation system, in which the authers employed conventional method considering oblique filteration for linear source and multi-point source method for curved source. Conventionally the positions of sources in three dimensions are determined from projections of the implanted sources on orthogonal or stereo radiographs. But it is frequentry impossible to define the end of sources on account of overlap. Then the authers have devised a method to determine the positions of sources from two radiographs which were taken with arbitrary directions. For tongue cancer injuries of mandibula so frequently occur after interstitial radiotherapy that the calculation of gingival dose is necessary. The positions of the gingival line are determined from two directional radiographs too. Further the three dimensional dose distributions can be displayed on the cathod ray tube. These calculations are performed by using a personal computer because of its distinctive features such as superiority in cost performance and flexibility for development and modification of programs. (author)

  13. Comparison of diagnostic accuracy of dual-source CT and conventional angiography in detecting congenital heart diseases

    International Nuclear Information System (INIS)

    Sedaghat, Fariborz; Pouraliakbar, Hamidreza; Motevalli, Marzieh; Karimi, Mohammad Ali; Armand, Sandbad

    2014-01-01

    Cardiac dual-source computed tomography (DSCT) is primarily used for coronary arteries. There are limited studies about the application of DSCT for congenital heart diseases. The aim of this study was to determine the diagnostic value of DSCT in the cardiac anomalies. The images of DSCTs and conventional angiographies of 36 patients (21 male; mean age: 8.5 month) with congenital heart diseases were reviewed and the parameters of diagnostic value of these methods were compared. Cardiac surgery was the gold standard. A total of 105 cardiac anomalies were diagnosed at surgery. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of DSCT were 98.25%, 97.9%, 98.1%, 99.07%, and 98.2%, respectively. The corresponding values of angiography were 95.04%, 98.7%, 97.8%, 98.1%, and 98%, respectively. Only one atrial septal defect (ASD) and two patent ductus arteriosus (PDA) were missed by DSCT. Angiography missed two ASD and two PDA. DSCT also provided important additional findings (n=35) about the intrathoracic or intraabdominal organs. DSCT is a highly accurate diagnostic modality for congenital heart diseases, obviating the need for invasive modalities. Beside its noninvasive nature, the advantage of DSCT over the angiography is its ability to provide detailed anatomical information about the heart, vessels, lungs and intraabdominal organs

  14. Study of 1 MW neutron source synchrotron dual frequency power circuit for the main ring magnets

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the proposed design of the resonant power circuits for the 1-MW neutron source synchrotron's main ring magnets. The synchrotron is to have a duty cycle of 30 Hz with a maximum upper limit of operation corresponding to 2.0 GeV and a maximum design value of 2.2 GeV. A stability of 30 ppM is the design goal for the main bending and focusing magnets (dipoles and quadruples), in order to achieve an overall stabffity of 100 ppm when random field and position errors of the magnets are included. The power circuits of this design are similar to those used in Argonne's Intense Pulsed Neutron Source (IPNS) where the energy losses during each cycle are supplied by continuous excitation from modulated multiphase DC power supplies. Since only 50% of the 30-Hz sinewave is used for acceleration, a dual-frequency resonant magnet circuit is used in this design. The 30-Hz repetition rate is maintained with a 20-Hz magnet guide field during acceleration and a 60-Hz reset field when no beam is present. This lengthens the guide-field rise time and shortens the fall time, improving the duty factor for acceleration. The maximum B dot is reduced by 33% during acceleration and hence, the maximum rf voltage/turn is reduced by 56%

  15. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    International Nuclear Information System (INIS)

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-01-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p 1 and p 2 are obtained as functions of the measured attenuation data q 1 and q 2 (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical μ values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  16. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach

    International Nuclear Information System (INIS)

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-01-01

    Nitrate (NO 3 − ) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) was applied to identify diffused NO 3 − inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO 3 − sources (atmospheric deposition, AD; NO 3 − derived from soil organic matter nitrification, NS; NO 3 − derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M and S) were identified. NO 3 − concentrations in the stream during the rainy season [mean ± standard deviation (SD) = 2.5 ± 0.4 mg/L] were lower than those during the dry season (mean ± SD = 4.0 ± 0.5 mg/L), whereas the δ 18 O-NO 3 − values during the rainy season (mean ± SD = + 12.3 ± 3.6‰) were higher than those during the dry season (mean ± SD = + 0.9 ± 1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO 3 − resulted in the high δ 18 O values during the rainy season, whereas NS and M and S were the dominant NO 3 − sources during the dry season. A Bayesian model was used to determine the contribution of each NO 3 − source to total stream NO 3 − . Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO 3 − source throughout the year. M and S contributed more NO 3 − during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO 3 − in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO 3 − sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin. - Highlights: • The isotopic characteristics of potential NO 3 − sources were identified. • Mixing with atmospheric NO 3 − resulted

  17. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  18. Radiation dose of cardiac dual-source CT: The effect of tailoring the protocol to patient-specific parameters

    International Nuclear Information System (INIS)

    Alkadhi, Hatem; Stolzmann, Paul; Scheffel, Hans; Desbiolles, Lotus; Baumueller, Stephan; Plass, Andre; Genoni, Michele; Marincek, Borut; Leschka, Sebastian

    2008-01-01

    Objective: To determine the radiation doses and image quality of different dual-source computed tomography coronary angiography (CTCA) protocols tailored to the heart rate (HR) and body mass index (BMI) of the patients. Materials and methods: Two hundred consecutive patients (68 women; mean age 61 ± 9 years) underwent either helical CTCA with retrospective ECG-gating or sequential CT with prospective ECG-triggering: 50 patients (any BMI, any HR) were examined with a standard, non-tailored protocol (helical CTCA, 120 kV, 330 mAs), whereas the other 150 patients were examined with a tailored protocol: 40 patients (group A, BMI ≤ 25 kg/sqm, HR ≤ 70 bpm) with sequential CTCA (100 kV, 190 mAs ref ), 43 patients (group B, BMI ≤ 25 kg/sqm, HR > 70 bpm) with helical CTCA (100 kV, 220 mAs), 28 patients (group C, BMI > 25 kg/sqm, HR ≤ 70 bpm) with sequential CTCA (120 kV, 330 mAs ref ), and 39 patients (group D, BMI > 25 kg/sqm, HR > 70 bpm) with helical CTCA (120 kV, 330 mAs). The effective radiation dose estimates were calculated from the dose-length-product for each patient. Image quality was classified as being diagnostic or non-diagnostic in each coronary segment. Results: Image quality was diagnostic in 2403/2460 (98%) and non-diagnostic in 57/2460 (2%) of all coronary segments. No significant differences in image quality were found among all five CTCA protocols (p = 0.78). The non-tailored helical CTCA protocol was associated with a radiation dose of 9.0 ± 1.0 mSv, being significantly higher compared to that using sequential CTCA (group A: 1.3 ± 0.3 mSv, p 70 bpm (group D: 8.5 ± 0.9 mSv, p = 0.51). Conclusions: Dual-source CTCA is associated with radiation doses ranging between 1.3 and 9.0 mSv, depending on the protocol used. Tailoring of the CTCA protocol to the HR and BMI of the individual patient results in dose reductions of up to 86%, while maintaining a diagnostic image quality of the examination

  19. Dual Coding Theory and Computer Education: Some Media Experiments To Examine the Effects of Different Media on Learning.

    Science.gov (United States)

    Alty, James L.

    Dual Coding Theory has quite specific predictions about how information in different media is stored, manipulated and recalled. Different combinations of media are expected to have significant effects upon the recall and retention of information. This obviously may have important consequences in the design of computer-based programs. The paper…

  20. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.

    1983-01-01

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  1. Sources and transformations of nitrate from streams draining varying land uses: Evidence from dual isotope analysis

    Science.gov (United States)

    Burns, Douglas A.; Boyer, E.W.; Elliott, E.M.; Kendall, C.

    2009-01-01

    Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO3-) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO3- to determine the dominant sources and processes that affect NO3- concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO3- concentrations, ?? 15NNO3, and ??18ONO3. Samples from two forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three ??18ONO3 values greater than +25???, indicating a large direct contribution of atmospheric NO 3- transported to the stream during some high flows. Two watersheds with large proportions of agricultural land use had many ??15NNO3 values greater than +9???, suggesting an animal waste source consistent with regional dairy farming practices. These data showed a linear seasonal pattern with a ??18O NO3:??15NNO3 of 1:2, consistent with seasonally varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest annual streamflow. The large range of ?? 15NNO3 values (10???) indicates that NO 3- supply was likely not limiting the rate of denitrification, consistent with ground water and/or in-stream denitrification. Mixing of two or more distinct sources may have affected the seasonal isotope patterns observed in these two agricultural streams. In a mixed land use watershed of large drainage area, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at watersheds of a few to a few hundred km2 may be necessary to adequately quantify the relative roles of various NO 3- transport and process patterns that contribute to streamflow in large basins. Copyright ?? 2009 by the American Society of

  2. Desired lifetime and end-of-life desires across adulthood from 20 to 90: a dual-source information model.

    Science.gov (United States)

    Lang, Frieder R; Baltes, Paul B; Wagner, Gert G

    2007-09-01

    How long do people want to live, and how does scientific research on aging affect such desires? A dual-source information model proposes that aging expectations and desires are informed differently by two sources: personal experiences on the one hand, and scientific and societal influences on the other. Two studies with independent German national samples explored desires regarding length of life and end of life among adults between the ages of 20 and 90. FINDINGS ARE: First, desired lifetime is consistent at around 85 years with few age differences. Second, experimental induction of good or bad news from research on aging has little effect in Study 1. Third, interest in science has moderating effects on desired lifetime in Study 2. Fourth, there is a high prevalence of a strong desire to control the "when and how" of one's death, although only 11% of the individuals completed a living will. Findings are consistent with the dual-source information model.

  3. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ralf W., E-mail: ralfwbauer@aol.co [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany); Schulz, Julian R., E-mail: julian.schulz@t-online.d [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany); Zedler, Barbara, E-mail: zedler@em.uni-frankfurt.d [Department of Forensic Medicine, Clinic of the Goethe University Frankfurt, Kennedyallee 104, 60596 Frankfurt (Germany); Graf, Thomas G., E-mail: thomas.gt.graf@siemens.co [Siemens AG Healthcare Sector, Computed Tomography, Physics and Applications, Siemensstrasse 1, 91313 Forchheim (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)

    2010-07-15

    Purpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components. Materials and methods: 35 gallstones were analyzed with DECT using a phantom model. Stone samples were put into specimen containers filled with formalin. Containers were put into a water-filled cylindrical acrylic glass phantom. DECT scans were performed using a tube voltage/current of 140 kV/83 mAs (tube A) and 80 kV/340 mAs (tube B). ROI-measurements to determine CT attenuation of each sector of the stones that had different appearance on the CT images were performed. Finally, semi-quantitative infrared spectroscopy (FTIR) of these sectors was performed for chemical analysis. Results: ROI-measurements were performed in 45 different sectors in 35 gallstones. Sectors containing >70% of cholesterol and no calcium component (n = 20) on FTIR could be identified with 95% sensitivity and 100% specificity on DECT. These sectors showed typical attenuation of -8 {+-} 4 HU at 80 kV and +22 {+-} 3 HU at 140 kV. Even the presence of a small calcium component (<10%) hindered the reliable identification of cholesterol components as such. Conclusion: Dual energy CT allows for reliable identification of gallstones containing a high percentage of cholesterol and no calcium component in this pre-clinical phantom model. Results from in vivo or anthropomorphic phantom trials will have to confirm these results. This may enable the identification of patients eligible for non-surgical treatment options in the future.

  4. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model

    International Nuclear Information System (INIS)

    Bauer, Ralf W.; Schulz, Julian R.; Zedler, Barbara; Graf, Thomas G.; Vogl, Thomas J.

    2010-01-01

    Purpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components. Materials and methods: 35 gallstones were analyzed with DECT using a phantom model. Stone samples were put into specimen containers filled with formalin. Containers were put into a water-filled cylindrical acrylic glass phantom. DECT scans were performed using a tube voltage/current of 140 kV/83 mAs (tube A) and 80 kV/340 mAs (tube B). ROI-measurements to determine CT attenuation of each sector of the stones that had different appearance on the CT images were performed. Finally, semi-quantitative infrared spectroscopy (FTIR) of these sectors was performed for chemical analysis. Results: ROI-measurements were performed in 45 different sectors in 35 gallstones. Sectors containing >70% of cholesterol and no calcium component (n = 20) on FTIR could be identified with 95% sensitivity and 100% specificity on DECT. These sectors showed typical attenuation of -8 ± 4 HU at 80 kV and +22 ± 3 HU at 140 kV. Even the presence of a small calcium component (<10%) hindered the reliable identification of cholesterol components as such. Conclusion: Dual energy CT allows for reliable identification of gallstones containing a high percentage of cholesterol and no calcium component in this pre-clinical phantom model. Results from in vivo or anthropomorphic phantom trials will have to confirm these results. This may enable the identification of patients eligible for non-surgical treatment options in the future.

  5. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Erno K. [Helsinki University Hospital, Toeoeloe Trauma Center, Department of Radiology, Helsinki Medical Imaging Center, Helsinki (Finland); Koskinen, Seppo K. [Karolinska Universitetssjukhuset, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden)

    2015-09-15

    To examine dual-energy computed tomography (DECT) in evaluating cruciate ligament injuries. More specifically, the purpose was to assess the optimal keV level in DECT gemstone spectral imaging (GSI) images and to examine the usefulness of collagen-specific color mapping and dual-energy bone removal in the evaluation of cruciate ligaments and the popliteus tendon. At a level 1 trauma center, a 29-month period of emergency department DECT examinations for acute knee trauma was reviewed by two radiologists for presence of cruciate ligament injuries, visualization of the popliteus tendon and the optimal keV level in GSI images. Three different evaluating protocols (GSI, bone removal and collagen-specific color mapping) were rated. Subsequent MRI served as a reference standard for intraarticular injuries. A total of 18 patients who had an acute knee trauma, DECT and MRI were found. On MRI, six patients had an ACL rupture. DECT's sensitivity and specificity to detect ACL rupture were 79 % and 100 %, respectively. The DECT vs. MRI intra- and interobserver proportions of agreement for ACL rupture were excellent or good (kappa values 0.72-0.87). Only one patient had a PCL rupture. In GSI images, the optimal keV level was 63 keV. GSI of 40-140 keV was considered to be the best evaluation protocol in the majority of cases. DECT is a usable method to evaluate ACL in acute knee trauma patients with rather good sensitivity and high specificity. GSI is generally a better evaluation protocol than bone removal or collagen-specific color mapping in the evaluation of cruciate ligaments and popliteus tendon. (orig.)

  6. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  7. Cerebral angiography with prospective ECG triggering preliminary study of dual-source CT

    International Nuclear Information System (INIS)

    Xue Yuejun; Qian Nong; Shao Yanhui; Pan Changjie; Rong Weiliang; Xu Yiqun

    2012-01-01

    Objective: To study the image quality and radiation dose in dual-source CT cerebral angiography with prospective ECG-triggered sequence mode (step-and-shoot, SAS). Methods: A total of forty-three patients with clinically suspected cerebral vascular disease underwent cerebral CT angiography with prospective ECG-triggering (step-and-shoot, SAS). Data acquisition was at 60% R-R interval of the ECG presentation mode. The post-processing included maximum intensity projection (MIP), multiplanar reformation (MPR) and volume rendering (VR). The CTA image quality, radiation dose and rates of excellent images were evaluated. Results: The CTA image quality score was 4.72 ± 0.50 and 97.7% (42/43) patients had excellent CTA images. The average effective dose of SAS-CTA was (0.22 ± 0.01)mSv, which was lower by 76.31% than that of DE-CTA. Conclusions: Prospective ECG-triggering sequence could be used in cerebral angiography with a significant reduction in radiation dose and diagnostic image quality. (authors)

  8. Performance study of a dual power source residential CCHP system based on PEMFC and PTSC

    International Nuclear Information System (INIS)

    Chen, Xi; Gong, Guangcai; Wan, Zhongmin; Zhang, Caizhi; Tu, Zhengkai

    2016-01-01

    Highlights: • A novel dual power source residential CCHP system model is proposed. • Low temperature and high current density guarantee the high efficiency of PTSC. • High system efficiency can be obtained at a relatively low solar radiation. • Government subsidy is a crucial factor to improve system economic performance. • System environmental performance is discussed by parametric study. - Abstract: This paper presents an innovative, hybrid residential CCHP system based on fuel cell and solar technologies that can provide electric power, heating and cooling. The CCHP system consists of a proton exchange membrane fuel cell (PEMFC) stack, parabolic trough solar collector (PTSC), double-effect absorption chiller and their relevant accessories. The effects of key operating parameters for PEMFC and PTSC systems (e.g.: current density, operating temperature and solar radiation) on the system thermodynamic performance are analyzed and discussed. The results show that the PEMFC operation temperature has a significant influence on the PTSC output performance in a hybrid CCHP system and that the PTSC also plays an important role as a bridge between the PEMFC stack and absorption chiller. The maximum efficiency of a hybrid system can reach 80.5%, which is higher than conventional CCHP systems, due to the high efficiency of PEMFC, PTSC and double-effect absorption chiller. The economic and environmental analysis of CCHP system are also performed, the results indicate the project is practicable, meanwhile, high current density and solar radiation and low operating temperature can improve pollutant emissions reduction of the system.

  9. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Alessandro [National Scientific and Technological Development Council, Ministry of Science and Technology, SEPN 509, Bloco A, Sala 204, 70750-901 BrasIlia, DF (Brazil); Reichmann, Peter [Department of Veterinary Clinical Medicine, Agricultural Science Centre/Londrina State University, CP 6001, 86051-990 Londrina, PR (Brazil); Gamba, Humberto Remigio [Centro Federal de Educacao Tecnologica do Parana, Post-Graduate Programme in Electrical Engineering and Applied Computer Science, Av. 7 de setembro 3165, 80230-901 Curitiba, PR (Brazil)

    2003-12-07

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s{sup -1}, in steps of 1 mm s{sup -1}, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  10. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    Science.gov (United States)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  11. Automatic selection of optimal systolic and diastolic reconstruction windows for dual-source CT coronary angiography

    International Nuclear Information System (INIS)

    Seifarth, H.; Puesken, M.; Wienbeck, S.; Maintz, D.; Heindel, W.; Juergens, K.U.; Fischbach, R.

    2009-01-01

    The aim of this study was to assess the performance of a motion-map algorithm that automatically determines optimal reconstruction windows for dual-source coronary CT angiography. In datasets from 50 consecutive patients, optimal systolic and diastolic reconstruction windows were determined using the motion-map algorithm. For manual determination of the optimal reconstruction window, datasets were reconstructed in 5% steps throughout the RR interval. Motion artifacts were rated for each major coronary vessel using a five-point scale. Mean motion scores using the motion-map algorithm were 2.4 ± 0.8 for systolic reconstructions and 1.9 ± 0.8 for diastolic reconstructions. Using the manual approach, overall motion scores were significantly better (1.9 ± 0.5 and 1.7 ± 0.6, p 90% of cases using either approach. Using the automated approach, there was a negative correlation between heart rate and motion scores for systolic reconstructions (ρ = -0.26, p 80 bpm (systolic reconstruction). (orig.)

  12. Adrenal incidentaloma triage with single source (fast kVp switch) dual energy CT

    Science.gov (United States)

    Glazer, Daniel I; Keshavarzi, Nahid R; Parker, Robert A; Kaza, Ravi K; Platt, Joel F; Francis, Isaac R

    2015-01-01

    Purpose To evaluate single source dual energy CT (DECT) for distinguishing benign and indeterminate adrenal nodules, with attention to effects of phase of intravenous contrast enhancement. Materials and methods An IRB-approved, HIPAA-compliant retrospective review revealed 273 contrast-enhanced abdominal DECTs from November 2009–March 2012. 50 adrenal nodules ≥ 0.8 cm were identified in 41 patients: 22 female, 19 male, average age 66 (range 36–88 years). CT post-processing and measurements were independently performed by two radiologists (R1 and R2) for each nodule: (1) HU on true non-contrast images; (2) post-contrast HU on monochromatic spectral images at 40, 75, and 140 keV; (3) post-contrast material density (mg/cc) on virtual non-contrast (VNC) images. Nodules were separated into benign (VNC images, benign nodules had significantly lower material density (R1: 992.4 mg/cc ± 9.9; R2: 992.7 mg/cc ±9.6) than indeterminate nodules (R1: 1001.1mg/cc ±20.5 (p .038); R2: 1007.6 HU ±13.4 (p <.0001). Conclusion DECT tools can mathematically subtract iodine or minimize its effects in high energy reconstructions, approximating non-contrast imaging and potentially reducing the need for additional studies to triage adrenal nodules detected on post-contrast DECT exams. PMID:25055267

  13. Assessment of thoracic aortic elasticity: a preliminary study using electrocardiographically gated dual-source CT

    International Nuclear Information System (INIS)

    Li, Ning; Guo, Lijun; Sun, Haitao; Gao, Fei; Liu, Cheng; Beck, Thomas; Chen, Jiuhong; Biermann, Christina

    2011-01-01

    To gain a new insight into the elastic properties of the thoracic aorta in patients without aortic diseases using electrocardiographically (ECG)-gated dual-source (DS) CT. 56 subjects with no cardiovascular disease, selected from 2,700 people undergoing ECG-gated DSCT examination, were divided into three groups according to their age. CT data were reconstructed in 5% step throughout the RR interval. Diameter and area were measured at the curve of the ascending aorta (AA) and at the same level of the descending aorta (DA). The pulsation and elasticity of the aorta were evaluated. Aortic diameter changes were noted throughout the cardiac cycle. The maximum average diameter was seen at an RR interval of 24.02 ± 4.99% for the AA and 25.63 ± 4.77% for the DA. The minimum was at 93.5 ± 4.04% for the AA and 96.6 ± 4.58% for the DA. There was an age-dependent decrease in elasticity, while different correlation coefficients were found between various age groups and different elastic parameters. The properties of aortic pulsation and wall elasticity could be well shown by ECG-gated DSCT. The new findings regarding segment difference and age relevance were significant and should be taken into account in clinical trials and treatments for the elasticity related cardiovascular diseases. (orig.)

  14. Open-Source Java for Teaching Computational Physics

    Science.gov (United States)

    Wolfgang, Christian; Gould, Harvey; Gould, Joshua; Tobochnik, Jan

    2001-11-01

    The switch from procedural to object-oriented (OO) programming has produced dramatic changes in professional software design. OO techniques have not, however, been widely adopted in computational physics. Although most physicists are familiar with procedural languages such as Fortran, few physicists have formal training in computer science and few therefore have made the switch to OO programming. The continued use of procedural languages in education is due, in part, to the lack of up-to-date curricular materials that combine current computational physics research topics with an OO framework. This talk describes an Open-Source curriculum development project to produce such material. Examples will be presented that show how OO techniques can be used to encapsulate the relevant Physics, the analysis, and the associated numerical methods.

  15. Mahotas: Open source software for scriptable computer vision

    Directory of Open Access Journals (Sweden)

    Luis Pedro Coelho

    2013-07-01

    Full Text Available Mahotas is a computer vision library for Python. It contains traditional image processing functionality such as filtering and morphological operations as well as more modern computer vision functions for feature computation, including interest point detection and local descriptors. The interface is in Python, a dynamic programming language, which is appropriate for fast development, but the algorithms are implemented in C++ and are tuned for speed. The library is designed to fit in with the scientific software ecosystem in this language and can leverage the existing infrastructure developed in that language. Mahotas is released under a liberal open source license (MIT License and is available from http://github.com/luispedro/mahotas and from the Python Package Index (http://pypi.python.org/pypi/mahotas. Tutorials and full API documentation are available online at http://mahotas.readthedocs.org/.

  16. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  17. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    International Nuclear Information System (INIS)

    Sun, Hao; Hou, Xin-Yi; Xue, Hua-Dan; Li, Xiao-Guang; Jin, Zheng-Yu; Qian, Jia-Ming; Yu, Jian-Chun; Zhu, Hua-Dong

    2015-01-01

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  18. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao, E-mail: sunhao_robert@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Hou, Xin-Yi, E-mail: hxy_pumc@126.com [Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Xue, Hua-Dan, E-mail: bjdanna95@hotmail.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Li, Xiao-Guang, E-mail: xglee88@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Jin, Zheng-Yu, E-mail: zhengyu_jin@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Qian, Jia-Ming, E-mail: qjiaming57@gmail.com [Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Yu, Jian-Chun, E-mail: yu-jch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Zhu, Hua-Dong, E-mail: huadongzhu@hotmail.com [Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China)

    2015-05-15

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  19. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3rd generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    International Nuclear Information System (INIS)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander

    2017-01-01

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  20. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3{sup rd} generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander [Univ. Hospital Wuerzburg (Germany). Inst. of Diagnostic and Interventional Radiology

    2017-06-15

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  1. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    International Nuclear Information System (INIS)

    Kanmani, B; Vasu, R M

    2007-01-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme

  2. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements.

    Science.gov (United States)

    Ascenti, Giorgio; Mileto, Achille; Krauss, Bernhard; Gaeta, Michele; Blandino, Alfredo; Scribano, Emanuele; Settineri, Nicola; Mazziotti, Silvio

    2013-08-01

    To compare the diagnostic accuracy of iodine quantification and standard enhancement measurements in distinguishing enhancing from nonenhancing renal masses. The Institutional Review Board approved this retrospective study conducted from data found in institutional patient databases and archives. Seventy-two renal masses were characterised as enhancing or nonenhancing using standard enhancement measurements (in HU) and iodine quantification (in mg/ml). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of standard enhancement measurements and iodine quantification were calculated from χ (2) tests of contingency with histopathology or imaging follow-up as the reference standard. Difference in accuracy was assessed by means of McNemar analysis. Sensitivity, specificity, PPV, NPV and diagnostic accuracy for standard enhancement measurements and iodine quantification were 77.7 %, 100 %, 100 %, 81.8 %, 89 % and 100 %, 94.4 %, 94.7, 100 % and 97 %, respectively. The McNemar analysis showed that the accuracy of iodine quantification was significantly better (P < 0.001) than that of standard enhancement measurements. Compared with standard enhancement measurements, whole-tumour iodine quantification is more accurate in distinguishing enhancing from nonenhancing renal masses. • Enhancement of renal lesions is important when differentiating benign from malignant tumours. • Dual-energy CT offers measurement of iodine uptake rather than mere enhancement values. • Whole-tumour iodine quantification seems more accurate than standard CT enhancement measurements.

  3. Evaluation of Network Reliability for Computer Networks with Multiple Sources

    Directory of Open Access Journals (Sweden)

    Yi-Kuei Lin

    2012-01-01

    Full Text Available Evaluating the reliability of a network with multiple sources to multiple sinks is a critical issue from the perspective of quality management. Due to the unrealistic definition of paths of network models in previous literature, existing models are not appropriate for real-world computer networks such as the Taiwan Advanced Research and Education Network (TWAREN. This paper proposes a modified stochastic-flow network model to evaluate the network reliability of a practical computer network with multiple sources where data is transmitted through several light paths (LPs. Network reliability is defined as being the probability of delivering a specified amount of data from the sources to the sink. It is taken as a performance index to measure the service level of TWAREN. This paper studies the network reliability of the international portion of TWAREN from two sources (Taipei and Hsinchu to one sink (New York that goes through a submarine and land surface cable between Taiwan and the United States.

  4. High-pitch dual-source CT angiography of the whole aorta without ECG synchronisation: Initial experience

    International Nuclear Information System (INIS)

    Beeres, Martin; Schell, Boris; Mastragelopoulos, Aristidis; Kerl, Josef Matthias; Gruber-Rouh, Tatjana; Lee, Clara; Siebenhandl, Petra; Bodelle, Boris; Zangos, Stephan; Vogl, Thomas J.; Jacobi, Volkmar; Bauer, Ralf W.; Herrmann, Eva

    2012-01-01

    To investigate the feasibility, image quality and radiation dose for high-pitch dual-source CT angiography (CTA) of the whole aorta without ECG synchronisation. Each group of 40 patients underwent CTA either on a 16-slice (group 1) or dual-source CT device with conventional single-source (group 2) or high-pitch mode with a pitch of 3.0 (group 3). The presence of motion or stair-step artefacts of the thoracic aorta was independently assessed by two readers. Subjective and objective scoring of motion and artefacts were significantly reduced in the high-pitch examination protocol (p < 0.05). The imaging length was not significantly different, but the imaging time was significantly (p < 0.001) shorter in the high-pitch group (12.2 vs. 7.4 vs. 1.7 s for groups 1, 2 and 3). The ascending aorta and the coronary ostia were reliably evaluable in all patients of group 3 without motion artefacts as well. High-pitch dual-source CT angiography of the whole aorta is feasible in unselected patients. As a significant advantage over regular pitch protocols, motion-free imaging of the aorta is possible without ECG synchronisation. Thus, this CT mode bears potential to become a standard CT protocol before trans-catheter aortic valve implantation (TAVI). (orig.)

  5. Microeconomic theory and computation applying the maxima open-source computer algebra system

    CERN Document Server

    Hammock, Michael R

    2014-01-01

    This book provides a step-by-step tutorial for using Maxima, an open-source multi-platform computer algebra system, to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques.

  6. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography

    International Nuclear Information System (INIS)

    Lee, Choong Wook; Seo, Joon Beom; Song, Jae-Woo; Kim, Mi-Young; Lee, Ha Young; Park, Yang Shin; Chae, Eun Jin; Jang, Yu Mi; Kim, Namkug; Krauss, Bernard

    2011-01-01

    To evaluate the sensitivity of computer-aided detection(CAD) and dual-energy software('Lung PBV', 'Lung Vessels') for detecting peripheral pulmonary embolism(PE). Between Jan-2007 and Jan-2008, 309 patients underwent dual-energy CT angiography(DECTA) for the evaluation of suspected PE. Among them, 37 patients were retrospectively selected; 21 with PE at segmental-or-below levels and 16 without PE according to clinical reports. A standard computer assisted detection (CAD) package and two new types of software('Lung PBV', 'Lung Vessels') were applied on a dedicated workstation. This resulted in four alternative tests for detecting PE: DECTA alone and DECTA with CAD, 'Lung Vessels' and 'Lung PBV'. Two radiologists independently read all cases at different reading sessions. Two thoracic radiologists set the reference standard by combining all information from DECTA and software. The sensitivity of detection for all, segmental and subsegmental-or-below PE were assessed. The reference standard contained 136 PE(segmental 65, subsegmental-or-below 71). With DECTA alone, the sensitivity of detection for all, segmental and subsegmental-or-below pulmonary arteries was 54.5%/73.7%/34.4%; DECTA with CAD, 57.8%/76.8%/37.9%; DECTA with 'Lung PBV', 61.1%/79.9%/41.4%; DECTA with 'Lung Vessels', 64.0%/78.3%/48.5% respectively. The use of CAD, Lung Vessels and Lung PBV shows improved capability to detect peripheral PE. (orig.)

  7. Multi-slice and dual-source CT in cardiac imaging. Principles - protocols - indications - outlook. 2. ed.

    International Nuclear Information System (INIS)

    Ohnesorge, B.M.; Flohr, T.G.; Becker, C.R.; Reiser, M.F.; Knez, A

    2007-01-01

    Cardiac diseases, and in particular coronary artery disease, are the leading cause of death and morbidity in industrialized countries. The development of non-invasive imaging techniques for the heart and the coronary arteries has been considered a key element in improving patient care. A breakthrough in cardiac imaging using CT occurred in 1998, with the introduction of multi-slice computed tomography (CT). Since then, amazing advances in performance have taken place with scanners that acquire up to 64 slices per rotation. This book discusses the state-of-the-art developments in multi-slice CT for cardiac imaging as well as those that can be anticipated in the future. It serves as a comprehensive work that covers all aspects of this technology, from the technical fundamentals and image evaluation all the way to clinical indications and protocol recommendations. This fully reworked second edition draws on the most recent clinical experience obtained with 16- and 64-slice CT scanners by world-leading experts from Europe and the United States. It also includes ''hands-on'' experience in the form of 10 representative clinical case studies, which are included on the accompanying CD. As a further highlight, the latest results of the very recently introduced dual-source CT, which may soon represent the CT technology of choice for cardiac applications, are presented. This book will not only convince the reader that multi-slice cardiac CT has arrived in clinical practice, it will also make a significant contribution to the education of radiologists, cardiologists, technologists, and physicists-whether newcomers, experienced users, or researchers. (orig.)

  8. Diagnostic accuracy of dual-source CT coronary angiography in patients with atrial fibrillation: Meta analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang, E-mail: cjr.sungang@vip.163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Min [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Jiang, Zhi-wei [Department of Health Statistics, School of Public Health, Fourth Military Medical University, No. 169, Changle West Road, Xi’an, Shaanxi 710032 (China); Xu, Lin [Department of Medical Cardiology, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Peng, Zhao-hui; Ding, Juan; Li, Li [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Jin, Zhi-tao [Department of Cardiology, General Hospital of the Second Artillery, Beijing 100088 (China)

    2013-10-01

    Rationale and objective: To synthesize the available data to underscore the diagnostic accuracy of dual-source CT (DSCT) coronary angiography in patients with atrial fibrillation (AF). Materials and methods: We searched in the electronic databases of PubMed for all published studies that examined patients with AF using DSCT. We used an exact binomial rendition of the bivariate mixed-effects regression model to synthesize the diagnostic data. Results: The positive and negative likelihood ratios (LRs) at the patient level were 6.0 (CI, 3.6–10.1) and 0.03(CI, 0.004–0.2), respectively. The negative predictive values higher than 90% were available for a CAD prevalence <78%. The pooled vessel- and segment-level estimates showed higher positive and negative LRs than the patient-level estimates (15.3 [CI, 9.8–23.9] and 0.1 [CI, 0.07–0.3]; 25.1 [CI, 10.8–58.5] and 0.2 [CI, 0.2–0.3], respectively). No statistically significant heterogeneity between studies and publication bias were found at the patient level estimate. A sensitivity analysis showed that no study influenced the pooled results larger than 0.02. Conclusions: Cardiac angiography with DSCT can be applied as an imaging test for ruling out CAD in patient with AF. However, DSCT angiography may be not an effective tool for risk stratification for the high negative LR at the artery and segment levels.

  9. Comparative analysis of bone mineral contents with dual-energy quantitative computed tomography

    International Nuclear Information System (INIS)

    Choi, T. J.; Yoon, S. M.; Kim, O. B.; Lee, S. M.; Suh, S. J.

    1997-01-01

    The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent K 2 HPO 4 standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC). The attenuation coefficient of tissues highly depends on the radiation energy, density and effective atomic number of composition. The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone, fat and soft tissue equivalent solution in two photon spectra. In this experiments, the BMC of DEQCT with 80 and 120kV p X rays was compared to ash weight of animal trabecular bone. We obtained the mass attenuation coefficient of 0.2409, 0.5608 and 0.2206 in 80kV p , and 0.2046, 0.3273 and 0.1971 cm 2 /g in 120kV p X-ray spectra for water, bone and fat equivalent materials, respectively. The BMC with DEQCT was accomplished with empirical constants K 1 =0.3232, K 2 =0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone. The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r=0.998 and r=0.996, respectively. The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone. (author)

  10. Penalized maximum-likelihood sinogram restoration for dual focal spot computed tomography

    International Nuclear Information System (INIS)

    Forthmann, P; Koehler, T; Begemann, P G C; Defrise, M

    2007-01-01

    Due to various system non-idealities, the raw data generated by a computed tomography (CT) machine are not readily usable for reconstruction. Although the deterministic nature of corruption effects such as crosstalk and afterglow permits correction by deconvolution, there is a drawback because deconvolution usually amplifies noise. Methods that perform raw data correction combined with noise suppression are commonly termed sinogram restoration methods. The need for sinogram restoration arises, for example, when photon counts are low and non-statistical reconstruction algorithms such as filtered backprojection are used. Many modern CT machines offer a dual focal spot (DFS) mode, which serves the goal of increased radial sampling by alternating the focal spot between two positions on the anode plate during the scan. Although the focal spot mode does not play a role with respect to how the data are affected by the above-mentioned corruption effects, it needs to be taken into account if regularized sinogram restoration is to be applied to the data. This work points out the subtle difference in processing that sinogram restoration for DFS requires, how it is correctly employed within the penalized maximum-likelihood sinogram restoration algorithm and what impact it has on image quality

  11. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Javor, D.; Wressnegger, A.; Unterhumer, S.; Kollndorfer, K.; Nolz, R.; Beitzke, D.; Loewe, C. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-04-15

    To assess a single-phase, dual-energy computed tomography (DECT) with a split-bolus technique and reconstruction of virtual non-enhanced images for the detection of endoleaks after endovascular aneurysm repair (EVAR). Fifty patients referred for routine follow-up post-EVAR CT and a history of at least one post-EVAR follow-up CT examination using our standard biphasic (arterial and venous phase) routine protocol (which was used as the reference standard) were included in this prospective trial. An in-patient comparison and an analysis of the split-bolus protocol and the previously used double-phase protocol were performed with regard to differences in diagnostic accuracy, radiation dose, and image quality. The analysis showed a significant reduction of radiation dose of up to 42 %, using the single-acquisition split-bolus protocol, while maintaining a comparable diagnostic accuracy (primary endoleak detection rate of 96 %). Image quality between the two protocols was comparable and only slightly inferior for the split-bolus scan (2.5 vs. 2.4). Using the single-acquisition, split-bolus approach allows for a significant dose reduction while maintaining high image quality, resulting in effective endoleak identification. (orig.)

  12. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  13. Accessory spleen versus lymph node: Value of iodine quantification with dual-energy computed tomography

    International Nuclear Information System (INIS)

    Winklhofer, Sebastian; Lin, Wei-Ching; Lambert, Jack W.; Yeh, Benjamin M.

    2017-01-01

    Objectives: To evaluate whether iodine quantification with Dual-Energy Computed Tomography (DECT) improves the differentiation of accessory spleens (AS) from lymph nodes (LN) compared to CT number measurements. Methods: Abdominal DECT images of 75 patients with either AS (n = 35) or LN (n = 48) (benign entity) were retrospectively evaluated. Hounsfield Units (HU) and iodine concentrations of AS, LN and the main spleen were measured. Receiver operating characteristics (ROC) were performed to calculate an optimal threshold for distinguishing AS from LN. Sensitivity, specificity, and accuracy were calculated for distinguishing AS from LN by iodine concentration measurements. Results: Mean CT numbers and iodine concentrations were higher for AS (148 ± 29 HU and 48.2 ± 11 × 100 μg/cc) than LN (83 ± 19 HU and 31.5 ± 6.2 × 100 μg/cc, respectively, P < 0.001 each). Mean CT numbers were lower for AS compared to the main spleen (161 ± 29HU, P < 0.01), whereas mean iodine concentrations (47.7 ± 10 × 100 μg/cc) were not significantly different (P = 0.095). An iodine concentration greater than 38 × 100 μg/cc suggested AS with a sensitivity, specificity and accuracy of 91%, 85%, and 88%, respectively (Area under ROC curve 0.941). Conclusions: Iodine measurements might contribute to the differentiation of AS from LN. Iodine concentrations similar to that of the main spleen may help to confirm the diagnosis of AS.

  14. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings.

    Science.gov (United States)

    González-Pérez, Víctor; Arana, Estanislao; Barrios, María; Bartrés, Albert; Cruz, Julia; Montero, Rafael; González, Manuel; Deltoro, Carlos; Martínez-Pérez, Encarnación; De Aguiar-Quevedo, Karol; Arrarás, Miguel

    2016-10-01

    To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Zeff), iodine concentration (ρI) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Zeff and normalized mean Zeff to be statistically significant (p=0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54-0.80) and 0.72 (CI 95%, 0.60-0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings

    International Nuclear Information System (INIS)

    González-Pérez, Víctor; Arana, Estanislao; Barrios, María; Bartrés, Albert; Cruz, Julia; Montero, Rafael; González, Manuel; Deltoro, Carlos; Martínez-Pérez, Encarnación; De Aguiar-Quevedo, Karol; Arrarás, Miguel

    2016-01-01

    Purpose: To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. Methods: A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Z eff ), iodine concentration (ρ I ) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Results: Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Z eff and normalized mean Z eff to be statistically significant (p = 0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54–0.80) and 0.72 (CI 95%, 0.60–0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. Conclusions: A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings.

  16. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    González-Pérez, Víctor [Dept Radiophysics, Foundation IVO, Valencia (Spain); Arana, Estanislao, E-mail: aranae@uv.es [Dept Radiology, Foundation IVO, Valencia (Spain); Barrios, María [Dept Radiology, Foundation IVO, Valencia (Spain); Bartrés, Albert [Dept Radiophysics, Foundation IVO, Valencia (Spain); Cruz, Julia [Dept Pathology, Foundation IVO, Valencia (Spain); Montero, Rafael [GE Healthcare Diagnostic Imaging, Iberia (Spain); González, Manuel; Deltoro, Carlos [Dept Radiology, Foundation IVO, Valencia (Spain); Martínez-Pérez, Encarnación [Dept Pneumology, Foundation IVO, Valencia (Spain); De Aguiar-Quevedo, Karol; Arrarás, Miguel [Dept Thoracic Surgery, Foundation IVO, Valencia (Spain)

    2016-10-15

    Purpose: To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. Methods: A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Z{sub eff}), iodine concentration (ρ{sub I}) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Results: Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Z{sub eff} and normalized mean Z{sub eff} to be statistically significant (p = 0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54–0.80) and 0.72 (CI 95%, 0.60–0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. Conclusions: A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings.

  17. Complementary contrast media for metal artifact reduction in dual-energy computed tomography.

    Science.gov (United States)

    Lambert, Jack W; Edic, Peter M; FitzGerald, Paul F; Torres, Andrew S; Yeh, Benjamin M

    2015-07-01

    Metal artifacts have been a problem associated with computed tomography (CT) since its introduction. Recent techniques to mitigate this problem have included utilization of high-energy (keV) virtual monochromatic spectral (VMS) images, produced via dual-energy CT (DECT). A problem with these high-keV images is that contrast enhancement provided by all commercially available contrast media is severely reduced. Contrast agents based on higher atomic number elements can maintain contrast at the higher energy levels where artifacts are reduced. This study evaluated three such candidate elements: bismuth, tantalum, and tungsten, as well as two conventional contrast elements: iodine and barium. A water-based phantom with vials containing these five elements in solution, as well as different artifact-producing metal structures, was scanned with a DECT scanner capable of rapid operating voltage switching. In the VMS datasets, substantial reductions in the contrast were observed for iodine and barium, which suffered from contrast reductions of 97% and 91%, respectively, at 140 versus 40 keV. In comparison under the same conditions, the candidate agents demonstrated contrast enhancement reductions of only 20%, 29%, and 32% for tungsten, tantalum, and bismuth, respectively. At 140 versus 40 keV, metal artifact severity was reduced by 57% to 85% depending on the phantom configuration.

  18. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    Science.gov (United States)

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  19. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography.

    Science.gov (United States)

    Djurdjevic, Tanja; Rehwald, Rafael; Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan; Gizewski, Elke Ruth; Glodny, Bernhard; Grams, Astrid Ellen

    2017-03-01

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p 17.13 HU; p VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. • The IM series (DECT) can predict future infarction development after IAR. • Later haemorrhages can be predicted using the IM and the BW series. • The volume of definable hypodense areas in VNC correlates with infarction volume.

  20. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography

    International Nuclear Information System (INIS)

    Djurdjevic, Tanja; Gizewski, Elke Ruth; Grams, Astrid Ellen; Rehwald, Rafael; Glodny, Bernhard; Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan

    2017-01-01

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p < 0.0001) and more hypodense on VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p < 0.0001). ROC analyses for the IM series showed an area under the curve (AUC) of 0.99 (cut-off: <9.97 HU; p < 0.05; sensitivity 91.18 %; specificity 100.00 %; accuracy 0.93) for the prediction of future infarctions. The AUC for the prediction of haemorrhagic infarctions was 0.78 (cut-off >17.13 HU; p < 0.05; sensitivity 90.00 %; specificity 62.86 %; accuracy 0.69). The VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. (orig.)

  1. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Tanja; Gizewski, Elke Ruth; Grams, Astrid Ellen [Medical University of Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Rehwald, Rafael; Glodny, Bernhard [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan [Medical University of Innsbruck, Department of Neurology, Innsbruck (Austria)

    2017-03-15

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p < 0.0001) and more hypodense on VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p < 0.0001). ROC analyses for the IM series showed an area under the curve (AUC) of 0.99 (cut-off: <9.97 HU; p < 0.05; sensitivity 91.18 %; specificity 100.00 %; accuracy 0.93) for the prediction of future infarctions. The AUC for the prediction of haemorrhagic infarctions was 0.78 (cut-off >17.13 HU; p < 0.05; sensitivity 90.00 %; specificity 62.86 %; accuracy 0.69). The VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. (orig.)

  2. Accessory spleen versus lymph node: Value of iodine quantification with dual-energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, Sebastian, E-mail: Sebastian.winklhofer@usz.ch [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States); Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Lin, Wei-Ching, E-mail: d7466@mail.cmuh.org.tw [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States); Department of Radiology, China Medical University Hospital, No. 2, Yuh-Der Rd., Taichung 40447, Taiwan (China); Department of Biomedical Imaging and Radiological science, China Medical University, No. 91, Syueshih Rd., Taichung 40402, Taiwan (China); Lambert, Jack W., E-mail: Jack.Lambert@ucsf.edu [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States); Yeh, Benjamin M., E-mail: Benjamin.Yeh@ucsf.edu [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States)

    2017-02-15

    Objectives: To evaluate whether iodine quantification with Dual-Energy Computed Tomography (DECT) improves the differentiation of accessory spleens (AS) from lymph nodes (LN) compared to CT number measurements. Methods: Abdominal DECT images of 75 patients with either AS (n = 35) or LN (n = 48) (benign entity) were retrospectively evaluated. Hounsfield Units (HU) and iodine concentrations of AS, LN and the main spleen were measured. Receiver operating characteristics (ROC) were performed to calculate an optimal threshold for distinguishing AS from LN. Sensitivity, specificity, and accuracy were calculated for distinguishing AS from LN by iodine concentration measurements. Results: Mean CT numbers and iodine concentrations were higher for AS (148 ± 29 HU and 48.2 ± 11 × 100 μg/cc) than LN (83 ± 19 HU and 31.5 ± 6.2 × 100 μg/cc, respectively, P < 0.001 each). Mean CT numbers were lower for AS compared to the main spleen (161 ± 29HU, P < 0.01), whereas mean iodine concentrations (47.7 ± 10 × 100 μg/cc) were not significantly different (P = 0.095). An iodine concentration greater than 38 × 100 μg/cc suggested AS with a sensitivity, specificity and accuracy of 91%, 85%, and 88%, respectively (Area under ROC curve 0.941). Conclusions: Iodine measurements might contribute to the differentiation of AS from LN. Iodine concentrations similar to that of the main spleen may help to confirm the diagnosis of AS.

  3. WORK-FAMILY CONFLICT AND SOURCES OF SUPPORT AMONGST MALAYSIAN DUAL-CAREER EMPLOYEES

    OpenAIRE

    Meera Komarraju

    2006-01-01

    As the number of dual-career employees entering the workplace increases, it is important to understand how the integration of work and family responsibilities influences work outcomes. The current study examined occupational role salience, work-family conflict, basic understandings, spousal support, and organizational support as predictors of work satisfaction. One hundred and sixteen dual-career faculty and staff from three Malaysian universities completed a survey questionnaire. Results fro...

  4. Microdosimetry computation code of internal sources - MICRODOSE 1

    International Nuclear Information System (INIS)

    Li Weibo; Zheng Wenzhong; Ye Changqing

    1995-01-01

    This paper describes a microdosimetry computation code, MICRODOSE 1, on the basis of the following described methods: (1) the method of calculating f 1 (z) for charged particle in the unit density tissues; (2) the method of calculating f(z) for a point source; (3) the method of applying the Fourier transform theory to the calculation of the compound Poisson process; (4) the method of using fast Fourier transform technique to determine f(z) and, giving some computed examples based on the code, MICRODOSE 1, including alpha particles emitted from 239 Pu in the alveolar lung tissues and from radon progeny RaA and RAC in the human respiratory tract. (author). 13 refs., 6 figs

  5. THE PIXHAWK OPEN-SOURCE COMPUTER VISION FRAMEWORK FOR MAVS

    Directory of Open Access Journals (Sweden)

    L. Meier

    2012-09-01

    Full Text Available Unmanned aerial vehicles (UAV and micro air vehicles (MAV are already intensively used in geodetic applications. State of the art autonomous systems are however geared towards the application area in safe and obstacle-free altitudes greater than 30 meters. Applications at lower altitudes still require a human pilot. A new application field will be the reconstruction of structures and buildings, including the facades and roofs, with semi-autonomous MAVs. Ongoing research in the MAV robotics field is focusing on enabling this system class to operate at lower altitudes in proximity to nearby obstacles and humans. PIXHAWK is an open source and open hardware toolkit for this purpose. The quadrotor design is optimized for onboard computer vision and can connect up to four cameras to its onboard computer. The validity of the system design is shown with a fully autonomous capture flight along a building.

  6. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    Science.gov (United States)

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  7. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  8. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  9. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  10. Dual-Energy Computed Tomography Angiography of the Lower Extremity Runoff: Impact of Noise-Optimized Virtual Monochromatic Imaging on Image Quality and Diagnostic Accuracy.

    Science.gov (United States)

    Wichmann, Julian L; Gillott, Matthew R; De Cecco, Carlo N; Mangold, Stefanie; Varga-Szemes, Akos; Yamada, Ricardo; Otani, Katharina; Canstein, Christian; Fuller, Stephen R; Vogl, Thomas J; Todoran, Thomas M; Schoepf, U Joseph

    2016-02-01

    The aim of this study was to evaluate the impact of a noise-optimized virtual monochromatic imaging algorithm (VMI+) on image quality and diagnostic accuracy at dual-energy computed tomography angiography (CTA) of the lower extremity runoff. This retrospective Health Insurance Portability and Accountability Act-compliant study was approved by the local institutional review board. We evaluated dual-energy CTA studies of the lower extremity runoff in 48 patients (16 women; mean age, 63.3 ± 13.8 years) performed on a third-generation dual-source CT system. Images were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monochromatic (VMI) algorithms at 40 to 120 keV in 10-keV intervals. Vascular attenuation and image noise in 18 artery segments were measured; signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used to subjectively evaluate vascular attenuation and image noise. In a subgroup of 21 patients who underwent additional invasive catheter angiography, diagnostic accuracy for the detection of significant stenosis (≥50% lumen restriction) of F_0.5, 50-keV VMI+, and 60-keV VMI data sets were assessed. Objective image quality metrics were highest in the 40- and 50-keV VMI+ series (SNR: 20.2 ± 10.7 and 19.0 ± 9.5, respectively; CNR: 18.5 ± 10.3 and 16.8 ± 9.1, respectively) and were significantly (all P traditional VMI technique and standard linear blending for evaluation of the lower extremity runoff using dual-energy CTA.

  11. A case of dual ectopy thyroid along the thyroglossal tract demonstrated on 99mTc-Pertechnatate hybrid single photon emission computed tomography/computed tomography

    International Nuclear Information System (INIS)

    Agarwal, Krishan Kant; Karunanithi, Sellam; Jain, Sachin; Tripathi, Madhavi

    2014-01-01

    Ectopic thyroid tissue (ETT) refers to the presence of thyroid tissue in locations other than the normal anterior neck region between the second and fourth tracheal cartilages. Multiple ectopia of the thyroid is extremely rare. Here we report a case of 10-year-old girl with anterior midline neck swelling and hypothyroidism with dual ectopia of thyroid gland without orthotopic thyroid gland. Planar 99 m-technetium pertechnatate scan identified ETT corresponding to the palpable neck swelling. Single photon emission computed tomography/computed tomography (SPECT/CT) demonstrated ETT in two locations, one corresponding to the palpable mass and another in the in the sublingual location. This case thus demonstrates the important role of hybrid SPECT/CT in the identification of dual ectopia along the thyroglossal tract

  12. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  13. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  14. Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Duan, Xinhui; Xi, Yin; Lewis, Matthew A; Pearle, Margaret S; Antonelli, Jodi A; Goerne, Harold; Kolitz, Elysha M; Abbara, Suhny; Lenkinski, Robert E; Fielding, Julia R; Leyendecker, John R

    2018-04-07

    To assess the non-inferiority of dual-layer spectral detector CT (SDCT) compared to dual-source dual-energy CT (dsDECT) in discriminating uric acid (UA) from non-UA stones. Fifty-seven extracted urinary calculi were placed in a cylindrical phantom in a water bath and scanned on a SDCT scanner (IQon, Philips Healthcare) and second- and third-generation dsDECT scanners (Somatom Flash and Force, Siemens Healthcare) under matched scan parameters. For SDCT data, conventional images and virtual monoenergetic reconstructions were created. A customized 3D growing region segmentation tool was used to segment each stone on a pixel-by-pixel basis for statistical analysis. Median virtual monoenergetic ratios (VMRs) of 40/200, 62/92, and 62/100 for each stone were recorded. For dsDECT data, dual-energy ratio (DER) for each stone was recorded from vendor-specific postprocessing software (Syngo Via) using the Kidney Stones Application. The clinical reference standard of X-ray diffraction analysis was used to assess non-inferiority. Area under the receiver-operating characteristic curve (AUC) was used to assess diagnostic performance of detecting UA stones. Six pure UA, 47 pure calcium-based, 1 pure cystine, and 3 mixed struvite stones were scanned. All pure UA stones were correctly separated from non-UA stones using SDCT and dsDECT (AUC = 1). For UA stones, median VMR was 0.95-0.99 and DER 1.00-1.02. For non-UA stones, median VMR was 1.4-4.1 and DER 1.39-1.69. SDCT spectral reconstructions demonstrate similar performance to those of dsDECT in discriminating UA from non-UA stones in a phantom model.

  15. Evaluation of high-pitch dual-source CT angiography for evaluation of coronary and carotid-cerebrovascular arteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li, Kuncheng, E-mail: cjr.likuncheng@vip.163.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Han, Ruijuan [Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing 100020 (China); Li, Wenhuan; Chen, Nan; Yang, Qi; Du, Xiangying; Wang, Chen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liu, Guorong; Li, Yuechun [Department of Neurology Baotou Central Hospital, Inner Mongolia, Baotou 014040 (China); Zhou, Maorong [Department of Radiology, Baotou Central Hospital, Inner Mongolia, Baotou 014040 (China); Li, Ligang; Heidrun, Endt [CT BM Clinic Marketing, Siemens Healthcare, Beijing 100102 (China)

    2015-03-15

    Objectives: To explore the feasibility and diagnostic accuracy of a combined one-step high-pitch dual-source computed tomography angiography (CTA) technique for evaluation of coronary and carotid-cerebrovascular arteries. Materials and methods: 85 symptomatic patients suspected of coronary artery and cerebrovascular disease referred for simultaneous coronary and carotid-cerebrovascular CTA were included. Additional invasive angiography of the coronary and cerebral arteries was performed within 30 days in 23 and 13 patients, respectively. The objective parameters of image quality, the mean CT attenuations, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were evaluated. The subjective image quality of vessels was also assessed by 2 independent radiologists blinded to the patients’ medical history and scan protocols. The diagnostic performance of CTA including sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the detection or exclusion of significant artery stenosis was calculated using the chi-squared test of contingency and correlated with the results of invasive angiography representing the standard of reference. Results: Image quality was rated excellent (score 1) in 95.3% (1074/1127), good (score 2) in 3.3% (37/1127), adequate (score 3) in 1.0% (11/1127), and non-diagnostic (score 4) in 0.4% (5/1127) of coronary segments. Image quality of carotid and cerebral vessels was rated mostly excellent (score 1, 95.12% [78/82]; score 2, 3.66% [3/82]; score 3, 1.22% [1/82]). The sensitivity, specificity, PPV and NPV for the detection of coronary stenosis were 92.2% (81.1–97.7%), 95.2% (91.7–97.5%), 79.6% (67.1–89.1%) and 98.3% (95.8–99.5%), respectively. For the detection of carotid and cerebral artery stenosis, CTA demonstrated a sensitivity of 92.8% (80.5–98.4%), a specificity of 93.5% (88.3–96.8%), a PPV of 79.6% (65.6–89.7%) and a NPV of 97.9% (94.1–99.5%). The effective

  16. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  17. A novel PV/T-air dual source heat pump water heater system: Dynamic simulation and performance characterization

    International Nuclear Information System (INIS)

    Cai, Jingyong; Ji, Jie; Wang, Yunyun; Zhou, Fan; Yu, Bendong

    2017-01-01

    Highlights: • The PV/T evaporator and air source evaporator connect in parallel and operate simultaneously. • A dynamic model is developed to simulate the behavior of the system. • The thermal and electrical characteristics of the PV/T evaporator are evaluated. • The contribution of the air source evaporator and PV/T evaporator has been discussed. - Abstract: To enable the heat pump water heater maintain efficient operation under diverse circumstances, a novel PV/T-air dual source heat pump water heater (PV/T-AHPWH) has been proposed in this study. In the PV/T-AHPWH system, a PV/T evaporator and an air source evaporator connect in parallel and operate simultaneously to recover energy from both solar energy and environment. A dynamic model is presented to simulate the behavior of the PV/T-AHPWH system. On this basis, the influences of solar irradiation, ambient temperature and packing factor have been discussed, and the contributions of air source evaporator and PV/T evaporator are evaluated. The results reveal that the system can obtain efficient operation with the average COP above 2.0 under the ambient temperature of 10 °C and solar irradiation of 100 W/m 2 . The PV/T evaporator can compensate for the performance degradation of the air source evaporator caused by the increasing condensing temperature. As the evaporating capacity in PV/T evaporator remains at relatively low level under low irradiation, the air source evaporator can play the main role of recovering heat. Comparing the performance of dual source heat pump system employing PV/T collector with that utilizing normal solar thermal collector, the system utilizing PV/T evaporator is more efficient in energy saving and performance improvement.

  18. Dual vs. single computer monitor in a Canadian hospital Archiving Department: a study of efficiency and satisfaction.

    Science.gov (United States)

    Poder, Thomas G; Godbout, Sylvie T; Bellemare, Christian

    This paper describes a comparative study of clinical coding by Archivists (also known as Clinical Coders in some other countries) using single and dual computer monitors. In the present context, processing a record corresponds to checking the available information; searching for the missing physician information; and finally, performing clinical coding. We collected data for each Archivist during her use of the single monitor for 40 hours and during her use of the dual monitor for 20 hours. During the experimental periods, Archivists did not perform other related duties, so we were able to measure the real-time processing of records. To control for the type of records and their impact on the process time required, we categorised the cases as major or minor, based on whether acute care or day surgery was involved. Overall results show that 1,234 records were processed using a single monitor and 647 records using a dual monitor. The time required to process a record was significantly higher (p= .071) with a single monitor compared to a dual monitor (19.83 vs.18.73 minutes). However, the percentage of major cases was significantly higher (p= .000) in the single monitor group compared to the dual monitor group (78% vs. 69%). As a consequence, we adjusted our results, which reduced the difference in time required to process a record between the two systems from 1.1 to 0.61 minutes. Thus, the net real-time difference was only 37 seconds in favour of the dual monitor system. Extrapolated over a 5-year period, this would represent a time savings of 3.1% and generate a net cost savings of $7,729 CAD (Canadian dollars) for each workstation that devoted 35 hours per week to the processing of records. Finally, satisfaction questionnaire responses indicated a high level of satisfaction and support for the dual-monitor system. The implementation of a dual-monitor system in a hospital archiving department is an efficient option in the context of scarce human resources and has the

  19. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    Science.gov (United States)

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  20. Clinical Evaluation of a Dual-Side Readout Technique Computed Radiography System in Chest Radiography of Premature Neonates

    International Nuclear Information System (INIS)

    Carlander, A.; Hansson, J.; Soederberg, J.; Steneryd, K.; Baath, M.

    2008-01-01

    Background: Recently, the dual-side readout technique has been introduced in computed radiography, leading to an increase in detective quantum efficiency (DQE) compared with the single-side readout technique. Purpose: To evaluate if the increase in DQE with the dual-side readout technique results in a higher clinical image quality in chest radiography of premature neonates at no increase in radiation dose. Material and Methods: Twenty-four chest radiographs of premature neonates were collected from both a single-side readout technique system and a double-side readout technique system. The images were processed in the same image-processing station in order for the comparison to be only dependent on the difference in readout technique. Five radiologists rated the fulfillment of four image quality criteria, which were based on important anatomical landmarks. The given ratings were analyzed using visual grading characteristics (VGC) analysis. Results: The VGC analysis showed that the reproduction of the carina with the main bronchi and the thoracic vertebrae behind the heart was better with the dual-side readout technique, whereas no significant difference for the reproduction of the central vessels or the peripheral vessels could be observed. Conclusions: The results indicate that the higher DQE of the dual-side readout technique leads to higher clinical image quality in chest radiography of premature neonates at no increase in radiation dose. Keywords: Digital radiography; lung; observer performance; pediatrics; thorax

  1. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  2. Local differences in mineral content in vertebral trabecular bone measured by dual-energy computed tomography

    International Nuclear Information System (INIS)

    Nepper-Rasmussen, J.; Mosekilde, L.; Aarhus Univ.

    1989-01-01

    Twelve lumbar vertebral bodies from cadavers were examined with dual-energy CT, to measure the calcium content in a big central region of interest (ROI). In each of five vertebrae the calcium content was also measured in six small ROI. After completed scanning, six small cylinders were drilled out from each vertebra, and the ash-density of each cylinder was measured. The dual-energy CT measurements correlated well with the ash-density. Both ash-density and dual-energy CT showed a significantly higher mineral content in the posterior part of the vertebrae than in the anterior part, and this difference might be responsible for problems encountered with the reproducibility of dual-energy CT. (orig.)

  3. WORK-FAMILY CONFLICT AND SOURCES OF SUPPORT AMONGST MALAYSIAN DUAL-CAREER EMPLOYEES

    Directory of Open Access Journals (Sweden)

    Meera Komarraju

    2006-01-01

    Full Text Available As the number of dual-career employees entering the workplace increases, it is important to understand how the integration of work and family responsibilities influences work outcomes. The current study examined occupational role salience, work-family conflict, basic understandings, spousal support, and organizational support as predictors of work satisfaction. One hundred and sixteen dual-career faculty and staff from three Malaysian universities completed a survey questionnaire. Results from stepwise regression analyses showed that across all employees, work-family conflict was the most significant predictor of work satisfaction. More specifically, for male employees, spousal support was the most important predictor of work satisfaction followed by work-family conflict. Interestingly, for female employees, work-family conflict was the most significant predictor followed by organizational support. These results suggest that dual-career employees who find family responsibilities intruding into their work activities are likely to experience lesser work satisfaction. Dual-career employees receiving support and encouragement from a spouse or from the employing organization are more likely to experience increased work satisfaction.

  4. Kinoscope: An Open-Source Computer Program for Behavioral Pharmacologists

    Directory of Open Access Journals (Sweden)

    Nikolaos Kokras

    2017-05-01

    Full Text Available Behavioral analysis in preclinical neuropsychopharmacology relies on the accurate measurement of animal behavior. Several excellent solutions for computer-assisted behavioral analysis are available for specialized behavioral laboratories wishing to invest significant resources. Herein, we present an open source straightforward software solution aiming at the rapid and easy introduction to an experimental workflow, and at the improvement of training staff members in a better and more reproducible manual scoring of behavioral experiments with the use of visual aids-maps. Currently the program readily supports the Forced Swim Test, Novel Object Recognition test and the Elevated Plus maze test, but with minor modifications can be used for scoring virtually any behavioral test. Additional modules, with predefined templates and scoring parameters, are continuously added. Importantly, the prominent use of visual maps has been shown to improve, in a student-engaging manner, the training and auditing of scoring in behavioral rodent experiments.

  5. Design, development and integration of a large scale multiple source X-ray computed tomography system

    International Nuclear Information System (INIS)

    Malcolm, Andrew A.; Liu, Tong; Ng, Ivan Kee Beng; Teng, Wei Yuen; Yap, Tsi Tung; Wan, Siew Ping; Kong, Chun Jeng

    2013-01-01

    X-ray Computed Tomography (CT) allows visualisation of the physical structures in the interior of an object without physically opening or cutting it. This technology supports a wide range of applications in the non-destructive testing, failure analysis or performance evaluation of industrial products and components. Of the numerous factors that influence the performance characteristics of an X-ray CT system the energy level in the X-ray spectrum to be used is one of the most significant. The ability of the X-ray beam to penetrate a given thickness of a specific material is directly related to the maximum available energy level in the beam. Higher energy levels allow penetration of thicker components made of more dense materials. In response to local industry demand and in support of on-going research activity in the area of 3D X-ray imaging for industrial inspection the Singapore Institute of Manufacturing Technology (SIMTech) engaged in the design, development and integration of large scale multiple source X-ray computed tomography system based on X-ray sources operating at higher energies than previously available in the Institute. The system consists of a large area direct digital X-ray detector (410 x 410 mm), a multiple-axis manipulator system, a 225 kV open tube microfocus X-ray source and a 450 kV closed tube millifocus X-ray source. The 225 kV X-ray source can be operated in either transmission or reflection mode. The body of the 6-axis manipulator system is fabricated from heavy-duty steel onto which high precision linear and rotary motors have been mounted in order to achieve high accuracy, stability and repeatability. A source-detector distance of up to 2.5 m can be achieved. The system is controlled by a proprietary X-ray CT operating system developed by SIMTech. The system currently can accommodate samples up to 0.5 x 0.5 x 0.5 m in size with weight up to 50 kg. These specifications will be increased to 1.0 x 1.0 x 1.0 m and 100 kg in future

  6. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Hardie, Andrew D.; Felmly, Lloyd M.; Perry, Jonathan D.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Mangold, Stefanie [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Caruso, Damiano [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncological and Pathological Sciences, Latina (Italy); Canstein, Christian [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Siemens Medical Solutions USA, Malvern, PA (United States); Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-02-15

    To compare single-energy (SECT) and dual-energy (DECT) abdominal CT examinations in matched patient cohorts regarding differences in radiation dose and image quality performed with second- and third-generation dual-source CT (DSCT). We retrospectively analysed 200 patients (100 male, 100 female; mean age 61.2 ± 13.5 years, mean body mass index 27.5 ± 3.8 kg/m{sup 2}) equally divided into four groups matched by gender and body mass index, who had undergone portal venous phase abdominal CT with second-generation (group A, 120-kV-SECT; group B, 80/140-kV-DECT) and third-generation DSCT (group C, 100-kV-SECT; group D, 90/150-kV-DECT). The radiation dose was normalised for 40-cm scan length. Dose-independent figure-of-merit (FOM) contrast-to-noise ratios (CNRs) were calculated for various organs and vessels. Subjective overall image quality and reader confidence were assessed. The effective normalised radiation dose was significantly lower (P < 0.001) in groups C (6.2 ± 2.0 mSv) and D (5.3 ± 1.9 mSv, P = 0.103) compared to groups A (8.8 ± 2.3 mSv) and B (9.7 ± 2.4 mSv, P = 0.102). Dose-independent FOM-CNR peaked for liver, kidney, and portal vein measurements (all P ≤ 0.0285) in group D. Subjective image quality and reader confidence were consistently rated as excellent in all groups (all ≥1.53 out of 5). With both DSCT generations, abdominal DECT can be routinely performed without radiation dose penalty compared to SECT, while third-generation DSCT shows improved dose efficiency. (orig.)

  7. Volumetric evaluation of dual-energy perfusion CT by the presence of intrapulmonary clots using a 64-slice dual-source CT

    International Nuclear Information System (INIS)

    Okada, Munemasa; Nakashima, Yoshiteru; Kunihiro, Yoshie; Nakao, Sei; Matsunaga, Naofumi; Morikage, Noriyasu; Sano, Yuichi; Suga, Kazuyoshi

    2013-01-01

    Background: Dual-energy perfusion CT (DE p CT) directly represents the iodine distribution in lung parenchyma and low perfusion areas caused by intrapulmonary clots (IPCs) are visualized as low attenuation areas. Purpose: To evaluate if volumetric evaluation of DE p CT can be used as a predictor of right heart strain by the presence of IPCs. Material and Methods: One hundred and ninety-six patients suspected of having acute pulmonary embolism (PE) underwent DE p CT using a 64-slice dual-source CT. DE p CT images were three-dimensionally reconstructed with four threshold ranges: 1-120 HU (V 120 ), 1-15 HU (V 15 ), 1-10 HU (V 10 ), and 1-5 HU (V 5 ). Each relative ratio per V 120 was expressed as the %V 15 , %V 10 , and %V 5 . Volumetric data-sets were compared with D-dimer, pulmonary arterial (PA) pressure, right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio, PA diameter, and PA/aorta (PA/Ao) diameter ratio. The areas under the ROC curves (AUCs) were examined for their relationship to the presence of IPCs. This study was approved by the local ethics committee. Results: PA pressure and D-dimer were significantly higher in the patients who had IPCs. In the patients with IPCs, V 15 , V 10 , V 5 , %V 15 , %V 10 , and %V 5 were also significantly higher than those without IPC (P = 0.001). %V 5 had a better correlation with D-dimer (r = 0.30, P p CT had a correlation with D-dimer and RV/LV diameter ratio, and the relative ratio of volumetric CT measurements with a lower attenuation threshold might be recommended for the analysis of acute PE

  8. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  9. Diagnostic accuracy of 128-slice dual-source CT coronary angiography: a randomized comparison of different acquisition protocols

    International Nuclear Information System (INIS)

    Neefjes, Lisan A.; Kate, Gert-Jan R. ten; Rossi, Alexia; Nieman, Koen; Papadopoulou, Stella L.; Dharampal, Anoeshka S.; Dedic, Admir; Feyter, Pim J. de; Mollet, Nico R.; Genders, Tessa S.S.; Hunink, M.G.M.; Schultz, Carl J.; Weustink, Annick C.; Dijkshoorn, Marcel L.; Straten, Marcel van; Cademartiri, Filippo; Krestin, Gabriel P.

    2013-01-01

    To compare the diagnostic performance and radiation exposure of 128-slice dual-source CT coronary angiography (CTCA) protocols to detect coronary stenosis with more than 50 % lumen obstruction. We prospectively included 459 symptomatic patients referred for CTCA. Patients were randomized between high-pitch spiral vs. narrow-window sequential CTCA protocols (heart rate below 65 bpm, group A), or between wide-window sequential vs. retrospective spiral protocols (heart rate above 65 bpm, group B). Diagnostic performance of CTCA was compared with quantitative coronary angiography in 267 patients. In group A (231 patients, 146 men, mean heart rate 58 ± 7 bpm), high-pitch spiral CTCA yielded a lower per-segment sensitivity compared to sequential CTCA (89 % vs. 97 %, P = 0.01). Specificity, PPV and NPV were comparable (95 %, 62 %, 99 % vs. 96 %, 73 %, 100 %, P > 0.05) but radiation dose was lower (1.16 ± 0.60 vs. 3.82 ± 1.65 mSv, P 0.05). Radiation dose of sequential CTCA was lower compared to retrospective CTCA (6.12 ± 2.58 vs. 8.13 ± 4.52 mSv, P < 0.001). Diagnostic performance was comparable in both groups. Sequential CTCA should be used in patients with regular heart rates using 128-slice dual-source CT, providing optimal diagnostic accuracy with as low as reasonably achievable (ALARA) radiation dose. circle 128-slice dual-source CT coronary angiography offers several different acquisition protocols. (orig.)

  10. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  11. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhai, Pei; Xia, Jing; Li, Shutao; Fu, Xihong

    2013-01-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO 3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system. (paper)

  12. RNAdualPF: software to compute the dual partition function with sample applications in molecular evolution theory.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Bayegan, Amir H; Dotu, Ivan; Clote, Peter

    2016-10-19

    RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0 , i.e. whose minimum free energy secondary structure is identical to the target s 0 . Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0 . We introduce the program RNAdualPF, which computes the dual partition function Z ∗ , defined as the sum of Boltzmann factors exp(-E(a,s 0 )/RT) of all RNA nucleotide sequences a compatible with target structure s 0 . Using RNAdualPF, we efficiently sample RNA sequences that approximately fold into s 0 , where additionally the user can specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked, single-stranded nucleotides). Moreover, since we also compute the dual partition function Z ∗ (k) over all sequences having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content. Using Z ∗ , we compute the dual expected energy 〈E ∗ 〉, and use it to show that natural RNAs from the Rfam 12.0 database have higher minimum free energy than expected, thus suggesting that functional RNAs are under evolutionary pressure to be only marginally thermodynamically stable. We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure. We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display plasticity, a measure of structural diversity. We describe RNAdualPF, which rapidly computes the dual partition function Z ∗ and samples sequences having low energy with respect to a target structure, allowing sequence constraints and specified GC

  13. Virtual unenhanced second generation dual-source CT of the liver: Is it time to discard the conventional unenhanced phase?

    International Nuclear Information System (INIS)

    Barrett, T.; Bowden, D.J.; Shaida, N.; Godfrey, E.M.; Taylor, A.; Lomas, D.J.; Shaw, A.S.

    2012-01-01

    Introduction: Dual-energy dual source CT can almost simultaneously image patients using two different tube potentials, allowing material decomposition and creation of ‘virtual unenhanced’ (VU) images from post-contrast series. Methods: 75 patients undergoing triple-phase liver CT examinations were imaged using a second generation dual-source CT machine with tube potentials 140/100 kVp. Post-processing VU series were derived from arterial and portal phases. Regions-of-interest from liver parenchyma and within fat (‘noise’ assessment) were drawn to compare VU series to conventional unenhanced (CU) series. Subjective analysis assessed image quality and the suitability of VU to replace CU series. Results: Mean Hounsfield unit (HU) values of liver were higher in the VU series: portal 51.9 (SD = 10.29), arterial 51.1 (SD = 10.05), compared to the CU series 49.2 (SD = 9.11); P < 0.001. However, Pearson's correlation of the VU and CU series remained excellent: 0.838 (portal), 0.831 (arterial). Bland–Altman plots also showed good agreement between both VU and the CU datasets. Noise measurements were significantly lower in both VU series (P < 0.001). For subjective analysis, image quality was rated as very good/excellent in 100% of CU images, 93.3% of portal VU and 88.7% of arterial VU series. Overall, portal VU and arterial VU images were acceptable replacements for the CU series in 97.4% and 96.1%, respectively. Post-processing was noted to create a number of artefacts in VU images – knowledge of these is essential for interpretation. Conclusions: Portal and arterial-derived VU images objectively correlate to CU images and demonstrate good image quality and acceptability. VU image sets could replace the conventional unenhanced images in the vast majority of cases, significantly reducing radiation dose.

  14. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-01-01

    Full Text Available We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases.

  15. Thoraco-abdominal high-pitch dual-source CT angiography: Experimental evaluation of injection protocols with an anatomical human vascular phantom

    Energy Technology Data Exchange (ETDEWEB)

    Puippe, Gilbert D., E-mail: gilbert.puippe@usz.ch [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland Raemistrasse 100, CH-8091 Zurich (Switzerland); Winklehner, Anna [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland Raemistrasse 100, CH-8091 Zurich (Switzerland); Hasenclever, Peter; Plass, André [Division of Cardiac and Vascular Surgery, University Hospital Zurich, Switzerland Raemistrasse 100, CH-8091 Zurich (Switzerland); Frauenfelder, Thomas; Baumueller, Stephan [Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland Raemistrasse 100, CH-8091 Zurich (Switzerland)

    2012-10-15

    Objective: To experimentally evaluate three different contrast injection protocols at thoraco-abdominal high-pitch dual-source computed tomography angiography (CTA), with regard to level and homogeneity of vascular enhancement at different cardiac outputs. Materials and methods: A uniphasic, a biphasic as well as an individually tailored contrast protocol were tested using a human vascular phantom. Each protocol was scanned at 5 different cardiac outputs (3–5 L/min, steps of 0.5 L/min) using an extracorporeal cardiac pump. Vascular enhancement of the thoraco-abdominal aorta was measured every 5 cm. Overall mean enhancement of each protocol and mean enhancement for each cardiac output within each protocol were calculated. Enhancement homogeneity along the z-axis was evaluated for each cardiac output and protocol. Results: Overall mean enhancement was significantly higher in the uniphasic than in the other two protocols (all p < .05), whereas the difference between the biphasic and tailored protocol was not significant (p = .76). Mean enhancement among each of the 5 cardiac outputs within each protocol was significantly different (all p < .05). Only within the tailored protocol mean enhancement differed not significantly at cardiac outputs of 3.5 L/min vs. 5 L/min (484 ± 25 HU vs. 476 ± 19 HU, p = .14) and 4 vs. 5 L/min (443 ± 49 HU vs. 476 ± 19 HU, p = .05). Both, uniphasic and tailored protocol yielded homogenous enhancement at all cardiac outputs, whereas the biphasic protocol failed to achieve homogenous enhancement. Conclusion: This phantom study suggests that diagnostic and homogenous enhancement at thoraco-abdominal high-pitch dual-source CTA is feasible with either a uniphasic or an individually tailored contrast protocol.

  16. Comparison of carotid and cerebrovascular disease between diabetic and non-diabetic patients using dual-source CT

    International Nuclear Information System (INIS)

    He Ci; Yang Zhigang; Chu Zhigang; Dong Zhihui; Li Yunming; Shao Heng; Deng Wen

    2011-01-01

    Purpose: To clarify the differences of the carotid and cerebrovascular disease between patients with and without type 2 diabetes using dual-source CT angiography. Materials and methods: Dual-source CT angiography of the carotid and cerebrovascular arteries was performed in 79 type 2 diabetic patients and 207 non-diabetic patients. The type, extent and distribution of plaques, and luminal stenosis were compared. Results: Compared with non-diabetic patients, diabetic patients had a higher overall incidence of plaque (p 0.05), as well as for the number of diseased segments and the distribution of plaques; both mainly involved the bilateral cavernous segment of the internal carotid artery. As for the stenosis, non-obstructive lesions were more common in diabetic patients (p 0.05). Conclusion: Diabetes is associated with a higher incidence of plaque and non-obstructive stenosis. However, no significant differences were observed in the type, extent and distribution of involved plaques between diabetic and non-diabetic patients.

  17. Bone mineral density in renal osteodystrophy: Comparison of dual energy X-ray absorptiometry and quantitative computed tomography

    International Nuclear Information System (INIS)

    Funke, M.; Maeurer, J.; Grabbe, E.; Scheler, F.

    1992-01-01

    Measurements of bone density were carried out in 25 patients on dialysis for terminal renal insufficiency, using quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). Unlike in subjects with normal kidneys, there was no significant correlation between these methods in this series. Ten patients showed an increase in bone density of the vertebral spongiosa on QCT measurements, which was interpreted as due to osteosclerotic bone changes in renal osteopathy. QCT showed advantages over DXA in demonstrating these changes. (orig.) [de

  18. Contrast-enhanced computed tomography does not improve the diagnostic value of parathyroid dual-phase MIBI SPECT/CT

    DEFF Research Database (Denmark)

    Andersen, Trine B; Aleksyniene, Ramune; Boldsen, Søren K

    2018-01-01

    OBJECTIVE: The aim of this study was to investigate the contribution of contrast-enhanced computed tomography (CE-CT) to the localization of parathyroid adenomas compared with the dual-phase Tc-99m MIBI SPECT with low-dose CT (LD-CT). PATIENTS AND METHODS: This retrospective study included...... consecutive patients with primary hyperparathyroidism who underwent a preoperative dual-phase MIBI SPECT/CT followed by surgical resection. The standard of care was dual-phase MIBI SPECT/CT, acquired with LD-CT in the early phase and CE-CT in the late phase (SPECT/CE-CT). The presence and localization...... of positive sites were extracted from study reports. To examine the role of CE-CT, patient cases were independently re-reviewed, with the early LD-CT fused with early and late SPECT (SPECT/LD-CT). The two SPECT/CT methods were compared for sensitivity, and the positive predictive value and histopathology were...

  19. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  20. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    International Nuclear Information System (INIS)

    Li, I-H.; Huang, W.-S.; Yeh, C.-B.; Liao, M.-H.; Chen, C.-C.; Shen, L.-H.; Liu, J.-C.; Ma, K.-H.

    2009-01-01

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [ 99m Tc]TRODAT-1 (a dopamine transporter imaging agent) and [ 123 I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [ 99m Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [ 123 I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [ 99m Tc]TRODAT-1 and [ 123 I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  1. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    Energy Technology Data Exchange (ETDEWEB)

    Li, I-H. [Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan (China); Huang, W.-S. [Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Yeh, C.-B. [Department of Psychiatry, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Liao, M.-H.; Chen, C.-C.; Shen, L.-H. [Division of Isotope Application, Institute of Nuclear Energy Research, Taoyaun, 325 Taiwan (China); Liu, J.-C. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China); Ma, K.-H. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China)], E-mail: kuohsing91@yahoo.com.tw

    2009-08-15

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [{sup 99m}Tc]TRODAT-1 (a dopamine transporter imaging agent) and [{sup 123}I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [{sup 99m}Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [{sup 123}I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [{sup 99m}Tc]TRODAT-1 and [{sup 123}I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  2. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  3. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  4. What makes computational open source software libraries successful?

    Science.gov (United States)

    Bangerth, Wolfgang; Heister, Timo

    2013-01-01

    Software is the backbone of scientific computing. Yet, while we regularly publish detailed accounts about the results of scientific software, and while there is a general sense of which numerical methods work well, our community is largely unaware of best practices in writing the large-scale, open source scientific software upon which our discipline rests. This is particularly apparent in the commonly held view that writing successful software packages is largely the result of simply ‘being a good programmer’ when in fact there are many other factors involved, for example the social skill of community building. In this paper, we consider what we have found to be the necessary ingredients for successful scientific software projects and, in particular, for software libraries upon which the vast majority of scientific codes are built today. In particular, we discuss the roles of code, documentation, communities, project management and licenses. We also briefly comment on the impact on academic careers of engaging in software projects.

  5. What makes computational open source software libraries successful?

    International Nuclear Information System (INIS)

    Bangerth, Wolfgang; Heister, Timo

    2013-01-01

    Software is the backbone of scientific computing. Yet, while we regularly publish detailed accounts about the results of scientific software, and while there is a general sense of which numerical methods work well, our community is largely unaware of best practices in writing the large-scale, open source scientific software upon which our discipline rests. This is particularly apparent in the commonly held view that writing successful software packages is largely the result of simply ‘being a good programmer’ when in fact there are many other factors involved, for example the social skill of community building. In this paper, we consider what we have found to be the necessary ingredients for successful scientific software projects and, in particular, for software libraries upon which the vast majority of scientific codes are built today. In particular, we discuss the roles of code, documentation, communities, project management and licenses. We also briefly comment on the impact on academic careers of engaging in software projects. (paper)

  6. Computation of rectangular source integral by rational parameter polynomial method

    International Nuclear Information System (INIS)

    Prabha, Hem

    2001-01-01

    Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively

  7. Scheduling for dual-hop block-fading channels with two source-user pairs sharing one relay

    KAUST Repository

    Zafar, Ammar

    2013-09-01

    In this paper, we maximize the achievable rate region of a dual-hop network with two sources serving two users independently through a single shared relay. We formulate the problem as maximizing the sum of the weighted long term average throughputs of the two users under stability constraints on the long term throughputs of the source-user pairs. In order to solve the problem, we propose a joint user-and-hop scheduling scheme, which schedules the first or second hop opportunistically based on instantaneous channel state information, in order to exploit multiuser diversity and multihop diversity gains. Numerical results show that the proposed joint scheduling scheme enhances the achievable rate region as compared to a scheme that employs multi-user scheduling on the second-hop alone. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  8. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    Science.gov (United States)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  9. Recognition Memory zROC Slopes for Items with Correct versus Incorrect Source Decisions Discriminate the Dual Process and Unequal Variance Signal Detection Models

    Science.gov (United States)

    Starns, Jeffrey J.; Rotello, Caren M.; Hautus, Michael J.

    2014-01-01

    We tested the dual process and unequal variance signal detection models by jointly modeling recognition and source confidence ratings. The 2 approaches make unique predictions for the slope of the recognition memory zROC function for items with correct versus incorrect source decisions. The standard bivariate Gaussian version of the unequal…

  10. Volumetric evaluation of dual-energy perfusion CT by the presence of intrapulmonary clots using a 64-slice dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Munemasa; Nakashima, Yoshiteru; Kunihiro, Yoshie; Nakao, Sei; Matsunaga, Naofumi [Dept. of Radiology, Yamaguchi Univ. Graduate School of Medicine, Yamaguchi (Japan)], e-mail: radokada@yamaguchi-u.ac.jp; Morikage, Noriyasu [Medical Bioregulation Dept. of Organ Regulatory Surgery, Yamaguchi Univ. Graduate School of Medicine, Yamaguchi (Japan); Sano, Yuichi [Dept. of Radiology, Yamaguchi Univ. Hospital, Yamaguchi (Japan); Suga, Kazuyoshi [Dept. of Radiology, St Hills Hospital, Yamaguchi (Japan)

    2013-07-15

    Background: Dual-energy perfusion CT (DE{sub p}CT) directly represents the iodine distribution in lung parenchyma and low perfusion areas caused by intrapulmonary clots (IPCs) are visualized as low attenuation areas. Purpose: To evaluate if volumetric evaluation of DE{sub p}CT can be used as a predictor of right heart strain by the presence of IPCs. Material and Methods: One hundred and ninety-six patients suspected of having acute pulmonary embolism (PE) underwent DE{sub p}CT using a 64-slice dual-source CT. DE{sub p}CT images were three-dimensionally reconstructed with four threshold ranges: 1-120 HU (V{sub 120}), 1-15 HU (V{sub 15}), 1-10 HU (V{sub 10}), and 1-5 HU (V{sub 5}). Each relative ratio per V{sub 120} was expressed as the %V{sub 15}, %V{sub 10}, and %V{sub 5}. Volumetric data-sets were compared with D-dimer, pulmonary arterial (PA) pressure, right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio, PA diameter, and PA/aorta (PA/Ao) diameter ratio. The areas under the ROC curves (AUCs) were examined for their relationship to the presence of IPCs. This study was approved by the local ethics committee. Results: PA pressure and D-dimer were significantly higher in the patients who had IPCs. In the patients with IPCs, V{sub 15}, V{sub 10}, V{sub 5}, %V{sub 15}, %V{sub 10}, and %V{sub 5} were also significantly higher than those without IPC (P = 0.001). %V{sub 5} had a better correlation with D-dimer (r = 0.30, P < 0.001) and RV/LV diameter ratio (r = 0.27, P < 0.001), and showed a higher AUC (0.73) than the other CT measurements. Conclusion: The volumetric evaluation by DE{sub p}CT had a correlation with D-dimer and RV/LV diameter ratio, and the relative ratio of volumetric CT measurements with a lower attenuation threshold might be recommended for the analysis of acute PE.

  11. Dual agency and ethics conflicts in correctional practice: sources and solutions.

    Science.gov (United States)

    Cervantes, Ana Natasha; Hanson, Annette

    2013-01-01

    Psychiatrists working in corrections, particularly in areas that have a shortage of forensic practitioners, may encounter a variety of ethics-related conflicts, especially when working both as clinicians and forensic evaluators within smaller systems. Such conflicts may include unavoidable dual treating and forensic evaluator relationships, and awareness of information that may complicate patient treatment or influence forensic opinions. Additional conflicts may arise if the psychiatrist is also retained privately to conduct forensic evaluations involving inmates in the same facility or facilities where the psychiatrist is otherwise employed, specifically because he may have duties to both a retaining party and an employer. Early-career psychiatrists, those who are completing their training in forensic psychiatry, and general psychiatrists who practice in corrections may be unfamiliar with the ethics-related dilemmas that arise in jails or prisons. Ethics courses during medical school and residency, while required, rarely discuss dilemmas specific to correctional settings. Furthermore, many psychiatrists practicing in corrections do not undergo formal training in forensic psychiatry, and even among different fellowship programs, the amount of time devoted to corrections varies significantly. The authors discuss hypothetical cases that reflect situations encountered, particularly by psychiatric fellows, forensic psychiatrists new to correctional work, and nonforensic clinicians working in corrections, a setting where dual agency is common and at times in conflict with core principles of ethics, including beneficence, nonmaleficence, neutrality, objectivity, and justice.

  12. Coronary artery stent imaging with 128-slice dual-source CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode

    International Nuclear Information System (INIS)

    Wolf, Florian; Loewe, Christian; Plank, Christina; Schernthaner, Ruediger; Bercaczy, Dominik; Lammer, Johannes; Leschka, Sebastian; Goetti, Robert; Marincek, Borut; Alkadhi, Hatem; Homolka, Peter; Friedrich, Guy; Feuchtner, Gudrun

    2010-01-01

    To evaluate coronary stents in vitro using 128-slice-dual-source computed tomography (CT). Twelve different coronary stents placed in a non-moving cardiac/chest phantom were examined by 128-slice dual-source CT using three CT protocols [high-pitch spiral (HPS), sequential (SEQ) and conventional spiral (SPIR)]. Artificial in-stent lumen narrowing (ALN), visible inner stent area (VIA), artificial in-stent lumen attenuation (ALA) in percent, image noise inside/outside the stent and CTDIvol were measured. Mean ALN was 46% for HPS, 44% for SEQ and 47% for SPIR without significant difference. Mean VIA was similar with 31% for HPS, 30% for SEQ and 33% for SPIR. Mean ALA was, at 5% for HPS, significantly lower compared with -11% for SPIR (p = 0.024), but not different from SEQ with -1%. Mean image noise was significantly higher for HPS compared with SEQ and SPIR inside and outside the stent (p < 0.001). CTDIvol was lower for HPS (5.17 mGy), compared with SEQ (9.02 mGy) and SPIR (55.97 mGy), respectively. The HPS mode of 128-slice dual-source CT yields fewer artefacts inside the stent lumen compared with SPIR and SEQ, but image noise is higher. ALN is still too high for routine stent evaluation in clinical practice. Radiation dose of the HPS mode is markedly (less than about tenfold) reduced. (orig.)

  13. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-01-01

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  14. SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raudabaugh, J; Moore, B [Duke Medical Physics, Duke Radiation Dosimetry Laboratory (United States); Nguyen, G; Yoshizumi, T [Duke Radiology, Duke Radiation Dosimetry Laboratory (United States); Lowry, C; Nelson, R [Duke Radiology (United States)

    2016-06-15

    Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDI phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.

  15. Systematic radiation dose optimization of abdominal dual-energy CT on a second-generation dual-source CT scanner: assessment of the accuracy of iodine uptake measurement and image quality in an in vitro and in vivo investigations.

    Science.gov (United States)

    Schindera, Sebastian T; Zaehringer, Caroline; D'Errico, Luigia; Schwartz, Fides; Kekelidze, Maka; Szucs-Farkas, Zsolt; Benz, Matthias R

    2017-10-01

    To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDI vol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDI vol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p dual-energy and the single-energy protocol. A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.

  16. Spinal dual-energy computed tomography: improved visualisation of spinal tumorous growth with a noise-optimised advanced monoenergetic post-processing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Mareen; Weiss, Jakob; Selo, Nadja; Notohamiprodjo, Mike; Bamberg, Fabian; Nikolaou, Konstantin; Othman, Ahmed E. [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Flohr, Thomas [Siemens Healthcare GmbH, Erlangen (Germany)

    2016-11-15

    The aim of this study was to evaluate the effect of advanced monoenergetic post-processing (MEI+) on the visualisation of spinal growth in contrast-enhanced dual-energy CT (DE-CT). Twenty-six oncologic patients (age, 61 ± 17 years) with spinal tumorous growth were included. Patients underwent contrast-enhanced dual-energy CT on a third-generation dual-source CT scanner. Image acquisition was in dual-energy mode (100/Sn150kV), and scans were initiated 90 s after contrast agent administration. Virtual monoenergetic images (MEI+) were reconstructed at four different kiloelectron volts (keV) levels (40, 60, 80, 100) and compared to the standard blended portal venous computed tomography (CT{sub pv}). Image quality was assessed qualitatively (conspicuity, delineation, sharpness, noise, confidence; two independent readers; 5-point Likert scale; 5 = excellent) and quantitatively by calculating signal-to-noise (SNR) and contrast-to-noise-ratios (CNR). For a subgroup of 10 patients with MR imaging within 4 months of the DE-CT, we compared the monoenergetic images to the MRIs qualitatively. Highest contrast of spinal growth was observed in MEI+ at 40 keV, with significant differences to CT{sub pv} and all other keV reconstructions (60, 80, 100; p < 0.01). Highest conspicuity, delineation and sharpness were observed in MEI+ at 40 keV, with significant differences to CT{sub pv} (p < 0.001). Similarly, MEI+ at 40 keV yielded highest diagnostic confidence (4.6 ± 0.6), also with significant differences to CT{sub pv} (3.45 ± 0.9, p < 0.001) and to high keV reconstructions (80, 100; p ≤ 0.001). Similarly, CNR calculations revealed highest scores for MEI+ at 40 keV followed by 60 keV and CT{sub pv}, with significant differences to high keV MEI+ reconstructions. Qualitative analysis scores peaked for MR images followed by the MEI+ 40-keV reconstructions. MEI+ at low keV levels can significantly improve image quality and delineation of spinal growth in patients with portal

  17. Detection of simulated pulmonary nodules by single-exposure dual-energy computed radiography of the chest: effect of a computer-aided diagnosis system (Part 2)

    International Nuclear Information System (INIS)

    Kido, Shoji; Kuriyama, Keiko; Kuroda, Chikazumi; Nakamura, Hironobu; Ito, Wataru; Shimura, Kazuo; Kato, Hisatoyo

    2002-01-01

    Objective: To evaluate the performance of the computer-aided diagnosis (CAD) scheme on the detection of pulmonary nodules (PNs) in single-exposure dual-energy subtraction computed radiography (CR) images of the chest, and to evaluate the effect of this CAD scheme on radiologists' detectabilities. Methods and material: We compared the detectability by the CAD scheme with the detectability by 12 observers by using conventional CR (C-CR) and bone-subtracted CR (BS-CR) images of 25 chest phantoms with a low-contrast nylon nodule. Results: Both in the CAD scheme and for the observers, the detectability of BS-CR images was superior to that of C-CR images (P<0.005). The detection performance of the CAD scheme was equal to that of the observers. The nodules detected by the CAD did not necessarily coincide with those by the observers. Thus, if observers can use the results of the CAD system as a 'second opinion', their detectabilities increase. Conclusion: The CAD system for detection of PNs in the single-exposure dual-energy subtraction method is promising for improving radiologists' detectabilities of PNs

  18. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Santangelo, Teresa [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Bambino Gesu Children' s Hospital, Department of Imaging, Rome (Italy); Duhamel, Alain [University of Lille (EA 2694), Department of Biostatistics, CHU Lille, Lille (France); Deschildre, Antoine [CHU Lille - University of Lille, Department of Pediatric Pulmonology, Lille (France)

    2017-02-15

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol{sub 32}) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP{sub 32} was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP{sub 32}, CTDI{sub vol32} and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP{sub 32}, 0.78-1.25 mGy for the CTDI{sub vol32} and 1.6-2.1 mGy for the SSDE. (orig.)

  19. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    International Nuclear Information System (INIS)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques; Santangelo, Teresa; Duhamel, Alain; Deschildre, Antoine

    2017-01-01

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol 32 ) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP 32 was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP 32 , CTDI vol32 and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP 32 , 0.78-1.25 mGy for the CTDI vol32 and 1.6-2.1 mGy for the SSDE. (orig.)

  20. Dual Nitrate Isotopes in Dry Deposition: Utility for Partitioning Nox Source Contributions to Landscape Nitrogen Deposition

    Science.gov (United States)

    Dry deposition is a major component of total nitrogen deposition and thus an important source of bioavailable nitrogen to ecosystems. However, relative to wet deposition, less is known regarding the sources and spatial variability of dry deposition. This is in part due to diffi...

  1. Preliminary design of the BPM electronics memory scanner/dual boxcar averager for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Votaw, A.J.

    1992-01-01

    The memory scanner/dual boxcar averager are VXI modules that are part of the Advanced Photon Source (APS) beam position monitor (BPM) data acquisition system. Each pair of modules is designed to gather and process digital data from up to nine digital channels transmitting the BPM data from the storage ring (360 locations) and the synchrotron (80 locations). They store beam history in a buffer, store the latest scan of all channels, and provide boxcar averaged X and Y position data for the global orbit feedback system, provide boxcar average X and Y position data for beam diagnostics, and a buffered output of SCDU data as it is scanned for the beam abort interlock system. The system's capability to support single pass, closed orbit and tune measurement functions will also be briefly described

  2. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  3. A tunable dual-wavelength pump source based on simulated polariton scattering for terahertz-wave generation

    International Nuclear Information System (INIS)

    Sun, Bo; Liu, Jinsong; Yao, Jianquan; Li, Enbang

    2013-01-01

    We propose a dual-wavelength pump source by utilizing stimulated polariton scattering in a LiNbO 3 crystal. The residual pump and the generated tunable Stokes waves can be combined to generate THz-wave generation via difference frequency generation (DFG). With a pump energy of 49 mJ, Stokes waves with a tuning range from 1067.8 to 1074 nm have been generated, and an output energy of up to 14.9 mJ at 1070 nm has been achieved with a conversion efficiency of 21.7%. A sum frequency generation experiment was carried out to demonstrate the feasibility of the proposed scheme for THz-wave DFG. (paper)

  4. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  5. Dual Kidney Transplantation Offers a Valuable Source for Kidneys With Good Functional Outcome.

    Science.gov (United States)

    Khalid, U; Asderakis, A; Rana, T; Szabo, L; Chavez, R; Ilham, M A; Ablorsu, E

    2016-01-01

    Reasons for declining kidney donors are older age, with or without, hypertension, kidney dysfunction, and diabetes. Implantation of both kidneys into a single recipient from such donors may improve their acceptability and outcome. Patients who underwent dual kidney transplantation (DKT) between June 2010 and May 2014 were identified from a prospectively maintained database. Single kidney transplantations (SKT) with matching donor criteria were also identified. Donors considered for DKT were the following: DBDs >70 years of age with diabetes and/or hypertension; DCDs >65 years of age with diabetes and/or hypertension; and DCDs >70 years of age. Over a 4-year period, 34 patients underwent adult DKT, and 51, with matching donor criteria, underwent SKT. The median estimated glomerular filtration rate (eGFR) at 12 and 36 months of DKT was 49 (range, 5-79) and 42 (range, 15-85) mL/min compared with SKT of 35 (range, 10-65) and 32 (range, 6-65), respectively. The 1-year graft survival for DKT and SKT was 88% and 96% (P = .52), and patient survival was 94% and 98%, respectively (P = .12). Median hospital stay, intensive care unit admission, and wound complications were more frequent in the DKT group. Graft function following DKT is significantly better compared with matched criteria SKT; graft and patient survival are similar. There is an increased rate of complications following DKT, with longer hospital stay and ICU admission. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of the relative phase of the driving sources on heating of dual frequency capacitive discharges

    Science.gov (United States)

    Ziegler, Dennis; Trieschmann, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2009-10-01

    The influence of the relative phase of the driving voltages on heating in asymmetric dual frequency capacitive discharges is investigated. Basis of the analysis is a recently published global model [1] extended by the possibility to freely adjust the phase angles between the driving voltages. In recent publications it was reported that nonlinear electron resonance heating (NERH) drastically enhances dissipation at moments of sheath collapse due to plasma series resonance (PSR) excitation [2]. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In case of a collapse directly being followed by a second collapse ("double collapse") a substantial increase in dissipated power, well above the reported growth due to a single PSR excitation event per period, can be observed.[4pt] [1] D.,iegler, T.,ussenbrock, and R.,. Brinkmann, Phys. Plasmas 16, 023503 (2009)[0pt] [2] T.,ussenbrock, R.,. Brinkmann, M.,. Lieberman, A.,. Lichtenberg, and E. Kawamura, Phys. Rev. Lett. 101, 085004 (2008)

  7. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  8. Hip joint centre position estimation using a dual unscented Kalman filter for computer-assisted orthopaedic surgery.

    Science.gov (United States)

    Beretta, Elisa; De Momi, Elena; Camomilla, Valentina; Cereatti, Andrea; Cappozzo, Aurelio; Ferrigno, Giancarlo

    2014-09-01

    In computer-assisted knee surgery, the accuracy of the localization of the femur centre of rotation relative to the hip-bone (hip joint centre) is affected by the unavoidable and untracked pelvic movements because only the femoral pose is acquired during passive pivoting manoeuvres. We present a dual unscented Kalman filter algorithm that allows the estimation of the hip joint centre also using as input the position of a pelvic reference point that can be acquired with a skin marker placed on the hip, without increasing the invasiveness of the surgical procedure. A comparative assessment of the algorithm was carried out using data provided by in vitro experiments mimicking in vivo surgical conditions. Soft tissue artefacts were simulated and superimposed onto the position of a pelvic landmark. Femoral pivoting made of a sequence of star-like quasi-planar movements followed by a circumduction was performed. The dual unscented Kalman filter method proved to be less sensitive to pelvic displacements, which were shown to be larger during the manoeuvres in which the femur was more adducted. Comparable accuracy between all the analysed methods resulted for hip joint centre displacements smaller than 1 mm (error: 2.2 ± [0.2; 0.3] mm, median ± [inter-quartile range 25%; inter-quartile range 75%]) and between 1 and 6 mm (error: 4.8 ± [0.5; 0.8] mm) during planar movements. When the hip joint centre displacement exceeded 6 mm, the dual unscented Kalman filter proved to be more accurate than the other methods by 30% during multi-planar movements (error: 5.2 ± [1.2; 1] mm). © IMechE 2014.

  9. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: Optimization of energy level viewing significantly increases lesion contrast

    International Nuclear Information System (INIS)

    Patel, B.N.; Thomas, J.V.; Lockhart, M.E.; Berland, L.L.; Morgan, D.E.

    2013-01-01

    Aim: To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. Materials and methods: The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Results: Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40–77). The mean ± SD lesion contrast values (non-tumoural pancreas – tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 ke

  10. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast.

    Science.gov (United States)

    Patel, B N; Thomas, J V; Lockhart, M E; Berland, L L; Morgan, D E

    2013-02-01

    To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40-77). The mean ± SD lesion contrast values (non-tumoural pancreas - tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 keV was 31 ± 25 HU (p = 0

  11. Comparative study of dobutamine stress echocardiography and dual single-photon emission computed tomography (Thallium-201 and I-123 BMIPP) for assessing myocardial viability after acute myocardial infarction

    International Nuclear Information System (INIS)

    Yasugi, Naoko; Hiroki, Tadayuki

    2002-01-01

    Discordance between the 123 I-labelled 15-iodophenyl-3-R, S-methyl pentadecanoic acid (BMIPP) and 201 Tl findings may indicate myocardial viability (MV). This study compared dobutamine stress echocardiography (DSE) and single-photon emission computed tomography (SPECT) using the dual tracers for assessment of MV and prediction of functional recovery after acute myocardial infarction (AMI). DSE and dual SPECT were studied in 35 patients after AMI, of whom 28 underwent percutaneous coronary intervention in the acute stage. Dual SPECT was performed to compare the defect score of BMIPP and 201 Tl. The left ventricular wall motion score (WMS) was estimated during DSE and 6 months later to assess functional recovery of the infarct area. The rate of agreement of MV between dual SPECT and DSE was 89% (p 201 Tl were significantly smaller in patients with functional recovery than in those without. Assessment of MV using DSE concords with the results of dual SPECT in the early stage of AMI. DSE may have a higher predictive value for long-term functional recovery at the infarct area. However, a finding of positive MV by dual SPECT, without functional recovery, may indicate residual stenosis of the infarct-related artery, although the number of cases was small. Combined assessment by dual SPECT and DSE may be useful for detecting MV and jeopardized myocardium. Furthermore, the results suggest that functional recovery of dysfunctional myocardium may depend on the size of the infarct and risk area. (author)

  12. A practical material decomposition method for x-ray dual spectral computed tomography.

    Science.gov (United States)

    Hu, Jingjing; Zhao, Xing

    2016-03-17

    X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.

  13. Quantization of liver tissue in dual kVp computed tomography using linear discriminant analysis

    Science.gov (United States)

    Tkaczyk, J. Eric; Langan, David; Wu, Xiaoye; Xu, Daniel; Benson, Thomas; Pack, Jed D.; Schmitz, Andrea; Hara, Amy; Palicek, William; Licato, Paul; Leverentz, Jaynne

    2009-02-01

    Linear discriminate analysis (LDA) is applied to dual kVp CT and used for tissue characterization. The potential to quantitatively model both malignant and benign, hypo-intense liver lesions is evaluated by analysis of portal-phase, intravenous CT scan data obtained on human patients. Masses with an a priori classification are mapped to a distribution of points in basis material space. The degree of localization of tissue types in the material basis space is related to both quantum noise and real compositional differences. The density maps are analyzed with LDA and studied with system simulations to differentiate these factors. The discriminant analysis is formulated so as to incorporate the known statistical properties of the data. Effective kVp separation and mAs relates to precision of tissue localization. Bias in the material position is related to the degree of X-ray scatter and partial-volume effect. Experimental data and simulations demonstrate that for single energy (HU) imaging or image-based decomposition pixel values of water-like tissues depend on proximity to other iodine-filled bodies. Beam-hardening errors cause a shift in image value on the scale of that difference sought between in cancerous and cystic lessons. In contrast, projection-based decomposition or its equivalent when implemented on a carefully calibrated system can provide accurate data. On such a system, LDA may provide novel quantitative capabilities for tissue characterization in dual energy CT.

  14. SISTEM DETEKSI WAJAH PADA OPEN SOURCE PHYSICAL COMPUTING

    Directory of Open Access Journals (Sweden)

    Yupit Sudianto

    2014-01-01

    Full Text Available Face detection is one of the interesting research area. Majority of this research implemented on a computer. Development of face detection on a computer requires a significant investment costs. In addition to having to spend the cost of procurement of computers, is also required for operational cost such as electricity use, because the computer requires large power/watt.This research is proposed to build a face detection system using Arduino. The system will be autonomous, in other word the role of computer will be replaced by Arduino. Arduino is used is Arduino Mega 2560 with specifications microcontroller AT MEGA 2560, a speed of 16 MHz, 256 KB flash memory, 8 KB SRAM, 4 KB EEPROM. So not all face detection algorithm can be implemented on the Arduino. The limitations of memory owned by the arduino will be resolved by applying the method of template matching using the facial features in the form of a template that is shaped like a mask. Detection rate achieved in this study is 80% - 100%. Where, in the Arduino's success in identifying the face are influenced by the distance between the camera with the human face and human movement.

  15. Diagnostic performance of dual-source CT coronary angiography with and without heart rate control: Systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Li, M.; Zhang, G.-M.; Zhao, J.-S.; Jiang, Z.-W.; Peng, Z.-H.; Jin, Z.-T.; Sun, G.

    2014-01-01

    Aim: To investigate the diagnostic accuracy of dual-source computed tomography (DSCT) coronary angiography with and without the application of a β-blocker. Materials and methods: An exact binomial rendition of the bivariate mixed-effects regression model was used to synthesize diagnostic test data. Results: The pooled sensitivity at the patient level was 0.98 [95% confidence intervals (CI): 0.97–0.99], and specificity 0.88 (95% CI: 0.84–0.91). The results showed that without heart rate control, the sensitivity and specificity at the patient level did not decrease (p = 0.27 and 0.56, respectively). At the artery level, no significant differences in sensitivity and specificity for studies with and without heart rate control were detected (p = 0.04 and 0.05, respectively). At the segment level, the specificity decreased without heart rate control (p = 0.03), whereas the sensitivity was not influenced (p = 0.63). The median radiation exposure was 2.6 mSv, with 1.6 mSv and 8 mSv for heart rate-controlled studies and uncontrolled studies, respectively. Conclusions: DSCT coronary angiography without heart rate control has a similar excellent diagnostic performance at the patient level as that of heart rate control groups. However, controlling for heart rate to decrease radiation and to provide effective information for selecting the therapeutic strategy and risk stratification is recommended

  16. The value of low-dose prospective ECG-gated dual-source CT angiography in the diagnosis of coarctation of the aorta in infants and children

    Energy Technology Data Exchange (ETDEWEB)

    Nie, P. [Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Diseases, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong (China); Wang, X., E-mail: wxming369@yahoo.com.cn [Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Diseases, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong (China); Cheng, Z.; Duan, Y.; Ji, X. [Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Diseases, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong (China); Chen, J. [CT Research Collaboration, Siemens, Beijing (China); Zhang, H. [Department of Cardiovascular Surgery, Shandong Provincial Hospital, Jinan, Shandong (China)

    2012-08-15

    Aim: To investigate the value of prospective electrocardiogram (ECG)-gated dual-source computed tomography (DSCT) in the diagnosis of coarctation of the aorta (CoA). Materials and methods: Seventeen patients clinically suspected of having CoA underwent prospective ECG-gated DSCT angiography and transthoracic echocardiography (TTE). Surgery was performed in all patients. The diagnostic accuracy of DSCT angiography and TTE was compared with the surgical findings as the reference standard. Image quality was evaluated using a five-point scale. Effective radiation dose was calculated from the dose-length product (DLP). Results: CoA was diagnosed in 17 patients by DSCT angiography and in 16 patients by TTE. A total of 46 separate cardiovascular abnormalities were confirmed by surgical findings. The diagnostic accuracy of DSCT angiography and TTE was 96.32% and 97.06%, respectively. There was no significant difference in the diagnostic accuracy between DSCT angiography and TTE ({chi}{sup 2} = 0, p > 0.05). The mean score of image quality was 4.2 {+-} 0.8. The mean effective dose was 0.69 {+-} 0.09 mSv. Conclusion: Prospective ECG-gated DSCT with a low radiation dose is a valuable technique in the diagnosis of CoA in infants and children.

  17. Prevalence of first-pass myocardial perfusion defects detected by contrast-enhanced dual-source CT in patients with non-ST segment elevation acute coronary syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Schepis, Tiziano; Achenbach, Stephan; Marwan, Mohamed; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner G.; Pflederer, Tobias [University of Erlangen, Department of Internal Medicine 2 (Cardiology), Erlangen (Germany)

    2010-07-15

    To investigate the prevalence and diagnostic value of first-pass myocardial perfusion defects (PD) visualised by contrast-enhanced multidetector computed tomography (MDCT) in patients admitted for a first acute coronary syndrome (ACS). Thirty-eight patients with non-ST segment elevation myocardial infarction (NSTEMI) or unstable angina (UA) and scheduled for percutaneous coronary intervention underwent dual-source CT immediately before catheterisation. CT images were analysed for the presence of any PD by using a 17-segment model. Results were compared with peak cardiac troponin-I (cTnI) and angiography findings. PD were seen in 21 of the 24 patients with NSTEMI (median peak cTnI level 7.07 ng/mL; range 0.72-37.07 ng/mL) and in 2 of 14 patients with UA. PD corresponded with the territory of the infarct-related artery in 20 out of 22 patients. In a patient-based analysis, sensitivity, specificity, negative and positive predictive values of any PD for predicting NSTEMI were 88%, 86%, 80% and 91%. Per culprit artery, the respective values were 86%, 75%, 80% and 83%. In patients with non-ST segment elevation ACS, first-pass myocardial PD in contrast-enhanced MDCT correlate closely with the presence of myocardial necrosis, as determined by increases in cTnI levels. (orig.)

  18. 3T MRI and 128-slice dual-source CT cisternography images of the cranial nerves a brief pictorial review for clinicians.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Martinez-Anda, Jaime J; Corona-Cedillo, Roberto

    2014-01-01

    There is a broad community of health sciences professionals interested in the anatomy of the cranial nerves (CNs): specialists in neurology, neurosurgery, radiology, otolaryngology, ophthalmology, maxillofacial surgery, radiation oncology, and emergency medicine, as well as other related fields. Advances in neuroimaging using high-resolution images from computed tomography (CT) and magnetic resonance (MR) have made highly-detailed visualization of brain structures possible, allowing normal findings to be routinely assessed and nervous system pathology to be detected. In this article we present an integrated perspective of the normal anatomy of the CNs established by radiologists and neurosurgeons in order to provide a practical imaging review, which combines 128-slice dual-source multiplanar images from CT cisternography and 3T MR curved reconstructed images. The information about the CNs includes their origin, course (with emphasis on the cisternal segments and location of the orifices at the skull base transmitting them), function, and a brief listing of the most common pathologies affecting them. The scope of the article is clinical anatomy; readers will find specialized texts presenting detailed information about particular topics. Our aim in this article is to provide a helpful reference for understanding the complex anatomy of the cranial nerves. Copyright © 2013 Wiley Periodicals, Inc.

  19. Follow-up of coronary artery bypass graft patency: diagnostic efficiency of high-pitch dual-source 256-slice MDCT findings.

    Science.gov (United States)

    Yuceler, Zeyneb; Kantarci, Mecit; Yuce, Ihsan; Kizrak, Yesim; Bayraktutan, Ummugulsum; Ogul, Hayri; Kiris, Adem; Celik, Omer; Pirimoglu, Berhan; Genc, Berhan; Gundogdu, Fuat

    2014-01-01

    Our aim was to evaluate the diagnostic accuracy of 256-slice, high-pitch mode multidetector computed tomography (MDCT) for coronary artery bypass graft (CABG) patency. Eighty-eight patients underwent 256-slice MDCT angiography to evaluate their graft patency after CABG surgery using a prospectively synchronized electrocardiogram in the high-pitch spiral acquisition mode. Effective radiation doses were calculated. We investigated the diagnostic accuracy of high-pitch, low-dose, prospective, electrocardiogram-triggering, dual-source MDCT for CABG patency compared with catheter coronary angiography imaging findings. A total of 215 grafts and 645 vessel segments were analyzed. All graft segments had diagnostic image quality. The proximal and middle graft segments had significantly (P < 0.05) better mean image quality scores (1.18 ± 0.4) than the distal segments (1.31 ± 0.5). Using catheter coronary angiography as the reference standard, high-pitch MDCT had the following sensitivity, specificity, positive predictive value, and negative predictive value of per-segment analysis for detecting graft patency: 97.1%, 99.6%, 94.4%, and 99.8%, respectively. In conclusion, MDCT can be used noninvasively with a lower radiation dose for the assessment of restenosis in CABG patients.

  20. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  1. Analysis of Computer Experiments with Multiple Noise Sources

    DEFF Research Database (Denmark)

    Dehlendorff, Christian; Kulahci, Murat; Andersen, Klaus Kaae

    2010-01-01

    In this paper we present a modeling framework for analyzing computer models with two types of variations. The paper is based on a case study of an orthopedic surgical unit, which has both controllable and uncontrollable factors. Our results show that this structure of variation can be modeled...

  2. Energy Management of Dual-Source Propelled Electric Vehicle using Fuzzy Controller Optimized via Genetic Algorithm

    DEFF Research Database (Denmark)

    Khoobi, Saeed; Halvaei, Abolfazl; Hajizadeh, Amin

    2016-01-01

    Energy and power distribution between multiple energy sources of electric vehicles (EVs) is the main challenge to achieve optimum performance from EV. Fuzzy inference systems are powerful tools due to nonlinearity and uncertainties of EV system. Design of fuzzy controllers for energy management...... of EV relies too much on the expert experience and it may lead to sub-optimal performance. This paper develops an optimized fuzzy controller using genetic algorithm (GA) for an electric vehicle equipped with two power bank including battery and super-capacitor. The model of EV and optimized fuzzy...

  3. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system.

    Science.gov (United States)

    Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D

    2018-04-01

    A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol

  4. RBEOER: a FORTRAN program for the computation of RBEs, OERs, survival ratios, and the effects of fractionation using the theory of dual radiation action

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.

    1978-05-01

    The computer code RBEOER calculates RBEs, OERs and survival curves as a function of the dose delivered to a biological system and the temporal distribution of the dose (fractionation). The method of calculation is based on the theory of dual radiation action. The basic formalism and the input parameters are described. A sample output is presented

  5. New Switched-Dual-Source Multilevel Inverter for Symmetrical and Asymmetrical Operation

    Directory of Open Access Journals (Sweden)

    Kennedy Adinbo Aganah

    2018-04-01

    Full Text Available The increasing integration of large solar PV and wind farms into the power grid has fueled, over the past two decades, growing demands for high-power, high-voltage, utility-scale inverters. Multilevel inverters have emerged as the industry’s choice for megawatt-range inverters because of their reduced voltage stress, capability for generating an almost-sinusoidal voltage, built-in redundancy and other benefits. This paper presents a novel switched-source multilevel inverter (SS MLI architecture. This new inverter shows superior capabilities when compared to existing topologies. It has reduced voltage stress on the semiconductor, uses fewer switches (i.e., reduced size/weight/cost and exhibits increased efficiency. The proposed SS MLI is comprised of two voltage sources ( V 1 , V 2 and six switches. It is capable of generating five-level output voltage in symmetric mode (i.e., V 1 = V 2 and seven-level output voltage in asymmetric mode (i.e., V 1 ≠ V 2 . We present simulations results (using MATLAB®/Simulink® for five- and seven-level output voltages, and they strongly support the validity of the proposed inverter. These positive results are further supported experimentally using a laboratory prototype.

  6. Tracing the Nitrate Sources of the Yili River in the Taihu Lake Watershed: A Dual Isotope Approach

    Directory of Open Access Journals (Sweden)

    Haiao Zeng

    2014-12-01

    Full Text Available As the third largest freshwater lake in China, Taihu Lake has experienced severe cyanobacterial blooms and associated water quality degradation in recent decades, threatening the human health and sustainable development of cities in the watershed. The Yili River is a main river of Taihu Lake, contributing about 30% of the total nitrogen load entering the lake. Tracing the nitrate sources of Yili River can inform the origin of eutrophication in Taihu Lake and provide hints for effective control measures. This paper explored the nitrate sources and cycling of the Yili River based on dual nitrogen (δ15N and oxygen (δ18O isotopic compositions. Water samples collected during both the wet and dry seasons from different parts of the Yili River permitted the analysis of the seasonal and spatial variations of nitrate concentrations and sources. Results indicated that the wet season has higher nitrate concentrations than the dry season despite the stronger dilution effects, suggesting a greater potential of cyanobacterial blooms in summer. The δ15N-NO3− values were in the range of 4.0‰–14.0‰ in the wet season and 4.8‰–16.9‰ in dry, while the equivalent values of δ18O were 0.5‰–17.8‰ and 3.5‰–15.6‰, respectively. The distribution of δ15N-NO3− and δ18O-NO3− indicated that sewage and manure as well as fertilizer and soil organic matter were the major nitrate sources of the Yili River. Atmospheric deposition was an important nitrate source in the upper part of Yili River but less so in the middle and lower reaches due to increasing anthropogenic contamination. Moreover, there was a positive relationship between δ18O-NO3− and δ15N-NO3− in the wet season, indicating a certain extent of denitrification. In contrast, the δ18O-δ15N relationship in the dry season was significantly negative, suggesting that the δ15N and δ18O values were determined by a mixing of different nitrate sources.

  7. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  8. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology.

    Science.gov (United States)

    Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.

  9. Bone mineral density in renal osteodystrophy: Comparison of dual energy X-ray absorptiometry and quantitative computed tomography. Vergleichende Untersuchungen mit der quantitativen Computertomographie und der Dual-Energy-X-Ray-Absorptiometrie zur Knochendichte bei renaler Osteopathie

    Energy Technology Data Exchange (ETDEWEB)

    Funke, M.; Maeurer, J.; Grabbe, E. (Abt. Roentgendiagnostik, Klinikum, Goettingen Univ. (Germany)); Scheler, F. (Abt. Nephrologie und Rheumatologie, Klinikum, Goettingen Univ. (Germany))

    1992-08-01

    Measurements of bone density were carried out in 25 patients on dialysis for terminal renal insufficiency, using quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). Unlike in subjects with normal kidneys, there was no significant correlation between these methods in this series. Ten patients showed an increase in bone density of the vertebral spongiosa on QCT measurements, which was interpreted as due to osteosclerotic bone changes in renal osteopathy. QCT showed advantages over DXA in demonstrating these changes. (orig.).

  10. A New Dual-purpose Quality Control Dosimetry Protocol for Diagnostic Reference-level Determination in Computed Tomography.

    Science.gov (United States)

    Sohrabi, Mehdi; Parsi, Masoumeh; Sina, Sedigheh

    2018-05-17

    A diagnostic reference level is an advisory dose level set by a regulatory authority in a country as an efficient criterion for protection of patients from unwanted medical exposure. In computed tomography, the direct dose measurement and data collection methods are commonly applied for determination of diagnostic reference levels. Recently, a new quality-control-based dose survey method was proposed by the authors to simplify the diagnostic reference-level determination using a retrospective quality control database usually available at a regulatory authority in a country. In line with such a development, a prospective dual-purpose quality control dosimetry protocol is proposed for determination of diagnostic reference levels in a country, which can be simply applied by quality control service providers. This new proposed method was applied to five computed tomography scanners in Shiraz, Iran, and diagnostic reference levels for head, abdomen/pelvis, sinus, chest, and lumbar spine examinations were determined. The results were compared to those obtained by the data collection and quality-control-based dose survey methods, carried out in parallel in this study, and were found to agree well within approximately 6%. This is highly acceptable for quality-control-based methods according to International Atomic Energy Agency tolerance levels (±20%).

  11. Myocardial perfusion assessment by dual-energy computed tomography in patients with intermediate to high likelihood of coronary artery disease

    International Nuclear Information System (INIS)

    De Zam, M.C.; Capunay, C.; Rodriguez Granillo, G.A.; Deviggiano, A.; Campisi, R.; Munain, M. López de; Vallejos, J.; Carrascosa, P.M.

    2015-01-01

    Objectives. We sought to explore the feasibility and diagnostic performance of dual-energy computed tomography (DECT) for the evaluation of myocardial perfusion in patients with intermediate to high likelihood of coronary artery disease (CAD), and to assess the impact of beam hardening artifacts (HAE). Methods. The present prospective study involved patients with known or suspected CAD referred for myocardial perfusion imaging by single-photon emission computed tomography (SPECT). Twenty patients were included in the study protocol, and scanned using DECT imaging (n = 20). The same pharmacological stress was used for DECT and SPECT scans. Results. A total of 680 left ventricular segments were evaluated by DECT and SPECT. The contrast to noise ratio was 8.8±2.9. The diagnostic performance of DECT was very good in identifying perfusion defects [area under ROC curve (AUC) of DECT 0.90 (0.86-0.94)] compared with SPECT, and remained unaffected when including only segments affected by beam hardening artifacts (BHA) [AUC= DECT 0.90 (0.84-0.96)]. Conclusions. In this pilot investigation, myocardial perfusion assessment by DECT imaging in patients with intermediate to high likelihood of CAD was feasible and remained unaffected by the presence of BHA. (authors) [es

  12. A Novel Imaging Technique (X-Map) to Identify Acute Ischemic Lesions Using Noncontrast Dual-Energy Computed Tomography.

    Science.gov (United States)

    Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi

    2017-01-01

    We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The impact of dual-source parallel radiofrequency transmission with patient-adaptive shimming on the cardiac magnetic resonance in children at 3.0 T.

    Science.gov (United States)

    Wang, Haipeng; Qiu, Liyun; Wang, Guangbin; Gao, Fei; Jia, Haipeng; Zhao, Junyu; Chen, Weibo; Wang, Cuiyan; Zhao, Bin

    2017-06-01

    The cardiac magnetic resonance (CMR) of children at 3.0 T presents a unique set of technical challenges because of their small cardiac anatomical structures, fast heart rates, and the limited ability to keep motionless and hold breathe, which could cause problems associated with field inhomogeneity and degrade the image quality. The aim of our study was to evaluate the effect of dual-source parallel radiofrequency (RF) transmission on the B1 homogeneity and image quality in children with CMR at 3.0 T. The study was approved by the institutional ethics committee and written informed consent was obtained. A total of 30 free-breathing children and 30 breath-hold children performed CMR examinations with dual-source and single-source RF transmission. The B1 homogeneity, contrast ratio (CR) of cine images, and off-resonance artifacts in cine images between dual-source and single-source RF transmission were assessed in free-breathing and breath-hold groups, respectively. In both free-breathing and breath-hold groups, higher mean percentage of flip angle (free-breathing group: 104.2 ± 4.6 vs 95.5 ± 6.3, P 3.0 T. This technology could be taken into account in CMR for children with cardiac diseases.

  14. Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method.

    Science.gov (United States)

    Zhu, S; Ramaswamy, H S; Marcotte, M; Chen, C; Shao, Y; Le Bail, A

    2007-03-01

    Thermal properties of food systems at high pressure (HP) are important in the design and operation of HP processing equipment. Available techniques for thermal property evaluation under HP conditions are still very limited. In this study, a dual-needle line-heat-source (DNL) device was installed in an HP vessel to evaluate thermal conductivity (k), diffusivity (alpha), and volumetric heat capacity (C(pV)) of foods at high pressure. The DNL probe was calibrated using glycerin (0.1 MPa) and 2% (w/w) agar gel (0.1 to 350 MPa) at 5 and 25 degrees C. Calibration results showed a good correlation with the reference data of pure water: R(2)= 0.966 for thermal conductivity and R(2)= 0.837 for diffusivity, and a small standard deviation of relative error (3.18%) for the volumetric heat capacity. Fresh potato and cheddar cheese were used as test samples at 5 degrees C at selected pressure levels (0.1 to 350 MPa). The potato samples gave thermal properties very close to those of pure water, but much higher than those of the cheese. The k and alpha values of both potato and cheese increased with pressure and a 2nd-order polynomial well fitted their pressure dependency. The volumetric heat capacity data did not show a clear pressure-dependency trend. The experimental system worked well for the evaluation of thermal properties at pressures up to 350 MPa.

  15. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Nattress, J.; Jovanovic, I., E-mail: ijov@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the {sup 11}B(d,n γ){sup 12}C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from {sup 238}U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  16. Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Ronald; Dijkshoorn, Marcel L.; Straten, Marcel van [Erasmus MC, Department of Radiology and Nuclear Medicine, P.O. Box 2240, Rotterdam (Netherlands)

    2017-09-15

    The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. (orig.)

  17. Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner

    International Nuclear Information System (INIS)

    Booij, Ronald; Dijkshoorn, Marcel L.; Straten, Marcel van

    2017-01-01

    The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. (orig.)

  18. Influence of energy density of different light sources on Knoop hardness of a dual-cured resin cement.

    Science.gov (United States)

    Piva, Evandro; Correr-Sobrinho, Lourenço; Sinhoreti, Mario Alexandre Coelho; Consani, Simonides; Demarco, Flávio Fernando; Powers, John Michael

    2008-01-01

    The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs) were tested: tungsten halogen light (HAL), light-emitting diode (LED) and xenon plasma-arc (PAC) lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce). Three energy doses were used by modifying the irradiance (I) of each LCU and the irradiation time (T): 24 Jcm(-2) (I/2x2T), 24 Jcm(-2) (IxT) and 48 Jcm(-2) (Ix2T). Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus). Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10). Knoop hardness number (KHN) means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (alpha=5%). Application of 48 J.cm(-2) energy dose through the ceramic using LED (50.5+/-2.8) and HAL (50.9+/-3.7) produced significantly higher KHN means (p<0.05) than the control (44.7+/-3.8). LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  19. Review of the reliability of Bruce 'B' RRS dual computer system

    International Nuclear Information System (INIS)

    Arsenault, J.E.; Manship, R.A.; Levan, D.G.

    1995-07-01

    The review presents an analysis of the Bruce 'B' Reactor Regulating System (RRS) Digital Control Computer (DCC) system, based on system documentation, significant event reports (SERs), question sets, and a site visit. The intent is to evaluate the reliability of the RRS DCC and to identify the possible scenarios that could lead to a serious process failure. The evaluation is based on three relatively independent analyses, which are integrated and presented in the form of Conclusions and Recommendations

  20. Piezo-phototronic Boolean logic and computation using photon and strain dual-gated nanowire transistors.

    Science.gov (United States)

    Yu, Ruomeng; Wu, Wenzhuo; Pan, Caofeng; Wang, Zhaona; Ding, Yong; Wang, Zhong Lin

    2015-02-04

    Using polarization charges created at the metal-cadmium sulfide interface under strain to gate/modulate electrical transport and optoelectronic processes of charge carriers, the piezo-phototronic effect is applied to process mechanical and optical stimuli into electronic controlling signals. The cascade nanowire networks are demonstrated for achieving logic gates, binary computations, and gated D latches to store information carried by these stimuli. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A dual-energy medical instrument for measurement of x-ray source voltage and dose rate

    Science.gov (United States)

    Ryzhikov, V. D.; Naydenov, S. V.; Volkov, V. G.; Opolonin, O. D.; Makhota, S.; Pochet, T.; Smith, C. F.

    2016-03-01

    An original dual-energy detector and medical instrument have been developed to measure the output voltages and dose rates of X-ray sources. Theoretical and experimental studies were carried out to characterize the parameters of a new scintillator-photodiode sandwich-detector based on specially-prepared zinc selenide crystals in which the low-energy detector (LED) works both as the detector of the low-energy radiation and as an absorption filter allowing the highenergy fraction of the radiation to pass through to the high-energy detector (HED). The use of the LED as a low-energy filter in combination with a separate HED opens broad possibilities for such sandwich structures. In particular, it becomes possible to analyze and process the sum, difference and ratio of signals coming from these detectors, ensuring a broad (up to 106) measurement range of X-ray intensity from the source and a leveling of the energy dependence. We have chosen an optimum design of the detector and the geometry of the component LED and HED parts that allow energy-dependence leveling to within specified limits. The deviation in energy dependence of the detector does not exceed about 5% in the energy range from 30 to 120 keV. The developed detector and instrument allow contactless measurement of the anode voltage of an X-ray emitter from 40 to 140 kV with an error no greater than 3%. The dose rate measurement range is from 1 to 200 R/min. An original medical instrument has passed clinical testing and was recommended for use in medical institutions for X-ray diagnostics.

  2. Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience.

    Science.gov (United States)

    Jogiya, Roy; Schuster, Andreas; Zaman, Arshad; Motwani, Manish; Kouwenhoven, Marc; Nagel, Eike; Kozerke, Sebastian; Plein, Sven

    2014-11-28

    The purpose of this study was to establish the feasibility of three-dimensional (3D) balanced steady-state-free-precession (bSSFP) myocardial perfusion cardiovascular magnetic resonance (CMR) at 3T using local RF shimming with dual-source RF transmission, and to compare it with spoiled gradient echo (TGRE) acquisition. Dynamic contrast-enhanced 3D bSSFP perfusion imaging was performed on a 3T MRI scanner equipped with dual-source RF transmission technology. Images were reconstructed using k-space and time broad-use linear acquisition speed-up technique (k-t BLAST) and compartment based principle component analysis (k-t PCA). In phantoms and volunteers, local RF shimming with dual source RF transmission significantly improved B1 field homogeneity compared with single source transmission (P=0.01). 3D bSSFP showed improved signal-to-noise, contrast-to-noise and signal homogeneity compared with 3D TGRE (29.8 vs 26.9, P=0.045; 23.2 vs 21.6, P=0.049; 14.9% vs 12.4%, p=0.002, respectively). Image quality was similar between bSSFP and TGRE but there were more dark rim artefacts with bSSFP. k-t PCA reconstruction reduced artefacts for both sequences compared with k-t BLAST. In a subset of five patients, both methods correctly identified those with coronary artery disease. Three-dimensional bSSFP myocardial perfusion CMR using local RF shimming with dual source parallel RF transmission at 3T is feasible and improves signal characteristics compared with TGRE. Image artefact remains an important limitation of bSSFP imaging at 3T but can be reduced with k-t PCA.

  3. Novel technique for addressing streak artifact in gated dual-source MDCT angiography utilizing ECG-editing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Laura T.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC (United States)

    2008-11-15

    Streak artifact is an important source of image degradation in computed tomographic imaging. In coronary MDCT angiography, streak artifact from pacemaker leads in the SVC can render segments of the right coronary artery uninterpretable. With current technology in clinical practice, there is no effective way to eliminate streak artifact in coronary MDCT angiography entirely. We propose a technique to minimize the impact of streak artifact in retrospectively gated coronary MDCT angiography by utilizing small shifts in the reconstruction window. In our experience, previously degraded portions of the coronary vasculature were able to be well evaluated using this technique. (orig.)

  4. Sources and Nature of Secondary School Teachers' Education in Computer-Related Ergonomics

    Science.gov (United States)

    Dockrell, Sara; Fallon, Enda; Kelly, Martina; Galvin, Rose

    2009-01-01

    Teachers' knowledge of computer-related ergonomics in education will have an effect on the learning process and the work practices of their students. However little is known about teacher education in this area. The study aimed to investigate the sources and nature of secondary school teachers' education about computer-related ergonomics. It also…

  5. Volume-based quantification using dual-energy computed tomography in the differentiation of thymic epithelial tumours: an initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Suyon; Hur, Jin; Im, Dong Jin; Suh, Young Joo; Hong, Yoo Jin; Lee, Hye-Jeong; Kim, Young Jin; Choi, Byoung Wook [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Seoul (Korea, Republic of); Han, Kyunghwa [Yonsei University College of Medicine, Yonsei Biomedical Research Institute, Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Seoul (Korea, Republic of); Kim, Dae Joon; Lee, Chang Young [Yonsei University College of Medicine, Department of Thoracic and Cardiovascular Surgery, Seoul (Korea, Republic of); Shin, Ha Young [Yonsei University College of Medicine, Department of Neurology, Seoul (Korea, Republic of)

    2017-05-15

    To investigate the diagnostic value of dual-energy computed tomography (DECT) in differentiating between low- and high-risk thymomas and thymic carcinomas. Our institutional review board approved this study, and patients provided informed consent. We prospectively enrolled 37 patients (20 males, mean age: 55.6 years) with thymic epithelial tumour. All patients underwent DECT. For quantitative analysis, two reviewers measured the following tumour parameters: CT attenuation value in contrast Hounsfield units (CHU), iodine-related HU and iodine concentration (mg/ml). Pathological results confirmed the final diagnosis. Of the 37 thymic tumours, 23 (62.2 %) were low-risk thymomas, five (13.5 %) were high-risk thymomas and nine (24.3 %) were thymic carcinomas. According to quantitative analysis, iodine-related HU and iodine concentration were significantly different among low-risk thymomas, high-risk thymomas and thymic carcinomas (median: 29.78 HU vs. 14.55 HU vs. 19.95 HU, p = 0.001 and 1.92 mg/ml vs. 0.99 mg/ml vs. 1.18 mg/ml, p < 0.001, respectively). DECT using a quantitative analytical method based on iodine concentration measurement can be used to differentiate among thymic epithelial tumours using single-phase scanning. (orig.)

  6. Preclinical validation of automated dual-energy X-ray absorptiometry and computed tomography-based body composition measurements

    International Nuclear Information System (INIS)

    DEVRIESE, Joke; Pottel, Hans; BEELS, Laurence; VAN DE WIELE, Christophe; MAES, Alex; GHEYSENS, Olivier

    2016-01-01

    The aim of this study was to determine and validate a set of Hounsfield unit (HU) ranges to segment computed tomography (CT) images into tissue types and to test the validity of dual-energy X-ray absorptiometry (DXA) tissue segmentation on pure, unmixed porcine tissues. This preclinical prospective study was approved by the local ethical committee. Different quantities of porcine bone tissue (BT), lean tissue (LT) and adipose tissue (AT) were scanned using DXA and CT. Tissue type segmentation in DXA was performed via the standard clinical protocol and in CT through different sets of HU ranges. Percent coefficients of variation (%CV) were used to assess precision while % differences of observed masses were tested against zero using the Wilcoxon signed-rank Test. Total mass DXA measurements differ little but significantly (P=0.016) from true mass, while total mass CT measurements based on literature values show non-significant (P=0.69) differences of 1.7% and 2.0%. BT mass estimates with DXA differed more from true mass (median -78.2 to -75.8%) than other tissue types (median -11.3 to -8.1%). Tissue mass estimates with CT and literature HU ranges showed small differences from true mass for every tissue type (median -10.4 to 8.8%). The most suited method for automated tissue segmentation is CT and can become a valuable tool in quantitative nuclear medicine.

  7. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    Science.gov (United States)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three

  8. Detection of Airway Anomalies in?Pediatric?Patients with Cardiovascular Anomalies with Low Dose Prospective ECG-Gated Dual-Source CT

    OpenAIRE

    Jiao, Hui; Xu, Zhuodong; Wu, Lebin; Cheng, Zhaoping; Ji, Xiaopeng; Zhong, Hai; Meng, Chen

    2013-01-01

    OBJECTIVES: To assess the feasibility of low-dose prospective ECG-gated dual-source CT (DSCT) in detecting airway anomalies in pediatric patients with cardiovascular anomalies compared with flexible tracheobronchoscopy (FTB). METHODS: 33 pediatrics with respiratory symptoms who had been revealed cardiovascular anomalies by transthoracic echocardiography underwent FTB and contrast material-enhanced prospective ECG-triggering CT were enrolled. The study was approved by our institution review bo...

  9. Potential of gadolinium as contrast material in second generation dual energy computed tomography - An ex vivo phantom study.

    Science.gov (United States)

    Bongers, Malte N; Schabel, Christoph; Krauss, Bernhard; Claussen, Claus D; Nikolaou, Konstantin; Thomas, Christoph

    To evaluate the potential of gadolinium (Gd) as contrast material (CM) in second generation dual energy computed tomography (DECT). In a phantom model, DECT post-processing was used to increase Gd attenuation using advanced monoenergetic extrapolation (MEI), to create virtual non-contrast images (Gd-VNC) and Gd maps and to quantify Gd content. Dilutions of Gd and iodinated CM (7-296 HU) were filled in syringes, placed in an attenuation phantom and scanned with standard DECT protocols (80 &100/Sn140 kV). MEI (40-190 keV) and VNC images as well as Gd maps were computed. The amount of Gd was quantified and the accuracy was compared to iodine images. Linear regression models were calculated to evaluate Gd attenuation of equivolume CM doses and clinical MRI doses. Applying monoenergetic reconstructions and using Gd as contrast agent (Gd MEI 40 keV) doubled Hounsfield-Units (HU) and 90% of the SNR (averaged: 225 HU, SNR3.1) are achievable, as compared to iodinated CM at 120 kV (averaged:110 HU, SNR3.5), at Gd doses of 1.0mmol/kg BW. The accuracies of Gd-VNC (deviation, 6±12 HU) images and Gd quantification (measurement error, 17%) were not significantly different to those of iodine enhanced images (VNC:deviation, 2±11 HU; measurement error,14%). Using monoenergetic extrapolation at 40keV, it is possible to increase Gd-CM attenuation significantly. Thus, equivalent HU and half the SNR in comparison to a standard dose of ICM at 120kV can be expected at a Gd-CM dose of 0.5mmol/kg BW. Post-processing features of iodine based DECT like monoenergetic or VNC images, iodine maps or quantification of CM are feasible with the use of Gd-CM. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Prospectively ECG-triggered high-pitch coronary angiography with third-generation dual-source CT at 70 kVp tube voltage: feasibility, image quality, radiation dose, and effect of iterative reconstruction.

    Science.gov (United States)

    Hell, Michaela M; Bittner, Daniel; Schuhbaeck, Annika; Muschiol, Gerd; Brand, Michael; Lell, Michael; Uder, Michael; Achenbach, Stephan; Marwan, Mohamed

    2014-01-01

    Low tube voltage reduces radiation exposure in coronary CT angiography (CTA). Using 70 kVp tube potential has so far not been possible because CT systems were unable to provide sufficiently high tube current with low voltage. We evaluated feasibility, image quality (IQ), and radiation dose of coronary CTA using a third-generation dual-source CT system capable of producing 450 mAs tube current at 70 kVp tube voltage. Coronary CTA was performed in 26 consecutive patients with suspected coronary artery disease, selected for body weight Image noise was lower in IR vs FBP (60 ± 10 HU vs 74 ± 8 HU; P < .001). In patients <100 kg and with a regular heart rate <60 beats/min, third-generation dual-source CT using high-pitch spiral acquisition and 70 kVp tube voltage is feasible and provides both robust IQ and very low radiation exposure. Copyright © 2014 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  11. Effect of Heart Rate and Coronary Calcification on the Diagnostic Accuracy of the Dual-Source CT Coronary Angiography in Patients with Suspected Coronary Artery Disease

    International Nuclear Information System (INIS)

    Meng, Lingdong; Cui, Lianqun; Cheng, Yuntao; Wu, Xiaoyan; Tang, Yuansheng; Wang, Yong; Xu, Fayun

    2009-01-01

    To evaluate the diagnostic accuracy of a dual-source computed tomography (DSCT) coronary angiography, with a particular focus on the effect of heart rate and calcifications. One hundred and nine patients with suspected coronary disease were divided into 2 groups according to a mean heart rate ( 400). Next, the effect of heart rate and calcification on the accuracy of coronary artery stenosis detection was analyzed by using an invasive coronary angiography as a reference standard. Coronary segments of less than 1.5 mm in diameter in an American Heart Association (AHA) 15-segment model were independently assessed. The mean heart rate during the scan was 71.8 bpm, whereas the mean Agatston score was 226.5. Of the 1,588 segments examined, 1,533 (97%) were assessable. A total of 17 patients had calcium scores above 400 Agatston U, whereas 50 had heart rates ≥ 70 bpm. Overall the sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) for significant stenoses were: 95%, 91%, 65%, and 99% (by segment), respectively and 97%, 90%, 81%, and 91% (by artery), respectively (n = 475). Heart rate showed no significant impact on lesion detection; however, vessel calcification did show a significant impact on accuracy of assessment for coronary segments. The specificity, PPV and accuracy were 96%, 80%, and 96% (by segment), respectively for an Agatston score less than 100% and 99%, 96% and 98% (by artery). For an Agatston score of greater to or equal to 400 the specificity, PPV and accuracy were reduced to 79%, 55%, and 83% (by segment), respectively and to 79%, 69%, and 85% (by artery), respectively. The DSCT provides a high rate of accuracy for the detection of significant coronary artery disease, even in patients with high heart rates and evidence of coronary calcification. However, patients with severe coronary calcification (> 400 U) remain a challenge to diagnose

  12. Diagnostic Accuracy of Dual-Source Computerized Tomography Coronary Angiography in Symptomatic Patients Presenting to a Referral Cardiovascular Center During Daily Clinical Practice

    International Nuclear Information System (INIS)

    Mahdavi, Arash; Mohammadzadeh, Ali; Joodi, Golsa; Tabatabaei, Mohammad Reza; Sheikholeslami, Farhad; Motevalli, Marzieh

    2016-01-01

    There are numerous studies that address the diagnostic value of dual-source computed tomography (DSCT) as an alternative to conventional coronary angiography (CCA). However, the benefit of application of DSCT in a real world clinical setting should be evaluated. To determine the diagnostic accuracy of DSCT technique compared with CCA as the gold standard method in detection of coronary artery stenosis among symptomatic patients who are presented to a referral cardiovascular center during daily clinical practice. Evaluating the medical records of a tertiary care referral cardiovascular center, 47 patients who had undergone DSCT and CCA, and also met the inclusion and exclusion criteria of the study were selected. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and likelihood ratios (LRs) of the DSCT imaging technique were calculated. In total, 97.8% of the segments (628/642) could be visualized with diagnostic image quality via DSCT coronary angiography. The mean heart rate during DSCT was 69.2 ± 12.2 bpm (range: 39 - 83 bpm), and the mean Agatston score was 507.7 ± 590.5 (range: 0 - 2328). Per segment analysis of the findings revealed that the sensitivity, specificity, PPV, NPV, positive LR (PLR) and negative LR (NLR) of DSCT technique for evaluation of patients with coronary artery disease were 93.7%, 96.8%, 92.7%, 97.2%, 29.4, and 0.066, respectively. Also per vessel, analysis of the findings showed a sensitivity of 97.1%, a specificity of 94.0%, PPV of 95.3%, NPV of 96.3%, PLR of 16.1, and NLR of 0.030. Our results indicate that DSCT coronary angiography provides high diagnostic accuracy for the evaluation of CAD patients during daily routine practice of a referral cardiovascular setting

  13. Diagnostic Value of 64-Slice Dual-Source CT Coronary Angiography in Patients with Atrial Fibrillation: Comparison with Invasive Coronary Angiography

    International Nuclear Information System (INIS)

    Zhang, Jian Jun; Liu, Tie; Feng, Yue; Wu, Wei Feng; Mou, Cai Yun; Zhai, Li Hao

    2011-01-01

    We wanted to evaluate the image quality and diagnostic value of 64-slice dual-source computed tomography (DSCT) coronary angiography in patients with atrial fibrillation (Afib). The coronary arteries of 22 Afib patients seen on DSCT were classified into 15 segments and the imaging quality (excellent, good, moderate and poor) and significant stenoses (≥ 50%) were evaluated by two radiologists who were blinded to the conventional coronary angiography (CAG) results. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for detecting important coronary artery stenosis were calculated. McNemar test was used to determine any significant difference between DSCT and CAG, and Cohen's Kappa statistics were calculated for the intermodality and interobserver agreement. The mean heart rate was 89 ± 8.3 bpm (range: 80-118 bpm). A range from 250 msec to 300 msec within the RR interval was the optimal reconstruction interval for the patients with Afib. The respective overall sensitivity, specificity, PPV and NPV values were 74%, 97%, 81% and 96% for reader 1 and 72%, 98%, 85% and 96% for reader 2. No significant difference between DSCT and CAG was found for detecting a significant stenosis (reader 1, p = 1.0; reader 2, p = 0.727). Cohen's Kappa statistics demonstrated good intermodality and interobserver agreement. 64-slice DSCT coronary angiography provides good image quality in patients with atrial fibrillation without the need for controlling the heart rate. DSCT can be used for ruling out significant stenosis in patients with atrial fibrillation with its high NPV for detecting in important stenosis.

  14. Diagnostic Value of 64-Slice Dual-Source CT Coronary Angiography in Patients with Atrial Fibrillation: Comparison with Invasive Coronary Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian Jun; Liu, Tie; Feng, Yue; Wu, Wei Feng; Mou, Cai Yun; Zhai, Li Hao [Zhejiang Hospital, Hangzhou (China)

    2011-08-15

    We wanted to evaluate the image quality and diagnostic value of 64-slice dual-source computed tomography (DSCT) coronary angiography in patients with atrial fibrillation (Afib). The coronary arteries of 22 Afib patients seen on DSCT were classified into 15 segments and the imaging quality (excellent, good, moderate and poor) and significant stenoses ({>=} 50%) were evaluated by two radiologists who were blinded to the conventional coronary angiography (CAG) results. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for detecting important coronary artery stenosis were calculated. McNemar test was used to determine any significant difference between DSCT and CAG, and Cohen's Kappa statistics were calculated for the intermodality and interobserver agreement. The mean heart rate was 89 {+-} 8.3 bpm (range: 80-118 bpm). A range from 250 msec to 300 msec within the RR interval was the optimal reconstruction interval for the patients with Afib. The respective overall sensitivity, specificity, PPV and NPV values were 74%, 97%, 81% and 96% for reader 1 and 72%, 98%, 85% and 96% for reader 2. No significant difference between DSCT and CAG was found for detecting a significant stenosis (reader 1, p = 1.0; reader 2, p = 0.727). Cohen's Kappa statistics demonstrated good intermodality and interobserver agreement. 64-slice DSCT coronary angiography provides good image quality in patients with atrial fibrillation without the need for controlling the heart rate. DSCT can be used for ruling out significant stenosis in patients with atrial fibrillation with its high NPV for detecting in important stenosis.

  15. Diagnostic accuracy of dual-source CT coronary angiography in a population unselected for degree of coronary artery calcification and without heart rate modification

    International Nuclear Information System (INIS)

    Lin, C.-J.; Hsu, J.-C.; Lai, Y.-J.; Wang, K.-L.; Lee, J.-Y.; Li, A.-H.; Chu, S.-H.

    2010-01-01

    Aim: To assess the ability of coronary angiography performed using dual-source computed tomography (DSCT) to evaluate coronary artery disease (CAD) in a population with unselected heart rates and extensive coronary calcification. Materials and methods: Forty-four patients at intermediate to high risk for CAD underwent both DSCT coronary angiography and invasive coronary angiography (ICA) within 30 days. No beta blockers were administered prior to imaging. Image quality and quantitatively stenosis of all coronary segments with a diameter ≥1.5 mm were accessed. Patients were stratified according to mean heart rate (<70 versus ≥70 bpm) and heart rate variability (<10 versus ≥10 bpm). DSCT detection of coronary stenosis by segment, vessel, and patient characteristics were compared to the reference standard of ICA. Results: Diagnostic accuracy for all patients was high regarding sensitivity (97%), positive predictive value (PPV, 84.2%), and negative predictive value (NPV, 83.3%) but low regarding specificity (45.5%) with a moderate interobserver agreement (Kappa = 0.50). The accuracy for vessel-based diagnosis was high regarding sensitivity (96.6%), specificity (80.8%), PPV (80.3%), and NPV (96.7%). The segment-based diagnostic results revealed a moderate interobserver agreement for image quality and sensitivity, specificity, PPV and NPV for all segments of 66.9, 97.8, 90.8, and 89.9%, respectively. Conclusion: DSCT coronary angiography has high diagnostic accuracy in assessing CAD among patients at intermediate to high risk without using heart rate-modulating premedication. DSCT is not superior to ICA for diagnosis of calcified segments.

  16. Prospective versus retrospective ECG gating for dual source CT of the coronary stent: Comparison of image quality, accuracy, and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lei, E-mail: zhaolei219@sohu.com [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China); Zhang Zhaoqi; Fan Zhanming; Yang Lin; Du Jing [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China)

    2011-03-15

    Objective: To compare image quality, diagnostic accuracy and radiation dose of prospective and retrospective electrocardiogram (ECG) gated dual source computed tomography (DSCT) for the evaluation of the coronary stent, using conventional coronary angiography (CA) as a standard reference. Design, setting and patients: Sixty patients (heart rates {<=}70 bpm) with previous stent implantation who were scheduled for CA were divided in two groups, receiving either prospective or retrospective ECG gated DSCT separately. Two reviewers scored coronary stent image quality and evaluated stent lumen. Results: There was no significant difference in image quality between the two groups. In the prospective group, there were 86.4% (51/59) stents with interpretable images, in the retrospective group, there were 87.5% (49/56) stents with interpretable images. Image quality was not influenced by age, body mass index or heart rate in either group, but heart rate variability had a weak impact on the image quality of the prospective group. Image noise was higher in the prospective group, but this difference reached statistical significance only by using a smooth kernel reconstruction. Per-stent based sensitivity, specificity, and positive and negative predictive value were 100%, 84.1%, 68.2%, and 100%, respectively, in the prospective CT angiography group and 94.4%, 86.8%, 77.3%, and 97.1%, respectively, in the retrospective CT angiography group. There was a significant difference in the effective radiation dose between the two groups, mean effective dose in the prospective and retrospective group was 2.2 {+-} 0.5 mSv (1.5-3.2 mSv) and 14.6 {+-} 3.3 mSv (10.0-20.4 mSv) (p < .001) respectively. Conclusions: Compared with retrospective CT angiography, prospective CT angiography has a similar performance in assessing coronary stent patency, but a lower effective dose in selected patients with regular heart rates {<=}70 bpm.

  17. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  18. Single source dual energy CT: What is the optimal monochromatic energy level for the analysis of the lung parenchyma?

    Energy Technology Data Exchange (ETDEWEB)

    Ohana, M., E-mail: mickael.ohana@gmail.com [iCube Laboratory, Université de Strasbourg/CNRS, UMR 7357, 67400 Illkirch (France); Service de Radiologie B, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg (France); Labani, A., E-mail: aissam.labani@chru-strasbourg.fr [Service de Radiologie B, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg (France); Severac, F., E-mail: francois.severac@chru-strasbourg.fr [Département de Biostatistiques et d’Informatique Médicale, Hôpital Civil – Hôpitaux Universitaires de Strasbourg,1 place de l’hôpital, 67000 Strasbourg (France); Jeung, M.Y., E-mail: Mi-Young.Jeung@chru-strasbourg.fr [Service de Radiologie B, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg (France); Gaertner, S., E-mail: Sebastien.Gaertner@chru-strasbourg.fr [Service de Médecine Vasculaire, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg,1 place de l’hôpital, 67000 Strasbourg (France); and others

    2017-03-15

    Highlights: • Lung parenchyma aspect varies with the monochromatic energy level in spectral CT. • Optimal diagnostic and image quality is obtained at 50–55 keV. • Mediastinum and parenchyma could be read on the same monochromatic energy level. - Abstract: Objective: To determine the optimal monochromatic energy level for lung parenchyma analysis in spectral CT. Methods: All 50 examinations (58% men, 64.8 ± 16yo) from an IRB-approved prospective study on single-source dual energy chest CT were retrospectively included and analyzed. Monochromatic images in lung window reconstructed every 5 keV from 40 to 140 keV were independently assessed by two chest radiologists. Based on the overall image quality and the depiction/conspicuity of parenchymal lesions, each reader had to designate for every patient the keV level providing the best diagnostic and image quality. Results: 72% of the examinations exhibited parenchymal lesions. Reader 1 picked the 55 keV monochromatic reconstruction in 52% of cases, 50 in 30% and 60 in 18%. Reader 2 chose 50 keV in 52% cases, 55 in 40%, 60 in 6% and 40 in 2%. The 50 and 55 keV levels were chosen by at least one reader in 64% and 76% of all patients, respectively. Merging 50 and 55 keV into one category results in an optimal setting selected by reader 1 in 82% of patients and by reader 2 in 92%, with a 74% concomitant agreement. Conclusion: The best image quality for lung parenchyma in spectral CT is obtained with the 50–55 keV monochromatic reconstructions.

  19. Dual-Source CT Angiography of Peripheral Arterial Stents: In Vitro Evaluation of 22 Different Stent Types

    Directory of Open Access Journals (Sweden)

    Michael Köhler

    2011-01-01

    Full Text Available Purpose. To test different peripheral arterial stents using four image reconstruction approaches with respect to lumen visualization, lumen attenuation and image noise in dual-source multidetector row CT (DSCT in vitro. Methods and Materials. 22 stents (nitinol, steel, cobalt-alloy, tantalum, platinum alloy were examined in a vessel phantom. All stents were imaged in axial orientation with standard parameters. Image reconstructions were obtained with four different convolution kernels. To evaluate visualization characteristics of the stent, the lumen diameter, intraluminal density and noise were measured. Results. The mean percentage of the visible stent lumen diameter from the nominal stent diameter was 74.5% ± 5.7 for the medium-sharp kernel, 72.8% ± 6.4 for the medium, 70.8% ± 6.4 for the medium-smooth and 67.6% ± 6.6 for the smooth kernel. Mean values of lumen attenuation were 299.7HU ± 127 (medium-sharp, 273.9HU ± 68 (medium, 270.7HU ± 53 (medium-smooth and 265.8HU ± 43. Mean image noise was: 54.6 ± 6.3, 20.5 ± 1.7, 16.3 ± 1.7, 14.0 ± 2 respectively. Conclusion. Visible stent lumen diameter varies depending on stent type and scan parameters. Lumen diameter visibility increases with the sharpness of the reconstruction kernel. Smoother kernels provide more realistic density measurements inside the stent lumen and less image noise.

  20. Quantification of coronary artery stenoses. Comparison of 64-slice and dual source CT angiography with cardiac catheterization

    International Nuclear Information System (INIS)

    Busch, Stephanie; Nikolaou, K.; Johnson, T.; Rist, C.; Knez, A.; Reiser, M.; Becker, C.

    2007-01-01

    Until now stenoses of the coronary arteries have been evaluated visually with CT angiography. Therefore, the results were highly dependent on subjective factors inherent in the examiner. New software tools for semiquantitative analysis (CT-QCA, quantitative coronary assessment) might be adequate to improve the diagnostic accuracy und reproducibility. CTAs of 20 patients were analyzed. Ten patients each were evaluated using 64-slice CT (64SCT) and dual source CT (DSCT) (Somatom Sensation 64 and Somatom Definition, Siemens Medical Solutions, Forchheim), respectively. Two radiologists independently evaluated the data visually and with the help of a software tool (Syngo Circulation, Siemens Medical Solutions, Forchheim). The results of the quantitative assessment of the invasive heart catheterization served as the reference standard. Sensitivity and specificity as well as the correlation coefficient, the systematic error, and the interobserver agreement (kappa) were determined. In each of both patient groups 12 stenoses were detected. For the detection of stenoses >75%, sensitivity and specificity for the visual evaluation using the 64SCT were 100% and 90%, and with the CT-QCA both were 100%. For the DSCT sensitivity and specificity were 100% for both the visual and semiautomated evaluation. The Bland-Altman plot of the results of the 64SCT showed an overestimation of 3.3% (±62.7%/56.2%) compared to the heart catheterization. The results of the DSCT exhibited an overestimation of 6.2% (±33.1%/19.8%). The interobserver agreement of the CT-QCA and the visual evaluation showed a kappa value of 0.75 and for DSCT of 1.0. The results showed a good correlation of grading stenosis between the software-assisted evaluation and the results of the coronary catheter angiography. The promising results of the DSCT are due to a superior temporal resolution compared to the 64SCT. Confirmation of these data by trials in larger patient collectives is warranted. (orig.) [de

  1. Influence of energy density of different light sources on knoop hardness of a dual-cured resin cement

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs were tested: tungsten halogen light (HAL, light-emitting diode (LED and xenon plasma-arc (PAC lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce. Three energy doses were used by modifying the irradiance (I of each LCU and the irradiation time (T: 24 Jcm-2 (I/2x2T, 24 Jcm-2 (IxT and 48 Jcm-2 (Ix2T. Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus. Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10. Knoop hardness number (KHN means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (a=5%. Application of 48 J.cm-2 energy dose through the ceramic using LED (50.5±2.8 and HAL (50.9±3.7 produced significantly higher KHN means (p<0.05 than the control (44.7±3.8. LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  2. Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making

    Directory of Open Access Journals (Sweden)

    Bryan C. Daniels

    2017-06-01

    Full Text Available A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a “coding duality” in which there are accumulation and consensus formation processes distinguished by different timescales.

  3. Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making.

    Science.gov (United States)

    Daniels, Bryan C; Flack, Jessica C; Krakauer, David C

    2017-01-01

    A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a "coding duality" in which there are accumulation and consensus formation processes distinguished by different timescales.

  4. Coronary calcium screening with dual-source CT: reliability of ungated, high-pitch chest CT in comparison with dedicated calcium-scoring CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutt, Antoine; Faivre, Jean-Baptiste; Remy, Jacques; Remy-Jardin, Martine [CHRU et Universite de Lille, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); Duhamel, Alain; Deken, Valerie [CHRU et Universite de Lille, Department of Biostatistics (EA 2694), Lille (France); Molinari, Francesco [Centre Hospitalier General de Tourcoing, Department of Radiology, Tourcoing (France)

    2016-06-15

    To investigate the reliability of ungated, high-pitch dual-source CT for coronary artery calcium (CAC) screening. One hundred and eighty-five smokers underwent a dual-source CT examination with acquisition of two sets of images during the same session: (a) ungated, high-pitch and high-temporal resolution acquisition over the entire thorax (i.e., chest CT); (b) prospectively ECG-triggered acquisition over the cardiac cavities (i.e., cardiac CT). Sensitivity and specificity of chest CT for detecting positive CAC scores were 96.4 % and 100 %, respectively. There was excellent inter-technique agreement for determining the quantitative CAC score (ICC = 0.986). The mean difference between the two techniques was 11.27, representing 1.81 % of the average of the two techniques. The inter-technique agreement for categorizing patients into the four ranks of severity was excellent (weighted kappa = 0.95; 95 % CI 0.93-0.98). The inter-technique differences for quantitative CAC scores did not correlate with BMI (r = 0.05, p = 0.575) or heart rate (r = -0.06, p = 0.95); 87.2 % of them were explained by differences at the level of the right coronary artery (RCA: 0.8718; LAD: 0.1008; LCx: 0.0139; LM: 0.0136). Ungated, high-pitch dual-source CT is a reliable imaging mode for CAC screening in the conditions of routine chest CT examinations. (orig.)

  5. CHANDRA OBSERVATIONS OF A 1.9 kpc SEPARATION DOUBLE X-RAY SOURCE IN A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS GALAXY AT z = 0.16

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Pooley, David; Gerke, Brian F.; Madejski, Greg M.

    2011-01-01

    We report Chandra observations of a double X-ray source in the z = 0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual active galactic nucleus (AGN) candidate based on the double-peaked [O III] λ5007 emission lines, with a line-of-sight velocity separation of 350 km s -1 , in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two long-slit spectra of the galaxy at two different position angles, which reveal that the two Type 2 AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 h -1 70 kpc on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest that the galaxy most likely contains Compton-thick dual AGNs, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of concept for a new, systematic detection method that selects promising dual AGN candidates from ground-based spectroscopy that exhibits both velocity and spatial offsets in the AGN emission features.

  6. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  7. A shape and mesh adaptive computational methodology for gamma ray dose from volumetric sources

    International Nuclear Information System (INIS)

    Mirza, N.M.; Ali, B.; Mirza, S.M.; Tufail, M.; Ahmad, N.

    1991-01-01

    Indoor external exposure to the population is dominated by gamma rays emitted from the walls and the floor of a room. A shape and mesh size adaptive flux calculational approach has been developed for a typical wall source. Parametric studies of the effect of mesh size on flux calculations have been done. The optimum value of the mesh size is found to depend strongly on distance from the source, permissible limits on uncertainty in flux predictions and on computer Central Processing Unit time. To test the computations, a typical wall source was reduced to a point, a line and an infinite volume source having finite thickness, and the computed flux values were compared with values from corresponding analytical expressions for these sources. Results indicate that the errors under optimum conditions remain less than 6% for the fluxes calculated from this approach when compared with the analytical values for the point and the line source approximations. Also, when the wall is simulated as an infinite volume source having finite thickness, the errors in computed to analytical flux ratios remain large for smaller wall dimensions. However, the errors become less than 10% when the wall dimensions are greater than ten mean free paths for 3 MeV gamma rays. Also, specific dose rates from this methodology remain within the difference of 15% for the values obtained by Monte Carlo method. (author)

  8. Hepatic computed tomography perfusion. Comparison of maximum slope and dual-input single-compartment methods

    International Nuclear Information System (INIS)

    Kanda, Tomonori; Yoshikawa, Takeshi; Ohno, Yoshiharu; Kanata, Naoki; Koyama, Hisanobu; Nogami, Munenobu; Takenaka, Daisuke; Sugimura, Kazuro

    2010-01-01

    The aim of the study was to compare two analytical methods-maximum slope (MS) and the dualinput single-compartment model (CM)-in computed tomography (CT) measurements of hepatic perfusion and to assess the effects of extrahepatic systemic factors. A total of 109 patients underwent hepatic CT perfusion. The scans were conducted at the hepatic hilum 7-77 s after administration of contrast material. Hepatic arterial perfusion (HAP) and portal perfusion (HPP) (ml/min/100 ml) and the arterial perfusion fraction (APF, %) were calculated with the two methods, followed by correlation assessment. Partial correlation analysis was used to assess the effects on hepatic perfusion values by various factors, including age, sex, risk of cardiovascular disease, compensation for respiratory misregistration, arrival time of contrast material at the abdominal aorta, transit time from abdominal aorta to hepatic parenchyma, and liver dysfunction. The mean HAPs, HPPs, and APFs were, respectively, 31.4, 104.2, and 23.9 for MS and 27.1, 141.3, and 22.1 for CM. HAP and APF showed significant (P<0.0001) and moderate correlation (γ=0.417 and 0.548) and HPP showed poor correlation (γ=0.172) between the two methods. While MS showed weak correlations (γ=-0.39 to 0.34; P<0.001 to <0.02) between multiple extrahepatic factors and perfusion values, CM showed weak correlation only between the patients' sex and HAP (γ=0.31, P=0.001). Hepatic perfusion values estimated by the two methods are not interchangeable. CM is less susceptible to extrahepatic systemic factors. (author)

  9. SU-F-T-398: Improving Radiotherapy Treatment Planning Using Dual Energy Computed Tomography Based Tissue Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, N; Bekerat, H; Seuntjens, J; Forghani, R; DeBlois, F; Devic, S [McGill University, Montreal, QC (Canada)

    2016-06-15

    Purpose: Both kVp settings and geometric distribution of various materials lead to significant change of the HU values, showing the largest discrepancy for high-Z materials and for the lowest CT scanning kVp setting. On the other hand, the dose distributions around low-energy brachytherapy sources are highly dependent on the architecture and composition of tissue heterogeneities in and around the implant. Both measurements and Monte Carlo calculations show that improper tissue characterization may lead to calculated dose errors of 90% for low energy and around 10% for higher energy photons. We investigated the ability of dual-energy CT (DECT) to characterize more accurately tissue equivalent materials. Methods: We used the RMI-467 heterogeneity phantom scanned in DECT mode with 3 different set-ups: first, we placed high electron density (ED) plugs within the outer ring of the phantom; then we arranged high ED plugs within the inner ring; and finally ED plugs were randomly distributed. All three setups were scanned with the same DECT technique using a single-source DECT scanner with fast kVp switching (Discovery CT750HD; GE Healthcare). Images were transferred to a GE Advantage workstation for DECT analysis. Spectral Hounsfield unit curves (SHUACs) were then generated from 50 to 140-keV, in 10-keV increments, for each plug. Results: The dynamic range of Hounsfield units shrinks with increased photon energy as the attenuation coefficients decrease. Our results show that the spread of HUs for the three different geometrical setups is the smallest at 80 keV. Furthermore, among all the energies and all materials presented, the largest difference appears at high Z tissue equivalent plugs. Conclusion: Our results suggest that dose calculations at both megavoltage and low photon energies could benefit in the vicinity of bony structures if the 80 keV reconstructed monochromatic CT image is used with the DECT protocol utilized in this work.

  10. Investigations of incorporating source directivity into room acoustics computer models to improve auralizations

    Science.gov (United States)

    Vigeant, Michelle C.

    Room acoustics computer modeling and auralizations are useful tools when designing or modifying acoustically sensitive spaces. In this dissertation, the input parameter of source directivity has been studied in great detail to determine first its effect in room acoustics computer models and secondly how to better incorporate the directional source characteristics into these models to improve auralizations. To increase the accuracy of room acoustics computer models, the source directivity of real sources, such as musical instruments, must be included in the models. The traditional method for incorporating source directivity into room acoustics computer models involves inputting the measured static directivity data taken every 10° in a sphere-shaped pattern around the source. This data can be entered into the room acoustics software to create a directivity balloon, which is used in the ray tracing algorithm to simulate the room impulse response. The first study in this dissertation shows that using directional sources over an omni-directional source in room acoustics computer models produces significant differences both in terms of calculated room acoustics parameters and auralizations. The room acoustics computer model was also validated in terms of accurately incorporating the input source directivity. A recently proposed technique for creating auralizations using a multi-channel source representation has been investigated with numerous subjective studies, applied to both solo instruments and an orchestra. The method of multi-channel auralizations involves obtaining multi-channel anechoic recordings of short melodies from various instruments and creating individual channel auralizations. These auralizations are then combined to create a total multi-channel auralization. Through many subjective studies, this process was shown to be effective in terms of improving the realism and source width of the auralizations in a number of cases, and also modeling different

  11. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis

    International Nuclear Information System (INIS)

    Zheng, Xingju; Liu, Yuanyuan; Li, Mou; Wang, Qiyan; Song, Bin

    2016-01-01

    Objective: A meta-analysis was conducted to determine the accuracy of dual-energy computed tomography (DECT) for differentiating urinary uric acid and calcified calculi. Methods: The databases PubMed, EMBASE, Web of Science, and the Cochrane Library were searched up to May 2016 for relevant original studies. Data were extracted to calculate the pooled sensitivity, specificity, diagnostic odds ratio (OR), positive and negative likelihood ratios (PLR and NLR), and areas under summary receiver operating characteristic (AUROC) curves for analysis. Results: Nine studies (609 stones in 415 patients) were included. For differentiating uric acid (UA) and non-UA calculi with DECT, the analysis indicated: pooled weighted sensitivity, 0.955 (95% CI, 0.888–0.987); specificity, 0.985 (95% CI, 0.970–0.993); PLR, 0.084 (95% CI, 0.041–0.170); NLR 33.327 (95% CI, 18.516–59.985); and diagnostic OR 538.18 (95% CI, 195.50–1478.5). The AUROC value was 0.9901. For calcified stones, the analysis indicated: pooled weighted sensitivity, 0.994 (95% CI, 0.969–1); specificity, 0.973 (95% CI, 0.906–0.997); PLR, 11.200 (95% CI, 4.922–25.486); NLR 0.027 (95% CI, 0.010–0.072); and diagnostic OR 654.89 (95% CI, 151.31–2834.4). The AUROC value was 0.9915. Conclusion: This meta-analysis found that DECT is a highly accurate noninvasive method for characterizing urinary uric acid and calcified calculi.

  12. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Froelich, Jerry [Department of Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Arentsen, Luke [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Holtan, Shernan; Verneris, Michael R. [Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota (United States); Brown, Keenan [Mindways Software Inc, Austin, Texas (United States); Haga, Akihiro; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Holter Chakrabarty, Jennifer L. [College of Medicine, Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Giebel, Sebastian [Department of Bone Marrow Transplantation, Comprehensive Cancer Center M. Curie-Sklodowska Memorial Institute, Gliwice (Poland); Wong, Jeffrey [Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States); Dusenbery, Kathryn [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Storme, Guy [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States)

    2016-11-01

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.

  13. Myocardial iodine concentration measurement using dual-energy computed tomography for the diagnosis of cardiac amyloidosis. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Chevance, Virgile; Legou, Francois; Ridouani, Fourat [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Damy, Thibaud [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Hospitalier Henri Mondor-Albert Chenevier, Service de Cardiologie, Creteil (France); Universite Paris-Est-Creteil (UPEC), DHU (Departement Hospitalo-Universitaire), ATVB Ageing-Thorax-Vessels-Blood, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Universite Paris-Est-Creteil (UPEC), GRC Amyloid Research Institute and Reseau Amylose Mondor, Groupe Hospitalier Henri Mondor-Albert Chenevier, Creteil (France); Tacher, Vania; Kobeiter, Hicham [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Universite Paris-Est-Creteil (UPEC), DHU (Departement Hospitalo-Universitaire), ATVB Ageing-Thorax-Vessels-Blood, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Luciani, Alain; Rahmouni, Alain [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Universite Paris-Est-Creteil, (UPEC), DHU (Departement Hospitalo-Universitaire) VIC Virus-Immunity-Cancer, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Deux, Jean-Francois [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Universite Paris-Est-Creteil, (UPEC), DHU (Departement Hospitalo-Universitaire) ATVB Ageing-Thorax-Vessels-Blood, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Universite Paris-Est-Creteil (UPEC), GRC Amyloid Research Institute and Reseau Amylose Mondor, Groupe Hospitalier Henri Mondor-Albert Chenevier, Creteil (France)

    2018-02-15

    To measure myocardium iodine concentration (MIC) in patients with cardiac amyloidosis (CA) using dual-energy computed tomography (DECT). Twenty-two patients with CA, 13 with non-amyloid hypertrophic cardiomyopathies (CH) and 10 control patients were explored with pre-contrast, arterial and 5-minute DECT acquisition (Iomeprol; 1.5 mL/kg). Inter-ventricular septum (IVS) thickness, blood pool iodine concentration (BPIC), MIC (mg/mL), iodine ratio and extra-cellular volume (ECV) were calculated. IVS thickness was significantly (p < 0.001) higher in CA (17 ± 4 mm) and CH (15 ± 3 mm) patients than in control patients (10 ± 1 mm). CA patients exhibited significantly (p < 0.001) higher 5-minute MIC [2.6 (2.3-3.1) mg/mL], 5-minute iodine ratio (0.88 ± 0.12) and ECV (0.56 ± 0.07) than CH [1.7 (1.4-2.2) mg/mL, 0.57 ± 0.07 and 0.36 ± 0.05, respectively] and control patients [1.9 (1.7-2.4) mg/mL, 0.58 ± 0.07 and 0.35 ± 0.04, respectively]. CH and control patients exhibited similar values (p = 0.9). The area under the curve of 5-minute iodine ratio for the differential diagnosis of CA from CH patients was 0.99 (0.73-1.0; p = 0.001). With a threshold of 0.65, the sensitivity and specificity of 5-minute iodine ratio were 100% and 92%, respectively. Five-minute MIC and iodine ratio were increased in CA patients and exhibited best diagnosis performance to diagnose CA in comparison to other parameters. (orig.)

  14. A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames

    International Nuclear Information System (INIS)

    Uematsu, Minoru; Fukui, Toshiharu; Shioda, Akira; Tokumitsu, Hideyuki; Takai, Kenji; Kojima, Tadaharu; Asai, Yoshiko; Kusano, Shoichi

    1996-01-01

    Purpose: To perform stereotactic radiation therapy (SRT) without cranially fixated stereotactic frames, we developed a dual computed tomography (CT) linear accelerator (linac) treatment unit. Methods and Materials: This unit is composed of a linac, CT, and motorized table. The linac and CT are set up at opposite ends of the table, which is suitable for both machines. The gantry axis of the linac is coaxial with that of the CT scanner. Thus, the center of the target detected with the CT can be matched easily with the gantry axis of the linac by rotating the table. Positioning is confirmed with the CT for each treatment session. Positioning and treatment errors with this unit were examined by phantom studies. Between August and December 1994, 8 patients with 11 lesions of primary or metastatic brain tumors received SRT with this unit. All lesions were treated with 24 Gy in three fractions to 30 Gy in 10 fractions to the 80% isodose line, with or without conventional external beam radiation therapy. Results: Phantom studies revealed that treatment errors with this unit were within 1 mm after careful positioning. The position was easily maintained using two tiny metallic balls as vertical and horizontal marks. Motion of patients was negligible using a conventional heat-flexible head mold and dental impression. The overall time for a multiple noncoplanar arcs treatment for a single isocenter was less than 1 h on the initial treatment day and usually less than 20 min on subsequent days. Treatment was outpatient-based and well tolerated with no acute toxicities. Satisfactory responses have been documented. Conclusion: Using this treatment unit, multiple fractionated SRT is performed easily and precisely without cranially fixated stereotactic frames

  15. Myocardial iodine concentration measurement using dual-energy computed tomography for the diagnosis of cardiac amyloidosis. A pilot study

    International Nuclear Information System (INIS)

    Chevance, Virgile; Legou, Francois; Ridouani, Fourat; Damy, Thibaud; Tacher, Vania; Kobeiter, Hicham; Luciani, Alain; Rahmouni, Alain; Deux, Jean-Francois

    2018-01-01

    To measure myocardium iodine concentration (MIC) in patients with cardiac amyloidosis (CA) using dual-energy computed tomography (DECT). Twenty-two patients with CA, 13 with non-amyloid hypertrophic cardiomyopathies (CH) and 10 control patients were explored with pre-contrast, arterial and 5-minute DECT acquisition (Iomeprol; 1.5 mL/kg). Inter-ventricular septum (IVS) thickness, blood pool iodine concentration (BPIC), MIC (mg/mL), iodine ratio and extra-cellular volume (ECV) were calculated. IVS thickness was significantly (p < 0.001) higher in CA (17 ± 4 mm) and CH (15 ± 3 mm) patients than in control patients (10 ± 1 mm). CA patients exhibited significantly (p < 0.001) higher 5-minute MIC [2.6 (2.3-3.1) mg/mL], 5-minute iodine ratio (0.88 ± 0.12) and ECV (0.56 ± 0.07) than CH [1.7 (1.4-2.2) mg/mL, 0.57 ± 0.07 and 0.36 ± 0.05, respectively] and control patients [1.9 (1.7-2.4) mg/mL, 0.58 ± 0.07 and 0.35 ± 0.04, respectively]. CH and control patients exhibited similar values (p = 0.9). The area under the curve of 5-minute iodine ratio for the differential diagnosis of CA from CH patients was 0.99 (0.73-1.0; p = 0.001). With a threshold of 0.65, the sensitivity and specificity of 5-minute iodine ratio were 100% and 92%, respectively. Five-minute MIC and iodine ratio were increased in CA patients and exhibited best diagnosis performance to diagnose CA in comparison to other parameters. (orig.)

  16. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    International Nuclear Information System (INIS)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P 2 =0.53) and dextran accumulation (R 2 =0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment

  17. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xingju; Liu, Yuanyuan; Li, Mou; Wang, Qiyan; Song, Bin, E-mail: binsong65@yahoo.com

    2016-10-15

    Objective: A meta-analysis was conducted to determine the accuracy of dual-energy computed tomography (DECT) for differentiating urinary uric acid and calcified calculi. Methods: The databases PubMed, EMBASE, Web of Science, and the Cochrane Library were searched up to May 2016 for relevant original studies. Data were extracted to calculate the pooled sensitivity, specificity, diagnostic odds ratio (OR), positive and negative likelihood ratios (PLR and NLR), and areas under summary receiver operating characteristic (AUROC) curves for analysis. Results: Nine studies (609 stones in 415 patients) were included. For differentiating uric acid (UA) and non-UA calculi with DECT, the analysis indicated: pooled weighted sensitivity, 0.955 (95% CI, 0.888–0.987); specificity, 0.985 (95% CI, 0.970–0.993); PLR, 0.084 (95% CI, 0.041–0.170); NLR 33.327 (95% CI, 18.516–59.985); and diagnostic OR 538.18 (95% CI, 195.50–1478.5). The AUROC value was 0.9901. For calcified stones, the analysis indicated: pooled weighted sensitivity, 0.994 (95% CI, 0.969–1); specificity, 0.973 (95% CI, 0.906–0.997); PLR, 11.200 (95% CI, 4.922–25.486); NLR 0.027 (95% CI, 0.010–0.072); and diagnostic OR 654.89 (95% CI, 151.31–2834.4). The AUROC value was 0.9915. Conclusion: This meta-analysis found that DECT is a highly accurate noninvasive method for characterizing urinary uric acid and calcified calculi.

  18. Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Moritz H.; Scholtz, Jan-Erik; Kraft, Johannes; Bauer, Ralf W.; Kaup, Moritz; Dewes, Patricia; Bucher, Andreas M.; Burck, Iris; Lehnert, Thomas; Kerl, J.M.; Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wagenblast, Jens [University Hospital Frankfurt, Department of Otolaryngology, Head and Neck Surgery, Frankfurt am Main (Germany); Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2015-08-15

    To define optimal keV settings for advanced monoenergetic (Mono+) dual-energy computed tomography (DECT) in patients with head and neck squamous cell carcinoma (SCC). DECT data of 44 patients (34 men, mean age 55.5 ± 16.0 years) with histopathologically confirmed SCC were reconstructed as 40, 55, 70 keV Mono + and M0.3 (30 % 80 kV) linearly blended series. Attenuation of tumour, sternocleidomastoid muscle, internal jugular vein, submandibular gland, and noise were measured. Three radiologists with >3 years of experience subjectively assessed image quality, lesion delineation, image sharpness, and noise. The highest lesion attenuation was shown for 40 keV series (248.1 ± 94.1 HU), followed by 55 keV (150.2 ± 55.5 HU; P = 0.001). Contrast-to-noise ratio (CNR) at 40 keV (19.09 ± 13.84) was significantly superior to all other reconstructions (55 keV, 10.25 ± 9.11; 70 keV, 7.68 ± 6.31; M0.3, 5.49 ± 3.28; all P < 0.005). Subjective image quality was highest for 55 keV images (4.53; κ = 0.38, P = 0.003), followed by 40 keV (4.14; κ = 0.43, P < 0.001) and 70 keV reconstructions (4.06; κ = 0.32, P = 0.005), all superior (P < 0.004) to linear blending M0.3 (3.81; κ = 0.280, P = 0.056). Mono + DECT at low keV levels significantly improves CNR and subjective image quality in patients with head and neck SCC, as tumour CNR peaks at 40 keV, and 55 keV images are preferred by observers. (orig.)

  19. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: cristian.badea@duke.edu [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  20. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    Science.gov (United States)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  1. Dual energy virtual non-contrast technique of dual-source head CT angiography in diagnosis of meningiomas%双源CT双能量颅脑CTA虚拟平扫诊断脑膜瘤

    Institute of Scientific and Technical Information of China (English)

    谢晓洁; 邓亚敏; 曾宪春; 康绍磊; 韩丹

    2012-01-01

    Objective To investigate the clinical value of the dual energy virtual non-contrast technique of dual-source head CT angiography (CTA) in preoperative examination of meningioma. Methods CT images of 49 patients with pathologically confirmed meningiomas were retrospectively analyzed. Conventional non-contrast (CNC) and dual energy CTA scan were performed, and virtual non-contrast (VNC) and iodine-enhanced images were obtained with postprocessed technology. The mean CT value, signal-to-noise ratio (SNR), image quality, lesions detectability and radiation dose were compared between VNC and CNC images. The supply artery of tumor and relationship between tumor and adjacent intracranial vessel were observed on head CTA image from head bone removal using dual energy technique. Results CT value, SNR, and image quality scores of CNC were higher than those of VNC (all P<0. 05). The image quality scores of VNC were all above 3, which could meet the diagnostic requirements. There was no statistical difference in the size, shape, intratumoral calcification, necrosis and peritumoral edema of lesions between CNC and VNC images. The ability of VNC to display calcification inside meningioma was somehow limited compared with CNC. The radiation dose of dual energy CTA was 1. 71 mSv (61. 07%) , lower than that of CNC and conventional enhancement scan. Conclusion Dual-source CT dual energy technique can obtain VNC, iodine-enhanced and CTA images by single enhanced scan, and is excellent in preoperative examination for meningioma.%目的 探讨双源CT(DSCT)双能量颅脑CTA虚拟平扫在脑膜瘤术前检查中的临床价值.方法 回顾性分析经手术病理证实的49例脑膜瘤患者的CT图像,包括常规平扫(CNC)及双能量增强图像,经处理得到虚拟平扫(VNC)图和碘图;对比两组平扫病灶平均CT值、SNR、图像质量评分、病灶形态及辐射剂量.应用双能去骨获得颅脑CTA图像,观察肿瘤与周围血管的关

  2. 双源CT双能量虚拟平扫在结直肠病变的应用%Preliminary Application of Dual-energy Dual-source CT Virtual Non-contrast Imaging in Colorectal Lesions

    Institute of Scientific and Technical Information of China (English)

    王勇; 雷静; 韩丹; 赵卫; 杨石平; 熊倩

    2014-01-01

    Purpose To assess the feasibility of applying dual-energy dual-source CT virtual non-contrast (VNC) imaging in the diagnosis of colorectal diseases. Materials and Methods Eighty-ifve patients with clinically suspected colorectal lesions underwent abdominal CT scan as well as arterial and venous phase dual-energy enhanced scan, VCN images of arterial and venous phase were obtained using the dual-energy software, the differences of image quality, radiation dose and diagnostic coincidence rate between the true non-contrast scan and VNC images were compared. Results The radiation dose of two-phase dual-energy scan was 34.8%lower when compared with the conventional three-phase scans. The CT values of the intestinal lesions, metastasis lymph nodes and intestinal fat in VNC were lower than the true unenhanced scan (P0.05), and neither was the diagnostic coincidence rate for intestinal diseases (P>0.05). The noise level of images obtained from VNC was lower than that of the real non-contrast scan (P0.05). Conclusion For colorectal lesions, the virtual non-contrast images from the dual-energy dual-source CT scan can be used to reduce the radiation dose without effecting image quality and diagnosis accuracy.%目的:探讨双源CT双能量虚拟平扫(VNC)技术在结直肠病变诊断中应用的可行性。资料与方法对85例临床疑诊结直肠病变患者行腹部CT平扫及动、静脉期双能量增强扫描,经双能软件处理得到动、静脉期VNC图,比较真实平扫与VNC在图像质量、辐射剂量及诊断符合率方面的差异。结果双能双期扫描辐射剂量较常规三期扫描辐射剂量降低约34.8%。VNC CT值在肠道病变、转移淋巴结、肠周脂肪中低于真实平扫(P0.05)。真实平扫及动、静脉期VNC观察到的肠壁厚度、淋巴结大小、周围侵犯及肝转移差异无统计学意义(P>0.05),对肠道疾病的诊断符合率差异无统计学意义(P>0.05)。VNC

  3. Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings

    Energy Technology Data Exchange (ETDEWEB)

    Busch, S.; Johnson, T.R.C.; Wintersperger, B.J.; Minaifar, N.; Bhargava, A.; Rist, C.; Reiser, M.F.; Becker, C.; Nikolaou, K. [University of Munich, Department of Clinical Radiology, Munich (Germany)

    2008-03-15

    Cardiac magnetic resonance imaging and echocardiography are currently regarded as standard modalities for the quantification of left ventricular volumes and ejection fraction. With the recent introduction of dual-source computedtomography (DSCT), the increased temporal resolution of 83 ms should also improve the assessment of cardiac function in CT. The aim of this study was to evaluate the accuracy of DSCT in the assessment of left ventricular functional parameters with cardiac magnetic resonance imaging (MRI) as standard of reference. Fifteen patients (two female, 13 male; mean age 50.8 {+-} 19.2 years) underwent CT and MRI examinations on a DSCT (Somatom Definition; Siemens Medical Solutions, Forchheim, Germany) and a 3.0-Tesla MR scanner (Magnetom Trio; Siemens Medical Solutions), respectively. Multiphase axial CT images were analysed with a semiautomatic region growing algorithms (Syngo Circulation; Siemens Medical Solutions) by two independent blinded observers. In MRI, dynamic cine loops of short axis slices were evaluated with semiautomatic contour detection software (ARGUS; Siemens Medical Solutions) independently by two readers. End-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF) and stroke volume (SV) were determined for both modalities, and correlation coefficient, systematic error, limits of agreement and inter-observer variability were assessed. In DSCT, EDV and ESV were 135.8 {+-} 41.9 ml and 54.9 {+-} 29.6 ml, respectively, compared with 132.1 {+-} 40.8 ml EDV and 57.6 {+-} 27.3 ml ESV in MRI. Thus, EDV was overestimated by 3.7 ml (limits of agreement -46.1/+53.6), while ESV was underestimated by 2.6 ml (-36.6/+31.4). Mean EF was 61.6 {+-} 12.4% in DSCT and 57.9 {+-} 9.0% in MRI, resulting in an overestimation of EF by 3.8% with limits of agreement at -14.7 and +22.2%. Rank correlation rho values were 0.81 for EDV (P = 0.0024), 0.79 for ESV (P = 0.0031) and 0.64 for EF (P = 0.0168). The kappa value of inter

  4. The impact of heart rate on image quality and reconstruction timing of dual-source CT coronary angiography

    International Nuclear Information System (INIS)

    Wang Yining; Jin Zhengyu; Kong Lingyan; Zhang Zhuhua; Song Lan; Mu Wenbin; Wang Yun; Zhao Wenmin; Zhang Shuyang; Lin Songbai

    2008-01-01

    Objective: To evaluate the impact of patient's heart rate (HR) on coronary CT angiography (CTA) image quality (IQ) and reconstruction timing in dual-source CT (DSCT). Methods Ninety-five patients with suspicion of coronary artery disease were examined with a DSCT scanner (Somatom Definition, Siemens) using 32 x 0.6 mm collimation. All patients were divided three groups according to the heart rate (HR): group 1, HR ≤ 70 beats per minute (bpm), n=26; group 2, HR >70 bpm to ≤90 bpm, n=37; group 3, HR > 90 bpm, n=32. No beta-blockers were taken before CT scan. 50- 60 ml of nonionic contrast agent were injected with a rate of 5 ml/s. Images were reconstructed from 10% to 100% of the R-R interval using single-segment reconstruction. Two readers independently assessed IQ of all coronary, segments using a 3-point scale from excellent (1) to non-assessable (3) for coronary segments and the relationship between IQ and the HR. Results: Overall mean IQ score was 1.31 ± 0.55 for all patients with 1.08 ± 0.27 for group 1, 1.32 ± 0.58 for group 2 and 1.47 ± 0.61 for group 3. The IQ was better in the LAD than the RCA and LCX (P<0.01). Only 1.4% (19/1386) of coronary artery segments were considered non-assessable due to the motion artifacts. Optimal image quality of all coronary segments in 74 patients (77.9%) can be achieved with one reconstruction data set. The best IQ was predominately in diastole (88.5%) in group 1, while the best IQ was in systole (84.4%) in group 3. Conclusions: DSCT can achieve the optimal IQ with a wide range of HR using single-segment reconstruction. With the increasing of HR, the timing of data reconstruction for the best IQ shifts from mid-diastole to systole. (authors)

  5. Identification of benign and malignant thyroid nodules by in vivo iodine concentration measurement using single-source dual energy CT

    Science.gov (United States)

    Gao, Shun-Yu; Zhang, Xiao-Yan; Wei, Wei; Li, Xiao-Ting; Li, Yan-Ling; Xu, Min; Sun, Ying-Shi; Zhang, Xiao-Peng

    2016-01-01

    Abstract This study proposed to determine whether in vivo iodine concentration measurement by single-source dual energy (SSDE) CT can improve differentiation between benign and malignant thyroid nodules. In total, 53 patients presenting with thyroid nodules underwent SSDE CT scanning. Iodine concentrations were measured for each nodule and normal thyroid tissue using the GSI-viewer image analysis software. A total of 26 thyroid nodules were malignant in 26 patients and confirmed by surgery; 33 nodules from 27 patients were benign, with 10 confirmed by surgery and others after follow-up. Iodine concentrations with plain CT were significantly lower in malignant than benign nodules (0.47 ± 0.20 vs 1.17 ± 0.38 mg/mL, P = 0.00). Receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 0.93; with a cutoff of 0.67, iodine concentration showed 92.3% sensitivity and 88.5% specificity in diagnosing malignancy. Iodine concentration obtained by enhanced and plain CT were significantly higher in malignant than benign nodules (9.05 ± 3.35 vs 3.46 ± 2.24 mg/mL, P = 0.00). ROC curve analysis showed an AUC of 0.93; with a cutoff value of 3.37, iodine concentration displayed 78% sensitivity, 95% specificity in diagnosing malignancy. Combining unenhanced with enhanced iodine concentrations, the diagnostic equation was: Y = –8.641 × unenhanced iodine concentration + 0.663 × iodine concentration. ROC curve showed an AUC of 0.98 (95% CI, 0.94, 1.00). With Y ≥ –2 considered malignancy, diagnostic sensitivity and specificity were 96%, 96.3%, respectively. This study concluded that SSDE CT can detect the differences in iodine uptake and blood supply between benign and malignant thyroid lesions. PMID:27684811

  6. Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings

    International Nuclear Information System (INIS)

    Busch, S.; Johnson, T.R.C.; Wintersperger, B.J.; Minaifar, N.; Bhargava, A.; Rist, C.; Reiser, M.F.; Becker, C.; Nikolaou, K.

    2008-01-01

    Cardiac magnetic resonance imaging and echocardiography are currently regarded as standard modalities for the quantification of left ventricular volumes and ejection fraction. With the recent introduction of dual-source computedtomography (DSCT), the increased temporal resolution of 83 ms should also improve the assessment of cardiac function in CT. The aim of this study was to evaluate the accuracy of DSCT in the assessment of left ventricular functional parameters with cardiac magnetic resonance imaging (MRI) as standard of reference. Fifteen patients (two female, 13 male; mean age 50.8 ± 19.2 years) underwent CT and MRI examinations on a DSCT (Somatom Definition; Siemens Medical Solutions, Forchheim, Germany) and a 3.0-Tesla MR scanner (Magnetom Trio; Siemens Medical Solutions), respectively. Multiphase axial CT images were analysed with a semiautomatic region growing algorithms (Syngo Circulation; Siemens Medical Solutions) by two independent blinded observers. In MRI, dynamic cine loops of short axis slices were evaluated with semiautomatic contour detection software (ARGUS; Siemens Medical Solutions) independently by two readers. End-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF) and stroke volume (SV) were determined for both modalities, and correlation coefficient, systematic error, limits of agreement and inter-observer variability were assessed. In DSCT, EDV and ESV were 135.8 ± 41.9 ml and 54.9 ± 29.6 ml, respectively, compared with 132.1 ± 40.8 ml EDV and 57.6 ± 27.3 ml ESV in MRI. Thus, EDV was overestimated by 3.7 ml (limits of agreement -46.1/+53.6), while ESV was underestimated by 2.6 ml (-36.6/+31.4). Mean EF was 61.6 ± 12.4% in DSCT and 57.9 ± 9.0% in MRI, resulting in an overestimation of EF by 3.8% with limits of agreement at -14.7 and +22.2%. Rank correlation rho values were 0.81 for EDV (P = 0.0024), 0.79 for ESV (P 0.0031) and 0.64 for EF (P = 0.0168). The kappa value of inter-observer variability were

  7. PENGEMBANGAN MODEL APLIKASI ADMINISTRASI PELAYANAN KESEHATAN DI PUSKEMAS DENGAN CLOUD COMPUTING BERBASISKAN OPEN SOURCE

    OpenAIRE

    Honni

    2013-01-01

    Puskemas as community health centers becomes one of the main focuses of development on the agenda of the Government of Indonesia beside education. Therefore, we purpose to develop an affordable online system of health care administration based on open source using cloud computing approach. It can be used for collecting data of patients, diseases, and treatment of patients at Puskesmas. The methods used are literature study related to cloud computing, survey design and data collection infrastr...

  8. Pengembangan Model Aplikasi Administrasi Pelayanan Kesehatan di Puskemas dengan Cloud Computing Berbasiskan Open Source

    OpenAIRE

    Honni, Honni

    2013-01-01

    Puskemas as community health centers becomes one of the main focuses of development on the agenda of the Government of Indonesia beside education. Therefore, we purpose to develop an affordable online system of health care administration based on open source using cloud computing approach. It can be used for collecting data of patients, diseases, and treatment of patients at Puskesmas. The methods used are literature study related to cloud computing, survey design and data collection infrastr...

  9. An Open Source Computational Framework for Uncertainty Quantification of Plasma Chemistry Models

    OpenAIRE

    Zaheri Sarabi, Shadi

    2017-01-01

    The current thesis deals with the development of a computational framework for performing plasma chemistry simulations and their uncertainty quantification analysis by suitably combining and extending existing open source computational tools. A plasma chemistry solver is implemented in the OpenFOAM C++ solver suite. The OpenFOAM plasma chemistry application solves the species conservation equations and the electron energy equation by accounting suitably for various production and loss terms b...

  10. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, M. C.; Wang, L. M.; Rindel, Jens Holger

    2004-01-01

    time. However, for the three other parameters evaluated (sound-pressure level, clarity index, and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity when using computer......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  11. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation.

    Science.gov (United States)

    Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing

    2017-09-19

    The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.

  12. Multiple energy computed tomography for neuroradiology with monochromatic x-rays from the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Garrett, R.F.; Thomlinson, W.C.; Berman, L.E.; Chapman, L.D.; Gmuer, N.F.; Lazarz, N.M.; Moulin, H.R.; Oversluizen, T.; Slatkin, D.N.; Stojanoff, V.; Volkow, N.D.; Zeman, H.D.; Luke, P.N.; Thompson, A.C.

    1990-01-01

    Monochromatic and tunable 33--100 keV x-rays from the X17 superconducting wiggler of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) will be used for computed tomography (CT) of the human head and neck. The CT configuration will be one of a fixed horizontal fan-shaped beam and a seated rotating subject. The system, which is under development, will employ a two-crystal monochromator with an energy bandwidth of about 0.1%, and high-purity germanium linear array detector with 0.5 mm element width and 200 mm total width. Narrow energy bands not only eliminate beam hardening but are ideal for carrying out the following dial-energy methods: (a) dual-photon absorptiometry CT, that provides separate images of the low-Z and the intermediate-Z elements; and (b) K-edge subtraction CT of iodine and perhaps of heavier contrast elements. As a result, the system should provide ∼10-fold improvement in image contrast resolution and in quantitative precision over conventional CT. A prototype system for a 45 mm subject diameter will be ready in 1991, which will be used for studies with phantoms and small animals. The human imaging system will have a field of view of 200 mm. The in-plane spatial resolution in both systems will be 0.5 mm FWHM. 34 refs., 6 figs

  13. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2004-01-01

    considering reverberation time. However, for the three other parameters evaluated (sound pressure level, clarity index and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  14. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  15. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  16. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    Science.gov (United States)

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).