WorldWideScience

Sample records for dual magnetic separator

  1. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    Science.gov (United States)

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  2. Dual magnetic separator for TRIμP

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Dermois, O.C.; Dammalapati, U.; Dendooven, P.; Harakeh, M.N.; Jungmann, K.; Onderwater, C.J.G.; Rogachevskiy, A.; Sohani, M.; Traykov, E.; Willmann, L.; Wilschut, H.W.

    2006-01-01

    The TRIμP facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion-evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted. The separator performance was tested with the production and clean separation of 21 Na ions, where a beam purity of 99.5% could be achieved. For fusion-evaporation products, some of the features of its operation as a gas-filled recoil separator were tested

  3. Magnetic particle separation using controllable magnetic force switches

    International Nuclear Information System (INIS)

    Wei Zunghang; Lee, C.-P.; Lai, M.-F.

    2010-01-01

    Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.

  4. Fluorescent-magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis

    Science.gov (United States)

    Xie, Min; Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Hai-Yan; Pang, Dai-Wen

    2012-01-01

    Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.

  5. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    to facilitate real-time monitoring of the experiments. The set-up and experimental protocol are described in detail. Results are presented for ’active’ magnetic bead separators, where on-chip microfabricated electromagnets supply the magnetic field and field gradients necessary for magnetic bead separation....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  6. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  7. Magnetic separation of antibiotics by electrochemical magnetic seeding

    International Nuclear Information System (INIS)

    Ihara, I; Toyoda, K; Beneragama, N; Umetsu, K

    2009-01-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  8. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    Science.gov (United States)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  9. High gradient magnetic separation

    International Nuclear Information System (INIS)

    Prothero, D.H.

    1982-01-01

    In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)

  10. Magnetic separations: From steel plants to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Cafer T. Yavuz; Arjun Prakash; J.T. Mayo; Vicki L. Colvin [Rice University, Houston, TX (United States). Department of Chemistry

    2009-05-15

    Magnetic separations have for decades been essential processes in diverse industries ranging from steel production to coal desulfurization. In such settings magnetic fields are used in continuous flow processes as filters to remove magnetic impurities. High gradient magnetic separation (HGMS) has found even broader use in wastewater treatment and food processing. Batch scale magnetic separations are also relevant in industry, particularly biotechnology where fixed magnetic separators are used to purify complex mixtures for protein isolation, cell separation, drug delivery, and biocatalysis. In this review, we introduce the basic concepts behind magnetic separations and summarize a few examples of its large scale application. HGMS systems and batch systems for magnetic separations have been developed largely in parallel by different communities. However, in this work we compare and contrast each approach so that investigators can approach both key areas. Finally, we discuss how new advances in magnetic materials, particularly on the nanoscale, as well as magnetic filter design offer new opportunities for industries that have challenging separation problems.

  11. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Simulation and experimental study on transportation of dual-beam guided by confining magnetic-field

    International Nuclear Information System (INIS)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2008-01-01

    Using external longitudinal magnetic-field to guide dual-beam out of the dual-shift tubes is a key step for the practicality of synchronizing dual-beam produced by a single accelerator. On the basis of the simulation of the confining magnetic-field for the solid dual-beam, the experiment of magnetic-field guiding annular dual-beam was presented. When the diode voltage was 380 kV, dual-beam currents of 5.10 kA and 4.92 kA were obtained. The experimental results indicate that the designed magnetic-field system could confine the annular dual-beam effectively, and the critical confining magnetic-field is about 0.5 T. (authors)

  13. Magnetic separation for soil decontamination

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  14. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    Science.gov (United States)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  15. Microfluidic high gradient magnetic cell separation

    Science.gov (United States)

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  16. Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples

    International Nuclear Information System (INIS)

    Precner, Marián; Fedor, Ján; Šoltýs, Ján; Cambel, Vladimír

    2015-01-01

    Standard magnetic force microscopy (MFM) is considered as a powerful tool used for magnetic field imaging at nanoscale. The method consists of two passes realized by the magnetic tip. Within the first one, the topography pass, the magnetic tip directly touches the magnetic sample. Such contact perturbs the magnetization of the sample explored. To avoid the sample touching the magnetic tip, we present a new approach to magnetic field scanning by segregating the topological and magnetic scans with two different tips located on a cut cantilever. The approach minimizes the disturbance of sample magnetization, which could be a major problem in conventional MFM images of soft magnetic samples. By cutting the cantilever in half using the focused ion beam technique, we create one sensor with two different tips—one tip is magnetized, and the other one is left non-magnetized. The non-magnetized tip is used for topography and the magnetized one for the magnetic field imaging. The method developed we call dual-tip magnetic force microscopy (DT-MFM). We describe in detail the dual-tip fabrication process. In the experiments, we show that the DT-MFM method reduces significantly the perturbations of the magnetic tip as compared to the standard MFM method. The present technique can be used to investigate microscopic magnetic domain structures in a variety of magnetic samples and is relevant in a wide range of applications, e.g., data storage and biomedicine. (paper)

  17. The study on optimization issues for magnetic separation by magnetic chromatography

    International Nuclear Information System (INIS)

    Kim, S.B.; Iwamoto, R.; Kataoka, K.; Noguchi, S.; Okada, H.

    2010-01-01

    The magnetic chromatography is a very useful system for an ion and/or fine magnetic particle separation because it has strong magnetic field gradients even in a very narrow flow channel. We have not only developed the magnetic chromatography system to separate the fine particles and ions, but also the numerical analysis code based on the fluid dynamics and electromagnetism to investigate the separating characteristics and to optimize design of magnetic column. In this study, the simple experiments using a superconducting magnet with a large room-temperature-bore and a micro-scale magnetic column consisting of ferromagnetic wires were carried out to understand the ions separation. The cobalt chloride (CoCl 2 ) and the nickel sulfate (NiSO 4 ) were used as ions, and the magnetic field and length of magnetic column were used as a parameter in an experiment and an analysis. It can be expected that the ion mobility of a single and complex are quite different, and the ability of the separation will be improved by increasing the column length without external magnetic field.

  18. Intergroup conflict management strategies as related to perceptions of dual identity and separate groups.

    Science.gov (United States)

    Bizman, Aharon; Yinon, Yoel

    2004-04-01

    The authors examined the relations between (a) the perceptions of dual identity and separate groups and (b) intergroup conflict management strategies, in two contexts: the conflict between the secular and religious sectors in Israel and the allocation of resources among organizational subunits. In both contexts, contention (i.e., forcing one's will on the other party) was associated with the perception of separate groups. Only in the organizational context, avoidance (i.e., doing nothing or discontinuing participation in the conflict) was associated with the perception of dual identity. Problem solving (i.e., finding a solution that is acceptable to both parties) was related to the perception of dual identity in the secular-religious context. In the organizational context, this relation appeared only under a low perception of separate groups. Yielding (i.e., satisfying the other party's needs at the expense of one's own) was related to the perception of dual identity in the organizational context. In the secular-religious context, this relation appeared only under a high perception of separate groups. The authors discussed the varying pattern of the associations between (a) the perceptions of dual identity and separate groups and (b) the conflict management strategies in the two contexts in terms of the Dual Concern Model and the perceived feasibility of the strategies.

  19. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  20. Magnetic matrices used in high gradient magnetic separation (HGMS: A review

    Directory of Open Access Journals (Sweden)

    Wei Ge

    Full Text Available HGMS is effective in separating or filtering fine and weakly magnetic particles and widely applied in mineral processing, water treatment, cell and protein purification. The magnetic matrix is a crucial device used in magnetic separator to generate high magnetic field gradient and provide surface sites for capturing magnetic particles. The material, geometry, size and arrangement of the matrix elements can significantly affect the gradient and distribution of the magnetic field, and the separating or filtrating performance. In this paper, the researches and developments of magnetic matrices used in HGMS are reviewed. Keywords: Magnetic matrix, HGMS, Review

  1. Magnetic separation for environmental remediation

    International Nuclear Information System (INIS)

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A.; Tolt, T.L.

    1994-01-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO 2 , U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  2. Method of magnetic separation and apparatus therefore

    Science.gov (United States)

    Oder, Robin R. (Inventor)

    1991-01-01

    An apparatus for magnetically separating and collecting particulate matter fractions of a raw sample according to relative magnetic susceptibilities of each fraction so collected is disclosed. The separation apparatus includes a splitter which is used in conjunction with a magnetic separator for achieving the desired fractionation.

  3. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ► The magnetic separation was operated for recycling the electroless plating waste. ► The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ► The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  4. Separation of magnetic affinity biopolymer adsorbents in a Davis tube magnetic separator

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Mucha, Pavel; Pechoč, Jiří; Stoklasa, Jaroslav; Šafaříková, Miroslava

    2001-01-01

    Roč. 23, - (2001), s. 851-855 ISSN 0141-5492 R&D Projects: GA ČR GA203/98/1145 Institutional research plan: CEZ:AV0Z6087904 Keywords : Davis tube * magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  5. High gradient magnetic separation applied to environmental remediation

    International Nuclear Information System (INIS)

    Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Avens, L.R.; Worl, L.A.; Schake, A.; de Aguero, K.J.; Padilla, D.D.; Tolt, T.L.

    1993-01-01

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design

  6. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  7. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  8. Magnetic separation of uranium from magnesium fluoride

    International Nuclear Information System (INIS)

    Hoegler, J.M.

    1987-01-01

    The attraction or repulsion of particles by a magnetic gradient, based on the respective susceptibilities, provides the basis for physical separation of particles that are comprised predominantly of uranium from those that are predominantly magnesium fluoride (MgF 2 ). To determine the effectiveness of this approach, a bench-scale magnetic separator from the S.G. Frantz Co., Inc. was used. In the Frantz Model L-1, particles are fed through a funnel onto a vibration tray and through a magnetic field. The specific design of the Frantz magnet causes the magnetic field strength to vary along the width of the magnet, setting up a gradient. The tray in the magnetic field is split at a point about half way down its length so that the separated material does not recombine. A schematic is presented of Frantz Model L-1 CN - the same magnet configured for high gradient magnetic separation of liquid-suspended particles. Here different pole pieces create a uniform magnetic field, and stainless steel wood in the canister between the pole pieces creates the high gradient. 1 ref., 6 figs., 2 tabs

  9. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    Science.gov (United States)

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  11. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Science.gov (United States)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  12. Magnet and device for magnetic density separation

    NARCIS (Netherlands)

    Polinder, H.; Rem, P.C.

    2014-01-01

    A planar magnet for magnetic density separation, comprising an array of pole pieces succeeding in longitudinal direction of a mounting plane, each pole piece having a body extending transversely along the mounting plane with a substantially constant cross section that includes a top segment that is

  13. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  14. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    Science.gov (United States)

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  15. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  17. Remediation of Hanford tank waste using magnetic separation

    International Nuclear Information System (INIS)

    Worl, L.A.; Avens, L.R.; de Aguero, K.J.; Coyne Prenger, F.; Stewart, W.F.; Hill, D.D.

    1992-01-01

    Large volumes of high-level radioactive waste are stored at the Department of Energy's Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed

  18. MSWI boiler fly ashes: magnetic separation for material recovery.

    Science.gov (United States)

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    International Nuclear Information System (INIS)

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M; Yamaguchi, M; Yokoyama, K; Noto, K

    2009-01-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  20. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    Science.gov (United States)

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  1. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  2. Magnetic separation of general solid particles realised by a permanent magnet.

    Science.gov (United States)

    Hisayoshi, K; Uyeda, C; Terada, K

    2016-12-08

    Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss.

  3. Magnetic separation of general solid particles realised by a permanent magnet

    Science.gov (United States)

    Hisayoshi, K.; Uyeda, C.; Terada, K.

    2016-12-01

    Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss.

  4. Development of dual field magnetic flux leakage (MFL) inspection technology to detect mechanical damage.

    Science.gov (United States)

    2013-03-01

    This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...

  5. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  6. Magnetically induced rotor vibration in dual-stator permanent magnet motors

    Science.gov (United States)

    Xie, Bang; Wang, Shiyu; Wang, Yaoyao; Zhao, Zhifu; Xiu, Jie

    2015-07-01

    Magnetically induced vibration is a major concern in permanent magnet (PM) motors, which is especially true for dual-stator motors. This work develops a two-dimensional model of the rotor by using energy method, and employs this model to examine the rigid- and elastic-body vibrations induced by the inner stator tooth passage force and that by the outer. The analytical results imply that there exist three typical vibration modes. Their presence or absence depends on the combination of magnet/slot, force's frequency and amplitude, the relative position between two stators, and other structural parameters. The combination and relative position affect these modes via altering the force phase. The predicted results are verified by magnetic force wave analysis by finite element method (FEM) and comparison with the existing results. Potential directions are also given with the anticipation of bringing forth more interesting and useful findings. As an engineering application, the magnetically induced vibration can be first reduced via the combination and then a suitable relative position.

  7. Magnetic separation from superparamagnetic particle suspensions

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2009-01-01

    We investigate the magnetophoretic separation of magnetic microparticles from a non-dilute flow in a microfluidic channel and their subsequent field-induced aggregation under the influence of an externally applied magnetic force. This force induces dipolar interactions between the particles that aid in their separation from the flow. Existing analytical models for dilute suspensions cannot be extended to non-dilute suspensions in which interparticle magnetic interactions play an important role. We therefore conduct a parametric investigation of the mechanics of this problem in a microcapillary flow through simulations and experimental visualization. When a magnetic field is applied, the magnetic microparticles form an aggregate on the channel wall that is influenced by the competition between the holding magnetic force and the aggregate-depleting flow shear force. Microparticle collection in the aggregate increases linearly with increasing magnetic field strength and is characterized by distinct buildup and washaway phases. The collected microparticle volume fraction in an aggregate is found to depend on a single dimensional group that depends upon characteristic system parameters.

  8. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  9. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  10. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    International Nuclear Information System (INIS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  11. Integrated acoustic and magnetic separation in microfluidic channels

    DEFF Research Database (Denmark)

    Adams, Jonathan; Thevoz, Patrick; Bruus, Henrik

    2009-01-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column......-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 10...

  12. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites

    Science.gov (United States)

    Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-03-01

    Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.

  13. Spatial interference from well-separated split condensates

    International Nuclear Information System (INIS)

    Zawadzki, M. E.; Griffin, P. F.; Riis, E.; Arnold, A. S.

    2010-01-01

    We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference between two condensates axially separated by up to 0.25 mm - the largest separation observed with this kind of interferometer. Clear planar fringes are observed using standard (i.e., nontomographic) resonant absorption imaging. The effect of a weak inverted parabola potential on fringe separation is observed and agrees well with theory.

  14. Iso-geometric shape optimization of magnetic density separators

    DEFF Research Database (Denmark)

    Dang Manh, Nguyen; Evgrafov, Anton; Gravesen, Jens

    2014-01-01

    Purpose The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly...... reduces the required amount of permanent magnet material. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the individual poles. Design/methodology/approach The paper represents the shape of the ferromagnetic pole...

  15. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    Science.gov (United States)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  16. Separation of magnetic from non-magnetic information in the Bitter pattern method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2001-01-01

    The paper deals with the problem of separating magnetic and non-magnetic contributions to the image contrast in the Bitter pattern method. With the help of the digital image difference procedure, it is demonstrated for the first time for the Bitter method that the separation is easy to achieve for relatively soft magnetic specimens, when an external field can be applied to simply produce the non-magnetic reference image of the specimen area under study. It is also shown that obtaining satisfactory results is principally impossible when removing the colloid from the specimen surface is used for the purpose of recording the non-magnetic image

  17. Magnetic circuit with large blocks from NdFeB magnets for suspended magnetic separators

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav

    2010-01-01

    Roč. 7, č. 2 (2010), s. 227-235 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic circuits * magnetic separation * permanent magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.452, year: 2010 www.irsm.cas.cz/?Lang=CZE&Menu=25,0,0,0

  18. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    Science.gov (United States)

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  19. Microfluidic magnetic separator using an array of soft magnetic elements

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete...... capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s....

  20. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow

  1. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  2. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation

    International Nuclear Information System (INIS)

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S.

    2010-01-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 μm with 4 wt.% over 100 μm and content metallic iron of 93 wt%. (author)

  3. Bench-scale magnetic separation of Department of Energy wastes

    International Nuclear Information System (INIS)

    Hoegler, J.M.

    1987-07-01

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  4. In Situ Magnetic Separation for Extracellular Protein Production

    DEFF Research Database (Denmark)

    Kappler, T.; Cerff, Martin; Ottow, Kim Ekelund

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were...... was not influenced by the in situ product removal step. Protease production also remained the same after the separation step. Furthermore, degradation of the protease, which followed first order kinetics, was reduced by using the method. Using a theoretical modeling approach, we Could show that protease yield...... in total was enhanced by using in situ magnetic separation. The process described here is a promising technique to improve overall yield in No production processes which are often limited due to weak downstream operations, Potential limitations encountered during a bioprocess can be overcome...

  5. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  6. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    International Nuclear Information System (INIS)

    Cotten, G.B.

    2000-01-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable

  7. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  8. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications

    Science.gov (United States)

    Yeap, Swee Pin; Lim, JitKang; Ooi, Boon Seng; Ahmad, Abdul Latif

    2017-11-01

    Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings. [Figure not available: see fulltext.

  9. Use of high gradient magnetic separation for actinide application

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; Padilla, D.D.

    1996-01-01

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  10. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...... applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics....

  11. Multistage Magnetic Separator of Cells and Proteins

    Science.gov (United States)

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  12. Separation of magnetic field lines

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2012-01-01

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor σ, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e 2σ , and the ratio of the longer distance to the initial radius increases as e σ . Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/ω pe , which is about 10 cm in the solar corona, and reconnection must be triggered if σ becomes sufficiently large. The radius of the sun, R ⊙ =7×10 10 cm is about e 23 times larger, so when σ≳23, two lines separated by c/ω pe at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, σ, are derived, and the importance of exponentiation is discussed.

  13. Theory and application of dual-transistor charge separation analysis

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Schwank, J.R.; Winokur, P.S.; Sexton, F.W.; Shaneyfelt, M.R.

    1989-01-01

    The authors describe a dual-transistor charge separation method to evaluate the radiation response of MOS transistors. This method requires that n- and p-channel transistors with identically processed oxides be irradiated under identical conditions at the same oxide electric fields. Combining features of single-transistor midgap and mobility methods, the authors show how one may determine threshold voltage shifts due to oxide-trapped and interface-trapped charge from standard threshold voltage and mobility measurements. These measurements can be made at currents 2-5 orders of magnitude higher than those required for midgap, subthreshold slope, and charge-pumping methods. The dual-transistor method contains no adjustable parameters, and includes an internal self-consistency check. The accuracy of the method is verified by comparison to midgap, subthreshold slope, and charge-pumping methods for several MOS processes and technologies

  14. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Science.gov (United States)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  15. Electrochemical fabrication, microstructure and magnetic properties of Sm2Co17/Fe7Co3 dual phase nanocomposite

    International Nuclear Information System (INIS)

    Cui, Chunxiang; Chen, Fenghua; Yang, Wei; Li, Hongfang; Liu, Qiaozhi; Sun, Jibing

    2015-01-01

    By utilizing alternate electrochemical reaction, atomic migration and deposition of Fe, Co, Sm and other chemical substances in the electrochemical solution, a large number of Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowire arrays were carried out in the anodic aluminum oxide (AAO) template with highly uniform and orderly. The Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowire arrays with diameter of 50 nm and length of 12 μm have the smooth surface and uniform diameter. The morphology and microstructure of annealed Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowires were observed and analyzed using SEM, TEM and HRTEM. Compared with single-phase nanowires, dual phase magnetic nanowires have higher coercivity and saturation magnetization. In this composite system, both the hard and the soft phases have a high Curie temperature, therefore, we believe that the Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowire arrays is a new type of high-temperature magnetic composites. - Highlights: • Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowires were prepared by electrochemical method. • The interface pinning is the main factor to improve anisotropy field of the nanowires. • The dual phase magnetic nanowires have higher coercivity and saturation magnetization

  16. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  17. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    Science.gov (United States)

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  18. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    Science.gov (United States)

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  19. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  20. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    DEFF Research Database (Denmark)

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration...... of soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic elements....

  1. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    Science.gov (United States)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  2. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  3. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  4. Dendrimer-coated magnetic particles for radionuclide separation

    NARCIS (Netherlands)

    Grüttner, Cordula; Böhmer, Volker; Casnati, Alessandro; Dozol, Jean-Francois; Reinhoudt, David; Reinoso garcia, M.M.; Rudershausen, Sandra; Teller, Joachim; Ungaro, Rocco; Verboom, Willem; Wang, Pingshan

    2005-01-01

    Magnetic particles were synthesised for radionuclide removal from nuclear wastes by magnetic separation. Dendrimers with terminal amino groups attached to the particle surface were used to bind chelating groups for lanthanides and actinides. This led to a 50–400-fold increase of the distribution

  5. A new industrial application of magnetic separation

    International Nuclear Information System (INIS)

    Beharrell, P.A.

    2000-09-01

    The aim of this work was to investigate the application of magnetic separation to the removal and recovery of carbon steel grinding swarf from machining fluids used in large-scale industrial manufacturing processes such as in the automotive industry. Magnetic separation is a technology which has found widespread application in the mineral processing industry and in particular the beneficiation of kaolin clay for use in the paper industry. The technical feasibility of the application was demonstrated in the early stages of the work by the successful treatment of industrial samples using a crude laboratory-scale separator. In addition, the fluid and swarf material underwent extensive analysis using electron microscope-based optical and spectroscopic techniques in order to ascertain the presence of other undesirable components of the fluid that would require removal also. It was demonstrated by these results that the overall objective of the project was the development and testing of a laboratory-scale system which would allow the optimum operational parameters to be ascertained for the design of a commercially viable, large-scale system. A series of detailed trials on large volumes of industrial samples was carried out in conjunction with the development of the modifications that were required to existing magnetic separation theory in order to accommodate the particulars of this application. The trial system was tested to low applied magnetic strengths and high fluid flow velocities in order to optimise the economics of the application, resulting in extraction efficiencies of the order of 99.998% being achieved. During the course of the project, a new type of matrix cleaning system was developed for which a patent was applied and this was successfully tested in the trial system. Economic appraisal of the application suggests that an industrial-scale system could provide reliable, high quality recovery of grinding swarf at a cost of around one cent per cubic metre of

  6. Magnetic separation techniques in sample preparation for biological analysis: a review.

    Science.gov (United States)

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Separation of mixed waste plastics via magnetic levitation.

    Science.gov (United States)

    Zhao, Peng; Xie, Jun; Gu, Fu; Sharmin, Nusrat; Hall, Philip; Fu, Jianzhong

    2018-06-01

    Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Magnetic monopoles and the dual London equation in SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Skala, P.; Faber, M.; Zach, M.

    1996-01-01

    The dual superconductor model of confinement in non-Abelian gauge theories is studied in a gauge invariant formulation. We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the dual London equation in a gauge invariant formulation. (orig.)

  9. Magnetic separation technique for groundwater by five HTS melt-processed bulk magnets arranged in a line

    International Nuclear Information System (INIS)

    Oka, T.; Seki, H.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Fujishiro, H.; Hayashi, H.; Yokoyama, K.; Stiehler, C.

    2011-01-01

    A magnetic separation was practically conducted by 10-pole HTS bulk magnets. The HTS bulk magnets were activated to 2.5 T by feeding pulsed fields of 6 T. The separation ratio of actual groundwater exceeded 70% at less than 4.8 l/min. The flocks without magnetite powder were obviously attracted to the magnetic poles. A magnetic separation study for groundwater purification has been practically conducted by using the multi-pole magnet system. The magnetic pole was composed of 10 open magnetic spaces by arranging five HTS melt-processed bulk magnets in a line in a vacuum sheath. The individual bulk magnets were activated by feeding intense pulsed magnetic fields up to 6 T. The magnetic field distribution was estimated with respect to various pole arrangements. The actual groundwater samples of Sanjo City were processed so as to form large precipitates by adding the coagulant and pH controlling. The maximum separation ratio of the iron-bearing precipitates has exceeded over 70% when slurry water was exposed to 10 magnetic poles of up to 2.5 T at a flowing rate of less than 4.8 l/min. An obvious attraction of flocks to the magnetic poles was observed even when the water contains no magnetite powder at the flow rate of 1.01 l/min. This implies the validity of the multi-pole magnet system with respect to the actual application to water purification.

  10. Metals separation using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Pourfarzaneh, M.

    1997-01-01

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed

  11. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  12. Recycling of WEEE by magnetic density separation

    NARCIS (Netherlands)

    Hu, B.; Giacometti, L.; Di Maio, F.; Rem, P.C.

    2011-01-01

    The paper introduces a new recycling method of WEEE: Magnetic Density Separation. By using this technology, both grade and recovery rate of recycled products are over 90%. Good separations are not only observed in relatively big WEEE samples, but also in samples with smaller sizes or electrical

  13. Bioinspired Flexible and Highly Responsive Dual-Mode Strain/Magnetism Composite Sensor.

    Science.gov (United States)

    Huang, Pei; Li, Yuan-Qing; Yu, Xiao-Guang; Zhu, Wei-Bin; Nie, Shu-Yan; Zhang, Hao; Liu, Jin-Rui; Hu, Ning; Fu, Shao-Yun

    2018-04-04

    The mimicry of human skin to detect both oncoming and physical-contacting object is of great importance in the fields of manufacturing, artificial robots and vehicles, etc. Herein, a novel bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor, which works via both contact and contactless modes, is first fabricated by incorporating Fe 3 O 4 /silicone system into a carbon fiber aerogel (CFA). The distance dependence of magnetic field endorses the CFA/Fe 3 O 4 /silicone composite possible for spatial sensing due to the introduction of Fe 3 O 4 magnetic nanoparticles. As a result, the as-prepared flexible sensor exhibits precise and real-time response not only to direct-contact compression as usual but also to contactless magnetic field in a wide frequency range from 0.1 to 10 Hz, achieving the maximum variance of 68% and 86% in relative electrical resistance, respectively. The contact and contactless sensing modes of the strain/magnetism sensor are clearly demonstrated by recording the speeds of bicycle riding and walking, respectively. Interestingly, this dual-mode composite sensor exhibits the capacity of identifying the contact and contactless state, which is the first report for flexible sensors. The current protocol is eco-friendly, facile, and thought-provoking for the fabrication of multifunctional sensors.

  14. The study on the magnetic filter using the rotation of permanent magnets for separation of radioactive corrosion products

    International Nuclear Information System (INIS)

    Song, M.C.; Lee, K.J.

    2004-01-01

    Most of the insoluble radioactive corrosion products have the characteristic of showing strong ferrimagnetism. Along with the new development and production of permanent magnets which generate much stronger magnetic field than conventional permanent magnets, new type of magnetic filter that can separate radioactive corrosion products efficiently and eventually reduce the radiation exposure of the personnel at a nuclear power plant is suggested. This new type of separator with novel geometry consists of an inner and an outer magnet assembly, a coolant channel and a container surrounding the outer magnet assembly. The particulates are separated from the coolant by the alternating magnetic fields that are generated by shift arrangement of permanent magnets. This study describes of experimental results performed with the different flow rates, rotation velocities of magnet assemblies, particle size and various materials. The efficiency of magnetic filter tends to increase as the flow rate is lower, and particle size is bigger. The rotating velocity of magnet assembly has also some influences on the separation efficiency. This new magnetic filter shows good performance results in filtering magnetite, cobalt ferrite and nickel ferrite except hematite, which is a kind of anti-ferromagnetic material, from aqueous coolant simulation. At the above 5 μm of particle size, the separation efficiencies are over than 90%. (author)

  15. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  16. Simultaneously and separately immobilizing incompatible dual-enzymes on polymer substrate via visible light induced graft polymerization

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Ma, Yuhong; Yang, Wantai

    2018-04-01

    Developing facile and mild strategy to construct multi-enzymes immobilization system has attracted considerable attentions in recent years. Here a simple immobilization strategy called visible light induced graft polymerization that can simultaneously and separately encapsulate two kinds of enzymes on one polymer film was proposed. Two incompatible enzymes, trypsin and transglutaminase (TGase) were selected as model dual-enzymes system and simultaneously immobilized on two sides of low-density polyethylene (LDPE) film. After immobilization, it was found that more than 90% of the enzymes can be embedded into dual-enzymes loaded film without leakage. And the activities of both separately immobilized enzymes were higher than the activities of mixed co-immobilized enzymes or the sequential immobilized ones. This dual-enzymes loaded film (DEL film) showed excellent recyclability and can retain >87% activities of both enzymes after 4 cycles of utilization. As an example, this DEL film was used to conjugate a prodrug of cytarabine with a target peptide. The successful preparation of expected product demonstrated that the separately immobilized two enzymes can worked well together to catalyze a two-step reaction.

  17. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation

    Directory of Open Access Journals (Sweden)

    Yu J.

    2018-01-01

    Full Text Available In this investigation, a pilot-scale fluidized magnetization roasting reactor was introduced and used to enhance magnetic properties of iron ore. Consequently, the effects of roasting temperature, reducing gas CO flow rate, and fluidizing gas N2 flow rate on the magnetization roasting performance were studied. The results indicated that the hematite was almost completely converted into magnetite by a gas mixture of 4 Nm3/h CO and 1 Nm3/h N2 at roasting temperature of 540°C for about 30 s. Under optimized conditions, a high grade concentrate containing 66.84% iron with iron recovery of 91.16% was achieved. The XRD, VSM, and optical microscopy (OM analyses revealed that most of the hematite, except some coarse grains, was selectively converted to magnetite, and that the magnetic properties were greatly enhanced. Thus, their separation from non-magnetic gangue minerals was facilitated.

  18. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Science.gov (United States)

    Ma, Jing; Song, Zhi-Qiang; Yan, Fu-Hua

    2014-01-01

    To explore the feasibility of dual-source dual-energy computed tomography (DSDECT) for hepatic iron and fat separation in vivo. All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA) were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, pVNC) values were negatively correlated with the fat pathology grading (r = -0.642,pVNC values (F = 25.308,pVNC values were only observed between the fat-present and fat-absent groups. Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  19. Design improvement of permanent magnet flux switching motor with dual rotor structure

    Science.gov (United States)

    Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.

    2017-08-01

    This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.

  20. Magnetic separation as a plutonium residue enrichment process

    International Nuclear Information System (INIS)

    Avens, L.R.; Gallegos, U.F.; McFarlan, J.T.

    1990-01-01

    Several plutonium contaminated residues have been subjected to Open Gradient Magnetic Separation (OGMS) on an experimental scale. OGMS experiments on graphite and bomb reduction residues resulted in a plutonium rich fraction and a plutonium lean fraction. Values for the bulk quantity rejected to the lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the lean fraction plutonium content was too high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. 6 refs., 1 fig., 9 tabs

  1. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    Science.gov (United States)

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  2. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  3. Optimal and fast E/B separation with a dual messenger field

    Science.gov (United States)

    Kodi Ramanah, Doogesh; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-05-01

    We adapt our recently proposed dual messenger algorithm for spin field reconstruction and showcase its efficiency and effectiveness in Wiener filtering polarized cosmic microwave background (CMB) maps. Unlike conventional preconditioned conjugate gradient (PCG) solvers, our preconditioner-free technique can deal with high-resolution joint temperature and polarization maps with inhomogeneous noise distributions and arbitrary mask geometries with relative ease. Various convergence diagnostics illustrate the high quality of the dual messenger reconstruction. In contrast, the PCG implementation fails to converge to a reasonable solution for the specific problem considered. The implementation of the dual messenger method is straightforward and guarantees numerical stability and convergence. We show how the algorithm can be modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield unbiased constrained signal realizations, consistent with observed data. This algorithm presents a pathway to exact global analyses of high-resolution and high-sensitivity CMB data for a statistically optimal separation of E and B modes. It is therefore relevant for current and next-generation CMB experiments, in the quest for the elusive primordial B-mode signal.

  4. Separation of magnetic beads in a hybrid continuous flow microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Abhishek [Haldia Institute of Technology, Production Engineering Department, Haldia (India); Ganguly, Ranjan; Datta, Amitava [Jadavpur University, Power Engineering Department (India); Modak, Nipu, E-mail: nmechju@gmail.com [Jadavpur University, Mechanical Engineering Department (India)

    2017-04-01

    Magnetic separation of biological entities in microfluidic environment is a key task for a large number of bio-analytical protocols. In magnetophoretic separation, biochemically functionalized magnetic beads are allowed to bind selectively to target analytes, which are then separated from the background stream using a suitably imposed magnetic field. Here we present a numerical study, characterizing the performance of a magnetophoretic hybrid microfluidic device having two inlets and three outlets for immunomagnetic isolation of three different species from a continuous flow. The hybrid device works on the principle of split-flow thin (SPLITT) fractionation and field flow fractionation (FFF) mechanisms. Transport of the magnetic particles in the microchannel has been predicted following an Eulerian-Lagrangian model and using an in-house numerical code. Influence of the salient geometrical parameters on the performance of the separator is studied by characterizing the particle trajectories and their capture and separation indices. Finally, optimum channel geometry is identified that yields the maximum capture efficiency and separation index. - Highlights: • Immunomagnetic separation in a hybrid microchannel design is investigated numerically. • Influence of salient geometric parameters on the device performance is analysed. • Optimum device dimension for best separation parameters are identified. • Optimized design of hybrid separator performs better than FFF or SPLITT devices.

  5. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry.

    Science.gov (United States)

    Iranmanesh, M; Hulliger, J

    2017-10-02

    The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research. Lab scale or industrial implementations involve separation of macro- and nanoparticles, cells, proteins, and macromolecules down to small molecules and ions. Most promising are those attempts where the object to be separated is attached to a strong magnetic nanoparticle. Here, all kinds of specific affinity interactions are used to attach magnetic carrier particles to mainly objects of biological interest. Other attempts use a strong paramagnetic suspension for the separation of purely diamagnetic objects, such as bio-macromolecules or heavy metals. The application of magnetic separation to superconducting inorganic phases is of particular interest in combination with ceramic combinatorial chemistry to generate a library of e.g. cuprate superconductors.

  6. The suspended magnetic separator with large blocks from NdFeB magnets and its long term technological tests

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2011-01-01

    Roč. 8, č. 1 (2011), s. 89-97 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic separation * magnetic separators * magnetic circuits Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/01_11/8_Zezulka.pdf

  7. Development of volume reduction method of cesium contaminated soil with magnetic separation

    International Nuclear Information System (INIS)

    Yukumatsu, Kazuki; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2016-01-01

    In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil

  8. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  9. Magnetic separator having a multilayer matrix, method and apparatus

    Science.gov (United States)

    Kelland, David R.

    1980-01-01

    A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.

  10. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  11. Magnetic resonance imaging patterns of mononeuropathic denervation in muscles with dual innervation

    Energy Technology Data Exchange (ETDEWEB)

    Sneag, Darryl B.; Lee, Susan C.; Melisaratus, Darius P. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Feinberg, Joseph H. [Physical Medicine and Rehabilitation, Hospital for Special Surgery, New York, NY (United States); Amber, Ian [MedStar Georgetown University Hospital, Department of Radiology, DC, Washington (United States)

    2017-12-15

    Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles. (orig.)

  12. Magnetic resonance imaging patterns of mononeuropathic denervation in muscles with dual innervation

    International Nuclear Information System (INIS)

    Sneag, Darryl B.; Lee, Susan C.; Melisaratus, Darius P.; Feinberg, Joseph H.; Amber, Ian

    2017-01-01

    Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles. (orig.)

  13. Magnetic microstructure of candidates for epitaxial dual Heusler magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Kaiser, A.; Banerjee, D.; Rata, A.D.; Wiemann, C.; Cramm, S.; Schneider, C.M.

    2009-01-01

    Heusler alloys are considered as interesting ferromagnetic electrode materials for magnetic tunnel junctions, because of their high spin polarization. We, therefore, investigated the micromagnetic properties in a prototypical thin film system comprising two different Heusler phases Co 2 MnSi (CMS) and Co 2 FeSi (CFS) separated by a MgO barrier. The magnetic microstructure was investigated by X-ray photoemission electron microscopy (XPEEM). We find a strong influence of the Heusler phase formation process on the magnetic domain patterns. SiO 2 /V/CMS/MgO/CFS and SiO 2 /V/CFS/MgO/CMS trilayer structures exhibit a strikingly different magnetic behavior, which is due to pinhole coupling through the MgO barrier and a strong thickness dependence of the magnetic ordering in Co 2 MnSi

  14. Magnetic filtration of phase separating ferrofluids: From basic concepts to microfluidic device

    Science.gov (United States)

    Kuzhir, P.; Magnet, C.; Ezzaier, H.; Zubarev, A.; Bossis, G.

    2017-06-01

    In this work, we briefly review magnetic separation of ferrofluids composed of large magnetic particles (60 nm of the average size) possessing an induced dipole moment. Such ferrofluids exhibit field-induced phase separation at relatively low particle concentrations (∼0.8 vol%) and magnetic fields (∼10 kA/m). Particle aggregates appearing during the phase separation are extracted from the suspending fluid by magnetic field gradients much easier than individual nanoparticles in the absence of phase separation. Nanoparticle capture by a single magnetized microbead and by multi-collector systems (packed bed of spheres and micro-pillar array) has been studied both experimentally and theoretically. Under flow and magnetic fields, the particle capture efficiency Λ decreases with an increasing Mason number for all considered geometries. This decrease may become stronger for aggregated magnetic particles (Λ ∝Ma-1.7) than for individual ones (Λ ∝Ma-1) if the shear fields are strong enough to provoke aggregate rupture. These results can be useful for development of new magneto-microfluidic immunoassays based on magnetic nanoparticles offering a much better sensitivity as compared to presently used magnetic microbeads.

  15. The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2018-02-01

    Full Text Available The in-wheel motor has received more attention owing to its simple structure, high transmission efficiency, flexible control, and easy integration design. It is difficult to achieve high performance with conventional motors due to their dimensions and structure. This paper presents a new dual-stator and dual-field-excitation permanent-magnet in-wheel motor (DDPMIM that is based on the structure of the conventional in-wheel motor and the structure of both the radial and axial magnetic field motor. The finite element analysis (FEA model of the DDPMIM is established and compared with that of the conventional in-wheel motor. The results show that the DDPMIM achieves a higher output torque at low speeds and that the flux-weakening control strategy is not needed in the full speed range.

  16. Towards a magnetic field separation in Ion Beam Sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Malobabic, Sina, E-mail: s.malobabic@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Kadhkoda, Puja [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Defects embedded in coatings due to particle contamination are considered as a primary factor limiting the quality of optical coatings in Ion Beam Sputtering. An approach combining the conventional Ion Beam Sputtering process with a magnetic separator in order to remove these particles from film growth is presented. The separator provides a bent axial magnetic field that guides the material flux towards the substrate positioned at the exit of the separator. Since there is no line of sight between target and substrate, the separator prevents that the particles generated in the target area can reach the substrate. In this context, optical components were manufactured that reveal a particle density three times lower than optical components which were deposited using a conventional Ion Beam Sputtering process. - Highlights: • We use bent magnetic fields to guide and separate the sputtered deposition material. • No line of sight between substrate and target prevents thin films from particles. • The transport efficiency of binary and ternary oxides is investigated. • The defect statistics of manufactured dielectric ternary multilayers are evaluated. • The phase separation leads to a drastically reduction of particle contamination.

  17. Dual stage active magnetic regenerator and method

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  18. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  19. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  20. Wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Levin, J.; Shanks, R.I.

    1980-01-01

    Miscellaneous laboratory tests (most of them on cyanide residues) were undertaken to supplement on-site pilot-plant work on wet high intensity magnetic separation (WHIMS). Initially, the main concern was with blockage of the matrix, and consideration was given to the use of a reverse-flushing system. The laboratory tests on this system were encouraging, but they were not of sufficiently long duration to be conclusive. The velocity of the pulp through the matrix is important, because it determines the capacity of the separator and the recovery obtainable. Of almost equal importance is the magnetic load, which affects the velocity of the pulp and the recovery. Typically, a recovery of 51 per cent of the uranium was reduced to one of 40 per cent as the magnetic load was increased from 25 to 100 g/l, while the pulp velocity decreased from 62 to 36 mm/s. There was some indication that, for the same pulp velocity, lower recoveries are obtained when free-fall feeding is used. Some benefit was observed in the application of WHIMS to coarsely ground ore; from a Blyvooruitzicht rod-mill product, 25 per cent of the total uranium was recovered when only 29 per cent of the rod-mill product (the finest portion) was treated. A similar recovery was made from 43 per cent of the rod-mill product from Stilfontein; a second stage of treatment after regrinding raised the overall recovery of uranium to 76,4 per cent. Recoveries of 55 and 42 per cent of the uranium were obtained in tests on two flotation tailings from Free State Geduld. In a determination of the mass magnetic susceptibilities of the constituents in a typical concentrate obtained by WHIMS, it was found that some 20 per cent of the magnetic product had a susceptibility of less than 5,4 X 10 -6 e.m.u. but contained 38 per cent of the uranium recovered by WHIMS. A few tests were conducted on different types of matrix. A matrix of spaced horizontal rods is recommended for possible future consideration [af

  1. Electrochemical fabrication, microstructure and magnetic properties of Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn [Key Lab. for New Type of Functional Materials in Hebei Province, Hebei University of Technology, No.8, Road No.1, Dingzigu, Hongqiao District, Tianjin 300130 (China); Chen, Fenghua [Tianjin Sanhuan Lucky New Materials Inc., Tianjin Economical-Technological Development Area (TEDA), Tianjin 300457 (China); Yang, Wei; Li, Hongfang; Liu, Qiaozhi; Sun, Jibing [Key Lab. for New Type of Functional Materials in Hebei Province, Hebei University of Technology, No.8, Road No.1, Dingzigu, Hongqiao District, Tianjin 300130 (China)

    2015-06-15

    By utilizing alternate electrochemical reaction, atomic migration and deposition of Fe, Co, Sm and other chemical substances in the electrochemical solution, a large number of Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowire arrays were carried out in the anodic aluminum oxide (AAO) template with highly uniform and orderly. The Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowire arrays with diameter of 50 nm and length of 12 μm have the smooth surface and uniform diameter. The morphology and microstructure of annealed Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowires were observed and analyzed using SEM, TEM and HRTEM. Compared with single-phase nanowires, dual phase magnetic nanowires have higher coercivity and saturation magnetization. In this composite system, both the hard and the soft phases have a high Curie temperature, therefore, we believe that the Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowire arrays is a new type of high-temperature magnetic composites. - Highlights: • Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowires were prepared by electrochemical method. • The interface pinning is the main factor to improve anisotropy field of the nanowires. • The dual phase magnetic nanowires have higher coercivity and saturation magnetization.

  2. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Ha, D.W.; Kwon, J.M.; Baik, S.K.; Lee, Y.J.; Han, K.S.; Ko, R.K.; Sohn, M.H.; Seong, K.C.

    2011-01-01

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2 O 3 (hematite) and γ-Fe 2 O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  3. SUPERCONDUCTING DIPOLE MAGNETS FOR THE LHC INSERTION REGIONS

    International Nuclear Information System (INIS)

    WILLEN, E.; ANERELLA, M.; COZZOLINO, J.; GANETIS, G.; GHOSH, A.; GUPTA, R.; HARRISON, M.; JAIN, A.; MARONE, A.; MURATORE, J.; PLATE, S.; SCHMALZLE, J.; WANDERER, P.; WU, K.C.

    2000-01-01

    Dipole bending magnets are required to change the horizontal separation of the two beams in the LHC. In Intersection Regions (IR) 1, 2, 5, and 8, the beams are brought into collision for the experiments located there. In IR4, the separation of the beams is increased to accommodate the machine's particle acceleration hardware. As part of the US contribution to the LHC Project, BNL is building the required superconducting magnets. Designs have been developed featuring a single aperture cold mass in a single cryostat, two single aperture cold masses in a single cryostat, and a dual aperture cold mass in a single cryostat. All configurations feature the 80 mm diameter, 10 m long superconducting coil design used in the main bending magnets of the Relativistic Heavy Ion Collider recently completed at Brookhaven. The magnets for the LHC, to be built at Brookhaven, are described and results from the program to build two dual aperture prototypes are presented

  4. Classical trajectory Monte Carlo simulations of particle confinement using dual levitated coils

    Directory of Open Access Journals (Sweden)

    R. A. Lane

    2014-07-01

    Full Text Available The particle confinement properties of plasma confinement systems that employ dual levitated magnetic coils are investigated using classical trajectory Monte Carlo simulations. Two model systems are examined. In one, two identical current-carrying loops are coaxial and separated axially. In the second, two concentric and coplanar loops have different radii and carry equal currents. In both systems, a magnetic null circle is present between the current loops. Simulations are carried out for seven current loop separations for each system and at numerous values of magnetic field strength. Particle confinement is investigated at three locations between the loops at different distances from the magnetic null circle. Each simulated particle that did not escape the system exhibited one of four modes of confinement. Reduced results are given for both systems as the lowest magnetic field strength that exhibits complete confinement of all simulated particles for a particular loop separation.

  5. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  6. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    Science.gov (United States)

    Babinec, Peter; Krafcík, Andrej; Babincová, Melánia; Rosenecker, Joseph

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  7. Beneficiation Of Chromium Waste By Means Of Magnetic And Gravitational Separation

    Directory of Open Access Journals (Sweden)

    Brożek M.

    2015-09-01

    Full Text Available The paper presents the results of investigations of chromium recovery from the Cr waste mud, originating in the production of sodium dichromate. The differentiation of physical properties of particles of different contents of chromium and magnesium compounds is a premise for the use of physical separation methods. The investigations were performed on 2 waste samples, taken by random from the waste dump. The investigations of magnetic and gravity concentration for sample I and II were made, respectively. The results of screen and float and sink analyses of sample II indicate that it is possible to obtain Cr- and Mg-enriched products by means of a combined method of separation, i.e. hydraulic classification and, next, gravitational concentration on the shaking table. The concept of gravity concentration of the tested chromium waste was verified in the technical scale on multiboard shaking tables. The advantage of these fittings in relation to laboratory conditions is the possibility of separation of discussed waste without previous classification. The longer time of separation on the industrial shaking table as well as the respective amount of water directed to the process together with feed enabled an exact separation of initial material. The obtained concentrate in such conditions contains from 25 to 35% Cr2O3, depending on the chromium content in the initial waste material. It results from the fractional magnetic analysis of sample I that by means of the magnetic separation it is possible to obtain the magnetic concentrate of Cr2O3 content minimum 20% and, simultaneously, to obtain the non-magnetic product of increased MgO content. The optimum separation conditions regarding the yield and content of Cr2O3 were determined. The highest value of criterion K for the grade of the concentrate containing over 20% of Cr2O3 is obtained when the 10 mm diameter balls and the 1150 kA/m magnetic field intensity are applied. The yield of the concentrate

  8. Microstructure, Corrosion and Magnetic Behavior of an Aged Dual-Phase Stainless Steel

    Science.gov (United States)

    Ziouche, A.; Haddad, A.; Badji, R.; Zergoug, M.; Zoubiri, N.; Bedjaoui, W.; Abaidia, S.

    2018-03-01

    In the present work, the effect of the precipitation phenomena on corrosion and magnetic behavior of an aged dual-phase stainless steel was investigated. Aging treatment caused the precipitation of the σ phase, chromium carbides and secondary austenite, which was accompanied by the shifting of the δ/γ interfaces inside the δ ferrite grains. Aging between 700 and 850 °C strongly deteriorated the pitting corrosion resistance of the studied material. Magnetic investigation of the aged material using the vibration sample magnetic technique revealed the sensitivity of the intrinsic magnetic properties to the smallest microstructural change. This was confirmed by the Eddy current technique that led also to the evaluation of the aging-induced localized corrosion.

  9. Simulations of magnetic hysteresis loops for dual layer recording media

    Science.gov (United States)

    Fal, T. J.; Plumer, M. L.; Whitehead, J. P.; Mercer, J. I.; van Ek, J.; Srinivasan, K.

    2013-05-01

    A Kinetic Monte-Carlo algorithm is applied to examine MH loops of dual-layer magnetic recording media at finite temperature and long time scales associated with typical experimental measurements. In contrast with standard micromagnetic simulations, which are limited to the ns-μs time regime, our approach allows for the direct calculation of magnetic configurations over periods from minutes to years. The model is used to fit anisotropy and coupling parameters to experimental data on exchange-coupled composite media which are shown to deviate significantly from standard micromagnetic results. Sensitivities of the loops to anisotropy, inter-layer exchange coupling, temperature, and sweep rate are examined.

  10. On Poor Separation in Magnetically Driven Shock Tube

    DEFF Research Database (Denmark)

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison......, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, instead of through the wall boundary layer, but through the current-sheet itself....

  11. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  12. Experimental results of high power dual frequency resonant magnet excitation at TRIUMF

    International Nuclear Information System (INIS)

    Reiniger, K.W.; Heritier, G.

    1988-06-01

    We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)

  13. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Directory of Open Access Journals (Sweden)

    Jing Ma

    Full Text Available OBJECTIVE: To explore the feasibility of dual-source dual-energy computed tomography (DSDECT for hepatic iron and fat separation in vivo. MATERIALS AND METHODS: All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. RESULTS: The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, p<0.001. Virtual non-iron contrast (VNC values were negatively correlated with the fat pathology grading (r = -0.642,p<0.0001. Different groups showed significantly different iron enhancement values and VNC values (F = 25.308,p<0.001; F = 10.911, p<0.001, respectively. Among the groups, significant differences in iron enhancement values were only observed between the iron-present and iron-absent groups, and differences in VNC values were only observed between the fat-present and fat-absent groups. CONCLUSION: Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  14. Magnetic Monopoles and the Dual London Equation in SU(3) Lattice Gauge Theory

    OpenAIRE

    Skala, Peter; Faber, Manfried; Zach, Martin

    1996-01-01

    We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge invariant formulation.

  15. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    Science.gov (United States)

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  16. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    International Nuclear Information System (INIS)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza

    2013-01-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  17. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza, E-mail: amanda@igc.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: amanda@igc.ufmg.br, E-mail: lurdesfernandes@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horionte, MG (Brazil)

    2013-07-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  18. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  19. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  20. The relationship between the force and separation of miniature magnets used in dentistry.

    Science.gov (United States)

    Darvell, Brian W; Gilding, Brian H

    2018-06-01

    Miniature magnets are used in dentistry, principally for the retention of prosthetic devices. The relationship between force and separation of a magnet and its keeper, or, equivalently, two such magnets, has been neither defined theoretically nor described practically in any detail suitable for these applications. The present paper addresses this lacuna. A magnet is considered as a conglomeration of magnetic poles distributed over a surface or a solid in three-dimensional space, with the interaction of poles governed by the Coulomb law. This leads to a suite of mathematical models. These models are analysed for their description of the relationship between the force and the separation of two magnets. It is shown that at a large distance of separation, an inverse power law must apply. The power is necessarily integer and at least two. All possibilities are exhausted. Complementarily, under reasonable assumptions, it is shown that at a small distance of separation, the force remains finite. The outcome is in accordance with practical experience, and at odds with the use of simple conceptual models. Consequences relevant to the usage of magnets in dentistry are discussed. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  1. The electromagnetic design of a permanent magnet based separator

    International Nuclear Information System (INIS)

    Nedelcu, S.

    2002-08-01

    The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio η between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio η ∼ 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometry for such arrangements. An experimental system has been also built, and the experimental values were compared against the theory. However, the results produced evidence that the manufacturing of any improved geometry (an estimated η ∼ 100) in this direction might be very difficult, for the tolerances involved were very strict. The disk arrangement was the latest device to be investigated. Particularly, a magnetic dipole model developed earlier for the ring arrangement suggested the way in which to arrange the magnets in the ON position. Moreover, the use of the magnetic symmetry of the device forced the OFF magnetic fields to negligible values. Detailed computer simulations of the dynamics of the particles in the applied magnetic field of the tubular and disk arrangements have been earned out. The adopted models could show realistic phenomena, e.g. particle clustering, chaining, block movement, etc. The separation efficiency proved to be nearly 100%. For the

  2. Magnetic Graphene Oxide for Dual Targeted Delivery of Doxorubicin and Photothermal Therapy

    Directory of Open Access Journals (Sweden)

    Yu-Jen Lu

    2018-03-01

    Full Text Available To develop a pH-sensitive dual targeting magnetic nanocarrier for chemo-phototherapy in cancer treatment, we prepared magnetic graphene oxide (MGO by depositing Fe3O4 magnetic nanoparticles on graphene oxide (GO through chemical co-precipitation. MGO was modified with polyethylene glycol (PEG and cetuximab (CET, an epidermal growth factor receptor (EGFR monoclonal antibody to obtain MGO-PEG-CET. Since EGFR was highly expressed on the tumor cell surface, MGO-PEG-CET was used for dual targeted delivery an anticancer drug doxorubicin (DOX. The physico-chemical properties of MGO-PEG-CET were fully characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, Fourier transform Infrared spectroscopy, thermogravimetric analysis, and superconducting quantum interference device. Drug loading experiments revealed that DOX adsorption followed the Langmuir isotherm with a maximal drug loading capacity of 6.35 mg/mg, while DOX release was pH-dependent with more DOX released at pH 5.5 than pH 7.4. Using quantum-dots labeled nanocarriers and confocal microscopy, intracellular uptakes of MGO-PEG-CET by high EGFR-expressing CT-26 murine colorectal cells was confirmed to be more efficient than MGO. This cellular uptake could be inhibited by pre-incubation with CET, which confirmed the receptor-mediated endocytosis of MGO-PEG-CET. Magnetic targeted killing of CT-26 was demonstrated in vitro through magnetic guidance of MGO-PEG-CET/DOX, while the photothermal effect could be confirmed in vivo and in vitro after exposure of MGO-PEG-CET to near-infrared (NIR laser light. In addition, the biocompatibility tests indicated MGO-PEG-CET showed no cytotoxicity toward fibroblasts and elicited minimum hemolysis. In vitro cytotoxicity tests showed the half maximal inhibitory concentration (IC50 value of MGO-PEG-CET/DOX toward CT-26 cells was 1.48 µg/mL, which was lower than that of MGO-PEG/DOX (2.64 µg/mL. The IC50 value could be further

  3. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    Science.gov (United States)

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  4. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe 3 O 4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10 -2 S cm -1 . Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  5. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  6. Study on industrial wastewater treatment using superconducting magnetic separation

    Science.gov (United States)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  7. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kačenka, M.; Kaman, Ondřej; Kotek, J.; Falteisek, L.; Černý, J.; Jirák, D.; Herynek, V.; Zacharovová, K.; Berková, A.; Jendelová, Pavla; Kupčík, Jaroslav; Pollert, Emil; Veverka, Pavel; Lukeš, I.

    2011-01-01

    Roč. 21, č. 1 (2011), s. 157-164 ISSN 0959-9428 R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50390703; CEZ:AV0Z40720504 Keywords : cellular labelling * dual probe * magnetic nanoparticles * MRI * silica coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011

  8. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    Science.gov (United States)

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. A Study on Accuracy Improvement of Dual Micro Patterns Using Magnetic Abrasive Deburring

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dong-Hyun; Kwak, Jae-Seob [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In recent times, the requirement of a micro pattern on the surface of products has been increasing, and high precision in the fabrication of the pattern is required. Hence, in this study, dual micro patterns were fabricated on a cylindrical workpiece, and deburring was performed by magnetic abrasive deburring (MAD) process. A prediction model was developed, and the MAD process was optimized using the response surface method. When the predicted values were compared with the experimental results, the average prediction error was found to be approximately 7%. Experimental verification shows fabrication of high accuracy dual micro pattern and reliability of prediction model.

  10. Zero sound and quasiwave: separation in the magnetic field

    International Nuclear Information System (INIS)

    Bezuglyj, E.V.; Bojchuk, A.V.; Burma, N.G.; Fil', V.D.

    1995-01-01

    Theoretical and experimental results on the behavior of the longitudinal and transverse electron sound in a weak magnetic field are presented. It is shown theoretically that the effects of the magnetic field on zero sound velocity and ballistic transfer are opposite in sign and have sufficiently different dependences on the sample width, excitation frequency and relaxation time. This permits us to separate experimentally the Fermi-liquid and ballistic contributions in the electron sound signals. For the first time the ballistic transfer of the acoustic excitation by the quasiwave has been observed in zero magnetic field

  11. Dual Fan Separator within the Universal Waste Management System

    Science.gov (United States)

    Stapleton, Tom; Converse, Dave; Broyan, James Lee, Jr.

    2014-01-01

    Since NASA's new spacecraft in development for both LEO and Deep Space capability have considerable crew volume reduction in comparison to the Space Shuttle, the need became apparent for a smaller commode. In response the Universal Waste Management System (UWMS) was designed, resulting in an 80% volume reduction from the last US commode, while enhancing performance. The ISS WMS and previous shuttle commodes have a fan supplying air flow to capture feces and a separator to capture urine and separate air from the captured air/urine mixture. The UWMS combined both rotating equipment components into a single unit, referred to at the Dual Fan Separator (DFS). The combination of these components resulted in considerable packaging efficiency and weight reduction, removing inter-component plumbing, individual mounting configurations and required only a single motor and motor controller, in some of the intended UWMS platform applications the urine is pumped to the ISS Urine Processor Assembly (UPA) system. It requires the DFS to include less than 2.00% air inclusion, by volume, in the delivered urine. The rotational speed needs to be kept as low as possible in centrifugal urine separators to reduce air inclusion in the pumped fluid, while fans depend on rotational speed to develop delivered head. To satisfy these conflicting requirements, a gear reducer was included, allowing the fans to rotate at a much higher speed than the separator. This paper outlines the studies and analysis performed to develop the DFS configuration. The studies included a configuration trade study, dynamic stability analysis of the rotating bodies and a performance analysis of included labyrinth seals. NASA is considering a program to fly the UWMS aboard the ISS as a flight experiment. The goal of this activity is to advance the Technical Readiness Level (TRL) of the DFS and determine if the concept is ready to be included as part of the flight experiment deliverable.

  12. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    KAUST Repository

    Eisenträ ger, Almut; Vella, Dominic; Griffiths, Ian M.

    2014-01-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires

  13. Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light.

    Science.gov (United States)

    Li, Zile; Kim, Inki; Zhang, Lei; Mehmood, Muhammad Q; Anwar, Muhammad S; Saleem, Murtaza; Lee, Dasol; Nam, Ki Tae; Zhang, Shuang; Luk'yanchuk, Boris; Wang, Yu; Zheng, Guoxing; Rho, Junsuk; Qiu, Cheng-Wei

    2017-09-26

    Efficient transmission-type meta-holograms have been demonstrated using high-index dielectric nanostructures based on Huygens' principle. It is crucial that the geometry size of building blocks be judiciously optimized individually for spectral overlap of electric and magnetic dipoles. In contrast, reflection-type meta-holograms using the metal/insulator/metal scheme and geometric phase can be readily achieved with high efficiency and small thickness. Here, we demonstrate a general platform for design of dual magnetic resonance based meta-holograms based on the geometric phase using silicon nanostructures that are quarter wavelength thick for visible light. Significantly, the projected holographic image can be unambiguously observed without a receiving screen even under the illumination of natural light. Within the well-developed semiconductor industry, our ultrathin magnetic resonance-based meta-holograms may have promising applications in anticounterfeiting and information security.

  14. Colour magnetic currents and the dual London equation in SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Skala, P.; Faber, M.; Zach, M.

    1997-01-01

    We propose a method for the determination of magnetic currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge-invariant formulation. (orig.)

  15. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    Science.gov (United States)

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater.

    Science.gov (United States)

    Wang, Sheng-ye; Tang, Yan-kui; Li, Kun; Mo, Ya-yuan; Li, Hao-feng; Gu, Zhan-qi

    2014-12-01

    Magnetic biochar was prepared with eucalyptus leaf residue remained after essential oil being extracted. Batch experiments were conducted to examine the capacity of the magnetic biochar to remove Cr (VI) from electroplating wastewater and to be separated by an external magnetic field. The results show that the initial solution pH plays an important role on both sorption and separation. The removal rates of Cr (VI), total Cr, Cu (II), and Ni (II) were 97.11%, 97.63%, 100% and 100%, respectively. The turbidity of the sorption-treated solution was reduced to 21.8NTU from 4075NTU after 10min magnetic separation. The study also confirms that the magnetic biochar still retains the original magnetic separation performance after the sorption process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Alfakih Khaled

    2011-05-01

    Full Text Available Abstract Background The dual-bolus protocol enables accurate quantification of myocardial blood flow (MBF by first-pass perfusion cardiovascular magnetic resonance (CMR. However, despite the advantages and increasing demand for the dual-bolus method for accurate quantification of MBF, thus far, it has not been widely used in the field of quantitative perfusion CMR. The main reasons for this are that the setup for the dual-bolus method is complex and requires a state-of-the-art injector and there is also a lack of post processing software. As a solution to one of these problems, we have devised a universal dual-bolus injection scheme for use in a clinical setting. The purpose of this study is to show the setup and feasibility of the universal dual-bolus injection scheme. Methods The universal dual-bolus injection scheme was tested using multiple combinations of different contrast agents, contrast agent dose, power injectors, perfusion sequences, and CMR scanners. This included 3 different contrast agents (Gd-DO3A-butrol, Gd-DTPA and Gd-DOTA, 4 different doses (0.025 mmol/kg, 0.05 mmol/kg, 0.075 mmol/kg and 0.1 mmol/kg, 2 different types of injectors (with and without "pause" function, 5 different sequences (turbo field echo (TFE, balanced TFE, k-space and time (k-t accelerated TFE, k-t accelerated balanced TFE, turbo fast low-angle shot and 3 different CMR scanners from 2 different manufacturers. The relation between the time width of dilute contrast agent bolus curve and cardiac output was obtained to determine the optimal predefined pause duration between dilute and neat contrast agent injection. Results 161 dual-bolus perfusion scans were performed. Three non-injector-related technical errors were observed (1.9%. No injector-related errors were observed. The dual-bolus scheme worked well in all the combinations of parameters if the optimal predefined pause was used. Linear regression analysis showed that the optimal duration for the predefined

  18. Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia

    International Nuclear Information System (INIS)

    Ahedo, Eduardo; Merino, Mario

    2012-01-01

    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.

  19. Effect of atomic disorder on the magnetic phase separation

    Science.gov (United States)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  20. Uniform magnetization reversal in dual main-phase (Ce,Nd)2Fe14B sintered magnets with inhomogeneous microstructure

    International Nuclear Information System (INIS)

    Zhang, Le-le; Li, Zhu-bai; Zhang, Xue-feng; Ma, Qiang; Liu, Yan-li; Li, Yong-feng; Zhao, Qian

    2017-01-01

    The element distribution and the magnetic properties were investigated in (Ce,Nd)–Fe–B sintered magnets prepared by mixing Nd 13.5 Fe 80 B 6.5 and Ce 9 Nd 4.5 Fe 80 B 6.5 powders with different mass ratios. Two main phases exist, but element diffusion is evident, and the chemical composition of the main phase is widely different from that of the master alloy. The Ce element tends to be expelled from the Ce-rich Re 2 Fe 14 B phase. Compared with the Ce-rich main phase, the Nd-rich Re 2 Fe 14 B phase is more stable in structure. Although the microstructure is inhomogeneous and the magnetocrystalline anisotropy is variable, the magnetization reversal is uniform in these dual main-phase magnets, which should ascribe to the existence of the exchange coupling, and magnetization reversal undergoes the nucleation of the reversed domain in irreversible magnetization. It is expected to further improve the coercivity by optimizing the distribution of the Nd-rich main phase in preparing the resource-saving (Ce,Nd) 2 Fe 14 B sintered magnets. (paper)

  1. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    Science.gov (United States)

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  2. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    Science.gov (United States)

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  3. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Science.gov (United States)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  4. Magnetic separation for pre-concentration of uranium values from copper plant tailings

    International Nuclear Information System (INIS)

    Jha, R.S.; Sreenivas, T.; Natarajan, R.; Sridhar, U.; Rao, N.K.

    1991-01-01

    Using the paramagnetic character of uranium minerals, the preconcentration of uranium bearing ores and copper plant tailings of Singhbhum area have been investigated in a pilot plant scale wet high intensity magnetic separator (WHIMS). The variables studied include magnetic field intensity, matrix drum speed feed slurry flow rate and its pulp density. The results of these investigations have shown that 75-85% of the contained uranium values could be recovered in 45-55% weight in the magnetic fraction in the case of copper plant tailings from Rakha, Surda and Mosabani. The losses in the non magnetics were primarily due to the ultrafine liberated uraninite particles not collected by WHIMS due to machine limitations and the values occurring as fine inclusions in quartz. Improved recovery can be obtained by offering higher field gradients and preventing loss of very fine liberated uranium values. High gradient magnetic separator (HGMS) offers higher field gradients. A test sample of Mosabani copper tailings studied at the Sala Magnetic Inc in HGMS has indicated superior results in comparison to WHIMS. (author). 7 refs., 3 figs., 6 tabs

  5. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Caspi, E.N.; Melamud, M.; Pinto, H.; Shaked, H.; Chmaissem, O.; Jorgensen, J.D.; Short, S.

    1999-01-01

    Complete text of publication follows. In a previous work on the (U 1-x Nd x )Co 2 Ge 2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: T N (x=0.4) = 130 K, and T N (x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  6. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom.

    Science.gov (United States)

    Wegrowe, J-E; Olive, E

    2016-03-16

    The Landau-Lifshitz-Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times.

  7. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom

    International Nuclear Information System (INIS)

    Wegrowe, J-E; Olive, E

    2016-01-01

    The Landau–Lifshitz–Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times. (paper)

  8. Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles

    Science.gov (United States)

    Guo, Huiling; Li, Mengyun; Tu, Shu; Sun, Honghao

    2018-03-01

    Fe3O4 nanoparticles coated with polyacrylamide (PAM) were synthesized. The magnetic core, with an average hydrodynamic size of 235.5 nm, allowed the magnetic nanoparticles (MNPs) rapid separation from solutions under an external magnetic field. NTA-Ni2+ was modified on the surface of Fe3O4/PAM MNPs to selectively trap his-tagged green fluorescent protein (GFP). The results showed that Fe3O4/PAM/NTA-Ni2+ MNPs exhibited remarkable capability of selective binding and separating his-tagged GFP. The adsorption efficiency was 93.37%.

  9. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Gcina Mamba

    2016-06-01

    Full Text Available Organic and inorganic compounds utilised at different stages of various industrial processes are lost into effluent water and eventually find their way into fresh water sources where they cause devastating effects on the ecosystem due to their stability, toxicity, and non-biodegradable nature. Semiconductor photocatalysis has been highlighted as a promising technology for the treatment of water laden with organic, inorganic, and microbial pollutants. However, these semiconductor photocatalysts are applied in powdered form, which makes separation and recycling after treatment extremely difficult. This not only leads to loss of the photocatalyst but also to secondary pollution by the photocatalyst particles. The introduction of various magnetic nanoparticles such as magnetite, maghemite, ferrites, etc. into the photocatalyst matrix has recently become an area of intense research because it allows for the easy separation of the photocatalyst from the treated water using an external magnetic field. Herein, we discuss the recent developments in terms of synthesis and photocatalytic properties of magnetically separable nanocomposites towards water treatment. The influence of the magnetic nanoparticles in the optical properties, charge transfer mechanism, and overall photocatalytic activity is deliberated based on selected results. We conclude the review by providing summary remarks on the successes of magnetic photocatalysts and present some of the future challenges regarding the exploitation of these materials in water treatment.

  10. Ultrasound imaging for quantitative evaluation of magnetic density separation

    NARCIS (Netherlands)

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was

  11. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    KAUST Repository

    Eisenträger, Almut

    2014-07-21

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle\\'s entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separation cycles may increase efficiency. © 2014 AIP Publishing LLC.

  12. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  13. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  14. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    International Nuclear Information System (INIS)

    EL-Rafei, A.M.; El-Kalliny, Amer S.; Gad-Allah, Tarek A.

    2017-01-01

    Three-dimensional random calcium ferrite, CaFe 2 O 4 , nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe 2 O 4 phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe 2 O 4 NFs were fabricated with diameters in the range of 50–150 nm and each fiber was composed of 20–50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field. - Highlights: • Three-dimensional porous random CaFe 2 O 4 NFs were successfully produced via electrospinning method. • These NFs exhibited typical superparamagnetic behavior for the ferromagnetic materials. • The low band-gap energy of these NFs (~1.6 eV) allows them to absorb a wide range of the solar spectrum. • These NFs can produce the active • OH under solar light and can be recovered easily by applying an external magnetic field. • These NFs can be used solely as magnetically separable photocatalyst or as magnetic additive for another photocatalyst.

  15. Effect of the Hartmann number on phase separation controlled by magnetic field for binary mixture system with large component ratio

    Science.gov (United States)

    Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng

    2017-11-01

    This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.

  16. [Development of new magnetic bead separation and purification instrument].

    Science.gov (United States)

    Xu, Yingyuan; Chen, Yi

    2014-05-01

    The article describes the development of new magnetic bead separation and purification instrument. The main application of the instrument is to capture tubercle bacillus from sputum. It is a pretreatment instrument and provides a new platform to help doctors to diagnose bacillary phthisis. Not only could it be used for tubercle bacillus capturing, but also for gene, protein and cell separating and purification. Because the controller of the instrument is 16-bit single chip microcomputer, the cost could be greatly reduced and it will be widely used in China.

  17. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Svoboda, J.

    1985-01-01

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  18. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    International Nuclear Information System (INIS)

    Kim, MyeongHyeon; Jeong, Jae-heon; Gweon, DaeGab; Kim, HyoYoung

    2015-01-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented. (paper)

  19. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yadavalli, Tejabhiram, E-mail: tejabhiram@gmail.com [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Ramasamy, Shivaraman [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); School of Physics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Chennakesavulu, Ramasamy [Department of Pharmacy practice, SRM College of Pharmacy, Chennai 603203 (India)

    2015-04-15

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation. - Highlights: • The use of gadolinium doped nickel ferrite with the suggested doping level. • The use of PNIPMA–chitosan polymer with folic acid and fluorescein as a drug carrier complex. • Magnetic hyperthermia studies of gadolinium doped nickel ferrites are being reported for the first time. • Proton relaxivity studies which indicate the MRI contrasting properties on the reported system are new. • Use of curcumin, a hydrophobic Indian spice as a cancer killing agent inside the reported magnetic polymer complex.

  20. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping.

    Science.gov (United States)

    Nair, R R; Tsai, I-L; Sepioni, M; Lehtinen, O; Keinonen, J; Krasheninnikov, A V; Castro Neto, A H; Katsnelson, M I; Geim, A K; Grigorieva, I V

    2013-01-01

    Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres such as vacancies and adatoms. Here we show that the magnetism of adatoms in graphene is itinerant and can be controlled by doping, so that magnetic moments are switched on and off. The much-discussed vacancy magnetism is found to have a dual origin, with two approximately equal contributions; one from itinerant magnetism and the other from dangling bonds. Our work suggests that graphene's spin transport can be controlled by the field effect, similar to its electronic and optical properties, and that spin diffusion can be significantly enhanced above a certain carrier density.

  1. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  2. Two separate outflows in the dual supermassive black hole system NGC 6240.

    Science.gov (United States)

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  3. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    EL-Rafei, A.M., E-mail: am.amin@nrc.sci.eg [Refractories, Ceramics and Building Materials Department, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt); El-Kalliny, Amer S.; Gad-Allah, Tarek A. [Water Pollution Research Department, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt)

    2017-04-15

    Three-dimensional random calcium ferrite, CaFe{sub 2}O{sub 4}, nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe{sub 2}O{sub 4} phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe{sub 2}O{sub 4} NFs were fabricated with diameters in the range of 50–150 nm and each fiber was composed of 20–50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field. - Highlights: • Three-dimensional porous random CaFe{sub 2}O{sub 4} NFs were successfully produced via electrospinning method. • These NFs exhibited typical superparamagnetic behavior for the ferromagnetic materials. • The low band-gap energy of these NFs (~1.6 eV) allows them to absorb a wide range of the solar spectrum. • These NFs can produce the active {sup •} OH under solar light and can be recovered easily by applying an external magnetic field. • These NFs can be used solely as magnetically separable photocatalyst or as magnetic additive for another photocatalyst.

  4. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    International Nuclear Information System (INIS)

    Crawford, C.; Doctor, R.D.; Landsberger, S.; Nunez, L.; Ritter, J.

    1998-01-01

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  5. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  6. Visible-light-driven TiO2/Ag3PO4/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation

    International Nuclear Information System (INIS)

    Lu, Bingqing; Ma, Ni; Wang, Yaping; Qiu, Yiwei; Hu, Haihua; Zhao, Jiahuan; Liang, Dayu; Xu, Sheng; Li, Xiaoyun; Zhu, Zhiyan; Cui, Can

    2015-01-01

    Highlights: • TiO 2 /Ag 3 PO 4 /GO was synthesized with a facile two-step method. • TiO 2 /Ag 3 PO 4 /GO exhibit superior photocatalytic activity and stability. • TiO 2 /Ag 3 PO 4 /GO has dual-channel for photo-generated charges separation. • TiO 2 /Ag 3 PO 4 /GO composite reduces the consumption of Ag. - Abstract: A novel triple-component TiO 2 /Ag 3 PO 4 /graphene oxide (TiO 2 /Ag 3 PO 4 /GO) photocatalyst with dual channels for photo-generated charges separation has been synthesized to improve the photocatalytic activity and stability of Ag 3 PO 4 under visible light. The synthesis involved in-situ growth of Ag 3 PO 4 nanoparticles on GO sheets to form Ag 3 PO 4 /GO, and then deposited TiO 2 nanocrystals on the surface of Ag 3 PO 4 by hydrolysis of Ti(SO 4 ) 2 at low-temperature hydrothermal condition. The TiO 2 /Ag 3 PO 4 /GO exhibited superior photocatalytic activity and stability to bare Ag 3 PO 4 , TiO 2 /Ag 3 PO 4 and Ag 3 PO 4 /GO in degradation of Rhodamine B and phenol solutions under visible light. It is suggested that the photo-generated electrons in the conduction band of Ag 3 PO 4 can be quickly transferred to GO, while the holes in the valence band of Ag 3 PO 4 can be transferred to the valence band of TiO 2 . The dual transfer channels at the interfaces of TiO 2 /Ag 3 PO 4 /GO result in effective charges separation, leading to enhanced photocatalytic activity and stability. Furthermore, the content of noble metal Ag significantly reduces from 77 wt% in bare Ag 3 PO 4 to 55 wt% in the nanocomposite. The concept of establishing dual channels for charges separation in a triple-component heterostructure provides a promising way to develop photocatalysts with high efficiency

  7. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein

    International Nuclear Information System (INIS)

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-01-01

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Q_m_a_x) and dissociation constant (K_L) were analyzed by Langmuir isotherms (R"2 = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. - Highlights: • Combined green deep eutectic solvents (DES) and molecular imprinted technology in recognition and separation of proteins. • DES was adopted as a new-type functional monomer. • The obtained magnetic DES-MIPs can separate proteins rapidly by an external magnetic field. • Adsorption and selectivity properties were discussed.

  8. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Dai, Qingzhou [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Q{sub max}) and dissociation constant (K{sub L}) were analyzed by Langmuir isotherms (R{sup 2} = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. - Highlights: • Combined green deep eutectic solvents (DES) and molecular imprinted technology in recognition and separation of proteins. • DES was adopted as a new-type functional monomer. • The obtained magnetic DES-MIPs can separate proteins rapidly by an external magnetic field. • Adsorption and selectivity properties were discussed.

  9. A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules.

    Science.gov (United States)

    Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2013-04-15

    A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  11. Self-dual cluster renormalization group approach for the square lattice Ising model specific heat and magnetization

    International Nuclear Information System (INIS)

    Martin, H.O.; Tsallis, C.

    1981-01-01

    A simple renormalization group approach based on self-dual clusters is proposed for two-dimensional nearest-neighbour 1/2 - spin Ising model on the square lattice; it reproduces the exact critical point. The internal energy and the specific heat for vanishing external magnetic field, spontaneous magnetization and the thermal (Y sub(T)) and magnetic (Y sub(H)) critical exponents are calculated. The results obtained from the first four smallest cluster sizes strongly suggest the convergence towards the exact values when the cluster sizes increases. Even for the smallest cluster, where the calculation is very simple, the results are quite accurate, particularly in the neighbourhood of the critical point. (Author) [pt

  12. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  13. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection

    OpenAIRE

    Kurt, Hasan; Yüce, Meral; Yuce, Meral; Hussain, Babar; Budak, Hikmet

    2016-01-01

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV–Visible spect...

  14. New understanding on separation of Mn and Fe from ferruginous manganese ores by the magnetic reduction roasting process

    Science.gov (United States)

    Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao

    2018-06-01

    Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.

  15. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Jingling, Liu; Ali, Zahid; Shakir, Imran; Warsi, Muhammad Farooq; Parveen, Riffat; Nadeem, Muhammad

    2013-01-01

    A magnetically separable single-phase MgFe 2 O 4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe 2 O 4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe 2 O 4 was studied by measuring their photocurrent–potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm −2 illumination. - Graphical abstract: Highly efficient magnetically separable MgFe 2 O 4 photocatalyst for organic based impurities decomposition as well as for the production of H 2 gas was synthesized and characterized successfully (a) MgFe 2 O 4 photocatalyst in polluted water, (b) The photocatalyst (MgFe 2 O 4 ) is being attracted toward magnetic field for separation, (c) Hysteresis loop of MgFe 2 O 4 showing magnetic behavior. Highlights: ► New photocatalyst working in the visible range have been synthesized by facile cheap route. ► MgFe 2 O 4 photocatalyst showed well defined magnetically separable behavior. ► Excellent water splitting characteristics to produce H 2 was observed under visible light irradiation

  16. High-gradient magnetic affinity separation of trypsin from porcine pancreatin

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Thomas, Owen R. T.

    2002-01-01

    We introduce a robust and scale-flexible approach to macromolecule purification employing tailor-made magnetic adsorbents and high-gradient magnetic separation technology adapted from the mineral processing industries. Detailed procedures for the synthesis of large quantities of low-cost defined......-scale studies approximate to95% of the endogenous trypsin present in a crude porcine pancreatin feedstock was recovered with a purification factor of approximate to4.1 at the expense of only a 4% loss in a-amylase activity. Efficient recovery of trypsin from the same feedstock was demonstrated at a vastly...

  17. Separation of the Magnetic Field into External and Internal Parts

    DEFF Research Database (Denmark)

    Olsen, Nils; Glassmeier, K.-H.; Jia, X.

    2010-01-01

    The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal...

  18. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Ebner, A.D.; Ritter, J.A.; Nunez, L.

    1999-01-01

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford's C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO 2 in relatively large particles. This indicated that SiO 2 was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility

  19. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    Science.gov (United States)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  20. Well-Posedness and Primal-Dual Analysis of Some Convex Separable Optimization Problems

    Directory of Open Access Journals (Sweden)

    Stefan M. Stefanov

    2013-01-01

    Full Text Available We focus on some convex separable optimization problems, considered by the author in previous papers, for which problems, necessary and sufficient conditions or sufficient conditions have been proved, and convergent algorithms of polynomial computational complexity have been proposed for solving these problems. The concepts of well-posedness of optimization problems in the sense of Tychonov, Hadamard, and in a generalized sense, as well as calmness in the sense of Clarke, are discussed. It is shown that the convex separable optimization problems under consideration are calm in the sense of Clarke. The concept of stability of the set of saddle points of the Lagrangian in the sense of Gol'shtein is also discussed, and it is shown that this set is not stable for the “classical” Lagrangian. However, it turns out that despite this instability, due to the specificity of the approach, suggested by the author for solving problems under consideration, it is not necessary to use modified Lagrangians but only the “classical” Lagrangians. Also, a primal-dual analysis for problems under consideration in view of methods for solving them is presented.

  1. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2017-05-01

    Full Text Available Dual rotor permanent magnet (DRPM wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF, cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA. The results show that the slot and pole number combinations have an important impact on the generator properties.

  2. Dual of QCD with One Adjoint Fermion

    DEFF Research Database (Denmark)

    Mojaza, Matin; Nardecchia, Marco; Pica, Claudio

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound...

  3. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Science.gov (United States)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  4. Multi-function ring magnet power supply for rapid-cycling synchrotrons

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    Ring magnet power supply (RMPS) circuits that produce a wide range of magnet current waveshapes for rapid-cycling synchrotrons (RCS) are described. The shapes range from long flat-tops separated by a biased dual frequency cosine wave to those having a flat-bottom (injection), followed by a lower frequency cosine half wave (acceleration), a flat-top (extraction), and a higher frequency cosine half wave (magnet reset). Applications of these circuits for proposed synchrotrons are outlined. Solid-state switching circuits and the results of proof-of-concept tests are shown. 8 refs., 12 figs

  5. Hermetically sealed superconducting magnet motor

    Science.gov (United States)

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  6. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.

    Science.gov (United States)

    Krauss, Bernhard; Grant, Katharine L; Schmidt, Bernhard T; Flohr, Thomas G

    2015-02-01

    One method to acquire dual-energy (DE) computed tomography (CT) data is to perform CT scans at 2 different x-ray tube voltages, typically 80 and 140 kV, either as 2 separate scans, by means of rapid kV switching, or with the use of 2 x-ray sources as in dual-source CT (DSCT) systems. In DSCT, it is possible to improve spectral separation with tin prefiltration (Sn) of the high-kV beam. Recently, x-ray tube voltages beyond the established range of 80 to 140 kV were commercially introduced, which enable additional voltage combinations for DE acquisitions, such as 80/150 Sn or 90/150 Sn kV. Here, we investigate the DE performance of several x-ray tube voltages and prefilter combinations on 2 DSCT scanners and the impact of the spectra on quantitative analysis and dose efficiency. Circular phantoms of different sizes (10-40 cm in diameter) equipped with cylindrical inserts containing water and diluted iodine contrast agent (14.5 mg/cm) were scanned using 2 different DSCT systems (SOMATOM Definition Flash and SOMATOM Force; Siemens AG, Forchheim, Germany). Five x-ray tube voltage combinations (80/140 Sn, 100/140 Sn, 80/150 Sn, 90/150 Sn, and 100/150 Sn kV) were investigated, and the results were compared with the previous standard acquisition technique (80/140 kV). As an example, 80/140 Sn kV means that 1 x-ray tube of the DSCT system was operated at 80 kV, whereas the other was operated at 140 kV with additional tin prefiltration (Sn). Dose values in terms of computed tomography dose index (CTDIvol) were kept constant between the different voltage combinations but adjusted with regard to object size according to automatic exposure control recommendations. Reconstructed images were processed using linear blending of the low- and high-kV CT images to combined images, as well as 3-material decomposition techniques to generate virtual noncontrast (VNC) images and iodine images. Contrast and pixel noise were evaluated, as well as DE ratios, which are defined as the CT value

  7. Wide aperture multipole magnets of the kinematic separator COMBAS. Correcting pair of multipole magnets M3M4 (M5M6) with compensation for higher order aberrations

    International Nuclear Information System (INIS)

    Artyukh, A.G.; Gridnev, G.F.; Teterev, Yu.G.

    1999-01-01

    The high-resolving large aperture separator COMBAS has been created and commissioned. The magneto-optical structure of the separator is based on the strong focusing principle. The separator consists of eight wide aperture multipole magnets M1-M8. The magnets M1, M2, M7, M8 forming the 1 st order optics together with some higher order optical corrections and M3-M6 being dedicated to higher order corrections of the chromatic and spherical aberrations at the intermediate and exit foci of the separator. The multipole correctors M3-M6 contain the dipolar, sextupole and octupole components in their magnetic field distributions. It was the use of the rectangular dipoles M3-M6 as carriers of sextupole and octupole field components that let achieve high values of the separator angular and momentum acceptances. Measurements of the magnetic field distributions in the median planes of the pairs of magnets M3M6 (M4M5) have been performed. These measurements allowed one to analyze the magnets manufacturing quality. Based on the analysis, shimming of pole pieces of the pair of magnets M3M6 have been done. Pole surface correcting coils for the magnets M4M5 have been foreseen to compensate for small deviations (within a few percents) of the 2 nd and 3 rd order field components from the design values, which are probable due to manufacturing errors in all the magnets M1-M8. The measured magnetic field distributions are supposed to be used for particle trajectory simulations throughout the entire separator

  8. Dual QCD: A review

    International Nuclear Information System (INIS)

    Baker, M.; Ball, J.S.; Zachariasen, F.

    1991-01-01

    We review the attempts to use dual (electric) vector potentials rather than the standard magnetic vector potentials to describe QCD, particularly in the infrared regime. The use of dual potentials is motivated by the fact that in classical electrodynamics, in a medium with a dielectric constant vanishing at small momenta (as is believed to be the case in QCD), electric potentials provide a far more convenient language than do magnetic potentials. To begin with, we outline attempts to construct the QCD Lagrangian in terms of dual potentials and describe the various possibilities, their shortcomings and advantages, which so far exist. We then proceed to use the most attractive (albeit consistent as a field theory only at the tree level) of these Lagrangians in a number of applications. We show that it describes a non-Abelian dual superconductor (so that it automatically confines color), derive the static quark-antiquark potential, and various temperature dependent effects, such as deconfinement and chiral symmetry breaking. (orig.)

  9. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xu-Guang [Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433 (China); Yin, Yi [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  10. Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper

    Energy Technology Data Exchange (ETDEWEB)

    Komazaki, Y., E-mail: komazaki@dt.k.u-tokyo.ac.jp; Hirama, H.; Torii, T. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563 (Japan)

    2015-04-21

    In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure.

  11. Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper

    International Nuclear Information System (INIS)

    Komazaki, Y.; Hirama, H.; Torii, T.

    2015-01-01

    In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure

  12. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy.

    Science.gov (United States)

    Sierra, C; Martínez, J; Menéndez-Aguado, J M; Afif, E; Gallego, J R

    2013-03-15

    The industrial history in the district of Linares (Spain) has had a severe impact on soil quality. Here we examined soil contaminated by lead and other heavy metals in "La Cruz" site, a brownfield affected by metallurgical residues. Initially, the presence of contaminants mainly associated with the presence of lead slag fragments mixed with the soil was evaluated. The subsequent analysis showed a quasi-uniform distribution of the pollution irrespective of the grain-size fractions. This study was accompanied by a characterization of the lead slag behavior under the presence of a magnetic field. Two main magnetic components were detected: first a ferromagnetic and/or ferrimagnetic contribution, second a paramagnetic and/or antiferromagnetic one. It was also established that the slag was composed mainly of lead spherules and iron oxides embedded in a silicate matrix. Under these conditions, the capacity of magnetic separation to remove pollutants was examined. Therefore, two high intensity magnetic separators (dry and wet devices, respectively) were used. Dry separation proved to be successful at decontaminating soil in the first stages of a soil washing plant. In contrast, wet separation was found effective as a post-process for the finer fractions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Adsorption mechanism of magnetically separable Fe_3O_4/graphene oxide hybrids

    International Nuclear Information System (INIS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-01-01

    Graphical abstract: A recyclable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe_3O_4/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe_3O_4/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe_3O_4/GO hybrids. - Abstract: A reclaimable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q_m) of the Fe_3O_4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe_3O_4/GO hybrid. Therefore, the Fe_3O_4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  14. Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti-Cu thin films

    International Nuclear Information System (INIS)

    Stranak, Vitezslav; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2010-01-01

    Time-resolved comparative study of dual magnetron sputtering (dual-MS) and dual high power impulse magnetron sputtering (dual-HiPIMS) systems arranged with closed magnetic field is presented. The dual-MS system was operated with a repetition frequency 4.65 kHz (duty cycle ≅50%). The frequency during dual-HiPIMS is lower as well as its duty cycle (f=100 Hz, duty 1%). Different metallic targets (Ti, Cu) and different cathode voltages were applied to get required stoichiometry of Ti-Cu thin films. The plasma parameters of the interspace between magnetrons in the substrate position were investigated by time-resolved optical emission spectroscopy, Langmuir probe technique, and measurement of ion fluxes to the substrate. It is shown that plasma density as well as ion flux is higher about two orders of magnitude in dual-HiPIMS system. This fact is partially caused by low diffusion of ionized sputtered particles (Ti + ,Cu + ) which creates a preionized medium.

  15. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  16. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    International Nuclear Information System (INIS)

    Shen Rongsen; Shen Decun

    1998-01-01

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  17. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity.

    Science.gov (United States)

    Foley, W Dennis; Shuman, William P; Siegel, Marilyn J; Sahani, Dushyant V; Boll, Daniel T; Bolus, David N; De Cecco, Carlo N; Kaza, Ravi K; Morgan, Desiree E; Schoepf, U Joseph; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the second of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography. This paper, part 2, addresses radiation dose and iodine sensitivity in dual-energy computed tomography.

  18. Design and analysis of beam separator magnets for third generation aberration compensated PEEMs

    International Nuclear Information System (INIS)

    Wu, Y.K.; Robin, D.S.; Forest, E.; Schlueter, R.; Anders, S.; Feng, J.; Padmore, H.; Wei, D.H.

    2004-01-01

    A state of the art X-ray photoemission electron microscope (PEEM2) is operational at the Advanced Light Source at a resolution of typically 50 nm for a range of chemical and magnetic surface studies. A new microscope, PEEM3, is under development with an aim of achieving a resolution of 5 nm and more than an order of magnitude increase in transmission at the nominal resolution of PEEM2. The resolution and flux improvement is realized by providing geometric and chromatic aberration compensations in the system using an electron mirror and a beam separator magnet. The nearly aberration-free design of the beam separator is critical to the performance of third generation PEEMs. In this paper, we present the optics design model, optimal operation parameters, analyses of aberration impact, as well as the mechanical alignment tolerance for PEEM3 separator prototypes. In particular, we emphasize the importance of a new semi-analytical approach to design complex charged particle optics using the truncated power series algebra. Because of its ability to compute high-order aberrations, this approach allows systematic and comprehensive analyses of any charged particle optics systems with analytical electric and magnetic fields

  19. Mind the Gap: The Effects of Temporal and Spatial Separation in Localization of Dual Touches on the Hand

    Directory of Open Access Journals (Sweden)

    Renata Sadibolova

    2018-02-01

    Full Text Available In this study, we aimed to relate the findings from two predominantly separate streams of literature, one reporting on the localization of single touches on the skin, and the other on the distance perception of dual touches. Participants were touched with two points, delivered either simultaneously or separated by a short delay to various locations on their left hand dorsum. They then indicated on a size-matched hand silhouette the perceived locations of tactile stimuli. We quantified the deviations between the actual stimulus grid and the corresponding perceptual map which was constructed from the perceived tactile locations, and we calculated the precision of tactile localization (i.e., the variability across localization attempts. The evidence showed that the dual touches, akin to single touch stimulations, were mislocalized distally and that their variable localization error was reduced near joints, particularly near knuckles. However, contrary to single-touch localization literature, we observed for the dual touches to be mislocalized towards the ulnar side of the hand, particularly when they were presented sequentially. Further, the touches presented in a sequential order were slightly “repelled” from each other and their perceived distance increased, while the simultaneous tactile pairs were localized closer to each other and their distance was compressed. Whereas the sequential touches may have been localized with reference to the body, the compression of tactile perceptual space for simultaneous touches was related in the previous literature to signal summation and inhibition and the low-level factors, including the innervation density and properties of receptive fields (RFs of somatosensory neurons.

  20. Mind the Gap: The Effects of Temporal and Spatial Separation in Localization of Dual Touches on the Hand.

    Science.gov (United States)

    Sadibolova, Renata; Tamè, Luigi; Walsh, Eamonn; Longo, Matthew R

    2018-01-01

    In this study, we aimed to relate the findings from two predominantly separate streams of literature, one reporting on the localization of single touches on the skin, and the other on the distance perception of dual touches. Participants were touched with two points, delivered either simultaneously or separated by a short delay to various locations on their left hand dorsum. They then indicated on a size-matched hand silhouette the perceived locations of tactile stimuli. We quantified the deviations between the actual stimulus grid and the corresponding perceptual map which was constructed from the perceived tactile locations, and we calculated the precision of tactile localization (i.e., the variability across localization attempts). The evidence showed that the dual touches, akin to single touch stimulations, were mislocalized distally and that their variable localization error was reduced near joints, particularly near knuckles. However, contrary to single-touch localization literature, we observed for the dual touches to be mislocalized towards the ulnar side of the hand, particularly when they were presented sequentially. Further, the touches presented in a sequential order were slightly "repelled" from each other and their perceived distance increased, while the simultaneous tactile pairs were localized closer to each other and their distance was compressed. Whereas the sequential touches may have been localized with reference to the body, the compression of tactile perceptual space for simultaneous touches was related in the previous literature to signal summation and inhibition and the low-level factors, including the innervation density and properties of receptive fields (RFs) of somatosensory neurons.

  1. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    International Nuclear Information System (INIS)

    Nikkanen, J-P; Heinonen, S; Saarivirta, E Huttunen; Honkanen, M; Levänen, E

    2013-01-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO 2 ) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO 2 was coagulated with magnetite particles using FeCl 3 ·6 H 2 O at a fixed pH value. Magnetic separation of coagulated TiO 2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO 2 powder. The magnetic separation of TiO 2 –magnetite coagulate from solution proved to be efficient around pH:8

  2. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

    Science.gov (United States)

    Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang

    2017-04-01

    Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dual symmetry in Born-Infeld theory

    International Nuclear Information System (INIS)

    Khademi, S; Ayoubi, A

    2008-01-01

    Born-Infeld theory is a non-linear formalism which has many applications in string and electromagnetic theories. Although, the existence of magnetic monopoles and dyons are suggested by Born-Infeld theory, but this theory is not invariant under the dual transformations. In this theory electric fields for point charged particles are not singular at origin (r = 0), but magnetic fields and vector potentials are still singular. In this paper we show that the vanishing of dual symmetry is responsible for these singularities. Furthermore, we present the dual symmetric Born-Infeld theory, by a symmetric definition of electromagnetic fields in terms of new scalar and vector potentials, as well as the ordinary ones. All singularities of vector potential and magnetic field are removed as an immediate consequence of this symmetry.

  4. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  5. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    International Nuclear Information System (INIS)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F.; Landsberger, S.

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  6. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    International Nuclear Information System (INIS)

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-01-01

    Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  7. Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation.

    Science.gov (United States)

    Chen, Hui-Jiuan; Hang, Tian; Yang, Chengduan; Liu, Guishi; Lin, Di-An; Wu, Jiangming; Pan, Shuolin; Yang, Bo-Ru; Tao, Jun; Xie, Xi

    2018-01-25

    In situ effective separation of oil pollutants including oil spills and oil emulsions from water is an emerging technology yet remains challenging. Hydrophobic micro- or nano-materials with ferromagnetism have been explored for oil removal, yet the separation efficiency of an oil emulsion was compromised due to the limited dispersion of hydrophobic materials in water. A surfactant coating on microparticles prevented particle aggregation, but reduced oil absorption and emulsion cleaning ability. Recently, polystyrene microbeads covered with nanospikes have been reported to display anomalous dispersion in phobic media without surfactants. Inspired by this phenomenon, here magnetic microparticles attached with nanospikes were fabricated for enhanced separation of oil emulsions from water. In this design, the particle surfaces were functionalized to be superhydrophobic/superoleophilic for oil absorption, while the surface of the nanospikes prevented particle aggregation in water without compromising surface hydrophobicity. The magnetic spiky particles effectively absorbed oil spills on the water surface, and readily dispersed in water and offered facile cleaning of the oil emulsion. In contrast, hydrophobic microparticles without nanospikes aggregated in water limiting the particle-oil contact, while surfactant coating severely reduced particle hydrophobicity and oil absorption ability. Our work provides a unique application scope for the anomalous dispersity of microparticles and their potential opportunities in effective oil-water separation.

  8. A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications

    Directory of Open Access Journals (Sweden)

    Yujun Shi

    2018-01-01

    Full Text Available This paper proposes a novel dual-permanent-magnet-excited (DPME machine. It employs two sets of permanent magnets (PMs. One is on the rotor, the other is on the stator with PM arrays. When compared with the existing DPME machines, not all of the PMs are located in the slots formed by the iron teeth. Specifically, the radially magnetized PMs in the arrays are located under the short iron teeth, while the tangentially magnetized PMs are located in the slots formed by the long stator iron teeth and the radially magnetized PMs. Each long stator iron tooth is sandwiched by two tangentially magnetized PMs with opposite directions, thus resulting in the flux strengthening effect. The simulation analysis indicates that the proposed machine can offer large back EMF with low THD and large torque density with low torque ripple when compared with Machine I from a literature. Meanwhile, by comparison, the proposed machine has great potential in improving the power factor and efficiency.

  9. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  10. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    International Nuclear Information System (INIS)

    Plunk, G. G.; Tatsuno, T.

    2011-01-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  11. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Science.gov (United States)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  12. Unconventional magnetic phase separation in γ -CoV2O6

    Science.gov (United States)

    Shen, L.; Jellyman, E.; Forgan, E. M.; Blackburn, E.; Laver, M.; Canévet, E.; Schefer, J.; He, Z.; Itoh, M.

    2017-08-01

    We have explored the magnetism in the nongeometrically frustrated spin-chain system γ -CoV2O6 which possesses a complex magnetic exchange network. Our neutron diffraction patterns at low temperatures (T ≤TN=6.6 K) are best described by a model in which two magnetic phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a single spin modulation. This model fits previous studies and our observations better than the model proposed by Lenertz et al. [J. Phys. Chem. C 118, 13981 (2014), 10.1021/jp503389c], which consisted of one phase with two spin modulations. By decreasing the temperature from TN, the minority phase of our model undergoes an incommensurate-commensurate lock-in transition at T*=5.6 K. Based on these results, we propose that phase separation is an alternative approach for degeneracy-lifting in frustrated magnets.

  13. Simultaneous separation and determination of four uncaria alkaloids by capillary electrophoresis using dual cyclodextrin system.

    Science.gov (United States)

    Li, Lou; Xu, Liying; Chen, Meng; Zhang, Guangbin; Zhang, Hongfen; Chen, Anjia

    2017-07-15

    The purpose of this study was to develop a simple, quick and precise capillary zone electrophoresis method (CZE) for the separation and determination of uncaria alkaloids using dual cyclodextrins as additives for the separation. The four analytes were baseline separated within 15min at the applied voltage of 15kV with a running buffer (pH 5.7) consisting of 40.0mM phosphate buffer, 161.7mM 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and 2.21mM mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin (ED-β-CD). Under the optimum conditions, a good linearity was achieved with correlation coefficients from 0.9989 to 0.9992. The detection limits and the quantitation limits ranged from 0.63 to 0.98μg/mL and from 2.08 to 3.28μg/mL, respectively. Excellent accuracy and precision were obtained. Recoveries of the analytes varied from 97.1 to 103.2%. This method was suitable for the quantitative determination of these alkaloids in the stem with hook of Uncaria rhynchophylla and the formulations of Uncaria rhynchophylla. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    Science.gov (United States)

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  16. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation; Caracterizacao da granalha de aco recuperada do residuo de rochas ornamentais por separacao magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S., E-mail: eduardojunca@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 {mu}m with 4 wt.% over 100 {mu}m and content metallic iron of 93 wt%. (author)

  17. Preparation of Immuno-magnetic Beads and Their Separation & Detection to Ovary Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The organic monomer-molecule with nanometer magnetic powder by means of reforming the surface of nanometer magnetic powder have been synthesized.Magnetic beads in diameter of 2μm or so are obtained by controlling conditions.Ovary cancer cells of ascites are separated and ovary cancer cells of blood are detected by using immuno-magnetic beads linked with ovary cancer cell mono-antibodies.Results show that the specificity is 85%,sensitivity is 87%,accuracy is 84%,cells acquiring purity is 90%,cells activity is 92% and detection sensitivity is 25×10-7.

  18. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

    Science.gov (United States)

    Yu, Xiaojia; Yang, Xiaoyu; Li, Guang

    2018-01-01

    We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

  19. Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    International Nuclear Information System (INIS)

    Khashan, Saud A; Furlani, Edward P

    2013-01-01

    A study is presented of coupled particle–fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle–fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle–fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle–fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle–fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency

  20. A facile method for emulsified oil-water separation by using polyethylenimine-coated magnetic nanoparticles

    Science.gov (United States)

    Lü, Ting; Qi, Dongming; Zhang, Dong; Lü, Yulan; Zhao, Hongting

    2018-04-01

    Oil spills and oily wastewater discharges from ships and industrial activities have serious impacts on the environment and human health. In this study, a class of easy-to-synthesize polyethylenimine (PEI)-coated Fe3O4 magnetic nanoparticles (MNPs) was successfully synthesized via a one-step coprecipitation method. The synthesized PEI-coated Fe3O4 MNPs were characterized by using multiple technologies and applied in emulsified oil-water separation for the first time. It was found that the PEI effectively tuned the surface charge and wettability of MNPs. As a result, the PEI-coated MNPs could successfully assemble at the oil-water interface and promote the coalescence of oil droplets, thereby facilitating the subsequent magnetic separation. Results showed that the oil-water separation performance was superior and enhanced with the increase of ionic strength. Recycling experiment indicated that the PEI-coated MNPs could be reused up to six times without showing a significant decrease in separation efficiency. All of these results suggested that the PEI-coated MNP could potentially be used as a class of promising nanomaterials for emulsified oil-water separation. [Figure not available: see fulltext.

  1. Controlled synthesis of Fe3O4/ZIF-8 nanoparticles for magnetically separable nanocatalysts.

    Science.gov (United States)

    Pang, Fei; He, Mingyuan; Ge, Jianping

    2015-04-27

    Fe3O4/ZIF-8 nanoparticles were synthesized through a room-temperature reaction between 2-methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as-prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m(2) g(-1)). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF-8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  3. Separation of actinides by high-gradient magnetic filtration

    International Nuclear Information System (INIS)

    Bruns, L.E.; Schliebe, M.J.

    1986-01-01

    High-gradient magnetic filtration has been identified as a candidate solid/liquid separation technique for removing actinide particulate from waste streams. Although HGMS is not intended to reduce the activity in the waste stream to below 100 nCi/g, it does offer two significant advantages: (a) selective removal of TRU solids for subsequent secondary processing and (b) reduced operating complications during solvent extraction due to solids accumulation in the interfacial region. Removal of > 95 wt% of the plutonium and americium solids is expected regardless of the solids present and their properties. Verification tests will be performed to validate this assumption

  4. Comparative performance analysis of a dual-solenoid mechanical oscillator

    International Nuclear Information System (INIS)

    Lee, V C C; Lee, H V; Harno, H G; Woo, K C

    2015-01-01

    An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)

  5. Separation and enrichment of enantiopure from racemic compounds using magnetic levitation.

    Science.gov (United States)

    Yang, Xiaochuan; Wong, Shin Yee; Bwambok, David K; Atkinson, Manza B J; Zhang, Xi; Whitesides, George M; Myerson, Allan S

    2014-07-18

    Crystallization of a solution with high enantiomeric excess can generate a mixture of crystals of the desired enantiomer and the racemic compound. Using a mixture of S-/RS-ibuprofen crystals as a model, we demonstrated that magnetic levitation (MagLev) is a useful technique for analysis, separation and enantioenrichment of chiral/racemic products.

  6. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    Science.gov (United States)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized

  7. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  8. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  9. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Liam; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Proksch, Roger [Asylum Research, An Oxford Instruments Company, Santa Barbara, California 93117 (United States); Zuo, Tingting [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Deptarment of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200 (United States); Zhang, Yong [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liaw, Peter K. [Deptarment of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)

    2016-05-09

    In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.

  10. All-in-one bioprobe devised with hierarchical-ordered magnetic NiCo2O4 superstructure for ultrasensitive dual-readout immunosensor for logic diagnosis of tumor marker.

    Science.gov (United States)

    Dai, Hong; Gong, Lingshan; Zhang, Shupei; Xu, Guifang; Li, Yilin; Hong, Zhensheng; Lin, Yanyu

    2016-03-15

    A new enzyme-free all-in-one bioprobe, consisted of hematin decorated magnetic NiCo2O4 superstructure (ATS-MNS-Hb), was designed for ultrasensitive photoelectrochemical and electrochemical dual-readout immunosensing of carcinoembryonic antigen (CEA) on carbon nanohorns (CNH) support. Herein, the MNS, possessed hierarchical-ordered structure, good porosity and magnetism, acted as nanocarrier to absorb abundant Hb molecular after functionalization, providing a convenient collection means by magnetic control as well as enhanced dual-readout sensing performances. CNH superstructures were employed as support to immobilize abounding captured antibodies, and then as-designed dual mode bioprobe, covalent binding with secondary antibody of CEA, was introduced for ultrasensitive detection of CEA by sandwich immunosensing. Photoelectrochemical response originated from plentiful hematin molecular, a excellent photosensitizer with good visible light harvesting efficiency, absorbed by functionalized porous MNS. The resultant concentration dependant linear calibration range was from 10 fg/mL to 1 ng/mL with ultralow detection limit of 10 fg/mL. For electrochemical process, catalase-like property of MNS was validated, moreover, MNS-Hb hybrid exhibited much higher mimic enzyme catalytic activity and evidently amplified electrocatalytic signal, performing a wide dynamic linear range from 1 ng/mL to 40 ng/mL with low detection limit of 1 ng/mL. Additionally, due to the improved accuracy of dual signals detection, the exact diagnoses of serum samples were gotten by operating resulting dual signals with AND logic system. This work demonstrated the promising application of MNS in developing ultrasensitive, cost-effective and environment friendly dual-readout immunosensor and accurate diagnoses strategy for tumor markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    International Nuclear Information System (INIS)

    Zhang, Ying; Zhang, Yanrong; Tan, Jue

    2013-01-01

    Highlights: •The AgCl/iron oxide composites were prepared by a chemical precipitation method. •The composites exhibited improved performances in the photodegradation of pollutants. •The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO 2 . The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as γ-Fe 2 O 3 exhibits enough magnetic power to facilitate the separation

  12. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    Directory of Open Access Journals (Sweden)

    Emma eSalo

    2015-02-01

    Full Text Available We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or simple (speaker-gender or font-shade discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley’s model modality atypical, that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks.

  13. Dual Coding and Bilingual Memory.

    Science.gov (United States)

    Paivio, Allan; Lambert, Wallace

    1981-01-01

    Describes study which tested a dual coding approach to bilingual memory using tasks that permit comparison of the effects of bilingual encoding with verbal-nonverbal dual encoding items. Results provide strong support for a version of the independent or separate stories view of bilingual memory. (Author/BK)

  14. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  15. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Wang Yuxia; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.cn [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2012-02-15

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 {mu}g/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 {mu}g/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  16. Breast cancer cells synchronous labeling and separation based on aptamer and fluorescence-magnetic silica nanoparticles

    Science.gov (United States)

    Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun

    2018-01-01

    In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.

  17. Adsorption mechanism of magnetically separable Fe{sub 3}O{sub 4}/graphene oxide hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ke [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Zhu, Chuanhe [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Zhao, Ya; Wang, Leichao [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Xie, Shan, E-mail: wyuchemxs@126.com [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Qun, E-mail: qunwang@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-11-15

    Graphical abstract: A recyclable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe{sub 3}O{sub 4}/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe{sub 3}O{sub 4}/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe{sub 3}O{sub 4}/GO hybrids. - Abstract: A reclaimable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q{sub m}) of the Fe{sub 3}O{sub 4}/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe{sub 3}O{sub 4}/GO hybrid. Therefore, the Fe{sub 3}O{sub 4}/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  18. Percutaneous dual-switching monopolar radiofrequency ablation using a separable clustered electrode: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Tae Won; Lee, Jeong Min; Lee, Dong Ho; Lee, Jeong Hoon; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung Hwan; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-09-15

    To prospectively evaluate the safety and therapeutic effectiveness of dual-switching monopolar (DSM) radiofrequency ablation (RFA) for the treatment of hepatocellular carcinoma (HCC), and to retrospectively compare the results with those of single-switching monopolar (SSM) RFA in a historical control group. This study was approved by the Institutional Review Board, with informed consent obtained from all patients. Fifty-two HCC patients who underwent DSM-RFA using a separable clustered electrode and dual-generators were prospectively enrolled. Technical parameters, complications, technical success, technical effectiveness, and local tumor progression (LTP) rates were evaluated by means of post-procedural and follow-up imaging. Thereafter, the outcome of DSM-RFA was compared with those of 249 retrospectively included HCC patients treated with SSM-RFA.There were two major complications (3.8%, 2/52) including pleural and pericardial effusion in the DSM-RFA group. The DSM-RFA yielded a 100% technical success rate, a 98.1% technical effectiveness rate, and a 4.3% 2-year LTP rate. In a retrospective comparison between the two groups, DSM-RFA created significantly larger ablation volume (4.20 ± 2.07 cm{sup 3}/min vs. 3.03 ± 1.99 cm{sup 3}/min, p < 0.01), and delivered higher energy (1.43 ± 0.37 kcal/min vs. 1.25 ± 0.50 kcal/min, p < 0.01) per given time, than SSM-RFA. There was no significant difference in major procedure-related complications (3.8% vs. 4.4%) and technical effectiveness rate (98.1% vs. 96.4%) between the two groups (p = 1.00). In addition, the 2-year LTP rate of DSM-RFA and SSM-RFA were 4.3% and 10.1%, respectively (p = 0.15). DSM-RFA using a separable clustered electrode is safe and provides high local tumor control and good preliminary clinical outcome for small HCCs, which are at least comparable to those of SSM-RFA.

  19. Percutaneous dual-switching monopolar radiofrequency ablation using a separable clustered electrode: A preliminary study

    International Nuclear Information System (INIS)

    Choi, Tae Won; Lee, Jeong Min; Lee, Dong Ho; Lee, Jeong Hoon; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung Hwan; Han, Joon Koo

    2017-01-01

    To prospectively evaluate the safety and therapeutic effectiveness of dual-switching monopolar (DSM) radiofrequency ablation (RFA) for the treatment of hepatocellular carcinoma (HCC), and to retrospectively compare the results with those of single-switching monopolar (SSM) RFA in a historical control group. This study was approved by the Institutional Review Board, with informed consent obtained from all patients. Fifty-two HCC patients who underwent DSM-RFA using a separable clustered electrode and dual-generators were prospectively enrolled. Technical parameters, complications, technical success, technical effectiveness, and local tumor progression (LTP) rates were evaluated by means of post-procedural and follow-up imaging. Thereafter, the outcome of DSM-RFA was compared with those of 249 retrospectively included HCC patients treated with SSM-RFA.There were two major complications (3.8%, 2/52) including pleural and pericardial effusion in the DSM-RFA group. The DSM-RFA yielded a 100% technical success rate, a 98.1% technical effectiveness rate, and a 4.3% 2-year LTP rate. In a retrospective comparison between the two groups, DSM-RFA created significantly larger ablation volume (4.20 ± 2.07 cm"3/min vs. 3.03 ± 1.99 cm"3/min, p < 0.01), and delivered higher energy (1.43 ± 0.37 kcal/min vs. 1.25 ± 0.50 kcal/min, p < 0.01) per given time, than SSM-RFA. There was no significant difference in major procedure-related complications (3.8% vs. 4.4%) and technical effectiveness rate (98.1% vs. 96.4%) between the two groups (p = 1.00). In addition, the 2-year LTP rate of DSM-RFA and SSM-RFA were 4.3% and 10.1%, respectively (p = 0.15). DSM-RFA using a separable clustered electrode is safe and provides high local tumor control and good preliminary clinical outcome for small HCCs, which are at least comparable to those of SSM-RFA

  20. Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitantes

    International Nuclear Information System (INIS)

    Nunez, L.; Kaminski, M.

    2000-01-01

    The Chernobyl nuclear reactor disaster in 1986 contaminated vast regions of prime grazing land. Subsequently, milk produced in the region has been contaminated with small amounts of the long-lived fission product cesium-137, and the Ukraine is seeking to deploy a simple separation process that will remove the Cs and preserve the nutritional value of the milk. Tiny magnetic particles containing crystalline silicotitanates (CST) have been manufactured and tested to this end. The results show that partitioning efficiency is optimized with low ratios of particle mass to volume. To achieve 90% Cs decontamination in a single-stage process, <3 g of magnetic CST per l milk is sufficient with a 30-min mixing time. A two-stage process would utilize <0.4 g/l per stage. The modeling of the magnetic CST system described herein can be achieved rather simply which is important for deployment in the affected Ukraine region

  1. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    Science.gov (United States)

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  2. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shulei; Zheng, Shili; Wang, Zheming; Cui, Wenwen; Zhang, Hailin; Yang, Liangrong; Zhang, Yi; Li, Ping

    2018-01-01

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.

  3. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  4. Microfabricated Passive Magnetic Bead separators

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Lund-Olesen, Torsten; Smistrup, Kristian

    2006-01-01

    The use and manipulation of functionalized magnetic beads for bioanalysis in lab-on-a-chip systems is receiving growing interest. We have developed microfluidic systems with integrated magnetic structures for the capture and release of magnetic beads. The systems are fabricated in silicon by deep...

  5. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  6. The Influence of magnetic field on the separation of droplets from ferrofluid jet

    Science.gov (United States)

    Fabian, M.; Burda, P.; Šviková, M.; Huňady, R.

    2017-06-01

    The influence of parallel and perpendicular homogenous magnetic field on the ferrofluid drop formation in dripping regime is studied experimentally. Experimental images are obtained using high-speed video camera with frame rate up to 25,000 fps. The detachment of a drop from the nozzle occurs via the formation of a neck which quickly narrows down until the drop pinches off. The formation of micro-thread from the primary neck is observed before the drop separation. Details of the shape and dynamics of the liquid neck are studied with regard to magnetic field. It is shown that near the detachment point scaled profiles exhibit self-similarity which is not affected by applied magnetic field.

  7. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, V

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  8. Dynamic Breast Magnetic Resonance Imaging without Complications in a Patient with Dual-Chamber Demand Pacemaker

    International Nuclear Information System (INIS)

    Sardanelli, F.; Lupo, P.; Esseridou, A.; Fausto, A.; Quarenghi, M.

    2006-01-01

    Mammography and ultrasound indicated a cancer of the right breast in a 77-year-old woman with a dual-chamber demand pacemaker. The patient was not pacemaker-dependent. She underwent breast 1.5T magnetic resonance imaging (MRI) (dynamic gradient echo sequence with Gd-DOTA 0.1 mmol/kg). Before the patient entered the MR room, the configuration of the device was changed (the response to magnet was switched from asynchronous to off and the rate-responsive algorithm was disabled). No relevant modifications of heart rhythm or rate were observed during the MR examination. No symptom was reported. Immediately after the examination, the pacemaker interrogation showed neither program changes nor alert warnings. MRI detected a bifocal cancer in the right breast which allowed tailored breast-conserving treatment to be initiated. Histopathology confirmed a bifocal invasive ductal carcinoma

  9. Dynamic Breast Magnetic Resonance Imaging without Complications in a Patient with Dual-Chamber Demand Pacemaker

    Energy Technology Data Exchange (ETDEWEB)

    Sardanelli, F.; Lupo, P.; Esseridou, A.; Fausto, A.; Quarenghi, M. [Policlinico San Donato, San Donato Milanese, Milan (Italy). Depts. of Radiology, Arrhythmia and Electrophysiology Center

    2006-02-15

    Mammography and ultrasound indicated a cancer of the right breast in a 77-year-old woman with a dual-chamber demand pacemaker. The patient was not pacemaker-dependent. She underwent breast 1.5T magnetic resonance imaging (MRI) (dynamic gradient echo sequence with Gd-DOTA 0.1 mmol/kg). Before the patient entered the MR room, the configuration of the device was changed (the response to magnet was switched from asynchronous to off and the rate-responsive algorithm was disabled). No relevant modifications of heart rhythm or rate were observed during the MR examination. No symptom was reported. Immediately after the examination, the pacemaker interrogation showed neither program changes nor alert warnings. MRI detected a bifocal cancer in the right breast which allowed tailored breast-conserving treatment to be initiated. Histopathology confirmed a bifocal invasive ductal carcinoma.

  10. Plasma separation process: Magnet move to Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1989-07-01

    This is the final report on the series of operations which culminated with the delivery of the Plasma Separation Process prototype magnet system (PMS) to Building K1432 at Oak Ridge National Laboratory (ORNL). This procedure included real time monitoring of the cold mass support strut strain gauges and an in-cab rider to monitor the instrumentation and direct the driver. The primary technical consideration for these precautions was the possibility of low frequency resonant vibration of the cold mass when excited by symmetrical rough road conditions at specific speeds causing excess stress levels in the support struts and consequent strut failure. A secondary consideration was the possibility of high acceleration loads due to sudden stops, severe road conditions, of impacts. The procedure for moving and transportation to ORNL included requirements for real time continuous monitoring of the eight strut stain gauges and three external accelerometers. Because the strain gauges had not been used since the original magnet cooldown, it was planned to verify their integrity during magnet warmup. The measurements made from the strut strain gauges resulted in stress values that were physically impossible. It was concluded that further evaluation was necessary to verify the usefulness of these gauges and whether they might be faulty. This was accomplished during the removal of the magnet from the building. 6 figs., 1 tab

  11. Localized Induced Current Stimulation to Neuronal Culture Using Soft Magnetic Material

    Science.gov (United States)

    Saito, Atsushi; Saito, Aki; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Jimbo, Yasuhiko

    To establish precisely focused magnetic stimulation, we developed a Mu-meal based low-frequency localized induced current (LIC) stimulation system with micro-fabricated dual cell-culture chamber. The dual cell-culture chamber was arranged in a concentric circle manner. Between the inner and outer chambers, 4 or 8 connecting micro-channels were fabricated using polydimethylsiloxane (PDMS). Rat cortical neurons were separately cultured in outer and inner chambers. Through the micro-channels, functional synaptic connections were formed. Mu-metal that has very high magnetic permeability was aligned along the outer circle, which allowed us of LIC stimulation to the cells in the outer chamber. Applying low-frequency magnetic fields to the Mu-metal, induced currents were generated and the electrical activity of the cells in the outer chamber was modified depending on the stimulation intensity. Following the modified activity in the outer circles, the cells in the inner chamber also showed slightly depressed activity patterns. These results suggested that our system would be promising for localized stimulation of neuronal networks and highly regulation of network activities.

  12. Dual-mode T_1 and T_2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    International Nuclear Information System (INIS)

    Tegafaw, Tirusew; Xu, Wenlong; Ahmad, Md Wasi; Lee, Gang Ho; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong

    2015-01-01

    A new type of dual-mode T_1 and T_2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd"3"+ ("8S_7_/_2) plays an important role in T_1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy"3"+ ("6H_1_5_/_2) has the potential to be used in T_2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy_2O_3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd"3"+ and Dy"3"+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T_1 and T_2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (d_a_v_g = 1.0 nm) showed large r_1 and r_2 values (r_2/r_1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R_1 and R_2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T_1 and T_2 MR images. (paper)

  13. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    KAUST Repository

    Shahid, Muhammad

    2013-05-01

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The magnetic measurements showed that the photocatalyst material can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for waste water treatment. The photocatalytic activity of MgFe2O4 was investigated by using the photo-decomposition of methylene blue dye under visible light. The photoelectrochemical property of the MgFe2O4 was studied by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5100 mW cm-2 illumination. © 2013 Elsevier B.V. All rights reserved.

  14. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    International Nuclear Information System (INIS)

    Bauer, C.B.; Rogers, R.D.

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K d ) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles

  15. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  16. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    Science.gov (United States)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  17. Dual approaches for defects condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2009-07-01

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  18. Performance of Magnetic Filter for Separation of Magnetic Gel Particles

    OpenAIRE

    栗延, 俊太郎; 尾崎, 博明; 渡辺, 恒雄; クリノブ, シュンタロウ; オザキ, ヒロアキ; ワタナベ, ツネオ; Shuntaro, KURINOBU; Hiroaki, OZAKI; Tuneo, WATANABE

    2003-01-01

    We have developed a new wastewater treatment process using magnetic gel particles containing immobilized microorganisms and magnetic particles. The performance of magnetic gel particles using a magnetic filter is very important to control the process. In this study, the performance of a magnetic filter was studied for magnetic gel, particles. Agar particles containing magnetite particles were used as gel particles. The recovery and the relative retention area of magnetic gel particles on the ...

  19. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    International Nuclear Information System (INIS)

    Wang Yu; Wang Yuxia; Chen Lei; Wan Qianhong

    2012-01-01

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 μg/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 μg/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  20. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. Y., E-mail: annetsai@csmu.edu.tw [Chung Shan Medical University, Department of Applied Chemistry (China); Chang, C. Y.; Li, Y. C.; Chu, W. C.; Viswanathan, K.; Bor Fuh, C., E-mail: cbfuh@ncnu.edu.tw [National Chi Nan University, Department of Applied Chemistry (China)

    2011-06-15

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic ({approx}80 nm) and fluorescent ({approx}180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  1. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Science.gov (United States)

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  2. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    Science.gov (United States)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  3. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability.

    Science.gov (United States)

    Weegman, Bradley P; Kumar Sajja, Venkata Sunil; Suszynski, Thomas M; Rizzari, Michael D; Scott Iii, William E; Kitzmann, Jennifer P; Mueller, Kate R; Hanley, Thomas R; Kennedy, David J; Todd, Paul W; Balamurugan, Appakalai N; Hering, Bernhard J; Papas, Klearchos K

    2016-01-01

    Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  4. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability

    Directory of Open Access Journals (Sweden)

    Bradley P. Weegman

    2016-01-01

    Full Text Available Islet transplantation (ITx is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG, all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL and the combined connecting/duodenal lobes (CDL, for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p<0.03 and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  5. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  6. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.; Genova, L.F.; Grant, J.A.; Mihalka, A.M.; Sukiennicki, B.A.; Tomlin, W.T.; Veldhuizen, F.T.; Walz, D.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulser that deflects two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given

  7. Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: qwang365@163.com [School of Science, Qilu University of Technology, Jinan, 250353 (China); School of Microelectronics, Shandong University, Jinan, 250100 (China); Ji, Ziwu, E-mail: jiziwu@sdu.edu.cn [School of Microelectronics, Shandong University, Jinan, 250100 (China); Zhou, Yufan; Wang, Xuelin [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Baoli [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Xu, Xiangang [Key Laboratory of Functional Crystal Materials and Device (Ministry of Education), Shandong University, Jinan, 250100 (China); Gao, Xingguo; Leng, Jiancai [School of Science, Qilu University of Technology, Jinan, 250353 (China)

    2017-07-15

    Highlights: • Nanopillar LED with smaller diameter shows a larger strain relaxation in the MQWs. • Nanopillar induced blue shift of green peak is smaller than that of blue peak. • Nanopillar induced blue shift of green/blue peak at 300 K is smaller than at 4 K. • PL intensity decreases with reducing nanopillar diameter with same pillar density. - Abstract: In this paper, strong phase-separated blue/green dual-wavelength InGaN/GaN nanopillar (NP) light emitting diodes (LEDs) with the same NP density and various NP diameters were fabricated using focused ion beam etching. Micro-Raman spectroscopy was used to show the effect of NP diameter on the strain relaxation in the multi-quantum-wells (MQWs). The effect of NP diameter on optical behaviors of the strong phase-separated dual-wavelength InGaN/GaN NP LEDs was investigated for the first time by using micro-photoluminescence (PL) spectroscopy. The blue shifts of PL peak energies of the NP LEDs showed that the NP LED with a smaller diameter exhibited a larger strain relaxation in the MQWs, as confirmed by micro-Raman results. And the blue shift of green emission was smaller than that of blue emission. The total integrated PL intensities from the NP arrays were enhanced compared to the as-grown sample due to the increased recombination rate and light extraction efficiency. The enhancement factor decreased with decreasing the NP diameter in our experiments, which indicated that the loss of active volume was gradually dominant for the luminous efficiency of NP LEDs compared to the increased recombination rate and light extraction efficiency.

  8. Recover vigorous cells of Magnetospirillum magneticum AMB-1 by capillary magnetic separation

    Science.gov (United States)

    Li, Jinhua; Ge, Xin; Zhang, Xiaokui; Chen, Guanjun; Pan, Yongxin

    2010-07-01

    Cultivable magnetotactic bacteria (MTB) in laboratory can provide sufficient samples for molecular microbiological and magnetic studies. However, a cold-stored MTB strain, such as Magnetospirillum magneticum AMB-1, often loses its ability to synthesize magnetosomes and consequently fails to sense the external magnetic field. It is therefore important to quickly recover vigorous bacteria cells that highly capable of magnetosome producing. In this study, a modified capillary magnetic separation system was designed to recover a deteriorating strain of Magnetospirillum magneticum AMB-1 that long-term cold-stored in a refrigerator. The results show that all cells obtained after a 3-cycle treatment were vigorous and had the ability to produce magnetosomes. Moreover, the 3rd-cycle recovered cells were able to form more magnetosome crystals. Compared with the colony formation method, this new method is time-saving, easily operated, and more efficient for recovering vigorous MTB cells.

  9. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  10. Magnetically separable Fe3O4@DOPA–Pd: a heterogeneous catalyst for aqueous Heck reaction

    Data.gov (United States)

    U.S. Environmental Protection Agency — Magnetically separable Fe3O4@DOPA–Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via co-ordinate interaction and the...

  11. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  12. EFFICIENCY OF METAL SCRAP SEPARATION IN EDDY CURRENT SEPARATOR

    Directory of Open Access Journals (Sweden)

    Gordan Bedeković

    2008-11-01

    Full Text Available Eddy-current separation is most often method used for the recovery of non-ferrous metals (Al, Cu, Zn, Pb from solid wastes and also for separating non-ferrous metals from each other. The feed material comes to rotary drum and magnetic field by belt conveyer. The changing magnetic field induce eddy currents in conductive (metallic particles. Because interaction between this currents and the magnetic field electrodynamic forces will act on conductive particles. Therefore the trajectories of conductive particles will be different from the trajectories of the non-conductive ones. Separation is a result of the combined actions of several forces (electrodynamic, gravitational and frictional. The paper presents results of aluminium recovery from mixture of metallic particles in eddy current separator. Testing were conducted under field condition. Results shows that is possible achieve recovery of 99 % and concentrate quality of 89 % of aluminium (the paper is published in Croatian.

  13. On the use of magnetic separation for purification of aqueous radioactive solutions from oils

    International Nuclear Information System (INIS)

    Shchebetkovskij, V.N.; Vyatkin, V.E.; Gurevich, D.M.; Bochkov, A.A.

    1984-01-01

    Using model systems, simulating oiled condensate that is formed during evaporation of water radioactive wastes, a possibility is shown to use the method of magnetic separation for waste purification from oil. Introduction of a dispersed ferromagnetic powder in the system to stabilize oil drops and to impart ''quasiferromagnetic'' properties to them, is a necessary condition for the efficient oil separation. Using as an example 137 Cs absorption, the adsorbability of ferromagnetic powders relative to radionuclides in the system investigated is assessed

  14. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  15. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    Science.gov (United States)

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  16. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin.

    Science.gov (United States)

    Lee, Yi Feng; Jöhnck, Matthias; Frech, Christian

    2018-02-21

    The efficiencies of mono gradient elution and dual salt-pH gradient elution for separation of six mAb charge and size variants on a preparative-scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt-pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno ® CPX. Besides giving high binding capacity, this type of opposite dual salt-pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt-pH gradient, and opposite dual salt-pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt-pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt-pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  17. A dual-channel gas chromatography method for the quantitation of low and high concentrations of NF3 and CF4 to study membrane separation of the two compounds.

    Science.gov (United States)

    Branken, D J; le Roux, J P; Krieg, H M; Lachmann, G

    2013-09-13

    A dual-channel gas chromatographic method is described in this paper that can be conveniently used for quantitation of NF3/CF4 mixtures with a thermal conductivity detector (TCD) on one channel for the quantitation of high-concentrations, and a pulsed discharge helium ionization detector (PDHID) on a second channel for the quantitation of low concentrations. It is shown that adequate separation is achieved on both channels with this dual single-column setup in which column switching as used for NF3/CF4 analysis in industrial chromatographic methods are not required, thus yielding an effective analysis method for laboratory-scale investigations. In addition, the use of packed columns with purified divinylbenzene-styrene co-polymers as the sole stationary phase yields satisfactory resolution between NF3 and CF4 at isothermal conditions of 30°C, with elution times of less than 8min on the TCD channel and less than 4min on the PDHID channel. Consequently, this method allows for reliable, straight-forward quantitation of NF3/CF4 mixtures, which is necessary when studying the commercially important problem of NF3 and CF4 separation by different methods. Therefore, the applicability of the method to studying membrane separation of NF3 and CF4 is briefly discussed and illustrated, for which the dual-channel setup is especially beneficial. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-01-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex ® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  19. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  20. A dual-channel gas chromatography method for the quantitation of low and high concentrations of NF3 and CF4 to study membrane separation of the two compounds

    OpenAIRE

    Branken, D.J.; Le Roux, J.P.; Krieg, H.M.; Lachmann, G.

    2013-01-01

    A dual-channel gas chromatographic method is described in this paper that can be conveniently used for quantitation of NF3/CF4 mixtures with a thermal conductivity detector (TCD) on one channel for the quantitation of high-concentrations, and a pulsed discharge helium ionization detector (PDHID) on a second channel for the quantitation of low concentrations. It is shown that adequate separation is achieved on both channels with this dual single-column setup in which column switchi...

  1. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony.

    Science.gov (United States)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Li, Yiran; Liu, Huijuan; Qu, Jiuhui

    2018-02-05

    Manganese iron oxide (MnFe 2 O 4 ), an excellent arsenic(As)/antimony(Sb) removal adsorbent, is greatly restricted for the solid-liquid separation. Through the application of superconducting high gradient magnetic separation (HGMS) technique, we herein constructed a facility for the in situ solid-liquid separation of micro-sized MnFe 2 O 4 adsorbent in As/Sb removal process. To the relative low initial concentration 50.0μgL -1 , MnFe 2 O 4 material sorbent can still decrease As or Sb below US EPA's drinking water standard limit. The separation of MnFe 2 O 4 was mainly relied on the flow rate and the amount of steel wools in the HGMS system. At a flow rate 1Lmin -1 and 5% steel wools filling rate, the removal efficacies of As and Sb in natural water with the system were achieved to be 94.6% and 76.8%, respectively. At the meantime, nearly 100% micro-sized MnFe 2 O 4 solid in the continuous field was readily to be separated via HGMS system. In a combination with the experiment results and finite element simulation, the separation was seemed to be independent on the magnetic field intensity, and the maximum separation capacities in various conditions were well predicted using the Thomas model (R 2 =0.87-0.99). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  3. Dual symmetry in gauge theories

    International Nuclear Information System (INIS)

    Koshkarov, A.L.

    1997-01-01

    Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory

  4. Study of 1 MW neutron source synchrotron dual frequency power circuit for the main ring magnets

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the proposed design of the resonant power circuits for the 1-MW neutron source synchrotron's main ring magnets. The synchrotron is to have a duty cycle of 30 Hz with a maximum upper limit of operation corresponding to 2.0 GeV and a maximum design value of 2.2 GeV. A stability of 30 ppM is the design goal for the main bending and focusing magnets (dipoles and quadruples), in order to achieve an overall stabffity of 100 ppm when random field and position errors of the magnets are included. The power circuits of this design are similar to those used in Argonne's Intense Pulsed Neutron Source (IPNS) where the energy losses during each cycle are supplied by continuous excitation from modulated multiphase DC power supplies. Since only 50% of the 30-Hz sinewave is used for acceleration, a dual-frequency resonant magnet circuit is used in this design. The 30-Hz repetition rate is maintained with a 20-Hz magnet guide field during acceleration and a 60-Hz reset field when no beam is present. This lengthens the guide-field rise time and shortens the fall time, improving the duty factor for acceleration. The maximum B dot is reduced by 33% during acceleration and hence, the maximum rf voltage/turn is reduced by 56%

  5. Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection

    OpenAIRE

    Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal

    2014-01-01

    Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [59Fe]-superparamagnetic iron oxide nanoparticles ([59Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. 59Fe was incorporated into Fe3O4 nanoparticle cry...

  6. Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles.

    Science.gov (United States)

    Zou, Wen-Sheng; Wang, Ya-Qin; Wang, Feng; Shao, Qun; Zhang, Jun; Liu, Jin

    2013-05-01

    Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC-HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid-base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC-HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC-HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05-1.5 μmol L(-1), with a detection limit of 37.2 nmol L(-1) and RSD of 4.7 % (n = 7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.

  7. Magnetically Separable Fe3O4@DOPA-Pd: A Heterogeneous Catalyst for Aqueous Heck Reaction

    Science.gov (United States)

    Magnetically separable Fe3O4@DOPA-Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via non-covalent interaction and the catalyst is utilized for expeditious Heck coupling in aqueous media.

  8. Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics

    International Nuclear Information System (INIS)

    Yang Fang; Jin Xin; Wang Hao-Yao; Gu Ning; Gu Zhu-Xiao

    2013-01-01

    Generation of magnetic micrbubbles and their basic magnetic and acoustic mechanism are reviewed. The ultrasound (US) and magnetic resonance (MR) dual imaging, the controlled therapeutic delivery, as well as theranostic multifunctions are all introduced based on recent research results. Some on-going research is also discussed. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  9. Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaodong [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Guo, Shuai; Chen, Kan; Chen, Renjie; Lee, Don [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); You, Caiyin, E-mail: caiyinyou@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2016-12-01

    A dual-alloy method was applied to tune the distribution of Ce for enhancing the performance of Nd-Ce-Fe-B sintered magnets with a nominal composition of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B. In comparison to the single alloy of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B, the coercivity was enhanced from 10.3 kOe to 12.1 kOe and the remanence was increased from 13.1 kG to 13.3 kG for the magnets with a dual-alloy method. In addition, the remanence temperature coefficient α and coercivity temperature coefficient β were also slightly improved for the magnet with the dual alloys. The results of microstructure characterizations show the uniform distribution of Ce for the magnet with a single alloy, and the coexistence of the Ce-rich and Ce-lean regions for the magnet with the dual alloys. In combinations with the nucleation of reversal domains and magnetic recoil curves, the property enhancement of magnets with a dual-alloy method was well explained. - Highlights: • Improved magnetic properties were obtained in dual-alloy magnet. • This is due to the tuning of Ce distribution and the change in microstructure. • The magnetic hardening effect can be observed in dual-alloy magnet.

  10. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  11. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Arppe, Riikka, E-mail: riikka.arppe@utu.fi; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamaeki, Terhi; Soukka, Tero [University of Turku, Department of Biotechnology (Finland)

    2013-09-15

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF{sub 4}: Yb{sup 3+}, Er{sup 3+}-nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them.

  12. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    International Nuclear Information System (INIS)

    Arppe, Riikka; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamäki, Terhi; Soukka, Tero

    2013-01-01

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF 4 : Yb 3+ , Er 3+ -nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them

  13. Treatment of heavy metals and radionuclides in groundwater and wastewater by magnetic separation

    International Nuclear Information System (INIS)

    Bradbury, D.; Elder, G.R.; Tucker, P.M.; Dunn, M.J.

    1992-01-01

    Removal of trace quantities of heavy metal or radionuclide contamination from solutions at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration demand significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes recent progress with this technique including performance tests of composite materials produced to selectively remove specific contaminants such as cesium, uranium, lead, cadmium, and mercury from solution

  14. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.

  15. Novel uses of magnetic separation in the nuclear industry

    International Nuclear Information System (INIS)

    Coe, B.T.

    1999-08-01

    High Gradient Magnetic Separation (HGMS) has been investigated in the nuclear industry, for the application of advanced technology in present and future nuclear environments within BNFL. Previous applications of HGMS have been reviewed and future novel applications investigated. The two most promising applications were then chosen as the focus of the PhD. In the first project, HGMS has been used to selectively recover biologically precipitated iron sulphide (Fe 1-x S) particles containing heavy metal ions, from a BNFL soil remediation effluent stream. The uptake of the ions is believed to be a consequence of the bacterial metabolism and the adsorptive properties of the iron sulphide. Biologically precipitated iron sulphide is known to differ in structure to its chemically precipitated equivalent and as such has certain advantages, for example, increased adsorbent properties and magnetic properties. The HGMS system was optimised and its performance investigated as a function of the magnetic field, the flow rate and the concentration of the biological particles in solution, with time. Results have shown that an efficiency of over 95% can be obtained, proving that HGMS is a valuable method for the concentration of metal ions from contaminated soils, especially when the adsorbed heavy metals are toxic or even radioactive and difficult to handle by other means. In the second project, the removal out of solution of radioactive technetium, in the form of the pertechnate ion [TcO 4 - ] was investigated. This was achieved using ion exchange techniques, Liquid Scintillation Counting LSC and HGMS. (author)

  16. Coal-Based Reduction and Magnetic Separation Behavior of Low-Grade Vanadium-Titanium Magnetite Pellets

    Directory of Open Access Journals (Sweden)

    Gongjin Cheng

    2017-05-01

    Full Text Available Coal-based reduction and magnetic separation behavior of low-grade vanadium-titanium magnetite pellets were studied in this paper. It is found that the metallization degree increased obviously with an increase in the temperature from 1100 °C to 1400 °C. The phase composition transformation was specifically analyzed with X-ray diffraction (XRD. The microscopic examination was carried out with scanning electron microscopy (SEM, and the element composition and distribution were detected with energy dispersive spectroscopy (EDS. It is observed that the amounts of metallic iron particles obviously increased and the accumulation and growing tendency were gradually facilitated with the increase in the temperature from 1100 °C to 1400 °C. It is also found that the titanium oxides were gradually reduced and separated from ferrum-titanium oxides during reduction. In addition, with increasing the temperature from 1200 °C to 1350 °C, silicate phases, especially calcium silicate phases that were transformed from calcium ferrite at 1100 °C, were observed and gradually aggregated. However, at 1400 °C some silicate phases infiltrated into metallic iron, as it appears that the carbides, especially TiC, could probably contribute to the sintering phenomenon becoming serious. The transformation behavior of valuable elements was as follows: Fe2VO4 → VO → V → VC; FeTiO3 (→ FeTi2O5 → TiO2 → TiC; FeCr2O4 → Cr → CrC; FeTiO3 (→ FeTi2O5 → Fe0.5Mg0.5Ti2O5; (Fe3O4/FeTiO3→ FeO → Mg0.77Fe0.23O. Through the magnetic separation of coal-based reduced products, it is demonstrated that the separation of Cr, V, Ti, and non-magnetic phases can be preliminarily realized.

  17. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    Science.gov (United States)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  18. Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-11-01

    Full Text Available Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM is researched in this paper to further promote their torque density and fault tolerance capability. It has two rotors and two sets of stator windings, and it can adopt a series drive mode or parallel drive mode. The fault-tolerance capability of the five-phase DRPMSM is researched. All open circuit fault types and corresponding fault tolerance techniques in different drive modes are analyzed. A fault-tolerance control strategy of injecting currents containing a certain third harmonic component is proposed for five-phase DRPMSM to ensure performance after faults in the motor or drive circuit. For adjacent double-phase faults in the motor, based on where the additional degrees of freedom are used, two different fault-tolerance current calculation schemes are adopted and the torque results are compared. Decoupling of the inner motor and outer motor is investigated under fault-tolerant conditions in parallel drive mode. The finite element analysis (FMA results and co-simulation results based on Simulink-Simplorer-Maxwell verify the effectiveness of the techniques.

  19. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    Science.gov (United States)

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.

  20. Dual-keel electrodynamic maglev system

    Science.gov (United States)

    He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang

    1996-01-01

    A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.

  1. Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2015-12-01

    Full Text Available In this paper, a co-axial dual-mechanical ports flux-switching permanent magnet (CADMP-FSPM machine for hybrid electric vehicles (HEVs is proposed and investigated, which is comprised of two conventional co-axial FSPM machines, namely one high-speed inner rotor machine and one low-speed outer rotor machine and a non-magnetic ring sandwiched in between. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced; secondly, the control system of the proposed electronically-controlled continuously-variable transmission (E-CVT system is given; thirdly, the key design specifications of the CADMP-FSPM machine are determined based on a conventional dual-mechanical ports (DMP machine with a wound inner rotor. Fourthly, the performances of the CADMP-FSPM machine and the normal DMP machine under the same overall volume are compared, and the results indicate that the CADMP-FSPM machine has advantages over the conventional DMP machine in the elimination of brushes and slip rings, improved thermal dissipation conditions for the inner rotor, direct-driven operation, more flexible modes, lower cogging torque and torque ripple, lower total harmonic distortion (THD values of phase PM flux linkage and phase electro-motive force (EMF, higher torque output capability and is suitable for the E-CVT systems. Finally, the pros and cons of the CADMP-FSPM machine are highlighted. This paper lays a theoretical foundation for further research on CADMP-FSPM machines used for HEVs.

  2. Recent development of high gradient superconducting magnetic separator for kaolin in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong [Institute of High Energy Physics and University of Chinese Academy of Sciences, Beijing (China); Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian [Weifang Xinli Superconducting Technology Co.,Ltd., Weifang (China)

    2017-03-15

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation.

  3. Recent development of high gradient superconducting magnetic separator for kaolin in China

    International Nuclear Information System (INIS)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong; Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian

    2017-01-01

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation

  4. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution.

    Science.gov (United States)

    Xin, Ouyang; Yitong, Han; Xi, Cao; Jiawei, Chen

    2017-03-01

    Biochar has been developed in recent years for the removal of contaminants such as Cr (VI) in water. The enhancement of the adsorption capacity of biochar and its recyclable use are still challenges. In this study, magnetic biochar derived from corncobs and peanut hulls was synthesized under different pyrolysis temperatures after pretreating the biomass with a low concentration of 0.5 M FeCl 3 solution. The morphology, specific surface area, saturation magnetization and Fourier transform infrared spectroscopy (FT-IR) spectra were characterized for biochar. The magnetic biochar performed well in combining adsorption and separation recycle for the removal of Cr (VI) in water. The Cr (VI) adsorbance of the biochar was increased with the increase in pyrolysis temperature, and the magnetic biochar derived from corncobs showed better performance for both magnetization and removal of Cr (VI) than that from peanut hulls. The Langmuir model was used for the isothermal adsorption and the maximum Cr (VI) adsorption capacity of corncob magnetic biochar pyrolyzed at 650 °C reached 61.97 mg/g. An alkaline solution (0.1 M NaOH) favored the desorption of Cr (VI) from the magnetic biochar, and the removal of Cr (VI) still remained around 77.6% after four cycles of adsorption-desorption. The results showed that corncob derived magnetic biochar is a potentially efficient and recoverable adsorbent for remediation of heavy metals in water.

  5. Radioactive substance separation systems

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1981-01-01

    Purpose: To enable separation of fission products, radioactive corrosion products and the likes in primary coolants with no requirement for the replacement of separation system during plant service life, by providing protruded magnetic pole plates in a liquid metal flow channel to thereby form slopes magnetic fields. Constitution: A plurality of magnetic pole plates are disposed vertically in a comb-like arrangement so as not to contact with each other along the direction of flow in a rectangular primary coolant pipeway at the exit of the reactor core in an LMFBR type reactor. Large magnetic poles are provided to the upper and lower sides of the pipeway and coils are wound on the side opposed to the pipeway. When electrical current is supplied to the coils, the magnetic pole is magnetized intensely and thus the magnetic pole plates are also magnetized intensely and thus the magnetic pole plates are also magnetized intensely to form large gradient in the magnetic fields between the upper and lower magnetic plates, whereby ferromagnetic and ferrimagnetic fission products and radioactive corrosion products in the coolants are intensely adsorbed and not detached by the flow of the coolants. Accordingly, the fission products and the radioactive corrosion products can surely be removed with no requirement for the exchange of separation system during plant service life. (Horiuchi, T.)

  6. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    Science.gov (United States)

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  7. QCD as a dual superconductor

    International Nuclear Information System (INIS)

    Zachariasen, F.

    1986-01-01

    The author describes the construction of an effective action describing long-range Yang-Mills theory. This action is motivated by a study of the system of Dyson equations and Ward identities, but cannot (yet) be derived from the underlying quantum theory. The effective action turns out to describe a medium very much like a dual relativistic superconductor; that is, with electric and magnetic fields interchanged. There is a dual Meissner effect, which serves to compress color electric fields into flux tubes, containing quantized units of color electric flux. This produces electric confinement. There is a magnetic condensate, resulting from a spontaneous symmetry breaking analogous to that in the relativistic superconductor, as in the Abelian Higgs model. He gives the motivation leading to the effective action, and describes the quantized electric flux tube solutions. Finally, he mentions briefly some other applications

  8. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom); Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); Lloyd, David [School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom)

    2016-08-29

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  9. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Science.gov (United States)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  10. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    International Nuclear Information System (INIS)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian; Lloyd, David

    2016-01-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  11. Research on a six-phase permanent magnet synchronous motor system at dual-redundant and fault tolerant modes in aviation application

    Directory of Open Access Journals (Sweden)

    Xiaolin KUANG

    2017-08-01

    Full Text Available With the development of more/all electrical aircraft technology, an electro-mechanical actuator (EMA is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor (PMSM is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes. Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative (PID control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.

  12. Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation

    Science.gov (United States)

    Zhao, Linyan; Li, Lian; Wang, Yixi; Wu, Jianning; Meng, Guihua; Liu, Zhiyong; Guo, Xuhong

    2018-01-01

    Oily wastewater caused by industrial production and crude oil leakage has attracted worldwide attention. Here, a thermo- and pH dual-responsive biodegradable cellulose-based aerogel for oil-water separation was designed and prepared via surface-initiated atom transfer radical polymerization (ATRP) of non-fluorine-containing 2-dimethylaminoethyl methacrylate (DMAEMA). The cellulose-based aerogel exhibit switchable superhydrophilicity with a water contact angle (WCA) of 0° and hydrophobicity (WCA 130°) by modulating pH or temperature. The functionalized cellulose-based aerogels could be used to absorb the water under 60 °C (pH 7.0) and pH is 1.0 (T = 25 °C), while absorb oil underwater when the temperature is above 60 °C (pH 7.0) or pH is 13.0 (T = 25 °C). So this adsorbent were suitable for the separation of water-rich or oil-rich oil/water mixtures, and it could adsorb oil over ten times its own weight, and had a good reusability. What's more, the cellulose-based aerogel is green, low cost, and environmental friendly, which makes it a promising candidate to be used for oil-water separation.

  13. Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic

    International Nuclear Information System (INIS)

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T.

    2014-01-01

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g −1 ) barium hexaferrite (BaFe 12 O 19 , BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe 3 O 4 ) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L −1 As-contaminated water can be purified rapidly at a material cost of less than 2 US cents

  14. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  15. Beam-Energy Dependence of Charge Separation along the Magnetic Field in Au +Au Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au +Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  16. Dual Y-Shaped Monopole Antenna for Dual-Band WLAN/WiMAX Operations

    Directory of Open Access Journals (Sweden)

    Huiqing Zhai

    2014-01-01

    Full Text Available A dual-band design of monopole antenna with two coupled Y-shaped strips for WLAN/WiMAX applications is presented. By the introduction of dual Y-shaped strips, two separated impedance bandwidths of 22.4% (3.28~4.10 GHz and 19.2% (4.90~5.94 GHz can be obtained to meet the specifications of the WLAN/WiMAX communication band applications. The proposed antenna is successfully simulated, designed, and measured, demonstrating the matched impedance and good radiation characteristics with an overall dimension of 17.7×26×1 mm3.

  17. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  18. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  19. Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2015-01-01

    Full Text Available Removal performance of arsenic in water by a novel magnetic chitosan nanoparticle (MCNP with a diameter of about 10 nm, including adsorption kinetics, adsorption isotherm, main influencing factors, and regeneration effects, was investigated. In addition, the effective separation way for MCNP particles and the new application mode were developed to prompt the application of MCNP. The results showed that MCNP exhibited excellent ability to remove As(V and As(III from water in a wide range of initial concentrations, MCNP removed arsenic rapidly with more than 95% of arsenic adsorbed in initial 15 min, and the whole process fitted well to the pseudo-second-order model. The Langmuir model fits the equilibrium data better than the Freundlich isotherm model and the maximum adsorption capacities of As(V and As(III were 65.5 mg/g and 60.2 mg/g, respectively. The saturated MCNP could be easily regenerated and kept more than 95% of initial adsorption capacity stable after 10 regeneration cycles. A new magnetic material separation method was established to separate MCNP effectively. The continuous-operation instrument developed based on the MCNP could operate stably and guarantee that the concentration of arsenic meets the guideline limit of arsenic in drinking water regulated by the WHO.

  20. [Treatment program for dual-diagnosis substance abusers].

    Science.gov (United States)

    Kandel, Isack

    2007-01-01

    Dual-diagnosis mentally ill patients, i.e. those characterized with substance abuse problems combined with mental health problems, are a challenge both for systems treating substance abusers and for mental health services. These patients are not easily integrated in either of these healthcare systems and/or are treated only for one aspect of their problem by each of these systems. For such patients it is necessary to create a separate treatment model, combining care of the problem of substance abuse and attention to the patient's mental pathology, according to his individual personality traits. For purposes of this programme a treatment setting operating on the model of a therapeutic community is proposed. This setting will open an affiliated treatment programme for dual-diagnosed patients in a separate treatment programme that is not part of the therapeutic community but will be affiliated with it and will accept dual-diagnosis patients.

  1. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  2. SPHERICAL COVERAGE DUAL MODE SENSOR FOR UAS SEPARATION ASSURANCE, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a dual-mode sensor for use aboard unmanned aircraft for safe operation in the NAS that: 1. Incorporates high resolution Millimeter Wave radar with high...

  3. Dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit

    International Nuclear Information System (INIS)

    Thameem Ansari, M.Md.; Velusami, S.

    2010-01-01

    A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.

  4. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    Science.gov (United States)

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  5. Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field

    Science.gov (United States)

    Skrypnyk, T.

    2017-08-01

    We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.

  6. Desulphurisation of coal pyrolysis and magnetic separation. Desulfuracion de carbones mediante pirolisis y separacion magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.C.; Ayala, N.; Ibarra, J.V.; Moliner, R.; Miranda, J.L.; Vazquez, A. (CENIM, Madrid (Spain))

    1991-07-01

    The desulphurisation of coal intended for use inthermal power stations is a priority issue in the national strategy for the reduction of acid rain. This article studies the feasibility of eliminating pyritic sulphur from coal by physical methods using high intensity pyrolysis and magnetic separation. 6 refs., 9 figs., 4 tabs.

  7. Interplay between mesoscopic phase separation and bulk magnetism in the layered Na.sub.x./sub.CoO.sub.2./sub

    Czech Academy of Sciences Publication Activity Database

    Zorkovská, A.; Orendáč, M.; Šebek, Josef; Šantavá, Eva; Svoboda, P.; Bradaric, I.; Savič, I.; Feher, A.

    2005-01-01

    Roč. 72, č. 13 (2005), 132412/1-132412/4 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100520 Keywords : Na x CoO 2 * mesoscopic phase separation * bulk magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.185, year: 2005

  8. Fabrication and characterization of nano/amorphous dual-phase FINEMET microwires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Qin, F.X. [Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Xing, D.W.; Cao, F.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Peng, H.X. [Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Bristol Centre for NanoScience and Quantum Information (NSQI), University of Bristol, Bristol BS8 1FD (United Kingdom); Sun, J.F., E-mail: jfsun@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    Highlights: • Nano/amorphous dual-phase FINEMET microwire was fabricated and characterized. • The unique dual-phase structure is correlated to its different cooling experience. • The extracted microwires possess high tensile strength over 1800 MPa. • Excellent EMI property was elucidated by the multiple magnetic loss mechanisms. -- Abstract: A nano/amorphous dual-phase FINEMET microwire was fabricated directly from molten alloy without any interstage annealing by a home-built melt extraction technique (MET). The microstructure, mechanical and pronounced electromagnetic interference shielding (EMI) effectiveness of this dual-phase microwire has been systematically evaluated. The structural analysis reveals that the as-cast FINEMET microwire consists of two distinct structures, i.e., amorphous and nanocrystalline phase due to their different cooling characteristics. Compared with other reported FINEMET alloys, the extracted microwire exhibits a superior high tensile strength of 1800 MPa. These nanocrystals enabled dual-phase microwires also exhibit large EMI SE values in the frequency range of 8–12 GHz (X-band) due to the multiple magnetic loss mechanisms associated with their intrinsic structural characteristics. The combination of excellent mechanical properties and electromagnetic properties make this kind of melt-extracted dual-phase FINEMET microwire promising for a range of structure and multifunctional applications.

  9. Hamilton principle for the dual electrodynamics; Principio de Hamilton para a eletrodinamica dual

    Energy Technology Data Exchange (ETDEWEB)

    Souza Silva, Saulo Carneiro de

    1995-12-31

    The present work discusses the classical electromagnetic theory in the presence of magnetic monopoles. We review the connection between such objects and the long standing problem of charge quantization and the main theoretical difficulties in formulating the classical dual electromagnetic theory in terms of an action principle. We show that a deeper understanding of the source of such difficulties leads naturally to the construction of a variational principle for a non-local Lagrangian from which all the (local) dynamical equations for electric, magnetic charges and fields can be obtained. (author) 53 refs.

  10. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  11. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology.

    Science.gov (United States)

    Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.

  12. Reframing Language Allocation Policy in Dual Language Bilingual Education

    Science.gov (United States)

    Sánchez, María Teresa; García, Ofelia; Solorza, Cristian

    2018-01-01

    This article addresses language allocation policies in what is increasingly called "Dual Language Education" (DLE) in the U.S., offering a challenge to the strict language separation policies in those programs and a proposal for flexibility that transforms them into "Dual Language Bilingual Education" (DLBE). The article offers…

  13. Dual Band Magnonic Crystals: Model System and Basic Spin Wave Dynamics

    Directory of Open Access Journals (Sweden)

    Federico Montoncello

    2016-01-01

    Full Text Available We investigate a special design of two-dimensional magnonic crystal, consisting of two superimposed lattices with different lattice constants, such that spin waves (SWs can propagate either in one or the other sublattice, depending on which of the two frequency bands they belong to. The SW bands are separated by a very large bandgap (in our model system, 6 GHz, easily tunable by changing the direction of an applied magnetic field, and the overlap of their spatial distribution, for any frequency of their bands, is always negligible. These properties make the designed system an ideal test system for a magnonic dual band waveguide, where the simultaneous excitation and subsequent propagation of two independent SW signals are allowed, with no mutual interference.

  14. Deterministic Generation of Quantum State Transfer Between Spatially Separated Single Molecule Magnets

    International Nuclear Information System (INIS)

    Song Peijun; Lue Xinyou; Huang Pei; Hao Xiangying; Yang Xiaoxue

    2010-01-01

    We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum electrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network. (general)

  15. Dual potentials in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Caticha, A.

    1988-01-01

    Motivated by the possibility that confinement and superconductivity are similar phenomena, dual potentials are introduced into Yang-Mills theory in two different ways. Both are extensions of Zwanziger's two-potential formalism for Abelian charges and monopoles to the non-Abelian case. In the first approach the dual potentials carry a color index and there is a rather simple, although nonlocal, dual-variable formulation. In the second approach dual variables are introduced into the so-called Abelian projection of the SU(2) Yang-Mills theory. An interesting feature is that the quartic contact interactions are absent and there is a special gauge choice for which the theory takes on a ''purely electromagnetic'' form. More important, however, is the appearance of an additional Abelian magnetic gauge symmetry the dynamical breaking of which may be associated with confinement

  16. Design and field measurement of the BEPC-II interaction region dual-aperture quadrupoles

    International Nuclear Information System (INIS)

    Yin, Z.S.; Wu, Y.Z.; Zhang, J.F.; Chen, W.; Li, Y.J.; Li, L.; Hou, R.; Yin, B.G.; Sun, X.J.; Ren, F.L.; Wang, F.A.; Chen, F.S.; Yu, C.H.; Chen, C.

    2007-01-01

    With the Beijing Electron Positron Collider upgrade project (BEPC-II), two dual-aperture septum-style quadrupole magnets are used in the interaction region for the final focusing of the electron and positron beams. The BEPC-II lattice design calls for the same high quality integral quadrupole field and large good field region in both apertures for each magnet. Two-dimensional contour optimization and pole-end chamfer iteration are used to minimize the systematic harmonic errors. Unexpected non-systematic errors induced by the unsymmetrical structure and the manufacturing errors are compensated with the pole-end shimming. Magnet measurements with rotating coils are performed to guide and confirm the magnet design. This paper discusses the design consideration, optimizing procedure and measurement results of these dual-aperture magnets

  17. Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation

    Science.gov (United States)

    The performance of magnetically separable N-doped TiO2 was found to be significantly improved when compared with a non-magnetic N-doped TiO2 for the aqueous removal of cyanotoxin Microcystin-LR. The observed enhanced photocatalytic activity may be related to the presence of ferri...

  18. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.; Käppler, T.

    2013-01-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS...... production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc....

  19. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulsar that will deflect two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given. Work is continuing on the various subsystem components to decrease the pulse rise and fall time, flattop ripple and jitter and to reduce some of the sources of noise and hv breakdown

  20. Ultra-high-field magnets for future hadron colliders

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Shen, W.

    1997-01-01

    Several new concepts in magnetic design and coil fabrication are being incorporated into designs for ultra-high field collider magnets: a 16 Tesla block-coil dual dipole, also using Nb 3 Sn cable, featuring simple pancake coil construction and face-loaded prestress geometry; a 330 T/m block-coil quadrupole; and a ∼ 20 Tesla pipe-geometry dual dipole, using A15 or BSCCO tape. Field design and fabrication issues are discussed for each magnet

  1. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Golbon-Haghighi

    2016-06-01

    Full Text Available A novel dual-polarization and dual-scan (DPDS classification algorithm is developed for clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are then defined and estimated in order to separate clutter from weather based on their physical and statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

  2. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  3. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  4. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Atienza, A.; Serrano, E.; Linares, N. [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain); Svedlindh, P. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Seisenbaeva, G., E-mail: Gulaim.Seisenbaeva@slu.se [Department of Chemistry and Biotechnology, BioCenter SLU, Box 7015, SE-75007 Uppsala (Sweden); García-Martínez, J., E-mail: j.garcia@ua.es [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain)

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.

  5. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  6. The dual formulation of cosmic strings and vortices

    CERN Document Server

    Lee, Ki-Myeong

    1993-01-01

    We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.

  7. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.; Ritter, J.A.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe 3 O 4 and FeCrO 4 , results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  8. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Science.gov (United States)

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  9. Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation

    KAUST Repository

    Shahid, Muhammad; Jingling, Liu; Ali, Zahid; Shakir, Imran; Warsi, Muhammad Farooq; Parveen, Riffat; Nadeem, Muhammad Tahir

    2013-01-01

    A magnetically separable single-phase MgFe2O4 photocatalyst with a spinel crystal structure was synthesized by using the solid-state reaction method. The formation of spinel structure is confirmed by X-ray diffraction and Fourier transform infrared

  10. Electromagnetic separator of plasma

    International Nuclear Information System (INIS)

    Gasilin, V.V.; Nezovibatko, Yu.N.; Poklepach, G.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.

    2005-01-01

    The progress in the widespread utilization of the PVD methods is determined in many respects by the plasma quality and, therefore, the necessity of an application of plasma separators, in particular magnetic separators. One needs to note that traditional magnetic separators have a number of problems their using, namely their unwieldiness, the presence of the isolated cameras and so on. We have proposed, manufactured and investigated the simple separator of plasma that doesn't require using additional cameras. As a source of metallic plasma the standard cathode vaporizer in the installation 'BULAT 6' was in use. Plasma stream from the cathode flowed through the not protected by isolation spiral solenoid. The solenoid input (from the cathode side) was under floating potential. The solenoid output was connected to the autonomous power supply system. The solenoid was prepared with stride winding and 90 degree turn. The solenoid current was 20-90 A and the solenoid voltage with respect to the vessel (earth) was +15 V. In this case drifting charged particles could freely fly out from the interior solenoid region to its boundary. The glow of the turned flow of plasma was observed during the supplying of the cathode and the solenoid. Plasma flow was separated from the coils and extended along the axis of solenoid. One can assume that this device ensures radial electric with respect to the bulk of plasma (the diameter of the bulk of plasma is comparable with the cathode diameter), the toroidal magnetic field, produced by solenoid, was of an order of 20 Oe. Magnetic field strength was sufficient for the magnetization of electrons, but it was rather small for magnetizing the ions and charged micro-droplets. The experiments carried out with aluminum cathode on the deposition of coatings at the stainless steel substrate have shown the high effectiveness of this separator operation. Coatings without droplets were obtained also on the glass substrate with HF- displacement

  11. Development of an ESR/MR dual-imaging system as a tool to detect bioradicals

    International Nuclear Information System (INIS)

    Fujii, Hirotada; Aoki, Masaaki; Haishi, Tomoyuki; Itoh, Kouichi; Sakata, Motomichi

    2006-01-01

    A system combining electron spin resonance imaging (ESRI) with another imaging modality capable of enabling visualization of the distribution of bioradicals on an anatomical map of the specimens would be a superior biomedical imaging system. We describe the development of an electron spin resonance ESR/MR dual-imaging system with one permanent magnet and the biomedical applications of this system. The magnetic circuit developed for the ESR/MR dual-imaging system consisted of the permanent magnet made of Fe-Nd-B, pole pieces, and poke. The permanent magnet was installed on the MR side only, and the ESR side was made of pole pieces only. The magnetic field was adjusted to 0.5T at MR and to 0.042T at ESR. The overall dimensions of the magnet developed for the ESR/MR imaging system were 460 (W) x 440 (D) x 460 (H) mm, and it weighed 220 kg. The distance of each center for the magnet for ESR and MR imaging could be set as close as 200 mm. The entire ESR/MR imaging system can be installed in a common laboratory without magnetic shielding. MR images of plants (myoga) and small animals (mice and rats) were successfully acquired with or without ESR operation. ESR spectra of nitroxyl spin probes were also measured, even with MRI operation. ESR signals of triarylmethyl derivatives with narrow line-width (0.026 mT) were observed in living mice while MRI was operating. The ESR/MR imaging dual functions work properly with no electric or magnetic interference. The ESR/MR dual images demonstrate that this system enables visualization of the distribution of bioradicals on the anatomical map of the object. (author)

  12. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  13. Review on heavy water separation at pilot scale

    International Nuclear Information System (INIS)

    Wuryanto; Soeroto Ronodirdjo.

    1976-01-01

    The isotope exchange system ammonia-water and hydrogen sulfide water dual temperature are studied. Comparison of the two methods with water electrolysis, water distillation, hydrogen distillation and catalytic water hydrogen exchange are discussed. Water distillation is a simple method. Electrolysis of water has the highest separation factor. The isotope exchange hydrogen sulfide water dual temperature will be done in accord with the report on the operation of a dual temperature single stage for deuterium concentration written by M.L.Eidinoff and C.F. Hiskey. (authors)

  14. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH42SO4 Activation Roasting

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2017-05-01

    Full Text Available A novel approach for recovery of iron and rare earth elements (REEs from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH42SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic concentrate was 56.3 wt. %. An innovative approach, using water to leach REEs after (NH42SO4 activation roasting, was used to extract REEs from magnetic separation tailings. The main influence factors of the leaching recovery during (NH42SO4 activation roasting, were investigated with the mass ratio of (NH42SO4 to magnetic separation tailings, roasting temperature and roasting time. The leaching recoveries of La, Ce and Nd reached 83.12%, 76.64% and 77.35%, respectively, under the optimized conditions: a mass ratio of 6:1, a roasting temperature of 400 °C and a roasting time of 80 min. Furthermore, the phase composition and reaction process during the (NH42SO4 activation roasting were analyzed with X-ray diffraction (XRD, energy dispersive X-ray spectroscopy & scanning electron microscopy (EDS-SEM and thermogravimetry & differential scanning calorimetry (TG-DSC, and the leaching solution and leaching residue were also characterized.

  15. Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-09-01

    Full Text Available This paper investigates of a kind of five-phase dual-rotor permanent-magnet synchronous motor (DRPMSM, which contains dual rotors and a single stator. This kind of motor has the potential advantages of high power density, high reliability and high efficiency, which make it more appropriate for using in electric vehicles (EVs. In order to evaluate the most suitable power level for this kind of structure, the electromagnetic, the thermal and the mechanical characteristics are investigated in this paper. The length to diameter ratio of motors is researched to obtain the highest power density and then the optimum ratio is obtained. Based on the optimum ratio, the thermal characteristics are researched under natural condition and forced-air cooling condition with different wind speeds. In addition, the mechanical characteristics are analyzed under no-load and different loads conditions, respectively. All of the results are analyzed by two-dimension (2-D and three-dimension (3-D finite element method (FEM simulation, which provide a good reference to select suitable power level for this kind of motor structure. Finally, a DRPMSM prototype is manufactured and tested. The experimental results effectively verify the FEM results.

  16. The classical centre-of-mass separation for two particles in a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Dickinson, A.S.; Patterson, J.M.

    1986-01-01

    The authors investigate classically the problem of the centre-of-mass separation for a two-body system with net charge in a homogeneous magnetic field. Particular attention is paid to the case where one particle is much heavier than the other. Alternative momenta involving a suggested near-constant of the motion are investigated for use with a translation-invariant internal potential. These lead to a 'near separation' in terms of two coupled particles characterised by vectors which possess a simple classical interpretation, even in the presence of an interaction potential. However it is found that the coupling is not small and is not reduced when one of the particles is much heavier than the other, although the frequencies of the two motions then differ widely. (author)

  17. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO{sub 4}] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania); Lee, Byeong Kyu [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-30

    Graphical abstract: A possible pathway for immobilization with the nano-Fe/Ca/CaO/[PO{sub 4}] treatment (a) {sup 133}Cs is adsorbed onto the soil particles, (b) Cs encapsulation through the formation of immobile salts, and (c) solid (small/finer or larger/aggregate) soil fraction separation. - Highlights: • Nano-Fe/Ca/CaO/[PO{sub 4}] composite for Cs immobilization in soil was developed. • Enhanced cesium separation and immobilization was done in dry condition. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • Nano-Fe/Ca/CaO/[PO{sub 4}] a highly potential amendment for the remediation of Cs. - Abstract: This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO{sub 4}], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant {sup 133}Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO{sub 4}], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped {sup 134}Cs and {sup 137}Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that {sup 134}Cs and {sup 137}Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO{sub 4}] treated soil were characterized using SEM–EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil

  18. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co{sub 73}Si{sub 12}B{sub 15} thin films prepared by Dual-Ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Wang, San-sheng, E-mail: wangssh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Hu, Teng [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); He, Tong-fu [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Chen, Zi-yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yi, Zhong; Meng, Li-Fei [Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China)

    2017-03-15

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co{sub 73}Si{sub 12}B{sub 15} thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co{sub 73}Si{sub 12}B{sub 15} thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co{sub 73}Si{sub 12}B{sub 15} thin films. - Highlights: • The relationship between film thickness and ΔZ/Z, ΔR/R, ΔX/X ratio of CoSiB film exhibits a complex behavior as the film thickness increases from 1.33 to 7.34 µm. The maximum value of GMI ratio is observed when the film thickness was 1.56, 2.48, 3.81 or 7.34 µm. • With the increase of film thickness, the peak frequency shifts to lower frequency, but does not decrease following the t-power law. • The above thickness phenomenon is due to the different magnetic properties of thin films. • The Dual-Ion Beam Assisted Deposition is introduced to prepare the GMI materials.

  19. Numerical simulation of air flow through turbocharger compressors with dual volute design

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Kui; Li, Xianguo; Wu, Hao [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Sun, Harold; Schram, Tim [Ford Motor Company, Dearborn, MI 48126 (United States); Krivitzky, Eric; Larosiliere, Louis M. [Concepts NREC, White River Junction, VT 05001 (United States)

    2009-11-15

    In this paper, turbocharger centrifugal compressors with dual volute design were investigated by using Computational Fluid Dynamics (CFD) method. The numerical simulation focused on the air flow from compressor impeller inlet to volute exit, and the overall performance level and range are predicted. The numerical investigation revealed that the dual volute design could separate the compressor into two operating regions: ''high efficiency'' and ''low efficiency'' regions with different air flow characteristics, and treating these two regions separately with dual diffuser design showed extended stable operating range and improved efficiency by comparing with conventional single volute design. The ''dual sequential volute'' concept also showed the potential to further extend the stable operating range by closing one of the volutes at low air flow rates. Furthermore, by comparing with other alternate designs such as variable diffuser vanes and variable inlet guide vanes, the operation of the dual sequential volute also features relatively simple control and calibration. (author)

  20. Separation of Selenite from Inorganic Selenium Ions using TiO{sub 2} Magnetic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongmin; Lim, H. B. [Donkook Univ., Yongin (Korea, Republic of)

    2013-11-15

    A simple and quick separation technique for selenite in natural water was developed using TiO{sub 2} SiO{sub 2}/Fe{sub 3}O{sub 4} nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the TiO{sub 2} shell. The synthesized nanoparticles were used to separate selenite (Se{sup 4+}) in the presence of Se{sup 6+} or selenium anions for the photocatalytic reduction to Se{sup 0} atom on the TiO{sub 2} shell, followed by magnetic separation using Fe{sub 3}O{sub 4} nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis.

  1. Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    NARCIS (Netherlands)

    Simonetto, A.; Jamali-Rad, H.

    2015-01-01

    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel

  2. One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging.

    Science.gov (United States)

    Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang

    2016-04-07

    A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.

  3. Preliminary magnet design for a superconducting separated sector cyclotron

    International Nuclear Information System (INIS)

    Bertrand, P.; Chabert, A.; Duval, M.; Ripouteau, F.

    1992-01-01

    This paper reports that in order to increase the energies available at GANIL, studies on a superconducting separated six straight sector cyclotron for heavy ions with energy up to 500 MeV/A (ions with Q/A = 0.5) have been performed. With a mean injection radius of 2.5 m and an extraction radius of 5 m, the maximum magnetic field on a sector has to be 5T. Each of the six sectors consists of two superconducting main coils (wound around the poles), room temperature iron pole pieces and a large yoke. Due to the broad ranges of energy and ion species, the required field laws are very different and for the most difficult operating point, the induction difference between the injection and ejection radii is about one Tesla. As a consequence, correcting coils have to provide a high field and one unusual point is that the machine will be operated with superconducting trim coils

  4. Monopolar radiofrequency ablation using a dual-switching system and a separable clustered electrode: Evaluation of the in vivo efficiency

    International Nuclear Information System (INIS)

    Yoon, Jeong Hee; Lee, Jeong Min; Hwang, Eui Jin; Hwang, In Pyung; Beak, Jee Hyun; Han, Joon Koo; Choi, Byung Ihn

    2014-01-01

    To determine the in vivo efficiency of monopolar radiofrequency ablation (RFA) using a dual-switching (DS) system and a separable clustered (SC) electrode to create coagulation in swine liver. Thirty-three ablation zones were created in nine pigs using a DS system and an SC electrode in the switching monopolar mode. The pigs were divided into two groups for two experiments: 1) preliminary experiments (n = 3) to identify the optimal inter-electrode distances (IEDs) for dual-switching monopolar (DSM)-RFA, and 2) main experiments (n = 6) to compare the in vivo efficiency of DSM-RFA with that of a single-switching monopolar (SSM)-RFA. RF energy was alternatively applied to one of the three electrodes (SSM-RFA) or concurrently applied to a pair of electrodes (DSM-RFA) for 12 minutes in in vivo porcine livers. The delivered RFA energy and the shapes and dimensions of the coagulation areas were compared between the two groups. No pig died during RFA. The ideal IEDs for creating round or oval coagulation area using the DSM-RFA were 2.0 and 2.5 cm. DSM-RFA allowed more efficient RF energy delivery than SSM-RFA at the given time (23.0 ± 4.0 kcal vs. 16.92 ± 2.0 kcal, respectively; p 0.0005). DSM-RFA created a significantly larger coagulation volume than SSM-RFA (40.4 ± 16.4 cm 3 vs. 20.8 ± 10.7 cm 3 ; p < 0.001). Both groups showed similar circularity of the ablation zones (p = 0.29). Dual-switching monopolar-radiofrequency ablation using an SC electrode is feasible and can create larger ablation zones than SSM-RFA as it allows more RF energy delivery at a given time.

  5. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Ziemer, M.; Dyrkacz, G.; Kaminski, M.; Vandegrift, G.F.; Atkins, K.J.; Bos, F.M.; Elder, G.R.; Swift, C.A.

    1994-12-01

    Magnetic particles (MAG*SEP SM ) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEP SM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEP SM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEP SM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  6. Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.

    Science.gov (United States)

    Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.

    2017-12-01

    Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.

  7. RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION

    Directory of Open Access Journals (Sweden)

    N. Alavifard

    2016-09-01

    Full Text Available In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron, which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.

  8. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus.

    Science.gov (United States)

    Duan, Nuo; Wu, Shijia; Zhu, Changqing; Ma, Xiaoyuan; Wang, Zhouping; Yu, Ye; Jiang, Yuan

    2012-04-20

    A sensitive luminescent bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus was developed using aptamer-conjugated magnetic nanoparticles (MNPs) for both recognition and concentration elements and using upconversion nanoparticles (UCNPs) as highly sensitive dual-color labels. The bioassay system was fabricated by immobilizing aptamer 1 and aptamer 2 onto the surface of MNPs, which were employed to capture and concentrate S. Typhimurium and S. aureus. NaY(0.78)F(4):Yb(0.2),Tm(0.02) UCNPs modified aptamer 1 and NaY(0.28)F(4):Yb(0.70),Er(0.02) UCNPs modified aptamer 2 further were bond onto the captured bacteria surface to form sandwich-type complexes. Under optimal conditions, the correlation between the concentration of S. Typhimurium and the luminescent signal was found to be linear within the range of 10(1)-10(5) cfu mL(-1) (R(2)=0.9964), and the signal was in the range of 10(1)-10(5) cfu mL(-1) (R(2)=0.9936) for S. aureus. The limits of detection of the developed method were found to be 5 and 8 cfu mL(-1) for S. Typhimurium and S. aureus, respectively. The ability of the bioassay to detect S. Typhimurium and S. aureus in real water samples was also investigated, and the results were compared to the experimental results from the plate-counting methods. Improved by the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, and the different emission lines of Yb/Er- and Yb/Tm-doped NaYF(4) UCNPs excited by a 980 nm laser, the present method performs with both high sensitivity and selectivity for the two different types of bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Dual descriptions of supersymmetry breaking

    International Nuclear Information System (INIS)

    Intrilligator, K.; Thomas, S.

    1996-08-01

    Dynamical supersymmetry breaking is considered in models which admit descriptions in terms of electric, confined, or magnetic degrees of freedom in various limits. In this way, a variety of seemingly different theories which break supersymmetry are actually interrelated by confinement or duality. Specific examples are given in which there are two dual descriptions of the supersymmetry breaking ground state

  10. Passive force balancing of an active magnetic regenerative liquefier

    Science.gov (United States)

    Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.

    2018-04-01

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.

  11. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2012-01-01

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  12. In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yonghua Zhan

    2017-12-01

    Full Text Available Multifunctional manganese oxide nanoparticles (NPs with impressive enhanced T1 contrast ability show great promise in biomedical diagnosis. Herein, we developed a dual-modality imaging agent system based on polyethylene glycol (PEG-coated manganese oxide NPs conjugated with organic dye (Cy7.5, which functions as a fluorescence imaging (FI agent as well as a magnetic resonance imaging (MRI imaging agent. The formed Mn3O4@PEG-Cy7.5 NPs with the size of ~10 nm exhibit good colloidal stability in different physiological media. Serial FI and MRI studies that non-invasively assessed the bio-distribution pattern and the feasibility for in vivo dual-modality imaging-guided lymph node mapping have been investigated. In addition, histological and biochemical analyses exhibited low toxicity even at a dose of 20 mg/kg in vivo. Since Mn3O4@PEG-Cy7.5 NPs exhibited desirable properties as imaging agents and good biocompatibility, this work offers a robust, safe, and accurate diagnostic platform based on manganese oxide NPs for tumor metastasis diagnosis.

  13. Formation of Offset and Dual Active Galactic Nuclei

    Science.gov (United States)

    Barrows, Scott; Comerford, Julia M.; Greene, Jenny E.

    2018-06-01

    Galaxy mergers are effective mechanisms for triggering accretion onto supermassive black holes (SMBHs) and thereby powering active galactic nuclei (AGN). In the merger scenario, when the SMBH from only one galaxy is accreting we observe a spatially offset AGN, and when the SMBHs from both galaxies are accreting we observe a dual AGN. Understanding the merger conditions that lead to the formation of offset AGN versus dual AGN is fundamental to informing models of hierarchical SMBH growth and the physics leading to the accretion of matter onto SMBHs. However, while the role of galaxy mergers for AGN triggering has been well-studied, the efficiency with which these events trigger offset AGN versus dual AGN is currently unclear. One reason for this gap in knowledge can be attributed to the observational difficulties in distinguishing between offset and dual AGN since doing so requires high spatial resolution, especially in the small separation regime where merger-driven AGN triggering is most likely to occur. To overcome this hurdle, we have utilized the spatial resolution of the Chandra X-ray Observatory to develop a unique sample of AGN hosted by late-stage galaxy mergers. Moreover, we have recently acquired Hubble Space Telescope imaging for a subset of these systems to examine the role that their merger morphologies play in SMBH growth and the formation of offset and dual AGN. We find that offset AGN are predominately found in minor mergers, whereas dual AGN are usually hosted by major mergers and galaxies with large morphological asymmetries. Furthermore, in both offset and dual AGN, the rate of SMBH growth increases toward more major mergers and larger morphological asymmetries. These results are in agreement with numerical simulations predicting that merger morphology is a relevant parameter governing SMBH merger-driven growth, and these results are the first to observationally confirm these trends at small pair separations.

  14. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  15. Preparation of anti-CD4 monoclonal antibody-conjugated magnetic poly(glycidyl methacrylate) particles and their application on CD4+ lymphocyte separation.

    Science.gov (United States)

    Pimpha, Nuttaporn; Chaleawlert-umpon, Saowaluk; Chruewkamlow, Nuttapol; Kasinrerk, Watchara

    2011-03-15

    Novel immunomagnetic particles have been prepared for separation of CD4(+) lymphocytes. The magnetic nanoparticles with a diameter of approximately 5-6 nm were first synthesized by co-precipitation from ferrous and ferric iron solutions and subsequently encapsulated with poly(glycidyl methacrylate) (PGMA) by precipitation polymerization. Monoclonal antibody specific to CD4 molecules expressed on CD4(+) lymphocytes was conjugated to the surface of magnetic PGMA particles through covalent bonding between epoxide functional groups on the particle surface and primary amine groups of the antibodies. The generated immunomagnetic particles have successfully separated CD4(+) lymphocytes from whole blood with over 95% purity. The results indicated that these particles can be employed for cell separation and provide a strong potential to be applied in various biomedical applications including diagnosis, and monitoring of human diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Suting; Jiang, Wei, E-mail: superfine_jw@126.com; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-30

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe{sub 3}O{sub 4} and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe{sub 3}O{sub 4}) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  17. Determination of abdominal fat thickness using dual electrode separation in the focused impedance method (FIM)

    International Nuclear Information System (INIS)

    Surovy, Nusrat Jahan; Billah, Md Masum; Haowlader, Salahuddin; Al-Quaderi, Golam Dastegir; Rabbani, K Siddique-e

    2012-01-01

    Subcutaneous fat layer thickness in the abdomen is a risk indicator of several diseases and disorders like diabetes and heart problems and could be used as a measure of fitness. Skinfold measurement using mechanical calipers is simple but prone to error. Ultrasound scanning techniques are yet to be established as accurate methods for this purpose. magnetic resonance imaging (MRI) and computed tomography (CT) scans can provide the answer but are expensive and not available widely. Some initiatives were made earlier to use electrical impedance to this end, but had inadequacies. In the first part of this paper, a 4-electrode focused impedance method (FIM) with different electrode separations has been studied for its possible use in the determination of abdominal fat thickness in a localized region. For this, a saline phantom was designed to provide different electrode separations and different layers of resistive materials adjacent to the electrodes. The background saline simulated the internal organs having low impedance while the resistive layers simulated the subcutaneous fat. The plot of the measured impedance with electrode separation had different ‘slopes’ for different thicknesses of resistive layers, which offered a method to obtain an unknown thickness of subcutaneous fat layer. In the second part, measurements were performed on seven human subjects using two electrode separations. Fat layer thickness was measured using mechanical calipers. A plot of the above ‘slope’ against fat thickness could be fitted using a straight line with an R 2 of 0.93. Then this could be used as a calibration curve for the determination of unknown fat thickness. Further work using more accurate CT and MRI measurements would give a better calibration curve for practical use of this non-invasive and low-cost technique in abdominal fat thickness measurement. (paper)

  18. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  19. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    Science.gov (United States)

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications

    International Nuclear Information System (INIS)

    Hu Yong; Li Jing-Chao; Shen Ming-Wu; Shi Xiang-Yang

    2014-01-01

    Recent advances with iron oxide/gold (Fe 3 O 4 /Au) composite nanoparticles (CNPs) in dual-modality magnetic resonance (MR) and computed tomography (CT) imaging applications are reviewed. The synthesis and assembly of “dumbbelllike” and “core/shell” Fe 3 O 4 /Au CNPs is introduced. Potential applications of some developed Fe 3 O 4 /Au CNPs as contrast agents for dual-mode MR/CT imaging applications are described in detail. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  1. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Science.gov (United States)

    Wang, Yu; Wang, Yuxia; Chen, Lei; Wan, Qian-Hong

    2012-02-01

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 μg/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 μg/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  2. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  3. Capital Controls and Foreign Investor Subsidies Implicit in South Africa's Dual Exchange Rate System

    NARCIS (Netherlands)

    Huizinga, H.P.; Schaling, E.; van der Windt, P.C.

    2007-01-01

    Both in theory and practice, capital controls and dual exchange rate systems can be part of a country's optimal tax policy. We first show how a dual exchange rate system can be interpreted as a tax (or subsidy) on international capital income. We show that a dual exchange rate system, with separate

  4. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  6. Correlation between electrical and magnetic properties of phase-separated manganites studied with a general effective medium model

    International Nuclear Information System (INIS)

    Sacanell, J.; Quintero, M.; Parisi, F.; Ghivelder, L.; Leyva, A.G.; Levy, P.

    2007-01-01

    We have performed electrical resistivity and DC magnetization measurements as a function of temperature, on polycrystalline samples of phase-separated La 5/8- y Pr y Ca 3/8 MnO 3 (y=0.3). We have used the general effective medium theory to obtain theoretical resistivity vs. temperature curves corresponding to different fixed ferromagnetic (FM) volume fraction values, assuming that the sample is a mixture of typical metallic-like and insulating manganites. By comparing this data with our experimental resistivity curves we have obtained the relative FM volume fraction of our sample as a function of temperature. This result matches with the corresponding magnetization data in excellent agreement, showing that a mixed-phase scenario is the key element to explain both the magnetic and transport properties in the present compound

  7. Electric-magnetic duality in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mizrachi, L.

    1982-03-01

    The duality transformation of the vacuum expectation value of the operator which creates magnetic vortices (the 't Hooft loop operator in the Higgs phase) is performed in the radial gauge (xsub(μ)Asub(μ)sup(a)(x)=0). It is found that in the weak coupling region (small g) of a pure Yang-Mills theory the dual operator creates electric vortices whose strength is 1/g. The theory is self dual in this region, and the effective coupling of the dual Lagrangian is 1/g. Thus the above duality transformation reduces to electric-magnetic duality where the electric field in the 't Hooft loop operator transforms into a magnetic field in the dual operator. In a spontaneously broken gauge theory these results are valid only within the region where the vortices (or the monopoles) are concentrated, or in directions of the algebra space of unbroken symmetry, as self duality holds only for this subset of fields. In the strong coupling region a strong coupling expansion in powers of 1/g is suggested. (author)

  8. Hamilton principle for the dual electrodynamics

    International Nuclear Information System (INIS)

    Souza Silva, Saulo Carneiro de

    1995-01-01

    The present work discusses the classical electromagnetic theory in the presence of magnetic monopoles. We review the connection between such objects and the long standing problem of charge quantization and the main theoretical difficulties in formulating the classical dual electromagnetic theory in terms of an action principle. We show that a deeper understanding of the source of such difficulties leads naturally to the construction of a variational principle for a non-local Lagrangian from which all the (local) dynamical equations for electric, magnetic charges and fields can be obtained. (author)

  9. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    Science.gov (United States)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  10. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT.

    Science.gov (United States)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    2017-09-01

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.

  11. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    Science.gov (United States)

    Comerford, Julia

    The growth of supermassive black holes is tied to the evolution of their host galaxies, but we are still missing a fundamental understanding of how and when supermassive black holes build up their mass. Black hole mass growth can be traced when the black holes are powered as active galactic nuclei (AGN), and AGN activity can be triggered by the stochastic accretion of gas or by gas inflows driven by galaxy mergers. Galaxy merger simulations make a series of predictions about the AGN that are triggered by mergers: (1) major mergers preferentially trigger higher-luminosity AGN, (2) minor mergers more often trigger AGN activity in one supermassive black hole while major mergers more often trigger AGN activity in both black holes in a merger, and (3) black hole mass growth peaks when the black holes approach the center (theory have been limited by the difficulty in defining a clean observational sample of AGN in galaxy mergers and the observational challenge of spatially resolving two AGN with small (dual AGN as a new observational tool that can be used to address how and when supermassive black hole mass growth occurs. A merger of two galaxies brings two supermassive black holes together, and the two black holes exist at kpc-scale separations for 100 Myr before ultimately merging. While the black holes are at kpc-scale separations, they are known as dual AGN when both of them are fueled as AGN and offset AGN when only one is fueled as an AGN. Since offset and dual AGN only occur in galaxy mergers, by their very definition, they provide a clean observational sample of black hole mass growth in galaxy mergers. The small, kpc-scale separations of offset and dual AGN also enable an observational test of black hole fueling near the centers of merger-remnant galaxies. The full potential of offset and dual AGN for such studies of black hole mass growth has not yet been realized, due to the small number of such systems known. To date, only 13 confirmed offset and dual AGN are

  12. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Extraction of remanent magnetization from magnetization vector inversions of airborne full tensor magnetic gradiometry data

    Science.gov (United States)

    Queitsch, M.; Schiffler, M.; Stolz, R.; Meyer, M.; Kukowski, N.

    2017-12-01

    Measurements of the Earth's magnetic field are one of the most used methods in geophysical exploration. The ambiguity of the method, especially during modeling and inversion of magnetic field data sets, is one of its biggest challenges. Additional directional information, e.g. gathered by gradiometer systems based on Superconducting Quantum Interference Devices (SQUIDs), will positively influence the inversion results and will thus lead to better subsurface magnetization models. This is especially beneficial, regarding the shape and direction of magnetized structures, especially when a significant remanent magnetization of the underlying sources is present. The possibility to separate induced and remanent contributions to the total magnetization may in future also open up advanced ways for geological interpretation of the data, e.g. a first estimation of diagenesis processes. In this study we present the results of airborne full tensor magnetic gradiometry (FTMG) surveys conducted over a dolerite intrusion in central Germany and the results of two magnetization vector inversions (MVI) of the FTMG and a conventional total field anomaly data set. A separation of the two main contributions of the acquired total magnetization will be compared with information of the rock magnetization measured on orientated rock samples. The FTMG inversion results show a much better agreement in direction and strength of both total and remanent magnetization compared to the inversion using only total field anomaly data. To enhance the separation process, the application of additional geophysical methods, i.e. frequency domain electromagnetics (FDEM), in order to gather spatial information of subsurface rock susceptibility will also be discussed. In this approach, we try to extract not only information on subsurface conductivity but also the induced magnetization. Using the total magnetization from the FTMG data and the induced magnetization from the FDEM data, the full separation of

  14. CHANDRA OBSERVATIONS OF A 1.9 kpc SEPARATION DOUBLE X-RAY SOURCE IN A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS GALAXY AT z = 0.16

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Pooley, David; Gerke, Brian F.; Madejski, Greg M.

    2011-01-01

    We report Chandra observations of a double X-ray source in the z = 0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual active galactic nucleus (AGN) candidate based on the double-peaked [O III] λ5007 emission lines, with a line-of-sight velocity separation of 350 km s -1 , in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two long-slit spectra of the galaxy at two different position angles, which reveal that the two Type 2 AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 h -1 70 kpc on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest that the galaxy most likely contains Compton-thick dual AGNs, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of concept for a new, systematic detection method that selects promising dual AGN candidates from ground-based spectroscopy that exhibits both velocity and spatial offsets in the AGN emission features.

  15. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    Science.gov (United States)

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.

  16. Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3

    Science.gov (United States)

    Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

    2013-03-01

    Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

  17. Dual-frequency ring-magnet power supply with flat bottom

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1983-01-01

    A power supply is described that furnishes an essentially flat-bottom injection field, followed by a dual-frequency cosine field. This results in efficient beam capture during injection and reduces significantly the peak rf power required during acceleration in a rapid-cycling synchrotron

  18. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  19. The Philosophy and Feasibility of Dual Readout Calorimetry

    International Nuclear Information System (INIS)

    Hauptman, John

    2006-01-01

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification

  20. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  1. Psychosocial approaches to dual diagnosis.

    Science.gov (United States)

    Drake, R E; Mueser, K T

    2000-01-01

    Recent research elucidates many aspects of the problem of co-occurring substance use disorder (SUD) in patients with severe mental illness, which is often termed dual diagnosis. This paper provides a brief overview of current research on the epidemiology, adverse consequences, and phenomenology of dual diagnosis, followed by a more extensive review of current approaches to services, assessment, and treatment. Accumulating evidence shows that comorbid SUD is quite common among individuals with severe mental illness and that these individuals suffer serious adverse consequences of SUD. The research further suggests that traditional, separate services for individuals with dual disorders are ineffective, and that integrated treatment programs, which combine mental health and substance abuse interventions, offer more promise. In addition to a comprehensive integration of services, successful programs include assessment, assertive case management, motivational interventions for patients who do not recognize the need for substance abuse treatment, behavioral interventions for those who are trying to attain or maintain abstinence, family interventions, housing, rehabilitation, and psychopharmacology. Further research is needed on the organization and financing of dual-diagnosis services and on specific components of the integrated treatment model, such as group treatments, family interventions, and housing approaches.

  2. Extensions of Bessel sequences to dual pairs of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2013-01-01

    Tight frames in Hilbert spaces have been studied intensively for the past years. In this paper we demonstrate that it often is an advantage to use pairs of dual frames rather than tight frames. We show that in any separable Hilbert space, any pairs of Bessel sequences can be extended to a pair of...... be extended to a pair of dual frames. © 2012 Elsevier Inc. All rights reserved....

  3. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting

    OpenAIRE

    Yan Zhou; He Yang; Xiang-xin Xue; Shuai Yuan

    2017-01-01

    A novel approach for recovery of iron and rare earth elements (REEs) from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH4)2SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic conc...

  4. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    International Nuclear Information System (INIS)

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui; Srinivasakannan, C.; Chen, Guo; Peng, Jinhui

    2014-01-01

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite

  5. Optics of mass separator I

    International Nuclear Information System (INIS)

    Balestrini, S.J.

    1981-07-01

    The ion optics of an existing mass separator are documented. The elctrostatic and magnetic stages are analyzed theoretically, both separately and in combination, by paying particular attention to the ion trajectories, the linear and angular magnifications, and the dispersion. The possibility of converting the magnet into a tunable unit by means of current-carrying elements in the gap is demonstrated. The feasibility of correction coils constructed from printed circuit board is shown

  6. Optics of mass separator I

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, S.J.

    1981-07-01

    The ion optics of an existing mass separator are documented. The elctrostatic and magnetic stages are analyzed theoretically, both separately and in combination, by paying particular attention to the ion trajectories, the linear and angular magnifications, and the dispersion. The possibility of converting the magnet into a tunable unit by means of current-carrying elements in the gap is demonstrated. The feasibility of correction coils constructed from printed circuit board is shown.

  7. Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)

    International Nuclear Information System (INIS)

    Ito, Masako; Hayashi, Kuniaki; Yamada, Naoyuki.

    1989-01-01

    The purpose of this study was twofold: to investigate the precision and accuracy of dual energy quantitative computed tomography (QCT) and to investigate age-related changes of bone marrow density (BMD) in patients without metabolic disorders. Rapid kilovolt peak switching system, with which SOMATOM DR-H CT is equipped, allows dual energy scanning. KV-separated images and material-separated images were calculated from dual energy scan data. KV-separated data was regarded as single energy QCT. In phantom studies, dipotassium hydrogen phosphate solution, water, and ethanol were used to simulate bone mineral, lean soft tissue, and fat, respectively. Values of BMD obtained by dual energy scanning method had an error of 5.5% per 10% increase of fat, as compared with 12% for BMD values obtained by single energy scanning method. However, single energy scanning method had a higher precision than dual energy scanning method in determining BMD. The selection of CT section is considered most important in the clinical determination of BMD. In a study of age-related changes of BMD in the vertebral trabecular and cortical bones in 161 patients, BMD was found to have two peaks for women in their twenties and thirties, and one peak for men in their twenties. Bone marrow density rapidly declined among women aged 50 years or more. These results suggest that the content of fat in the trabecular bone may increase progressively after the age of 40, regardless of sex. (N.K.)

  8. A Dual Operational Refrigerator/Flow Cryostat with Wide Bore Medium Field Magnet for Application Demonstration

    Science.gov (United States)

    Young, E. A.; Bailey, W. O. S.; Al-Mosawi, M. K.; Beduz, C.; Yang, Y.; Chappell, S.; Twin, A.

    Since stand alone cryocooler systems have become more widely available, there has been increased commercial interest in superconductor applications in the temperature range intermediate to liquid helium and liquid nitrogen. There are however few facilities that have large in-field bore size with variable temperatures. A large bore system can reduce costs associated with full scale demonstration magnets by testing smaller coils and qualify medium length (up to meters) conductors. A 5 T, wide bore, (170 mm) Nb3Sn Oxford Instrument magnet has been integrated into a custom built dual mode refrigerator/helium flow cryostat with 600A HTS current leads. In one mode the system can be used with zero field without cost of liquid helium relying for cooling on a Sumitomo GM cryocooler with 1.5W at 4.2K: (no He) this can be used either as the sole characterisation method, or as a preliminary check before more expensive and extensive measurements are taken. The first measurements using MgB2 wire from 10 to 20K were made using a transient current step of ∼5s duration, as opposed to a DC measurement. This has the advantage of not requiring thermal equilibrium to be achieved at nominal current. The feasibility of this technique for determining critical transport properties is discussed.

  9. Investigation on rare earth magnets recycling by organophosphoric extractant encapsulated polymeric beads for separation of dysprosium

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) are a basic requirement of the electronics and new industries including green technology. In the present work an organophosphoric extractant encapsulating polyethersulfone (PES) beads has been developed and employed for dysprosium (Dy) separation from aqueous stream. Polyethersulfonic beads encapsulating PC88A were prepared by phase inversion method. During the synthesis of the beads, preparatory parameters were also optimized to obtain best suited beads which were subsequently characterized for their encapsulation capacity and micro structural investigation. The results obtained in the present investigation suggested that PES/PVAJPC88A composite beads could be used for separation of rare earths from aqueous medium obtained from the solubilisation of magnetic scrap materials

  10. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium.

    Science.gov (United States)

    Jeong, Arong; Lim, H B

    2018-02-01

    In this work, a magnetophoretic separation ICP-MS immunoassay using newly synthesized multicore magnetic nanoparticles (MMNPs) was developed for the determination of salmonella typhimurium (typhi). The uniqueness of this method was the use of MMNPs doped with Cs for both separation and detection, which enable us to achieve fast analysis, high sensitivity, and good reliability. For demonstration, heat-killed typhi in a phosphate buffer solution was determined by ICP-MS after the MMNP-typhi reaction product was separated from unreacted MMNPs in a micropipette tip filled with 25% polyethylene glycol through magnetophoretic separation. The calibration curve obtained by plotting 133 Cs intensity vs. the number of synthetic standard, showed a coefficient of determination (R 2 ) of 0.94 with a limit of detection (LOD) of 102 cells/mL without cell culturing. Excellent recoveries, between 98-100%, were obtained from four replicates and compared with a sandwich-type ICP-MS immunoassay for further confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Science.gov (United States)

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by laser-induced fluorescence. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous work, which combined continuous engagement electrophoretically mediated microanalysis (EMMA) and transient engagement EMMA to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L-tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures. PMID:20024913

  12. Effect of process on the magnetic properties of bonded NdFeB magnet

    International Nuclear Information System (INIS)

    Li, J.; Liu, Y.; Gao, S.J.; Li, M.; Wang, Y.Q.; Tu, M.J.

    2006-01-01

    The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm 3 and the maximum energy product can reach 114 kJ/m 3

  13. Effect of process on the magnetic properties of bonded NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Liu, Y. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)]. E-mail: liuying5536@163.com; Gao, S.J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Li, M. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Wang, Y.Q. [South-West Magnetic Science and Technology Developing Company, Mianyang, 621600 (China); Tu, M.J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)

    2006-04-15

    The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm{sup 3} and the maximum energy product can reach 114 kJ/m{sup 3}.

  14. Comparison of dual photon and dual energy X-ray bone densitometers in a clinic setting

    International Nuclear Information System (INIS)

    Nelson, D.A.; Shaffer, S.; Brown, E.B.; Flynn, M.J.; Cody, D.D.

    1991-01-01

    Two separate studies were conducted. We evaluated the relationships between results of lumbar spine measurements using two dual photon absorptiometry (DPA1 and DPA2) instruments and one dual energy X-ray (DXA) instrument with the same subject (49 volunteers), and also in 65 patients who were measured on the DPA1 and DXA machines. Second, we measured the lumbar spine and the proximal femur in three groups of 12 female volunteers three times on one instrument within 1 week. We purposely simulated a busy clinic setting with different technologists, older radioactive sources, and a heterogeneous patient group. The comparison study indicated a significant difference between the mean bone density values reported by the machines, but the results were highly correlated (R 2 = 0.89-0.96). This study emphasizes the differences between instruments, the potential for greater error in busy clinic environments, and the apparent superiority of dual energy X-ray absorptiometry under these less than ideal conditions. (orig./GDG)

  15. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.

    Science.gov (United States)

    Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling

    2015-11-01

    The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dual mass, H-script-spaces, self-dual gauge connections, and nonlinear gravitons with topological origin

    International Nuclear Information System (INIS)

    Magnon, A.; Departement de Mathematiques, Universite de Clermont-Fd. 63170 Aubiere, France)

    1986-01-01

    An analogy between source-free, asymptotically Taub--NUT magnetic monopole solutions to Einstein's equation and self-(anti-self-) dual gauge connections is displayed, which finds its origin in the first Chern class of these space-times. A definition of asymptotic graviton modes is proposed that suggests that a subclass of Penrose's nonlinear gravitons or Newman's H-script-spaces could emerge from nontrivial space-time topologies

  17. Magnetically separable Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunhua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Cao, Qihua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2015-04-01

    Highlights: • A novel magnetically-separable Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} photocatalyst was in situ prepared. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs had rough and porous chitosan surface layer embedded with Fe{sub 3}O{sub 4} NPs. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed large surface areas and special dimodal pore structure. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed superparamagnetism and could be easily magnetic separated. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited good visible-light photocatalytic activity and stability. - Abstract: A novel magnetically-separable visible-light-induced photocatalyst, Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposite (Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NC), was prepared via a facile one-step precipitation–reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV–vis/DRS. The photocatalytic activity of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu{sub 2}O was wrapped in chitosan matrix embedded with Fe{sub 3}O{sub 4} nanoparticles. The tight combination of magnetic Fe{sub 3}O{sub 4} and semiconductor Cu{sub 2}O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B

  18. Magnetic BaFe{sub 12}O{sub 19} nanofiber filter for effective separation of Fe{sub 3}O{sub 4} nanoparticles and removal of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of EEWS (Korea, Republic of)

    2014-12-15

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g{sup −1}) barium hexaferrite (BaFe{sub 12}O{sub 19}, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe{sub 3}O{sub 4}) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L{sup −1} As-contaminated water can be purified rapidly at a material cost of less than 2 US cents.

  19. Dual gradient drilling: barite separation from the mud using hydrocyclones; Perfuracao com duplo gradiente: a separacao da barita do fluido de perfuracao utilizando hidrociclones

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Aline T.; Medronho, Ricardo A. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2004-07-01

    The proximity of the pores pressure and fracture pressure curves in deep water drilling makes it an expensive and complicated operation. It is possible to minimize this problem by reducing the pressure inside the riser at the sea floor level. Injecting low density drilling mud at that point is an alternative, producing a condition called as dual gradient drilling. Hydrocyclones are simple apparatuses and their high capacity and efficiency make them appropriate for operations were the occupied floor space plays an important hole, as in offshore drilling. The idea behind this work is to divide the drilling mud in two streams, one more concentrated in barite for re-injection into the drilling column, and other more diluted for injecting into the riser at the sea floor. In this work, CFD - computational fluid dynamics - was used to investigate barite separation from drilling mud using hydrocyclones. The results indicate that the injection of a lower density mud, less concentrate in barite, in the riser at sea floor level may be a possible and less complicated alternative for dual gradient drilling. (author)

  20. Separation of gas mixtures

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)

  1. Dual superconductor models of color confinement

    CERN Document Server

    Ripka, Georges

    2004-01-01

    The lectures, delivered at ECT (European Centre for Theoretical Studies in Nuclear Physics and Related Areas) in Trento (Italy) in 2002 and 2003, are addressed to physicists who wish to acquire a minimal background to understand present day attempts to model the confinement of quantum chromo-dynamics (QCD) in terms of dual superconductors. The lectures focus more on the models than on attempts to derive them from QCD. They discuss the Dirac theory of magnetic monopoles, the world sheet swept out by Dirac strings, deformations of Dirac strings and charge quantization, gauge fields associated to the field tensor and to the dual field tensor, the Landau-Ginzburg (Abelian Higgs) model of a dual superconductor, the flux tube joining two equal and opposite color-electric charges, the Abrikosov-Nielsen-Olesen vortex, the divergencies of the London limit, the comparison of the calculated flux tube and string tension with lattice data, duality transformations and the use of Kalb-Ramond fields, the two-potential Zwanzi...

  2. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  3. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  4. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences

    International Nuclear Information System (INIS)

    Oster, J.; Parker, Jeffrey; Brassard, Lothar

    2001-01-01

    The versatile application of polyvinyl-alcohol-based magnetic M-PVA beads is demonstrated in the separation of genomic DNA, sequence specific nucleic acid purification, and binding of bacteria for subsequent DNA extraction and detection. It is shown that nucleic acids can be obtained in high yield and purity using M-PVA beads, making sample preparation efficient, fast and highly adaptable for automation processes

  5. Phase separation, effects of magnetic field and high pressure on charge ordering in γ-Na0.5CoO2

    International Nuclear Information System (INIS)

    Yang, H.X.; Shi, Y.G.; Nie, C.J.; Wu, D.; Yang, L.X.; Dong, C.; Yu, H.C.; Zhang, H.R.; Jin, C.Q.; Li, J.Q.

    2005-01-01

    Transmission electron microscopy (TEM) observations reveal the presence of complex superstructures and remarkable phase separation in association with Na-ordering phenomenon in γ-Na 0.5 CoO 2 . Resistivity and magnetization measurements indicate that three phase transitions at the temperatures of 25, 53 and 90 K, respectively, appear commonly in γ-Na 0.5 CoO 2 samples. Under a high pressure up to 10 kbar, the low-temperature transport properties show certain changes below the charge order transition; under an applied magnetic field of 7 T, phase transitions at around 25 and 53 K, proposed fundamentally in connection with alternations of magnetic structure and charge ordering maintain almost unchanged

  6. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    Science.gov (United States)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  7. Detection of temperature rise at 4.2K by using a dual-core optical fiber-an optical method to detect a quench of a superconducting magnet

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kokubun, Y.; Toyama, T.

    1986-01-01

    We performed an experiment to detect a temperature rise at cryogenic temperature using a dual-core optical fiber. This fiber has two single-mode optical cores in one fiber. We demonstrated that a temperature rise of 4 K was detectable at 4.2 K. The sensitivity of this method can be improved using a longer fiber. This method may be applicable as a quench detector for superconducting magnets. A quench detector using this optical method is immune from electromagnetic noise, free from troubles caused by break-down of electrical insulator, and has many advantages over a conventional quench detector measuring voltages of a magnet

  8. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  9. Separation of radioimmunoassay in magnetic phase with particles prepared at the IPEN and its comparison with conventional methodologies

    International Nuclear Information System (INIS)

    Araujo, E.A. de.

    1991-01-01

    In the present work two main objectives were chosen. The first was the preparation for the execution of the magnetic phase separation technique, useful for the radioimmunoassay as well as for the most modern and most efficient immunoradiometric assay. The second objective, of a theoretical-practical kind and directly linked to the first, was the realization of a study about the precision of the technique with synthesized products compared with imported products and with two liquid phase separation techniques: the second antibody and polyethyleneglycol (PEG). This analysis was performed with the help of precision profiles built according to R.P.Ekins' recommendations. (author)

  10. A permanently magnetized high gradient magnetic filter for glove-box cleaning and increasing HEPA filter life

    International Nuclear Information System (INIS)

    Watson, J.H.P.; Boorman, C.H.

    1991-01-01

    The purpose of this paper is to describe the structure and testing of a permanently magnetized magnetic filter on simulants for radioactive material. The experimental work was carried out at British Nuclear Fuels plc, Sellafield, England and in CEN/SCK, Mol, Belgium using Cr powder which is a good magnetic simulant for PuO 2 . The basis of the use of such a filter in the nuclear industry relies on the fact that much of the radioactive material is paramagnetic. In the last twenty years a separation technique has been developed which allows weakly paramagnetic particles of colloidal size to be separated from fluid which passes through the separator. This method is called high gradient magnetic separation (HGMS) and is accomplished by magnetizing a fine ferromagnetic wire matrix by an externally applied magnetic field. This paper describes a new approach to this problem, by using a magnetically hysteretic material to construct the ferromagnetic matrix, it has been possible to provide a magnetic field in the region of the matrix and also have a residual magnetization within the matrix. This provides extremely compact magnetic separation systems. There are some subtle differences between this separation system and conventional HGMS which makes the radial feed system, with all its advantages, almost mandatory for hysteretic HGMS

  11. Musical expertise has minimal impact on dual task performance.

    Science.gov (United States)

    Cocchini, Gianna; Filardi, Maria Serena; Crhonkova, Marcela; Halpern, Andrea R

    2017-05-01

    Studies investigating effect of practice on dual task performance have yielded conflicting findings, thus supporting different theoretical accounts about the organisation of attentional resources when tasks are performed simultaneously. Because practice has been proven to reduce the demand of attention for the trained task, the impact of long-lasting training on one task is an ideal way to better understand the mechanisms underlying dual task decline in performance. Our study compared performance during dual task execution in expert musicians compared to controls with little if any musical experience. Participants performed a music recognition task and a visuo-spatial task separately (single task) or simultaneously (dual task). Both groups showed a significant but similar performance decline during dual tasks. In addition, the two groups showed a similar decline of dual task performance during encoding and retrieval of the musical information, mainly attributed to a decline in sensitivity. Our results suggest that attention during dual tasks is similarly distributed by expert and non-experts. These findings are in line with previous studies showing a lack of sensitivity to difficulty and lack of practice effect during dual tasks, supporting the idea that different tasks may rely on different and not-sharable attentional resources.

  12. Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering.

    Science.gov (United States)

    Kong, Xianming; Yu, Qian; Lv, Zhongpeng; Du, Xuezhong

    2013-10-11

    Tandem assays of protein and glucose in combination with mannose-functionalized Fe3 O4 @SiO2 and Ag@SiO2 tag particles have promising potential in effective magnetic separation and highly sensitive and selective SERS assays of biomaterials. It is for the first time that tandem assay of glucose is developed using SERS based on the Con A-sandwiched microstructures between the functionalized magnetic and tag particles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  14. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  15. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows

    International Nuclear Information System (INIS)

    Rust, T C; DiBella, E V R; McGann, C J; Christian, P E; Hoffman, J M; Kadrmas, D J

    2006-01-01

    Quantification of myocardial blood flows at rest and stress using 13 N-ammonia PET is an established method; however, current techniques require a waiting period of about 1 h between scans. The objective of this study was to test a rapid dual-injection single-scan approach, where 13 N-ammonia injections are administered 10 min apart during rest and adenosine stress. Dynamic PET data were acquired in six human subjects using imaging protocols that provided separate single-injection scans as gold standards. Rest and stress data were combined to emulate rapid dual-injection data so that the underlying activity from each injection was known exactly. Regional blood flow estimates were computed from the dual-injection data using two methods: background subtraction and combined modelling. The rapid dual-injection approach provided blood flow estimates very similar to the conventional single-injection standards. Rest blood flow estimates were affected very little by the dual-injection approach, and stress estimates correlated strongly with separate single-injection values (r = 0.998, mean absolute difference = 0.06 ml min -1 g -1 ). An actual rapid dual-injection scan was successfully acquired in one subject and further demonstrates feasibility of the method. This study with a limited dataset demonstrates that blood flow quantification can be obtained in only 20 min by the rapid dual-injection approach with accuracy similar to that of conventional separate rest and stress scans. The rapid dual-injection approach merits further development and additional evaluation for potential clinical use

  16. Computer programmes for high current ion trajectories in a magnetic sector-type mass separator

    International Nuclear Information System (INIS)

    Nakai, Akira

    1988-01-01

    According to theoretical calculations previously proposed by the author, a new programme 'MALT' for electronic computers has been developed for numerical calculations of ion trajectories of a high current ion beam traversing a magnetic sector-type mass separator. In the programme, both effects of the fringing field and the space charge are taken into account in an analytical way, so that numerical calculations can be done straightforwardly. Furthermore, it becomes also possible to analyze and cotrol the trajectories of the high current ion beam. The programme MALT contains several subroutine programmes which are separated individually for the convenience of various calculations with respect to the high current ion beam. To demonstrate the calculations by the use of these subroutine programmes, a main programme for the calculation of the trajectories in the whole region of the separator is shown, which also makes it possible to draw the traces of the trajectories. The trajectories calculated by the proposed programme have been compared with the images of the ion beams recorded on novel dry plates developed by the author: the comparison enables us to evaluate the effective space charge and the effective space charge potential, and to analyze the behaviour of the beam of neutral particles accompanying the ion beam. (author)

  17. Broadband Shock Noise in Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.

    2009-01-01

    Broadband shock noise (BBSN) has been studied in some detail in single-flow jets and recently in dual-stream jets with separate flow exhaust systems. Shock noise is of great concern in these latter cases because of the noise created for the aircraft cabin by the underexpanded nozzle flow at cruise. Another case where shock noise is of concern is in the case of future supersonic aircraft that are expected to have bypass ratios small enough to justify internally mixed exhaust systems, and whose mission will push cycles to the point of imperfectly expanded flows. Dual-stream jets with internally mixed plume have some simplifying aspects relative to the separate flow jets, having a single shock structure given by the common nozzle pressure. This is used to separate the contribution of the turbulent shear layer to the broadband shock noise. Shock structure is held constant while the geometry and strength of the inner and merged shear layers are varying by changing splitter area ratio and core stream temperature. Flow and noise measurements are presented which document the efforts at separating the contribution of the inner shear layer to the broadband shock noise.

  18. Out-of-pile test of the crud separator system. (I)

    International Nuclear Information System (INIS)

    Takasaki, Akito; Iimura, Katsumichi; Tanaka, Isao

    1991-01-01

    The JMTR Project has been developing the crud separator system since 1981, and the advanced system has been fabricated for the in-pile test to be performed in the HBWR (Norway). The crud separator system removes magnetized crud circulating in a primary circuit by the permanent magnet assembly surrounded inside and outside of the separator vessel. Before the in-pile test, out-of-pile test was carried out in the JMTR Project under the condition of atmospheric pressure and room temperature, and the simplified theoretical analysis for crud separation mechanism was also carried out. The out-of-pile test results suggested that separation factor increased with increasing magnetic susceptibility of crud and crud particle diameter, and decreased with increasing flow rate. These results were in good agreement with the theoretical analysis. The test results also showed that the crud size enlarger was effective in lower separation factor region, which related to lower magnetic susceptibility of crud, smaller crud diameter and higher flow rate. (author)

  19. Comprehensive two-dimensional liquid chromatography separations of pharmaceutical samples using dual Fused-Core columns in the 2nd dimension.

    Science.gov (United States)

    Alexander, Anthony J; Ma, Lianjia

    2009-02-27

    This paper focuses on the application of RPLC x RPLC to pharmaceutical analysis and addresses the specific problem of separating co-eluting impurities/degradation products that maybe "hidden" within the peak envelope of the active pharmaceutical ingredient (API) and thus may escape detection by conventional methods. A comprehensive two-dimensional liquid chromatograph (LC x LC) was constructed from commercially available HPLC equipment. This system utilizes two independently configurable 2nd dimension binary pumping systems to deliver independent flow rates, gradient profiles and mobile phase compositions to dual Fused-Core secondary columns. Very fast gradient separations (30s total cycle time) were achieved at ambient temperature without excessive backpressure and without compromising optimal 1st dimension sampling rates. The operation of the interface is demonstrated for the analysis of a 1mg/ml standard mixture containing 0.05% of a minor component. The practicality of using RPLC x RPLC for the analysis of actual co-eluting pharmaceutical degradation products, by exploiting pH-induced changes in selectivity, is also demonstrated using a three component mixture. This mixture (an API, an oxidation product of the API at 1.0%, w/w, and a photo degradant of the API at 0.5%, w/w) was used to assess the stability indicating nature of an established LC method for analysis of the API.

  20. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    International Nuclear Information System (INIS)

    Nunez', L.; Kaminsky', M.D.; Crawford, C.; Ritter, J.A.

    1999-01-01

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994] Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in

  1. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Science.gov (United States)

    Xiao, Sai Jin; Hu, Ping Ping; Chen, Li Qiang; Zhen, Shu Jun; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi

    2013-01-01

    Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.

  2. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Directory of Open Access Journals (Sweden)

    Sai Jin Xiao

    Full Text Available Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C, and the diseases associated isoform, PrP(Res in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C or PrP(Res and Gdn-HCl and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res performs the "OR" logic operation while PrP(C performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1 and quantum dots (QDs-Apt2. The dual-aptamer logic gate simplifies the discrimination results of PrP(Res, leaving the detection of PrP(Res either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res and Gdn-HCl is an important step toward the design of prion diseases diagnosis and therapy systems.

  3. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    Science.gov (United States)

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  5. The Diagnostic and Prognostic Value of a Dual-Tasking Paradigm in a Memory Clinic.

    Science.gov (United States)

    Nielsen, Malene Schjnning; Simonsen, Anja Hviid; Siersma, Volkert; Hasselbalch, Steen Gregers; Hoegh, Peter

    2018-01-01

    Daily living requires the ability to perform dual-tasking. As cognitive skills decrease in dementia, performing a cognitive and motor task simultaneously become increasingly challenging and subtle gait abnormalities may even be present in pre-dementia stages. Therefore, a dual-tasking paradigm, such as the Timed Up and Go-Dual Task (TUG-DT), may be useful in the diagnostic assessment of mild cognitive impairment (MCI). To investigate the diagnostic and prognostic ability of a dual-tasking paradigm in patients with MCI or mild Alzheimer's disease (AD) and to evaluate the association between the dual-tasking paradigm and cerebrospinal fluid (CSF) AD biomarkers. The study is a prospective cohort study conducted in a clinical setting in two memory clinics. Eighty-six patients were included (28 MCI, 17 AD, 41 healthy controls (HC)). The ability to perform dual-tasking was evaluated by the TUG-DT. Patients underwent a standardized diagnostic assessment and were evaluated to determine progression yearly. ROC curve analysis illustrated a high discriminative ability of the dual-tasking paradigm in separating MCI patients from HC (AUC: 0.78, AUC: 0.82) and a moderate discriminative ability in separating MCI from AD (AUC: 0.73, AUC: 0.55). Performance discriminated clearly between all groups (p paradigm for progression and rate of cognitive decline. A moderately strong correlation between the dual-tasking paradigm and CSF AD biomarkers was observed. In our study, we found that patients with MCI and mild AD have increasing difficulties in dual-tasking compared to healthy elderly. Hence, the dual-tasking paradigm may be a potential complement in the diagnostic assessment in a typical clinical setting.

  6. Phase separation in La-Ca manganites: Magnetic field effects

    International Nuclear Information System (INIS)

    Tovar, M.; Causa, M.T.; Ramos, C.A.; Laura-Ccahuana, D.

    2008-01-01

    The coexistence of magnetic phases seems to be a characteristic of the La-Ca family of in colossal magnetoresistant manganites. We have analyzed this phenomenon in terms of a free energy, F, where magnetic and electronic contributions of two coexistent phases are included. Three order parameters describe the behavior of the mixed material: the magnetization of each phase and the metallic fraction. Due to the coupling between order parameters there is a range: T**≤T≤T* where coexistence is possible. Values for the phenomenological parameters are obtained from the experiment. In this paper we analyze the effects of an applied magnetic field on the range of T where the phase coexistence takes place, based on results obtained from dc-magnetization and ESR measurements

  7. Phase separation in La-Ca manganites: Magnetic field effects

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, M; Causa, M T [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Ramos, C.A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina)], E-mail: cramos@cab.cnea.gov.ar; Laura-Ccahuana, D [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Rimac/Lima 25 (Peru)

    2008-02-15

    The coexistence of magnetic phases seems to be a characteristic of the La-Ca family of in colossal magnetoresistant manganites. We have analyzed this phenomenon in terms of a free energy, F, where magnetic and electronic contributions of two coexistent phases are included. Three order parameters describe the behavior of the mixed material: the magnetization of each phase and the metallic fraction. Due to the coupling between order parameters there is a range: T**{<=}T{<=}T* where coexistence is possible. Values for the phenomenological parameters are obtained from the experiment. In this paper we analyze the effects of an applied magnetic field on the range of T where the phase coexistence takes place, based on results obtained from dc-magnetization and ESR measurements.

  8. The auroral and ionospheric flow signatures of dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2006-11-01

    Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

  9. A new dual injection system for AMS facility

    International Nuclear Information System (INIS)

    Liu Lin; Zhou Weijian; Cheng Peng; Yu Huagui; Chen Maobai

    2007-01-01

    In order to measure long-lived radioisotopes such as 10 Be with high sensitivity using an HVEE model 4130 AMS system, as well as to guarantee 14 C measurements of high precision, a new dual injection system for the AMS system is proposed. The proposal is to add a Wien filter located between the ion source system and the recombinator of the HVEE model 4130. When a pulsing voltage is optionally applied to the Wien filter, a sequential injection mode is turned on. The isotopes would alternately pass on different trajectories through the recombinator. When the pulsing voltage and magnetic field are turned off, the Wien filter acts as a field-free drift space and the standard simultaneous injection mode is on. Beam optics calculation show that the new dual injection system will increase the number of radio-nuclides which can be analyzed, keep the high precision capability for radiocarbon dating and achieve high sensitivity for 10 Be and 26 Al measurements, together with simplifying the layout as compared to existing dual-injector and dual high-energy beam line systems

  10. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  11. Deformation quantization with separation of variables of an endomorphism bundle

    OpenAIRE

    Karabegov, Alexander

    2013-01-01

    Given a holomorphic Hermitian vector bundle and a star-product with separation of variables on a pseudo-Kaehler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.

  12. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    Science.gov (United States)

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-04-21

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Dual phase magnetic material component and method of forming

    Science.gov (United States)

    Dial, Laura Cerully; DiDomizio, Richard; Johnson, Francis

    2017-04-25

    A magnetic component having intermixed first and second regions, and a method of preparing that magnetic component are disclosed. The first region includes a magnetic phase and the second region includes a non-magnetic phase. The method includes mechanically masking pre-selected sections of a surface portion of the component by using a nitrogen stop-off material and heat-treating the component in a nitrogen-rich atmosphere at a temperature greater than about 900.degree. C. Both the first and second regions are substantially free of carbon, or contain only limited amounts of carbon; and the second region includes greater than about 0.1 weight % of nitrogen.

  14. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers.

    Science.gov (United States)

    Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H

    2016-09-28

    Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.

  15. Isotope separation utilizing Zeeman compensated magnetic extraction

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1978-01-01

    A vapor flow of elemental uranium is directed into a region where narrow band, tuned laser radiation is repeatedly applied to provide at least two energy step selective ionization of the U 235 isotope in the vapor flow. A magnetic field is applied in the region of the ionized U 235 which creates a Lorentz force on the moving ions directing them toward one of a plurality of collection plates placed generally parallel to the vapor flow to permit collection of the U 235 particles in substantially enriched proportions as compared to the concentration in the vapor flow generally. To prevent a broadening of the absorption lines for both the U 235 and U 238 isotopes in the vapor flow from the applied magnetic field and thus prevent substantial reduction in the selectivity of the excitation and ionization, the magnetic field is preferably applied in a time varying magnitude which is phased with respect to the repetitive application of laser radiation to provide a relatively low field strength and corresponding small Zeeman splitting during selective excitation and ionization of the U 235 particles

  16. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  17. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

    Science.gov (United States)

    Cheng, Ru; Meng, Fenghua; Deng, Chao; Klok, Harm-Anton; Zhong, Zhiyuan

    2013-05-01

    In the past decades, polymeric nanoparticles have emerged as a most promising and viable technology platform for targeted and controlled drug delivery. As vehicles, ideal nanoparticles are obliged to possess high drug loading levels, deliver drug to the specific pathological site and/or target cells without drug leakage on the way, while rapidly unload drug at the site of action. To this end, various "intelligent" polymeric nanoparticles that release drugs in response to an internal or external stimulus such as pH, redox, temperature, magnetic and light have been actively pursued. These stimuli-responsive nanoparticles have demonstrated, though to varying degrees, improved in vitro and/or in vivo drug release profiles. In an effort to further improve drug release performances, novel dual and multi-stimuli responsive polymeric nanoparticles that respond to a combination of two or more signals such as pH/temperature, pH/redox, pH/magnetic field, temperature/reduction, double pH, pH and diols, temperature/magnetic field, temperature/enzyme, temperature/pH/redox, temperature/pH/magnetic, pH/redox/magnetic, temperature/redox/guest molecules, and temperature/pH/guest molecules have recently been developed. Notably, these combined responses take place either simultaneously at the pathological site or in a sequential manner from nanoparticle preparation, nanoparticle transporting pathways, to cellular compartments. These dual and multi-stimuli responsive polymeric nanoparticles have shown unprecedented control over drug delivery and release leading to superior in vitro and/or in vivo anti-cancer efficacy. With programmed site-specific drug delivery feature, dual and multi-stimuli responsive nanoparticulate drug formulations have tremendous potential for targeted cancer therapy. In this review paper, we highlight the recent exciting developments in dual and multi-stimuli responsive polymeric nanoparticles for precision drug delivery applications, with a particular focus

  18. Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application

    KAUST Repository

    Chambolle, Antonin; Ehrhardt, Matthias J.; Richtarik, Peter; Schö nlieb, Carola-Bibiane

    2017-01-01

    We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.

  19. Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application

    KAUST Repository

    Chambolle, Antonin

    2017-06-15

    We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.

  20. Estimation of a planetary magnetic field using a reduced magnetohydrodynamic model

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-03-01

    Full Text Available Knowledge of planetary magnetic fields provides deep insights into the structure and dynamics of planets. Due to the interaction of a planet with the solar wind plasma, a rather complex magnetic environment is generated. The situation at planet Mercury is an example of the complexities occurring as this planet's field is rather weak and the magnetosphere rather small. New methods are presented to separate interior and exterior magnetic field contributions which are based on a dynamic inversion approach using a reduced magnetohydrodynamic (MHD model and time-varying spacecraft observations. The methods select different data such as bow shock location information or magnetosheath magnetic field data. Our investigations are carried out in preparation for the upcoming dual-spacecraft BepiColombo mission set out to precisely estimate Mercury's intrinsic magnetic field. To validate our new approaches, we use THEMIS magnetosheath observations to estimate the known terrestrial dipole moment. The terrestrial magnetosheath provides observations from a strongly disturbed magnetic environment, comparable to the situation at Mercury. Statistical and systematic errors are considered and their dependence on the selected data sets are examined. Including time-dependent upstream solar wind variations rather than averaged conditions significantly reduces the statistical error of the estimation. Taking the entire magnetosheath data along the spacecraft's trajectory instead of only the bow shock location into account further improves accuracy of the estimated dipole moment.

  1. The impact of dual-source parallel radiofrequency transmission with patient-adaptive shimming on the cardiac magnetic resonance in children at 3.0 T.

    Science.gov (United States)

    Wang, Haipeng; Qiu, Liyun; Wang, Guangbin; Gao, Fei; Jia, Haipeng; Zhao, Junyu; Chen, Weibo; Wang, Cuiyan; Zhao, Bin

    2017-06-01

    The cardiac magnetic resonance (CMR) of children at 3.0 T presents a unique set of technical challenges because of their small cardiac anatomical structures, fast heart rates, and the limited ability to keep motionless and hold breathe, which could cause problems associated with field inhomogeneity and degrade the image quality. The aim of our study was to evaluate the effect of dual-source parallel radiofrequency (RF) transmission on the B1 homogeneity and image quality in children with CMR at 3.0 T. The study was approved by the institutional ethics committee and written informed consent was obtained. A total of 30 free-breathing children and 30 breath-hold children performed CMR examinations with dual-source and single-source RF transmission. The B1 homogeneity, contrast ratio (CR) of cine images, and off-resonance artifacts in cine images between dual-source and single-source RF transmission were assessed in free-breathing and breath-hold groups, respectively. In both free-breathing and breath-hold groups, higher mean percentage of flip angle (free-breathing group: 104.2 ± 4.6 vs 95.5 ± 6.3, P 3.0 T. This technology could be taken into account in CMR for children with cardiac diseases.

  2. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  3. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  4. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  5. Normal Conducting Separation Dipoles For The Lhc Beam Cleaning Insertions

    CERN Document Server

    Petrov, V; de Rijk, G; Gerard, D; Hans, O; Kalbreier, Willi; Kiselev, O; Protopopov, I V; Pupkov, Yu; Ramberger, S; Ruvinsky, E; Sukhanov, A

    2004-01-01

    In the Large Hadron Collider (LHC), two straight sections, IR3 and IR7, will be dedicated to beam cleaning [1]. These cleaning insertions will be equipped with normal conducting magnets. MBW magnets are dipole magnets used to increase the separation of the two beams. They have a core length of 3.4 m and a gap height of 52 mm and will operate at a magnetic field ranging from 0.09 T to 1.53 T. Limitations on the dimensions and total weight of the magnet resulted in a special design with a common yoke for the two beams. The orbits of the two beams will be separated horizontally by a distance between 194 mm and 224 mm in the gap of the magnet. The magnet was designed in collaboration between CERN and BINP. The report presents the main design issues and results of the pre-series acceptance tests including mechanical, electrical and magnetic field measurements. Index terms - LHC, normal conducting magnet, twin aperture design, separation dipole

  6. Isotope separation by ion waves

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  7. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  8. Method and device for isotope separation

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1976-01-01

    The method works with a converted Q machine. The plasma containing the isotopes to be separated is crossed by a magnetic field running in the direction of the plasma column. More energy is transfered to the chosen isotope by oscillating magnetic and/or electric fields or by sound waves by using the specific resonance frequency for the selected isotope. The isotopes thus heated to different extents can be separated according to various methods given in the patent claims. (GG) [de

  9. The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose : Magnetically separable graphitic carbon bodies for catalysis and remediation

    NARCIS (Netherlands)

    Hoekstra, Jacco; Beale, Andrew M.; Soulimani, Fouad; Versluijs-Helder, Marjan; Van De Kleut, Dirk; Koelewijn, Jacobus M.; Geus, John W.; Jenneskens, Leonardus W.

    2016-01-01

    Whereas pyrolysis of pristine microcrystalline cellulose spheres yields nonporous amorphous carbon bodies, pyrolysis of microcrystalline cellulose spheres loaded with iron salts leads to the formation of magnetically separable mesoporous graphitic carbon bodies. The microcrystalline cellulose

  10. Investigation of a Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yumeng Li

    2014-06-01

    Full Text Available This paper presents a novel five-phase permanent magnet synchronous motor (PMSM, which contains dual rotors and a single stator, equivalent to two five-phase motors working together. Thus, this kind of motor has the potential of good fault tolerant capability and high torque density, which makes it appropriate for use in electric vehicles. In view of the different connection types, the inside and outside stator windings can be driven in series or parallel, which results in the different performances of the magnetomotive force (MMF and torque under open-circuit fault conditions. By decomposing the MMF, the reason that torque ripple increases after open-circuit faults is explained, and the relationship between MMF and torque is revealed. Then, the current control strategy is applied to adjust the open-circuit faults, and the electromagnetic analysis and MMF harmonics analysis are performed to interpret the phenomenon that the torque ripple is still larger than in the normal situation. The investigations are verified by finite element analysis results.

  11. Proposal for implanting a magnetic stable isotope separator

    International Nuclear Information System (INIS)

    Lemos, O.F.

    1988-07-01

    The implantation of an electromagnetic isotope separator able to separate elements of mass from 20 to 250 a.m.u., with an enrichment factor from 10 to 200 times the initial concentration, depending on the elements, is proposed. The most suitable separator type for Brazilian CNEN, considering building installations and minimum conditions for the equipment facilities, the retinue chronogram, the infrastructure, and the personnel training for operation is defined. (M.C.K.) [pt

  12. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator"

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Kjeldsen, B.; Reimers, R.L.

    2005-01-01

    Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic...

  14. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    Science.gov (United States)

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience.

    Science.gov (United States)

    Jogiya, Roy; Schuster, Andreas; Zaman, Arshad; Motwani, Manish; Kouwenhoven, Marc; Nagel, Eike; Kozerke, Sebastian; Plein, Sven

    2014-11-28

    The purpose of this study was to establish the feasibility of three-dimensional (3D) balanced steady-state-free-precession (bSSFP) myocardial perfusion cardiovascular magnetic resonance (CMR) at 3T using local RF shimming with dual-source RF transmission, and to compare it with spoiled gradient echo (TGRE) acquisition. Dynamic contrast-enhanced 3D bSSFP perfusion imaging was performed on a 3T MRI scanner equipped with dual-source RF transmission technology. Images were reconstructed using k-space and time broad-use linear acquisition speed-up technique (k-t BLAST) and compartment based principle component analysis (k-t PCA). In phantoms and volunteers, local RF shimming with dual source RF transmission significantly improved B1 field homogeneity compared with single source transmission (P=0.01). 3D bSSFP showed improved signal-to-noise, contrast-to-noise and signal homogeneity compared with 3D TGRE (29.8 vs 26.9, P=0.045; 23.2 vs 21.6, P=0.049; 14.9% vs 12.4%, p=0.002, respectively). Image quality was similar between bSSFP and TGRE but there were more dark rim artefacts with bSSFP. k-t PCA reconstruction reduced artefacts for both sequences compared with k-t BLAST. In a subset of five patients, both methods correctly identified those with coronary artery disease. Three-dimensional bSSFP myocardial perfusion CMR using local RF shimming with dual source parallel RF transmission at 3T is feasible and improves signal characteristics compared with TGRE. Image artefact remains an important limitation of bSSFP imaging at 3T but can be reduced with k-t PCA.

  16. Controlling the capture and release of DNA with a dual-responsive cationic surfactant.

    Science.gov (United States)

    Xu, Lu; Feng, Lei; Hao, Jingcheng; Dong, Shuli

    2015-04-29

    A dual-responsive cationic surfactant, 4-ethoxy-4'-(trimethyl- aminoethoxy) azobenzene trichloromonobromoferrate (azoTAFe), which contains both a light-responsive moiety azobenzene and a paramagnetic counterion, [FeCl3Br](-), was designed and synthesized. Not only does this cationic surfactant abundantly utilize inexhaustible and clean sources, i.e., light and magnetic field, but it also serves as a powerful dual-switch molecule for effectively controlling the capture and release of DNA. Our results could provide potential applications in gene therapy for creating smart and versatile machines to control the transport and delivery of DNA more intelligently and robustly. It was proved that the light switch can independently realize a reversible DNA compaction. The introduction of a magnetic switch can significantly enhance the compaction efficiency, help compact DNA with a lower dosage and achieve a magnetic field-based targeted transport of DNA. In addition, the light switch can make up the irreversibility of magnetic switch. This kind of self-complementation makes the cationic azoTAFe be useful as a potential tool that can be applied to the field of gene therapy and nanomedicine.

  17. Deformation quantization with separation of variables of an endomorphism bundle

    Science.gov (United States)

    Karabegov, Alexander

    2014-01-01

    Given a holomorphic Hermitian vector bundle E and a star-product with separation of variables on a pseudo-Kähler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle E∗ which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.

  18. Deflection of weakly magnetic materials by superconducting OGMS

    International Nuclear Information System (INIS)

    Boehm, J.; Gerber, R.; Fletcher, D.; Parker, M.R.

    1988-01-01

    Applications of a superconducting Open Gradient Magnetic Separator to fractional separation in air of weakly magnetic materials are presented. The dependence of particle deflection of these materials on the magnetic field strength, release location, magnetic susceptibility, particle density and other properties is investigated. The aim is to maximise the deflection of the magnetically stronger component of the feed to facilitate its separation from the particle stream round the magnet. Materials (e.g. CuSO/sub 4/, MnO/sub 2/) with chi/rho- ratios of the order of 7 x 10/sup -8/ m/sup 3//kg have been deflected. The applicability of dry magnetic separation has thus been considerably extended since up to now the separation of such materials has been restricted to High Gradient Magnetic Separation. The dependence of the separation efficiency upon the method of feeding and the influence of the residence time are studied in order to establish the optimum parameters for the recovery of the desired fraction. The experimental results are compared with predictions of a theory that is based upon novel approximative calculations of magnetic fields in which the use of elliptic integrals is avoided

  19. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  20. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    Science.gov (United States)

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.