WorldWideScience

Sample records for dual frequency identification

  1. Radio Frequency Identification

    Indian Academy of Sciences (India)

    Radio Frequency Identification (RFID) has been around sinceearly 2000. Its use has currently become commonplace as thecost of RFID tags has rapidly decreased. RFID tags have alsobecome more 'intelligent' with the incorporation of processorsand sensors in them. They are widely used now in manyinnovative ways.

  2. Combining split-beam and dual-frequency identification sonars to estimate abundance of anadromous fishes in the Roanoke River, North Carolina

    Science.gov (United States)

    Hughes, Jacob B.; Hightower, Joseph E.

    2015-01-01

    Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.

  3. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  4. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  5. Frequency-agile dual-comb spectroscopy

    Science.gov (United States)

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovhannisyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s-1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.

  6. Dual-pulse frequency compounded superharmonic imaging.

    Science.gov (United States)

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.

  7. Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma

    International Nuclear Information System (INIS)

    Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei

    2016-01-01

    We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)

  8. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  9. Dual frequency comb metrology with one fiber laser

    Science.gov (United States)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  10. Frequency-agile dual-comb spectroscopy

    OpenAIRE

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in ...

  11. Bistable switching in dual-frequency liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Barnik, M I [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2006-06-15

    Various bistable switching modes in nematic liquid crystals with frequency inversion of the sign of dielectric anisotropy are revealed and investigated. Switching between states with different helicoidal distributions of the director field of a liquid crystal, as well as between uniform and helicoidal states, is realized by dual-frequency waveforms of a driving voltage. A distinctive feature of the dual-frequency switching is that the uniform planar distribution of the director field may correspond to a thermodynamically equilibrium state, and the chirality of an LC is not a necessary condition for switching to a helicoidal state.

  12. System Identification A Frequency Domain Approach

    CERN Document Server

    Pintelon, Rik

    2012-01-01

    System identification is a general term used to describe mathematical tools and algorithms that build dynamical models from measured data. Used for prediction, control, physical interpretation, and the designing of any electrical systems, they are vital in the fields of electrical, mechanical, civil, and chemical engineering. Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach. It high??lights many of the important steps in the identi

  13. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....

  14. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  15. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Science.gov (United States)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  16. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01

    synthetic aperture radar (SAR) system. The dual-frequency array concept adopted relies on the use of probe-fed perforated, stacked patches for L-band (1.2-1.3 GHz). Inside these perforations probe-fed, wideband stacked microstrip patches for C-band (4.9-5.7 GHz) are placed. Measured impedance and radiation...

  17. Ionospheric Gradient Threat Mitigation in Future Dual Frequency GBAS

    Directory of Open Access Journals (Sweden)

    Michael Felux

    2017-01-01

    Full Text Available The Ground Based Augmentation System (GBAS is a landing system for aircraft based on differential corrections for the signals of Global Navigation Satellite Systems (GNSS, such as GPS or Galileo. The main impact on the availability of current single frequency systems results from the necessary protection against ionospheric gradients. With the introduction of Galileo and the latest generation of GPS satellites, a second frequency is available for aeronautical navigation. Dual frequency methods allow forming of ionospheric free combinations of the signals, eliminating a large part of the ionospheric threats to GBAS. However, the combination of several signals increases the noise in the position solution and in the calculation of error bounds. We, therefore, developed a method to base positioning algorithms on single frequency measurements and use the second frequency only for monitoring purposes. In this paper, we describe a detailed derivation of the monitoring scheme and discuss its implications for the use in an aviation context.

  18. identification of common bean genotypes with dual leaf and pod ...

    African Journals Online (AJOL)

    ACSS

    2018-02-08

    Feb 8, 2018 ... IDENTIFICATION OF COMMON BEAN GENOTYPES WITH DUAL LEAF AND. POD RESISTANCE TO COMMON BACTERIAL BLIGHT DISEASE IN UGANDA. B.M.E. ALLADASSI, S.T. NKALUBO1, C. MUKANKUSI2, H.N. KAYAGA, P. GIBSON, R. EDEMA,. C.A. URREA3, J.D. KELLY4 and P.R. RUBAIHAYO.

  19. Application of multiple signal classification algorithm to frequency estimation in coherent dual-frequency lidar

    Science.gov (United States)

    Li, Ruixiao; Li, Kun; Zhao, Changming

    2018-01-01

    Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.

  20. Nonlinear analysis for dual-frequency concurrent energy harvesting

    Science.gov (United States)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  1. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    Science.gov (United States)

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  2. Estimation of wind stress using dual-frequency TOPEX data

    Science.gov (United States)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  3. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling....

  4. Radio frequency identification applications in hospital environments.

    Science.gov (United States)

    Wicks, Angela M; Visich, John K; Li, Suhong

    2006-01-01

    Radio frequency identification (RFID) technology has recently begun to receive increased interest from practitioners and academicians. This interest is driven by mandates from major retailers such as Wal-Mart, Target and Metro Group, and the United States Department of Defense, in order to increase the efficiency and visibility of material and information flows in the supply chain. However, supply chain managers do not have a monopoly on the deployment of RFID. In this article, the authors discuss the potential benefits, the areas of applications, the implementation challenges, and the corresponding strategies of RFID in hospital environments.

  5. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  6. Diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference

    Energy Technology Data Exchange (ETDEWEB)

    Ren Cheng; Zhang Shulian, E-mail: ren-c06@mails.tsinghua.edu.c [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2009-08-07

    The diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference is presented. The gain medium used is a microchip 2 mm in thickness for miniaturized and integrated design. Two quarter-wave plates are placed into the laser cavity and the intra-cavity birefringence produces two orthogonally linearly polarized modes. The rotation of one of the two quarter-wave plates introduces a controlled and variable cavity birefringence which causes a variable frequency difference between the two orthogonally polarized modes. The frequency difference can be tuned through the whole cavity free spectral range. The obtained frequency difference ranges from 14 MHz to 1.5 GHz. The variation of the beat frequency over a period of 10 min is less than 10 kHz. The lock-in between modes is not found. Experimental results are presented, which match well with the theoretical analysis based on Jones matrices.

  7. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  8. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  9. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  10. Investigation of Capacitively Coupled Argon Plasma Driven by Dual-Frequency with Different Frequency Configurations

    International Nuclear Information System (INIS)

    Yu Yiqing; Xin Yu; Ning Zhaoyuan; Lu Wenqi

    2011-01-01

    Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature T e decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in T e and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.

  11. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  12. Discrete frequency identification using the HP 5451B Fourier analyser

    International Nuclear Information System (INIS)

    Holland, L.; Barry, P.

    1977-01-01

    The frequency analysis by the HP5451B discrete frequency Fourier analyser is studied. The advantages of cross correlation analysis to identify discrete frequencies in a background noise are discussed in conjuction with the elimination of aliasing and wraparound error. Discrete frequency identification is illustrated by a series of graphs giving the results of analysing 'electrical' and 'acoustical' white noise and sinusoidal signals [pt

  13. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  14. A Novel L-Shape Ultra Wideband Chipless Radio-Frequency Identification Tag

    Directory of Open Access Journals (Sweden)

    Khaled Issa

    2017-01-01

    Full Text Available A novel compact dual-polarized-spectral-signature-based chipless radio-frequency identification (RFID tag is presented. Specifically, an L-shape resonator-based structure is optimized to have different spectral signatures in both horizontal and vertical polarizations, in order to double the encoding capacity. Resonators’ slot width and the space between closely placed resonators are also optimized to enhance the mutual coupling, thereby helping in achieving high-data encoding density. The proposed RFID tag operates over 5 GHz to 10 GHz frequency band. As a proof of concept, three different 18-bit dual-polarized RFID tags are simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show reasonable agreement with the simulation results, with respect to resonators’ frequency positions, null depth, and their bandwidth over the operational spectrum.

  15. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  16. 'Merge' - A Filter for the Fusion of Dual-Frequency Sidescan Sonar Data

    National Research Council Canada - National Science Library

    Neill, Roger

    1997-01-01

    A filtering and data fusion technique is described which uses the correlation between the two data streams of a dual-frequency sidescan sonar in order to discriminate against noise and preferentially...

  17. System identification: a frequency domain approach

    National Research Council Canada - National Science Library

    Pintelon, R; Schoukens, J

    2001-01-01

    ... in the Identification Process 17 1.4.1 Collect Information about the System 17 1.4.2 Select a Model Structure to Represent the System 17 1.4.3 Match the Selected Model Structure to the Measurements 19 1.4.4 Validate the Selected Model 19 1.4.5 Conclusion 19 A Statistical Approach to the Estimation Problem 1.5.1 Least Squares Estimation 20 1.5.2 Weighted Least Squar...

  18. Triple-Frequency GPS Precise Point Positioning Ambiguity Resolution Using Dual-Frequency Based IGS Precise Clock Products

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available With the availability of the third civil signal in the Global Positioning System, triple-frequency Precise Point Positioning ambiguity resolution methods have drawn increasing attention due to significantly reduced convergence time. However, the corresponding triple-frequency based precise clock products are not widely available and adopted by applications. Currently, most precise products are generated based on ionosphere-free combination of dual-frequency L1/L2 signals, which however are not consistent with the triple-frequency ionosphere-free carrier-phase measurements, resulting in inaccurate positioning and unstable float ambiguities. In this study, a GPS triple-frequency PPP ambiguity resolution method is developed using the widely used dual-frequency based clock products. In this method, the interfrequency clock biases between the triple-frequency and dual-frequency ionosphere-free carrier-phase measurements are first estimated and then applied to triple-frequency ionosphere-free carrier-phase measurements to obtain stable float ambiguities. After this, the wide-lane L2/L5 and wide-lane L1/L2 integer property of ambiguities are recovered by estimating the satellite fractional cycle biases. A test using a sparse network is conducted to verify the effectiveness of the method. The results show that the ambiguity resolution can be achieved in minutes even tens of seconds and the positioning accuracy is in decimeter level.

  19. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  20. Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease

    International Nuclear Information System (INIS)

    Trokhanova, O V; Okhapkin, M B; Korjenevsky, A V

    2008-01-01

    Electrical impedance tomography (EIT) enables one to determine and visualize non-invasively the spatial distribution of the electrical properties of the tissues inside the body, thus providing valuable diagnostic information. The electrical impedance mammography (EIM) system is a specialized EIT system for diagnostics and imaging of the breast. While breast cancer is the main target for any investigation conducted in this area, the diagnosis of non-cancerous diseases is also very important because it opens the way to improve the quality of life for many women and it may also reduce the incidence of breast cancer through effective treatment of mastopathy. This paper presents the main results of a comprehensive examination of 166 women using four methods: multifrequency electrical impedance mammography, ultrasonic investigation, x-ray mammography and puncture biopsy. The objective of the investigation is to estimate the usefulness of multifrequency electrical impedance mammography for diagnosing dyshormonal mammary gland diseases. The results demonstrate the advantages of the multifrequency EIM method. In particular, dual-frequency electrical impedance mammography in contrast with the single-frequency variant enables one not only to diagnose mastopathy, but also allows accurate detection of its cystless form based on observation of the absence of any difference between average conductivity in both phases of the menstrual cycle. Because the cystless form of mastopathy is associated with a higher risk of cancer development, this method allows identification of a higher risk group of patients for more frequent investigations

  1. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    Science.gov (United States)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  2. Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2013-01-01

    Dual-frequency capacitive discharges are widespread in the semiconductor industry and are used, for example, in etching of semiconductor materials to manufacture microchips. In low-pressure dual radio-frequency capacitive discharges, stochastic heating is an important phenomenon. Recent theoretical work on this problem using several different approaches has produced results that are broadly in agreement insofar as scaling with the discharge parameters is concerned, but there remains some disagreement in detail concerning the absolute size of the effect for the case of dual-frequency capacitive discharges. In this work, we investigate the dependence of stochastic heating on various discharge parameters with the help of particle-in-cell (PIC) simulation. The dual-frequency analytical models are in fair agreement with PIC results for values of the low-frequency current density amplitude J lf (or dimensionless control parameter H lf ∼ 5) typical of many modern experiments. However, for higher values of J lf (or higher H lf ), new physical phenomena (like field reversal, reflection of ions, etc) appear and the simulation results deviate from existing dual-frequency analytical models. On the other hand, for lower J lf (or lower H lf ) again the simulation results deviate from analytical models. So this research work produces a relatively extensive set of simulation data that may be used to validate theories over a wide range of parameters. (paper)

  3. Radio frequency identification and its application in e-commerce

    OpenAIRE

    Bahr, Witold; Price, Brian J

    2016-01-01

    This chapter presents Radio Frequency Identification (RFID), which is one of the Automatic Identification and Data Capture (AIDC) technologies (Wamba and Boeck, 2008) and discusses the application of RFID in E-Commerce. Firstly RFID is defined and the tag and reader components of the RFID system are explained. Then historical context of RFID is briefly discussed. Next, RFID is contrasted with other AIDC technologies, especially the use of barcodes which are commonly applied in E-Commerce. Las...

  4. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  5. Face identification with frequency domain matched filtering in mobile environments

    Science.gov (United States)

    Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan

    2012-06-01

    Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.

  6. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    Science.gov (United States)

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  7. The political downside of dual identity: group identifications and religious political mobilization of Muslim minorities.

    Science.gov (United States)

    Martinovic, Borja; Verkuyten, Maykel

    2014-12-01

    Research on the political mobilization of ethnic minorities has shown that dual ethno-national identification facilitates involvement in political action on behalf of the ethnic group. This study extends this research by proposing that a dual identity can impede political mobilization on behalf of another relevant in-group--the religious community - especially if this in-group is not accepted by the wider society. Using a sample of 641 Muslims of Turkish origin living in Germany and the Netherlands, dual ethno-national identity (Turkish-German/Turkish-Dutch) was examined in relation to religious Muslim identification and religious political mobilization. Dual identity was expected to be indirectly related to lower mobilization via decreased religious group identification. Further, this mediating process was predicted to be stronger for Turkish Muslims who perceived relatively high religious group discrimination. In both countries we found support for the mediating hypothesis, however, the moderating role of discrimination was confirmed only for the Netherlands. Turkish-Dutch identification was associated with lower support for religious political mobilization because of lower Muslim identification only for Turkish-Dutch participants who perceived high levels of discrimination. These findings indicate that a strong dual (ethno-national) identity can undermine minority members' support for political rights and actions on behalf of a third relevant in-group, and therefore qualify the social psychological benefits of the dual identity model. © 2014 The British Psychological Society.

  8. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  9. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  10. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqiao [MOE Key Laboratory of Hydrodynamics, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Calvisi, Michael L [Department of Mechanical and Aerospace Engineering, University of Colorado, Colorado Springs, CO 80918, United States of America (United States); Wang, Qianxi, E-mail: yunqiaoliu@sjtu.edu.cn [School of Mathematics, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-04-15

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents. (paper)

  11. Extraction of artificial boundary frequencies for damage identification

    Energy Technology Data Exchange (ETDEWEB)

    Mao Lei; Lu Yong, E-mail: yong.lu@ed.ac.uk [Institute for Infrastructure and Environment, Joint Research Institute for Civil and Environmental Engineering (ERP), School of Engineering, University of Edinburgh, The Kings Buildings, Edinburgh EH9 3JL (United Kingdom)

    2011-07-19

    This paper introduces some recent progress in a study which is aimed at incorporating the so-called artificial boundary condition (ABC) frequencies for damage identification. The ABC frequencies are those corresponding to the natural frequencies of the system with additional pin supports, but may be extracted from specially configured incomplete frequency response function matrix of the original structure without the need of physically imposing the additional supports. A particular focus of this paper is placed on the actual extraction of such frequencies from physical experiments and the associated data processing and analysis. Results will demonstrate that it is possible to extract the first few ABC frequencies for a variety of boundary conditions with 1-2 artificial pin supports in a beam or a slab structure.

  12. Extraction of artificial boundary frequencies for damage identification

    International Nuclear Information System (INIS)

    Mao Lei; Lu Yong

    2011-01-01

    This paper introduces some recent progress in a study which is aimed at incorporating the so-called artificial boundary condition (ABC) frequencies for damage identification. The ABC frequencies are those corresponding to the natural frequencies of the system with additional pin supports, but may be extracted from specially configured incomplete frequency response function matrix of the original structure without the need of physically imposing the additional supports. A particular focus of this paper is placed on the actual extraction of such frequencies from physical experiments and the associated data processing and analysis. Results will demonstrate that it is possible to extract the first few ABC frequencies for a variety of boundary conditions with 1-2 artificial pin supports in a beam or a slab structure.

  13. A simulation tool for radio frequency identification construction supply chains

    NARCIS (Netherlands)

    Gassel, van F.J.M.; Jansen, G.; Zavadskas, E.K.; Kaklauskas, A.; Skibniewski, M.J.

    2008-01-01

    Radio Frequency IDentification (RFID) technology is being used more and more in the construction industry. RFID tags and peripheral equipment are becoming cheaper and more suitable for application in the supply chain. However, it is difficult for contractors to estimate the costs and benefits of

  14. Modal Identification from Ambient Responses using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, L.; Andersen, P.

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical ...

  15. Applications of radio frequency identification systems in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D [Davis Derby Limited (United Kingdom)

    1994-12-31

    The paper describes the application of Radio Frequency Identification (RFID) systems in the mining industry for both surface and underground mines. The history of the RFID system, types available, the transponder, and the various techniques used are described and compared. The design and certification of a system for use in a hazardous area are described, noting the hazard of inadvertent detonator ignition. 2 refs.

  16. How can radio frequency identification technology impact nursing practice?

    Science.gov (United States)

    Billingsley, Luanne; Wyld, David

    2014-12-01

    Radio frequency identification (RFID) technology can save nurses time, improve quality of care, en hance patient and staff safety, and decrease costs. However, without a better understanding of these systems and their benefits to patients and hospitals, nurses may be slower to recommend, implement, or adopt RFID technology into practice.

  17. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    Science.gov (United States)

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  18. Modal Identification from Ambient Responses Using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, Lingmi; Andersen, Palle

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...

  19. Musical Instrument Identification using Multiscale Mel-frequency Cepstral Coefficients

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Morvidone, Marcela; Daudet, Laurent

    2010-01-01

    We investigate the benefits of evaluating Mel-frequency cepstral coefficients (MFCCs) over several time scales in the context of automatic musical instrument identification for signals that are monophonic but derived from real musical settings. We define several sets of features derived from MFCC...... multiscale decompositions perform significantly better than features computed using a single time-resolution....

  20. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals

    International Nuclear Information System (INIS)

    Hao Qingzhen; Zhao Yanhui; Juluri, Bala Krishna; Kiraly, Brian; Huang, Tony Jun; Liou, Justin; Khoo, Iam Choon

    2011-01-01

    Frequency-addressed tunable transmission is demonstrated in optically thin metallic nanohole arrays embedded in dual-frequency liquid crystals (DFLCs). The optical properties of the composite system are characterized by the transmission spectra of the nanoholes, and a prominent transmission peak is shown to originate from the resonance of localized surface plasmons at the edges of the nanoholes. An ∼17 nm shift in the transmission peak is observed between the two alignment configurations of the liquid crystals. This DFLC-based active plasmonic system demonstrates excellent frequency-dependent switching behavior and could be useful in future nanophotonic applications.

  1. Advances in dual-tone development for pitch frequency doubling

    Science.gov (United States)

    Fonseca, Carlos; Somervell, Mark; Scheer, Steven; Kuwahara, Yuhei; Nafus, Kathleen; Gronheid, Roel; Tarutani, Shinji; Enomoto, Yuuichiro

    2010-04-01

    Dual-tone development (DTD) has been previously proposed as a potential cost-effective double patterning technique1. DTD was reported as early as in the late 1990's2. The basic principle of dual-tone imaging involves processing exposed resist latent images in both positive tone (aqueous base) and negative tone (organic solvent) developers. Conceptually, DTD has attractive cost benefits since it enables pitch doubling without the need for multiple etch steps of patterned resist layers. While the concept for DTD technique is simple to understand, there are many challenges that must be overcome and understood in order to make it a manufacturing solution. Previous work by the authors demonstrated feasibility of DTD imaging for 50nm half-pitch features at 0.80NA (k1 = 0.21) and discussed challenges lying ahead for printing sub-40nm half-pitch features with DTD. While previous experimental results suggested that clever processing on the wafer track can be used to enable DTD beyond 50nm halfpitch, it also suggest that identifying suitable resist materials or chemistries is essential for achieving successful imaging results with novel resist processing methods on the wafer track. In this work, we present recent advances in the search for resist materials that work in conjunction with novel resist processing methods on the wafer track to enable DTD. Recent experimental results with new resist chemistries, specifically designed for DTD, are presented in this work. We also present simulation studies that help and support identifying resist properties that could enable DTD imaging, which ultimately lead to producing viable DTD resist materials.

  2. Electric fields in the sheath formed in a 300 mm, dual frequency capacitive argon discharge

    International Nuclear Information System (INIS)

    Barnat, E V; Miller, P A; Hebner, G A; Paterson, A M; Panagopoulos, T; Hammond, E; Holland, J

    2007-01-01

    The spatial structure and temporal evolution of the electric fields in a sheath formed in a dual frequency, 300 mm capacitive argon discharge are measured as functions of relative mixing between a low frequency current and a high frequency current. It is found that the overall structure of the sheath (potential across the sheath and the thickness of the sheath) are dominated by the lower frequency component while (smaller) oscillations in these quantities are dictated by the higher frequency component. Comparisons of the measured spatial and temporal profiles are made for Lieberman's and Robiche et al sheath model and with a particle in a cell calculation

  3. Measurement of a discontinuous object based on a dual-frequency grating

    Institute of Scientific and Technical Information of China (English)

    Qiao Nao-Sheng; Cai Xin-Hua; Yao Chun-Mei

    2009-01-01

    The dual-frequency grating measurement theory is proposed in order to carry out the measurement of a discontinuous object. Firstly, the reason why frequency spectra are produced by low frequency gratings and high frequency gratings in the field of frequency is analysed, and the relationship between the wrapped-phase and the unwrappingphase is discussed. Secondly, a method to combine the advantages of the two kinds of gratings is proposed: one stripe is produced in the mutation part of the object measured by a suitable low frequency grating designed by MATLAB, then the phase produced by the low frequency grating need not be unfolded. The integer series of stripes is produced by a high frequency grating designed by MATLAB based on the frequency ratio of the two kinds of gratings and the high frequency wrapped-phase, and the high frequency unwrapping-phase is then obtained. In order to verify the correctness of the theoretical analysis, a steep discontinuous object of 600×600 pixels and 10.00 mm in height is simulated and a discontinuous object of ladder shape which is 32.00 mm in height is used in experiment. Both the simulation and the experiment can restore the discontinuous object height accurately by using the dual-frequency grating measurement theory.

  4. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    Science.gov (United States)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  6. Induction heating of gears - pulsing dual-frequency concept

    Directory of Open Access Journals (Sweden)

    R. Przyłucki

    2013-04-01

    Full Text Available The paper concerns analysis of gears hardening process. In order to obtain required temperature distribution several variations of single and combined frequencies for selected gear-wheel configurations were considered. The paper includes the calculation models and analysis of geometry and current intensity as well frequency influence on temperature distribution of the tooth surface. All calculations have been carried out by means of the use of Flux3D simulation program, which enables to provide, coupled electromagnetic and temperature fields analysis.

  7. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  8. Novel structural flexibility identification in narrow frequency bands

    International Nuclear Information System (INIS)

    Zhang, J; Moon, F L

    2012-01-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)

  9. RFID explained a primer on radio frequency identification technologies

    CERN Document Server

    Want, Roy

    2006-01-01

    This lecture provides an introduction to Radio Frequency Identification (RFID), a technology enabling automatic identification of objects at a distance without requiring line-of-sight. Electronic tagging can be divided into technologies that have a power source (active tags), and those that are powered by the tag interrogation signal (passive tags); the focus here is on passive tags. An overview of the principles of the technology divides passive tags into devices that use either near field or far field coupling to communicate with a tag reader. The strengths and weaknesses of the approaches a

  10. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  11. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    Science.gov (United States)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  12. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  13. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  14. Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance

    NARCIS (Netherlands)

    Raaijmakers, E.; Faes, T. J.; Meijer, J. M.; Kunst, P. W.; Bakker, J.; Goovaerts, H. G.; Heethaar, R. M.

    1998-01-01

    The study investigates the effects of non-cardiogenic oedema, especially the accumulation of protein in extracellular fluid, on thoracic impedance and proposes a new method of oedema measurement based on an impedance ratio from a dual-frequency measurement. In vitro measurements in a cell containing

  15. Dual-frequency ring-magnet power supply with flat bottom

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1983-01-01

    A power supply is described that furnishes an essentially flat-bottom injection field, followed by a dual-frequency cosine field. This results in efficient beam capture during injection and reduces significantly the peak rf power required during acceleration in a rapid-cycling synchrotron

  16. Methods, Systems and Apparatuses for Radio Frequency Identification

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor)

    2017-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  17. Biometric identification based on novel frequency domain facial asymmetry measures

    Science.gov (United States)

    Mitra, Sinjini; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-03-01

    In the modern world, the ever-growing need to ensure a system's security has spurred the growth of the newly emerging technology of biometric identification. The present paper introduces a novel set of facial biometrics based on quantified facial asymmetry measures in the frequency domain. In particular, we show that these biometrics work well for face images showing expression variations and have the potential to do so in presence of illumination variations as well. A comparison of the recognition rates with those obtained from spatial domain asymmetry measures based on raw intensity values suggests that the frequency domain representation is more robust to intra-personal distortions and is a novel approach for performing biometric identification. In addition, some feature analysis based on statistical methods comparing the asymmetry measures across different individuals and across different expressions is presented.

  18. Dual-Frequency Impedance Transformer Using Coupled-Line For Ultra-High Transforming Ratio

    Directory of Open Access Journals (Sweden)

    R. K. Barik

    2017-12-01

    Full Text Available In this paper, a new type of dual-frequency impedance transformer is presented for ultra-high transforming ratio. The proposed configuration consists of parallel coupled-line, series transmission lines and short-ended stubs. The even and odd-mode analysis is applied to obtain the design equations and hence to provide an accurate solution. Three examples of the dual-frequency transformer with load impedance of 500, 1000 and 1500 Ω are designed to study the matching capability and bandwidth property. To prove the frequency agility of the proposed network, three prototypes of dual-frequency impedance transformer with transforming ratio of 10, 20 and 30 are fabricated and tested. The measured return loss is greater than 15 dB at two operating frequencies for all the prototypes. Also, the bandwidth is more than 60 MHz at each frequency band for all the prototypes. The measured return loss is found in good agreement with the circuit and full-wave simulations.

  19. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  20. Radio Frequency Identification (RFID) technology and patient safety

    OpenAIRE

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-01-01

    Background: Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID techno...

  1. Radio Frequency Identification (RFID): its usage and libraries

    OpenAIRE

    Rafiq, Muhammad

    2004-01-01

    Radio Frequency Identification (RFID) is one of the most exciting technologies that revolutionize the working practices by increasing efficiencies, and improving profitability. The article provides details about RFID, its components, how it works, and its usage in different sectors i.e. retail sales and supply chains, livestock industry, courier services, military and prisons, automobiles and logistics, entertainment industry, publishing industry, wireless transaction, and, especially, in...

  2. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  3. Giftedness and ADHD: Identification, Misdiagnosis, and Dual Diagnosis

    Science.gov (United States)

    Mullet, Dianna R.; Rinn, Anne N.

    2015-01-01

    Many gifted characteristics overlap the symptoms of attention deficity-hyperactivity disorder (ADHD). The potential for the misdiagnosis of giftedness as ADHD exists, but so does the potential for a dual diagnosis of giftedness and ADHD. A decade after the misdiagnosis of giftedness as ADHD was first investigated we examine lessons learned…

  4. Modified Dual Second-order Generalized Integrator FLL for Frequency Estimation Under Various Grid Abnormalities

    Directory of Open Access Journals (Sweden)

    Kalpeshkumar Rohitbhai Patil

    2016-10-01

    Full Text Available Proper synchronization of Distributed Generator with grid and its performance in grid-connected mode relies on fast and precise estimation of phase and amplitude of the fundamental component of grid voltage. However, the accuracy with which the frequency is estimated is dependent on the type of grid voltage abnormalities and structure of the phase-locked loop or frequency locked loop control schemes. Among various control schemes, second-order generalized integrator based frequency- locked loop (SOGI-FLL is reported to have the most promising performance. It tracks the frequency of grid voltage accurately even when grid voltage is characterized by sag, swell, harmonics, imbalance, frequency variations etc. However, estimated frequency contains low frequency oscillations in case when sensed grid-voltage has a dc offset. This paper presents a modified dual second-order generalized integrator frequency-locked loop (MDSOGI-FLL for three-phase systems to cope with the non-ideal three-phase grid voltages having all type of abnormalities including the dc offset. The complexity in control scheme is almost the same as the standard dual SOGI-FLL, but the performance is enhanced. Simulation results show that the proposed MDSOGI-FLL is effective under all abnormal grid voltage conditions. The results are validated experimentally to justify the superior performance of MDSOGI-FLL under adverse conditions.

  5. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  6. Passive ultra high frequency radio frequency identification systems for single-item identification in food supply chains

    Directory of Open Access Journals (Sweden)

    Paolo Barge

    2017-02-01

    Full Text Available In the food industry, composition, size, and shape of items are much less regular than in other commodities sectors. In addition, a wide variety of packaging, composed by different materials, is employed. As material, size and shape of items to which the tag should be attached strongly influence the minimum power requested for tag functioning, performance improvements can be achieved only selecting suitable radio frequency (RF identifiers for the specific combination of food product and packaging. When dealing with logistics units, the dynamic reading of a vast number of tags could originate simultaneous broadcasting of signals (tag-to-tag collisions that could affect reading rates and the overall reliability of the identification procedure. This paper reports the results of an analysis of the reading performance of ultra high frequency radio frequency identification systems for multiple static and dynamic electronic identification of food packed products in controlled conditions. Products were considered when arranged on a logistics pallet. The effects on reading rate of different factors, among which the product type, the gate configuration, the field polarisation, the power output of the RF reader, the interrogation protocol configuration as well as the transit speed, the number of tags and their interactions were statistically analysed and compared.

  7. Modelling of the dual frequency capacitive sheath in the intermediate pressure range

    International Nuclear Information System (INIS)

    Boyle, P C; Robiche, J; Turner, M M

    2004-01-01

    The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared

  8. Simulation of dust particles in dual-frequency capacitively coupled silane discharges

    International Nuclear Information System (INIS)

    Liu Xiangmei; Song Yuanhong; Xu Xiang; Wang Younian

    2010-01-01

    The behavior of nanoparticles in dual-frequency capacitively coupled silane discharges is investigated by employing a one-dimensional self-consistent fluid model. The numerical simulation tries to trace the formation, charging, growth, and transport of dust particles during the discharge, under the influences of the high- and low-frequency electric sources, as well as the gas pressure. The effects of the presence of the nanoparticles and larger anions on the plasma properties are also discussed, especially, for the bulk potential, electron temperature, and densities of various particles. The calculation results show that the nanoparticle density and charge distribution are mainly influenced by the voltage and frequency of the high-frequency source, while the voltage of the low-frequency source can also exert an effect on the nanoparticle formation, compared with the frequency. As the discharge lasts, the electric potential and electron density keep decreasing, while the electron temperature gets increasing after a sudden drop.

  9. Coherent dual-frequency lidar system design for distance and speed measurements

    Science.gov (United States)

    Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi

    2018-01-01

    Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.

  10. Towards dual recycling with the aid of time and frequency domain simulations

    International Nuclear Information System (INIS)

    Malec, M; Grote, H; Freise, A; Heinzel, G; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling, the combination of the interferometric techniques of power and signal recycling, allows the improvement of the shot noise limited sensitivity of interferometric gravitational wave detectors. GEO 600 is the first km-scale gravitational wave detector using dual recycling. The hardware installation is completed and dual recycling has become a great challenge in terms of commissioning of GEO 600. Simulations show that lock acquisition of the optical system can only be achieved in certain detector states. Thus as we need to start with a locked detector in such a specific state, an appropriate strategy is needed to change the state of detector operation without losing lock. The basic concepts and first results based on time and frequency domain simulations will be presented in this paper

  11. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Science.gov (United States)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  12. Synchronous machine parameter identification in frequency and time domain

    Directory of Open Access Journals (Sweden)

    Hasni M.

    2007-01-01

    Full Text Available This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.

  13. Electron heating of voltage-driven and matched dual frequency discharges

    International Nuclear Information System (INIS)

    Lieberman, M A; Lichtenberg, A J

    2010-01-01

    In a dual frequency capacitive sheath, a high frequency uniform sheath motion is coupled with a low frequency Child law sheath motion. For current-driven high and low frequency sheaths, the high frequency sheath motion generates most of the ohmic and stochastic heating of the discharge electrons. The low frequency motion, in addition to its primary purpose of establishing the ion bombarding energy, also increases the heating by widening the sheath width and transporting the oscillating electrons to regions of lower plasma density, and hence higher sheath velocity. In this work, we show that for voltage-driven high and low frequency sheaths, increasing the low frequency voltage reduces the heating, due to the reduced high frequency current that flows through the sheath under voltage-driven conditions. We determine the dependence of the heating on various parameters and compare the results with the current-driven case. Particle-in-cell simulations are used to confirm this result. Discharges generally employ a matching network to maximize the power transmitted to the plasma. We obtain analytic expressions for the effect of the low frequency source under matched conditions and, again, find that the low frequency source reduces the heating.

  14. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.

    Science.gov (United States)

    Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong

    2015-10-30

    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  15. Radio Frequency Identification (RFID) in healthcare: a literature review.

    Science.gov (United States)

    Kolokathi, Aikaterini; Rallis, Panagiotis

    2013-01-01

    Creating and maintaining a safe and high-quality health care environment is of great importance for global community. New technologies and their applications can help us achieve this goal. Radio-Frequency Identification (RIFD) technology is considered one of those technologies and even today there are some interesting deployments in the health industry. As a result, this work aims to present the basic idea behind RFID solutions, problems that can be addressed with the adoption of RFID and the benefits of relative applications.

  16. Applications of radio frequency identification systems in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Knights, P F; Kairouz, J; Daneshmend, L K; Pathak, J [McGill University, Montreal, PQ (Canada). Canadian Centre for Automation and Robotics in Mining

    1994-12-31

    The paper describes the application of Radio Frequency Identification (RFID) systems in underground hardrock mines. The operating principles and some of the applications of RDIF systems are described. The system operates by the exchange of information between transponder tags and an antenna and controller device. The suitability of RFID systems for process control, inventory control, materials handling, control of access, security, and transportation in underground coal and hardrock mines is discussed. An ore tonnage tracking system is under development that uses RDIF transponder tags to locate vehicles in an underground mine. 6 refs., 4 figs.

  17. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  18. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  19. Numerical simulation and fracture identification of dual laterolog in organic shale

    Science.gov (United States)

    Maojin, Tan; Peng, Wang; Qiong, Liu

    2012-09-01

    Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.

  20. Mechanical properties of ultrananocryslalline thin films deposited using dual frequency discharges

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Bláhová, O.; Karásková, M.; Zajíčková, L.; Jašek, O.; Franta, D.; Klapetek, P.; Buršík, Jiří

    2011-01-01

    Roč. 105, - (2011), s. 98-101 ISSN 0009-2770. [Lokální mechanické vlastnosti ´07. Brno, 07.11.2007-09.11.2007] Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrananocryslalline diamond * plasma enhanced chemical vapor deposition * dual frequency discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.529, year: 2011

  1. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    Science.gov (United States)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  2. Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2014-01-01

    Dual frequency capacitively coupled discharges are widely used during fabrication of modern-day integrated circuits, because of low cost and robust uniformity over broad areas. At low pressure, stochastic or collisionless electron heating is important in such discharges. The stochastic heating occurs adjacent to the sheath edge due to energy transfer from the oscillating high voltage electron sheath to electrons. The present research discusses evidence of wave emission from the sheath in such discharges, with a frequency near the electron plasma frequency. These waves are damped very promptly as they propagate away from the sheath towards the bulk plasma, by Landau damping or some related mechanism. In this work, the occurrence of strong wave phenomena during the expanding and collapsing phase of the low frequency sheath has been investigated. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. The characteristics of waves in the dual-frequency case are entirely different from the single-frequency case studied in earlier works. The existence of a field reversal phenomenon, occurring several times within a lower frequency period in the proximity of the sheath is also reported. Electron trapping near to the field reversal regions also occurs many times during a lower frequency period. The emission of waves is associated with these field reversal regions. It is observed that the field reversal and electron trapping effects appear under conditions typical of many recent experiments, and are consequently of much greater practical interest than similar effects in single frequency discharges, which occur only under extreme conditions that are not usually realized in experiments. (paper)

  3. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  4. Experimental results of high power dual frequency resonant magnet excitation at TRIUMF

    International Nuclear Information System (INIS)

    Reiniger, K.W.; Heritier, G.

    1988-06-01

    We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)

  5. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  6. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  7. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  8. Particle formation and its control in dual frequency plasma etching reactors

    International Nuclear Information System (INIS)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-01-01

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively

  9. Comparison the treatment effects between simultaneous dual frequency and single frequency irradiation of ultrasound in a murine model of breast adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Mahboobeh Alamolhoda

    2010-12-01

    Full Text Available Introduction: Transient cavitations induced by low frequency irradiation of ultrasound can be used to treat tumors. Previous studies in in-vitro experiments have shown that induced cavitation by dual or multiple frequencies of ultrasound is greater than induced cavitation by single frequency irradiation. In this study, we compared and evaluated the treatment effects of dual frequency irradiation of ultrasound (1 MHz and 150 kHz and single frequency irradiation in in-vivo experiments on breast adenocarcinoma tumors. Material and Method: In this study, the tumor-bearing mice were divided into 5 groups: control, sham, treated group for 30 min with 150 kHz frequency in continuous mode, another group with 1 MHz frequency in pulse mode, and treated group with combined dual frequency ultrasound (150 kHz in continuous mode and 1 MHz in 80% pulse mode. To evaluate the effects of ultrasound irradiation on tumor growth delay, the volumes of the tumors were investigated for 30 days. Tumor growth delay parameters including relative volume, inhibition ratio percentage and the required times for the tumor volume to reach to two (T2 and five (T5 times its initial volume were calculated. Results: The results showed that the treated groups with single frequency irradiation of 150 kHz continuous mode and 1 MHz pulse mode and combined dual frequency had statistically significant differences in tumor relative volume percentage during the period of 3 to 24 days after treatment (p

  10. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices

    International Nuclear Information System (INIS)

    Boyle, P C; Ellingboe, A R; Turner, M M

    2004-01-01

    Dual frequency capacitive discharges are designed to offer independent control of the flux and energy of ions impacting on an object immersed in a plasma. This is desirable in applications such as the processing of silicon wafers for microelectronics manufacturing. In such discharges, a low frequency component couples predominantly to the ions, while a high frequency component couples predominantly to electrons. Thus, the low frequency component controls the ion energy, while the high frequency component controls the plasma density. Clearly, this desired behaviour is not achieved for arbitrary configurations of the discharge, and in general one expects some unwanted coupling of ion flux and energy. In this paper we use computer simulations with the particle-in-cell method to show that the most important governing parameter is the ratio of the driving frequencies. If the ratio of the high and low frequencies is great enough, essentially independent control of the ion energy and flux is possible by manipulation of the high and low frequency power sources. Other operating parameters, such as pressure, discharge geometry, and absolute power, are of much less significance

  11. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Science.gov (United States)

    2010-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  12. 78 FR 19311 - Certain Radio Frequency Identification (“RFID”) Products And Components Thereof; Institution of...

    Science.gov (United States)

    2013-03-29

    ... Identification (``RFID'') Products And Components Thereof; Institution of Investigation Pursuant to 19 U.S.C... sale within the United States after importation of certain radio frequency identification (``RFID... after importation of certain radio frequency identification (``RFID'') products and components thereof...

  13. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  14. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  15. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  16. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  17. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  18. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    International Nuclear Information System (INIS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-01-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  19. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  20. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  1. Applications of radio frequency identification systems in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D J [Davis Derby Ltd., Derby (United Kingdom)

    1994-01-01

    Radio Frequency Identification Systems (RFID) are one of the automatic data capture technologies taking over from bar codes and magnetic swipe cards in many applications involving automatic hands free operation in arduous environments. RFID systems are based on the use of miniature radio transponders carrying encoded electronic data that is used to uniquely identify the identity of transponders. The paper reviews the types of system available and compares the various techniques involved in the different systems. The various types of transponder are described including the latest state of the art passive read/write high performance types. The problems involved in designing and certifying a system for use in hazardous areas are described, with particular reference to the problems of inadvertent detonator ignition by radio systems. Applications of RFID systems in the mining industry are described, covering applications both on the surface and underground. 1 ref., 10 figs.

  2. Security risks associated with radio frequency identification in medical environments.

    Science.gov (United States)

    Hawrylak, Peter J; Schimke, Nakeisha; Hale, John; Papa, Mauricio

    2012-12-01

    Radio frequency identification (RFID) is a form of wireless communication that is used to identify assets and people. RFID has significant benefits to the medical environment. However, serious security threats are present in RFID systems that must be addressed in a medical environment. Of particular interest are threats to patient privacy and safety based on interception of messages, interruption of communication, modification of data, and fabrication of messages and devices. This paper presents an overview of these security threats present in RFID systems in a medical environment and provides guidance on potential solutions to these threats. This paper provides a roadmap for researchers and implementers to address the security issues facing RFID in the medical space.

  3. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  4. Research of Electrical Conductivity Measurement System for Mine Bursting Water Based on Dual Frequency Method

    Directory of Open Access Journals (Sweden)

    Zhou Mengran

    2016-01-01

    Full Text Available This paper presents a double frequency conductivity measurement method for measuring mine bursting water, to solve the capacitance effect of the conductivity sensor itself has the help. The core controller of the system is the single chip microcomputer ATMEGA128. This paper introduces the basic principle of the measurement of the existing problems and the dual frequency measurement method, and then introduces and analyzes the hardware. To test and analyze the collected data, the double frequency method is found to have good stability and accuracy in the measurement of the electrical conductivity of mine inrush water. It is proved that the method and the system design of the hardware circuit can accurately measure the electric conductivity of the mine inrush water source.

  5. Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation

    Science.gov (United States)

    Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-01-01

    This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.

  6. Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry

    Science.gov (United States)

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-04-01

    In fringe projection profilometry, a simplified method is proposed to recover absolute phase maps of two-frequency fringe patterns by using a unique mapping rule. The mapping rule is designed from the rounded phase values to the fringe order of each pixel. Absolute phase can be recovered by the fringe order maps. Unlike the existing techniques, where the lowest frequency of dual- or multiple-frequency fringe patterns must be single, the presented method breaks the limitation and simplifies the procedure of phase unwrapping. Additionally, due to many issues including ambient light, shadow, sharp edges, step height boundaries and surface reflectivity variations, a novel framework of automatically identifying and removing invalid phase values is also proposed. Simulations and experiments have been carried out to validate the performances of the proposed method.

  7. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  8. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    Science.gov (United States)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  9. Composite Broadcasting and Ranging via a Satellite Dual-Frequency MPPSK System

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2013-01-01

    Full Text Available Since digital video broadcasting via satellite (DVB-S signals are “inefficient”, regarding the amount of information they convey on the bandwidth they occupy, a joint broadcasting and ranging system would constitute a unique platform for future digital video broadcasting satellite services effecting the essential tasks of satellite navigation system and direct to home (DTH services, in terms of both spectrum efficiency and cost effectiveness. In this paper, the design of dual frequency M-ary position phase shift keying (MPPSK system which is suitable for, respectively, performing both data transmission and range measurement is proposed. The approach is based on MPPSK modulation waveforms utilized in digital video broadcasting. In particular, requirements that allow for employing such signals for range measurements with high accuracy and high range are investigated. Also, the relationship between the frequency difference of dual frequency MPPSK system and range accuracy is discussed. Moreover, the selection of MPPSK modulation parameter for data rate and ranging is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of new systems, demonstrating the high spectral utilization of integrated broadcasting and ranging applications.

  10. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    Science.gov (United States)

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  11. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Science.gov (United States)

    Schoellhammer, Carl M.; Srinivasan, Sharanya; Barman, Ross; Mo, Stacy H.; Polat, Baris E.; Langer, Robert; Blankschtein, Daniel

    2016-01-01

    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet nonspecific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo. PMID:25662228

  12. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  13. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  14. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  15. THE LOW FREQUENCY OF DUAL ACTIVE GALACTIC NUCLEI VERSUS THE HIGH MERGER RATE OF GALAXIES: A PHENOMENOLOGICAL MODEL

    International Nuclear Information System (INIS)

    Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques

    2011-01-01

    Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.

  16. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  17. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    Science.gov (United States)

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  18. Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT

    Directory of Open Access Journals (Sweden)

    Niko Nevaranta

    2015-07-01

    Full Text Available A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.

  19. Frequency Response Function Based Damage Identification for Aerospace Structures

    Science.gov (United States)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite

  20. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  1. Treatment of Murine Tumor Models of Breast Adenocarcinoma by Continuous Dual-Frequency Ultrasound

    Directory of Open Access Journals (Sweden)

    Amir Hoshang Barati

    2009-03-01

    Full Text Available Introduction: Acoustic transient cavitation is the primary mechanism of sonochemical reaction and has potential use for tumor treatment. In this study, the in vivo anti-tumor effect of simultaneous dual-frequency ultrasound at low-level intensity (ISATA < 6 W/cm2 was investigated in a spontaneous murine model of breast adenocarcinoma in Balb/c mice. Materials and Methods: Forty tumor bearing mice were divided into four groups (10 in each group. The treated groups received 15 or 30 minutes of combined dual-frequency ultrasound in continuous mode (1 MHzcon + 150 kHzcon respectively. The control and the sham groups contained the untreated mice. The tumor growth delay parameters including tumor volume, relative tumor volume, T5 and T2 (the needed time for each tumor to reach 5 and 2 times the initial tumor volume, respectively, survival period and percent of tumor growth inhibition ratio were measured on different days after treatment. Results: The results showed that the 30 min treatment was effective in tumor growth delay and percent of tumor growth inhibitory ratio compared to the sham and the control groups. The tumor volume growth and relative volume of tumors in the same treated group showed an anti-tumor effect relative to the sham and the control groups. There was a significant difference in tumor volume growth between this 30 min treatment group and the sham group 12 days after treatment (p-value

  2. Evaluating the Readability of Radio Frequency Identification for Construction Materials

    Directory of Open Access Journals (Sweden)

    Younghan Jung

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID, which was originally introduced to improve material handling and speed production as part of supply chain management, has become a globally accepted technology that is now applied on many construction sites to facilitate real-time information visibility and traceability. This paper describes a senior undergraduate project for a Construction Management (CM program that was specifically designed to give the students a greater insight into technical research in the CM area. The students were asked to determine whether it would be possible to utilize an RFID system capable of tracking tagged equipment, personnel and materials across an entire construction site. This project required them to set up an experimental program, execute a series of experiments, analyze the results and summarize them in a report. The readability test was performed using an active Ultra-High frequency (UHF, 433.92 MHz RFID system with various construction materials, including metal, concrete, wood, plastic, and aluminum. The readability distance distances are measured for each of the six scenarios. The distance at which a tag was readable with no obstructions was found to be an average of 133.9m based on three measurements, with a standard deviation of 3.9m. This result confirms the manufacturer’s claimed distance of 137.2m. The RFID tag embedded under 50.8mm of concrete was readable for an average distance of only 12.2m, the shortest readable distance of any of the scenarios tested. At the end of the semester, faculty advisors held an open discussion session to gather feedback and elicit the students’ reflections on their research experiences, revealing that the students’ overall impressions of their undergraduate research had positively affected their postgraduate education plans.

  3. Single-Layer, Dual-Port, Dual-Band, and Orthogonal-Circularly Polarized Microstrip Antenna Array with Low Frequency Ratio

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available A single-layer, dual-port, dual-band, and dual circularly polarized (CP microstrip array is designed for satellite communication in this paper. The operating frequencies are 8.2 and 8.6 GHz with a very low ratio of 1.05. First, a rectangular patch element is fed through microstrip lines at two orthogonal edges to excite two orthogonal dominant modes of TM01 and TM10. The very low frequency ratio can be realized with high polarization isolations. Then, a 2-by-2 dual-band dual-CP subarray is constructed by two independent sets of sequentially rotated (SR feed structures. An 8-by-8 array is designed on the single-layer thin substrate. Finally, by utilizing one-to-four power dividers and semirigid coaxial cables, a 16-by-16 array is developed to achieve higher gain. Measured results show that the 16-by-16 array has 15 dB return loss (RL bandwidths of 4.81% and 6.75% and 3 dB axial ratio (AR bandwidths of 2.84% and 1.57% in the lower and the upper bands, respectively. Isolations of 18.6 dB and 19.4 dB and peak gains of 25.1 dBic and 25.6 dBic are obtained at 8.2 and 8.6 GHz, respectively.

  4. Radio Frequency Identification (RFID) technology and patient safety

    Science.gov (United States)

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-01-01

    Background: Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. Materials and Methods: This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. Results: The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. Conclusion: We should integrate RFID with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), it facilitates processes and reduce medical, medication and diagnosis errors. PMID:24381626

  5. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    Science.gov (United States)

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  6. Radio Frequency Identification (RFID) technology and patient safety.

    Science.gov (United States)

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-09-01

    Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. We should integrate RFID with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), it facilitates processes and reduce medical, medication and diagnosis errors.

  7. Radio Frequency Identification (RFID technology and patient safety

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2013-01-01

    Full Text Available Background: Radio frequency identification (RFID systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. Materials and Methods: This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. Results: The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. Conclusion: We should integrate RFID with hospital information systems (HIS and electronic health records (EHRs and support it by clinical decision support systems (CDSS, it facilitates processes and reduce medical, medication and diagnosis errors.

  8. Applications of radio frequency identification systems in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D J [Davis Derby Ltd., Derby (United Kingdom)

    1995-07-01

    Radio Frequency Identification Systems (RFID) are one of the automatic data capture technologies taking over from bar codes and magnetic swipe cards in many applications involving automatic hands free operation in arduous environments. RFID systems are based on the use of miniature radio transponders carrying encoded electronic data that is used to uniquely identify the identity of transponders. This paper reviews the types of system available and compares the various techniques involved in the different systems. The various types of transponder are described including the latest state of the art passive read/write high performance types. A review of the history of RFID systems in the mining industry is also given in the paper. The problems involved in designing and certifying a system for use in hazardous areas are also described, with particular reference to the problems of inadvertent detonator ignition by radio systems. Applications of RFID systems in the mining industry are described in considerable detail, covering applications both on the surface and underground. 1 ref., 12 figs., 1 tab.

  9. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  10. 3D measurement using combined Gray code and dual-frequency phase-shifting approach

    Science.gov (United States)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin

    2018-04-01

    The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.

  11. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    Science.gov (United States)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  12. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  13. Frequency and characteristics of dual pathology in patients with lesional epilepsy.

    Science.gov (United States)

    Cendes, F; Cook, M J; Watson, C; Andermann, F; Fish, D R; Shorvon, S D; Bergin, P; Free, S; Dubeau, F; Arnold, D L

    1995-11-01

    We studied 167 patients who had identifiable lesions and temporal or extratemporal partial epilepsy. Pathology included neuronal migration disorders (NMDs) (48), low-grade tumors (52), vascular malformations (34), porencephalic cysts (16), and gliotic lesions as a result of cerebral insults early in life (17). MRI volumetric studies using thin (1.5- or 3-mm) coronal images were performed in all patients and in 44 age-matched normal controls. An atrophic hippocampal formation (HF), indicating dual pathology, was present in 25 patients (15%). Abnormal HF volumes were present in those with lesions involving temporal (17%) but also extratemporal (14%) areas. Age at onset and duration of epilepsy did not influence the presence of HF atrophy. However, febrile seizures in early childhood were more frequently, although not exclusively, found in patients with hippocampal atrophy. The frequency of hippocampal atrophy in our patients with low-grade tumors (2%) and vascular lesions (9%) was low. Dual pathology was far more common in patients with NMDs (25%), porencephalic cysts (31%), and reactive gliosis (23.5%). Some structural lesions, such as NMDs, are more likely to be associated with hippocampal atrophy, independent of the distance of the lesion from the HF. In other types of lesions, such as vascular malformations, dual pathology was found when the lesion was close to the HF. A common pathogenic mechanism during pre- or perinatal development may explain the occurrence of concomitant mesial temporal sclerosis and other structural lesions because of either (1) associated developmental abnormalities or (2) predisposition to prolonged febrile convulsions.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    Science.gov (United States)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  15. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  16. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Science.gov (United States)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  17. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Anupriya, E-mail: anupriya@uw.edu; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  18. The application effects of the dual-frequency IP method in the geological work of uranium and gold

    International Nuclear Information System (INIS)

    Zhou Minghai.

    1991-01-01

    The dual-frequency IP method has obtained preliminary application in prospecting for uranium and gold in the central south region of China and has got certain geological effects in the application to deposits and prospects in Yaogou, Langquan and Deposit No.320 and its surrounding area. The fundamental advantages of the dual-frequency IP method are that the equipment system is portable, its anti-interference capability is strong and the observed accuracy is high, high speed in observation and suitable for the operation in the mine and its environs

  19. Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver.

    Science.gov (United States)

    Fu, Songnian; Xu, Zuying; Lu, Jianing; Jiang, Hexun; Wu, Qiong; Hu, Zhouyi; Tang, Ming; Liu, Deming; Chan, Calvin Chun-Kit

    2018-03-19

    We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.

  20. Identification of Elderly Falling Risk by Balance Tests Under Dual Tasks Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Aslankhani

    2010-03-01

    Full Text Available Objectives: This study aimed to identify elderly fallers and non-fallers by balance test under dual tasks conditions. Methods & Materials: This study was an analyze-comparative study. Subjects were from three park of Tehran. Subjects were 20 older adults with outhistory of falls (aged 75.95±6.28 years and 21 older adults with a history of 2 or more falls in the previous one year (aged 72.50±7.31 Years . All subjects performed Timed Up & Go test under 3 conditions (TimedUp & Go, Timed Up & Go with numbers counter randomly [TUG cognitive], and Timed Up & Go while carrying a full cup of water [TUG manual]. A multivariate analysis of variance and logistic regression analyses were performed. Results: The results showed significant difference between elderly fallers and non fallers in fall risk composed dependent variable (P=0.0005, as the non fallers had greater score than the elderly fallers. Also, results showed that TUG cognitive has prediction capacity of elderly fall (P=0.013. Conclusion: Consequently, balance under cognitive dual task conditions could be useful method in identification of risk of falling and planning dual task exercise program and physiotherapy to preventfalls.

  1. The power grid AGC frequency bias coefficient online identification method based on wide area information

    Science.gov (United States)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  2. Imaging of Dual Ophthalmic Arteries: Identification of the Central Retinal Artery

    Directory of Open Access Journals (Sweden)

    Louise Louw

    2014-01-01

    Full Text Available Identification of the origin of the central retinal artery (CRA is imperative in tailoring angiographic studies to resolve a given clinical problem. A case with dual ophthalmic arteries (OAs, characterized by different origins and distinct branching patterns, is documented for training purposes. Pre-clinical diagnosis of a 9-year-old child who presented with a sharp wire in the left-side eyeball was primarily corneal laceration. For imaging, a selected six-vessel angiographic study with the transfemoral approach was performed. Embolization was not required and the wire could be successfully removed. Right-side OA anatomy was normal, while left-side dual OAs with external carotid artery (ECA and internal carotid artery (ICA origins were seen. The case presented with a left-side meningo-ophthalmic artery (M-OA anomaly via the ECA, marked by a middle meningeal artery (MMA (origin: Maxillary artery; course: Through foramen spinosum with normal branches (i.e. anterior and posterior branches, and an OA variant (course: Through superior orbital fissure with a distinct orbital branching pattern. A smaller OA (origin: ICA; course: Through optic foramen with a distinct ocular branching pattern presented with the central retinal artery (CRA. The presence of the dual OAs and the M-OA anomaly can be explained by disturbed evolutionary changes of the primitive OA and stapedial artery during development. The surgical interventionist must be aware of dual OAs and M-OA anomalies with branching pattern variations on retinal supply, because of dangerous extracranial-intracranial anastomotic connections. It is of clinical significance that the origin of the CRA from the ICA or ECA must be determined to avoid complications to the vision.

  3. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  4. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications.

    Science.gov (United States)

    Shah, Syed Imran Hussain; Lim, Sungjoon

    2017-11-20

    In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900-1120 MHz) and 15% (2.1-2.45 GHz) for the unfolded state and 20% (1.3-1.6 GHz) and 14% (2.3-2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  5. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  6. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk.

    Science.gov (United States)

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task-an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias.

  7. High-frequency binaural beats increase cognitive flexibility: evidence from dual-task crosstalk

    Directory of Open Access Journals (Sweden)

    Bernhard Hommel

    2016-08-01

    Full Text Available Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition or flexibility (by dampening competition and biasing. We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style towards flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task—an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style towards more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias.

  8. Corrections to “Change Detection in Full and Dual Polarization, Single- and Multi-Frequency SAR Data”

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2017-01-01

    of obtaining a smaller value of the test statistic are given. In a case study airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry...

  9. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    Science.gov (United States)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  10. Experimental Lamb mode identification in a plate containing a hole using dual signal processing

    International Nuclear Information System (INIS)

    Grondel, Sébastien; Assaad, Jamal; Youbi, Faysal El; Moulin, Emmanuel; Leyla, Najib Abou

    2008-01-01

    The identification of Lamb mode amplitude variation as a function of the damage evolution is still the most difficult step in the process of damage monitoring using embedded Lamb wave-based systems. The aim of this paper is to propose a simple system based on the generation of two different frequencies in order to better identify Lamb mode amplitude and to avoid false data interpretation in plates containing a hole of variable diameter. This identification is based on a simple relation between the short-time Fourier transform and the two-dimensional Fourier transform. Experimentally, a 3 mm thick aluminium plate is used and the two frequencies have been chosen equal to 400 kHz and 600 kHz in order to generate the two first fundamental Lamb waves

  11. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never

  12. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Bayesian Frequency Domain Identification of LTI Systems with OBFs kernels

    NARCIS (Netherlands)

    Darwish, M.A.H.; Lataire, J.P.G.; Tóth, R.

    2017-01-01

    Regularised Frequency Response Function (FRF) estimation based on Gaussian process regression formulated directly in the frequency-domain has been introduced recently The underlying approach largely depends on the utilised kernel function, which encodes the relevant prior knowledge on the system

  14. Radio frequency identification and sensors from rfid to chipless RFID

    CERN Document Server

    Perret, Etienne

    2014-01-01

    This book deals with the field of identification and sensors, more precisely the possibility of collecting information remotely with RF waves (RFID). The book introduces the technology of chipless RFID starting from classical RFID and barcode, and explores the field of identification and sensors without wire, without batteries, without chip, and with tags that can even be printed on paper. A technique for automatic design of UHF RFID tags is presented , aiming at making the tags as insensitive as possible to the environment (with the ability to increase the reading range reliability), or, co

  15. Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior

    Science.gov (United States)

    Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.

    2017-01-01

    A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.

  16. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  17. Radio Frequency Identification in Construction Operation and Maintenance

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2008-01-01

    As early as in 1995 it was stated that automatic identification of objects using RFID was a promising technology for the construction industry. However, 13 years later the applications of RFID in the construction industry are rare and mostly used in prototype projects or used for theft prevention...

  18. 48 CFR 252.211-7006 - Radio Frequency Identification.

    Science.gov (United States)

    2010-10-01

    ... supply, as defined in DoD 4140.1-R, DoD Supply Chain Materiel Management Regulation, AP1.1.11: (A... International and the Uniform Code Council to establish and support the EPC network as the global standard for immediate, automatic, and accurate identification of any item in the supply chain of any company, in any...

  19. Dual-Remote Raman Technology for In-Situ Identification of Tank Waste - 13549

    International Nuclear Information System (INIS)

    Bryan, Sam; Levitskaia, Tatiana; Lines, Amanda; Smith, Frannie; Josephson, Gary; Bello, Job

    2013-01-01

    A new Raman spectroscopic system for in-situ identification of the composition of solid nuclear tank waste is being developed by collaborative effort between Pacific Northwest National Laboratory (PNNL) and EIC Laboratories, Inc. The recent advancements in Raman technology allow probing the chemical composition of the tank waste without sample collection. In the newly tested configuration, the Raman probe is installed on the top of the tank riser and sends the incident laser beam to the bottom of the tank, 10 - 70 feet away. The returning light containing chemical information is collected by the Raman probe and is transmitted via fiber optic cable to the spectrometer located outside the tank farm area. This dual remote technology significantly expands currently limited options for the safe rapid in-situ identification of the solid tank waste needed for the retrieval decisions. The developed Raman system was extensively tested for acceptability prior to tank farm deployment. This testing included calibration of the system with respect of the distance between the Raman probe and the sample, incident laser beam angle, and presence of the optical interferences. The Raman system was successfully deployed on Tank C-111 at the US DOE Hanford site. As the result of this deployment, the composition of the hardpan at the bottom of C-111 tank was identified. Further development of the dual-remote Raman technology will provide a significant safety enhancement eliminating the potential of personnel radiation exposure associated with the grab sample collection and expands options of the rapid and cost-effective in-situ chemical analysis of the tank waste. (authors)

  20. Frequency domain indirect identification of AMB rotor systems based on fictitious proportional feedback gain

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyeong Joon [Dept. of Mechanical Engineering, Soongsil University, Seoul (Korea, Republic of); Kim, Chan Jung [Dept. of Mechanical Design Engineering, Pukyong National University, Busan(Korea, Republic of)

    2016-12-15

    It is very difficult to directly identify an unstable system with uncertain dynamics from frequency domain input-output data. Hence, in these cases, closed-loop frequency responses calculated using a fictitious feedback could be more identifiable than open-loop data. This paper presents a frequency domain indirect identification of AMB rotor systems based on a Fictitious proportional feedback gain (FPFG). The closed-loop effect due to the FPFG can enhance the detectability of the system by moving the system poles, and significantly weigh the target mode in the frequency domain. The effectiveness of the proposed identification method was verified through the frequency domain identification of active magnetic bearing rotor systems.

  1. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  2. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Syed Imran Hussain Shah

    2017-11-01

    Full Text Available In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900–1120 MHz and 15% (2.1–2.45 GHz for the unfolded state and 20% (1.3–1.6 GHz and 14% (2.3–2.5 GHz for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  3. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    Science.gov (United States)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products

  4. Study of 1 MW neutron source synchrotron dual frequency power circuit for the main ring magnets

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the proposed design of the resonant power circuits for the 1-MW neutron source synchrotron's main ring magnets. The synchrotron is to have a duty cycle of 30 Hz with a maximum upper limit of operation corresponding to 2.0 GeV and a maximum design value of 2.2 GeV. A stability of 30 ppM is the design goal for the main bending and focusing magnets (dipoles and quadruples), in order to achieve an overall stabffity of 100 ppm when random field and position errors of the magnets are included. The power circuits of this design are similar to those used in Argonne's Intense Pulsed Neutron Source (IPNS) where the energy losses during each cycle are supplied by continuous excitation from modulated multiphase DC power supplies. Since only 50% of the 30-Hz sinewave is used for acceleration, a dual-frequency resonant magnet circuit is used in this design. The 30-Hz repetition rate is maintained with a 20-Hz magnet guide field during acceleration and a 60-Hz reset field when no beam is present. This lengthens the guide-field rise time and shortens the fall time, improving the duty factor for acceleration. The maximum B dot is reduced by 33% during acceleration and hence, the maximum rf voltage/turn is reduced by 56%

  5. Effect of the relative phase of the driving sources on heating of dual frequency capacitive discharges

    Science.gov (United States)

    Ziegler, Dennis; Trieschmann, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2009-10-01

    The influence of the relative phase of the driving voltages on heating in asymmetric dual frequency capacitive discharges is investigated. Basis of the analysis is a recently published global model [1] extended by the possibility to freely adjust the phase angles between the driving voltages. In recent publications it was reported that nonlinear electron resonance heating (NERH) drastically enhances dissipation at moments of sheath collapse due to plasma series resonance (PSR) excitation [2]. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In case of a collapse directly being followed by a second collapse ("double collapse") a substantial increase in dissipated power, well above the reported growth due to a single PSR excitation event per period, can be observed.[4pt] [1] D.,iegler, T.,ussenbrock, and R.,. Brinkmann, Phys. Plasmas 16, 023503 (2009)[0pt] [2] T.,ussenbrock, R.,. Brinkmann, M.,. Lieberman, A.,. Lichtenberg, and E. Kawamura, Phys. Rev. Lett. 101, 085004 (2008)

  6. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: Theoretical and experimental studies

    Science.gov (United States)

    Dai, J.; Belomestnykh, S.; Ben-Zvi, I.; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 104 to 109 provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  7. Aerial Remote Radio Frequency Identification System for Small Vessel Monitoring

    Science.gov (United States)

    2009-12-01

    technology as a tool that can benefit everyone (Warner 2008, p.144). Lippitt’s model , coupled with Vroom and Lawler’s Expectancy Theory (Miner 2005, p...Identification System for Small Vessel Monitoring 6. AUTHOR( S ) Jason Appler, Sean Finney, Michael McMellon 5. FUNDING NUMBERS 7. PERFORMING...ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  8. Merged Search Algorithms for Radio Frequency Identification Anticollision

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Shih

    2012-01-01

    The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration.

  9. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  10. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  11. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    Science.gov (United States)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  12. Frequency identification of vibration signals using video camera image data.

    Science.gov (United States)

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-10-16

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  13. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  14. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this ...... in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle....

  15. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    OpenAIRE

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 ...

  16. Frequency-doubled dual-pulse freddy lithrotripsy laser in the treatment of urinary tract calculi

    Science.gov (United States)

    Huang, Xuyuan; Bo, Juanjie; Chen, Bin; Wang, Yi-Xin

    2005-07-01

    Background and Purpose: The Frequency-Doubled Dual-Pulse Nd:YAG FREDDY laser is a short-pulsed, solid-state laser with wavelengths of 532 and 1064 nm that was developed for intracorporeal lithothripsy. This clinical study is designed to test its fragmentation efficiency in the treatment of urinary tract calculi. Patients and Methods: 500 urinary tract calculi treated in 194 female and 306 male patients with a mean age of 46 years. All patients were assessed one week post-op with a plain film of the kidneys, ureters and bladder. Stone-free rate and final outcome have been evaluated. Final outcome is defined as stone-free or residual fragments. Analysis has been made according to stone size, location and number of stones. The analgesia requirements during each treatment and complications have also been analyzed. Results: The overall stone-free rate for patients was 92.4%. The success rate for upper ureteral was 85.1% (126/148), while the rate for mid/lower was 95.3% (307/322). Bladder stone success rate 96.6% (29/30). Of all 38 incomplete fragmentations, 20 cases (4%) were treated with ESWL and 18 cases (3.6%) had open surgery. Neither fever nor pyonephrosis was reported. The average laser treatment time was 3.3 minutes and the average post-op hospitalization was 2.5 days. Conclusions: The FREDDY laser is an extremely efficient and safe minimally invasive lithotripsy treatment for urinary stones. It should be considered as an alternative treatment for urolithiasis.

  17. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.

    Science.gov (United States)

    N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2012-01-01

    Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.

  18. Electron content near the lunar surface using dual-frequency VLBI tracking data in a single lunar orbiter mission

    International Nuclear Information System (INIS)

    Wang, Zhen; Wang, Na; Ping, Jin-Song

    2015-01-01

    In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI, by using the radio occultation method with coherent radio waves from the S/X bands. The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content (TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18 to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station. (paper)

  19. A Dual-Bridge LLC Resonant Converter with Fixed-Frequency PWM Control for Wide Input Applications

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Li, Xiaohua; Shen, Yanfeng

    2017-01-01

    This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency PWM control is employed and a range of twice the minimum input voltage can be covered....... Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit...

  20. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  1. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  2. Signal Identification and Isolation Utilizing Radio Frequency Photonics

    Science.gov (United States)

    2017-09-01

    RF filter is the use of either a FIR or an infinite impulse response (IIR) filter. The FIR filter is simply the discrete convolution sum of the...by using a feedback loop of a fixed delay. In this case, the signal will ideally be a summation of an infinite number of delay round trips. While...and Infinite Impulse Response filters. A combination of FIR and IIR filters can be used to identify the center frequency of an RF signal, as seen in

  3. Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations

    Institute of Scientific and Technical Information of China (English)

    Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu

    2009-01-01

    A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.

  4. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  5. Frequency of dual tuberculosis/human immunodeficiency virus infection in patients presenting at tertiary care centers at karachi

    International Nuclear Information System (INIS)

    Mamon, A.R.; Zuberi, B.F.; Afsar, S.; Altaf, A.; Shah, A.

    2007-01-01

    To determine the frequency of dual infection of Tuberculosis and Human Immunodeficiency Virus (HIV) and document the sexual practices of infected patients. Patients were recruited in the study at both centers and tested for both HIV and TB if any one disease was identified. Diagnosis of TB was based on positive sputum AFB smear / caseous granulomatous lesion on histopathology. Diagnosis of HIV was based on positive anti-HIV serology by LISA technique. A questionnaire was also administered to all the study participants regarding demographics, sexual practices, blood transfusion and intravenous drug abuse. A total of 196 patients of HIV and TB were screened for the presence of dual infection (TB/HIV). Dual infection was present in 38 (19.39%) of patients. Out of 126 patients of HIV, evidence of TB was detected in 38 (30.16%). During the same duration, 70 patients of tuberculosis were screened for HIV and none was tested positive for HIV. History of illicit sexual relationship was found in 121 (96.03%) patients and 5 of these were homosexuals. Dual infection was present in patients of HIV with TB but vice versa was not documented in this study. (author)

  6. Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains

    CERN Document Server

    Billings, Stephen A

    2013-01-01

    Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by

  7. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith

    Science.gov (United States)

    Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan

    2016-01-01

    The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the

  8. A dual PCR-based sequencing approach for the identification and discrimination of Echinococcus and Taenia taxa.

    Science.gov (United States)

    Boubaker, Ghalia; Marinova, Irina; Gori, Francesca; Hizem, Amani; Müller, Norbert; Casulli, Adriano; Jerez Puebla, Luis Enrique; Babba, Hamouda; Gottstein, Bruno; Spiliotis, Markus

    2016-08-01

    Reliable and rapid molecular tools for the genetic identification and differentiation of Echinococcus species and/or genotypes are crucial for studying spatial and temporal transmission dynamics. Here, we describe a novel dual PCR targeting regions in the small (rrnS) and large (rrnL) subunits of mitochondrial ribosomal RNA (rRNA) genes, which enables (i) the specific identification of species and genotypes of Echinococcus (rrnS + L-PCR) and/or (ii) the identification of a range of taeniid cestodes, including different species of Echinococcus, Taenia and some others (17 species of diphyllidean helminths). This dual PCR approach was highly sensitive, with an analytical detection limit of 1 pg for genomic DNA of Echinococcus. Using concatenated sequence data derived from the two gene markers (1225 bp), we identified five unique and geographically informative single nucleotide polymorphisms (SNPs) that allowed genotypes (G1 and G3) of Echinococcus granulosus sensu stricto to be distinguished, and 25 SNPs that allowed differentiation within Echinococcus canadensis (G6/7/8/10). In conclusion, we propose that this dual PCR-based sequencing approach can be used for molecular epidemiological studies of Echinococcus and other taeniid cestodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In-situ identification of marine organisms using high frequency, wideband ultrasound

    DEFF Research Database (Denmark)

    Pham, An Hoai

    methods. Conventional acoustical methods use frequencies in the range of 10 to 500 kHz and give reasonable estimations of size distribution, if the species is known, but can only significantly support the determination of the actual species, if there are only a few known species available. It is expected...... that higher frequencies and broader bandwidths than used until now will give more information useful for fish species identification. The objective of this Ph.D. study has been to develop a method to investigate the possibility of in-situ identification of fish with high-frequency, wideband ultrasound...... and the fish bodies. The frequencies are 2, 3.5, and 6 MHz. The angles are -30°, -15°, 0°, 15°, and 30°. The results show that even though there are variations, a scan of the ultrasound backscatter along a fish of a specific species contains patterns that are characteristic for that species. This is true...

  10. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    Science.gov (United States)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  11. A survey of dual active galactic nuclei in simulations of galaxy mergers: frequency and properties

    Science.gov (United States)

    Capelo, Pedro R.; Dotti, Massimo; Volonteri, Marta; Mayer, Lucio; Bellovary, Jillian M.; Shen, Sijing

    2017-08-01

    We investigate the simultaneous triggering of active galactic nuclei (AGN) in merging galaxies, using a large suite of high-resolution hydrodynamical simulations. We compute dual-AGN observability time-scales using bolometric, X-ray and Eddington-ratio thresholds, confirming that dual activity from supermassive black holes (BHs) is generally higher at late pericentric passages, before a merger remnant has formed, especially at high luminosities. For typical minor and major mergers, dual activity lasts ˜20-70 and ˜100-160 Myr, respectively. We also explore the effects of X-ray obscuration from gas, finding that the dual-AGN time decreases at most by a factor of ˜2, and of contamination from star formation. Using projected separations and velocity differences rather than three-dimensional quantities can decrease the dual-AGN time-scales by up to ˜4, and we apply filters that mimic current observational-resolution limitations. In agreement with observations, we find that for a sample of major and minor mergers hosting at least one AGN, the fraction harbouring dual AGN is ˜20-30 and ˜1-10 per cent, respectively. We quantify the effects of merger mass ratio (0.1 to 1), geometry (coplanar, prograde and retrograde, and inclined), disc gas fraction and BH properties, finding that the mass ratio is the most important factor, with the difference between minor and major mergers varying between factors of a few to orders of magnitude, depending on the luminosity and filter used. We also find that a shallow imaging survey will require very high angular resolution whereas a deep imaging survey will be less resolution-dependent.

  12. Pairs of dual Gabor frame generators with compact support and desired frequency localization

    DEFF Research Database (Denmark)

    Christensen, Ole

    2006-01-01

    Let g ∈ L2(R) be a compactly supported function, whose integer-translates {T(k)g}(k ∈ Z) form a partition of unity. We prove that for certain translation and modulation parameters, such a function g generates a Gabor frame, with a (noncanonical) dual generated by a finite linear combination h of ...... tilde (k) DTkBN, where both sums are finite. It is known that for N > 1, such functions cannot generate dual wavelet frames {D(j)T(k)g} (j.k∈ Z). {D(j)T(k)h} (j.k ∈ Z). (C) 2005 Elsevier Inc. All rights reserved....

  13. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    Science.gov (United States)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  14. Improvement of Frequency Domain Output Only Modal Identification from the Application of the Random Decrement Technique

    DEFF Research Database (Denmark)

    Rodrigues, J.; Brincker, Rune; Andersen, P.

    2004-01-01

    This paper explores the idea of estimating the spectral densities as the Fourier transform of the random decrement functions for the application of frequency domain output-only modal identification methods. The gains in relation to the usual procedure of computing the spectral densities directly...

  15. Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry

    International Nuclear Information System (INIS)

    Zhao, J; Tang, J; Wang, K W

    2008-01-01

    The frequency-shift-based damage detection method entertains advantages such as global detection capability and easy implementation, but also suffers from drawbacks that include low detection accuracy and sensitivity and the difficulty in identifying damage using a small number of measurable frequencies. Moreover, the damage detection/identification performance is inevitably affected by the uncertainty/variations in the baseline model. In this research, we investigate an enhanced statistical damage identification method using the tunable piezoelectric transducer circuitry. The tunable piezoelectric transducer circuitry can lead to much enriched information on frequency shift (before and after damage occurrence). The circuitry elements, meanwhile, can be directly and accurately measured and thus can be considered uncertainty-free. A statistical damage identification algorithm is formulated which can identify both the mean and variance of the elemental property change. Our analysis indicates that the integration of the tunable piezoelectric transducer circuitry can significantly enhance the robustness of the frequency-shift-based damage identification approach under uncertainty and noise

  16. Construction Project Performance Improvement through Radio Frequency Identification Technology Application on a Project Supply Chain

    Science.gov (United States)

    Wang, Heng

    2017-01-01

    Construction project productivity typically lags other industries and it has been the focus of numerous studies in order to improve the project performance. This research investigated the application of Radio Frequency Identification (RFID) technology on construction projects' supply chain and determined that RFID technology can improve the…

  17. Modal Identification of Output-Only Systems using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, L.; Andersen, P.

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical ...

  18. The Diffusion and Impact of Radio Frequency Identification in Supply Chains: A Multi-Method Approach

    Science.gov (United States)

    Wu, Xiaoran

    2012-01-01

    As a promising and emerging technology for supply chain management, Radio Frequency Identification (RFID) is a new alternative to existing tracking technologies and also allows a range of internal control and supply chain coordination. RFID has generated a significant amount of interest and activities from both practitioners and researchers in…

  19. Radio frequency ablation in the rabbit lung using wet electrodes: comparison of monopolar and dual bipolar electrode mode

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Park, Sang Hee; Han, Young Min; Chung, Gyung Ho; Kwak, Hyo Sung; Jeon, Soo Bin; Lee, Yong Chul

    2006-01-01

    To compare the effect of radio frequency ablation (RFA) on the dimensions of radio frequency coagulation necrosis in a rabbit lung using a wet electrode in monopolar mode with that in dual electrode bipolar mode at different infusion rates (15 mm/hr versus 30 ml/hr) and saline concentrations (0.9% normal versus 5.8% hypertonic saline. Fifty ablation zones (one ablation zone in each rabbit) were produced in 50 rabbit using one or two 16-guage wet electrodes with a 1- cm active tip. The RFA system used in the monopolar and dual electrode wet bipolar RFA consisted of a 375-kHz generator (Elektrotom HiTT 106, Berchtold, Medizinelektronik, Germany). The power used was 30 watts and the exposure time was 5 minutes. The rabbits were assigned to one of five groups. Group A (n = 10) was infused with 0.9% NaCl used at a rate of 30 ml/hr in a monopolar mode. Groups B (n=10) and C (n=10) were infused with 0.9% NaCl at a rate of 15 and 30ml/hr, respectively in dual electrode bipolar mode; groups D (n=10) and E (n=10) were infused with 5.8% NaCl at a rate of 15 and 30 ml/hr, respectively in a dual electrode bipolar mode. The dimensions of the ablation zones in the gross specimens from the groups were compared using one-way analysis of variance by means of the Scheffe test (post-hoc testing). The mean largest diameter of the ablation zones was larger in dual electrode bipolar mode (30.9 ± 4.4 mm) than in monopolar mode (22.5 ± 3.5 mm). The mean smallest diameter of the ablation zones was larger in dual electrode bipolar mode (22.3 ± 2.5 mm) than in monopolar mode (19.5 ± 3.5 mm). There were significant differences in the largest and smallest dimension between the monopolar (group A ) ana dual electrode wet bipolar mode (groups B-E). In dual electrode bipolar mode, the mean largest diameter of the ablation zones was larger at an infusion rate of 15 ml/hr (34.2 ± 4.0 mm) than at 30 ml/hr (27.6 ± 0.0 mm), and the mean smallest diameter of the ablation zones was larger at an

  20. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  1. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  2. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  3. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.; Shamim, Atif

    2014-01-01

    .2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications

  4. EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Directory of Open Access Journals (Sweden)

    David Camarena-Martinez

    2014-01-01

    Full Text Available This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification- based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.

  5. EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Science.gov (United States)

    Amezquita-Sanchez, Juan P.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.; Garcia-Perez, Arturo

    2014-01-01

    This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals. PMID:24683346

  6. A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla.

    Science.gov (United States)

    Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2011-07-01

    To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.

  7. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  8. Numerical simulation of dual frequency etching reactors: Influence of the external process parameters on the plasma characteristics

    International Nuclear Information System (INIS)

    Georgieva, V.; Bogaerts, A.

    2005-01-01

    A one-dimensional particle-in-cell/Monte Carlo model is used to investigate Ar/CF 4 /N 2 discharges sustained in capacitively coupled dual frequency reactors, with special emphasis on the influence of the reactor parameters such as applied voltage amplitudes and frequencies of the two voltage sources. The presented calculation results include plasma density, ion current, average sheath potential and width, electron and ion average energies and energy distributions, and ionization rates. The simulations were carried out for high frequencies (HFs) of 27, 40, 60, and 100 MHz and a low frequency (LF) of 1 or 2 MHz, varying the LF voltage and keeping the HF voltage constant and vice versa. It is observed that the decoupling of the two sources is possible by increasing the applied HF to very high values (above 60 MHz) and it is not defined by the frequency ratio. Both voltage sources have influence on the plasma characteristics at a HF of 27 MHz and to some extent at 40 MHz. At HFs of 60 and 100 MHz, the plasma density and ion flux are determined only by the HF voltage source. The ion energy increases and the ion energy distribution function (IEDF) becomes broader with HF or LF voltage amplitude, when the other voltage is kept constant. The IEDF is broader with the increase of HF or the decrease of LF

  9. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    Science.gov (United States)

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  10. Identification of Natural Frequency of Low Rise Building on Soft Ground Profile using Ambient Vibration Method

    Science.gov (United States)

    Kamarudin, A. F.; Zainal Abidin, M. H.; Mokhatar, S. N.; Daud, M. E.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Natural frequency is the rate at which a body to vibrate or oscillate. Application of ambient vibration (AV) excitation is widely used nowadays as the input motion for building predominant frequency, fo, and ground fundamental frequency, Fo, prediction due to simple, fast, non-destructive, simple handling operation and reliable result. However, it must be emphasized and caution to isolate these frequencies (fo and Fo) from spurious frequencies of site-structure effects especially to low rise building on soft ground deposit. In this study, identification of fo and Fo by using AV measurements were performed on ground and 4-storey primary school reinforced concrete (RC) building at Sekolah Kebangsaan (SK) Sg. Tongkang, Rengit, Johor using 1 Hz of tri-axial seismometer sensor. Overlapping spectra between Fourier Amplitude Spectra (FAS) from and Horizontal to Vertical Spectra Ratio (HVSR) were used to distinguish respective frequencies of building and ground natural frequencies. Three dominant frequencies were identified from the FAS curves at 1.91 Hz, 1.98 Hz and 2.79 Hz in longitudinal (East West-EW), transverse (North South-NS) and vertical (UD) directions. It is expected the building has deformed in translational mode based on the first peak frequency by respective NS and EW components of FAS spectrum. Vertical frequency identified from the horizontal spectrums, might induces to the potential of rocking effect experienced by the school building. Meanwhile, single peak HVSR spectrum at low ground fundamental frequency concentrated at 0.93 Hz indicates to the existence deep contrast of soft deposit. Strong interaction between ground and building at similar frequency (0.93 Hz) observed from the FAS curves on the highest floor has shown the building to behave as a dependent unit against ground response as one rigid mass.

  11. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  12. Frequency and mode identification of γ Doradus from photometric and spectroscopic observations*

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Wright, D. J.; De Cat, P.; Cottrell, P. L.

    2018-04-01

    The prototype star for the γ Doradus class of pulsating variables was studied employing photometric and spectroscopic observations to determine the frequencies and modes of pulsation. The four frequencies found are self-consistent between the observation types and almost identical to those found in previous studies (1.3641 d-1, 1.8783 d-1, 1.4742 d-1, and 1.3209 d-1). Three of the frequencies are classified as l, m = (1, 1) pulsations and the other is ambiguous between l, m = (2, 0) and (2, -2) modes. Two frequencies are shown to be stable over 20 yr since their first identification. The agreement in ground-based work makes this star an excellent calibrator between high-precision photometry and spectroscopy with the upcoming TESS observations and a potential standard for continued asteroseismic modelling.

  13. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Noor Hasmiza Harun

    2014-11-01

    Full Text Available As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB. Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB. A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA. To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  14. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    Science.gov (United States)

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  15. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Mishra, Anurag [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeunggi-do 440-746 (Korea, Republic of); Ellingboe, Albert R. [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9, Ireland and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-09-15

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

  16. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    Science.gov (United States)

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  17. Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    X. L. Travassos

    2012-01-01

    Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.

  18. Radio frequency identification and time-driven activity based costing:RFID-TDABC application in warehousing

    OpenAIRE

    Bahr, Witold; Price, Brian J

    2016-01-01

    Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDA...

  19. Internet of things and radio frequency identification in care taking, facts and privacy challenges.

    OpenAIRE

    Frederix, Ines

    2009-01-01

    Internet of Things technologies such as radio frequency identification are about to be able to help aging and sick people and even compensate for some disabilities. The use of these technologies in health care represents a promising development in information technology, but also raises important ethical, legal and social issues. This paper explores the use of these technologies in health care environments and formulates recommendations for further research that can ensure that the pati...

  20. Medical equipment management through the use of radio frequency identification (RFID)

    OpenAIRE

    Sanchez, Joaquin A.; Nixon, Richard A.; Chávez, Sergio

    2004-01-01

    MBA Professional Report Approved for public release, distribution is unlimited The purpose of this MBA project is to identify the potential value of Radio Frequency Identification (RFID) use in the management of medical equipment at Naval Medical Center San Diego (NMCSD). In doing so, our project seeks to derive potential benefits through the use of RFID technology by comparing a group of medical equipment items that are tracked within NMCSD. The project includes a discussion of additio...

  1. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.

    2014-01-08

    A low-cost inkjet-printed multiband monopole antenna is presented. The unique advantage of the proposed antenna is the freedom to adjust and set the dual-band of the antenna independently over a wide range (148.83%). To demonstrate the independent control feature, the 2.4 and 3.4 GHz bands for the wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications are selected as an example. The measured impedance bandwidths for the 2.4 and 3.4 GHz are 15.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications such as GPS, PCS, GSM 1800, 1900, UMTS, and up to 5-GHz WLAN and WiMAX applications. The mechanism of independent control of each radiator through dimensional variation is discussed in detail. The antenna has a compact size of 10 × 37.3 × 0.44 mm3, leaving enough space for the driving electronics on the paper substrate. The measured results from the prototype are in good agreement with the simulated results. Owing to inkjet printing on an ordinary paper, the design is extremely light weight and highly suitable for low cost and large volume manufacturing. © The Institution of Engineering and Technology 2013.

  2. A new time-frequency method for identification and classification of ball bearing faults

    Science.gov (United States)

    Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel

    2017-06-01

    In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.

  3. Ultraflat and broadband optical frequency comb generator based on cascaded two dual-electrode Mach-Zehnder modulators

    Science.gov (United States)

    Qu, Kun; Zhao, Shanghong; Li, Xuan; Tan, Qinggui; Zhu, Zihang

    2018-04-01

    A novel scheme for the generation of ultraflat and broadband optical frequency comb (OFC) is proposed based on cascaded two dual-electrode Mach-Zehnder modulators (DE-MZM). The first DE-MZM can generate a four-comb-line OFC, then the OFC is injected into the second DE-MZM as a carrier, which can increase the number of comb lines. Our modified scheme finally can generate a broadband OFC with high flatness by simply modifying the electrical power and the bias voltage of the DE-MZM. Theoretical analysis and simulation results reveal that a 16-comb-line OFC with a frequency spacing that two times the frequency of the RF signal can be obtained. The power fluctuation of the OFC lines is 0.48 dB and the unwanted-mode suppression ratio (UMSR) can reach 16.5 dB. Additionally, whether the bias drift of the DE-MZMs has little influence on the power fluctuation is also analyzed. These results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness.

  4. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    Directory of Open Access Journals (Sweden)

    Gonzalo Macias-Bobadilla

    2016-03-01

    Full Text Available Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  5. Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering

    International Nuclear Information System (INIS)

    Rogozin, A.I.; Vinnichenko, M.V.; Kolitsch, A.; Moeller, W.

    2004-01-01

    ITO layers with low resistivity and high visible transmittance were produced by means of middle frequency reactive dual magnetron sputtering. The influence of base pressure, Ar/O 2 ratio and magnetron pulse duration on the film composition, structure, electrical, and optical properties has been investigated. The deposition rate is proportional to the magnetron operation power at changing pulse duration and constant Ar and O 2 flows. At enhanced O 2 flows an onset of the magnetron target oxidation is discussed as a reason for the decrease of the deposition rate. The presence of water vapor in the residual gas is determined to be a reason for deterioration of resistivity and optical transmittance observed for ITO films produced at a base pressures higher than 5·10 -4 Pa. It is demonstrated that spectroscopic ellipsometry can be used as a noncontact tool to monitor the resistivity of ITO films

  6. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels

    International Nuclear Information System (INIS)

    Mao Wei; Zhang Shulian

    2007-01-01

    Optical feedback effects are studied in a birefringence-Zeeman dual frequency laser at high optical feedback levels. The intensity modulation features of the two orthogonally polarized lights are investigated in both isotropic optical feedback (IOF) and polarized optical feedback (POF). In IOF, the intensities of both beams are modulated simultaneously, and four zones, i.e., the e-light zone, the o-light and e-light zone, the o-light zone, and the no-light zone, are formed in a period corresponding to a half laser wavelength displacement of the feedback mirror. In POF, the two orthogonally polarized lights will oscillate alternately. Strong mode competition can be observed, and it affects the phase difference between the two beams greatly. The theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed

  7. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  8. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency.

    Science.gov (United States)

    Mohler, Kathrin J; Bohn, Bernhard J; Yan, Ming; Mélen, Gwénaëlle; Hänsch, Theodor W; Picqué, Nathalie

    2017-01-15

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate a spectra of liquids, which span 1100  cm-1 of Raman shifts. At a resolution of 6  cm-1, their measurement time may be as short as 5 μs for a refresh rate of 2 kHz. The waiting period between acquisitions is improved 10-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  9. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.

    Science.gov (United States)

    Cui, Cunxing; Feng, Qibo; Zhang, Bin; Zhao, Yuqiong

    2016-03-21

    A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.

  10. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    Science.gov (United States)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  11. System identification through nonstationary data using Time-Frequency Blind Source Separation

    Science.gov (United States)

    Guo, Yanlin; Kareem, Ahsan

    2016-06-01

    Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the

  12. Frequency response function-based explicit framework for dynamic identification in human-structure systems

    Science.gov (United States)

    Wei, Xiaojun; Živanović, Stana

    2018-05-01

    The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method.

  13. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  14. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    International Nuclear Information System (INIS)

    Bora, B.

    2015-01-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage

  15. Biometric identification with high frequency electrocardiogram: Unregistered user refusal method and performance evaluation.

    Science.gov (United States)

    Kyoso, Masaki

    2015-08-01

    As a new modality for biometric identification, electrocardiogram-based identification technique has been developed. We proposed a technique with high frequency component of electrocardiogram (HFECG) in QRS segment. In this report, an unregistered user refusal algorithm was combined with the artificial neural network based waveform classifier. The refusal function was realized by simple thresholding technique. HFECGs from twenty collaborators were used for supervised learning. Twenty HFECGs from the same collaborators were tested and false acceptance rate (FAR) and false rejection rate (FRR) were evaluated. Ten HFECGs from other collaborators were also tested to find unregistered user refusal performance. The results show that FAR and FRR in the registrants can be kept within 1%, however, unregistered user refusal performance was not acceptable under the same condition.

  16. IDENTIFICATION OF LANDSLIDES SUSCEPTIBILITY IN THE DOBRIC CATCHMENT AREA USING THE FREQUENCY RATE MODEL

    Directory of Open Access Journals (Sweden)

    ROXANA VĂIDEAN

    2013-11-01

    Full Text Available The landslides susceptibility of the Dobric catchment area (Ilişua river. The territorial geomorfological investigation focuses mainly on the analysis of the present situation, as context of future events occurrence. The previous evolutionary context is secondary in place due also to the particular attention it has received so far. The significance of the knowledge regarding the present events and their evolution is explicit in the attempt to mitigate their impact on the built area and on the resources. The identification of areas characterized by maximum susceptibility in the landslides occurrence is absolutely necessary. The method which makes the identification of these areas possible is none other than the method considering the conditional factors, as well as the spatial distribution of the events that have already occurred. In this regard, the use of the frequency rate model is considered to be ideal.

  17. Identification of dual-tropic HIV-1 using evolved neural networks.

    Science.gov (United States)

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  19. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Rubtsov, Grigory I. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  20. [Study of biometric identification of heart sound base on Mel-Frequency cepstrum coefficient].

    Science.gov (United States)

    Chen, Wei; Zhao, Yihua; Lei, Sheng; Zhao, Zikai; Pan, Min

    2012-12-01

    Heart sound is a physiological parameter with individual characteristics generated by heart beat. To do the individual classification and recognition, in this paper, we present our study of using wavelet transform in the signal denoising, with the Mel-Frequency cepstrum coefficients (MFCC) as the feature parameters, and propose a research of reducing the dimensionality through principal components analysis (PCA). We have done the preliminary study to test the feasibility of biometric identification method using heart sound. The results showed that under the selected experimental conditions, the system could reach a 90% recognition rate. This study can provide a reference for further research.

  1. Dual-Comb Coherent Raman Spectroscopy with Lasers of 1-GHz Pulse Repetition Frequency

    OpenAIRE

    Mohler, Kathrin J.; Bohn, Bernhard J.; Yan, Ming; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate spectra of liquids, which span 1100 cm$^{-1}$ of Raman shifts. At a resolution of 6 cm$^{-1}$, their measurement time may be as short as 5 microseconds for a refresh rate of 2 kHz. The waiting period between acquisitions is improved ten-fold compared to previous experiments with two lasers of 100-MHz repetition frequen...

  2. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  3. An on-line identification device for coal and gangue based on dual-energy γ-ray transmission and microcontroller

    International Nuclear Information System (INIS)

    Chen Guojie; Zhu Xing

    2004-01-01

    The operating principle, hardware design, software design and stabled-spectrum method of on-line identification device for coal and gangue based on dual-energy γ-ray transmission and microcontroller are introduced. The integrated linear amplifier and integrated single channel pulse height analyzer are analyzed. The on-line identification device has advantages of small size, low cost as well stabilization. (authors)

  4. a Study of Precipitation Using Dual-Frequency and Interferometric Doppler Radars.

    Science.gov (United States)

    Chilson, Phillip Bruce

    The primary focus of this dissertation involves the investigation of precipitation using Doppler radar but using distinctly different methods. Each method will be treated separately. The first part describes an investigation of a tropical thunderstorm that occurred in the summer of 1991 over the National Astronomy and Ionosphere Center in Arecibo, Puerto Rico. Observations were made using a vertically pointing, dual-wavelength, collinear beam Doppler radar which permits virtually simultaneous observations of the same pulse volume using transmission and reception of coherent UHF and VHF signals on alternate pulses. This made it possible to measure directly the vertical wind within the sampling volume using the VHF signal while using the UHF signal to study the nature of the precipitation. The observed storm showed strong similarities with systems observed in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) study. The experiment provided a means of determining various parameters associated with the storm, such as the vertical air velocity, the mean fall speeds of the precipitation, and the reflectivity. Rogers proposed a means of deducing the mean fall speed of precipitation particles using the radar reflectivity factor. Using the data from our experiment, the mean precipitation fall speeds were calculated and compared with those that would be inferred from Rogers' method. The results suggest the Rogers method of estimating mean precipitation fall speeds to be unreliable in turbulent environments. The second part reports observations made with the 50 MHz Middle and Upper Atmosphere (MU) radar located at Shigaraki, Japan during May of 1992. The facility was operated in a spatial interferometry (SI) mode while observing frontal precipitation. The data suggest that the presence of precipitation can produce a bias in the SI cross-spectral phase that in turn creates an overestimation of the horizontal wind. The process is likened to

  5. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers

    Directory of Open Access Journals (Sweden)

    E. M. Waxman

    2017-09-01

    Full Text Available We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm−1 (1568 to 1660 nm, corresponding to a 355 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10−4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO2, methane (CH4, water (H2O, and deuterated water (HDO. The retrieved dry mole fractions agree to 0.14 % (0.57 ppm for CO2, 0.35 % (7 ppb for CH4, and 0.40 % (36 ppm for H2O at  ∼  30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.

  6. Solar wind electron densities from Viking dual-frequency radio measurements

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Anderson, J.D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the Earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii (R/sub sun/) to 200 R/sub sun/. The measurements were made during a period of solar activity minimum (1976--1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r/sup -2.7/ and r/sup -2.04/. However, the more rapidly falling term quickly disappears at moderate latitudes (approx.20 0 ), leaving only the inverse-square behavior

  7. Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application

    Science.gov (United States)

    Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.

    2018-05-01

    This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.

  8. Soft tissue freezing process. Identification of the dual-phase lag model parameters using the evolutionary algorithm

    Science.gov (United States)

    Mochnacki, Bohdan; Majchrzak, Ewa; Paruch, Marek

    2018-01-01

    In the paper the soft tissue freezing process is considered. The tissue sub-domain is subjected to the action of cylindrical cryoprobe. Thermal processes proceeding in the domain considered are described using the dual-phase lag equation (DPLE) supplemented by the appropriate boundary and initial conditions. DPLE results from the generalization of the Fourier law in which two lag times are introduced (relaxation and thermalization times). The aim of research is the identification of these parameters on the basis of measured cooling curves at the set of points selected from the tissue domain. To solve the problem the evolutionary algorithms are used. The paper contains the mathematical model of the tissue freezing process, the very short information concerning the numerical solution of the basic problem, the description of the inverse problem solution and the results of computations.

  9. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  10. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    International Nuclear Information System (INIS)

    Chen Zhou; Qiu-Nan Tong; Zhang Cong-Cong; Hu Zhan

    2015-01-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. (paper)

  11. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    Science.gov (United States)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  12. Identification of material properties of orthotropic composite plate using experimental frequency response function data

    Science.gov (United States)

    Tam, Jun Hui; Ong, Zhi Chao; Ismail, Zubaidah; Ang, Bee Chin; Khoo, Shin Yee

    2018-05-01

    The demand for composite materials is increasing due to their great superiority in material properties, e.g., lightweight, high strength and high corrosion resistance. As a result, the invention of composite materials of diverse properties is becoming prevalent, and thus, leading to the development of material identification methods for composite materials. Conventional identification methods are destructive, time-consuming and costly. Therefore, an accurate identification approach is proposed to circumvent these drawbacks, involving the use of Frequency Response Function (FRF) error function defined by the correlation discrepancy between experimental and Finite-Element generated FRFs. A square E-glass epoxy composite plate is investigated under several different configurations of boundary conditions. It is notable that the experimental FRFs are used as the correlation reference, such that, during computation, the predicted FRFs are continuously updated with reference to the experimental FRFs until achieving a solution. The final identified elastic properties, namely in-plane elastic moduli, Ex and Ey, in-plane shear modulus, Gxy, and major Poisson's ratio, vxy of the composite plate are subsequently compared to the benchmark parameters as well as with those obtained using modal-based approach. As compared to the modal-based approach, the proposed method is found to have yielded relatively better results. This can be explained by the direct employment of raw data in the proposed method that avoids errors that might incur during the stage of modal extraction.

  13. Low-threshold mechanoreceptors play a frequency-dependent dual role in subjective ratings of mechanical allodynia.

    Science.gov (United States)

    Löken, Line S; Duff, Eugene P; Tracey, Irene

    2017-12-01

    In the setting of injury, myelinated primary afferent fibers that normally signal light touch are thought to switch modality and instead signal pain. In the absence of injury, touch is perceived as more intense when firing rates of Aβ afferents increase. However, it is not known if varying the firing rates of Aβ afferents have any consequence to the perception of dynamic mechanical allodynia (DMA). We hypothesized that, in the setting of injury, the unpleasantness of DMA would be intensified as the firing rates of Aβ afferents increase. Using a stimulus-response protocol established in normal skin, where an increase in brush velocity results in an increase of Aβ afferent firing rates, we tested if brush velocity modulated the unpleasantness of capsaicin-induced DMA. We analyzed how changes in estimated low-threshold mechanoreceptor firing activity influenced perception and brain activity (functional MRI) of DMA. Brushing on normal skin was perceived as pleasant, but brushing on sensitized skin produced both painful and pleasant sensations. Surprisingly, there was an inverse relationship between Aβ firing rates and unpleasantness such that brush stimuli that produced low firing rates were most painful and those that elicited high firing rates were rated as pleasant. Concurrently to this, we found increased cortical activity in response to low Aβ firing rates in regions previously implicated in pain processing during brushing of sensitized skin, but not normal skin. We suggest that Aβ signals do not merely switch modality to signal pain during injury. Instead, they exert a high- and low-frequency-dependent dual role in the injured state, with respectively both pleasant and unpleasant consequences. NEW & NOTEWORTHY We suggest that Aβ signals do not simply switch modality to signal pain during injury but play a frequency-dependent and dual role in the injured state with both pleasant and unpleasant consequences. These results provide a framework to resolve the

  14. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    Science.gov (United States)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  15. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID).

    Science.gov (United States)

    Maselyne, J; Adriaens, I; Huybrechts, T; De Ketelaere, B; Millet, S; Vangeyte, J; Van Nuffel, A; Saeys, W

    2016-09-01

    Changes in the drinking behaviour of pigs may indicate health, welfare or productivity problems. Automated monitoring and analysis of drinking behaviour could allow problems to be detected, thus improving farm productivity. A high frequency radio frequency identification (HF RFID) system was designed to register the drinking behaviour of individual pigs. HF RFID antennas were placed around four nipple drinkers and connected to a reader via a multiplexer. A total of 55 growing-finishing pigs were fitted with radio frequency identification (RFID) ear tags, one in each ear. RFID-based drinking visits were created from the RFID registrations using a bout criterion and a minimum and maximum duration criterion. The HF RFID system was successfully validated by comparing RFID-based visits with visual observations and flow meter measurements based on visit overlap. Sensitivity was at least 92%, specificity 93%, precision 90% and accuracy 93%. RFID-based drinking duration had a high correlation with observed drinking duration (R 2=0.88) and water usage (R 2=0.71). The number of registrations after applying the visit criteria had an even higher correlation with the same two variables (R 2=0.90 and 0.75, respectively). There was also a correlation between number of RFID visits and number of observed visits (R 2=0.84). The system provides good quality information about the drinking behaviour of individual pigs. As health or other problems affect the pigs' drinking behaviour, analysis of the RFID data could allow problems to be detected and signalled to the farmer. This information can help to improve the productivity and economics of the farm as well as the health and welfare of the pigs.

  16. TCIQ: An identification by intensity and frequency of potent testing cues in science

    Science.gov (United States)

    Kermis, William J.

    Everyone experiences some anxiety while taking an examination. High-test-anxious (HTA) and low-test-anxious (LTA) students are described by two characteristic differences: frequency and intensity of anxious responses and attentional direction to testing cues. The purposes of this study were threefold: (1) to report potent testing cues (i.e., 90% response agreement for both intensity and frequency) that were identified by HTA and LTA students; (2) to report differences between HTA and LTA students for frequencies and intensities of responses to testing cues; and (3) to report differences between HTA and LTA students of attentional direction to testing cues. A pool of 396 males and females who were enrolled in physical geology completed the State-Trait Anxiety Inventory. A random sample consisting of 93 HTA and 40 LTA subjects completed the Test Cues Identification Questionnaire (TCIQ). The TCIQ consists of 28 disruptive items and 27 helpful items. Subjects responded with both frequency and intensity ratings for all of the 55 items in the TCIQ. Results revealed that 22 items were viewed by subjects as potent testing cues. Empirical evidence obtained did not support previous theoretical reports of differences between HTA and LTA students for either frequency and intensity of anxious responses or attentional direction to the set of disruptive and helpful testing cues. Although test anxiousness did not appear to be associated with those two characteristics differences, a discriminant analysis revealed 24 items in the TCIQ which significantly, 2 (24) = 47.59, p < 0.004, separated HTA and LTA subjects responses. Apparently, HTA and LTA students differ in their responses to specific disruptive and helpful cues but not in their responses to the set of testing cues as was previously postulated.

  17. REMOTE CONTROLLING OF AN AGRICULTURAL PUMP SYSTEM BASED ON THE DUAL TONE MULTI-FREQUENCY (DTMF TECHNIQUE

    Directory of Open Access Journals (Sweden)

    BEZA N. GETU

    2015-10-01

    Full Text Available In modern days, as a result of advances in technology, human beings are interested to remotely control different systems and applications. In this work, telephone signalling technique using Dual Tone Multi-Frequency (DTMF signalling, is used to control switching of electrical loads such as agricultural pumps located in remote areas. A DTMF tone command sent from a transmitting fixed or mobile phone terminal will be used to SWITCH ON/OFF the motors used to pump water for agricultural fields. A processing electronic system at the receiving side is designed to interpret the tone commands and sends an appropriate signal to the motor driving circuit to complete the pump switching states. In the design methodology, it is possible to control several water pumps distributed in a certain agricultural site, however, in this work we considered four pumps and the paper presents the complete electronic design and simulation results at the different stages of the design. The electronic design is based on discrete passive and active electronic components and the system is tested and simulated using Multism program. The results of the simulation show that the design is capable of controlling the switching state of the motors. For a certain DTMF command, it is possible to switch ON/OFF a specific motor pump or all of the four motors.

  18. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  19. Evaluation on the performance of single and dual frequency low cost GPS module observation using geodetic antenna

    Directory of Open Access Journals (Sweden)

    Dedi Atunggal

    2018-06-01

    Full Text Available GPS modules have been used for various applications in recent years. Its early development came in parallel with the advancement of Unmanned Aerial Vehicle (UAV technology. Nowadays, it is also used in in geographic information system (GIS data acquisition/census, mapping surveys, structure stability monitoring systems and many other applications. GPS modules generally have several positioning features, including standard positioning service (SPS, static positioning, precise point positioning (PPP, post processing kinematic (PPK and real time kinematic (RTK GPS. GPS modules in general are only equipped with a microstrip-type antenna or better known as patch antenna. Results from related research show that GPS module with this type of antenna has sub meter accuracy when used for PPK or RTK GPS method. The use of geodetic antennas is very potential to increase GPS position accuracy by up to centimeter level. This paper discusses the evaluation of GPS module measurements with geodetic type antennas for precise positioning using RTK GPS. This paper is focused on the resolution of GPS cycle ambiguity that is often expressed by the term fixing ratio and the accuracy of measurement results obtained. To provide a comprehensive description of the performance of GPS module, in this research two types of GPS module were used; single and dual frequency. Both types of GPS modules were used to conduct simultaneous observation on an open and obstructed observation location.

  20. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    Science.gov (United States)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  1. Key Concept Identification: A Comprehensive Analysis of Frequency and Topical Graph-Based Approaches

    Directory of Open Access Journals (Sweden)

    Muhammad Aman

    2018-05-01

    Full Text Available Automatic key concept extraction from text is the main challenging task in information extraction, information retrieval and digital libraries, ontology learning, and text analysis. The statistical frequency and topical graph-based ranking are the two kinds of potentially powerful and leading unsupervised approaches in this area, devised to address the problem. To utilize the potential of these approaches and improve key concept identification, a comprehensive performance analysis of these approaches on datasets from different domains is needed. The objective of the study presented in this paper is to perform a comprehensive empirical analysis of selected frequency and topical graph-based algorithms for key concept extraction on three different datasets, to identify the major sources of error in these approaches. For experimental analysis, we have selected TF-IDF, KP-Miner and TopicRank. Three major sources of error, i.e., frequency errors, syntactical errors and semantical errors, and the factors that contribute to these errors are identified. Analysis of the results reveals that performance of the selected approaches is significantly degraded by these errors. These findings can help us develop an intelligent solution for key concept extraction in the future.

  2. Identification of minority ion cyclotron emission during radio frequency heating in the JET tokamak

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    1999-11-01

    First measurements and identification of Minority Ion Cyclotron Emission (MICE) during ICRF (H)D minority heating in the JET tokamak are presented. An inner wall radiofrequency (rf) probe shows the new single MICE spectral line, downshifted from the heating, frequency and appearing ∼ 400 ms after the ICRH switch-on. The line is narrow (Δω / ω) ∼ 0.04), characterised by the ion cyclotron frequency of minority protons in the outer edge mid-plane plasma and is observed irrespective of whether single or multi-frequency ICRH is applied. Threshold conditions for MICE are: coupled RF power to the plasma P rf ≥ 4.5 MW; total fast ion energy content W fast ≥ 0.6 MJ. At the time of the rapid switch-on of MICE, the measured power loss from the energetic minority ions is ∼ 0.1 ± 0.1 MW, constituting rf . The observations are consistent with the classical evolution and population of the plasma edge with ∼ 3 MeV ICRH protons on orbits near the outboard limiters. Particle loss and energy filtering contribute to a local non-Maxwellian energetic ion distribution which is susceptible to ion cyclotron instability

  3. Contribution of low-frequency harmonics to Mandarin Chinese tone identification in quiet and six-talker babble background.

    Science.gov (United States)

    Liu, Chang; Azimi, Behnam; Bhandary, Moulesh; Hu, Yi

    2014-01-01

    The goal of this study was to investigate Mandarin Chinese tone identification in quiet and multi-talker babble conditions for normal-hearing listeners. Tone identification was measured with speech stimuli and stimuli with low and/or high harmonics that were embedded in three Mandarin vowels with two fundamental frequencies. There were six types of stimuli: all harmonics (All), low harmonics (Low), high harmonics (High), and the first (H1), second (H2), and third (H3) harmonic. Results showed that, for quiet conditions, individual harmonics carried frequency contour information well enough for tone identification with high accuracy; however, in noisy conditions, tone identification with individual low harmonics (e.g., H1, H2, and H3) was significantly lower than that with the Low, High, and All harmonics. Moreover, tone identification with individual harmonics in noise was lower for a low F0 than for a high F0, and was also dependent on vowel category. Tone identification with individual low-frequency harmonics was accounted for by local signal-to-noise ratios, indicating that audibility of harmonics in noise may play a primary role in tone identification.

  4. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-01-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  5. Perancangan Sistem Pintu Gerbang dengan Sensor Radio Frequency Identification (RFID menggunakan Metode Waterfall

    Directory of Open Access Journals (Sweden)

    Heru Adi Prasetyo

    2013-11-01

    Full Text Available Sistem monitoring pada pintu gerbang merupakan bagian yang penting dalam meningkatkan sistem keamanan. Teknologi yang cocok untuk diaplikasikan dipintu gerbang adalah teknologi RFID (Radio Frequency Identification, karena komunikasi antar tag  dengan RFID reader tidak memerlukan kontak langsung, sehingga cocok digunakan pada sistem yang berjalan secara otomatis. Tag RFID dipasang di kendaraan penghuni sebagai kendaraan yang terdaftar di sistem monitoring, sedangkan kendaraan tamu tidak memiliki tag. Model pengembangan perangkat lunak yang dipakai adalah model waterfall, yang terdiri atas analisis kebutuhan sistem, spesifikasi kebutuhan perangkat lunak, desain perangkat lunak (use case, diagram activity, class diagram, danentity relationship diagram, implementasi perangkat lunak (berupa penulisan kode dan implementasi client server, dan pengujian (pengujian alat, pengujian client server, pengujian user requirement, dan pengujian aplikasi. Hasil akhir penelitian ini adalah sistem pintu gerbang yang menggunakan RFID sebagai sensor kendaraan untuk memonitor kendaraan yang keluar masuk. Data kendaraan yang keluar masuk dikelola secara client server dengan antarmuka pengguna berupa aplikasi client server berbasis JAVA

  6. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul; Park, Chan Yik

    2010-01-01

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  7. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul [Chonbuk National University, Jeonju (Korea, Republic of); Park, Chan Yik [Aeronautical Technology Directorate, Agency for Defense Development, Daejeon (Korea, Republic of)

    2010-06-15

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  8. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID

    Directory of Open Access Journals (Sweden)

    Ardhyanti Mita Nugraha Joanna

    2018-01-01

    Full Text Available Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP. This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  9. Impact of radio-frequency identification (RFID) technologies on the hospital supply chain: a literature review.

    Science.gov (United States)

    Coustasse, Alberto; Tomblin, Shane; Slack, Chelsea

    2013-01-01

    Supply costs account for more than one-third of the average operating budget and constitute the second largest expenditure in hospitals. As hospitals have sought to reduce these costs, radio-frequency identification (RFID) technology has emerged as a solution. This study reviews existing literature to gauge the recent and potential impact and direction of the implementation of RFID in the hospital supply chain to determine current benefits and barriers of adoption. Findings show that the application of RFID to medical equipment and supplies tracking has resulted in efficiency increases in hospitals with lower costs and increased service quality. RFID technology can reduce costs, improve patient safety, and improve supply chain management effectiveness by increasing the ability to track and locate equipment, as well as monitoring theft prevention, distribution management, and patient billing. Despite ongoing RFID implementation in the hospital supply chain, barriers to widespread and rapid adoption include significant total expenditures, unclear return on investment, and competition with other strategic imperatives.

  10. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID)

    Science.gov (United States)

    Nugraha, Joanna Ardhyanti Mita; Suryono; Suseno, dan Jatmiko Endro

    2018-02-01

    Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID) as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP). This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  11. Radio frequency identification (RFID) in health care: privacy and security concerns limiting adoption.

    Science.gov (United States)

    Rosenbaum, Benjamin P

    2014-03-01

    Radio frequency identification (RFID) technology has been implemented in a wide variety of industries. Health care is no exception. This article explores implementations and limitations of RFID in several health care domains: authentication, medication safety, patient tracking, and blood transfusion medicine. Each domain has seen increasing utilization of unique applications of RFID technology. Given the importance of protecting patient and data privacy, potential privacy and security concerns in each domain are discussed. Such concerns, some of which are inherent to existing RFID hardware and software technology, may limit ubiquitous adoption. In addition, an apparent lack of security standards within the RFID domain and specifically health care may also hinder the growth and utility of RFID within health care for the foreseeable future. Safeguarding the privacy of patient data may be the most important obstacle to overcome to allow the health care industry to take advantage of the numerous benefits RFID technology affords.

  12. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients

    Science.gov (United States)

    Jazebi, Saeed

    This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the

  13. Spontaneous swallow frequency compared with clinical screening in the identification of dysphagia in acute stroke.

    Science.gov (United States)

    Crary, Michael A; Carnaby, Giselle D; Sia, Isaac

    2014-09-01

    The aim of this study was to compare spontaneous swallow frequency analysis (SFA) with clinical screening protocols for identification of dysphagia in acute stroke. In all, 62 patients with acute stroke were evaluated for spontaneous swallow frequency rates using a validated acoustic analysis technique. Independent of SFA, these same patients received a routine nurse-administered clinical dysphagia screening as part of standard stroke care. Both screening tools were compared against a validated clinical assessment of dysphagia for acute stroke. In addition, psychometric properties of SFA were compared against published, validated clinical screening protocols. Spontaneous SFA differentiates patients with versus without dysphagia after acute stroke. Using a previously identified cut point based on swallows per minute, spontaneous SFA demonstrated superior ability to identify dysphagia cases compared with a nurse-administered clinical screening tool. In addition, spontaneous SFA demonstrated equal or superior psychometric properties to 4 validated, published clinical dysphagia screening tools. Spontaneous SFA has high potential to identify dysphagia in acute stroke with psychometric properties equal or superior to clinical screening protocols. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Monitoring Pharmacy Student Adherence to World Health Organization Hand Hygiene Indications Using Radio Frequency Identification.

    Science.gov (United States)

    Decker, Andrew S; Cipriano, Gabriela C; Tsouri, Gill; Lavigne, Jill E

    2016-04-25

    Objective. To assess and improve student adherence to hand hygiene indications using radio frequency identification (RFID) enabled hand hygiene stations and performance report cards. Design. Students volunteered to wear RFID-enabled hospital employee nametags to monitor their adherence to hand-hygiene indications. After training in World Health Organization (WHO) hand hygiene methods and indications, student were instructed to treat the classroom as a patient care area. Report cards illustrating individual performance were distributed via e-mail to students at the middle and end of each 5-day observation period. Students were eligible for individual and team prizes consisting of Starbucks gift cards in $5 increments. Assessment. A hand hygiene station with an RFID reader and dispensing sensor recorded the nametag nearest to the station at the time of use. Mean frequency of use per student was 5.41 (range: 2-10). Distance between the student's seat and the dispenser was the only variable significantly associated with adherence. Student satisfaction with the system was assessed by a self-administered survey at the end of the study. Most students reported that the system increased their motivation to perform hand hygiene as indicated. Conclusion. The RFID-enabled hand hygiene system and benchmarking reports with performance incentives was feasible, reliable, and affordable. Future studies should record video to monitor adherence to the WHO 8-step technique.

  15. Model reduction and frequency residuals for a robust estimation of nonlinearities in subspace identification

    Science.gov (United States)

    De Filippis, G.; Noël, J. P.; Kerschen, G.; Soria, L.; Stephan, C.

    2017-09-01

    The introduction of the frequency-domain nonlinear subspace identification (FNSI) method in 2013 constitutes one in a series of recent attempts toward developing a realistic, first-generation framework applicable to complex structures. If this method showed promising capabilities when applied to academic structures, it is still confronted with a number of limitations which needs to be addressed. In particular, the removal of nonphysical poles in the identified nonlinear models is a distinct challenge. In the present paper, it is proposed as a first contribution to operate directly on the identified state-space matrices to carry out spurious pole removal. A modal-space decomposition of the state and output matrices is examined to discriminate genuine from numerical poles, prior to estimating the extended input and feedthrough matrices. The final state-space model thus contains physical information only and naturally leads to nonlinear coefficients free of spurious variations. Besides spurious variations due to nonphysical poles, vibration modes lying outside the frequency band of interest may also produce drifts of the nonlinear coefficients. The second contribution of the paper is to include residual terms, accounting for the existence of these modes. The proposed improved FNSI methodology is validated numerically and experimentally using a full-scale structure, the Morane-Saulnier Paris aircraft.

  16. Realization and Measurement of a Wearable Radio Frequency Identification Tag Antenna

    Directory of Open Access Journals (Sweden)

    Shudao ZHOU

    2014-06-01

    Full Text Available The realization and measurements of a wearable Radio Frequency Identification tag antenna which achieves good simulation results in the Ultimate High Frequency band under the standard of the United States in design procedures is presented. The wearable tag antenna is constructed using a flexible substrate, on whose surface the antenna patch is adhered. A bowtie shape is chosen as the geometry of the antenna patch because of its large bandwidth that brings to the tag and its simple structure. The substrate of the tag antenna is realized using a foam material while the patch on the substrate surface is cut out from copper foil tape. Then, the impedance of the realized tag antenna is extracted from S parameters which are measured with a vector network analyzer with a coaxial fixture. Finally, the radiation pattern of the tag is characterized by normalized reading distances of different directions of the antenna integrated with a microchip, thus indicating the validity of the realized tag antenna.

  17. Dual Frequency Head Maps: A New Method for Indexing Mental Workload Continuously during Execution of Cognitive Tasks

    Directory of Open Access Journals (Sweden)

    Thea Radüntz

    2017-12-01

    Full Text Available One goal of advanced information and communication technology is to simplify work. However, there is growing consensus regarding the negative consequences of inappropriate workload on employee's health and the safety of persons. In order to develop a method for continuous mental workload monitoring, we implemented a task battery consisting of cognitive tasks with diverse levels of complexity and difficulty. We conducted experiments and registered the electroencephalogram (EEG, performance data, and the NASA-TLX questionnaire from 54 people. Analysis of the EEG spectra demonstrates an increase of the frontal theta band power and a decrease of the parietal alpha band power, both under increasing task difficulty level. Based on these findings we implemented a new method for monitoring mental workload, the so-called Dual Frequency Head Maps (DFHM that are classified by support vectors machines (SVMs in three different workload levels. The results are in accordance with the expected difficulty levels arising from the requirements of the tasks on the executive functions. Furthermore, this article includes an empirical validation of the new method on a secondary subset with new subjects and one additional new task without any adjustment of the classifiers. Hence, the main advantage of the proposed method compared with the existing solutions is that it provides an automatic, continuous classification of the mental workload state without any need for retraining the classifier—neither for new subjects nor for new tasks. The continuous workload monitoring can help ensure good working conditions, maintain a good level of performance, and simultaneously preserve a good state of health.

  18. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    Science.gov (United States)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  19. Frequency of subtype B and F1 dual infection in HIV-1 positive, Brazilian men who have sex with men

    Directory of Open Access Journals (Sweden)

    Soares de Oliveira Ana

    2012-09-01

    Full Text Available Abstract Background Because various HIV vaccination studies are in progress, it is important to understand how often inter- and intra-subtype co/superinfection occurs in different HIV-infected high-risk groups. This knowledge would aid in the development of future prevention programs. In this cross-sectional study, we report the frequency of subtype B and F1 co-infection in a clinical group of 41 recently HIV-1 infected men who have sex with men (MSM in São Paulo, Brazil. Methodology Proviral HIV-1 DNA was isolated from subject's peripheral blood polymorphonuclear leukocytes that were obtained at the time of enrollment. Each subject was known to be infected with a subtype B virus as determined in a previous study. A small fragment of the integrase gene (nucleotide 4255–4478 of HXB2 was amplified by nested polymerase chain reaction (PCR using subclade F1 specific primers. The PCR results were further confirmed by phylogenetic analysis. Viral load (VL data were extrapolated from the medical records of each patient. Results For the 41 samples from MSM who were recently infected with subtype B virus, it was possible to detect subclade F1 proviral DNA in five patients, which represents a co-infection rate of 12.2%. In subjects with dual infection, the median VL was 5.3 × 104 copies/ML, whereas in MSM that were infected with only subtype B virus the median VL was 3.8 × 104 copies/ML (p > 0.8. Conclusions This study indicated that subtype B and F1 co-infection occurs frequently within the HIV-positive MSM population as suggested by large number of BF1 recombinant viruses reported in Brazil. This finding will help us track the epidemic and provide support for the development of immunization strategies against the HIV.

  20. Use of Time-Frequency Analysis and Neural Networks for Mode Identification in a Wireless Software-Defined Radio Approach

    Directory of Open Access Journals (Sweden)

    Matteo Gandetto

    2004-09-01

    Full Text Available The use of time-frequency distributions is proposed as a nonlinear signal processing technique that is combined with a pattern recognition approach to identify superimposed transmission modes in a reconfigurable wireless terminal based on software-defined radio techniques. In particular, a software-defined radio receiver is described aiming at the identification of two coexistent communication modes: frequency hopping code division multiple access and direct sequence code division multiple access. As a case study, two standards, based on the previous modes and operating in the same band (industrial, scientific, and medical, are considered: IEEE WLAN 802.11b (direct sequence and Bluetooth (frequency hopping. Neural classifiers are used to obtain identification results. A comparison between two different neural classifiers is made in terms of relative error frequency.

  1. Identification and characterization of a dual-acting antinematodal agent against the pinewood nematode, Bursaphelenchus xylophilus.

    Directory of Open Access Journals (Sweden)

    Wan-Suk Oh

    Full Text Available The pinewood nematode (PWN, Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride, a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+ channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.

  2. Identification and characterization of a dual-acting antinematodal agent against the pinewood nematode, Bursaphelenchus xylophilus.

    Science.gov (United States)

    Oh, Wan-Suk; Jeong, Pan-Young; Joo, Hyoe-Jin; Lee, Jeong-Eui; Moon, Yil-Seong; Cheon, Hyang-Mi; Kim, Jung-Ho; Lee, Yong-Uk; Shim, Yhong-Hee; Paik, Young-Ki

    2009-11-11

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+) channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.

  3. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo.

    Directory of Open Access Journals (Sweden)

    Keerthi Krishnan

    Full Text Available Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8 zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8 and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.

  4. Radio Frequency Identification (RFID) in medical environment: Gaussian Derivative Frequency Modulation (GDFM) as a novel modulation technique with minimal interference properties.

    Science.gov (United States)

    Rieche, Marie; Komenský, Tomás; Husar, Peter

    2011-01-01

    Radio Frequency Identification (RFID) systems in healthcare facilitate the possibility of contact-free identification and tracking of patients, medical equipment and medication. Thereby, patient safety will be improved and costs as well as medication errors will be reduced considerably. However, the application of RFID and other wireless communication systems has the potential to cause harmful electromagnetic disturbances on sensitive medical devices. This risk mainly depends on the transmission power and the method of data communication. In this contribution we point out the reasons for such incidents and give proposals to overcome these problems. Therefore a novel modulation and transmission technique called Gaussian Derivative Frequency Modulation (GDFM) is developed. Moreover, we carry out measurements to show the inteference properties of different modulation schemes in comparison to our GDFM.

  5. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  6. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  7. A Sol-gel Integrated Dual-readout Microarray Platform for Quantification and Identification of Prostate-specific Antigen.

    Science.gov (United States)

    Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun

    2018-01-01

    Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.

  8. Blind identification of the number of sub-carriers for orthogonal frequency division multiplexing-based elastic optical networking

    Science.gov (United States)

    Zhao, Lei; Xu, Hengying; Bai, Chenglin

    2018-03-01

    In orthogonal frequency division multiplexing (OFDM)-based elastic optical networking (EON), it is imperative to identify unknown parameters of OFDM-based EON signals quickly, intelligently and robustly. Because the number of sub-carriers determines the size of the sub-carriers spacing and then affects the symbol period of the OFDM and the anti-dispersion capability of the system, the identification of the number of sub-carriers has a profound effect on the identification of other key parameters of the system. In this paper, we proposed a method of number identification for sub-carriers of OFDM-based EON signals with help of high-order cyclic cumulant. The specific fourth-order cyclic cumulant exists only at the location of its sub-carriers frequencies. So the identification of the number of sub-carriers can be implemented by detecting the cyclic-frequencies. The proposed scheme in our study can be divided into three sub-stages, i.e. estimating the spectral range, calculating the high-order cyclic cumulant and identifying the number of sub-carriers. When the optical signal-to-noise ratios (OSNR) varied from 16dB to 22dB, the number of sub-carriers (64-512) was successfully identified in the experiment, and from the statistical point of view, the average identification absolute accuracy (IAAs) exceeded 94%.

  9. Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2018-05-01

    Full Text Available This work explores the practical functionality of ultra-high frequency (UHF) radio frequency identification (RFID) tags screen printed onto various low-cost, flexible substrates. The need for integrated and automated low-cost point...

  10. An Approach to Near Field Data Selection in Radio Frequency Identification

    Science.gov (United States)

    Winkworth, Robert D.

    Personal identification is needed in many civil activities, and the common identification cards, such as a driver's license, have become the standard document de facto. Radio frequency identification has complicated this matter. Unlike their printed predecessors, contemporary RFID cards lack a practical way for users to control access to their individual fields of data. This leaves them more available to unauthorized parties, and more prone to abuse. Here, then was undertaken a means to test a novel RFID card technology that allows overlays to be used for reliable, reversible data access settings. Similar to other proposed switching mechanisms, it offers advantages that may greatly improve outcomes. RFID use is increasing in identity documents such as drivers' licenses and passports, and with it concern over the theft of personal information, which can enable unauthorized tracking or fraud. Effort put into designing a strong foundation technology now may allow for widespread development on them later. In this dissertation, such a technology was designed and constructed, to drive the central thesis that selective detuning could serve as a feasible, reliable mechanism. The concept had been illustrated effective in limiting access to all fields simultaneously before, and was here effective in limiting access to specific fields selectively. A novel card was produced in familiar dimensions, with an intuitive interface by which users may conceal the visible print of the card to conceal the wireless emissions it allows. A discussion was included of similar technologies, involving capacitive switching, that could further improve the outcomes if such a product were put to large-scale commercial fabrication. The card prototype was put to a battery of laboratory tests to measure the degree of independence between data fields and the reliability of the switching mechanism when used under realistically variable coverage, demonstrating statistically consistent performance in

  11. Retention and readability of radio frequency identification transponders in beef cows over a five-year period

    Science.gov (United States)

    Objective of this study was to evaluate failure (loss or inability to read) of radio frequency identification (RFID) ear tags in beef cows over a 2 to 5 year period under ranching conditions. One of 5 types of RFID tags was applied in the ear of a total of 4316 cows on 4 separate ranches. Tags wer...

  12. Essays on the Effect of Radio Frequency Identification (RFID) on the Management of Healthcare Supply Chain Performance

    Science.gov (United States)

    Cakici, Ozden Engin

    2012-01-01

    This dissertation examines three issues on the effect of Radio Frequency Identification (RFID) on the management of healthcare supply chain performance within the context of inventory management. Motivated by a case study conducted in a radiology practice, the second chapter analyzes the incremental benefits of RFID over barcodes for managing…

  13. Application of phased array technology for identification of low frequency noise sources

    Energy Technology Data Exchange (ETDEWEB)

    Hugo E. Camargo; Patricio A. Ravetta; Ricardo A. Burdisso; Adam K. Smith [NIOSH (United States)

    2009-12-15

    A study conducted by the National Institute for Occupational Safety and Health (NIOSH) revealed that 90% of coal miners have hearing impairment by age 50, compared to only 10% of those not exposed to occupational noise. According to the Mine Safety and Health Administration (MSHA), Continuous Mining Machine (CM) operators account for 30% of workers exposed to noise doses exceeding the Permissible Exposure Level (PEL). In this context, NIOSH is conducting research to identify and control dominant noise sources in CMs. Previous noise source identification was performed using a Bruel & Kjaer (B&K) 1.92-m diameter, 42-microphone phased array. These measurements revealed that the impacts from the conveyor chain onto the tail roller, and the impacts from the conveyor chain onto the upper deck are the dominant noise sources at the tail-section of the CM. The objectives of the work presented in this paper were: (1) To rank the noise radiated by the different sections of the conveyor, and (2) to determine the effect of a urethane-coated tail roller on the noise radiated by the tail-section. This test was conducted using an Acoustical and Vibrations Engineering Consultants (AVEC) 3.5-m diameter, 121-microphone phased array. The results from this new test show that a urethane-coated tail roller yields reductions in the tail-section of 2 to 8 dB in Sound Pressure Level in the frequency range of 1 kHz to 5 kHz. However, integration of the acoustic maps shows that the front-section and mid-section of the conveyor also contain dominant noise sources. Therefore, a urethane-coated tail roller in combination with a chain with urethane-coated flights that reduces the noise sources in the front and mid sections of the conveyor is required to yield a significant noise reduction on the CM operator's overall exposure. These results show the applicability of phased array technology for low frequency noise source identification.

  14. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available High-throughput screening (HTS in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb for further development towards new tuberculosis (TB drugs. Hit rates from these screens, usually conducted at 10 to 25 µM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15-28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.

  15. Evaluating performance of multivariable vibration isolators : a frequency domain identification approach applied to an industrial AVIS : A frequency domain identification approach applied to an industrial AVIS

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.A.; Voorhoeve, R.J.; Oomen, T.A.E.

    2017-01-01

    Vibration isolation is essential for industrial high-precision systems in suppressing the influence of external disturbances. The aim of this paper is to develop an identification method to estimate the transmissibility matrix for such systems. The transmissibility matrix is a key performance

  16. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    International Nuclear Information System (INIS)

    Liu, Wen-Yao; Xu, Yong; Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-01

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*( 3 P 2 ) and Ar*( 3 P 0 ) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF 4 was found to significantly increase the metastable destruction rate by the CF 4 quenching, especially for large CF 4 content and high pressure, it becomes the dominant depopulation process

  17. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    International Nuclear Information System (INIS)

    Shin, Dong-Youn; Lee, Yongshik; Kim, Chung Hwan

    2009-01-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 o C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 μΩ cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  18. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Youn, E-mail: dongyoun.shin@gmail.co [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Lee, Yongshik, E-mail: yongshik.lee@yonsei.ac.k [School of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Kim, Chung Hwan, E-mail: chkim@kimm.re.k [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-09-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 {sup o}C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 {mu}{Omega} cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  19. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  20. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    International Nuclear Information System (INIS)

    Ward, R.; Rosenthal, M.

    2009-01-01

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector's efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the 'Option 4' safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo's paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

  1. Applications for radio-frequency identification technology in the perioperative setting.

    Science.gov (United States)

    Zhao, Tiyu; Zhang, Xiaoxiang; Zeng, Lili; Xia, Shuyan; Hinton, Antentor Othrell; Li, Xiuyun

    2014-06-01

    We implemented a two-year project to develop a security-gated management system for the perioperative setting using radio-frequency identification (RFID) technology to enhance the management efficiency of the OR. We installed RFID readers beside the entrances to the OR and changing areas to receive and process signals from the RFID tags that we sewed into surgical scrub attire and shoes. The system also required integrating automatic access control panels, computerized lockers, light-emitting diode (LED) information screens, wireless networks, and an information system. By doing this, we are able to control the flow of personnel and materials more effectively, reduce OR costs, optimize the registration and attire-changing process for personnel, and improve management efficiency. We also anticipate this system will improve patient safety by reducing the risk of surgical site infection. Application of security-gated management systems is an important and effective way to help ensure a clean, convenient, and safe management process to manage costs in the perioperative area and promote patient safety. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  2. EEG biometric identification: a thorough exploration of the time-frequency domain

    Science.gov (United States)

    DelPozo-Banos, Marcos; Travieso, Carlos M.; Weidemann, Christoph T.; Alonso, Jesús B.

    2015-10-01

    Objective. Although interest in using electroencephalogram (EEG) activity for subject identification has grown in recent years, the state of the art still lacks a comprehensive exploration of the discriminant information within it. This work aims to fill this gap, and in particular, it focuses on the time-frequency representation of the EEG. Approach. We executed qualitative and quantitative analyses of six publicly available data sets following a sequential experimentation approach. This approach was divided in three blocks analysing the configuration of the power spectrum density, the representation of the data and the properties of the discriminant information. A total of ten experiments were applied. Main results. Results show that EEG information below 40 Hz is unique enough to discriminate across subjects (a maximum of 100 subjects were evaluated here), regardless of the recorded cognitive task or the sensor location. Moreover, the discriminative power of rhythms follows a W-like shape between 1 and 40 Hz, with the central peak located at the posterior rhythm (around 10 Hz). This information is maximized with segments of around 2 s, and it proved to be moderately constant across montages and time. Significance. Therefore, we characterize how EEG activity differs across individuals and detail the optimal conditions to detect subject-specific information. This work helps to clarify the results of previous studies and to solve some unanswered questions. Ultimately, it will serve as guide for the design of future biometric systems.

  3. Design and Development of a Clinical Risk Management Tool Using Radio Frequency Identification (RFID).

    Science.gov (United States)

    Pourasghar, Faramarz; Tabrizi, Jafar Sadegh; Yarifard, Khadijeh

    2016-04-01

    Patient safety is one of the most important elements of quality of healthcare. It means preventing any harm to the patients during medical care process. This paper introduces a cost-effective tool in which the Radio Frequency Identification (RFID) technology is used to identify medical errors in hospital. The proposed clinical error management system (CEMS) is consisted of a reader device, a transfer/receiver device, a database and managing software. The reader device works using radio waves and is wireless. The reader sends and receives data to/from the database via the transfer/receiver device which is connected to the computer via USB port. The database contains data about patients' medication orders. The CEMS has the ability to identify the clinical errors before they occur and then warns the care-giver with voice and visual messages to prevent the error. This device reduces the errors and thus improves the patient safety. A new tool including software and hardware was developed in this study. Application of this tool in clinical settings can help the nurses prevent medical errors. It can also be a useful tool for clinical risk management. Using this device can improve the patient safety to a considerable extent and thus improve the quality of healthcare.

  4. Evaluating the Impact of Radio Frequency Identification Retained Surgical Instruments Tracking on Patient Safety: Literature Review.

    Science.gov (United States)

    Schnock, Kumiko O; Biggs, Bonnie; Fladger, Anne; Bates, David W; Rozenblum, Ronen

    2017-02-22

    Retained surgical instruments (RSI) are one of the most serious preventable complications in operating room settings, potentially leading to profound adverse effects for patients, as well as costly legal and financial consequences for hospitals. Safety measures to eliminate RSIs have been widely adopted in the United States and abroad, but despite widespread efforts, medical errors with RSI have not been eliminated. Through a systematic review of recent studies, we aimed to identify the impact of radio frequency identification (RFID) technology on reducing RSI errors and improving patient safety. A literature search on the effects of RFID technology on RSI error reduction was conducted in PubMed and CINAHL (2000-2016). Relevant articles were selected and reviewed by 4 researchers. After the literature search, 385 articles were identified and the full texts of the 88 articles were assessed for eligibility. Of these, 5 articles were included to evaluate the benefits and drawbacks of using RFID for preventing RSI-related errors. The use of RFID resulted in rapid detection of RSI through body tissue with high accuracy rates, reducing risk of counting errors and improving workflow. Based on the existing literature, RFID technology seems to have the potential to substantially improve patient safety by reducing RSI errors, although the body of evidence is currently limited. Better designed research studies are needed to get a clear understanding of this domain and to find new opportunities to use this technology and improve patient safety.

  5. Analysis of the possibility of applying radio frequency identification in the flexible production process

    Directory of Open Access Journals (Sweden)

    Mirkov Gligorije I.

    2017-01-01

    Full Text Available Flexible manufacturing systems (FMS as a complex and stochastic environments require the development of innovative, intelligent control architectures in order to improve flexibility, agility and reconfiguration. Distribution management system addresses this challenge by introducing the optimal process management which is supported by the autonomous control units that cooperate with each other. Most of the existing transport management system, has a lack of flexibility and agility, especially in cases where a large variety of products, a small representation of parts of smaller dimensions. In such cases, the system is insensitive to random ‘ad-hoc’ events. Phase transport parts through flexible manufacturing system can be potentially used to obtain information about the product in order to process management. Radio frequency identification (RFID has been introduced as new technology allows monitoring, identifying and categorizing parts. This paper gives grounds on the flexible cell architecture (FMC and the deployment of RFID devices with the aim of the distribution and tracking of parts. The paper gives an example of setting agent base control architecture FMC.

  6. Quasidynamic emergency analysis, identification and control of power system frequency perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S M [Nikola Tesla Institute, Belgrade (YU)

    1990-07-01

    There are several possible operating states of a power system. These are the normal operating state (both secure and insecure), the emergency state, the extreme emergency state and the restorative state. The system enters the emergency operating state if any of the operating constraints are violated. Emergency analysis attempts to compute in real time the violations of these constraints and the new (successive) disturbances which arise from the initial ones. The paper presents a quasidynamic approach to emergency state analysis, identification and control of power system frequency perturbations. A quasidynamic model is derived by simplifying the conventional long-term dynamics model of power systems in the time interval 0-5 s. The quasidynamic model is algebraic in nature, but the time variable t is incorporated into the model and is used to describe the part of the system dynamics that is of interest in the specified time interval. The paper proposes an on-line computer emergency control strategy based on the above quasidynamic model. Finally, a numerical example is given for the Yugoslav power system. (author).

  7. Implementasi Rule Based Expert Systems untuk Realtime Monitoring Penyelesaian Perkara Pidana Menggunakan Teknologi Radio Frequency Identification

    Directory of Open Access Journals (Sweden)

    Mar Fuah

    2017-05-01

    Full Text Available One of the problems in the criminal case completions is that the difficulty of making decision to estimate when the settlement of the case file will be fulfilled. It is caused by the number of case files handled and detention time changing. Therefore, the fast and accurate information is needed. The research aims to develop a monitoring system tracking and tracking of scheduling rules using Rule Based Expert Systems method with 17 rules, and supported by Radio Frequency Identification technology (RFID in the form of computer applications. Based on the output of the system, an analysis is performed in the criminal case settlement process with a set of IF-THEN rules. The RFID reader read the data of case files through radio wave signals emitted by the antenna toward active-Tag attached in the criminal case file. The system is designed to monitor the tracking and tracing of RFID-based scheduling rules in realtime way that was built in the form of computer application in accordance with the system design. This study results in no failure in reading active tags by the RFID reader to detect criminal case files that had been examined. There were many case files handled in three different location, they were the constabulary, prosecutor, and judges of district court and RFID was able to identify them simultaneously. So, RFID supports the implementation of Rule Based Expert Systems very much for realtime monitoring in criminal case accomplishment.

  8. Realization of stable and homogenous carbon nanotubes dispersion as ink for radio frequency identification applications

    International Nuclear Information System (INIS)

    Bougot, M Nicolas; Dung Dang, Thi My; Le, Nguyen Ngan; Dang, Mau Chien

    2013-01-01

    The use of carbon nanotubes (CNTs) in radio frequency identification (RFID) applications offers a very large range of possibilities to exploit the incredible properties of CNTs. However, due to their entanglement state, their size and the different interacting forces between nanotubes bundles present at nanometric scale, CNTs debundling is very hard to achieve, requiring specific equipment and chemicals. Our purpose was to reduce as small as possible CNTs bundles, in order to realize ink to print on an RFID antenna. The size of the head printer nozzles required very small particles, about a few micrometers, in order to be able to print on the sensitive position of the antenna. To reduce the size of the bundles and stabilize the solution, an ultrasonic horn with an ultrasonic bath were combined as mechanical stress for CNT dispersion, and some chemicals such as sodium dodecyl sulfate (SDS)—a surfactant, N-methyl-2-pyrrolidone (NMP)—a solvent, or chitosan were used to meet our requirements. (paper)

  9. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    Science.gov (United States)

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    Science.gov (United States)

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  11. Impact of Radio-Frequency Identification (RFID) Technologies on the Hospital Supply Chain: A Literature Review

    Science.gov (United States)

    Coustasse, Alberto; Tomblin, Shane; Slack, Chelsea

    2013-01-01

    Supply costs account for more than one-third of the average operating budget and constitute the second largest expenditure in hospitals. As hospitals have sought to reduce these costs, radio-frequency identification (RFID) technology has emerged as a solution. This study reviews existing literature to gauge the recent and potential impact and direction of the implementation of RFID in the hospital supply chain to determine current benefits and barriers of adoption. Findings show that the application of RFID to medical equipment and supplies tracking has resulted in efficiency increases in hospitals with lower costs and increased service quality. RFID technology can reduce costs, improve patient safety, and improve supply chain management effectiveness by increasing the ability to track and locate equipment, as well as monitoring theft prevention, distribution management, and patient billing. Despite ongoing RFID implementation in the hospital supply chain, barriers to widespread and rapid adoption include significant total expenditures, unclear return on investment, and competition with other strategic imperatives. PMID:24159272

  12. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID)

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Zheng, W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-05-15

    This study discussed the development of a corrosion sensing and monitoring system for military land vehicles. Radio-frequency identification device (RFID) technology uses radio waves to identify individual masses with RFID tags attached. A corrosion-sensing element was integrated with the RFID technology, which incorporated a galvanic corrosion cell designed to trigger RFID tags. Corrosion severity was then related to the galvanic current. The tag recorded the sensor reading and transmitted the data to an RFID reader. The tags consisted of a microchip and an antenna. A software development kit has also been developed to interface RFID data with existing applications. While it is currently not possible to modify the RFID tags to prevent security risks, further research is being conducted to assemble a data-logger system with corrosion probes to measure humidity, electrical resistance, and linear polarization resistance. Studies will also be conducted to assemble an active tag reader system and investigate potential modifications. 4 refs., 1 fig., 1 appendix.

  13. Rule Based Reasoning Untuk Monitoring Distribusi Bahan Bakar Minyak Secara Online dan Realtime menggunakan Radio Frequency Identification

    Directory of Open Access Journals (Sweden)

    Mokhamad Iklil Mustofa

    2017-05-01

    Full Text Available The scarcity of fuel oil in Indonesia often occurs due to delays in delivery caused by natural factors or transportation constraints. Theaim of this  research is to develop systems of fuel distribution monitoring online and realtime using rule base reasoning method and radio frequency identification technology. The rule-based reasoning method is used as a rule-based reasoning model used for monitoring distribution and determine rule-based safety stock. The monitoring system program is run with a web-based computer application. Radio frequency identification technology is used by utilizing radio waves as an media identification. This technology is used as a system of tracking and gathering information from objects automatically. The research data uses data of delayed distribution of fuel from fuel terminal to consumer. The monitoring technique uses the time of departure, the estimated time to arrive, the route / route passed by a fuel tanker attached to the radio frequency Identification tag. This monitoring system is carried out by the radio frequency identification reader connected online at any gas station or specified position that has been designed with study case in Semarang. The results of the research covering  the status of rule based reasoning that sends status, that is timely and appropriate paths, timely and truncated pathways, late and on track, late and cut off, and tank lost. The monitoring system is also used in determining the safety stock warehouse, with the safety stock value determined based on the condition of the stock warehouse rules.

  14. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    1997-03-01

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ωr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when other properties can diverge from those of the

  15. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequencyr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when

  16. Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy.

    Science.gov (United States)

    Liu, Su; Sha, Zhiyi; Sencer, Altay; Aydoseli, Aydin; Bebek, Nerse; Abosch, Aviva; Henry, Thomas; Gurses, Candan; Ince, Nuri Firat

    2016-04-01

    High frequency oscillations (HFOs) in intracranial electroencephalography (iEEG) recordings are considered as promising clinical biomarkers of epileptogenic regions in the brain. The aim of this study is to improve and automatize the detection of HFOs by exploring the time-frequency content of iEEG and to investigate the seizure onset zone (SOZ) detection accuracy during the sleep, awake and pre-ictal states in patients with epilepsy, for the purpose of assisting the localization of SOZ in clinical practice. Ten-minute iEEG segments were defined during different states in eight patients with refractory epilepsy. A three-stage algorithm was implemented to detect HFOs in these segments. First, an amplitude based initial detection threshold was used to generate a large pool of HFO candidates. Then distinguishing features were extracted from the time and time-frequency domain of the raw iEEG and used with a Gaussian mixture model clustering to isolate HFO events from other activities. The spatial distribution of HFO clusters was correlated with the seizure onset channels identified by neurologists in seven patient with good surgical outcome. The overlapping rates of localized channels and seizure onset locations were high in all states. The best result was obtained using the iEEG data during sleep, achieving a sensitivity of 81%, and a specificity of 96%. The channels with maximum number of HFOs identified epileptogenic areas where the seizures occurred more frequently. The current study was conducted using iEEG data collected in realistic clinical conditions without channel pre-exclusion. HFOs were investigated with novel features extracted from the entire frequency band, and were correlated with SOZ in different states. The results indicate that automatic HFO detection with unsupervised clustering methods exploring the time-frequency content of raw iEEG can be efficiently used to identify the epileptogenic zone with an accurate and efficient manner.

  17. E-cigarette use, dual use of e-cigarettes and tobacco cigarettes, and frequency of cannabis use among high school students.

    Science.gov (United States)

    Azagba, Sunday

    2018-04-01

    The proliferation of electronic vaping products raises many concerns, including whether these products will lead to risky behaviors among adolescents. Evidence suggests that e-cigarettes may be used to vaporize cannabis (marijuana). The current study examined associations between e-cigarette use, dual use of e-cigarettes and tobacco cigarettes, and frequency of cannabis use. Data on high school students (grades 9-12) were from the 2014-2015 Canadian Student Tobacco, Alcohol and Drugs Survey (n=23,429 respondents). Multinomial logistic regression analyses were used to examine frequency of cannabis use among those who reported using only e-cigarettes, only tobacco cigarettes, both products, and nonusers. Approximately 15% of respondents reported using cannabis at least once in the past month. Likelihood of using cannabis was significantly higher for e-cigarette only and cigarette- only users. Users of both products had increased odds for a higher frequency of cannabis use. These results indicated a sequential risk gradient in the use of cannabis for dual use, cigarette only, e-cigarette only, and non-use groups, respectively. Youth who reported use of e-cigarettes, tobacco cigarettes, and both products showed a heightened risk of using cannabis more frequently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Increased situation awareness in major incidents-radio frequency identification (RFID) technique: a promising tool.

    Science.gov (United States)

    Jokela, Jorma; Rådestad, Monica; Gryth, Dan; Nilsson, Helené; Rüter, Anders; Svensson, Leif; Harkke, Ville; Luoto, Markku; Castrén, Maaret

    2012-02-01

    In mass-casualty situations, communications and information management to improve situational awareness is a major challenge for responders. In this study, the feasibility of a prototype system that utilizes commercially available, low-cost components, including Radio Frequency Identification (RFID) and mobile phone technology, was tested in two simulated mass-casualty incidents. The feasibility and the direct benefits of the system were evaluated in two simulated mass-casualty situations: one in Finland involving a passenger ship accident resulting in multiple drowning/hypothermia patients, and another at a major airport in Sweden using an aircraft crash scenario. Both simulations involved multiple agencies and functioned as test settings for comparing the disaster management's situational awareness with and without using the RFID-based system. Triage documentation was done using both an RFID-based system, which automatically sent the data to the Medical Command, and a traditional method using paper triage tags. The situational awareness was measured by comparing the availability of up-to date information at different points in the care chain using both systems. Information regarding the numbers and status or triage classification of the casualties was available approximately one hour earlier using the RFID system compared to the data obtained using the traditional method. The tested prototype system was quick, stable, and easy to use, and proved to work seamlessly even in harsh field conditions. It surpassed the paper-based system in all respects except simplicity of use. It also improved the general view of the mass-casualty situations, and enhanced medical emergency readiness in a multi-organizational medical setting. The tested technology is feasible in a mass-casualty incident; further development and testing should take place.

  19. A new laboratory radio frequency identification (RFID) system for behavioural tracking of marine organisms.

    Science.gov (United States)

    Aguzzi, Jacopo; Sbragaglia, Valerio; Sarriá, David; García, José Antonio; Costa, Corrado; del Río, Joaquín; Mànuel, Antoni; Menesatti, Paolo; Sardà, Francesc

    2011-01-01

    Radio frequency identification (RFID) devices are currently used to quantify several traits of animal behaviour with potential applications for the study of marine organisms. To date, behavioural studies with marine organisms are rare because of the technical difficulty of propagating radio waves within the saltwater medium. We present a novel RFID tracking system to study the burrowing behaviour of a valuable fishery resource, the Norway lobster (Nephrops norvegicus L.). The system consists of a network of six controllers, each handling a group of seven antennas. That network was placed below a microcosm tank that recreated important features typical of Nephrops' grounds, such as the presence of multiple burrows. The animals carried a passive transponder attached to their telson, operating at 13.56 MHz. The tracking system was implemented to concurrently report the behaviour of up to three individuals, in terms of their travelled distances in a specified unit of time and their preferential positioning within the antenna network. To do so, the controllers worked in parallel to send the antenna data to a computer via a USB connection. The tracking accuracy of the system was evaluated by concurrently recording the animals' behaviour with automated video imaging. During the two experiments, each lasting approximately one week, two different groups of three animals each showed a variable burrow occupancy and a nocturnal displacement under a standard photoperiod regime (12 h light:12 h dark), measured using the RFID method. Similar results were obtained with the video imaging. Our implemented RFID system was therefore capable of efficiently tracking the tested organisms and has a good potential for use on a wide variety of other marine organisms of commercial, aquaculture, and ecological interest.

  20. Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar

    Science.gov (United States)

    McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.

    2018-01-01

    Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.

  1. A New Laboratory Radio Frequency Identification (RFID) System for Behavioural Tracking of Marine Organisms

    Science.gov (United States)

    Aguzzi, Jacopo; Sbragaglia, Valerio; Sarriá, David; García, José Antonio; Costa, Corrado; del Río, Joaquín; Mànuel, Antoni; Menesatti, Paolo; Sardà, Francesc

    2011-01-01

    Radio frequency identification (RFID) devices are currently used to quantify several traits of animal behaviour with potential applications for the study of marine organisms. To date, behavioural studies with marine organisms are rare because of the technical difficulty of propagating radio waves within the saltwater medium. We present a novel RFID tracking system to study the burrowing behaviour of a valuable fishery resource, the Norway lobster (Nephrops norvegicus L.). The system consists of a network of six controllers, each handling a group of seven antennas. That network was placed below a microcosm tank that recreated important features typical of Nephrops’ grounds, such as the presence of multiple burrows. The animals carried a passive transponder attached to their telson, operating at 13.56 MHz. The tracking system was implemented to concurrently report the behaviour of up to three individuals, in terms of their travelled distances in a specified unit of time and their preferential positioning within the antenna network. To do so, the controllers worked in parallel to send the antenna data to a computer via a USB connection. The tracking accuracy of the system was evaluated by concurrently recording the animals’ behaviour with automated video imaging. During the two experiments, each lasting approximately one week, two different groups of three animals each showed a variable burrow occupancy and a nocturnal displacement under a standard photoperiod regime (12 h light:12 h dark), measured using the RFID method. Similar results were obtained with the video imaging. Our implemented RFID system was therefore capable of efficiently tracking the tested organisms and has a good potential for use on a wide variety of other marine organisms of commercial, aquaculture, and ecological interest. PMID:22163710

  2. Assessing the Performance of In-Stream Restoration Projects Using Radio Frequency Identification (RFID Transponders

    Directory of Open Access Journals (Sweden)

    Bruce MacVicar

    2015-10-01

    Full Text Available Instream channel restoration is a common practice in river engineering that presents a challenge for research. One research gap is the development of monitoring techniques that allow for testable predictions of sediment transport and supply. Here we use Radio Frequency Identification (RFID transponders to compare the short-term (1-year sediment transport response to flood events in a restored and a control reach. The field site is Wilket Creek, an enlarged creek in a fully urbanized catchment without stormwater management control in Toronto, Ontario. The responses to three flooding periods, each of which are at or above the design bankfull discharge, are described. Key results are that (i particle mobility is lower in the restored reach for all three periods; (ii full mobility occurs in the control reach during the first two floods while partial mobility occurs in the restored reach; and (iii the constructed morphology exerted a controlling influence on particle entrainment, with higher mobility in the pools. Log-transformed travel distances exhibit normal distributions when grouped by particle size class, which allows a statistical comparison with power law and other predictive travel-distance relations. Results show that three bedload transport conditions can occur, with partial mobility associated with a mild relation between particle size and travel distance and full mobility associated with either a flat or steep relation depending on the degree of integration of particles in the bed. Recommendations on seeding strategy and sample sizes are made to improve the precision of the results by minimizing confidence intervals for mobility and travel distances. Even in a short term study, the RFID sediment tracking technique allows a process-based assessment of stream restoration outcomes that can be used to justify the instream intervention and plan future attempts to stabilize and enhance the system.

  3. System-on-fluidics immunoassay device integrating wireless radio-frequency-identification sensor chips.

    Science.gov (United States)

    Yazawa, Yoshiaki; Oonishi, Tadashi; Watanabe, Kazuki; Shiratori, Akiko; Funaoka, Sohei; Fukushima, Masao

    2014-09-01

    A simple and sensitive point-of-care-test (POCT) device for chemiluminescence (CL) immunoassay was devised and tested. The device consists of a plastic flow-channel reactor and two wireless-communication sensor chips, namely, a photo-sensor chip and a temperature-sensor chip. In the flow-channel reactor, a target antigen is captured by an antibody immobilized on the inner wall of the flow-channel and detected with enzyme labeled antibody by using CL substrate. The CL signal corresponding to the amount of antigen is measured by a newly developed radio-frequency-identification (RFID) sensor, which enables batteryless operation and wireless data communication with an external reader. As for the POCT device, its usage environment, especially temperature, varies for each measurement. Hence, temperature compensation is a key issue in regard to eliminating dark-signal fluctuation, which is a major factor in deterioration of the precision of the POCT device. A two-stage temperature-compensation scheme was adopted. As for the first stage, the signals of two photodiodes, one with an open window and one with a sealed window, integrated on the photo-sensor chip are differentiated to delete the dark signal. As for the second stage, the differentiated signal fluctuation caused by a temperature variation is compensated by using the other sensor chip (equipped with a temperature sensor). The dark-level fluctuation caused by temperature was reduced from 0.24 to 0.02 pA/°C. The POCT device was evaluated as a CL immunoassay of thyroid-stimulating hormone (TSH). The flow rate of the CL reagent in the flow channel was optimized. As a result, the detection limit of the POCT device was 0.08 ng/ml (i.e., 0.4 μIU/ml). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Protocols development for security and privacy of radio frequency identification systems

    Science.gov (United States)

    Sabbagha, Fatin

    There are benefits to adopting radio frequency identification (RFID) technology, although there are methods of attack that can compromise the system. This research determined how that may happen and what possible solutions can keep that from happening. Protocols were developed to implement better security. In addition, new topologies were developed to handle the problems of the key management. Previously proposed protocols focused on providing mutual authentication and privacy between readers and tags. However, those protocols are still vulnerable to be attacked. These protocols were analyzed and the disadvantages shown for each one. Previous works assumed that the channels between readers and the servers were secure. In the proposed protocols, a compromised reader is considered along with how to prevent tags from being read by that reader. The new protocols provide mutual authentication between readers and tags and, at the same time, remove the compromised reader from the system. Three protocols are proposed. In the first protocol, a mutual authentication is achieved and a compromised reader is not allowed in the network. In the second protocol, the number of times a reader contacts the server is reduced. The third protocol provides authentication and privacy between tags and readers using a trusted third party. The developed topology is implemented using python language and simulates work to check the efficiency regarding the processing time. The three protocols are implemented by writing codes in C language and then compiling them in MSP430. IAR Embedded workbench is used, which is an integrated development environment with the C/C++ compiler to generate a faster code and to debug the microcontroller. In summary, the goal of this research is to find solutions for the problems on previously proposed protocols, handle a compromised reader, and solve key management problems.

  5. A New Laboratory Radio Frequency Identification (RFID System for Behavioural Tracking of Marine Organisms

    Directory of Open Access Journals (Sweden)

    Francesc Sardà

    2011-10-01

    Full Text Available Radio frequency identification (RFID devices are currently used to quantify several traits of animal behaviour with potential applications for the study of marine organisms. To date, behavioural studies with marine organisms are rare because of the technical difficulty of propagating radio waves within the saltwater medium. We present a novel RFID tracking system to study the burrowing behaviour of a valuable fishery resource, the Norway lobster (Nephrops norvegicus L.. The system consists of a network of six controllers, each handling a group of seven antennas. That network was placed below a microcosm tank that recreated important features typical of Nephrops’ grounds, such as the presence of multiple burrows. The animals carried a passive transponder attached to their telson, operating at 13.56 MHz. The tracking system was implemented to concurrently report the behaviour of up to three individuals, in terms of their travelled distances in a specified unit of time and their preferential positioning within the antenna network. To do so, the controllers worked in parallel to send the antenna data to a computer via a USB connection. The tracking accuracy of the system was evaluated by concurrently recording the animals’ behaviour with automated video imaging. During the two experiments, each lasting approximately one week, two different groups of three animals each showed a variable burrow occupancy and a nocturnal displacement under a standard photoperiod regime (12 h light:12 h dark, measured using the RFID method. Similar results were obtained with the video imaging. Our implemented RFID system was therefore capable of efficiently tracking the tested organisms and has a good potential for use on a wide variety of other marine organisms of commercial, aquaculture, and ecological interest.

  6. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    Science.gov (United States)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  7. Adoption of radio-frequency identification to establish traceability in Taiwanese eel exported to the Japanese market.

    Science.gov (United States)

    Jeng, Shu-Ching; Wu, Chun-Lung; Yang, I-Da

    2013-01-01

    Eel culture and export to the Japanese market is an important industry in Taiwan; however, the average amount produced by each farm is small. Eels from different farms might be mixed before export, making it difficult to determine which farm is responsible for eels containing drug residues. Therefore, the Taiwanese government uses a two-stage procedure of inspection and accreditation for validating the use of good practice in aquaculture farming. Nevertheless, it is still difficult to trace any farm that has produced eels containing drug residues. Radio-frequency identification has the potential to establish traceability in eel products. Here we suggest that Japanese eel importers should insist on the use of radio-frequency identification by Taiwanese eel exporters to enable verification of the safety of eel products being exported to the Japanese market.

  8. Implanting inequality: empirical evidence of social and ethical risks of implantable radio-frequency identification (RFID) devices.

    Science.gov (United States)

    Monahan, Torin; Fisher, Jill A

    2010-10-01

    The aim of this study was to assess empirically the social and ethical risks associated with implantable radio-frequency identification (RFID) devices. Qualitative research included observational studies in twenty-three U.S. hospitals that have implemented new patient identification systems and eighty semi-structured interviews about the social and ethical implications of new patient identification systems, including RFID implants. The study identified three primary social and ethical risks associated with RFID implants: (i) unfair prioritization of patients based on their participation in the system, (ii) diminished trust of patients by care providers, and (iii) endangerment of patients who misunderstand the capabilities of the systems. RFID implants may aggravate inequalities in access to care without any clear health benefits. This research underscores the importance of critically evaluating new healthcare technologies from the perspective of both normative ethics and empirical ethics.

  9. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    Science.gov (United States)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  10. Crystal identification for a dual-layer-offset LYSO based PET system via Lu-176 background radiation and mean shift algorithm

    Science.gov (United States)

    Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang

    2018-01-01

    Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.

  11. Ion energy distributions in a pulsed dual frequency inductively coupled discharge of Ar/CF4 and effect of duty ratio

    International Nuclear Information System (INIS)

    Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P 2 MHz  = 2 MHz) and high (P 13.56 MHz  = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF 4 (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers from 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P 13.56 MHz ; however, it shows opposite trends with P 2 MHz . It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant

  12. Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50 kHz/33 MHz dual-frequency atmospheric-pressure plasma jet

    Science.gov (United States)

    Li, Jiaojiao; Yuan, Qianghua; Chang, Xiaowei; Wang, Yong; Yin, Guiqin; Dong, Chenzhong

    2017-04-01

    The deposition of organosilicone thin films from hexamethyldisiloxane(HMDSO) by using a dual-frequency (50 kHz/33 MHz) atmospheric-pressure micro-plasma jet with an admixture of a small volume of HMDSO and Ar was investigated. The topography was measured by using scanning electron microscopy. The chemical bond and composition of these films were analyzed by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy. The results indicated that the as-deposited film was constituted by silicon, carbon, and oxygen elements, and FTIR suggested the films are organosilicon with the organic component (-CH x ) and hydroxyl functional group(-OH) connected to the Si-O-Si backbone. Thin-film hardness was recorded by an MH-5-VM Digital Micro-Hardness Tester. Radio frequency power had a strong impact on film hardness and the hardness increased with increasing power.

  13. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID) : progress report 2

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Li, J.; Liu, P.; Bibby, D.; Zheng, W.; Lo, J. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-12-15

    The development of a corrosion severity monitoring system that used radio-frequency identification device (RIFD) technology was discussed. A corrosion monitoring sensor was integrated with a tag modified to partially block the radio frequency signal. The metallic coating caused a frequency shift of the device's reader antenna in order to allow for the accurate characterization of metal coatings. Communications between the tag and the reader were re-established as the corrosion process gradually deteriorated the coating. The method was tested experimentally with 3 RFID systems using both active and passive tags were assembled. A passive tag was covered in aluminum foil. Results of the experiment showed that the metallic coating interfered with RFID signals. A cold-spray technology was used to coat tags with metal alloys. The surface morphology of the coatings was tested to determine optimum coating parameters. Further studies are being conducted to develop software for the technology. 4 refs., 11 figs.

  14. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Jiongqi; XIONG Kai; ZHOU Haiyin

    2012-01-01

    The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.

  15. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  16. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  17. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  18. On the identification of substructure in phase space using orbital frequencies

    NARCIS (Netherlands)

    Gomez, Facundo A.; Helmi, Amina

    2010-01-01

    We study the evolution of satellite debris to establish the most suitable space to identify past merger events. We confirm that the space of orbital frequencies is very promising in this respect. In frequency space individual streams can be easily identified, and their separation provides a direct

  19. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  20. Characterisation of Low Frequency Gravitational Waves from Dual RF Coaxial-Cable Detector: Fractal Textured Dynamical 3-Space

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2012-07-01

    Full Text Available Experiments have revealed that the Fresnel drag effect is not present in RF coaxial cables, contrary to a previous report. This enables a very sensitive, robust and compact detector, that is 1st order in v / c and using one clock, to detect the dynamical space passing the earth, revealing the sidereal rotation of the earth, together with significant wave / turbulence e ff ects. These are “gravitational waves”, and previously detected by Cahill 2006, using an Optical-Fibre – RF Coaxial Cable Detector, and Cahill 2009, using a preliminary version of the Dual RF Coaxial Cable Detector. The gravitational waves have a 1 / f spectrum, implying a fractal structure to the textured dynamical 3- space.

  1. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-02-01

    The feasibility of calculating natural frequencies and mode shapes of major equipment in a CANDU reactor from the measurements of their response to background excitation has been studied. A review of vibration data measured at various locations in CANDU plants shows that structures responded to a combination of random and harmonic background excitation. Amplitude of measured vibration is sufficient to allow meaningful data analysis. Frequency content in the 0 to 50-Hz range, which is of interest for earthquake response, is present in some of the vibration measurements studied. Spectral techniques have been developed for determining the response function of structures from measured vibration response to background excitation. The natural frequencies and mode shapes are then evaluated graphically from the frequency function plots. The methodology has been tested on a simple cantilever beam with known natural frequencies and mode shapes. The comparison between the theoretical and the computed natural frequencies and mode shapes is good for the lower modes. However, better curve-fitting techniques will be required in future, especially for higher modes. Readily available equipment necessary for the measurement of background vibration in a CANDU plant (which is commercially available) has been identified. An experimental program has been proposed to verify the methodology developed in this study. Recommendations are also made to study methods to improve the accuracy of the mode shape and natural frequency prediction

  2. Radio frequency identification of animals, the quality of products in the field.

    NARCIS (Netherlands)

    Hogewerf, P.H.

    2012-01-01

    In several parts of the world livestock animals (sheep, goats and cattle) are identified with radiofrequency identification (RFID) devices. These transponders can be read with handheld and stationary readers. The reading can be performed on the farm, during transport, in the sales yard and in the

  3. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Zhang, L.

    2002-01-01

    As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification...

  4. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle; Zhang, Lingmi

    2007-01-01

    As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification...

  5. Source Identification in Structural Acoustics with an Inverse Frequency Response Function Technique

    NARCIS (Netherlands)

    Visser, Rene

    2002-01-01

    Inverse source identification based on acoustic measurements is essential for the investigation and understanding of sound fields generated by structural vibrations of various devices and machinery. Acoustic pressure measurements performed on a grid in the nearfield of a surface can be used to

  6. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    Science.gov (United States)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  7. High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field

    International Nuclear Information System (INIS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Boudot, Rodolphe; Brazhnikov, Denis; Taichenachev, Alexei; Yudin, Valeriy; De Clercq, Emeric

    2017-01-01

    The saturated absorption technique is an elegant method widely used in atomic and molecular physics for high-resolution spectroscopy, laser frequency standards and metrology purposes. We have recently discovered that a saturated absorption scheme with a dual-frequency laser can lead to a significant sign reversal of the usual Doppler-free dip, yielding a deep enhanced-absorption spike. In this paper, we report detailed experimental investigations of this phenomenon, together with a full in-depth theoretical description. It is shown that several physical effects can support or oppose the formation of the high-contrast central spike in the absorption profile. The physical conditions for which all these effects act constructively and result in very bright Doppler-free resonances are revealed. Apart from their theoretical interest, results obtained in this manuscript are of great interest for laser spectroscopy and laser frequency stabilization purposes, with applications in laser cooling, matter-wave sensors, atomic clocks or quantum optics. (paper)

  8. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  9. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH2F2/H2 plasmas

    International Nuclear Information System (INIS)

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-01

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si 3 N 4 hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si 3 N 4 layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH 2 F 2 /H 2 /Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P HF ), and low-frequency source power (P LF ). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si 3 N 4 layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si 3 N 4 /PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO x /PVD a-C/Si 3 N 4 MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si 3 N 4 hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  10. Speed-dependent Voigt lineshape parameter database from dual frequency comb measurements up to 1305 K. Part I: Pure H2O absorption, 6801-7188 cm-1

    Science.gov (United States)

    Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Giorgetta, Fabrizio R.; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.

    2018-05-01

    We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.

  11. Dual frequency modulation with two cantilevers in series: a possible means to rapidly acquire tip–sample interaction force curves with dynamic AFM

    International Nuclear Information System (INIS)

    Solares, Santiago D; Chawla, Gaurav

    2008-01-01

    One common application of atomic force microscopy (AFM) is the acquisition of tip–sample interaction force curves. However, this can be a slow process when the user is interested in studying non-uniform samples, because existing contact- and dynamic-mode methods require that the measurement be performed at one fixed surface point at a time. This paper proposes an AFM method based on dual frequency modulation using two cantilevers in series, which could be used to measure the tip–sample interaction force curves and topography of the entire sample with a single surface scan, in a time that is comparable to the time needed to collect a topographic image with current AFM imaging modes. Numerical simulation results are provided along with recommended parameters to characterize tip–sample interactions resembling those of conventional silicon tips and carbon nanotube tips tapping on silicon surfaces

  12. Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii

    Science.gov (United States)

    Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.

    2018-01-01

    Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.

  13. Evaluation of Dual Frequency Identification Sonar (DIDSON) for Monitoring Pacific Lamprey Passage Behavior at Fishways of Bonneville Dam, 2011

    Science.gov (United States)

    2012-01-01

    Mundy’s Welding and the University of Idaho machine shop who went out of their way to manufacture and modify our sampling gear. We also thank R. Poulin, C...Columbia River: 2008 radiotelemetry and half- duplex PIT tag studies. Technical Report 2009-8 of Idaho Cooperative Fish and Wildlife Research Unit to U.S

  14. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    Directory of Open Access Journals (Sweden)

    Huaguang eGu

    2015-08-01

    Full Text Available In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor.

  15. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements

    Science.gov (United States)

    Oregui, M.; Li, Z.; Dollevoet, R.

    2015-03-01

    In this paper, the feasibility of the Frequency Response Function (FRF)-based statistical method to identify the characteristic frequencies of railway track defects is studied. The method compares a damaged track state to a healthy state based on non-destructive field hammer test measurements. First, a study is carried out to investigate the repeatability of hammer tests in railway tracks. By changing the excitation and measurement locations it is shown that the variability introduced by the test process is negligible. Second, following the concepts of control charts employed in process monitoring, a method to define an approximate healthy state is introduced by using hammer test measurements at locations without visual damage. Then, the feasibility study includes an investigation into squats (i.e. a major type of rail surface defect) of varying severity. The identified frequency ranges related to squats agree with those found in an extensively validated vehicle-borne detection system. Therefore, the FRF-based statistical method in combination with the non-destructive hammer test measurements has the potential to be employed to identify the characteristic frequencies of damaged conditions in railway tracks in the frequency range of 300-3000 Hz.

  16. Auto-identification of engine fault acoustic signal through inverse trigonometric instantaneous frequency analysis

    Directory of Open Access Journals (Sweden)

    Dayong Ning

    2016-03-01

    Full Text Available The acoustic signals of internal combustion engines contain valuable information about the condition of engines. These signals can be used to detect incipient faults in engines. However, these signals are complex and composed of a faulty component and other noise signals of background. As such, engine conditions’ characteristics are difficult to extract through wavelet transformation and acoustic emission techniques. In this study, an instantaneous frequency analysis method was proposed. A new time–frequency model was constructed using a fixed amplitude and a variable cycle sine function to fit adjacent points gradually from a time domain signal. The instantaneous frequency corresponds to single value at any time. This study also introduced instantaneous frequency calculation on the basis of an inverse trigonometric fitting method at any time. The mean value of all local maximum values was then considered to identify the engine condition automatically. Results revealed that the mean of local maximum values under faulty conditions differs from the normal mean. An experiment case was also conducted to illustrate the availability of the proposed method. Using the proposed time–frequency model, we can identify engine condition and determine abnormal sound produced by faulty engines.

  17. Impact of a radio-frequency identification system and information interchange on clearance processes for cargo at border posts

    Directory of Open Access Journals (Sweden)

    Ernest Bhero

    2015-11-01

    Full Text Available Background: Improved operational efficiency is important to role players in cross-border logistics and trade corridors. Cargo owners and cargo forwarders have been particularly concerned about long delays in the processing and clearing of cargo at border posts. Field studies suggest that these delays are due to a combination of factors, such as a lack of optimum system configurations and non-optimised human-dependent operations, which make the operations prone to corruption and other malpractices. Objectives: This article presents possible strategies for improving some of the operations in this sector. The research hinges on two key questions: (1 what is the impact of information interchange between stakeholders on the cargo transit time and (2 how will cargo transit time be impacted upon by automatic identification of cargo and the status of cargo seals on arriving vehicles at the border? Method: The use of information communication systems enabled by automatic identification systems (incorporating radio-frequency identification technology is suggested. Results: Results obtained by the described simulation model indicate that improvements of up to 82% with regard to transit time are possible using these techniques. Conclusion: The findings therefore demonstrate how operations at border posts can be improved through the use of appropriate technology and configuration of the operations.

  18. The development of enhanced ripple-fire identification methods using high frequency data from Pinedale

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.; Garbin, H.D.

    1996-01-01

    A technique called ripple fire used in quarry blasts produces modulations in the spectra of these events. The Deployable Seismic Verification System (DSVS) was installed at the Pinedale Seismic Research Facility in Wyoming, an area with a lot of mining activity. DSVS records at frequencies up to 50 Hz and these data provides us with a unique opportunity to determine how well we can discriminate quarry blasts and if there are operational benefits from using high frequency (>20 Hz) data. We have collected a database of 646 events consisting of known earthquakes, known quarry blasts and unknown signals. We have started to calculate preliminary spectrograms if we get the time-independent banding from the quarry blasts, and at what frequencies the banning occurs. We also detail what we hope to accomplish in FY 1996.

  19. Identification of low-frequency variants associated with gout and serum uric acid levels

    DEFF Research Database (Denmark)

    Sulem, Patrick; Gudbjartsson, Daniel F; Walters, G Bragi

    2011-01-01

    ,506 individuals for whom serum uric acid measurements were available. We identified a low-frequency missense variant (c.1580C>G) in ALDH16A1 associated with gout (OR = 3.12, P = 1.5 × 10(-16), at-risk allele frequency = 0.019) and serum uric acid levels (effect = 0.36 s.d., P = 4.5 × 10(-21)). We confirmed.......48 s.d., P = 4.5 × 10(-16)). This variant is close to a common variant previously associated with serum uric acid levels. This work illustrates how whole-genome sequencing data allow the detection of associations between low-frequency variants and complex traits....

  20. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    Science.gov (United States)

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. © 2012 American Physical Society

  1. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio

  2. Graphene screen-printed radio-frequency identification devices on flexible substrates

    NARCIS (Netherlands)

    Arapov, K.; Jaakkola, K.; Ermolov, V.; Bex, G.; Rubingh, E.; Haque, S.; Sandberg, H.; Abbel, R.; de With, G.; Friedrich, H.

    2016-01-01

    Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll-to-roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio-frequency

  3. Frequency and Pattern of Documented Diagnostic Features and the Age of Autism Identification

    Science.gov (United States)

    Maenner, Matthew J.; Schieve, Laura A.; Rice, Catherine E.; Cunniff, Christopher; Giarelli, Ellen; Kirby, Russell S.; Lee, Li-Ching; Nicholas, Joyce S.; Wingate, Martha S.; Durkin, Maureen S.

    2013-01-01

    Objective: The "DSM-IV-TR" specifies 12 behavioral features that can occur in hundreds of possible combinations to meet diagnostic criteria for autism spectrum disorder (ASD). This paper describes the frequency and variability with which the 12 behavioral features are documented in a population-based cohort of 8-year-old children under…

  4. Identification and classification of very low frequency waves on a coral reef flat

    NARCIS (Netherlands)

    Gawehn, M.; van Dongeren, AR; van Rooijen, A.A.; Storlazzi, C.D.; Cheriton, O.M.; Reniers, A.J.H.M.

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on

  5. Identification and Level 1 Damage Detection of the Z24 Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Cantieni, R.

    2001-01-01

    A series of 15 progressive damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case with a relatively large number of sensors. Changes in frequencies, damping ratios and MAC values were determined...

  6. Risk Evaluation for Identification and Intervention in Dual Use Research of Concern (DURC) for International Biological R&D Activity

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeMenno, Mercy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Caskey, Susan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Astuto-Gribble, Lisa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arguello, Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavez, Lozanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierson, Adam J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lopez, Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nozick, Linda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davis, Chad E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    This report summarizes the work performed as part of a Laboratory Directed Research and Development project focused on evaluating and mitigating risk associated with biological dual use research of concern. The academic and scientific community has identified the funding stage as the appropriate place to intervene and mitigate risk, so the framework developed here uses a portfolio-level approach and balances biosafety and biosecurity risks, anticipated project benefits, and available mitigations to identify the best available investment strategies subject to cost constraints. The modeling toolkit was designed for decision analysis for dual use research of concern, but is flexible enough to support a wide variety of portfolio-level funding decisions where risk/benefit tradeoffs are involved. Two mathematical optimization models with two solution methods are included to accommodate stakeholders with varying levels of certainty about priorities between metrics. An example case study is presented.

  7. Single- and multi-frequency bioelectrical impedance analyses to analyse body composition in maintenance haemodialysis patients: comparison with dual-energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Donadio, C; Halim, A Ben; Caprio, F; Grassi, G; Khedr, B; Mazzantini, M

    2008-01-01

    The aim of this study was to evaluate the adequacy of single-frequency (sf-BIA) and multi-frequency bioelectrical impedance analyses (mf-BIA), in comparison with dual-energy x-ray absorptiometry (DXA), to evaluate body composition in maintenance haemodialysis (MHD) patients. Body composition of 27 adult MHD patients (9 f, 18 m), BMI 17.5–34.4 kg m −2 , was examined with DXA and BIA, with two different sf-BIA and 1 mf-BIA analysers. Biochemical markers of nutritional status and adequacy of dialytic treatment were also determined. Fat mass (FM) estimated by the different BIA analysers was found to be slightly but significantly higher than FM measured by DXA. In contrast, fat-free mass (FFM) obtained with BIA was found to be slightly but significantly lower than FFM DXA. No significant differences were found between LBM-DXA (that is FFM-DXA minus bone mass) and the different FFM BIA. The lowest mean prediction error versus DXA values was found with sf1BIA. In any case, a close correlation was found between all BIA values and DXA values, particularly for FFM. Furthermore, FFM and LBM results were significantly correlated with serum creatinine, which in MHD patients is an indicator of muscle mass. These results indicate that BIA can be used to evaluate body composition in MHD patients

  8. A Dual-Band Multiple Input Multiple Output Frequency Agile Antenna for GPSL1/Wi-Fi/WLAN2400/LTE Applications

    Directory of Open Access Journals (Sweden)

    Sajid Aqeel

    2016-01-01

    Full Text Available A novel dual-band, single element multiple input multiple output (MIMO dielectric resonator antenna (DRA with a modest frequency tuning ability is presented in this communication. The proposed antenna operates at GPS L1/Bluetooth/Wi-Fi/LTE2500/WLAN2400 frequency bands. A single dielectric resonator element is fed by two coaxial probes to excite the orthogonal modes. A couple of slots are introduced on the ground plane to improve the isolation between antenna ports. The slots also serve the purpose of reconfiguration in the lower band on placement of switches at optimized locations. The measured impedance bandwidth is 5.16% (1.41–1.49 GHz in the lower band and 26% (2.2–2.85 GHz in the higher band. The lower band reconfigures with an impedance bandwidth of 6.5% (1.55–1.65 GHz when PIN diodes are switched ON. The gain, efficiency, correlation coefficient, and diversity gain of the MIMO DRA are presented with a close agreement between simulated and measured results.

  9. Dual frequency parametric excitation of a nonlinear, multi degree of freedom mechanical amplifier with electronically modified topology

    Science.gov (United States)

    Dolev, A.; Bucher, I.

    2018-04-01

    Mechanical or electromechanical amplifiers can exploit the high-Q and low noise features of mechanical resonance, in particular when parametric excitation is employed. Multi-frequency parametric excitation introduces tunability and is able to project weak input signals on a selected resonance. The present paper addresses multi degree of freedom mechanical amplifiers or resonators whose analysis and features require treatment of the spatial as well as temporal behavior. In some cases, virtual electronic coupling can alter the given topology of the resonator to better amplify specific inputs. An analytical development is followed by a numerical and experimental sensitivity and performance verifications, illustrating the advantages and disadvantages of such topologies.

  10. Radio frequency identification (RFID) of dentures in long-term care facilities.

    Science.gov (United States)

    Madrid, Carlos; Korsvold, Tové; Rochat, Aline; Abarca, Marcelo

    2012-03-01

    The difficulty of identifying the ownership of lost dentures when found is a common and expensive problem in long term care facilities (LTCFs) and hospitals. The purpose of this study was to evaluate the reliability of using radiofrequency identification (RFID) in the identification of dentures for LTCF residents after 3 and 6 months. Thirty-eight residents of 2 LTCFs in Switzerland agreed to participate after providing informed consent. The tag was programmed with the family and first names of the participants and then inserted in the dentures. After placement of the tag, the information was read. A second and third assessment to review the functioning of the tag occurred at 3 and 6 months, and defective tags (if present) were reported and replaced. The data were analyzed with descriptive statistics. At the 3-month assessment of 34 residents (63 tags) 1 tag was unreadable and 62 tags (98.2%) were operational. At 6 months, the tags of 27 of the enrolled residents (50 tags) were available for review. No examined tag was defective at this time period. Within the limits of this study (number of patients, 6-month time span) RFID appears to be a reliable method of tracking and identifying dentures, with only 1 of 65 devices being unreadable at 3 months and 100% of 50 initially placed tags being readable at the end of the trial. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  11. Non-whole beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference

    Science.gov (United States)

    Zhang, Z. X.; Wang, L. Z.; Jin, Z. J.; Zhang, Q.; Li, X. L.

    2013-08-01

    The efficient identification of the unbalanced responses in the inner and outer rotors from the beat vibration is the key step in the dynamic balancing of a dual-rotor system with a slight rotating speed difference. This paper proposes a non-whole beat correlation method to identify the unbalance responses whose integral time is shorter than the whole beat correlation method. The principle, algorithm and parameter selection of the proposed method is emphatically demonstrated in this paper. From the numerical simulation and balancing experiment conducted on horizontal decanter centrifuge, conclusions can be drawn that the proposed approach is feasible and practicable. This method makes important sense in developing the field balancing equipment based on portable Single Chip Microcomputer (SCMC) with low expense.

  12. Response identification in the extremely low frequency region of an electret condenser microphone.

    Science.gov (United States)

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  13. Response Identification in the Extremely Low Frequency Region of an Electret Condenser Microphone

    Directory of Open Access Journals (Sweden)

    Shang-Yin Lee

    2011-01-01

    Full Text Available This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  14. Identification of low-frequency variants associated with gout and serum uric acid levels

    DEFF Research Database (Denmark)

    Sulem, Patrick; Gudbjartsson, Daniel F; Walters, G Bragi

    2011-01-01

    We tested 16 million SNPs, identified through whole-genome sequencing of 457 Icelanders, for association with gout and serum uric acid levels. Genotypes were imputed into 41,675 chip-genotyped Icelanders and their relatives, for effective sample sizes of 968 individuals with gout and 15......,506 individuals for whom serum uric acid measurements were available. We identified a low-frequency missense variant (c.1580C>G) in ALDH16A1 associated with gout (OR = 3.12, P = 1.5 × 10(-16), at-risk allele frequency = 0.019) and serum uric acid levels (effect = 0.36 s.d., P = 4.5 × 10(-21)). We confirmed...... the association with gout by performing Sanger sequencing on 6,017 Icelanders. The association with gout was stronger in males relative to females. We also found a second variant on chromosome 1 associated with gout (OR = 1.92, P = 0.046, at-risk allele frequency = 0.986) and serum uric acid levels (effect = 0...

  15. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    Science.gov (United States)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; hide

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  16. Influence of yawing force frequency on angular motion and ballistic characteristics of a dual-spin projectile

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced by the cyclical yawing forces applied on the projectile. In order to investigate the influence of yawing forces on angular motion, a theoretical solution of the total yaw angle function with the cyclical yawing forces is deduced utilizing the 7 degrees of freedom (7-DOF model designed for this calculation. Furthermore, a detailed simulation is carried out to determine the influence rules of yawing force on angular motion. The calculated results illustrate that, when the rotational speed of the forward part is close to the initial turning rate, the total yaw angle increases and the flight range decreases sharply. Moreover, a yawing force at an appropriate frequency is able to correct the gun azimuth and elevation perturbation to some extent.

  17. The Sedentary Multi-Frequency Survey. I. Statistical Identification and Cosmological Properties of HBL BL Lacs

    OpenAIRE

    Giommi, P.; Menna, M. T.; Padovani, P.

    1999-01-01

    We have assembled a multi-frequency database by cross-correlating the NVSS catalog of radio sources with the RASSBSC list of soft X-ray sources, obtaining optical magnitude estimates from the Palomar and UK Schmidt surveys as provided by the APM and COSMOS on-line services. By exploiting the nearly unique broad-band properties of High-Energy Peaked (HBL) BL Lacs we have statistically identified a sample of 218 objects that is expected to include about 85% of BL Lacs and that is therefore seve...

  18. Identification of two-phase flow pattern by using specific spatial frequency of differential pressure signal

    International Nuclear Information System (INIS)

    Han Bin; Tong Yunxian; Wu Shaorong

    1992-11-01

    It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given

  19. Identification of homogeneous regions for rainfall regional frequency analysis considering typhoon event in South Korea

    Science.gov (United States)

    Heo, J. H.; Ahn, H.; Kjeldsen, T. R.

    2017-12-01

    South Korea is prone to large, and often disastrous, rainfall events caused by a mixture of monsoon and typhoon rainfall phenomena. However, traditionally, regional frequency analysis models did not consider this mixture of phenomena when fitting probability distributions, potentially underestimating the risk posed by the more extreme typhoon events. Using long-term observed records of extreme rainfall from 56 sites combined with detailed information on the timing and spatial impact of past typhoons from the Korea Meteorological Administration (KMA), this study developed and tested a new mixture model for frequency analysis of two different phenomena; events occurring regularly every year (monsoon) and events only occurring in some years (typhoon). The available annual maximum 24 hour rainfall data were divided into two sub-samples corresponding to years where the annual maximum is from either (1) a typhoon event, or (2) a non-typhoon event. Then, three-parameter GEV distribution was fitted to each sub-sample along with a weighting parameter characterizing the proportion of historical events associated with typhoon events. Spatial patterns of model parameters were analyzed and showed that typhoon events are less commonly associated with annual maximum rainfall in the North-West part of the country (Seoul area), and more prevalent in the southern and eastern parts of the country, leading to the formation of two distinct typhoon regions: (1) North-West; and (2) Southern and Eastern. Using a leave-one-out procedure, a new regional frequency model was tested and compared to a more traditional index flood method. The results showed that the impact of typhoon on design events might previously have been underestimated in the Seoul area. This suggests that the use of the mixture model should be preferred where the typhoon phenomena is less frequent, and thus can have a significant effect on the rainfall-frequency curve. This research was supported by a grant(2017-MPSS31

  20. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  1. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    International Nuclear Information System (INIS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-01-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  2. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  3. Benefits and Barriers of Implementation and Utilization of Radio-Frequency Identification (RFID) Systems in Transfusion Medicine.

    Science.gov (United States)

    Coustasse, Alberto; Cunningham, Brian; Deslich, Stacie; Willson, Eric; Meadows, Pamela

    2015-01-01

    Radio-frequency identification (RFID) technology is used by hospital supply chains to track medical products and monitor inventories. Hospitals have also begun incorporating RFID technology as part of their transfusion processes. The purpose of this review was to analyze how healthcare organization supply chains can benefit from the utilization of RFID systems in transfusion service departments. The methodology for this study was a literature review following the steps of a systematic review with a total of 52 sources referenced. RFID technology is used to manage and track blood products from the initial donor phlebotomy to final disposition or product transfusion. RFID-enabled transfusion practices have successfully increased provider productivity and product quality through work-time reduction and error reduction. Findings of this research study suggest that RFID has provided improvements in quality of care and efficiency, while initial costs, security, and privacy appear to be the principal barriers to adoption.

  4. Policy Options for Radio Frequency Identification (RFID) Application in Healthcare; a Prospective View: Final Report (D5).

    Science.gov (United States)

    van Oranje-Nassau, Constantijn; Schindler, Helen Rebecca; Vilamovska, Anna-Marie; Botterman, Maarten

    2012-01-01

    This article reviews the state of play of European markets and applications of Radio Frequency Identification (RFID) technology in healthcare in Europe. Based on the current situation the study presents three scenarios for 2020, to describe futures in which the technology and health care sectors develop in different ways. The scenarios were discussed in expert workshops to derive issues that need to be addressed by future policies of the European Union and other stakeholders. The market assessment is based on a review of literature and an analysis of proprietary market data. The information on the state of RFID applications in Health in Europe summarises the results of a literature review, an online Delphi survey, expert interviews and seven cases studies in Europe and the US. The policy analysis is based on the outcomes of a scenario gaming workshop with experts from academia, industry, healthcare providers, policymakers and representatives of patient organisations.

  5. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Science.gov (United States)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  6. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Directory of Open Access Journals (Sweden)

    Roman Windl

    2017-11-01

    Full Text Available Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  7. Identification of trapped electron modes in frequency fluctuation spectra of fusion plasmas

    International Nuclear Information System (INIS)

    Arnichand, Hugo

    2015-01-01

    This thesis shows that the analysis of frequency fluctuation spectra can provide an additional experimental indication of the dominant mode. Depending on the plasma scenario, fluctuation spectra can display different frequency components: Broadband spectra (Δf ∼ hundreds of kHz) which are always observed. Their amplitude is maximum at the zero frequency and they are attributed to turbulence. Coherent modes (Δf ∼ 1 kHz) which oscillate at a very well defined frequency. They can for example be due to geodesic acoustic or magnetohydrodynamic (MHD) modes; Quasi-Coherent (QC) modes (Δf ∼ tens of kHz) which oscillate at a rather well defined frequency but which are reminiscent of broadband fluctuations. The fluctuation study performed in the plasma core region shows that the fluctuation spectra in TEM-dominated regimes can be noticeably different from the ones in ITG-dominated regimes, as only TEM can induce QC modes. Such a finding has been achieved by comparing fluctuations measurements with simulations Measurements are made with a reflectometry diagnostic, a radar-like technique able to provide local indications of the density fluctuations occurring in the vicinity of the reflection layer. Frequency fluctuation spectra are inferred from a Fourier analysis of the reflectometry signal. First, the main properties of QC modes are characterized experimentally. Their normalized scale is estimated to k(perpendicular)ρ i ≤1, their amplitude is ballooned on the low field side mid-plane and they can be observed at many different radii. These indications are in agreement with what could be expected for ITG/TEM instabilities. Then reflectometry measurements are analyzed in Ohmic plasmas. QC modes are observed in the Linear Ohmic Confinement (LOC) regime dominated by TEM whereas only broadband spectra are seen in the Saturated Ohmic Confinement (SOC) regime dominated by ITG. Frequency spectra from nonlinear gyrokinetic simulations show that TEM induce a narrow

  8. Resolved Dual-Frequency Observations of the Debris Disk Around AU Mic: Strengths of Bodies in the Collisional Cascade

    Science.gov (United States)

    Carter, Evan; Hughes, A. Meredith; Daley, Cail; Flaherty, Kevin; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; MacGregor, Meredith Ann; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; Moor, Attila; Kospal, Agnes

    2018-01-01

    Debris disks are hallmarks of mature planetary systems, with second-generation dust produced via collisions between pluto-like planetesimals. The vertical structure of a debris disk encodes unique information about the dynamical state of the system, particularly at millimeter wavelengths where gravitational effects dominate over the effects of stellar radiation. We present 450 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the edge-on debris disk around AU Mic, a nearby (d = 9.91 ± 0.10 pc) M1-type star. The 0.3'' angular resolution of the data allows us to spatially resolve the scale height of the disk, complementing previous observations at a wavelength of 1.3 mm. By resolving the vertical structure of the disk at these two widely-separated frequencies, we are able to spatially resolve the spectral index and study variations in the grain size distribution as a function of disk radius. The comparison of scale heights for two different wavelengths and therefore particle sizes also constrains the velocity dispersion as a function of grain size, which allows us to probe the strengths of bodies in the collisional cascade for the first time outside the Solar System.

  9. Near real-time PPP-based monitoring of the ionosphere using dual-frequency GPS/BDS/Galileo data

    Science.gov (United States)

    Liu, Zhinmin; Li, Yangyang; Li, Fei; Guo, Jinyun

    2018-03-01

    Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.

  10. Maritime over the Horizon Sensor Integration: High Frequency Surface-Wave-Radar and Automatic Identification System Data Integration Algorithm.

    Science.gov (United States)

    Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola

    2018-04-09

    To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.

  11. A study of a dual polarization laser backscatter system for remote identification and measurement of water pollution

    Science.gov (United States)

    Sheives, T. C.

    1974-01-01

    Remote identification and measurement of subsurface water turbidity and oil on water was accomplished with analytical models which describe the backscatter from smooth surface turbid water, including single scatter and multiple scatter effects. Lidar measurements from natural waterways are also presented and compared with ground observations of several physical water quality parameters.

  12. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-10-01

    Background vibration in a CANDU plant can be used to determine the dynamic characteristics of major items of equipment, such as calandria, the fuelling machines and the primary heat transport pumps. These dynamic characteristics can then be used to verify the seismic response of the equipment which, at present, is based on theoretical models only. The feasibility and basic theory of this new approach (which uses accelerations measured at several points on a structure and does not require knowledge of the source of excitation) was established in Phase I of the study. This report is based on Phase II in which the methods of analysis developed in Phase I were improved and verified experimentally. A Fast Fourier Transform (FFT) algorithm was incorporated and an interactive curve fitting technique was developed to obtain the dynamic characteristics in the form of natural frequencies, mode shapes and damping ratios. The method is now available for use at a CANDU plant

  13. Phenotypic identification, frequency distribution and antibiogram of carbapenemase producing enterobacteriaceae in clinical isolates

    International Nuclear Information System (INIS)

    Ansari, M.; Saad, N.

    2018-01-01

    Objective:To differentiate between Ambler class A, B and D of carbapenemase-producing Enterobacteriaceae by using simple phenotypic methods that can be carried out in the laboratory without requiring any specialised techniques. Study Design:Cross-sectional study. Place and Duration of Study:Microbiology Department, Army Medical College, NUST, Islamabad, from November 2015 to November 2016. Methodology: Clinical specimens were subjected to identification of Enterobacteriaceae by colony morphology and API 20 E. Carbapenem resistance was detected by applying meropenem disc (10 mu g) by disc diffusion method according to CLSI (Clinical Laboratory Standard Institute) criteria. Carbapenemase production among Enterobacteriaceaewas detected by Modified Hodge test. Phenotypic methods, Phenylboronic acid (for Class A KPC producing Enterobacteriaceae) and EDTA inhibition tests (for Class B MBL producing Entrobacteriaceae) were applied. Presence of OXA 48 was detected by phenotypic method using imipenem 10 mu g, EDTA and PBA discs. Antibiotic susceptibility was determined by Kirby-Bauer disc diffusion method. Results:Forty-three out of 45 (95.45%) were carbapenemase producers. Thirty-eight out of 43 (88.3%) were KPC producers and 4 out of 43 (11.62%) were MBL producers. All KPC producers were Klebsiella pneumoniae. Among five MBL producers, one each (20%) was Enterobacter cloacae and Escherichia coli and 3 (60%) were Klebsiella pneumoniae. All MBL producers were resistant to aztreonam and amoxicillin/clavulanate. Two of the KPC producing Klebsiella pneumoniaewere pan-drug resistant (resistant to colistin and tigecycline). Two were non-carbapenemase producers. Conclusion:Enterobacteriaceaestrains producing KPC-type carbapenemase were the most prevalent (88.3%) in the studied healthcare setup. (author)

  14. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J. (Decision and Information Sciences); (USDOE)

    2010-01-01

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  15. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials

    International Nuclear Information System (INIS)

    Tsai, H.C.; Chen, K.; Liu, Y.Y.; Shuler, J.

    2010-01-01

    The US Department of Energy (DOE) (Environmental Management (EM), Office of Packaging and Transportation (EM-45)) Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  16. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    Science.gov (United States)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  17. Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners.

    Science.gov (United States)

    Boulon, Séverine; Ahmad, Yasmeen; Trinkle-Mulcahy, Laura; Verheggen, Céline; Cobley, Andy; Gregor, Peter; Bertrand, Edouard; Whitehorn, Mark; Lamond, Angus I

    2010-05-01

    The reliable identification of protein interaction partners and how such interactions change in response to physiological or pathological perturbations is a key goal in most areas of cell biology. Stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry has been shown to provide a powerful strategy for characterizing protein complexes and identifying specific interactions. Here, we show how SILAC can be combined with computational methods drawn from the business intelligence field for multidimensional data analysis to improve the discrimination between specific and nonspecific protein associations and to analyze dynamic protein complexes. A strategy is shown for developing a protein frequency library (PFL) that improves on previous use of static "bead proteomes." The PFL annotates the frequency of detection in co-immunoprecipitation and pulldown experiments for all proteins in the human proteome. It can provide a flexible and objective filter for discriminating between contaminants and specifically bound proteins and can be used to normalize data values and facilitate comparisons between data obtained in separate experiments. The PFL is a dynamic tool that can be filtered for specific experimental parameters to generate a customized library. It will be continuously updated as data from each new experiment are added to the library, thereby progressively enhancing its utility. The application of the PFL to pulldown experiments is especially helpful in identifying either lower abundance or less tightly bound specific components of protein complexes that are otherwise lost among the large, nonspecific background.

  18. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins.

    Science.gov (United States)

    Afanasyev, Vsevolod; Buldyrev, Sergey V; Dunn, Michael J; Robst, Jeremy; Preston, Mark; Bremner, Steve F; Briggs, Dirk R; Brown, Ruth; Adlard, Stacey; Peat, Helen J

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge's accurate performance and demonstrates how its design is a significant improvement on existing systems.

  19. Traffic seismicity loaded historical building frequency parameters identification due to most commonly used truck in Slovakia

    Directory of Open Access Journals (Sweden)

    Papán Daniel

    2016-01-01

    Full Text Available Experimental investigation and combination with numerical modelling is one of the progressive method in many scientific areas. The structural dynamics including traffic seismicity effects are also becoming an increasing topic. The aim of this paper was to realize the numerical analysis of heritage Upper Gate in Modra - Slovakia and FEM simulation of the lorry T-815 natural vibration. These subsystems are dominant processes in traffic seismicity vibration effects in buildings. For this purpose the variants of FE model by computing program Scia engineering has been created for building and software ADINA for lorry. These models are important for the assessment of the dynamic vibration transmissibility due to mechanical impact load properties. The results of this simulation was evaluated in frequency area. Next part of the investigation was the realisation of the experimental measurement. The results obtained from the experiment were compared with FE analysis. Using of the theoretical analysis, experimental procedures results and FEM simulation of the natural vibration it seem to be the practical application for engineering practice in prediction and assessment buildings vibration due to seismicity induced by traffic.

  20. Identification and classification of very low frequency waves on a coral reef flat

    Science.gov (United States)

    Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  1. Identification and classification of very low frequency waves on a coral reef flat

    Science.gov (United States)

    Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad

    2016-10-01

    Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  2. MO-AB-BRA-04: Correct Identification of Low-Attenuation Intracranial Hemorrhage and Calcification Using Dual-Energy Computed Tomography in a Phantom System

    Energy Technology Data Exchange (ETDEWEB)

    Nute, J; Jacobsen, M; Popnoe, D [UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States); UT Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Wei, W [UT MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States); Baiu, C [Gammex Inc., Middleton, WI (United States); Schellingerhout, D [MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Cody, D [UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States)

    2015-06-15

    Purpose: Intracranial hemorrhage and calcification with Single-Energy CT (SECT) attenuation below 100HU cannot be reliably identified using currently clinically available means. Calcification is typically benign but hemorrhage can carry a risk of intracranial bleeding and contraindicate use of anticoagulant therapies. A biologically-relevant phantom was used to investigate identification of unknown intracranial lesions using dual-energy CT (DECT) as a verification of prior lesion differentiation results. Methods: Prior phantom work investigating calcification and hemorrhage differentiation resulted in 3D-DECT raw data (water density, calcium density, 68keV) for a range of DECT protocol variations: image thicknesses (1.25, 2.5, 3.75, 5mm), CTDIvol (36.7 to 132.6mGy) and reconstruction algorithms (Soft, Standard, Detail). Acquisition-specific raw data were used to create a plane of optimal differentiation based on the geometric bisector of 3D-linear regression of the two lesion distributions. Verification hemorrhage and calcification lesions, ranging in size from 0.5 to 1.5cm, were created at varying attenuation from 50 to 100HU. Lesions were inserted into a biologically-relevant brain phantom and scanned using SECT (3.75mm images, Standard, 67mGy) and a range of DECT protocols (3.75mm images, Standard, [67, 105.6, 132.6mGy]). 3D-DECT data were collected and blinded for analysis. The 3D-DECT distribution of the lesion was then compared to the acquisition-matched geometric bisector plane and the mean lesion value’s position relative to the plane, indicating lesion identity, and the percentage of voxels on the identified side of the plane, indicating identification confidence, were derived. Results: 98% of the 120 lesions investigated were identified correctly as hemorrhage or calcification. 74% were identified with greater than 80% confidence. Increases in CTDIvol and lesion diameter were associated with increased identification confidence. Conclusion: Intracranial

  3. [Comparison BMC assessed by dual-energy X-ray absorptiometry and multi-frequency bioelectrical impedance in Chinese overweight and obesity adults].

    Science.gov (United States)

    Wang, Zhenghe; Fu, Lianguo; Yang, Yide; Wang, Shuo; Ma, Jun

    2016-05-01

    To compare consistency of Body Mineral Content (BMC, kg) assessed by Multi-frequency Bioelectrical Impedance Analysis ( MF-BIA) and Dual Energy X-ray Absorptiometry (DXA) measurement, providing evidence for MF-BIA accurate application in Chinese overweight/obese adults. A total of 1323 overweight/obesity adults aged 22-55 years were recruited voluntarily. All the subjects received the measurement of BMC both using MF-BIA and DXA. To evaluate the agreement of BMC measured by MF-BIA and DXA using interclass correlation coefficients (ICC), then establish correction prediction models. The mean difference of BMC between two methods was significant different with 0, overweight male subgroup was 0.28 kg, and 0.38 kg for obesity male, 0.24 kg for overweight female and 0.36 kg for obesity female, respectively (P BMC between MF-BIA and DXA measurement were statistically significant in all subgroups (P BMC (DXA method) = -0.297 + 1.005 x BMC (MF-BIA method). Obese male population: BMC (DXA method) =0.302 + 0.799 x BMC (MF-BIA method). Overweight female groups: BMC (DXA method) = 0.780 + 0.598 x BMC (MF-BIA method). Obese female group: BMC (DXA method) = 0.755 + 0.597 x BMC (MF-BIA method). Upon examination, correction prediction models were better. Co The correlation and agreement of BMC measured by BIA and DXA are weak in Chinese overweight/obese adults. Therefore, consideration should be given to BMC measured by BIA method in Chinese overweight/obese adults. It should be corrected or adjusted to reduce errors compared with DXA method.

  4. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  5. Radio Frequency Identification Queuing & Geo-Location (RAQGEO): A spatial solution to inventory management at XYZ Logistics, Inc

    Science.gov (United States)

    Griffiths, Bradley Joseph

    New supply chain management methods using radio frequency identification (RFID) and global positioning system (GPS) technology are quickly being adopted by companies as various inventory management benefits are being realized. For example, companies such as Nippon Yusen Kaisha (NYK) Logistics use the technology coupled with geospatial support systems for distributors to quickly find and manage freight containers. Traditional supply chain management methods require pen-to-paper reporting, searching inventory on foot, and human data entry. Some companies that prioritize supply chain management have not adopted the new technology, because they may feel that their traditional methods save the company expenses. This thesis serves as a pilot study that examines how information technology (IT) utilizing RFID and GPS technology can serve to increase workplace productivity, decrease human labor associated with inventorying, plus be used for spatial analysis by management. This pilot study represents the first attempt to couple RFID technology with Geographic Information Systems (GIS) in supply chain management efforts to analyze and locate mobile assets by exploring costs and benefits of implementation plus how the technology can be employed. This pilot study identified a candidate to implement a new inventory management method as XYZ Logistics, Inc. XYZ Logistics, Inc. is a fictitious company but represents a factual corporation. The name has been changed to provide the company with anonymity and to not disclose confidential business information. XYZ Logistics, Inc., is a nation-wide company that specializes in providing space solutions for customers including portable offices, storage containers, and customizable buildings.

  6. Challenges with the introduction of radio-frequency identification systems into a manufacturer's supply chain - a pilot study

    Science.gov (United States)

    Kumar, Sameer; Kadow, Brooke B.; Lamkin, Melissa K.

    2011-05-01

    As radio-frequency identification (RFID) implementation becomes more widespread it is important for managers to consider if this technology is right for their businesses. This study examines challenges of RFID implementation along with a cost-benefit analysis of a pharmaceuticals manufacturer's supply chain. Research was gathered from a variety of sources on the topic of RFID to provide an in-depth analysis of challenges and benefits found with RFID systems. Furthermore, the study reviews the real case applications of the RFID technology in healthcare and customer services. Many of the challenges with RFID stem from improper planning of the synchronisation of the supply chain and the integration of RFID technology into facilities and software systems. Customer privacy, excess information and obsolete technology are also of concern to companies considering RFID. Benefits such as increased information sharing, product visibility and real-time information help to offset these challenges. In addition, pharmaceuticals manufacturer real case application showed cost savings from reducing labour and decreased opportunities for lost product counteract the expense to implement an RFID system. This study will be of value to managers who are attempting to implement RFID technology in their companies. It is intended that readers, both academics and practitioners, will be able to identify possible challenges and mitigate them as the RFID technology is put into practice.

  7. PENGEMBANGAN PROTOTIPE SISTEM KONTROL MP3 PLAYER BERBASIS RADIO FREQUENCY IDENTIFICATION PADA SISTEM PELAYANAN INFORMASI OBJEK MUSEUM

    Directory of Open Access Journals (Sweden)

    I Gede Nurhayata

    2015-05-01

    Full Text Available Adanya perbedaan dalam penyampaian informasi objek museum secara lisan oleh beberapa pemandu wisata menunjukkan kurangnya standarisasi layanan informasi objek museum. Penelitian ini bertujuan menghasilkan prototipe perangkat elektronik mobile sebagai salah satu alternatif standarisasi sistem pelayanan informasi objek museum. Penelitian ini menerapkan metode pengembangan dengan dua sub sistem perangkat pelayanan informasi objek meliputi:1 sistem identifikasi objek museum berbasis Radio Frequency Identification (RFID dan 2 sistem penyampaian informasi audio berbasis MP3 Player. Sub sistem pertama bertujuan mengenali identitas objek museum melalui perangkat RFID reader.  Sedangkan sub sistem kedua, bertujuan mengakses dan memainkan file audio pada MP3 player sehingga didengar melalui headphone. Hasil penelitian pada tahun pertama ini berupa perangkat keras dan perangkat lunak dalam identifikasi Tag ID dan kode tombol remote kontrol MP3 player. Berdasarkan data kinerja perangkat lunak dapat disimpulkan bahwa mikrokontroler AT89S51 dalam identifikasi Tag ID dan kode tombol pada remote kontrol MP3 player telah bekerja sesuai rancangan yang diharapkan. Disamping itu telah berhasil mengakses nomor informasi file audio sesuai dengan nomor identitas objek.

  8. Could the Pharmaceutical Industry Benefit from Full-Scale Adoption of Radio-Frequency Identification (RFID) Technology with New Regulations?

    Science.gov (United States)

    Coustasse, Alberto; Kimble, Craig A; Stanton, Robert B; Naylor, Mariah

    2016-01-01

    Healthcare regulators are directing attention to the pharmaceutical supply chain with the passage of the Drug Quality and Security Act (DQSA) and the Drug Supply Chain Security Act (DSCSA). Adoption of Radio-Frequency Identification (RFID) technology has the ability to improve compliance, reduce costs, and improve safety in the supply chain but its implementation has been limited; primarily because of hardware and tag costs. The purpose of this research study was to analyze the benefits to the pharmaceutical industry and healthcare system of the adoption of RFID technology as a result of newly implemented supply chain regulations. The methodology was a review following the steps of a systematic review with a total of 96 sources used. With the DSCSA, pharmaceutical companies must track and trace prescription drugs across the supply chain, and RFID can resolve many track-and-trace issues with manufacturer control of data. The practical implication of this study is that pharmaceutical companies must continue to have the potential to increase revenues, decrease associated costs, and increase compliance with new FDA regulations with RFID. Still, challenges related to regulatory statute wording, implementation of two-dimensional barcode technology, and the variety of interfaces within the pharmaceutical supply chain have delayed adoption and its full implementation.

  9. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel

    2017-01-01

    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  10. Identification of benign and malignant thyroid nodules by in vivo iodine concentration measurement using single-source dual energy CT

    Science.gov (United States)

    Gao, Shun-Yu; Zhang, Xiao-Yan; Wei, Wei; Li, Xiao-Ting; Li, Yan-Ling; Xu, Min; Sun, Ying-Shi; Zhang, Xiao-Peng

    2016-01-01

    Abstract This study proposed to determine whether in vivo iodine concentration measurement by single-source dual energy (SSDE) CT can improve differentiation between benign and malignant thyroid nodules. In total, 53 patients presenting with thyroid nodules underwent SSDE CT scanning. Iodine concentrations were measured for each nodule and normal thyroid tissue using the GSI-viewer image analysis software. A total of 26 thyroid nodules were malignant in 26 patients and confirmed by surgery; 33 nodules from 27 patients were benign, with 10 confirmed by surgery and others after follow-up. Iodine concentrations with plain CT were significantly lower in malignant than benign nodules (0.47 ± 0.20 vs 1.17 ± 0.38 mg/mL, P = 0.00). Receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 0.93; with a cutoff of 0.67, iodine concentration showed 92.3% sensitivity and 88.5% specificity in diagnosing malignancy. Iodine concentration obtained by enhanced and plain CT were significantly higher in malignant than benign nodules (9.05 ± 3.35 vs 3.46 ± 2.24 mg/mL, P = 0.00). ROC curve analysis showed an AUC of 0.93; with a cutoff value of 3.37, iodine concentration displayed 78% sensitivity, 95% specificity in diagnosing malignancy. Combining unenhanced with enhanced iodine concentrations, the diagnostic equation was: Y = –8.641 × unenhanced iodine concentration + 0.663 × iodine concentration. ROC curve showed an AUC of 0.98 (95% CI, 0.94, 1.00). With Y ≥ –2 considered malignancy, diagnostic sensitivity and specificity were 96%, 96.3%, respectively. This study concluded that SSDE CT can detect the differences in iodine uptake and blood supply between benign and malignant thyroid lesions. PMID:27684811

  11. Stimulus variability and the phonetic relevance hypothesis: effects of variability in speaking style, fundamental frequency, and speaking rate on spoken word identification.

    Science.gov (United States)

    Sommers, Mitchell S; Barcroft, Joe

    2006-04-01

    Three experiments were conducted to examine the effects of trial-to-trial variations in speaking style, fundamental frequency, and speaking rate on identification of spoken words. In addition, the experiments investigated whether any effects of stimulus variability would be modulated by phonetic confusability (i.e., lexical difficulty). In Experiment 1, trial-to-trial variations in speaking style reduced the overall identification performance compared with conditions containing no speaking-style variability. In addition, the effects of variability were greater for phonetically confusable words than for phonetically distinct words. In Experiment 2, variations in fundamental frequency were found to have no significant effects on spoken word identification and did not interact with lexical difficulty. In Experiment 3, two different methods for varying speaking rate were found to have equivalent negative effects on spoken word recognition and similar interactions with lexical difficulty. Overall, the findings are consistent with a phonetic-relevance hypothesis, in which accommodating sources of acoustic-phonetic variability that affect phonetically relevant properties of speech signals can impair spoken word identification. In contrast, variability in parameters of the speech signal that do not affect phonetically relevant properties are not expected to affect overall identification performance. Implications of these findings for the nature and development of lexical representations are discussed.

  12. Radio Frequency Identification

    Indian Academy of Sciences (India)

    When I bought a car recently, I saw an RFID tag stuck to the windshield ..... is available, electronic sensor circuits can be added to the tag and the processor in the ... Decryption would be normally done by a back-end computer attached to the ...

  13. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.

    Science.gov (United States)

    Ji, Xiaoliang; Xie, Runting; Hao, Yun; Lu, Jun

    2017-10-01

    Quantitative identification of nitrate (NO 3 - -N) sources is critical to the control of nonpoint source nitrogen pollution in an agricultural watershed. Combined with water quality monitoring, we adopted the environmental isotope (δD-H 2 O, δ 18 O-H 2 O, δ 15 N-NO 3 - , and δ 18 O-NO 3 - ) analysis and the Markov Chain Monte Carlo (MCMC) mixing model to determine the proportions of riverine NO 3 - -N inputs from four potential NO 3 - -N sources, namely, atmospheric deposition (AD), chemical nitrogen fertilizer (NF), soil nitrogen (SN), and manure and sewage (M&S), in the ChangLe River watershed of eastern China. Results showed that NO 3 - -N was the main form of nitrogen in this watershed, accounting for approximately 74% of the total nitrogen concentration. A strong hydraulic interaction existed between the surface and groundwater for NO 3 - -N pollution. The variations of the isotopic composition in NO 3 - -N suggested that microbial nitrification was the dominant nitrogen transformation process in surface water, whereas significant denitrification was observed in groundwater. MCMC mixing model outputs revealed that M&S was the predominant contributor to riverine NO 3 - -N pollution (contributing 41.8% on average), followed by SN (34.0%), NF (21.9%), and AD (2.3%) sources. Finally, we constructed an uncertainty index, UI 90 , to quantitatively characterize the uncertainties inherent in NO 3 - -N source apportionment and discussed the reasons behind the uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A system utilizing radio frequency identification (RFID) technology to monitor individual rodent behavior in complex social settings.

    Science.gov (United States)

    Howerton, Christopher L; Garner, Joseph P; Mench, Joy A

    2012-07-30

    Pre-clinical investigation of human CNS disorders relies heavily on mouse models. However these show low predictive validity for translational success to humans, partly due to the extensive use of rapid, high-throughput behavioral assays. Improved assays to monitor rodent behavior over longer time scales in a variety of contexts while still maintaining the efficiency of data collection associated with high-throughput assays are needed. We developed an apparatus that uses radio frequency identification device (RFID) technology to facilitate long-term automated monitoring of the behavior of mice in socially or structurally complex cage environments. Mice that were individually marked and implanted with transponders were placed in pairs in the apparatus, and their locations continuously tracked for 24 h. Video observation was used to validate the RFID readings. The apparatus and its associated software accurately tracked the locations of all mice, yielding information about each mouse's location over time, its diel activity patterns, and the amount of time it was in the same location as the other mouse in the pair. The information that can be efficiently collected in this apparatus has a variety of applications for pre-clinical research on human CNS disorders, for example major depressive disorder and autism spectrum disorder, in that it can be used to quantify validated endophenotypes or biomarkers of these disorders using rodent models. While the specific configuration of the apparatus described here was designed to answer particular experimental questions, it can be modified in various ways to accommodate different experimental designs. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Readiness of hospitals affiliated with Shiraz university of medical sciences for implementation of radio frequency identification technology

    Directory of Open Access Journals (Sweden)

    Saeid Ebrahimi

    2015-10-01

    Full Text Available Introduction: Applying information technology in healthcare system is one of the most important criteria of the World Health Organization for evaluating the quality of healthcare systems of different countries. Moreover, applying this technology in different parts of health care system can create great potentials for improving the quality of healthcare services. In this regard, Radio Frequency Identification (RFID technology is one of the most practical technologies in identifying and collecting data. The present study aimed to compare the readiness of Shiraz University of medical sciences hospitals for implementation of RFID system in 2014. Method: This was a cross-sectional study conducted in 2014. The research population consisted of 110 senior and middle managers. Due to the limited research population, census method was used. The research tool was a questionnaire prepared by the researcher to investigate the hospitals’ readiness for implementation of RFID technology. Face and content validity of the questionnaire were approved by the experts. Cronbach’s alpha test was run to determine the reliability of the questionnaire (data were considered significant at p <0.05. Also, the data were analyzed in SPSS software using descriptive statistics (mean, standard deviation, and percentage and inferential statistics (one-way ANOVA. Results: The study showed that the readiness level of the hospitals was moderate. Comparing the mean of the total readiness level in the hospitals under the study revealed that there was a statistically significant difference between hospital M and other hospitals (P=0.003. However, the total readiness of hospital I was higher than others. Conclusion: Among 13 hospitals under the study, the hospitals I and A were moderately ready and others were not ready for implementation of RFID technology. Thus, considering various applications and advantages of RFID technology, it is suggested that the hospitals should prepare

  16. Sistem Keamanan Berlapis pada Ruangan Menggunakan RFID (Radio Frequency Identification dan Keypad untuk Membuka Pinta Secara Otomatis

    Directory of Open Access Journals (Sweden)

    Muhammad Chamdun

    2014-10-01

    Full Text Available This final project aims to design a door security device using RFID technology (Radio Frequency Identification and the keypad as a method of access into the room. The system will automatically give warning when the code is entered incorrectly or burglars entered by breaking the door. The microcontroller that is used as the central data processing is ATMega 16 microcontroller ATMEL production and security sensors are used PIR (Passive Infra Red and magnetic switches. The design begins with a schematic device hardware and software design using CodeVisionAVR programming. Implementation phase includes the implementation of the physical tools, programs, and sensors. The testing phase is done by testing the input sensors and exit switches, siren output devices, DC motor, LCD (Liquid Crystal Display, the RFID reader, keypad, and system controller. The results of room layered security system works according to design. PIR sensors can detect human activities and turn the LED lamp indicator on. Magnetic switch sensors will provide input to the microcontroller to enable or disable the DC motor as the room locking system. Admin menu that is accessed from the keypad is to add users, remove users, see registered users and change the password. User menu which is also accessed using the keypad, work as the room access using a username and password. This study resulted in the layered security. Room access is done using RFIDTag and password. The room piercing detection is done by sensor PIR (Passive Infra Red and magnetic switches. Alarm used as a piercing action warning. This layered room safety device produces a better security system.

  17. AN EMPIRICAL STUDY FOR RADIO FREQUENCY IDENTIFICATION (RFID ADOPTION BY SMEs IN THE TAIWANESE INFORMATION TECHNOLOGY (IT INDUSTRY

    Directory of Open Access Journals (Sweden)

    Hsin Chen

    2012-07-01

    Full Text Available Radio Frequency Identification (RFID technology represents a common standard for data storage and retrieval that could improve collaboration and data sharing between non-competing organisations. With the advent of RFID, organisations have the opportunity to rethink how their organisation will operate and integrate in the supply chain. Especially for Small to Medium Sized Enterprises (SMEs, that they have limited resources adopting such an innovative technology (i.e. RFID the adoption decision can be daunting. Literature indicates that SMEs that decide to go on with implementation have so far only a few guidelines from either private companies or public authorities regarding awareness on specific opportunities and risks. This research is therefore trying to explore in detail the factors that affect SMEs' RFID adoption in the Taiwan Information Technology (IT manufacturing industry. We are employing Exploratory Factor Analysis (EFA techniques and utilising a questionnaire survey in order to collect and analyse our data. After classifying the responding SMEs into three different adopters categories named ready adopter, initiator adopter and unprepared adopter using EFA technique our results show that each category has some specific adoption factors related to their unique situation. These are for ready adopters: cost and management, for initiator adopters: competitiveness and process efficiency and unprepared adopters: IT management difficulties, IT implementation difficulties and cost of implementation. A SMEs RFID adoption model is then proposed. It is anticipated that the findings of this research will not only enhance the research in RFID adoption in SMEs, but can also act as a reference for practitioners in the industry and researchers in the academic field.

  18. Outdoor stocking density in free-range laying hens: radio-frequency identification of impacts on range use.

    Science.gov (United States)

    Campbell, D L M; Hinch, G N; Dyall, T R; Warin, L; Little, B A; Lee, C

    2017-01-01

    The number and size of free-range laying hen (Gallus gallus domesticus) production systems are increasing within Australia in response to consumer demand for perceived improvement in hen welfare. However, variation in outdoor stocking density has generated consumer dissatisfaction leading to the development of a national information standard on free-range egg labelling by the Australian Consumer Affairs Ministers. The current Australian Model Code of Practice for Domestic Poultry states a guideline of 1500 hens/ha, but no maximum density is set. Radio-frequency identification (RFID) tracking technology was used to measure daily range usage by individual ISA Brown hens housed in six small flocks (150 hens/flock - 50% of hens tagged), each with access to one of three outdoor stocking density treatments (two replicates per treatment: 2000, 10 000, 20 000 hens/ha), from 22 to 26, 27 to 31 and 32 to 36 weeks of age. There was some variation in range usage across the sampling periods and by weeks 32 to 36 individual hens from the lowest stocking density on average used the range for longer each day (Prange with 2% of tagged hens in each treatment never venturing outdoors and a large proportion that accessed the range daily (2000 hens/ha: 80.5%; 10 000 hens/ha: 66.5%; 20 000 hens/ha: 71.4%). On average, 38% to 48% of hens were seen on the range simultaneously and used all available areas of all ranges. These results of experimental-sized flocks have implications for determining optimal outdoor stocking densities for commercial free-range laying hens but further research would be needed to determine the effects of increased range usage on hen welfare.

  19. Continuous time-resolved regional methane leak detection with on-line background estimation using a novel combination of dual frequency comb laser spectroscopy and atmospheric inversions

    Science.gov (United States)

    Alden, C. B.; Coburn, S.; Wright, R.; Baumann, E.; Cossel, K.; Sweeney, C.; Ghosh, S.; Newbury, N.; Prasad, K.; Coddington, I.; Rieker, G. B.

    2017-12-01

    Advances in natural gas extraction technology have led to increased US production and transport activity, and as a consequence, an increased need for monitoring of methane leaks. Current leak detection methods provide time snapshots, and not continuous, time-varying estimates of emissions. Most approaches also require specific atmospheric conditions, operators, or the use of a tracer gas, requiring site access. Given known intermittency in fugitive methane emissions, continuous monitoring is a critical need for emissions mitigation. We present a novel leak detection method that employs dual frequency comb spectrometry to offer continuous, autonomous, leak detection and quantification over square-km scale areas. The spectrometer is situated in a field of natural gas pads, and a series of retroreflectors around the field direct light back to a detector. The laser light spans 1620-1680 nm with 0.002 nm line spacing, measuring thousands of individual absorption features from multiple species. The result is high-stability trace gas (here CH4, CO2, and H2O) measurements over long (1 km+) open paths through the atmosphere. Measurements are used in an atmospheric inversion to estimate the time variability of emissions at each location of interest. Importantly, the measurement framework and inversion solve explicitly for background concentrations, which vary rapidly in fields of active oil and gas production. We present the results of controlled-leak field tests in rural Colorado. We demonstrate the ability to locate and size a leak located 1 km away from the spectrometer and varying in strength from 1.5 to 7.7 g/min, resulting in mean atmospheric enhancements of 20 ppb. The inversion correctly identifies when the leak turned on and off over a 24-hour period, and determines the mean leak strength to within 10% of the true controlled rate. We further demonstrate the ability of the system to correctly locate and size the start and end of simultaneous 2.7 to 4.8 g/min leaks

  20. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing.

    Directory of Open Access Journals (Sweden)

    Hansaim Lim

    2016-10-01

    Full Text Available Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing

  1. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing.

    Science.gov (United States)

    Lim, Hansaim; Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; He, Di; Zhuang, Luke; Meng, Patrick; Xie, Lei

    2016-10-01

    Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and

  2. The Exploration of Radio Frequency Identification (RFID) Application in the Retail Industry: Based on Wal-Mart, Tesco and Sainsburys Case Studies Analysis

    OpenAIRE

    Gao, Yucheng

    2010-01-01

    The purpose of this research is to show how radio frequency identification (RFID) benefits supply chain management and explore what difficulties will face by using this technology. It is based on the analysis of three real companies (Wal-Mart, Tesco and Sainsburys) to track how real organizations deploy RFID technology in their company, what problems they face and how operators plan strategies to overcome these difficulties. Furthermore, this research also indicates recommendations and soluti...

  3. Identification of modal parameters and spatial matrix in frequency domain. Basic theory; Shuhasu ryoiki ni okeru mode tokusei to tokusei gyoretsu no dotei. Kiso riron no kento

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, M [Isuzu Advanced Engineering Center, Ltd., Tokyo (Japan); Sugiura, T; Takaiwa, H; Nagamatsu, A [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    An approach is presented for the identification of spatial matrix with modal parameters in the frequency domain. Modal parameters are transformed to spatial matrix with constraints of modal vector orthogonality and characteristic equation. Adding the connecting conditions or unconnected conditions of measuring points, spatial matrix is determined by modal parameters whose number is smaller than that of dimension of spatial matrix. 9 refs., 4 figs., 2 tabs.

  4. The multipurpose application of radio frequency identification (RFID) in the Tourism industry: On a requirement analysis for employing RFID technology in the hotel sector

    OpenAIRE

    Hassannia, Raheleh

    2014-01-01

    ABSTRACT: This study tried to evaluate the effects of Radio Frequency Identification ( RFID) as the new and latest technological advancement towards the implementation of profit chain model (Heskett et al, 1997) on international tourists (inbound) in the case of North Cyprus. North Cyprus is blessed with natural endowments and proximity to tourist market, especially the European countries. It has numerous regional and geographical advantages for a full-blown tourism industry. The study has fo...

  5. Report on a 2009 mini-demonstration of the ARG-US Radio Frequency Identification (RFID) system in transportation

    International Nuclear Information System (INIS)

    Tsai, H.; Chen, K.; Jusko, M.; Craig, B.; Liu, Y.

    2009-01-01

    The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking and item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system

  6. Report on a 2009 mini-demonstration of the ARG-US Radio Frequency Identification (RFID) system in transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Chen, K.; Jusko, M.; Craig, B.; Liu, Y.; Decision and Information Sciences

    2009-11-23

    The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking and item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system

  7. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: moraetis@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)

    2011-06-15

    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  8. Measuring border delay and crossing times at the US-Mexico border : part II. Step-by-step guidelines for implementing a radio frequency identification (RFID) system to measure border crossing and wait times.

    Science.gov (United States)

    2012-06-01

    The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...

  9. Forensic speaker identification through comparative analysis of the formant frequencies of the vowels in the Macedonian language

    International Nuclear Information System (INIS)

    Pop-Dimitrijoska, V.; Apostolovska, G

    2012-01-01

    The main objective of this study is forensic speaker identification from an incriminated recording. The identification was made through a comparative analysis between first three formants F 1 , F 2 and F 3 of the voice samples from the questioned and suspects’ recordings. The measurements were made with the PRAAT software, for each of the five vowels in the Macedonian language: a, e, i, o and u, which were isolated from the recordings. Used methodology of recording examinations employed in this research showed positive identification of the questioned voice. The forensic audio analysis still doesn't have its place in legal and the crime fighting systems in Macedonia. This is a sufficient reason to put a bigger accent on the research of this issue in the future that will contribute in solving many criminal cases which until now, because of the type of generally accepted evidence, were not resolved. (Author)

  10. Utility of the heteroduplex assay (HDA) as a simple and cost-effective tool for the identification of HIV type 1 dual infections in resource-limited settings.

    Science.gov (United States)

    Powell, Rebecca L R; Urbanski, Mateusz M; Burda, Sherri; Nanfack, Aubin; Kinge, Thompson; Nyambi, Phillipe N

    2008-01-01

    The predominance of unique recombinant forms (URFs) of HIV-1 in Cameroon suggests that dual infection, the concomitant or sequential infection with genetically distinct HIV-1 strains, occurs frequently in this region; yet, identifying dual infection among large HIV cohorts in local, resource-limited settings is uncommon, since this generally relies on labor-intensive and costly sequencing methods. Consequently, there is a need to develop an effective, cost-efficient method appropriate to the developing world to identify these infections. In the present study, the heteroduplex assay (HDA) was used to verify dual or single infection status, as shown by traditional sequence analysis, for 15 longitudinally sampled study subjects from Cameroon. Heteroduplex formation, indicative of a dual infection, was identified for all five study subjects shown by sequence analysis to be dually infected. Conversely, heteroduplex formation was not detectable for all 10 HDA reactions of the singly infected study subjects. These results suggest that the HDA is a simple yet powerful and inexpensive tool for the detection of both intersubtype and intrasubtype dual infections, and that the HDA harbors significant potential for reliable, high-throughput screening for dual infection. As these infections and the recombinants they generate facilitate leaps in HIV-1 evolution, and may present major challenges for treatment and vaccine design, this assay will be critical for monitoring the continuing pandemic in regions of the world where HIV-1 viral diversity is broad.

  11. Ethical considerations and proposed guidelines for the use of radio frequency identification: especially concerning its use for promoting public safety and national security.

    Science.gov (United States)

    Anderson, Amber McKee; Labay, Vladimir

    2006-04-01

    Radio Frequency Identification (RFID) is quickly growing in its applications. A variety of uses for the technology are beginning to be developed, including chips which can be used in identification cards, in individual items, and for human applications, allowing a chip to be embedded under the skin. Such chips could provide numerous benefits ranging from day-to-day convenience to the increased ability of the federal government to adequately ensure the safety of its citizens. However, there are also valid concerns about the potential of this technology to infringe on privacy, creating fears of a surveillance society. These are concerns that must be addressed quickly, with sensitivity to individual interests and societal welfare, allowing humanity to reap the benefits of convenience and safety without paying an unacceptable price in the loss of privacy.

  12. Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization

    Science.gov (United States)

    Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd

    2018-02-01

    In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.

  13. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    Energy Technology Data Exchange (ETDEWEB)

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  14. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  15. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  16. Identification of the Most Effective Point of Connection for Battery Energy Storage Systems Focusing on Power System Frequency Response Improvement

    Directory of Open Access Journals (Sweden)

    Thiago Pieroni

    2018-03-01

    Full Text Available With the massive penetration of intermittent generation (wind and solar, the reduction of Electrical Power Systems’ (EPSs inertial frequency response represents a new challenge. One alternative to deal with this scenario may be the application of a Battery Energy Storage System (BESS. However, the main constraint for the massive deployment of BESSs is the high acquisition cost of these storage systems which in some situations, can preclude their use in transmission systems. The main goal of this paper is to propose a systematic procedure to include BESSs in power system aiming to improve the power system frequency response using full linear models and geometric measures. In this work, a generic battery model is developed in a two-area test system with assumed high wind penetration and full conventional generators models. The full power system is linearized, and the geometric measures of controllability associated with of the frequency regulation mode are estimated. Then, these results are used to identify the most effective point of connection for a BESS aiming at the improvement of the power system frequency response. Nonlinear time-domain simulations are carried out to evaluate and validate the results.

  17. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  18. Low frequency noise case study : identification and mitigation of a severe infrasonic tone from a mine shaft ventilation fan

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.D. [HGC Engineering, Mississauga, ON (Canada)

    2007-07-01

    This paper presented a solution for a severe low frequency infrasound problem experienced at a home near a large mine shaft ventilation fan in Dallas, West Virginia. Strong low frequency acoustic pulsations were detected as far as 200 metres from the fan. HGC Engineering was retained by the coal mine company to investigate the source of the problem and to find solutions. Controlling low frequency sound is a challenge because the wavelengths of sound are long at low frequencies. The relatively high level of acoustic energy of a low frequency sound or infrasound that is loud enough to be heard also presents a problem for noise control. In order to be effective, low frequency noise control measures must usually be large, bulky and expensive. In this study, HGC Engineering readily identified acoustic pulsations in the order of 75 dB at 15 Hz outside the residences. At 15 Hz, the infrasound was not audible at the residence, but was causing rattling of lightweight furnishings inside the home. The measured sound pressure level at 15 Hz was approximately 10 dB greater than the onset of risk for rattling and perceptible vibration. The vibration was also perceptible on the walls and windows of the dwellings. The vibration of the dwelling structure had a high measured coherence with the air-borne pulsations at 15 Hz, suggesting that the vibration was induced by the air-borne infrasonic pulsations. HGC Engineering determined that 15 Hz corresponded to the rotational speed of the fan. A reduction of 15 dB at 15 Hz was targeted, in order to reduce the perceptibility and risk of rattling at the residence. A tuned acoustic plenum was considered to be a viable method to silence the fan. In order to investigate the effectiveness of this approach, HGC Engineering conducted a preliminary analytical design and parametric study of an acoustic plenum tuned to 15 Hz. An analytical model was developed to determine the acoustic behaviour of the plenum. In addition, a numerical boundary

  19. Identification of a novel mutation in WFS1 in a family affected by low-frequency hearing impairment

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Juergen; Marquez-Klaka, Ben; Uebe, Steffen; Volz-Peters, Anja; Berger, Roswitha; Rausch, Peter

    2003-04-09

    Previously we confirmed linkage of autosomal dominantly inherited low-frequency sensorineural hearing impairment (LFSNHI) in a German family to the genetic locus DFNA6/DFNA14 on chromosome 4p16.3 close to the markers D4S432 and D4S431. Analysis of data from the Human Genome Project, showed that WFS1 is located in this region. Mutations in WFS1 are known to be responsible for Wolfram syndrome (DIDMOAD, MIM no. 606201), which follows an autosomal recessive trait. Studies in low-frequency hearing loss families showed that mutations in WFS1 were responsible for the phenotype. In all affected family members analysed, we detected a missense mutation in WFS1 (K705N) and therefore confirm the finding that the majority of mutations responsible for LFSNHI are missense mutations which localise to the C-terminal domain of the protein.

  20. Identification of a novel mutation in WFS1 in a family affected by low-frequency hearing impairment

    International Nuclear Information System (INIS)

    Kunz, Juergen; Marquez-Klaka, Ben; Uebe, Steffen; Volz-Peters, Anja; Berger, Roswitha; Rausch, Peter

    2003-01-01

    Previously we confirmed linkage of autosomal dominantly inherited low-frequency sensorineural hearing impairment (LFSNHI) in a German family to the genetic locus DFNA6/DFNA14 on chromosome 4p16.3 close to the markers D4S432 and D4S431. Analysis of data from the Human Genome Project, showed that WFS1 is located in this region. Mutations in WFS1 are known to be responsible for Wolfram syndrome (DIDMOAD, MIM no. 606201), which follows an autosomal recessive trait. Studies in low-frequency hearing loss families showed that mutations in WFS1 were responsible for the phenotype. In all affected family members analysed, we detected a missense mutation in WFS1 (K705N) and therefore confirm the finding that the majority of mutations responsible for LFSNHI are missense mutations which localise to the C-terminal domain of the protein

  1. An Improved Flux Observer for Field-Oriented Control of Induction Motors Based on Dual Second-Order Generalized Integrator Frequency-Locked Loop

    DEFF Research Database (Denmark)

    Xin, Zhen; Zhao, Rende; Blaabjerg, Frede

    2017-01-01

    with the conventional low-pass filter based method, the SOGI-FLL does not need compensation and can effectively attenuate the high-order harmonics in the back ElectroMotive Force (EMF). However, the dynamic performance of this method is not satisfactory because the back-EMF frequency estimated by FLL suffers from...

  2. Identification of low frequency anti-erythrocyte antibodies in chronically transfused patient with beta-thalassemia: a case report

    Directory of Open Access Journals (Sweden)

    Ana Rúbia Magalhães Ferreira

    2015-02-01

    Full Text Available The rate of erythrocyte alloimmunization in tranfusion-dependent patients can reach 50%, although the frequency of clinically relevant antibodies in transfused patients is not fully known, it is estimated that about 1% of patients are sensitized to each unit of transfused RBCs. The aim of this study is to report the case of  an 11-year-old girl with ?-thalassemia major, chronically transfused, which was detected in pre-transfusion protocol, the presence of two rare anti-erythrocyte antibodies: anti-Colton b (anti-Cob and anti-Lutheran 14 (anti-Lu14. To survey the clinical and laboratory patient history, research records filed in the archives of the university hospital in which the patient is monitored system was performed. The phenotyping erythrocyte in multitransfused patients is essential to decrease the risk of complications due to alloimmunization and estimate the availability of compatible blood. Thus, the report of this case may contribute to increase knowledge about of the real frequency of uncommon anti-erythrocyte antibodies in thalassemic patients.

  3. Dual High-Resolution α-Glucosidase and Radical Scavenging Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Minor and Major Constituents Directly from the Crude Extract of Pueraria lobata

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Qinglei, Sun

    2015-01-01

    The crude methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with hyphenated HPLC-HRMS-SPE-NMR. Direct analysis of the crude extract without preceding purification was facilitated by combining chromatograms...... from two analytical-scale HPLC separations of 120 and 600 μg on-column, respectively. High-resolution α-glucosidase and radical scavenging profiles were obtained after microfractionation of the eluate in 96-well microplates. This allowed full bioactivity profiling of individual peaks in the HPLC...... chromatogram of the crude methanol extract. Subsequent HPLC-HRMS-SPE-NMR analysis allowed identification of 21 known compounds in addition to two new compounds, i.e., 3′-methoxydaidzein 8-C-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside and 6″-O-malonyl-3′-methoxydaidzin, as well as an unstable compound...

  4. Identification of two-phase flow patterns in a nuclear reactor by the high-frequency contribution fraction

    International Nuclear Information System (INIS)

    Wang, Y.W.; Pei, B.S.; King, C.H.; Lee, S.C.

    1989-01-01

    Recently, King et al. and Wang et al. analyzed the fluctuating characteristics of differential pressure and void fraction by the optimum modeling method and by spectral analysis, respectively. These two investigations presented some new concepts and deterministic criteria, which are based on purely empirical formulas, to identify two-phase flow patterns. These deterministic criteria on two-phase flow patterns' identification seem to show reasonable performance. In King's and Wang's studies, there are at least three problems that need further investigations for the applications to the nuclear reactor engineering field. These three problems are the following: 1. Is the response to a certain two-phase flow pattern, i.e., the fluctuating characteristics, of neutrons the same as that of differential pressure or void fraction? 2. Could those criteria developed from air/water flow be allowed to identify steam/water two-phase flow patterns? 3. Could those criteria be applied to identify two-phase flow patterns in rod bundles? In this paper, parts of the investigated results answer the first problem, and detailed comparisons with the previous work of the authors are given on a variety of items

  5. The First Results of Monitoring the Formation and Destruction of the Ice Cover in Winter 2014-2015 on Ilmen Lake according to the Measurements of Dual-Frequency Precipitation Radar

    Science.gov (United States)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.

    2017-12-01

    The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.

  6. Characteristics of SiO{sub 2} etching with a C{sub 4}F{sub 8}/Ar/CHF{sub 3}/O{sub 2} gas mixture in 60-MHz/2-MHz dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, M. H.; Kang, S. K.; Park, J. Y.; Yeom, G. Y. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-11-15

    Nanoscale SiO{sub 2} contact holes were etched by using C{sub 4}F{sub 8}/CHF{sub 3}/O{sub 2}/Ar gas mixtures in dual frequency capacitively coupled plasmas (DF-CCPs) where a 60-MHz source power was applied to the top electrode while a 2-MHz bias power was applied to the bottom electrode. The initial increase in the CHF{sub 3} gas flow rate at a fixed CHF{sub 3}+O{sub 2} flow rate increased the SiO{sub 2} etch rate as well as SiO{sub 2} etch selectivity over that of the amorphous carbon layer (ACL). When the high-frequency (HF) power was increased both SiO{sub 2} etch rate and the etch selectivity over ACL were increased. For a 300 W/500 W power ratio of 60-MHz HF power/ 2-MHz low-freqeuncy (LF) and a gas mixture of Ar (140 sccm) /C{sub 4}F{sub 8} (30 sccm) /CHF{sub 3} (25 sccm) /O{sub 2} (5 sccm) while maintaining 20 mTorr, an anisotropic etch profile with an SiO{sub 2} etch rate of 3350 A/min and an etch selectivity of higher than 6 over ACL could be obtained.

  7. A practical approach to tramway track condition monitoring: vertical track defects detection and identification using time-frequency processing technique

    Directory of Open Access Journals (Sweden)

    Bocz Péter

    2018-03-01

    Full Text Available This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time–frequency distribution analysis and determines the defect locations. Admissible limits (thresholds are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.

  8. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    Science.gov (United States)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  9. Investigation and identification of etiologies involved in the development of acquired hydronephrosis in aged laboratory mice with the use of high-frequency ultrasound imaging

    Science.gov (United States)

    Springer, Danielle A.; Allen, Michele; Hoffman, Victoria; Brinster, Lauren; Starost, Matthew F.; Bryant, Mark; Eckhaus, Michael

    2014-01-01

    Laboratory mice develop naturally occurring lesions that affect biomedical research. Hydronephrosis is a recognized pathologic abnormality of the mouse kidney. Acquired hydronephrosis can affect any mouse, as it is caused by any naturally occurring disease that impairs free urine flow. Many etiologies leading to this condition are of particular significance to aging mice. Non-invasive ultrasound imaging detects renal pelvic dilation, renal enlargement, and parenchymal loss for pre-mortem identification of this condition. High-frequency ultrasound transducers produce high-resolution images of small structures, ideal for detecting organ pathology in mice. Using a 40 MHz linear array transducer, we obtained high-resolution images of a diversity of pathologic lesions occurring within the abdomen of seven geriatric mice with acquired hydronephrosis that enabled a determination of the underlying etiology. Etiologies diagnosed from the imaging results include pyelonephritis, neoplasia, urolithiasis, mouse urologic syndrome, and spontaneous hydronephrosis, and were confirmed at necropsy. A retrospective review of abdominal scans from an additional 149 aging mice shows that the most common etiologies associated with acquired hydronephrosis are mouse urologic syndrome and abdominal neoplasia. This report highlights the utility of high-frequency ultrasound for surveying research mice for age-related pathology, and is the first comprehensive report of multiple cases of acquired hydronephrosis in mice. PMID:25143818

  10. Identification of coronary artery anatomy on dual-source cardiac computed tomography before arterial switch operation in newborns and young infants. Comparison with transthoracic echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2018-02-15

    Considering inherent limitations of transthoracic echocardiography, the diagnostic accuracy of cardiac CT in identifying coronary artery anatomy before arterial switch operation needs to be investigated with recently improved coronary artery visibility using electrocardiogram (ECG)-synchronized dual-source CT. To compare diagnostic accuracy between cardiac CT using a dual-source scanner and transthoracic echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. The study included 101 infants (median age 4 days, range 0 days to 10 months; M:F=78:23) who underwent ECG-synchronized cardiac dual-source CT and transthoracic echocardiography before arterial switch operation between July 2011 and December 2016. We evaluated and classified coronary artery anatomy on cardiac CT and transthoracic echocardiography. With the surgical findings as the reference standard, we compared the diagnostic accuracy for identifying coronary artery anatomy between cardiac CT and transthoracic echocardiography. The most common coronary artery pattern was the usual pattern (left coronary artery from sinus 1 and right coronary artery from sinus 2; 64.4%, 65/101), followed by a single coronary artery from sinus 2 and a conal branch from sinus 1 (7.9%, 8/101), the inverted pattern (5.9%, 6/101), the right coronary artery and left anterior descending artery from sinus 1 and the left circumflex artery from sinus 2 (5.9%, 6/101), and others. In 96 infants with surgically proven coronary artery anatomy, the diagnostic accuracy of cardiac CT was significantly higher than that of transthoracic echocardiography (91.7%, 88/96 vs. 54.2%, 52/96; P<0.0001). Diagnostic accuracy of cardiac CT is significantly higher than that of echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. (orig.)

  11. Identification of coronary artery anatomy on dual-source cardiac computed tomography before arterial switch operation in newborns and young infants. Comparison with transthoracic echocardiography

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2018-01-01

    Considering inherent limitations of transthoracic echocardiography, the diagnostic accuracy of cardiac CT in identifying coronary artery anatomy before arterial switch operation needs to be investigated with recently improved coronary artery visibility using electrocardiogram (ECG)-synchronized dual-source CT. To compare diagnostic accuracy between cardiac CT using a dual-source scanner and transthoracic echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. The study included 101 infants (median age 4 days, range 0 days to 10 months; M:F=78:23) who underwent ECG-synchronized cardiac dual-source CT and transthoracic echocardiography before arterial switch operation between July 2011 and December 2016. We evaluated and classified coronary artery anatomy on cardiac CT and transthoracic echocardiography. With the surgical findings as the reference standard, we compared the diagnostic accuracy for identifying coronary artery anatomy between cardiac CT and transthoracic echocardiography. The most common coronary artery pattern was the usual pattern (left coronary artery from sinus 1 and right coronary artery from sinus 2; 64.4%, 65/101), followed by a single coronary artery from sinus 2 and a conal branch from sinus 1 (7.9%, 8/101), the inverted pattern (5.9%, 6/101), the right coronary artery and left anterior descending artery from sinus 1 and the left circumflex artery from sinus 2 (5.9%, 6/101), and others. In 96 infants with surgically proven coronary artery anatomy, the diagnostic accuracy of cardiac CT was significantly higher than that of transthoracic echocardiography (91.7%, 88/96 vs. 54.2%, 52/96; P<0.0001). Diagnostic accuracy of cardiac CT is significantly higher than that of echocardiography in identifying coronary artery anatomy before arterial switch operation in newborns and young infants. (orig.)

  12. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  13. Failures during Load-Frequency Control Maneuvers in an Upgraded Hydropower Plant: Causes, Identification of Causes and Solution Proposals

    Directory of Open Access Journals (Sweden)

    Juan I. Pérez-Díaz

    2015-09-01

    Full Text Available The objective of this paper is to investigate the cause of several unexpected high amplitude oscillations that occurred in the surge tank water level of a real hydropower plant during secondary load-frequency control (LFC maneuvers, after the replacement of the turbine runner, and to propose solutions that allow the power plant to continue providing secondary LFC in a safe and reliable manner. For this purpose, a simulation model has been developed and calibrated from data gathered during several on-site tests. Two different solutions are proposed in order to cope with the observed problem: using a state-dependent load change rate limiter or modifying the hydro turbine governor gains; the turbine governor remains the same as before the runner replacement. The proposed solutions are tested against a set of realistic secondary LFC signals by means of simulations and compared to each other as a function of the probability that the surge tank water level descends below a minimum safe level and the quality of the secondary LFC response. The results presented in the paper demonstrate the validity of the methodology proposed to determine the state-dependent ramp limit, as well as its effectiveness to prevent the surge tank drawdown and to provide clear insight into the trade-off between response quality and power plant safety.

  14. Evidence for Sexual Reproduction: Identification, Frequency, and Spatial Distribution of Venturia effusa (Pecan Scab) Mating Type Idiomorphs.

    Science.gov (United States)

    Young, Carolyn A; Bock, Clive H; Charlton, Nikki D; Mattupalli, Chakradhar; Krom, Nick; Bowen, Joanna K; Templeton, Matthew; Plummer, Kim M; Wood, Bruce W

    2018-05-10

    Venturia effusa (syn. Fusicladium effusum), causal agent of pecan scab, is the most prevalent pathogen of pecan (Carya illinoinensis), causing severe yield losses in the southeastern United States. V. effusa is currently known only by its asexual (conidial) stage. However, the degree and distribution of genetic diversity observed within and among populations of V. effusa are typical of a sexually reproducing fungal pathogen, and comparable with other dothideomycetes with a known sexual stage, including the closely related apple scab pathogen, V. inaequalis. Using the mating type (MAT) idiomorphs from V. inaequalis, we identified a single MAT gene, MAT1-1-1, in a draft genome of V. effusa. The MAT1-1-1 locus is flanked by two conserved genes encoding a DNA lyase (APN2) and a hypothetical protein. The MAT locus spanning the flanking genes was amplified and sequenced from a subset of 14 isolates, of which 7 contained MAT1-1-1 and the remaining samples contained MAT1-2-1. A multiplex polymerase chain reaction screen was developed to amplify MAT1-1-1, MAT1-2-1, and a conserved reference gene encoding β-tubulin, and used to screen 784 monoconidial isolates of V. effusa collected from 11 populations of pecan across the southeastern United States. A hierarchical sampling protocol representing region, orchard, and tree allowed for analysis of MAT structure at different spatial scales. Analysis of this collection revealed the frequency of the MAT idiomorphs is in a 1:1 equilibrium of MAT1-1:MAT1-2. The apparent equilibrium of the MAT idiomorphs provides impetus for a renewed effort to search for the sexual stage of V. effusa. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  15. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  16. Identification and Validation of a Potent Dual Inhibitor of the P. falciparum M1 and M17 Aminopeptidases Using Virtual Screening.

    Directory of Open Access Journals (Sweden)

    Chiara Ruggeri

    Full Text Available The Plasmodium falciparum PfA-M1 and PfA-M17 metalloaminopeptidases are validated drug targets for the discovery of antimalarial agents. In order to identify dual inhibitors of both proteins, we developed a hierarchical virtual screening approach, followed by in vitro evaluation of the highest scoring hits. Starting from the ZINC database of purchasable compounds, sequential 3D-pharmacophore and molecular docking steps were applied to filter the virtual 'hits'. At the end of virtual screening, 12 compounds were chosen and tested against the in vitro aminopeptidase activity of both PfA-M1 and PfA-M17. Two molecules showed significant inhibitory activity (low micromolar/nanomolar range against both proteins. Finally, the crystal structure of the most potent compound in complex with both PfA-M1 and PfA-M17 was solved, revealing the binding mode and validating our computational approach.

  17. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  18. Searching for dual active galactic nuclei

    Indian Academy of Sciences (India)

    K. Rubinur

    2018-02-09

    Feb 9, 2018 ... Abstract. Binary or dual active galactic nuclei (DAGN) are expected from galaxy formation theories. How- ... cuss results from the multi-frequency Expanded Very .... mid-IR color using WISE observations where they have.

  19. Prediction of Safety Stock Using Fuzzy Time Series (FTS and Technology of Radio Frequency Identification (RFID for Stock Control at Vendor Managed Inventory (VMI

    Directory of Open Access Journals (Sweden)

    Mashuri Chamdan

    2018-01-01

    Full Text Available This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS and technology of Radio Frequency Identification (RFID for stock control at Vendor Managed Inventory (VMI. Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.

  20. Prediction of Safety Stock Using Fuzzy Time Series (FTS) and Technology of Radio Frequency Identification (RFID) for Stock Control at Vendor Managed Inventory (VMI)

    Science.gov (United States)

    Mashuri, Chamdan; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS) and technology of Radio Frequency Identification (RFID) for stock control at Vendor Managed Inventory (VMI). Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.

  1. Design and Analysis of Double-Gate MOSFETs for Ultra-Low Power Radio Frequency Identification (RFID: Device and Circuit Co-Design

    Directory of Open Access Journals (Sweden)

    Tony T. Kim

    2011-07-01

    Full Text Available Recently, double-gate MOSFETs (DGMOSFETs have been shown to be more optimal for ultra-low power circuit design due to the improved subthreshold slope and the reduced leakage current compared to bulk CMOS. However, DGMOSFETs for subthreshold circuit design have not been much explored in comparison to those for strong inversion-based design. In this paper, various configurations of DGMOSFETs, such as tied/independent gates and symmetric/asymmetric gate oxide thickness are explored for ultra-low power and high efficient radio frequency identification (RFID design. Comparison of bulk CMOS with DGMOSFETs has been conducted in ultra-low power subthreshold digital logic design and rectifier design, emphasizing the scope of the nano-scale DGMOSFET technology for future ultra-low power systems. The DGMOSFET-based subthreshold logic improves energy efficiency by more than 40% compared to the bulk CMOS-based logic at 32 nm. Among the various DGMOSFET configurations for RFID rectifiers, symmetric tied-gate DGMOSFET has the best power conversion efficiency and the lowest power consumption.

  2. Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences

    Science.gov (United States)

    Butsch Kovacic, Melinda; Biagini Myers, Jocelyn M.; Wang, Ning; Martin, Lisa J.; Lindsey, Mark; Ericksen, Mark B.; He, Hua; Patterson, Tia L.; Baye, Tesfaye M.; Torgerson, Dara; Roth, Lindsey A.; Gupta, Jayanta; Sivaprasad, Umasundari; Gibson, Aaron M.; Tsoras, Anna M.; Hu, Donglei; Eng, Celeste; Chapela, Rocío; Rodríguez-Santana, José R.; Rodríguez-Cintrón, William; Avila, Pedro C.; Beckman, Kenneth; Seibold, Max A.; Gignoux, Chris; Musaad, Salma M.; Chen, Weiguo; Burchard, Esteban González; Khurana Hershey, Gurjit K.

    2011-01-01

    Background Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes. Methodology/Principal Findings Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (pasthma (OR = 2.3, pasthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach. Conclusions/Significance Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes. PMID:21912604

  3. Dual Entwining Structures and Dual Entwined Modules

    OpenAIRE

    Abuhlail, Jawad Y.

    2003-01-01

    In this note we introduce and investigate the concepts of dual entwining structures and dual entwined modules. This generalizes the concepts of dual Doi-Koppinen structures and dual Doi-Koppinen modules introduced (in the infinite case over rings) by the author is his dissertation.

  4. [Dual pathology].

    Science.gov (United States)

    Rougier, A

    2008-05-01

    Dual pathology is defined as the association of two potentially epileptogenic lesions, hippocampal (sclerosis, neuronal loss) and extrahippocampal (temporal or extratemporal). Epileptic activity may be generated by either lesion and the relative importance of every lesion's epileptogenicity conditions the surgical strategy adopted. Most frequently associated with hippocampal sclerosis are cortical dysplasias. The common physiopathology of the two lesions is not clearly established. Extrahippocampal lesions may be undetectable on MRI (microdysgenesis, for example) and ictal discharge patterns may vary among dual pathology patients. The surgical strategy depends on the location of the extrahippocampal lesion and its relative role in seizure generation; however, reported surgical results suggest that simultaneous resection of mesial temporal structures along with the extrahippocampal lesion should be performed.

  5. Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis.

    Science.gov (United States)

    Oeljeklaus, Silke; Reinartz, Benedikt S; Wolf, Janina; Wiese, Sebastian; Tonillo, Jason; Podwojski, Katharina; Kuhlmann, Katja; Stephan, Christian; Meyer, Helmut E; Schliebs, Wolfgang; Brocard, Cécile; Erdmann, Ralf; Warscheid, Bettina

    2012-04-06

    The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.

  6. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson; John D. Huchton; Teralene S. Foxx

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and

  7. A review of radio frequency identification technology for the anatomic pathology or biorepository laboratory: Much promise, some progress, and more work needed.

    Science.gov (United States)

    Lou, Jerry J; Andrechak, Gary; Riben, Michael; Yong, William H

    2011-01-01

    Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and

  8. A review of radio frequency identification technology for the anatomic pathology or biorepository laboratory: Much promise, some progress, and more work needed

    Directory of Open Access Journals (Sweden)

    Jerry J Lou

    2011-01-01

    Full Text Available Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic

  9. Determination of the exposure to electromagnetic fields arising from radiofrequency identification technology (RFID) application. Final report; Bestimmung der Exposition gegenueber elektromagnetischen Feldern, die durch den Einsatz von Radio Frequency Identification (RFID) Technologien entstehen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Gernot; Ueberbacher, Richard; Cecil, Stefan; Escorihuela-Navarro, Ana; Sainitzer, David; Weinfurter, Andreas [Seibersdorf Labor GmbH, Seibersdorf (Austria). Fachbereich EMV, Geschaeftsfeld EMC and Optics

    2012-08-15

    In the frame of this project the extent of personal exposure against electromagnetic fields caused by various types of RFID equipment has been analyzed based on measurements on selected devices and numerical computations considering practically relevant exposure scenarios. The obtained results were assessed according to the ICNIRP guidelines published in 1998. Moreover, numerical computations were carried out in order to estimate disturbance voltages induced at the input of cardiac pacemakers. All relevant frequency bands used by present RFID devices were considered. With respect to RFID transponders it was shown that they do not cause relevant exposure. Exposure figures caused by typical active RFID transponders can be expected several orders of magnitude below the corresponding basic restrictions according to ICNIRP 1998. For the assessment of exposure caused by RFID reader devices a differentiation of device categories and operating frequencies is necessary. Small reader devices or handheld readers with operating ranges less than approximately 10 cm, e.g., for reading from or writing to electronic passports, tickets, etc., are based on inductive coupling at operating frequencies 13,56 MHz and 120 kHz. From the obtained results it can be concluded that these devices cause exposure well below the ICNIRP 1998 basic restrictions. Similarly, also measurement and computational results for inductively coupled RF access control and identification systems (13,56 MHz) with even higher operating ranges up to approximately 80 cm indicate that exposure above the basic restrictions is not to be expected for such devices under usual conditions in practice. In contrast, the obtained results for inductively coupled LF reading devices with operating ranges up to approximately 80 cm (operating frequency 120-125 kHz) showed that induced current densities in the central nervous tissue above the basic restrictions are possible for particular devices if a person approaches the

  10. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Wubshet, Sileshi G; Tahtah, Yousof; Heskes, Allison M; Kongstad, Kenneth T; Pateraki, Irini; Hamberger, Björn; Møller, Birger L; Staerk, Dan

    2016-04-22

    According to the International Diabetes Federation, type 2 diabetes (T2D) has reached epidemic proportions, affecting more than 382 million people worldwide. Inhibition of protein tyrosine phosphatase-1B (PTP1B) and α-glucosidase is a recognized therapeutic approach for management of T2D and its associated complications. The lack of clinical drugs targeting PTP1B and side effects of the existing α-glucosidase drugs, emphasize the need for new drug leads for these T2D targets. In the present work, dual high-resolution PTP1B and α-glucosidase inhibition profiles of Eremophila gibbosa, E. glabra, and E. aff. drummondii "Kalgoorlie" were used for pinpointing α-glucosidase and/or PTP1B inhibitory constituents directly from the crude extracts. A subsequent targeted high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) analysis and preparative-scale HPLC isolation led to identification of 21 metabolites from the three species, of which 16 were serrulatane-type diterpenoids (12 new) associated with either α-glucosidase and/or PTP1B inhibition. This is the first report of serrulatane-type diterpenoids as potential α-glucosidase and/or PTP1B inhibitors.

  11. A dual spectroscopic fluorescence probe based on carbon dots for detection of 2,4,6-trinitrophenol/Fe (III) ion by fluorescence and frequency doubling scattering spectra and its analytical applications.

    Science.gov (United States)

    Xu, Jinxia; Bai, Zhangjun; Zu, Fanlin; Yan, Fanyong; Wei, Junfu; Zhang, Saihui; Luo, Yunmei

    2018-07-05

    A convenient, highly sensitive and reliable assay for 2,4,6‑trinitrophenol (TNP) and Fe (III) ion (Fe 3+ ) in the dual spectroscopic manner is developed based on novel carbon dots (CDs). The CDs with highly blue emitting fluorescent were easily prepared via the one-step potassium hydroxide-assisted reflux method from dextrin. The as-synthesized CDs exhibited the high crystalline quality, the excellent fluorescence characteristics with a high quantum yield of ~13.1%, and the narrow size distribution with an average diameter of 6.3±0.5nm. Fluorescence and frequency doubling scattering (FDS) spectra of CDs show the unique changes in the presence of TNP/Fe 3+ by different mechanism. The fluorescence of CDs decreased apparently in the presence of TNP via electron-transfer. Thus, after the experimental conditions were optimized, the linear range for detection TNP is 0-50μM, the detection limit was 19.1nM. With the addition of Fe 3+ , the FDS of CDs appeared to be highly sensitive with a quick response to Fe 3+ as a result of the change concentration of the scattering particle. The emission peak for FDS at 450nm was enhanced under the excitation wavelength at 900nm. The fluorescence response changes linearly with Fe 3+ concentration in the range of 8-40μM, the detection limits were determined to be 44.1nM. The applications of CDs were extended for the detection of TNP, Fe 3+ in real water samples with a high recovery. The results reported here may become the potential tools for the fast response of TNP and Fe 3+ in the analysis of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Dual-pulse frequency compounded superharmonic imaging

    NARCIS (Netherlands)

    Neer, P.L.M.J. van; Danilouchkine, M.G.; Matte, G.M.; Steen, A.F.W. van der; Jong, N. de

    2011-01-01

    Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and

  13. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  14. Real-time monitoring for detection of retained surgical sponges and team motion in the surgical operation room using radio-frequency-identification (RFID) technology: a preclinical evaluation.

    Science.gov (United States)

    Kranzfelder, Michael; Zywitza, Dorit; Jell, Thomas; Schneider, Armin; Gillen, Sonja; Friess, Helmut; Feussner, Hubertus

    2012-06-15

    Technical progress in the surgical operating room (OR) increases constantly, facilitating the development of intelligent OR systems functioning as "safety backup" in the background of surgery. Precondition is comprehensive data retrieval to identify imminent risky situations and inaugurate adequate security mechanisms. Radio-frequency-identification (RFID) technology may have the potential to meet these demands. We set up a pilot study investigating feasibility and appliance reliability of a stationary RFID system for real-time surgical sponge monitoring (passive tagged sponges, position monitoring: mayo-stand/abdominal situs/waste bucket) and OR team tracking (active transponders, position monitoring: right/left side of OR table). In vitro: 20/20 sponges (100%) were detected on the mayo-stand and within the OR-phantom, however, real-time detection accuracy declined to 7/20 (33%) when the tags were moved simultaneously. All retained sponges were detected correctly. In vivo (animal): 7-10/10 sterilized sponges (70%-100%) were detected correctly within the abdominal cavity. OR-team: detection accuracy within the OR (surveillance antenna) and on both sides of the OR table (sector antenna) was 100%. Mean detection time for position change (left to right side and contrariwise) was 30-60 s. No transponder failure was noted. This is the first combined RFID system that has been developed for stationary use in the surgical OR. Preclinical evaluation revealed a reliable sponge tracking and correct detection of retained textiles (passive RFID) but also demonstrated feasibility of comprehensive data acquisition of team motion (active RFID). However, detection accuracy needs to be further improved before implementation into the surgical OR. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Evaluation of hand hygiene compliance and associated factors with a radio-frequency-identification-based real-time continuous automated monitoring system.

    Science.gov (United States)

    Dufour, J-C; Reynier, P; Boudjema, S; Soto Aladro, A; Giorgi, R; Brouqui, P

    2017-04-01

    Hand hygiene is a major means for preventing healthcare-associated infections. One critical point in understanding poor compliance is the lack of relevant markers used to monitor practices systematically. This study analysed hand hygiene compliance and associated factors with a radio-frequency-identification-based real-time continuous automated monitoring system in an infectious disease ward with 17 single bedrooms. Healthcare workers (HCWs) were tracked while performing routine care over 171 days. A multi-level multi-variate logistics model was used for data analysis. The main outcome measures were hand disinfection before entering the bedroom (outside use) and before entering the patient care zone, defined as the zone surrounding the patient's bed (inside/bedside use). Variables analysed included HCWs' characteristics and behaviour, patients, room layouts, path chains and duration of HCWs' paths. In total, 4629 paths with initial hand hygiene opportunities when entering the patient care zone were selected, of which 763 (16.5%), 285 (6.1%) and 3581 (77.4%) were associated with outside use, inside/bedside use and no use, respectively. Hand hygiene is caregiver-dependent. The shorter the duration of the HCW's path, the worse the bedside hand hygiene. Bedside hand hygiene is improved when one or two extra HCWs are present in the room. Hand hygiene compliance at the bedside, as analysed using the continuous monitoring system, depended upon the HCW's occupation and personal behaviour, number of HCWs, time spent in the room and (potentially) dispenser location. Meal tray distribution was a possible factor in the case of failure to disinfect hands. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Relationships between range access as monitored by radio frequency identification technology, fearfulness, and plumage damage in free-range laying hens.

    Science.gov (United States)

    Hartcher, K M; Hickey, K A; Hemsworth, P H; Cronin, G M; Wilkinson, S J; Singh, M

    2016-05-01

    Severe feather-pecking (SFP), a particularly injurious behaviour in laying hens (Gallus gallus domesticus), is thought to be negatively correlated with range use in free-range systems. In turn, range use is thought to be inversely associated with fearfulness, where fearful birds may be less likely to venture outside. However, very few experiments have investigated the proposed association between range use and fearfulness. This experiment investigated associations between range use (time spent outside), fearfulness, plumage damage, and BW. Two pens of 50 ISA Brown laying hens (n=100) were fitted with radio frequency identification (RFID) transponders (contained within silicone leg rings) at 26 weeks of age. Data were then collected over 13 days. A total of 95% of birds accessed the outdoor run more than once per day. Birds spent an average duration of 6.1 h outside each day over 11 visits per bird per day (51.5 min per visit). The top 15 and bottom 15 range users (n=30), as determined by the total time spent on the range over 13 days, were selected for study. These birds were tonic immobility (TI) tested at the end of the trial and were feather-scored and weighed after TI testing. Birds with longer TI durations spent less time outside (P=0.01). Plumage damage was not associated with range use (P=0.68). The small group sizes used in this experiment may have been conducive to the high numbers of birds utilising the outdoor range area. The RFID technology collected a large amount of data on range access in the tagged birds, and provides a potential means for quantitatively assessing range access in laying hens. The present findings indicate a negative association between fearfulness and range use. However, the proposed negative association between plumage damage and range use was not supported. The relationships between range use, fearfulness, and SFP warrant further research.

  17. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  18. Frequency and precision of feedback and the adaptive process of learning a dual motor task Frecuencia y necesidad de feedback en el proceso adaptativo de aprendizaje de una tarea motora dual Frequência e precisão de "feedback" e o processo adaptativo de aprendizagem de uma tarefa motora de dupla demanda

    Directory of Open Access Journals (Sweden)

    Cássio Miranda Meira Junior

    2012-09-01

    Full Text Available This work investigated the effects of frequency and precision of feedback on the learning of a dual-motor task. One hundred and twenty adults were randomly assigned to six groups of different knowledge of results (KR, frequency (100%, 66% or 33% and precision (specific or general levels. In the stabilization phase, participants performed the dual task (combination of linear positioning and manual force control with the provision of KR. Ten non-KR adaptation trials were performed for the same task, but with the introduction of an electromagnetic opposite traction force. The analysis showed a significant main effect for frequency of KR. The participants who received KR in 66% of the stabilization trials showed superior adaptation performance than those who received 100% or 33%. This finding reinforces that there is an optimal level of information, neither too high nor too low, for motor learning to be effective.El presente estudio investigó los efectos de la frecuencia y necesidad de feedback en el aprendizaje de una tarea motora de dupla demanda. 120 adultos fueron aleatoriamente designados a seis grupos de diferentes niveles de frecuencia (100%, 66% o 33% y necesidad (específico o general de conocimiento de resultados (CR. En la fase de estabilización, la tarea de posicionamiento lineal y control de fuerza manual fue ejecutada con CR. Diez tentativas de adaptación sin CR fueron ejecutadas durante la misma tarea, con la introducción de una fuerza electromagnética contraria a la dirección del movimiento. El análisis indicó efecto significativo en el factor "Frecuencia de CR": aquellos que recibieron CR en 66% de las tentativas de estabilización obtuvieron desempeño de adaptación superior cuando comparados a aquellos que recibieron 100% o 33% de CR. Ese resultado refuerza la existencia de un nivel óptimo de información, ni muy alto ni muy bajo, para que el aprendizaje sea optimizado.O presente estudo investigou os efeitos da frequ

  19. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining

    International Nuclear Information System (INIS)

    Campton, Daniel E; Ramirez, Arturo B; Nordberg, Joshua J; Drovetto, Nick; Clein, Alisa C; Varshavskaya, Paulina; Friemel, Barry H; Quarre, Steve; Breman, Amy; Dorschner, Michael; Blau, Sibel; Blau, C Anthony; Sabath, Daniel E; Stilwell, Jackie L; Kaldjian, Eric P

    2015-01-01

    Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte® – CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. AccuCyte – CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. The AccuCyte

  20. Pairs of dual periodic frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2012-01-01

    The time–frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame...... is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...