WorldWideScience

Sample records for dual focus optical

  1. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    Science.gov (United States)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-07-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations.

  2. Optical dual self functions

    Institute of Scientific and Technical Information of China (English)

    华建文; 刘立人; 王宁

    1997-01-01

    A recipe to construct the exact dual self-Fourier-Fresnel-transform functions is shown, where the Dirac comb function and transformable even periodic function are used. The mathematical proof and examples are given Then this kind of self-transform function is extended to the feasible optical dual self-transform functions.

  3. Focusing-schlieren visualization in a dual-mode scramjet

    Science.gov (United States)

    Kouchi, Toshinori; Goyne, Christopher P.; Rockwell, Robert D.; McDaniel, James C.

    2015-12-01

    Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique's ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.

  4. Miniature electrically tunable rotary dual-focus lenses

    Science.gov (United States)

    Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya

    2016-03-01

    The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.

  5. Focus issue introduction: nonlinear optics.

    Science.gov (United States)

    Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori

    2011-11-07

    It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.

  6. Optical sharper focusing in an anisotropic crystal.

    Science.gov (United States)

    Wang, Sicong; Xie, Xiangsheng; Gu, Min; Zhou, Jianying

    2015-06-01

    Optical super-resolution technique through tight focusing is a widely used technique to image material samples with anisotropic optical properties. The knowledge of the field distribution of a tightly focused beam in anisotropic media is both scientifically interesting and technologically important. In this paper, the optical properties of a uniaxial crystal with the optic axis perpendicular to the interface under a tight focusing configuration are studied with rigorous theoretical and numerical analysis. The significant effect of the Poynting vector on the focal position introduces an obvious displacement of the focal spot formed by the extraordinary waves (e-ray). Moreover, a sharper focus with a lateral size of 0.22λ is obtained as a result of the effective separation of the ordinary waves (o-ray) and the e-ray. It provides a new tool to fabricate optical structures with higher resolutions than that in an isotropic medium through the far-field method.

  7. Focus issue introduction: optical cooling and trapping.

    Science.gov (United States)

    Neves, Antonio A R; Jones, Philip H; Luo, Le; Maragò, Onofrio M

    2015-04-20

    The year 2015 is an auspicious year for optical science, as it is being celebrated as the International Year of Light and Light-Based Technologies. This Focus Issue of the journals Optics Express and Journal of the Optical Society of America B has been organized by the OSA Technical Group on Optical Cooling and Trapping to mark this occasion, and to highlight the most recent and exciting developments in the topics covered by the group. Together this joint Focus Issue features 32 papers, including both experimental and theoretical works, which span this wide range of activities.

  8. Dual-rail optical gradient echo memory

    CERN Document Server

    Higginbottom, Daniel B; Campbell, Geoff T; Hosseini, Mahdi; Cao, Ming Tao; Sparkes, Ben M; Bernu, Julian; Robins, Nick P; Lam, Ping Koy; Buchler, Ben C

    2016-01-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  9. Spectral domain optical coherence tomography with dual-balanced detection

    Science.gov (United States)

    Bo, En; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Nanshuo; Wang, Xianghong; Liu, Linbo

    2016-03-01

    We developed a spectral domain optical coherence tomography (SD-OCT) system employing dual-balanced detection (DBD) for direct current term suppression and SNR enhancement, especially for auto-autocorrelation artifacts reduction. The DBD was achieved by using a beam splitter to building a free-space Michelson interferometer, which generated two interferometric spectra with a phase difference of π. These two phase-opposed spectra were guided to the spectrometer through two single mode fibers of the 8 fiber v-groove array and acquired by ultizing the upper two lines of a three-line CCD camera. We rotated this fiber v-groove array by 1.35 degrees to focus two spectra onto the first and second line of the CCD camera. Two spectra were aligned by optimum spectrum matching algorithm. By subtracting one spectrum from the other, this dual-balanced detection system achieved a direct current term suppression of ~30 dB, SNR enhancement of ~3 dB, and auto-autocorrelation artifacts reduction of ~10 dB experimentally. Finally we respectively validated the feasibility and performance of dual-balanced detection by imaging a glass plate and swine corneal tissue ex vivo. The quality of images obtained using dual-balanced detection was significantly improved with regard to the conventional single-detection (SD) images.

  10. Evaluation of the accuracy and repeatability of the dual channel dual focus optical coherence tomography for the whole eye%双通道双焦点光学相干断层扫描仪的研制及其准确性和重复性检测

    Institute of Scientific and Technical Information of China (English)

    杨璇; 杨顺海; 冯旺强; 查屹; 郑海华

    2013-01-01

    Objective To evaluate a custom-buih dual channel dual focus spectral domain optical coherence tomography (OCT) instrument for imaging the whole eye in vivo,to demonstrate the feasibility and repeatability of this OCT instrument to measure anterior chamber depth and axial length compared to the IOLMaster.Methods In a cross-sectional self-control study,21 volunteers (39 eyes) without a history of ocular disease were enrolled.The anterior chamber depth (ACD) and total axial length (AL) were measured by the custom-built dual channel dual focus OCT and IOLMaster on the first day,and then by the OCT on the second day.The measurements of the two instruments were compared and the measurements with the OCT were compared for the 2 days.A paired t test,Pearson correlation analysis and Bland-Altman analysis were used for data analysis.Results The ocular surfaces from the cornea to the retina could be assessed with this newly built dual channel dual focus spectral domain OCT in real time.The mean and standard deviation of the real anterior chamber depth and total axial length measured by the OCT system were 3.09±0.20 mm and 25.34±0.64 mm,respectively.No significant differences were found in the measurements with OCT taken on different days (t=-1.648,1.129; P>0.05).The mean and standard deviation of the anterior chamber depth and total axial length measured by IOLMaster were 3.58±0.21 mm and 25.24±0.65 mm,respectively.The mean and standard deviation of the anterior chamber depth by OCT was 3.64±0.20 mm.There was a significant difference in measuring the anterior chamber depth and total axial length with the OCT and IOLMaster (t=12.942,8.984,P<0.05).There was a high correlation in anterior chamber depth (r=0.990,P<0.01) and total axial length (r=0.997,P<0.01) measurements by the 2 devices.The 95% LoA (limits of agreement) were +0.001 mm to +0.119 mm and-0.018 mm to +0.178 mm for measurements of ACD and AL by the OCT and IOLMaster.Conclusion Real-time whole eye

  11. EDITORIAL: Focus on Cloaking and Transformation Optics

    Science.gov (United States)

    Leonhardt, Ulf; Smith, David R.

    2008-11-01

    coordinate transformations. If the coordinates they conjure up run backwards one gets negative refraction, if they exclude some region of space one makes anything inside invisible [4]. In physics, general relativity has honed the theoretical tools for understanding curved space and curved-coordinate transformations. In transformation optics, general relativity has become a theoretical tool for solving practical engineering problems [4]. What an unorthodox connection! This focus issue represents a snapshot of this rapidly developing research area. It is not restricted to optics or electromagnetism, though. Metamaterials for acoustics also exist and can be applied in ways similar to optical metamaterials. So transformation optics not only attracts an unusual mix of scientists, but also spans a range of applications in optics and beyond. Transformation optics has the potential to transform optics, for example by visualizing invisibility and making materials beyond materials—metamaterials. But before we transgress the boundaries to the hermeneutics of transformation optics [5], let the papers speak for themselves. References [1] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X 2008 Science 321 930 [2] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nature 455 376 [3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977 [4] Leonhardt U and Philbin T G 2006 New J. Phys. 8 247 [5] Sokal A D 1996 Social Text 14(46/47) 217 Focus on Cloaking and Transformation Optics Contents Transformation optics for the full dielectric electromagnetic cloak and metal-dielectric planar hyperlens D P Gaillot, C Croënne, F Zhang and D Lippens Transmutation of singularities in optical instruments Tomáš Tyc and Ulf Leonhardt Electromagnetic cloaking with canonical spiral inclusions K Guven, E Saenz, R Gonzalo, E Ozbay and S Tretyakov Theory and potentials of multi-layered plasmonic covers for

  12. Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy.

    Science.gov (United States)

    Korlann, You; Dertinger, Thomas; Michalet, Xavier; Weiss, Shimon; Enderlein, Jörg

    2008-09-15

    We present a new technique, polarization-modulation dual-focus fluorescence correlation spectroscopy (pmFCS), based on the recently intro-duced dual-focus fluorescence correlation spectroscopy (2fFCS) to measure the absolute value of diffusion coefficients of fluorescent molecules at pico- to nanomolar concentrations. Analogous to 2fFCS, the new technique is robust against optical saturation in yielding correct values of the diffusion coefficient. This is in stark contrast to conventional FCS where optical saturation leads to an apparent decrease in the determined diffusion coefficient with increasing excitation power. However, compared to 2fFCS, the new technique is simpler to implement into a conventional confocal microscope setup and is compatible with cw-excitation, only needing as add-ons an electro-optical modulator and a differential interference contrast prism. With pmFCS, the measured diffusion coefficient (D) for Atto655 maleimide in water at 25?C is determined to be equal to (4.09 +/- 0.07) x 10(-6)cm(2)/s, in good agreement with the value of 4.04 x 10-6cm2/s as measured by 2fFCS.

  13. Focus characteristics of long distance flying optics

    Institute of Scientific and Technical Information of China (English)

    程兆谷; 蒋金波; 李现勤; 许国良; 夏金安; W.M.Steen; G.Dearden

    2000-01-01

    The ABCD law for the complex parameter q of the TEM00 Gaussian beam is generally not valid for high-order modes. It can be used for the high-order modes or their superposition when the spot size w in the virtual part of the parameter q is substituted by the Rayleigh range ZR of a certain resonator. The focus characteristics of long distance flying optics are studied in this paper theoretically and experimentally for the TEMmn Gaussian beams between the two types of resonators without and with distortion. It is very important for the applications of the flying optical processing, the laser space craft and the spatial filter in the large laser project.

  14. Remote nano-optical beam focusing lens by illusion optics

    Science.gov (United States)

    Margousi, David; Shoorian, Hamed Reza

    2014-08-01

    In this paper, as a new application of illusion optics, a nano-optical plasmonic focusing lens structure is proposed to manipulate the light remotely by employing illusion optics theory. Plasmonic nano-optic lenses that enable super-focusing beyond the diffraction limit have been proposed as an alternative to the conventional dielectric-based refractive lenses. In the presence of an illusion device, the electromagnetic plane-waves can penetrate into a metal layer and a clear focus appears. When the illusion device is removed, waves are blocked to transmit through the metal wall. In comparison with conventional methods, our proposed method avoids any physical changes or damages in the original structure. The proposed structure can be realized by isotropic layered materials, using effective medium theory. The special feature of the proposed structure and the device concepts introduced in this work gives it an opportunity to be used as a flexible element in ultrahigh nano-scale integrated circuits for miniaturization and tuning purposes.

  15. New oral anticoagulants and dual antiplatelet therapy: Focus on apixaban.

    Science.gov (United States)

    Pelliccia, Francesco; Rollini, Fabiana; Marazzi, Giuseppe; Greco, Cesare; Gaudio, Carlo; Angiolillo, Dominick J; Rosano, Giuseppe

    2016-12-15

    The combination of AF and coronary artery disease not only is a common clinical setting, it is also a complex setting to deal with anticoagulation and antiplatelet therapy, and it is associated with significantly higher mortality rates. Unfortunately, there are no sufficient data available to optimally guide clinical practice in such settings. This review focuses specifically on newer oral anticoagulants (NOACs) associated with dual antiplatelet therapy (DAPT) in patients with coronary artery disease undergoing percutaneous coronary intervention (PCI). There are no randomized studies comparing vitamin K antagonists and NOACs in patients with AF undergoing PCI either for acute coronary syndromes or for stable patients, i.e. those patients who have an indication to receive DAPT. Moreover, new antiplatelet agents such as ticagrelor and prasugrel have entered the market for acute coronary syndromes. So far, there are no large-scale randomized studies published evaluating these newer antiplatelet agents in patients with AF receiving either vitamin K antagonists or NOACs, adding to the uncertainty on how to use these antithrombotics in combination when both coronary artery disease (unstable or stable patients) and AF converge in a given patient. The lack of large outcome trials and the large number of possible combinations are reflected in the wide variety of practices in the real world. To date, given the lack of data, watchfulness when using NOACs as component of DAPT or triple oral antithrombotic therapy is warranted.

  16. Forewords Focus Issue of Nano Optics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Rapid progress of nanoscience and nanotechnology has made significant impact on many academic disciplines and technical fields recently. In particular, nano-optics has become one of the fastest growing areas in optics and optoelectronics with many exciting advances published in a wide range of journals. This focus issue intends to provide a broad vision of this emerging area with the inclusion of excellent review articles by internationally renowned experts in the field as well as original contributions which cover the breadth of this new field. The represented areas include quantum dots and nanowires, photonic crystals, silicon photonics, vertical cavity surface emitting lasers, slow light and fast light, nano-particles and nano-crystals, and guided optics. We would like to express our gratitude to authors of the invited manuscripts to devote their precious time to write the illuminating articles and reviewers for their thorough reading and helpful comments. Finally, we hope you will enjoy the articles and find inspiration for your own work.

  17. Focus issue introduction: nonlinear optics 2013.

    Science.gov (United States)

    Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C

    2013-12-16

    Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.

  18. Initial research of dual wavelength fibre optic perimeter sensor

    Science.gov (United States)

    Zyczkowski, M.; Kondrat, M.; Ciurapinski, W.

    2005-10-01

    The dual wavelength fibre optic perimeter sensor bases on input signals measurements in an arrangement of fibre optic Michelson and Sagnac interferometers with a 3 × 3 coupler and two semiconductor lasers. For 3 km long sensor we obtained 20-50m resolution of determination of disturbance point.

  19. Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media

    CERN Document Server

    Lai, Puxiang; Tay, Jian Wei; Wang, Lihong V

    2014-01-01

    Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to address this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in...

  20. Optical characterization of nonimaging focusing heliostat

    Science.gov (United States)

    Chong, Kok-Keong

    2011-10-01

    A novel nonimaging focusing heliostat consisted of many small movable element mirrors that can be dynamically maneuvered in a line-tilting manner has been proposed for the astigmatic correction in a wide range of incident angle from 0° to 70°. In this article, a comprehensive optical characterization of the new heliostat with total reflective area of 25 m2 and slant range of 25 m using ray-tracing method has been carried to analyze the performance including solar concentration ratio, ratio of aberrated-to-ideal image area, intercept efficiency and spillage loss. The optical characterization of the heliostat in the application of solar power tower system has embraced the cases of 1×1, 9×9, 11×11, 13×13, 15×15, 17×17 and 19×19 arrays of concave mirrors provided that the total reflective area remains the same. The simulated result has shown that the maximum solar concentration ratio at a high incident angle of 65° can be improved from 1.76 suns (single mirror) to 104.99 suns (9×9 mirrors), to 155.93 suns (11×11 mirrors), to 210.44 suns (13×13 mirrors), to 246.21 suns (15×15 mirrors), to 259.80 suns (17×17 mirrors) and to 264.73 suns (19×19 mirrors).

  1. Optical Force and Torque on Dipolar Dual Chiral Particles

    CERN Document Server

    Rahimzadegan, Aso; Alaee, Rasoul; Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    On the one hand, electromagnetic dual particles preserve the helicity of light upon interaction. On the other hand, chiral particles respond differently to light of opposite helicity. These two properties on their own constitute a source of fascination. Their combined action, however, is less explored. Here, we study on analytical grounds the force and torque as well as the optical cross sections of dual chiral particles in dipolar approximation exerted by a wave of well-defined helicity, i.e. a circularly polarized plane wave. We put emphasis on particles that possess a maximally electromagnetic chiral and hence dual response. Besides the analytical insights, we also investigate the exerted optical force and torque on a real particle at the example of a metallic helix that is designed to approach the maximal electromagnetic chirality condition. Various applications in the context of optical sorting but also nanorobotics can be perceived considering the particles studied in this contribution.

  2. CATE 2016 Indonesia: Optics and Focus Strategy

    Science.gov (United States)

    McKay, M. A.; Jenson, L.; Kovac, S. A.; Bosh, R.; Mitchell, A. M.; Hare, H. S.; Watson, Z.; Penn, M. J.

    2016-12-01

    The 2017 solar eclipse will be a natural phenomenon that will sweep across the United State would provide an excellent opportunity to observe and study the solar corona. The Citizens Continental Astronomical Telescopic Eclipse (CATE) Experiment directed my Matt Penn, intends to take advantage of this scientific opportunity by organizing 60 sites along the path of totality from Oregon to South Carolina to observe the eclipse and make a 90 min continuous video of the solar corona. The preliminary observation was done with the 2016 eclipse in Indonesia, with 5 sites along the path of totality. The sites were provided with an 80mm diameter Telescope with a 480mm focal length with an extension tube, Celestron equatorial mount, a CMOS camera, a Dell dual processor running Windows, GPS and an Arduino box, more details will be provided. I observed at the furthest east site in Ternate, Indonesia, with Dr. Donald Walter. The day of the eclipse we had clouds but still had a successful observation. The observation was successful with 4 out of the 5 sites collected eclipse data, due to weather the other site was not able to observe. The data was then collected and processed over the summer. To prepare for the observation in 2017, the 60 sites will be provided with the equipment, software and training. The groups will then practice by doing solar and lunar observations, where they will follow an almost identical procedure for the eclipse to do their observations. These test will increase our chances to have a successful observation among all sites. The focus will play a crucial role in this observation to provide a high quality image. Currently, a new focusing method using an image derivative method to provide quantitative feedback to the user is being developed. Finally, a Graphical User Interface is also being developed using the codes produces from the summer 2016 data analysis, to process the images from each site with minimal effort and produce quality scientific images

  3. Constructing Dual Beam Optical Tweezers for Undergraduate Biophysics Research

    Science.gov (United States)

    Daudelin, Brian; West-Coates, Devon; Del'Etoile, Jon; Grotzke, Eric; Paramanathan, Thayaparan

    Optical tweezing, or trapping, is a modern physics technique which allows us to use the radiation pressure from laser beams to trap micron sized particles. Optical tweezers are commonly used in graduate level biophysics research but seldom used at the undergraduate level. Our goal is to construct a dual beam optical tweezers for future undergraduate biophysical research. Dual beam optical tweezers use two counter propagating laser beams to provide a stronger trap. In this study we discuss how the assembly of the dual beam optical tweezers is done through three main phases. The first phase was to construct a custom compressed air system to isolate the optical table from the vibrations from its surroundings so that we can measure pico-newton scale forces that are observed in biological systems. In addition, the biomaterial flow system was designed with a flow cell to trap biomolecules by combining several undergraduate semester projects. During the second phase we set up the optics to image and display the inside of the flow cell. Currently we are in the process of aligning the laser to create an effective trap and developing the software to control the data collection. This optical tweezers set up will enable us to study potential cancer drug interactions with DNA at the single molecule level and will be a powerful tool in promoting interdisciplinary research at the undergraduate level.

  4. Model: A Dual Focused Intervention for Depression and Addiction.

    Science.gov (United States)

    Lysaught, Eileen; Wodarski, John S.

    1996-01-01

    Describes how adolescents are affected by depression and alcohol dependence and offers a treatment plan for a dual diagnosis. The plan consists of an adolescent group and family program to facilitate and maintain behavioral changes in treatment. The benefits of this treatment and rationale for its application are discussed. (LSR)

  5. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2003-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduce s background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  6. Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2004-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduces background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  7. DIRECTIVITY PATTERN INVESTIGATION OF DUAL FIBER OPTIC HYDROPHONE

    Directory of Open Access Journals (Sweden)

    M. E. Efimov

    2015-11-01

    Full Text Available Subject of Research. The paper provides comparison of theoretical and experimental research results of directivity pattern of dual fiber optic hydrophone at various acoustic frequencies. Application of multiple fiber optic transducers in fiber optic hydrophone design placed in sensitive arm of the interferometer gives the possibility for increasing the sensitivity of a fiber optic hydrophone without changing the fiber-optic transducers. In the simplest case, such fiber optic hydrophone can be built on the basis of two spatially separated acoustic transducers. However, this diversity inevitably leads to the directivity pattern unevenness of the fiber optic hydrophone at acoustic frequencies which wavelengths are commensurate with the size of the transducers system. Method. Mathematical model has been created and it became the base material for a theoretical study of two acoustic transducers system in Mathcad environment. Directivity pattern was described by a mathematical formula, depending on the frequency of the acoustic impact and the distance between sensors. To confirm the correctness of theoretical research of the directivity pattern, dual fiber optic hydrophone on Bragg gratings was produced and investigated experimentally. It consists of two consequently welded sensitive elements with a 9 cm distance between them. In trials carried out in open water conditions, fiber-optic hydrophone was placed on the rotator and rotated relative to the piezoceramic emitter for 360 degrees. During investigation, the signal from a fiber optic hydrophone has been recorded simultaneously with the rotation. Further, after the data processing in MATLAB, amplitude of the measured phase signal and the directivity pattern of the test sample were estimated. Amplitude estimation of the measured phase signal and directivity pattern creation of the sample was performed at frequencies equal to 1000, 3000 and 8000 Hz. Main Results. Sensitivity of the dual fiber optic

  8. Experimental research on dual polarized laser optical feedback microscope

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; ZHANG Shu-lian; TAN Yi-dong

    2005-01-01

    The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights' intensities separately with a Wollaston prism instead of to detect the whole light's intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.

  9. Optical fibres bringing the LHC into focus

    CERN Multimedia

    2003-01-01

    New components are being added to CERN's optical fibre network, which will transport the torrents of data produced by the LHC. 1500 kilometres of cables will be installed in the tunnels and at ground level.

  10. Dual Ion Beam Deposition Of Diamond Films On Optical Elements

    Science.gov (United States)

    Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.

    1990-01-01

    Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.

  11. Dual identities: organizational negotiation in STEM-focused Catholic schools

    Science.gov (United States)

    Kloser, Matthew; Wilsey, Matthew; Hopkins, Dawn W.; Dallavis, Julie W.; Lavin, Erin; Comuniello, Michael

    2017-06-01

    In the last decade, STEM-focused schools have opened their doors nationally in the hope of meeting students' contemporary educational needs. Despite the growth of these STEM-focused institutions, minimal research exists that follows how schools make a transition toward a STEM focus and what organizational structures are most conducive to a successful transition. The adoption of a STEM focus has clear implications for a school's organizational identity. For Catholic schools, the negotiation of a new STEM focus is especially complex, as Catholic schools have been shown to generally possess a distinct religious and cultural organizational identity. The adoption of a second, STEM-focused identity raises questions about whether and how these identities can coexist. Framed by perspectives on organizational identity and existing conceptualizations of the cultural and religious hallmarks of Catholic schools, this study utilizes a multiple-case study design to explore the organizational transition of four Catholic K-8 institutions to Catholic STEM-focused schools. These cases demonstrate the particular challenges of negotiating multiple organizational identities. While variation existed in how the four schools accommodated these identities, the most promising environments for successful transition drew upon an aggregative model of identity negotiation, that is, when schools attended to both identities, but ensured that the original Catholic identity of the school remained foundational to all decisions. The least successful identity negotiations occurred when there was a lack of common understanding about what comprised a STEM-focused school, leading to minimal buy-in from stakeholders or when a school sought to make the transition for recruitment or marketing rather than mission-driven reasons. Discussion of the more successful identity aggregation provides a framework for schools within and beyond the religious sector that desire to adopt an additional STEM-focused

  12. Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2015-01-01

    A time-reversal array in multimode fiber is proposed for lossless remotely controlled switching using passive optical splitters. The signal to be transmitted is digitally pre-distorted so that it is routed through the physical layer in order to arrive at only one receiver in an array. System...

  13. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.

    Science.gov (United States)

    Heller, Iddo; Laurens, Niels; Vorselen, Daan; Broekmans, Onno D; Biebricher, Andreas S; King, Graeme A; Brouwer, Ineke; Wuite, Gijs J L; Peterman, Erwin J G

    2017-01-01

    Optical manipulation techniques provide researchers the powerful ability to directly move, probe and interrogate molecular complexes. Quadruple optical trapping is an emerging method for optical manipulation and force spectroscopy that has found its primary use in studying dual DNA interactions, but is certainly not limited to DNA investigations. The key benefit of quadruple optical trapping is that two molecular strands can be manipulated independently and simultaneously. The molecular geometries of the strands can thus be controlled and their interactions can be quantified by force measurements. Accurate control of molecular geometry is of critical importance for the analysis of, for example, protein-mediated DNA-bridging, which plays an important role in DNA compaction. Here, we describe the design of a dedicated and robust quadruple optical trapping-instrument. This instrument can be switched straightforwardly to a high-resolution dual trap and it is integrated with microfluidics and single-molecule fluorescence microscopy, making it a highly versatile tool for correlative single-molecule analysis of a wide range of biomolecular systems.

  14. Nonlinear interface optical switch structure for dual mode switching revisited

    Science.gov (United States)

    Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph

    1998-07-01

    There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.

  15. A dual-modal retinal imaging system with adaptive optics.

    Science.gov (United States)

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua

    2013-12-02

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  16. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  17. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  18. SRAO: optical design and the dual-knife-edge WFS

    CERN Document Server

    Ziegler, Carl; Tokovinin, Andrei

    2016-01-01

    The Southern Robotic Adaptive Optics (SRAO) instrument will bring the proven high-efficiency capabilities of Robo-AO to the Southern-Hemisphere, providing the unique capability to image with high-angular-resolution thousands of targets per year across the entire sky. Deployed on the modern 4.1m SOAR telescope located on Cerro Tololo, the NGS-AO system will use an innovative dual-knife-edge wavefront sensor, similar to a pyramid sensor, to enable guiding on targets down to V=16 with diffraction limited resolution in the NIR. The dual-knife-edge wavefront sensor can be up to two orders of magnitude less costly than custom glass pyramids, with similar wavefront error sensitivity and minimal chromatic aberrations. SRAO is capable of observing hundreds of targets a night through automation, allowing ?confirmation and characterization of the large number of exoplanets produced by current and future missions.

  19. SRAO: optical design and the dual-knife-edge WFS

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Tokovinin, Andrei

    2016-07-01

    The Southern Robotic Adaptive Optics (SRAO) instrument will bring the proven high-efficiency capabilities of Robo-AO to the Southern-Hemisphere, providing the unique capability to image with high-angular-resolution thousands of targets per year across the entire sky. Deployed on the modern 4.1m SOAR telescope located on Cerro Tololo, the NGS AO system will use an innovative dual-knife-edge wavefront sensor, similar to a pyramid sensor, to enable guiding on targets down to V=16 with diffraction limited resolution in the NIR. The dual-knife-edge wavefront sensor can be up to two orders of magnitude less costly than custom glass pyramids, with similar wavefront error sensitivity and minimal chromatic aberrations. SRAO is capable of observing hundreds of targets a night through automation, allowing confirmation and characterization of the large number of exoplanets produced by current and future missions.

  20. Digital ultrasonically encoded (DUE) optical focusing into random media

    CERN Document Server

    Tay, Jian Wei; Suzuki, Yuta; Wang, Lihong V

    2013-01-01

    Focusing light into opaque random or scattering media such as biological tissue is a much sought-after goal for biomedical applications such as photodynamic therapy, optical manipulation, and photostimulation. However, focusing with conventional lenses is restricted to one transport mean free path in scattering media, limiting both optical penetration depth and resolution. Focusing deeper is possible by using optical phase conjugation or wavefront shaping to compensate for the scattering. For practical applications, wavefront shaping offers the advantage of a robust optical system that is less sensitive to optical misalignment. Here, the phase of the incident light is spatially tailored using a phase-shifting array to pre-compensate for scattering. The challenge, then, is to determine the phase pattern which allows light to be optimally delivered to the target region. Optimization algorithms are typically employed for this purpose, with visible particles used as targets to generate feedback. However, using th...

  1. Optical illumination and critical dimension analysis using the through-focus focus metric method

    Science.gov (United States)

    Attota, Ravikiran; Silver, Richard M.; Potzick, James

    2006-08-01

    In this paper we present recent developments in optical microscope image analysis using both, best focus optical image as well as those images conventionally considered out of focus for metrology applications. Depending on the type of analysis, considerable information can be deduced with the additional use of the out of focus optical images. One method for analyzing the complete set of images is to calculate the total "edge slope" from an image, as the target is moved through-focus. A plot of the sum of the mean square slope is defined as the through-focus focus metric. We present a unique method for evaluating the angular illumination homogeneity in an optical microscope (with Koehler illumination configuration), based on the through-focus focus metric approach. Both theoretical simulations and experimental results are presented to demonstrate this approach. We present a second application based on the through-focus focus metric method for evaluating critical dimensions (CD) with demonstrated nanometer sensitivity for both experimental and optical simulations. An additional approach to analyzing the complete set of images is to assemble or align the through focus image intensity profiles such that the x-axis represents the position on the target, the y-axis represents the focus (or defocus) position of the target with respect to the lens and the z-axis represents the image intensity. This two-dimensional image is referred to as the through focus image map. Using recent simulation results we apply the through focus image map to CD and overlay analysis and demonstrate nanometer sensitivity in the theoretical results.

  2. Long-focus reflective optical elements for technological application

    Science.gov (United States)

    Tolstopyatov, Eugene M.

    1998-09-01

    Simple and cheap long-focus optical systems consisting of cylindrical mirrors are proposed to use in processes of laser processing of materials (cutting, welding, thin film deposition by evaporation). Methods of calculation of the focusing systems of this type are developed and aberrations are estimated. Optical system was used as a part of installation for thin alloys and polymer films deposition as well as for manufacturing PTFE wool and PTFE porous material.

  3. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  4. Compensating focusing for space hyper spectral imager's fore optical system

    Institute of Scientific and Technical Information of China (English)

    Yicha Zhang; Wei Liu

    2011-01-01

    @@ The performance of space hyper spectral imager is severely affected by turbulent orbit temperature. Turbulence results in a defocus in the fore optical system of the imager. To address this problem, a focusing system is added. A number of simulation methods are applied on the fore optical system to study the relationship between temperature and focusing. In addition, this process is conducted to obtain a practical reference for focusing while the imager is flying on orbit. The obtained correlation between focusing and temperature is proven effective based on ground imaging and simulation testing.%The performance of space hyper spectral imager is severely affected by turbulent orbit temperature. Turbulence results in a defocus in the fore optical system of the imager. To address this problem, a focusing system is added. A number of simulation methods are applied on the fore optical system to study the relationship between temperature and focusing. In addition, this process is conducted to obtain a practical reference for focusing while the imager is flying on orbit. The obtained correlation between focusing and temperature is proven effective based on ground imaging and simulation testing.

  5. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators

    Science.gov (United States)

    Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu

    2008-11-01

    A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.

  6. Impaired dual tasking in Parkinson's disease is associated with reduced focusing of cortico-striatal activity.

    Science.gov (United States)

    Nieuwhof, Freek; Bloem, Bastiaan R; Reelick, Miriam F; Aarts, Esther; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Toni, Ivan; Helmich, Rick C

    2017-03-17

    Impaired dual tasking, namely the inability to concurrently perform a cognitive and a motor task (e.g. 'stops walking while talking'), is a largely unexplained and frequent symptom of Parkinson's disease. Here we consider two circuit-level accounts of how striatal dopamine depletion might lead to impaired dual tasking in patients with Parkinson's disease. First, the loss of segregation between striatal territories induced by dopamine depletion may lead to dysfunctional overlaps between the motor and cognitive processes usually implemented in parallel cortico-striatal circuits. Second, the known dorso-posterior to ventro-anterior gradient of dopamine depletion in patients with Parkinson's disease may cause a funnelling of motor and cognitive processes into the relatively spared ventro-anterior putamen, causing a neural bottleneck. Using functional magnetic resonance imaging, we measured brain activity in 19 patients with Parkinson's disease and 26 control subjects during performance of a motor task (auditory-cued ankle movements), a cognitive task (implementing a switch-stay rule), and both tasks simultaneously (dual task). The distribution of task-related activity respected the known segregation between motor and cognitive territories of the putamen in both groups, with motor-related responses in the dorso-posterior putamen and task switch-related responses in the ventro-anterior putamen. During dual task performance, patients made more motor and cognitive errors than control subjects. They recruited a striatal territory (ventro-posterior putamen) not engaged during either the cognitive or the motor task, nor used by controls. Relatively higher ventro-posterior putamen activity in controls was associated with worse dual task performance. These observations suggest that dual task impairments in Parkinson's disease are related to reduced spatial focusing of striatal activity. This pattern of striatal activity may be explained by a loss of functional segregation

  7. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Po-Chien Chou

    2011-05-01

    Full Text Available Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system.

  8. Optical properties of mouse brain tissue after optical clearing with FocusClear™

    Science.gov (United States)

    Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard

    2015-09-01

    Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.

  9. Optical fiber sensor for tracking line-focus solar collectors.

    Science.gov (United States)

    Wiczer, J J

    1982-08-01

    Currently there is a need to provide an alignment monitor feedback signal to the tracking mechanism of line-focus trough-type concentrating solar collectors. We report here on the novel use of an optical fiber as a distributed integrating sensor to generate such a signal. Experiments have shown that 3.0 m of optical fiber exposed to concentrated sunlight equal to ~40 suns in intensity will generate 1 microA of signal current in a silicon photodiode. These data were measured in an experimental line-focus solar collector using solar flux conditions common to this type of collector.

  10. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  11. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  12. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.

    Science.gov (United States)

    Solmaz, Mehmet E; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R; Mejia, Camilo A; Malmstadt, Noah; Povinelli, Michelle L

    2012-10-01

    We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

  13. Optical waveguide focusing system with short free-working distance

    NARCIS (Netherlands)

    Wang, H.; Groen, F.H.; Pereira, S.F.; Braat, J.J.M.

    2003-01-01

    In photonics, light usually diffracts in all directions when it emerges from a planar optical waveguide. Besides this fact, in this letter we show that a waveguide with a rectangular cross section can be turned to a focusing system by using three-dimensional self-imaging technique. We obtained a con

  14. Small Animal Radionuclide Imaging With Focusing Gamma-Ray Optics

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R; Decker, T; Epstein, M; Ziock, K; Pivovaroff, M J; Craig, W W; Jernigan, J G; Barber, W B; Christensen, F E; Funk, T; Hailey, C J; Hasegawa, B H; Taylor, C

    2004-02-27

    Significant effort currently is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. While physiological function in small animals can be localized and imaged using conventional radionuclide imaging techniques such as single-photon emission tomography (SPECT) and positron emission tomography (PET), these techniques inherently are limited to spatial resolutions of 1-2 mm. For this reason, we are developing a small animal radionuclide imaging system (SARIS) using grazing incidence optics to focus gamma-rays emitted by {sup 125}I and other radiopharmaceuticals. We have developed a prototype optic with sufficient accuracy and precision to focus the 27.5 keV photons from {sup 125}I onto a high-resolution imaging detector. Experimental measurements from the prototype have demonstrated that the optic can focus X-rays from a microfocus X-ray tube to a spot having physical dimensions (approximately 1500 microns half-power diameter) consistent with those predicted by theory. Our theoretical and numerical analysis also indicate that an optic can be designed and build that ultimately can achieve 100 {micro}m spatial resolution with sufficient efficiency to perform in vivo single photon emission imaging studies in small animal.

  15. The dual effects of leading for safety: The mediating role of employee regulatory focus.

    Science.gov (United States)

    Kark, Ronit; Katz-Navon, Tal; Delegach, Marianna

    2015-09-01

    This study examined the underlying mechanisms through which transformational and transactional leadership influence employee safety behaviors. Linking leadership theory with self-regulatory focus (SRF) theory, we examined a model of dual effects of leadership on safety initiative and safety compliance behaviors as mediated by promotion and prevention self-regulations. We conducted an experimental study (N = 107), an online study (N = 99) and a field study (N = 798 employees and 49 managers). Results demonstrated that followers' situational promotion focus mediated the positive relationship between transformational leadership and safety initiative behaviors. Through all 3 studies, transactional active leadership was positively associated with followers' situational prevention focus, however, the association between followers' prevention focus and safety compliance behaviors was inconsistent, showing the expected mediation relationships in the experimental setting, but not in the online and field studies. We discuss theoretical and practical implications of the findings. (c) 2015 APA, all rights reserved).

  16. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  17. Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking.

    Science.gov (United States)

    Prior, E; de Dios, C; Criado, R; Ortsiefer, M; Meissner, P; Acedo, P

    2016-09-01

    The present experimental work studies the dynamics of dual-polarization optical frequency combs (OFCs) based on gain switching (GS) vertical-cavity surface-emitting laser (VCSEL) diodes under optical injection locking (OIL). This study presents two main results. First, we have obtained an overall comb formed by two orthogonally polarized sub-combs with comparable span and power. The overall comb shows enhanced optical span and flatness and high coherence between its modes. The second result is that we have been able to control the polarization state of the overall comb by tuning the polarization state of the injected light by locking the same single teeth of the comb. This produces an overall comb with single polarization that is parallel or orthogonal. These are novel findings that provide for the development of efficient and compact OFCs based on GS VCSEL sources with versatile polarization dynamics.

  18. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An In vitro study

    Science.gov (United States)

    Suo, Dingjie; Jin, Zhiyang; Jiang, Xiaoning; Dayton, Paul A.; Jing, Yun

    2017-01-01

    High intensity focused ultrasound (HIFU) has recently emerged as a promising alternative approach for thrombolysis. However, the high acoustic energy required by HIFU could elicit thermal damage bioeffects, impeding the clinical translation of this technique. This paper investigates the use of dual-frequency focused ultrasound (DFFU) mediated by microbubbles (MBs) to minimize the acoustic power required for thrombolysis in vitro. It was found that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). In addition, SFFU needs about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency is also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation is likely responsible for the improved thrombolysis under DFFU and MBs.

  19. Optimally enhanced heating for focused ultrasound surgery with split foci, dual-frequency, or multi foci

    Science.gov (United States)

    Lu, Mingzhu; Guan, Yubo; Dong, Tengju; Liu, Fenfen; Wan, Mingxi

    2017-03-01

    To substantially enhance heating in HIFU treatment, several methods such as split foci, multi foci, and dual-frequency modes are used. The enhanced-cavitation heating protocols are implemented experimentally in BSA gel-phantom using four-element split-focus array. Using dual frequency of 1.2 and 2.4 MHz, the superimposing of two frequency pressures at confocal region can enhance nucleation cavitation and inertial cavitation activity. When using 135° phase shift combined with dual frequency of 1.2 and 2.4 MHz, the peak negative pressure reach maximum due to peak-negative pressures of two frequencies occur at same time, resulting strong cavitation activities. When using dual frequency of 1.2 and 2.4 MHz, 25-Hz pulse-repetition frequency (PRF), both 135° and 180° phase shift protocols, the experiment results show the largest lesion size of 10.5 × 10.5 × 11 mm3, quickest lesion inception time of less than 0.2 s, therefore, both 135° and 180° phase shift protocols are most efficient in enhanced-cavitation heating. The filtered-PCD mean square waveforms reveal that the strong inertial-cavitation activities involve in those two treatments. The lesion size of four foci of 180° phase shift, single frequency, 25 Hz PRF, is 2 times that of 0° phase shift, single frequency even if the peak intensity of 180° case is half less than that of 0° phase shift case. When arrange multi foci using phased array in a style of a wavelength distance between neighbor foci in focal plane, the result is the same as that using split foci of 180° phase shift and single frequency.

  20. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults.

    Science.gov (United States)

    Yu, Shu-Han; Huang, Cheng-Ya

    2017-01-01

    In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A "posture-first" principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution.

  1. DUAL-FOCUS THERAPEUTIC ULTRASOUND TRANSDUCER FOR PRODUCTION OF BROAD TISSUE LESIONS

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan M.; Shung, K. Kirk

    2011-01-01

    In noninvasive high-intensity focused ultrasound (HIFU) treatment, formation of a large tissue lesion per sonication is desirable for reducing the overall treatment time. The goal of this study is to show the feasibility of enlarging tissue lesion size with a dual-focus therapeutic ultrasound transducer (DFTUT) by increasing the depth-of-focus (DOF). The proposed transducer consists of a disc- and an annular-type element of different radii of curvatures to produce two focal zones. To increase focal depth and to maintain uniform beamwidth of the elongated DOF, each element transmits ultrasound of a different center frequency: the inner element at a higher frequency for near field focusing and the outer element at a lower frequency for far field focusing. By activating two elements at the same time with a single transmitter capable of generating a dual-frequency mixed signal, the overall DOF of the proposed transducer may be extended considerably. A prototype transducer composed of a 4.1 MHz inner element and a 2.7 MHz outer element was fabricated to obtain preliminary experimental results. The feasibility the proposed technique was demonstrated through sound field, temperature and thermal dose simulations. The performance of the prototype transducer was verified by hydrophone measurements and tissue ablation experiments on a beef liver specimen. When several factors affecting the length and the uniformity of elongated DOF of the DFTUT are optimized, the proposed therapeutic ultrasound transducer design may increase the size of ablated tissues in the axial direction and, thus, decreasing the treatment time for a large volume of malignant tissues especially deep-seated targets. PMID:20870346

  2. Dual permeability FEM models for distributed fiber optic sensors development

    Science.gov (United States)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  3. Manualized treatment for substance abusers with personality disorders: dual focus schema therapy.

    Science.gov (United States)

    Ball, S A

    1998-01-01

    The presence of an untreated personality disorder may be associated with worse compliance and outcome in substance abuse treatment. Therapeutic attention to the symptoms of personality disorder may reduce the severity of substance abuse and other Axis I symptoms which potentially contribute to relapse. A 24-week manual-guided individual cognitive-behavioral therapy approach has been developed that integrates relapse prevention with targeted intervention for early maladaptive schemas (enduring negative beliefs about oneself, others, and events) and coping styles. This Dual Focus Schema Therapy is being compared to 12-Step Drug Counseling for opioid-dependent individuals with personality disorders in an ongoing study funded by the National Institute on Drug Abuse. This article reviews Young's (1994) schema-focused theory and approach and summarizes the treatment manual, which integrates relapse prevention for substance abuse.

  4. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  5. Optical lenses design and experimental investigations of a dynamic focusing unit for a CO2 laser scanning system

    Science.gov (United States)

    Chen, Wei; Xu, Yue; Zhang, Huaxin; Liu, Peng; Jiao, Guohua

    2016-09-01

    Laser scanners are critical components in material processing systems, such as welding, cutting, and drilling. To achieve high-accuracy processing, the laser spot size should be small and uniform in the entire objective flat field. However, traditional static focusing method using F-theta objective lens is limited by the narrow flat field. To overcome these limitations, a dynamic focusing unit consisting of two lenses is presented in this paper. The dual-lens system has a movable plano-concave lens and a fixed convex lens. As the location of the movable optical elements is changed, the focal length is shifted to keep a small focus spot in a broad flat processing filed. The optical parameters of the two elements are theoretical analyzed. The spot size is calculated to obtain the relationship between the moving length of first lens and the shift focus length of the system. Also, the Zemax model of the optical system is built up to verify the theoretical design and optimize the optical parameter. The proposed lenses are manufactured and a test system is built up to investigate their performances. The experimental results show the spot size is smaller than 450um in all the 500*500mm 2 filed with CO2 laser. Compared with the other dynamic focusing units, this design has fewer lenses and no focusing spot in the optical path. In addition, the focal length minimal changes with the shit of incident laser beam.

  6. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-07-01

    Full Text Available We propose and demonstrate the generation of optical frequency combs via four-wave mixing in a dual wavelength Brillouin laser cavity. When pumped by two continuous-wave lasers with a varied frequency separation, dual wavelength Brillouin lasers with reduced linewidth and improved optical signal to noise ratios are generated in a direction opposite to the pump laser. Simultaneously, cavity-enhanced cascaded four-wave mixing between dual wavelength Brillouin lasers occurs in the laser cavity, causing the generation of broadband optical frequency combs with step tunable mode spacing from 40 to 1300 GHz. Compared to the cavity-less case, the number of the comb lines generated in the dual wavelength Brillouin laser cavity is increased by ∼38 times.

  7. Optical fiber tip templating using direct focused ion beam milling.

    Science.gov (United States)

    Micco, A; Ricciardi, A; Pisco, M; La Ferrara, V; Cusano, A

    2015-11-04

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a 'double-layer' photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  8. Adaptive optics ophthalmologic systems using dual deformable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  9. Resolution enhancement of digital laser scanning fluorescence microscopy with a dual-lens optical pickup head

    Science.gov (United States)

    Tsai, Rung-Ywan; Chen, Jung-Po; Lee, Yuan-Chin; Chiang, Hung-Chih; Huang, Tai-Ting; Huang, Chun-Chieh; Cheng, Chih-Ming; Cheng, Chung-Ta; Lo, Feng-Hsiang; Tiao, Golden

    2016-10-01

    The resolution of the cell fluorescence image captured by a digital laser scanning microscopy with a modified dual-lens BD-ROM optical pickup head is enhanced by image registration and double sample frequency. A dual objective lens of red (655 nm) and blue (405 or 488 nm) laser sources with numerical apertures of 0.6 and 0.85 is used for sample focusing and position tracking and cell fluorescence image capturing, respectively. The image registration and capturing frequency are based on the address-coded patterns of a sample slide. The address-coded patterns are designed as a string of binary code, which comprises a plurality of base-straight lands and grooves and data-straight grooves. The widths of the base-straight lands, base-straight grooves, and data-straight grooves are 0.38, 0.38, and 0.76 μm, respectively. The numbers of sample signals in the x-direction are measured at every intersection point by intersecting the base intensity of the push-pull signal of the address-coded patterns, which has a minimum spacing of 0.38 μm. After taking a double sample frequency, the resolution of the measured cell fluorescence image is enhanced from 0.38 μm to the diffraction limit of the objective lens.

  10. Development and applications of X ray micro focusing optics

    CERN Document Server

    Ablett, J M

    2001-01-01

    The motivation for this thesis is the design and implementation of novel elliptical x-ray reflective micro-focusing optics. The advancement of x-ray micro-beam applications is a primary objective. Sputtering of a heavy metal onto a spherical substrate can produce the required elliptical profile, and the combination of two mirrors in an orthogonal arrangement can deliver intense x-ray micro-beams at an x-ray synchrotron source. It is believed that this new deposition process offers the best way of obtaining accurate elliptical profiles. Traditionally, reflective x-ray micro-focusing has been achieved by bending a smooth flat substrate, and the new deposition technique renders a much simpler experimental arrangement. Moreover, producing enhanced mirror profiles has the opportunity to provide sub-micron focused x-ray beams with larger apertures and longer working distances. Grazing-incidence rhodium-coated spherical substrates were employed to investigate a variety of systems, using several experimental methods:...

  11. Editorial: Focus on Atom Optics and its Applications

    Science.gov (United States)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A

  12. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Dino; Oddershede, Lene B., E-mail: oddershede@nbi.dk [Niels Bohr Institute (NBI), University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Reihani, S. Nader S. [Department of Physics, Sharif University of Technology, 11369-9161 Tehran (Iran, Islamic Republic of)

    2014-05-15

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  13. Polarization-insensitive fiber optical parametric amplifier based on polarization diversity technique with dual parallel pumps

    Institute of Scientific and Technical Information of China (English)

    YIN Lu; SANG Xin-zhu; ZHANG Qi; XIN Xiang-jun; YU Chong-xiu; Da-xiong

    2011-01-01

    By analyzing the principle of dual-pump parametric amplification and the polarization dependent gain of fiber optical parametric amplifier (FOPA), a polarization-insensitive FOPA based on polarization-diversity technique with dual parallel pumps is presented. The performances of polarization-insensitivity, gain and BER are theoretically analyzed and numerically simulated by comparing the proposed scheme with parallel pump solution and orthogonal pump solution. The presented solution can reduce the complexity of state of polarization (SoP) of pumps.

  14. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    Science.gov (United States)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  15. Voltage and Calcium Dual Channel Optical Mapping of Cultured HL-1 Atrial Myocyte Monolayer

    Science.gov (United States)

    Zhao, Weiwei; Fast, Vladimir G.; Ye, Tong; Ai, Xun

    2015-01-01

    Optical mapping has proven to be a valuable technique to detect cardiac electrical activity on both intact ex vivo hearts and in cultured myocyte monolayers. HL-1 cells have been widely used as a 2-Dimensional cellular model for studying diverse aspects of cardiac physiology. However, it has been a great challenge to optically map calcium (Ca) transients and action potentials simultaneously from the same field of view in a cultured HL-1 atrial cell monolayer. This is because special handling and care is required to prepare healthy cells that can be electrically captured and optically mapped. Therefore, we have developed an optimal working protocol for dual channel optical mapping. In this manuscript, we have described in detail how to perform the dual channel optical mapping experiment. This protocol is a useful tool to enhance the understanding of action potential propagation and Ca kinetics in arrhythmia development. PMID:25867896

  16. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.

    Science.gov (United States)

    Liu, Yuxiang; Yu, Miao

    2009-08-03

    Optical tweezers provide a versatile tool in biological and physical researches. Optical tweezers based on optical fibers are more flexible and ready to be integrated when compared with those based on microscope objectives. In this paper, the three-dimensional (3D) trapping ability of an inclined dual-fiber optical tweezers is demonstrated. The trapping efficiency with respect to displacement is experimentally calibrated along two dimensions. The system is studied numerically using a modified ray-optics model. The spring constants obtained in the experiment are predicted by simulations. It is found both experimentally and numerically that there is a critical value for the fiber inclination angle to retain the 3D trapping ability. The inclined dual-fiber optical tweezers are demonstrated to be more robust to z-axis misalignment than the counter-propagating fiber optical tweezers, which is a special case of th former when the fiber inclination angle is 90 masculine. This inclined dual-fiber optical tweezers can serve as both a manipulator and a force sensor in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  17. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    Science.gov (United States)

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  18. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    CERN Document Server

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A

    2015-01-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  19. Three dimensional laser microfabrication in diamond using a dual adaptive optics system.

    Science.gov (United States)

    Simmonds, Richard D; Salter, Patrick S; Jesacher, Alexander; Booth, Martin J

    2011-11-21

    Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element.

  20. ``Staying in Focus'' - An Online Optics Tutorial on the Eye

    Science.gov (United States)

    Hoeling, Barbara M.

    2011-02-01

    The human eye and its vision problems are often used as an entry subject and attention grabber in the teaching of geometrical optics. While this is a real-life application students can relate to, it is difficult to visualize how the eye forms images by studying the still pictures and drawings in a textbook. How to draw a principal ray diagram or how to calculate the image distance from a given object distance and focal length might be clear to most students after studying the book, but even then they often lack an understanding of the "big picture." Where is the image of a very far away object located? How come we can see both far away and close-by objects focused (although not simultaneously)? Computer animations,2 popular with our computer-game savvy students, provide considerably more information than the still images, especially if they allow the user to manipulate parameters and to observe the outcome of a "virtual" experiment. However, as stand-alone learning tools, they often don't provide the students with the necessary physics background or instruction on how to use them.

  1. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Valicu, R. G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Borchert, G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Böni, P. [Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Rasmussen, N. G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, D-51170 Köln (Germany)

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  2. Experimental study of resonance fiber optic gyroscope employing a dual-ring resonator

    Science.gov (United States)

    Fan, Yue; Wang, Wei

    2016-09-01

    A dual-ring resonator which is available to alter the full width at half maximum (FWHM) without altering the free spectrum range (FSR) for practice applications is analyzed theoretically and set up in practice. The parameters of the dual-ring resonator have been optimized in simulation, the resonance depth and the dynamic range are enhanced. The prototype is set up with single mode fiber of 8 meter and two 95 : 5 couplers for open loop experiment. The FWHM of the dual-ring resonator is demonstrated less than 1.5MHz and the fineness is calculated to be 37 during the frequency sweeping experiment. The frequency locking experiment with demodulation curve method has been accomplished, and the locking time achieves less than 40ms. All these provide a basic reference for optimizing the resonance fiber optic gyro based on dual-ring resonator.

  3. Dual-focus Magnification, High-Definition Endoscopy Improves Pathology Detection in Direct-to-Test Diagnostic Upper Gastrointestinal Endoscopy.

    Science.gov (United States)

    Bond, Ashley; Burkitt, Michael D; Cox, Trevor; Smart, Howard L; Probert, Chris; Haslam, Neil; Sarkar, Sanchoy

    2017-03-01

    In the UK, the majority of diagnostic upper gastrointestinal (UGI) endoscopies are a result of direct-to-test referral from the primary care physician. The diagnostic yield of these tests is relatively low, and the burden high on endoscopy services. Dual-focus magnification, high-definition endoscopy is expected to improve detection and classification of UGI mucosal lesions and also help minimize biopsies by allowing better targeting. This is a retrospective study of patients attending for direct-to-test UGI endoscopy from January 2015 to June 2015. The primary outcome of interest was the identification of significant pathology. Detection of significant pathology was modelled using logistic regression. 500 procedures were included. The mean age of patients was 61.5 (±15.6) years; 60.8% of patients were female. Ninety-four gastroscopies were performed using dual-focus magnification high-definition endoscopy. Increasing age, male gender, type of endoscope, and type of operator were all identified as significant factors influencing the odds of detecting significant mucosal pathology. Use of dual-focus magnification, high-definition endoscopy was associated with an odds ratio of 1.87 (95%CI 1.11-3.12) favouring the detection of significant pathology. Subsequent analysis suggested that the increased detection of pathology during dual-focus magnification, high-definition endoscopy also influenced patient follow-up and led to a 3.0 fold (p=0.04) increase in the proportion of patients entered into an UGI endoscopic surveillance program. Dual-focus magnification, high-definition endoscopy improved the diagnostic yield for significant mucosal pathology in patients referred for direct-to-test endoscopy. If this finding is recapitulated elsewhere it will have substantial impact on the provision of UGI endoscopic services.

  4. Control of chaos in an external-cavity multi-quantum-well laser subjected to dual-wedges and optical dual-feedback

    Institute of Scientific and Technical Information of China (English)

    YAN SenLin

    2009-01-01

    A multi-parameter chaos-control method used to control chaos in an external cavity multi-quantum-well (MQW) laser via the dual-wedges and external delayed optical dual-feedback is presented. The physical model of the laser dynamic is established under the conditions of the dual-wedges and dual-feedback light control. The frequency detuning and stable ranges of the control system are theoretically demon-strated. The optical-length of the feedback light may be adjusted by shifting horizontally or sliding the dual-wedges relatively in the external optical road, which will alter the delaying time and feedback in-tensity of the dual-feedback light. Accordingly, the multi-parameter chaos-control of the optical dual-feedback may be achieved physically. The numerical simulations approve that the chaotic laser may be controlled into a stable state, a single-periodic state and multi-periodic states, and the con-trolled periodic pulse power may be increased.

  5. Influence of Feedback Levels on Polarized Optical Feedback Characteristics in Zeeman-Birefringence Dual Frequency Lasers

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; ZHANG Shu-Lian; ZHOU Lu-Fei; LIU Xiao-Yan; WANG Ming-Ming

    2007-01-01

    The influence of Feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱand Ⅲ. The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.

  6. Design of dual-mode optical fibres for the FTTH applications

    Science.gov (United States)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.

  7. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  8. Review of self-focusing of high power lasers in large-mode-area optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chujun; Li Ying; Lei Dajun; Yang Hua; Wen Shuangchun; Fan Dianyuan; Wen Jianguo, E-mail: scwen@vip.sina.com [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)

    2011-02-01

    The main progress about the self-focusing of high power lasers in large-mode-area optical fiber has been reviewed. The theoretical models including the self-focusing effects have been discussed. Some different views on the whole beam self focusing and small scale self-focusing effects in optical fiber have been introduced. Moreover, the possible methods exceeding the bulk-media self-focusing threshold have been discussed and explored.

  9. Ultrabroadband Electro-Optic Modulator Based on Hybrid Silicon-Polymer Dual Vertical Slot Waveguide

    Directory of Open Access Journals (Sweden)

    Shouyuan Shi

    2011-01-01

    Full Text Available We present a novel hybrid silicon-polymer dual slot waveguide for high speed and ultra-low driving voltage electro-optic (EO modulation. The proposed design utilizes the unique properties of ferroelectric materials such as LiNbO3 to achieve dual RF and optical modes within a low index nanoslot. The tight mode concentration and overlap in the slot allow the infiltrated organic EO polymers to experience enhanced nonlinear interaction with the applied electric field. Half-wavelength voltage-length product and electro-optic response are rigorously simulated to characterize the proposed design, which reveals ultrabroadband operation, up to 250 GHz, and subvolt driving voltage for a 1 cm long modulator.

  10. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  11. Dual random phase encoding: a temporal approach for fiber optic applications.

    Science.gov (United States)

    Cuadrado-Laborde, Christian; Duchowicz, Ricardo; Torroba, Roberto; Sicre, Enrique E

    2008-04-10

    We analyze the dual random phase encoding technique in the temporal domain to evaluate its potential application for secure data transmission in fiber optic links. To take into account the optical fiber multiplexing capabilities, the noise content of the signal is restricted when multiple channels are transmitted over a single fiber optic link. We also discuss some mechanisms for producing encoded time-limited as well as bandwidth-limited signals and a comparison with another recently proposed technique is made. Numerical simulations have been carried out to analyze the system performance. The results indicate that this multiplexing encryption method could be a good alternative compared with other well-established methods.

  12. Single and dual fiber nano-tip optical tweezers: trapping and analysis

    CERN Document Server

    Decombe, Jean-Baptiste; Fick, Jochen

    2013-01-01

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  13. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    Science.gov (United States)

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  14. Study of an athermal infrared dual band optical system design containing harmonic diffractive element

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A harmonic diffractive element (HDE) is first successfully introduced to the athermal system of infrared dual band in this paper. In this system, there are only three lens and two materials, silicon and germanium. When the temperature ranges from -70℃ to 100℃ in the dual band, it can simultaneously accomplish the rectification of the longitudinal aberration in the big field of view, as well as the wave front aberration less than 1/4 wavelength. Modulation transfer function of dual band approaches or attains the diffraction limit. The calculation results show that the spectral properties of the HDE are between refractive and diffractive elements, so we can design a simple dual-band and athermal optical system by selecting the thickness and central wavelength of the HDE exactly. Compared with a conventional refractive optical system, this system not only reduces the demand for high technical levels, but also has a compact structure, few elements, a high transmittance better aberrations performances and athermal character. At the same time, the use of the HDE also offers a new element for the infrared optics design.

  15. X-ray focusing with Wolter microchannel plate optics

    CERN Document Server

    Price, G J; Beijersbergen, M W; Fraser, G W; Bavdaz, M; Boutot, J P; Fairbend, R; Flyckt, S O; Peacock, A; Tomaselli, E

    2002-01-01

    Square-pore microchannel plate (MCP) X-ray optics of the 'lobster-eye' geometry have frequently been described in the literature. We have now investigated the use of a radial channel packing geometry which, in the context of an MCP pair slumped to the correct radii of curvature, can form a conic approximation to the Wolter Type I grazing incidence X-ray optic. Such an optic can provide a large effective area with very low mass and may be ideally suited for use in applications such as planetary imaging X-ray fluorescence. We present here the results of X-ray illumination of the first such optic, fabricated by Photonis SAS, France.

  16. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator.

    Science.gov (United States)

    Zhang, Zhaowei; Gardiner, Tom; Reid, Derryck T

    2013-08-15

    We present the first implementation of mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Methane absorption spectroscopy was demonstrated with a resolution of 0.2 cm(-1) (5 GHz) at an acquisition time of ~10.4 ms over a spectral coverage at 2900-3050 cm(-1). The average power from each individual mid-infrared comb line was ~1 μW, representing a power level much greater than typical difference-frequency-generation sources. Mid-infrared dual-comb spectroscopy opens up unique opportunities to perform broadband spectroscopic measurements with high resolution, high requisition rate, and high detection sensitivity.

  17. Analysis of Stierwalt out-of-band transmission scattering effect for dual infrared filters serially positioned at a focus

    Science.gov (United States)

    Kumer, J. B.; Sterrit, L. W.; Eisenhauer, D. L.

    1986-01-01

    Some remote sounding applications require utilization of interference filters with very high out-of-band rejection (OBR) performance. In this paper, the advantages to be gained in achieving high OBR by the use of two serially ganged interference filters mounted in a wedge configuration near a focus are discussed. Degradation of OBR due to scattering effects is examined, and a quantitative technique to estimate such effects in dual wedged filters mounted at a focus is presented. An approach to the design of filter elements to be used in the dual wedged configuration is given that accounts for scatter. An application of this design approach to the CLAES 10.81 micron filter is described.

  18. Color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2017-06-01

    Full Text Available This paper puts forward a new color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform for the purpose of removing uncertainty when choosing sub-band coefficients in the smooth regions. Luminance component is the weighted average of the three color channels in the IHS color space and it is not sensitive to noise. According to the characteristics, luminance component was chosen as the measurement to calculate the focus degree. After separating the luminance component and spectrum component, Fisher classification and fuzzy theory were chosen as the fusion rules to conduct the choice of the coefficients after the dual-tree complex wavelet transform. So fusion color image could keep the natural color information as much as possible. This method could solve the problem of color distortion in the traditional algorithms. According to the simulation results, the proposed algorithm obtained better visual effects and objective quantitative indicators.

  19. Dual-Focus Mutual Aid for Co-occurring Disorders: A Quasi-Experimental Outcome Evaluation Study

    OpenAIRE

    Magura, Stephen; Rosenblum, Andrew; Villano, Cherie L.; Vogel, Howard S.; Fong, Chunki; Betzler, Thomas

    2008-01-01

    Previous observational research has indicated the effectiveness of a 12-step, dual-focus mutual aid group, Double Trouble in Recovery (DTR), for assisting individuals to recover from co-occurring substance use and psychiatric disorders. The current study extends this line of research by evaluating DTR with a quasi-experimental design; controlled designs are rare in studies of mutual aid. Patient outcomes in the same psychiatric day treatment program were compared for two consecutive admission...

  20. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis.

    Science.gov (United States)

    Ribezzi-Crivellari, M; Ritort, F

    2012-11-07

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. DSP-Based Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel;

    2014-01-01

    A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally....

  2. A Dual Approach to Fostering Under-Prepared Student Success: Focusing on Doing and Becoming

    Science.gov (United States)

    Shaffer, Suzanne C.; Eshbach, Barbara E.; Santiago-Blay, Jorge A.

    2015-01-01

    A paired course model for under-prepared college students incorporates a dual instructional approach, academic skill building and lifelong learning development, to help students do more academically and become stronger lifelong learners. In a reading support course, students improved their reading skills and applied them directly to the paired…

  3. Controlling the Focal Length and the Spot Size in Flying Optics by Dual-deformable-mirror-systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Quanzhong; CHENG Zhaogu; GAO Haijun; CHAI Xiongliang; LUO Hongxin

    2002-01-01

    The models of several dual-deformable-mirror-systems,which can control focal the length and the spot size in flying optics,were introduced and their operating principle and adjusting characteristics were analyzed.The simulation results indicate that dual-deformable-mirror-systems can control the focal length and the spot size.This research is a good guidance to engineering application of dual-deformable-mirror-systems.

  4. Dual collection mode optical microscope with single-pixel detection

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  5. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  6. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.

    Science.gov (United States)

    Brzobohatý, Oto; Šiler, Martin; Ježek, Jan; Jákl, Petr; Zemánek, Pavel

    2013-11-15

    We present optical trapping and manipulation of pure water and salt water airborne droplets of various sizes ranging from sub-micrometers up to several tens of micrometers in a holographic dual and single beam trap. In the dual beam trap, successful fusion of droplets as well as precise delivery of many droplets and manipulation of multiple droplets are demonstrated. Furthermore, employing the transfer of the orbital angular momentum of light from Laguerre-Gaussian beams, we show that the water droplets orbit around the beam propagation axis and their tangential speed can be controlled by beam waist magnitude. We also demonstrate that sub-micrometer sized pure water droplets can be trapped and manipulated by a single beam trap with a relatively low numerical aperture. In this case, multiple stable trapping positions were observed, both theoretically and experimentally, which were due to the optical intensity oscillations in the focal region of the laser beam.

  7. Development of Dual-light Path Monitoring System of Optical Thin-film Thickness

    Institute of Scientific and Technical Information of China (English)

    XU Shi-jun

    2005-01-01

    The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickness, a new photoelectric control and analysis system has been developed. In the new system, main techniques include a photoelectric system with dual-light path, a dual-lock-phase circuit system and a comprehensive digital processing-control-analysis system.The test results of new system show that the static and dynamic stabilities and the control precision of thin-film thickness are extremely increased. The standard deviation of thin-film thickness, which indicates the duplication of thin-film thickness monitoring, is equal to or less than 0.72%. The display resolution limit on reflectivity is 0.02 %. In the system, the linearity of drift is very high, and the static drift ratio approaches zero.

  8. Dual-rate MIL-STD-1773 fiber optic transceiver for satellite applications

    Science.gov (United States)

    Thelen, Donald C., Jr.; Rankin, Stephen L.; Marshall, Paul W.; LaBel, Kenneth A.; Krainak, Michael A.

    1994-06-01

    A dual rate 1773 fiber optic transceiver chip for space applications is presented. The transceiver will work with either 1 Mbps, or 20 Mbps Manchester data. The receiver features first bit capture with no preamble for 1 Mbps data, and clock recovery for 20 Mbps data. Single event effects in the photo diode are considered in the receiver design. A transmitter switch is included on the chip for driving an LED. The chip will be fabricated in a radiation hard CMOS process.

  9. Optical probe design with extended depth-of-focus for optical coherence microscopy and optical coherence tomography

    Science.gov (United States)

    Lee, Seungwan; Choi, Minseog; Lee, Eunsung; Jung, Kyu-Dong; Chang, Jong-hyeon; Kim, Woonbae

    2013-03-01

    In this report, Optical probe system for modality, optical coherence tomography (OCT) and optical coherence microscope (OCM), is presented. In order to control the back focal length from 2.2 mm to 27 mm, optical probe is designed using two liquid lenses and several lenses. The narrow depth of focus (DOF) in microscope is extended by phase filter such as cubic filter. The filter is modified so that DOF is extended only In the OCM mode. The section for the extended DOF of probe is controlled by iris. Therefore in OCT mode, the phase filter does not affect on the DOF of lens. In OCM mode, the Gaussian light and modified light will affect the DOF. The probe dimension is less than 4 mm diameter and less than 60 mm long. The scan range of system is 0.88 mm wide, 1 mm deep in the OCT and 510 μm wide, 1 mm deep in the OCM mode. The lens curvature and iris aperture are operated by digital microelectrofluidic lens and iris.

  10. Dual-beam optical coherence tomography system for quantification of flow velocity in capillary phantoms

    Science.gov (United States)

    Daly, S. M.; Silien, C.; Leahy, M. J.

    2012-03-01

    The quantification of (blood) flow velocity within the vasculature has potent diagnostic and prognostic potential. Assessment of flow irregularities in the form of increased permeability (micro haemorrhaging), the presence of avascular areas, or conversely the presence of vessels with enlarged or increased tortuosity in the acral regions of the body may provide a means of non-invasive in vivo assessment. If assessment of dermal flow dynamics were performed in a routine manner, the existence and prevalence of ailments such as diabetes mellitus, psoriatic arthritis and Raynaud's condition may be confirmed prior to clinical suspicion. This may prove advantageous in cases wherein the efficacy of a prescribed treatment is dictated by a prompt diagnosis and to alleviate patient discomfort through early detection. Optical Coherence Tomography (OCT) is an imaging modality which utilises the principle of optical interferometry to distinguish between spatial changes in refractive index within the vasculature and thus formulate a multi-dimensional representation of the structure of the epi- and dermal skin layers. The use of the Doppler functionality has been the predominant force for the quantification of moving particles within media, elucidated via estimation of the phase shift in OCT A-scans. However, the theoretical formulation for the assessment of these phase shifts dictates that the angle between the incident light source and the vessel under question be known a priori; this may be achieved via excisional biopsy of the tissue segment in question, but is counter to the non-invasive premise of the OCT technique. To address the issue of angular dependence, an alternate means of estimating absolute flow velocity is presented. The design and development of a dual-beam (db) system incorporating an optical switch mechanism for signal discrimination of two spatially disparate points enabling quasi-simultaneous multiple specimen scanning is described. A crosscorrelation (c

  11. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  12. Dual-path handheld system for cornea and retina imaging using optical coherence tomography

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2016-11-01

    A dual-path handheld system is proposed for cornea and retina imaging using spectral domain optical coherence tomography. The handheld sample arm is designed to acquire two images simultaneously. Both eyes of a person can be imaged at the same time to obtain the images of the cornea of one eye and the retina of the other eye. Cornea, retina, and optic disc images are acquired with the proposed sample arm. Experimental results demonstrate the usefulness of this system for imaging of different eye segments. This system reduces the time required for imaging of the two eyes and is cost effective.

  13. Dual and chiral objects for optical activity in general scattering directions

    CERN Document Server

    Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    Optically active artificial structures have attracted tremendous research attention. Such structures must meet two requirements: Lack of spatial inversion symmetries and, a condition usually not explicitly considered, the structure shall preserve the helicity of light, which implies that there must be a vanishing coupling between the states of opposite polarization handedness among incident and scattered plane waves. Here, we put forward and demonstrate that a unit cell made from chiraly arranged electromagnetically dual scatterers serves exactly this purpose. We prove this by demonstrating optical activity of such unit cell in general scattering directions.

  14. An Auto-Focusing Method in a Microscopic Testbed for Optical Discs.

    Science.gov (United States)

    Tang, X; L'Hostis, P; Xiao, Y

    2000-01-01

    An auto-focusing method in a digital image system is demonstrated that uses a standard deviation of pixel gray levels as a feedback signal. In this system, an optical microscope and a charge coupled device (CCD) camera are used to create clear pit images of optical discs. A dynamic focusing scheme is designed in the system-control software, which is able to eliminate environmental disturbances and other noises so that a fast and stable focus can be achieved. The method shows an excellent focusing accuracy. The performance and possible applications of this method are discussed. The test results for optical discs are given in this paper.

  15. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.

    Science.gov (United States)

    Staino, Andrea; Basu, Biswajit

    2015-02-28

    The paper discusses some of the recent developments in vibration control strategies for wind turbines, and in this context proposes a new dual control strategy based on the combination and modification of two recently proposed control schemes. Emerging trends in the vibration control of both onshore and offshore wind turbines are presented. Passive, active and semi-active structural vibration control algorithms have been reviewed. Of the existing controllers, two control schemes, active pitch control and active tendon control, have been discussed in detail. The proposed new control scheme is a merger of active tendon control with passive pitch control, and is designed using a Pareto-optimal problem formulation. This combination of controllers is the cornerstone of a dual strategy with the feature of decoupling vibration control from optimal power control as one of its main advantages, in addition to reducing the burden on the pitch demand. This dual control strategy will bring in major benefits to the design of modern wind turbines and is expected to play a significant role in the advancement of offshore wind turbine technologies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Optical micromanipulation inside the cell: a focus in cell division

    Science.gov (United States)

    Sacconi, Leonardo; Tolic-Nørrelykke, Iva M.; Stringari, Chiara; Pavone, Francesco S.

    2006-02-01

    In eukaryotic cells, proper position of the mitotic spindle and the division plane is necessary for successful cell division and development. In this work the nature of forces governing the positioning and elongation of the mitotic spindle and the spatio-temporal regulation of the division plane positioning in fission yeast was studied. By using a mechanical perturbations induced by laser dissection of the spindle and astral microtubules, we found that astral microtubules push on the spindle poles. Further, laser dissection of the spindle midzone induced spindle collapse inward. This suggests that the spindle is driven by the sliding apart of antiparallel microtubules in the spindle midzone. Exploiting a combination of non-linear microscopy and optical trapping, we performed an optical manipulation procedure designed to displace the cell nucleus away from its normal position in the center of the cell. After the laser-induced displacement, the nucleus typically returned towards the cell center, in a manner correlated with the extension of a microtubule from the nucleus to the closer tip of the cell. This observation suggests that the centering of the nucleus is provided by microtubule pushing force. Moreover the cells in which the nucleus was displaced during interphase displayed asymmetric division, whereas when the nucleus was displaced during late prophase or metaphase, the division plane formed at the cell center as in non-manipulated cells. This result suggests that in fission yeast the division plane is selected before pro-metaphase and that the signal is not provided by the mitotic spindle.

  17. Focusing Optics for High-Energy X-ray Diffraction

    DEFF Research Database (Denmark)

    Leinert, U.; Schulze, C.; Honkimäki, V.;

    1998-01-01

    of the different set-ups are described and potential applications are discussed. First experiments were performed, investigating with high spatial resolution the residual strain gradients in layered polycrystalline materials. The results underline that focused high-energy synchrotron radiation can provide unique...... information on the mesoscopic scale to the materials scientist, complementary to existing techniques based on conventional X-ray sources, neutron scattering or electron microscopy....

  18. A dual-rate optical transceiver for power-on-demand operation

    Science.gov (United States)

    Zuo, Yongrong; Kiamilev, Fouad; Wang, Xiaoqing; Gui, Ping; Wang, Xingle; Ekman, Jeremy; McFadden, Michael; Haney, Michael

    2005-03-01

    This work describes a dual-rate optical transceiver designed for power-efficient connections within and between modern high-speed digital systems. The transceiver can dynamically adjust its data rate according to the performance requirements, allowing for power-on-demand operation. To implement dual rate functionality, the transmitter and receiver circuits include separate high-speed and low-power datapath modules. The high-speed module is designed for gigabit operation and optimized to achieve the maximum bandwidth. A simpler low-power module is designed for megabit data transmission and optimized for low power consumption. The transceiver was fabricated with a 0.5μm Silicon-on-Sapphire (SOS) CMOS technology. The vertical cavity surface-emitting lasers (VCSELs) and photodetector devices were attached to the transceiver IC using flip-chip bonding. A free-space optical link system was set up to demonstrate power-on-demand capability. Experimental results show reliable link operations at 2Gb/s and 100Mb/s data transfer rates with about 104mW and 9mW power consumption, respectively. The transceiver"s switching time between these two data rates was demonstrated at 10μs which was limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by using dedicated IO pads for dual-rate control signals. At the circuit level, the incorporation of dual rate functionality into a typical gigabit optical transceiver would require 255 additional MOS transistors.

  19. Focusing on optic tectum circuitry through the lens of genetics

    Directory of Open Access Journals (Sweden)

    Nevin Linda M

    2010-09-01

    Full Text Available Abstract The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.

  20. Immediate survival focus: synthesizing life history theory and dual process models to explain substance use.

    Science.gov (United States)

    Richardson, George B; Hardesty, Patrick

    2012-01-01

    Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers.

  1. A Dual Approach to Fostering Under-Prepared Student Success: Focusing on Doing and Becoming

    Directory of Open Access Journals (Sweden)

    Suzanne C. Shaffer, MsEd, MEd

    2015-08-01

    Full Text Available A paired course model for under-prepared college students incorporates a dual instructional approach, academic skill building and lifelong learning development, to help students do more academically and become stronger lifelong learners. In a reading support course, students improved their reading skills and applied them directly to the paired content course. They also developed lifelong learning attributes through increased self-knowledge (using the Effective Lifelong Learning Inventory, reflection, and coaching. Students showed significant gains in lifelong learning, an 85% success rate in the paired content course, and a higher retention rate than students outside the project with similar SAT critical reading scores.

  2. Immediate Survival Focus: Synthesizing Life History Theory and Dual Process Models to Explain Substance Use

    Directory of Open Access Journals (Sweden)

    George B. Richardson

    2012-10-01

    Full Text Available Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers.

  3. Analysis of adaptive laser scanning optical system with focus-tunable components

    Science.gov (United States)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  4. Dual-pump wave mixing in semiconductor optical amplifiers: performance enhancement with long amplifiers

    Science.gov (United States)

    Tomkos, Ioannis; Zacharopoulos, Ioannis; Syvridis, Dimitrios

    1999-05-01

    We demonstrate experimentally the improvement of the performance of the dual pump wave mixing scheme in semiconductor optical amplifiers, using long amplifier chips and high optical pump powers. The optical amplifiers used in the experiment had a ridge waveguide structure with bulk active layer and antireflective-coated angled facets. Measurements of the conversion efficiency and SBR as a function of wavelength shift are presented for a wavelength shift of more than 40 nm. The above measurements are carried out for three amplifier lengths (500 micrometers , 1000 micrometers , and 1500 micrometers ) and for different levels of the optical power of the two pumps. It will be shown that an increase in the amplifier length from 500 micrometers to 1500 micrometers results to an increase of more than 25 dB for the efficiency and more than 20 dB for the SBR. This improvement combined with the inherent advantages of the dual pump scheme (almost constant SBR and high efficiency for large wavelength shifts) results in a highly performing wavelength converter/phase conjugator, suitable for many applications.

  5. Long-term stabilization of the optical fiber phase control using dual PID

    Institute of Scientific and Technical Information of China (English)

    WU; Yue; CHEN; Guozhu; SHEN; Yong; ZOU; Hongxin

    2015-01-01

    We propose an approach of long-term stabilization of optical fiber phase by controlling a piezo-based phase modulator and a Peltier component attached to the fiber via a phase-locked loop( PLL) circuit w ith dual proportional-integral- derivative( PID) adjustment. With this approach,we can suppress the fast disturbance and slow drifting of optical fiber to satisfy the requirements of optical phase long-term locking. In theory,a mathematical model of an optical fiber phase control system is established. The disturbance term induced by environment influence is considered into the PLL model. The monotonous and continuous changing environment disturbance w ill cause a steady-state error in this theory model. The experimental results accords w ell w ith the theory. The steady-state performance,adjusting time,and overshoot can be improved by using the dual PID control. As a result,the long-term,highly stable and low noise fiber phase locking is realized experimentally.

  6. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.

    Science.gov (United States)

    Ribezzi-Crivellari, M; Huguet, J M; Ritort, F

    2013-04-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  7. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  8. Optical trapping of nanoparticles by full solid-angle focusing

    CERN Document Server

    Salakhutdinov, Vsevolod; Carbone, Luigi; Giacobino, Elisabeth; Bramati, Alberto; Leuchs, Gerd

    2015-01-01

    We propose and implement a dipole-trap for nanoparticles that is based on focusing from the full solid angle with a deep parabolic mirror. The key aspect is the generation of a linear-dipole mode. For such a mode, our calculations predict a trapping potential that is deeper and tighter than the potential obtainable with microscope objectives. We demonstrate the trapping of dot-in-rod nanoparticles. From the detected fluorescence photons we obtain intensity correlation functions of second order with $g^{(2)}(0)< 0.5$, suggesting the trapping of a single quantum emitter.

  9. Cryo DualBeam Focused Ion Beam-Scanning Electron Microscopy to Evaluate the Interface Between Cells and Nanopatterned Scaffolds.

    Science.gov (United States)

    Lamers, Edwin; Walboomers, X Frank; Domanski, Maciej; McKerr, George; O'Hagan, Barry M; Barnes, Clifford A; Peto, Lloyd; Luttge, Regina; Winnubst, Louis A J A; Gardeniers, Han J G E; Jansen, John A

    2011-01-01

    With the advance of nanotechnology in biomaterials science and tissue engineering, it is essential that new techniques become available to observe processes that take place at the direct interface between tissue and scaffold materials. Here, Cryo DualBeam focused ion beam-scanning electron microscopy (FIB-SEM) was used as a novel approach to observe the interactions between frozen hydrated cells and nanometric structures in high detail. Through a comparison of images acquired with transmission electron microscopy (TEM), conventional FIB-SEM operated at ambient temperature, and Cryo DualBeam FIB-SEM, the advantages and disadvantages of each technique were evaluated. Ultrastructural details of both (extra)cellular components and cell organelles were best observe with TEM. However, processing artifacts such as shrinkage of cells at the substrate interface were introduced in both TEM and conventional FIB-SEM. In addition, the cellular contrast in conventional FIB-SEM was low; consequently, cells were difficult to distinguish from the adjoining substrate. Cryo DualBeam FIB-SEM did preserve (extra)cellular details like the contour, cell membrane, and mineralized matrix. The three described techniques have proven to be complementary for the evaluation of processes that take place at the interface between tissue and substrate.

  10. Optical near-field microscopy of light focusing through a photonic crystal flat lens.

    Science.gov (United States)

    Fabre, Nathalie; Lalouat, Loïc; Cluzel, Benoit; Mélique, Xavier; Lippens, Didier; de Fornel, Frédérique; Vanbésien, Olivier

    2008-08-15

    We report here the direct observation by using a scanning near-field microscopy technique of the light focusing through a photonic crystal flat lens designed and fabricated to operate at optical frequencies. The lens is fabricated using a III-V semiconductor slab, and we directly visualize the propagation of the electromagnetic waves by using a scanning near-field optical microscope. We directly evidence spatially, as well as spectrally, the focusing operating regime of the lens. At last, in light of the experimental scanning near-field optical microscope pictures, we discuss the lens ability to focus light at a subwavelength scale.

  11. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  12. Rapid determination of enantiomeric excess: a focus on optical approaches.

    Science.gov (United States)

    Leung, Diana; Kang, Sung Ok; Anslyn, Eric V

    2012-01-07

    High-throughput screening (HTS) methods are becoming increasingly essential in discovering chiral catalysts or auxiliaries for asymmetric transformations due to the advent of parallel synthesis and combinatorial chemistry. Both parallel synthesis and combinatorial chemistry can lead to the exploration of a range of structural candidates and reaction conditions as a means to obtain the highest enantiomeric excess (ee) of a desired transformation. One current bottleneck in these approaches to asymmetric reactions is the determination of ee, which has led researchers to explore a wide range of HTS techniques. To be truly high-throughput, it has been proposed that a technique that can analyse a thousand or more samples per day is needed. Many of the current approaches to this goal are based on optical methods because they allow for a rapid determination of ee due to quick data collection and their parallel analysis capabilities. In this critical review these techniques are reviewed with a discussion of their respective advantages and drawbacks, and with a contrast to chromatographic methods (180 references).

  13. Self-Focusing and the Talbot Effect in Conformal Transformation Optics

    Science.gov (United States)

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-01

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  14. Self-Focusing and the Talbot Effect in Conformal Transformation Optics.

    Science.gov (United States)

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-21

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  15. Optical feedback characteristics in a dual-frequency laser during laser cavity tuning

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2005-01-01

    The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only (┴)-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 nm, and the sensor can discriminate the target's moving direction easily.

  16. Optical image hiding based on dual-channel simultaneous phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Li, Jiaosheng; Zhong, Liyun; Zhang, Qinnan; Zhou, Yunfei; Xiong, Jiaxiang; Tian, Jindong; Lu, Xiaoxu

    2017-01-01

    We propose an optical image hiding method based on dual-channel simultaneous phase-shifting interferometry (DCSPSI) and compressive sensing (CS) in all-optical domain. In the DCSPSI architecture, a secret image is firstly embedded in the host image without destroying the original host's form, and a pair of interferograms with the phase shifts of π/2 is simultaneously generated by the polarization components and captured by two CCDs. Then, the holograms are further compressed sampling to the less data by CS. The proposed strategy will provide a useful solution for the real-time optical image security transmission and largely reducing data volume of interferogram. The experimental result demonstrates the validity and feasibility of the proposed method.

  17. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    Science.gov (United States)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  18. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  19. Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography.

    Science.gov (United States)

    Wang, Y; Ravanfar, M; Zhang, K; Duan, D; Yao, G

    2016-10-01

    Optical polarization tractography (OPT) has recently been applied to map fiber organization in the heart, skeletal muscle, and arterial vessel wall with high resolution. The fiber orientation measured in OPT represents the 2D projected fiber angle in a plane that is perpendicular to the incident light. We report here a dual-angle extension of the OPT technology to measure the actual 3D fiber orientation in tissue. This method was first verified by imaging the murine extensor digitorum muscle placed at various known orientations in space. The accuracy of the method was further studied by analyzing the 3D fiber orientation of the mouse tibialis anterior muscle. Finally we showed that dual-angle OPT successfully revealed the unique 3D "arcade" fiber structure in the bovine articular cartilage.

  20. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    Science.gov (United States)

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  1. Analysis of a generalized dual reflector antenna system using physical optics

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  2. 888 nm pumped dual Nd:YVO4 crystals acousto-optic Q-switched laser

    Science.gov (United States)

    Zhang, Wenqi; Shen, Yijie; Meng, Yuan; Gong, Mali

    2017-10-01

    888 nm pumped acousto-optic (AO) Q-switched laser with high output power and high efficiency under dual Nd:YVO4 crystals configuration is firstly demonstrated and rate equations for dual-crystal lasers are further ameliorated and investigated. In continuous wave (CW) operation, we experimentally achieve a maximum output power exceeding 50 W. The global optical efficiency reaches 49.5% and the slope efficiency attains 55.5% via using a 1.5 at.% crystal with a 0.5 at.% crystal. In Q-switch operation, by utilizing double 0.5 at.% crystals, the global optical efficiency rises from 25.6% to 45.6% and the pulse duration varies from 26.2 to 42.4 ns when pulse repetition frequency (PRF) increases from 10 to 100 kHz. The measured beam quality factors M2 at 100 kHz are 1.012 and 1.041 with 52.8 W output power in the two orthogonal directions respectively.

  3. Optimal design of an earth observation optical system with dual spectral and high resolution

    Science.gov (United States)

    Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha

    2017-02-01

    With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.

  4. Different Designs of Dual-Focus Perforated Transmitarray Antenna in Near/Far-Field Region

    Directory of Open Access Journals (Sweden)

    H. Abd El-Azem Malhat

    2016-01-01

    Full Text Available Designs of the single-focus and multi-focused transmitarray antennas for the near-field (NF or/and far-field (FF applications have been introduced. Perforated dielectric single sheet is used for transmitarray design for simple configuration. Single-focus transmitarray for the far-field and the near-field are obtained. The radiation characteristics of 13×13 unit-cells transmitarray in the near-field and the far-field region have been investigated. A single structure multi-focus transmitarray is designed using the chess-board arrangement of the unit-cells elements. Multi-focus transmitarray for FF/FF, FF/NF, and NF/NF have been designed and investigated. The phase distribution and the corresponding holes radii for the first quadrant of the multi-focus transmitarray are presented. The radiation characteristics of different array configuration have been investigated and analyzed using full-wave simulator CST Microwave Studio.

  5. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light

    CERN Document Server

    Ruan, Haowen; Yang, Changhuei

    2015-01-01

    Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which is able to focus light with improved efficiency and sub-ultrasound wavelength resolution. This method ultrasonically destructs microbubbles, and measures the wavefront change to compute and render a suitable time-reversed wavefront solution for focusing. We demonstrate that the TRUME technique can create an optical focus at the site of bubble destruction with a size of ~2 microns. Due to the nonlinear pressure-to-destruction response, the TRUME technique can break the addressable focus resolution barrier imposed by the ultrasound focus. We experimentally demonstrate a 2-fold ad...

  6. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  7. Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes.

    Science.gov (United States)

    Tucker-Schwartz, Jason M; Hong, Tu; Colvin, Daniel C; Xu, Yaqiong; Skala, Melissa C

    2012-03-01

    We demonstrate polyethylene-glycol-coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic-resonance imaging (MRI). Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude-modulated 750 nm pump beam using 10 mW of power, and T(2) MRI was achieved with a 4.7 T animal system. Photothermal OCT and T(2) MRI achieved sensitivities of nanomolar concentrations to CNTs dispersed in amine-terminated polyethylene glycol, thus establishing the potential for dual-modality molecular imaging with CNTs.

  8. Mid-infrared dual-comb spectroscopy with electro-optic modulators

    CERN Document Server

    Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2016-01-01

    We demonstrate dual-comb spectroscopy based on difference frequency generation of frequency-agile near-infrared frequency combs, produced with the help of electro-optic modulators. The combs have a remarkably flat intensity distribution and their positions and line spacings can be selected freely by simply dialing a knob. We record, in the 3-micron region, Doppler-limited absorption spectra with resolved comb lines within milliseconds. Precise molecular line parameters are retrieved. Our technique holds promise for fast and sensitive time-resolved studies e.g. of trace gases.

  9. Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration.

    Science.gov (United States)

    Wang, Zinan; Yang, Yi; Lu, Ping; Luo, Rongya; Li, Yulin; Zhao, Dayu; Peng, Chao; Li, Zhengbin

    2014-04-15

    We demonstrate a novel dual-polarization interferometric fiber-optic gyroscope (IFOG), which needs only one coupler and no polarizer. Polarization nonreciprocity (PN) errors in common IFOGs will increase significantly if the polarizer is absent, or if only one coupler is used. In our setup, however, PN errors are effectively compensated by using two balanced polarizations. The 2 km coil, open-loop configuration obtains a bias instability of 0.02°/h in detecting the Earth's rotation rate. Its performance difference from the conventional two-coupler IFOG is only a stable bias, caused by coupler nonreciprocity.

  10. Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation.

    Science.gov (United States)

    Lu, Ping; Wang, Zinan; Luo, Rongya; Zhao, Dayu; Peng, Chao; Li, Zhengbin

    2015-04-15

    Polarization nonreciprocity (PN) is one of the most critical factors that degrades the performance of interferometric fiber-optic gyroscopes (IFOGs), particularly under varying temperature. We present an experimental investigation of PN error suppression in a dual-polarization IFOG. Both experimental results and theoretical analysis indicate that the PN errors of the two orthogonally polarized light waves always have opposite signs that can be effectively compensated despite the temperature variation. As a result, the long-term stability of the IFOG has been significantly improved. This study is promising for reducing the temperature fragility of IFOGs.

  11. Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion.

    Science.gov (United States)

    Anthur, Aravind P; Watts, Regan T; Shi, Kai; Carroll, John O'; Venkitesh, Deepa; Barry, Liam P

    2013-07-01

    We study the effect of transfer of phase noise in different four wave mixing schemes using a coherent phase noise measurement technique. The nature of phase noise transfer from the pump to the generated wavelengths is shown to be independent of the type of phase noise (1 / f or white noise frequency components). We then propose a novel scheme using dual correlated pumps to prevent the increase in phase noise in the conjugate wavelengths. The proposed scheme is experimentally verified by the all-optical wavelength conversion of a DQPSK signal at 10.7 GBaud.

  12. Experimental observation of disorder induced self-focusing in optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Leonetti, Marco, E-mail: marco.leonetti@roma1.infn.it [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Roma (Italy); Karbasi, Salman [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Mafi, Arash [Department of Physics and Astronomy and Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Conti, Claudio [ISC-CNR and Department of Physics, University Sapienza, P.le Aldo Moro 5, I-00185, Roma (Italy)

    2014-10-27

    We observed disorder induced focusing nonlinearity activated by a monochromatic light beam in optical fibers composed by two kinds of plastics. The two materials, arranged in disordered fashion, support modes with a degree of localization which increases with the intensity of the optical beam. The temporal response of the optical fiber demonstrates the thermal origin of this nonlinearity. Measurements of the localization length as a function of the input power with broadband and monochromatic inputs show the effectiveness of focusing action with respect to the case of homogeneous fibers.

  13. Measurement of localized heating in the focus of an optical trap

    Energy Technology Data Exchange (ETDEWEB)

    Celliers, Peter M. [Lawerence Livermore National Laboratory, P. O. Box 808, Livermore, California 94550 (United States); Conia, Jerome [Cell Robotics, Inc., 2715 Broadbent Parkway NE, Albuquerque, New Mexico 87107 (United States)

    2000-07-01

    Localized heating in the focus of an optical trap operating in water can result in a temperature rise of several kelvins. We present spatially resolved measurements of the refractive-index distribution induced by the localized heating produced in an optical trap and infer the temperature distribution. We have determined a peak temperature rise in water of 4 K in the focus of a 985-nm-wavelength 55-mW laser beam. The localized heating is directly proportional to power and the absorption coefficient. The temperature distribution is in excellent agreement with a model based on the heat equation. (c) 2000 Optical Society of America.

  14. 3D optical two-mirror scanner with focus-tunable lens.

    Science.gov (United States)

    Pokorny, Petr; Miks, Antonin

    2015-08-01

    The paper presents formulas for a ray tracing in the optical system of two-mirror optical scanner with a focus-tunable lens. Furthermore, equations for the calculation of focal length which ensure focusing of a beam in the desired point in a detection plane are derived. The uncertainty description of such focal length follows as well. The chosen vector approach is general; therefore, the application of formulas in various configurations of the optical systems is possible. In the example situation, the authors derived formulas for mirrors' rotations and the focal length depending on the position of the point in the detection plane.

  15. Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light

    CERN Document Server

    Park, Jongchan; Lee, KyeoReh; Cho, Yong-Hoon; Park, YongKeun

    2016-01-01

    Due to its time-reversal nature, optical phase conjugation generates a monochromatic light wave which retraces its propagation paths. Here, we demonstrate the regeneration of a subwavelength optical focus by phase conjugation. Monochromatic light from a subwavelength source is scattered by random nanoparticles, and the scattered light is phase conjugated at the far-field region by coupling its wavefront into a single-mode optical reflector using a spatial light modulator. Then the conjugated beam retraces its propagation paths and forms a refocus on the source at the subwavelength scale. This is the first direct experimental realization of subwavelength focusing beyond the diffraction limit with far-field time reversal in the optical domain.

  16. Comparison of three methods for optical characterization of point-focus concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Wendelin, T.J. [National Renewable Energy Lab., Golden, CO (United States); Grossman, J.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Three different methods for characterizing point-focus solar concentrator optical performance have been developed for specific applications. These methods include a laser ray trace technique called the Scanning Hartmann Optical Test, a video imaging process called the 2f Test, and on-sun testing in conjunction with optical computer modeling. Three concentrator test articles, each of a different design, were characterized using at least two of the methods and, in one case, all three. The results of these test are compared. Excellent agreement was observed in the results, suggesting that the techniques provide consistent and accurate characterizations of solar concentrator optics.

  17. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction

    Science.gov (United States)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang

    2017-09-01

    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  18. Novel Strategy for Preparing Dual-Modality Optical/PET Imaging Probes via Photo-Click Chemistry.

    Science.gov (United States)

    Sun, Lingyi; Ding, Jiule; Xing, Wei; Gai, Yongkang; Sheng, Jing; Zeng, Dexing

    2016-05-18

    Preparation of small molecule based dual-modality probes remains a challenging task due to the complicated synthetic procedure. In this study, a novel concise and generic strategy for preparing dual-modality optical/PET imaging probes via photo-click chemistry was developed, in which the diazole photo-click linker functioned not only as a bridge between the targeting-ligand and the PET imaging moiety, but also as the fluorophore for optical imaging. A dual-modality AE105 peptidic probe was successfully generated via this strategy and subsequently applied in the fluorescent staining of U87MG cells and the (68)Ga based PET imaging of mice bearing U87MG xenograft. In addition, dual-modality monoclonal antibody cetuximab has also been generated via this strategy and labeled with (64)Cu for PET imaging studies, broadening the application of this strategy to include the preparation of macromolecule based imaging probes.

  19. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    Science.gov (United States)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  20. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  1. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.

    Science.gov (United States)

    Chizhik, Anna M; Stein, Simon; Dekaliuk, Mariia O; Battle, Christopher; Li, Weixing; Huss, Anja; Platen, Mitja; Schaap, Iwan A T; Gregor, Ingo; Demchenko, Alexander P; Schmidt, Christoph F; Enderlein, Jörg; Chizhik, Alexey I

    2016-01-13

    Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.

  2. Design of visible/long-wave infrared dual-band imaging optical system

    Science.gov (United States)

    Zhang, Lingzhi; Lai, Jianjun; Huang, Ying

    2016-10-01

    An efficient small size and low weight optical lens system covering the visible and long-wave infrared dual-band is designed. The chromatic aberration caused by the wide bands from visible to long-wave infrared is one of the tough problems though large efforts have been done in the related communities. In this paper, for materials used as the base of the achromatic design, we choose two suitable materials (Zns and Kbr) that allow transmission both of visible and long-wave infrared (LWIR) light. Though the two materials have proved the ability to correct three wavelengths for each spectral range, the correction from the materials compensation is not enough and aspheric even diffractive surface was selected to join this optical system for reducing the aberration. The design results show a good image quality for infrared band imaging while the corresponding visible imaging is acceptable to be used to extract the outline of objects.

  3. Dynamics of optical solitons in dual-core fibers via two integration schemes

    Science.gov (United States)

    Arnous, A. H.; Mahmood, S. A.; Younis, M.

    2017-06-01

    This article studies the dynamics of optical solitons in dual-core fibers with group velocity mismatch, group velocity dispersion and linear coupling coefficient under Kerr law nonlinearity via two integration schemes, namely, Q-function scheme and trial solution approach. The Q-function scheme extracts dark and singular 1-soliton solutions, along with the corresponding existence restriction. This scheme, however, fails to retrieve bright 1-soliton solution. Moreover, the trial solution approach extracts bright, dark and singular 1-soliton solutions. The constraint conditions, for the existence of the soliton solutions, are also listed. Additionally, a couple of other solutions known as singular periodic solutions, fall out as a by-product of this scheme. The obtained results have potential applications in the study of solitons based optical communication.

  4. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    Science.gov (United States)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  5. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  6. Generation of low jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-jiang; WANG Yun-cai

    2006-01-01

    A novel and simple method to generate low timing jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates is demonstrated in this paper.Two multiple quantum wells distributed feedback laser diodes,were used as the external seeding sources to inject the external photons into a gain-switched Fabry-Perot laser diode.The output wavelengths can be tuned discretely to coincide with any two lasing modes in the gain spectra range of the Fabry-Perot Laser diode,and the output side mode suppression ratio was better than 25 dB.Moreover,the timing jitter of optical pulses was reduced from 1.89 ps to 0.83 ps.It was empirically found that the lowest timing jitter operation occurred when the injected light wavelength is 0.2-0.3 nm shorter than the locked mode of the Fabry-Perot laser diode.To our knowledge,this is the first report of using two DFB laser diodes as a seeding source to reduce pulses jitter and select lasing dual-wavelength simultaneously.

  7. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  8. Dual wavelength fluorescent ratiometric pH measurement by scanning near-field optical microscopy

    Science.gov (United States)

    Li, Yongbo; Shinohara, Ryosuke; Iwami, Kentaro; Ohta, Yoshihiro; Umeda, Norihiro

    2010-08-01

    A novel method to observe pH distribution by dual wavelength fluorescent ratiometric pH measurement by scanning near-field optical microscopy (SNOM) is developed. In this method, in order to investigate not only the pH of mitochondrial membrane but also its distribution in the vicinity, a pH sensitive fluorescent reagent covers mitochondria instead of injecting it to mitochondria. This method utilizes a dual-emission pH sensitive dye and SNOM with a themally-pulled and metal-coated optical fiber to improve the spatial resolution. Time-dependence of Fluorescent intensity ratio (FIR) under acid addition is investigated. As the distances between the dropped point and the SNOM probe becomes closer, the time when FIR changes becomes earlier. The response of mitochondria under supplement of nutrition is studied by using this method. While the probe is near to mitochondria, the ratio quickly becomes to increase. In conclusion, it was confirmed that the temporal variation of pH can be detected by this method, and pH distribution in the vicinity of mitochondria is able to be measured by this method.

  9. Performance Analysis of Dual Unipolar/Bipolar Spectral Code in Optical CDMA Systems

    Directory of Open Access Journals (Sweden)

    C.T. Yen

    2013-04-01

    Full Text Available This study analyzes and calculates dual unipolar and bipolar coded configurations of spectral-amplitude-coding optical code division multiple access (SAC-OCDMA systems by using simulation methods. The important feature of the SAC-OCDMA systems is that multiple access interference (MAI can be eliminated by code sequences of a fixed in-phase cross-correlation value. This property can be effectively canceled multiple access interference by using balance detection schemes. This study uses Walsh-Hadamard codes as signature codes for the unipolar and bipolar schemes. The coder and decoder structures are based on optical filters of fiber Bragg gratings (FBGs. The simulation results of unipolar/bipolar coding structures are first presented by commercial simulation obtained using OptiSystem software. The simulation results show that the bit error rate (BER through use of the bipolar coding method is superior to the unipolar scheme, especially when the received effect power is large. When the system needs good performance to transmit multimedia data, we can use bipolar scheme in the network. If the users only transmit voice data, the unipolar method can be employed. The eye diagram also shows that the bipolar encoding structure exhibits a wider opening than the unipolar encoding structure. The flexible implementation of codewords assigns and integratable hardware designs for the scheme with FBGs to realize dual coding OCDMA system is proposed.

  10. Compact Circular/Linear Polarization Dual-Band Prime-Focus Feed for Space Communication

    Directory of Open Access Journals (Sweden)

    Rastislav Galuscak

    2012-01-01

    Full Text Available We propose a novel, compact, prime-focus antenna feed for space communication. The feed requires full-wave simulator optimization for a given parabolic reflector and is designed to operate simultaneously on two bands, offering LHC/RHC polarizations for the 13 cm band and V/H polarizations for the 70 cm band. With performance results confirmed by measurement, it has been verified in practice that this compact feed is suitable for use in a low-noise Earth-Moon-Earth communication link.

  11. Photoconversion of purified fluorescent proteins and dual-probe optical highlighting in live cells.

    Science.gov (United States)

    Kremers, Gert-Jan; Piston, David

    2010-06-26

    Photoconvertible fluorescent proteins (pc-FPs) are a class of fluorescent proteins with "optical highlighter" capability, meaning that the color of fluorescence can be changed by exposure to light of a specific wavelength. Optical highlighting allows noninvasive marking of a subpopulation of fluorescent molecules, and is therefore ideal for tracking single cells or organelles. Critical parameters for efficient photoconversion are the intensity and the exposure time of the photoconversion light. If the intensity is too low, photoconversion will be slow or not occur at all. On the other hand, too much intensity or too long exposure can photobleach the protein and thereby reduce the efficiency of photoconversion. This protocol describes a general approach how to set up a confocal laser scanning microscope for pc-FP photoconversion applications. First, we describe a procedure for preparing purified protein droplet samples. This sample format is very convenient for studying the photophysical behavior of fluorescent proteins under the microscope. Second, we will use the protein droplet sample to show how to configure the microscope for photoconversion. And finally, we will show how to perform optical highlighting in live cells, including dual-probe optical highlighting with mOrange2 and Dronpa.

  12. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    Science.gov (United States)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  13. Dual-band co-aperture infrared optical system design for irradiance measurement

    Science.gov (United States)

    Mu, Da; Mi, Shilong; Mu, Meng

    2014-11-01

    Irradiance is a basic parameter in radiation measurement and play a big role in the research of radiation source.Since infrared target simulator is difficult to precisely calibrate itself and the irradiance value of standard blackbody is infinitely small,besides,some other objective environment factors like dust,dirty spot,vapour,especially the temperature lay worse effect on common infrared system,so it's crucial to decrease energy deficiency and various aberrations throughout integrated elements of optical system to increase measurement precision. Therefore,in this paper, a relatively precise imaging system is designed to measure the irradiance of the simulator itself--the dual-band co-aperture infrared optical system,it can work well under bad conditions said above,particularly when the target isn't fill up with the FOV(field of view). Generally infrared optical system needs big clear aperture, as for the objective of this system,an improved Cassegrain optical system as the co-aperture can be used to receive middle-wave infrared(MWIR3~5μm) and long-wave infrared(LWIR8~12μm) from standard blackbody radiation.As we all know that Cassegrain system has a satisfying relatively bigger aperture and reflective system has no chromatic aberration problem, a proper obstruction ratio of second lens and a hole in the centre of primary lens of the original system must be changed reasonably .So the radiation with least energy deficiency and aberration can be received successfully now. The two beams depart from the hole of primary lens separated by a coated (reflect MWIR and transmit LWIR film or vice versa) beam splitter, then the two different wavelength waves can be divided into two different optical path and finally received by MWIR and LWIR detectors respectively.The design result shows that the distortions of system are both small and the curves of modulation transfer function (MTF) approach the diffraction limit simultaneously in MWIR( 3~5μm) and LWIR( 8~12

  14. Fast binarized time-reversed adapted-perturbation (b-TRAP) optical focusing inside scattering media

    CERN Document Server

    Ma, Cheng; Liu, Yan; Wang, Lihong V

    2015-01-01

    Light scattering inhibits high-resolution optical imaging, manipulation and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping and time-reversal techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide high gain, high speed, and a large number of spatial modes. However, none of the previous techniques meet these requirements simultaneously. Here, we overcome this challenge by rapidly measuring the perturbed optical field within a single camera exposure followed by adaptively time-reversing the phase-binarized perturbation. Consequently, a phase-conjugated wavefront is synthesized within a millisecond, two orders of magnitude shorter than the digitally achieved record. We demonstrated real-time focusing in dynamic scattering media, and extended laser speckle contrast imaging to new depths. The unprecedented combination of fast response, high gain, and large mode count makes this work a major strid...

  15. Focus defect and dispersion mismatch in full-field optical coherence microscopy.

    Science.gov (United States)

    Dubois, Arnaud

    2017-03-20

    Full-field optical coherence microscopy (FFOCM) is an optical technique, based on low-coherence interference microscopy, for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. The differences in refractive index between the sample and the immersion medium of the microscope objectives may degrade the FFOCM image quality because of focus defect and optical dispersion mismatch. These phenomena and their consequences are discussed in this theoretical paper. Experimental methods that have been implemented in FFOCM to minimize the adverse effects of these phenomena are summarized and compared.

  16. Dual Focus on Form and Meaning in Task-based Oral English Teaching

    Institute of Scientific and Technical Information of China (English)

    林易

    2014-01-01

    The task-based approach has been gaining more and more popularity in recent years. Unlike the traditional language teaching approach, which puts much emphasis on the teaching and learning of language forms and skills, it regards the language process as one of learning through doing, emphasizes the central role of meaning in language use and insists that students should learn more effectively if they are fully engaged in a language task. However, due to the lack of an appropriate language environ-ment and limited time for English study, Chinese students may not make as much progress as expected in the unconscious inter-nalization of authentic language by focusing primarily on meaning. In fact the meaning of a language can not be separated from its form. The accurate expression of meaning depends on the proper use of language form. Therefore, in the application of the task-based approach, we should not neglect the study of language form. This paper analyses the causes for Chinese students ’low spo-ken English proficiency, describes the theoretical foundation and actual practice of the task-based approach, discusses its implica-tions for teaching oral English and makes some proposals for its appropriate application.

  17. Optical Properties of dual ion beam sputtered Indium Tin Oxide films on glass and Silicon

    Science.gov (United States)

    Simpson, Nelson; Geerts, Wilhelmus; Bandyopadhyay, Anup

    2012-03-01

    Indium Tin Oxide (ITO) is a transparent conducting material that finds application in flat panel displays, solar cells, and photodetectors. High quality ITO films, i.e. films with a large transparency and a high conductivity, are normally deposited above room temperature often at 300-400 C. This high deposition temperature eliminates most plastics as substrates. To lower the substrate deposition temperature we are applying atomic instead of molecular oxygen during the sputtering process. A dual ion beam sputtering system (DIBS) has been modified to allow the substrate to be exposed to an atomic oxygen beam at 45 degrees angle of incidence. Thin films were sputtered as a function of atomic oxygen flux and substrate temperature on glass, silicon, and sapphire substrates. The optical properties were measured by spectroscopic ellipsometry, reflectometry, and FTIR. Film thickness and bandgap were determined from the optical properties in the visible part of the spectrum. Mobility was determined from the infrared part of the spectruam. Optical properties appear to vary with the film thickness, the oxygen flux, and the substrate temperature. Roughness of the samples was independently measured by AFM. This work is supported by a grant from research corporation (10775).

  18. Dual beam light profile microscopy: a new technique for optical absorption depth profilometry.

    Science.gov (United States)

    Power, J F; Fu, S W

    2004-02-01

    Light profile microscopy (LPM) is a recently developed technique of optical inspection that is used to record micrometer-scale images of thin-film cross-sections on a direct basis. In single beam mode, LPM provides image contrast based on luminescence, elastic, and/or inelastic scatter. However, LPM may also be used to depth profile the optical absorption coefficient of a thin film based on a method of dual beam irradiation presented in this work. The method uses a pair of collimated laser beams to consecutively irradiate a film from two opposing directions along the depth axis. An average profile of the beam's light intensity variation through the material is recovered for each direction and used to compute a depth-dependent differential absorbance profile. This latter quantity is shown from theory to be related to the film's depth-dependent optical absorption coefficient through a simple linear model that may be inverted by standard methods of numerical linear algebra. The inverse problem is relatively well posed, showing good immunity to data errors. This profilometry method is experimentally applied to a set of well-characterized materials with known absorption properties over a scale of tens of micrometers, and the reconstructed absorption profiles were found to be highly consistent with the reference data.

  19. Design & development of a galvanometer inspired dual beam optical coherence tomography system for flow velocity quantification of the microvasculature

    OpenAIRE

    McElligott-Daly, Susan; Jonathan, E.; Martin J. Leahy

    2011-01-01

    peer-reviewed This paper reports initial experimentation of a dual beam flow velocity estimation setup based on optical coherence tomography (OCT) for biomedical applications. The proposed work incorporates a low cost switching mechanism (rotating galvanometer mirror) for optical signal discrimination between adjacent fiber channels enabling quasisimultaneous multiple specimen scanning. A cascaded interferometric design is used with two sample output arms orientated in parallel to eacho...

  20. Performance Analysis of Dual Unipolar/Bipolar Spectral Code in Optical CDMA Systems

    Directory of Open Access Journals (Sweden)

    C.T. Yen

    2013-03-01

    Full Text Available This study analyzes and calculates dual unipolar and bipolar coded configurations of spectral-amplitude-coding opticalcode division multiple access (SAC-OCDMA systems by using simulation methods. The important feature of theSAC-OCDMA systems is that multiple access interference (MAI can be eliminated by code sequences of a fixed inphasecross-correlation value. This property can be effectively canceled multiple access interference by using balancedetection schemes. This study uses Walsh-Hadamard codes as signature codes for the unipolar and bipolar schemes.The coder and decoder structures are based on optical filters of fiber Bragg gratings (FBGs. The simulation results ofunipolar/bipolar coding structures are first presented by commercial simulation obtained using OptiSystem software.The simulation results show that the bit error rate (BER through use of the bipolar coding method is superior to theunipolar scheme, especially when the received effect power is large. When the system needs good performance totransmit multimedia data, we can use bipolar scheme in the network. If the users only transmit voice data, the unipolarmethod can be employed. The eye diagram also shows that the bipolar encoding structure exhibits a wider openingthan the unipolar encoding structure. The flexible implementation of codewords assigns and integratable hardwaredesigns for the scheme with FBGs to realize dual coding OCDMA system is proposed.

  1. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  2. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators

    CERN Document Server

    Smolski, Viktor O; Xu, Jia; Vodopyanov, Konstantin L

    2016-01-01

    Mid-infrared (mid-IR) spectroscopy offers unparalleled sensitivity for the detection of trace gases, solids and liquids, which is based on the existence of strong telltale vibrational bands in this part of the spectrum. It was shown more than a decade ago that a dual-comb Fourier spectroscopy could provide superior spectral coverage combined with high resolution and extremely fast data acquisition. Capabilities of this method were limited because of difficulty of producing twins of mutually coherent frequency combs in the mid- IR. Here we report a phase-coherent and broadband dual-comb system that is based on a pair of subharmonic (frequency-divide-by-two) optical parametric oscillators, pumped in turn by two phase-locked thulium fiber lasers at 2-micron wavelength. We demonstrate simultaneous detection of multiple molecular species in the whole band of 3.2-5.3 microns (frequency span 1200 cm^{-1}) augmented by the pump laser band of 1.85-2 microns (span 400 cm^{-1}), with spectral resolution 0.01-0.07 cm^{-1...

  3. Dual-wavelength optical fluidic glucose sensor using time series analysis of d(+)-glucose measurement

    Science.gov (United States)

    Tang, Jing-Yau; Chen, Nan-Yueh; Chen, Ming-Kun; Wang, Min-Haw; Jang, Ling-Sheng

    2016-10-01

    This paper presents a rising-edge time-series analysis (TSA) method that can be applied to a dual-wavelength optical fluidic glucose sensor (DWOFGS). In the experiment, the concentration of glucose in phosphate buffered saline (PBS) was determined by measuring the absorbance of the solution as determined by variation in the rising edge of the photodiode (PD) voltage response waveform. The DWOFGS principle is based on near-infrared (NIR) absorption spectroscopy at selected dual wavelengths (1450 and 1650 nm) in the first overtone band. The DWOFGS comprises two light-emitting diodes (LEDs) and two PD detectors. No additional fibers or lenses are required in our device. The output light level of the LEDs is adjusted to a light intensity suitable to the glucose absorption rate in an electronic circuit. Four light absorbance paths enable detection of d(+)-glucose concentrations from 0 to 20 wt % in steps of 5 wt %. The glucose light absorbance process was calculated based on the rising edge of the PD waveform under a low-intensity light source using TSA. The TSA method can be used to obtain the glucose level in PBS and reduce measurement background noise. The application of the rising-edge TSA method improves sensor sensitivity, increases the accuracy of the data analysis, and lowers measurement equipment costs.

  4. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials.

    Science.gov (United States)

    Meng, Qinglong; Zhong, Zheqiang; Zhang, Bin

    2017-03-30

    The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamaterials is considered because the stand-up DSRRs are not symmetrical with respect to the electric field vector. Due to the electric and magnetic response realized by the planar and the standup double-split-ring resonators respectively, the dual-band resonance response and the negative refractive index can be achieved. The potential of the phase modulation under photoexcitation is also demonstrated. Further analysis indicates that, photoexcitation of free carriers in the silicon within the capacitive region of the standup DSRRs results in a broad resonance response bandwidth (about 0.47 THz), and also functions as a broadband negative refractive index that roughly lies between 0.80 and 2.01 THz. This tunable metamaterials is proposed for the potential application of electromagnetic wave propagation in terahertz area.

  5. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials

    Science.gov (United States)

    Meng, Qinglong; Zhong, Zheqiang; Zhang, Bin

    2017-03-01

    The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamaterials is considered because the stand-up DSRRs are not symmetrical with respect to the electric field vector. Due to the electric and magnetic response realized by the planar and the standup double-split-ring resonators respectively, the dual-band resonance response and the negative refractive index can be achieved. The potential of the phase modulation under photoexcitation is also demonstrated. Further analysis indicates that, photoexcitation of free carriers in the silicon within the capacitive region of the standup DSRRs results in a broad resonance response bandwidth (about 0.47 THz), and also functions as a broadband negative refractive index that roughly lies between 0.80 and 2.01 THz. This tunable metamaterials is proposed for the potential application of electromagnetic wave propagation in terahertz area.

  6. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    Science.gov (United States)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  7. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis.

  8. An Optic/Proton Dual-Controlled Fluorescence Switch based on Novel Photochromic Bithienylethene Derivatives

    Institute of Scientific and Technical Information of China (English)

    张佳琦; 靳家玉; 张隽佶; 邹雷

    2012-01-01

    A simple method for the synthesis of new bithienylethenes bearing a functional group on the cyclopentene moi- ety is developed. Three new photochromic compounds (4a, 4b, 4c) have been successfully synthesized through this simple method, and exhibit good photochromic properties with alternate irradiation of ultraviolet and visible light. Furthermore, the fluorescence of compound 4a, which bears a quinoline unit on the cyclopentene, can be modulated via optic and proton dual inputs. Upon excitation by 320 nm light, 4a emits a strong fluorescence at 404 nm. After irradiation with 254 nm light, the emission intensity is reduced due to the fluorescence resonance energy transfers (FRET) from quinoline unit to bithienylethene unit. Moreover, on addition of H~, the fluorescence is quenched completely due to the protonation of the quinoline. In addition, both the FRET and protonation process are reversi- ble, which indicates a potential application in molecular switches and logic gates.

  9. Dual tree complex wavelet transform based denoising of optical microscopy images.

    Science.gov (United States)

    Bal, Ufuk

    2012-12-01

    Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions.

  10. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  11. Interferometric fiber-optic bending / nano-displacement sensor using plastic dual-core fiber

    CERN Document Server

    Qu, H; Skorobogatiy, M

    2014-01-01

    We demonstrate an interferometric fiber-optic bending/micro-displacement sensor based on a plastic dual-core fiber with one end coated with a silver mirror. The two fiber cores are first excited with the same laser beam, the light in each core is then back-reflected at the mirror-coated fiber-end, and, finally, the light from the two cores is made to interfere at the coupling end. Bending of the fiber leads to shifting interference fringes that can be interrogated with a slit and a single photodetector. We find experimentally that the resolution of our bending sensor is ~3x10-4 m-1 for sensing of bending curvature, as well as ~70 nm for sensing of displacement of the fiber tip. We demonstrate operation of our sensor using two examples. One is weighting of the individual micro-crystals of salt, while the other one is monitoring dynamics of isopropanol evaporation.

  12. Simulating a dual-recycled gravitational wave interferometer with realistically imperfect optics

    CERN Document Server

    Bochner, B

    2003-01-01

    We simulate the performance of a gravitational wave interferometer in the Dual Recycling (DR) configuration, as will be used for systems like Advanced-LIGO. Our grid-based simulation program models complex interferometric detectors with realistic optical deformations (e.g., fine-scale mirror surface roughness). Broadband and Tuned DR are modeled here; the results are also applied qualitatively to Resonant Sideband Extraction (RSE). Several beneficial properties anticipated for DR detectors are investigated: signal response tuning and narrowbanding, power loss reduction, and the reclamation of lost power as useful light for signal detection. It is shown that these benefits would be limited by large scattering losses in large (multi-kilometer) systems. Furthermore, losses may be resonantly enhanced (particularly for RSE), if the interferometer's modal resonance conditions are not well chosen. We therefore make two principal recommendations for DR/RSE interferometers: the DR/RSE cavity must be modally nondegener...

  13. Multi-Rare-Earth Ions Codoped Tellurite Glasses for Potential Dual Wavelength Fibre-Optic Amplifiers

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; YANG Jian-Hu; XU Shi-Qing; DAI Neng-Li; WEN Lei; HU Li-Li; JIANG Zhong-Hong

    2003-01-01

    A novel co-doping method of multi-rare-earth (RE) ions was demonstrated in tellurite glasses for fibre amplifiers. Fluorescence emissions at both 1.53 and 1.63 fj,m communication windows were Brstly observed from Er3+ /Yb3+ /Tm3+ -codoped tellurite glasses under a single wavelength pumping at 980 nm. The full width at half maximum of Suorescence at 1.53 and 1.63 [im are 55 nm and 50 urn, respectively. Tm's codoping method of three RE ions could be applied to other low photon energy glasses, which would be possibly used for potential dual wavelength fibre-optic amplifiers to broaden the communication windows.

  14. Optical tuning in the arcs and final focus sections of the Stanford Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bambade, P.S.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.

  15. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  16. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  17. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation.

    Science.gov (United States)

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Shi, Junhui; Wang, Lihong V

    2017-02-01

    Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 10(5) optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy.

  18. CAE "FOCUS" for modelling and simulating electron optics systems: development and application

    Science.gov (United States)

    Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor

    2017-02-01

    Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.

  19. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-01-28

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm{sup 2} in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. The wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.

  20. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    Science.gov (United States)

    Yumoto, Hirokatsu; Koyama, Takahisa; Matsuyama, Satoshi; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-01-01

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm2 in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. The wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.

  1. Optical gain from vertical Ge-on-Si resonant-cavity light emitting diodes with dual active regions

    Science.gov (United States)

    Lin, Guangyang; Wang, Jiaqi; Huang, Zhiwei; Mao, Yichen; Li, Cheng; Huang, Wei; Chen, Songyan; Lai, Hongkai; Huang, Shihao

    2017-09-01

    Vertical resonant-cavity light emitting diodes with dual active regions consisting of highly n-doped Ge/GeSi multiple quantum wells (MQWs) and a Ge epilayer are proposed to improve the light emitting efficiency. The MQWs are designed to optically pump the underlying Ge epilayer under electric injection. Abundant excess carriers can be optically pumped into the Γ valley of the Ge epilayer apart from electric pumping. With the combination of a vertical cavity, the efficiency of the optical-pumping process was effectively improved due to the elongation of the optical length in the cavity. With the unique feature, optical gain from the Ge epilayer is observed between 1625 and 1700 nm at injection current densities of >1.528 kA/cm2. The demonstration of optical gain from the Ge epilayer indicates that this strategy can be generally useful for Si-based light sources with indirect band materials.

  2. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.

    Science.gov (United States)

    Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng

    2013-08-21

    Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.

  3. Experimental study on filtering,transporting, concentrating and focusing of microparticles based on optically induced dielectrophoresis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The key problem to be solved for the dielectrophoresis (DEP) application is to provide dynamically reconfigurable microelectrodes and low-cost methodology for bioparticle manipulation.The emergence of optically induced DEP (ODEP) based on photoconductive effect provides a potential solution for the above problem.In this paper,an ODEP chip is designed and fabricated,and the corresponding experimental platform was established,whereupon four types of particle manipulation regimes–filtering,transporting,concentrating and focusing based on ODEP are experimentally demonstrated and the operating performances are quantitatively analyzed.The experiment results show that the functions and performances of ODEP manipulation are heavily dependent on the geometrical shape,scales and speed of optical patterns,actuating signal frequency and the electric conductivity of the solution.The manipulation efficiency can increase by more than 50% via increasing the optical line width.Moreover,the efficiency is obviously affected by the inclination angle of the optical oblique lines in the manipulation of particle focusing.Additionally,the maximum velocity of particles increases with the increment of the inside radius and the thickness of the optical trapping ring.Particle manipulation efficiency is always related to signal frequency and solution conductivity,and empirically,satisfactory performance and high efficiency are obtained when the solution electric conductivity ranges from 5×10-4 S/m to 5×10-3 S/m.

  4. Engaging the optics community in the development of informative, accessible resources focusing on careers

    Science.gov (United States)

    Poulin-Girard, Anne-Sophie; Gingras, F.; Zambon, V.; Thériault, G.

    2014-09-01

    Young people often have biased and pre-conceived ideas about scientists and engineers that can dissuade them from considering a career in optics. This situation is compounded by the fact that existing resources on careers in optics are not suitable since they mostly focus on more general occupations such as a physicist and an electrical engineer. In addition, the linguistic register is not adapted for students, and many of these resources are only available to guidance counselors. To create appropriate resources that will inform high school students on different career opportunities in optics and photonics, we sought the collaboration of our local optics community. We selected seven specific occupations: entrepreneur in optics, university professor, teacher, technician, research and development engineer, sales representative and graduate student in optics. For each career, a list of daily tasks was created from the existing documentation by a guidance counselor and was validated by an expert working in the field of optics. Following a process of validation, we built surveys in which professionals were asked to select the tasks that best represented their occupation. The surveys were also used to gather other information such as level of education and advice for young people wishing to pursue careers in optics. Over 175 professionals answered the surveys. With these results, we created a leaflet and career cards that are available online and depict the activities of people working in optics and photonics. We hope that these resources will help counter the negative bias against scientific careers and inform teenagers and young adults on making career choices that are better suited to their preferences and aspirations.

  5. Progress of Focusing X-ray and Gamma-ray Optics for Small Animal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pivovaroff, M J; Funk, T; Barber, W C; Ramsey, B D; Hasegawa, B H

    2005-08-05

    Significant effort is currently being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. Ideally, one would like to discern these functional and metabolic relationships with in vivo radionuclide imaging at spatial resolutions approaching those that can be obtained using the anatomical imaging techniques (i.e., <100 {micro}m), which would help to answer outstanding questions in many areas of biomedicine. In this paper, we report progress on our effort to develop high-resolution focusing X-ray and gamma-ray optics for small-animal radionuclide imaging. The use of reflective optics, in contrast to methods that rely on absorptive collimation like single- or multiple-pinhole cameras, decouples spatial resolution from sensitivity (efficiency). Our feasibility studies have refined and applied ray-tracing routines to design focusing optics for small animal studies. We also have adopted a replication technique to manufacture the X-ray mirrors, and which in experimental studies have demonstrated a spatial resolution of {approx}190 {micro}m. We conclude that focusing optics can be designed and fabricated for gamma-ray energies, and with spatial resolutions, and field of view suitable for in vivo biological studies. While the efficiency of a single optic is limited, fabrication methods now are being developed that may make it possible to develop imaging systems with multiple optics that could collect image data over study times that would be practical for performing radionuclide studies of small animals.

  6. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    Science.gov (United States)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  7. Assembly, Alignment, And Cold Focus Test Methods Utilized On Claes Optics

    Science.gov (United States)

    Dawson, Juan C.; Kauer, John F.; Reilly, Charles M.; Steakley, Bruce C.

    1988-04-01

    The CLAES Telescope and Spectrometer were aligned as separate units. The optical interface between the two units is at the intermediate Lyot stop, where close angular and centering tolerances are required, with control by the use of matched machined tooling. In the alignme-L. of the Spectrometer, all optical components were centered to the chief ray using centering targets to align the optical components. The initial assembly was made at room temperature, and tested at 20K. One key reason for this testing is that the refractive indices for ZnS and ZnSe are not known below 90K, and therefore the exact location of the image plane is not known. The tests at 20K established the location of the image plane. A beam of collimated carbon-dioxide laser power illuminates the cryogenically cooled Spectrometer or the CLAES Instrument along the optical axis. The collimation of the beam is adjustable in small increments; the beam is scanned over the edges of the individual detectors creating edge scans that were used to determine where the image plane is located. Given the offset from exact collimation of the input beam, the corrections required to locate the image at the detector plane are computed. To determine "best focus", the inverse of the slopes of the edge-traces are plotted. Data obtained on both sides of best focus is plotted; the curves look like parabolas with upward arms. The minimum of this curve is defined as the location of the image plane. Shims that compensate for the focus errors are cut to the correct thickness, and installed. In addition to setting focus, the cryogenic tests were used to determine stability of the optics over the specified environment, and blur size measurements were performed at operational temperatures.

  8. Exploiting the Time-Reversal Operator for Adaptative Optics, Selective Focusing and Scattering Pattern Analysis

    CERN Document Server

    Popoff, Sébastien Michel; Lerosey, Geoffroy; Fink, Mathias; Boccara, Albert-Claude; Gigan, Sylvain

    2011-01-01

    We report on the experimental measurement of the backscattering matrix of a weakly scattering medium in optics, composed of a few dispersed gold nanobeads. The DORT method (Decomposition of the Time Reversal Operator) is applied to this matrix and we demonstrate selective and efficient focusing on individual scatterers, even through an aberrating layer. Moreover, we show that this approach provides the decomposition of the scattering pattern of a single nanoparticle. These results open important perspectives for optical imaging, characterization and selective excitation of nanoparticles.

  9. Experimental verification of a broadband planar focusing antenna based on transformation optics

    Science.gov (United States)

    Lei Mei, Zhong; Bai, Jing; Cui, Tie Jun

    2011-06-01

    It is experimentally verified that a two-dimensional planar focusing antenna based on gradient-index metamaterials has a similar performance as that of its parabolic counterpart. The antenna is designed using quasi-conformal transformation optics, and is realized with non-resonant I-shaped metamaterial unit cells. It is shown that the antenna has a broad bandwidth and very low loss. Near-field distributions of the antenna are measured and far-field radiation patterns are calculated from the measured data, which have good agreement with the full-wave simulations. Using all-dielectric metamaterials, the design can be scaled down to find applications at optical frequencies.

  10. Experimental verification of a broadband planar focusing antenna based on transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Mei Zhonglei; Bai Jing [School of Information Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Cui Tiejun, E-mail: meizl@lzu.edu.cn, E-mail: tjcui@seu.edu.cn [State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096 (China)

    2011-06-15

    It is experimentally verified that a two-dimensional planar focusing antenna based on gradient-index metamaterials has a similar performance as that of its parabolic counterpart. The antenna is designed using quasi-conformal transformation optics, and is realized with non-resonant I-shaped metamaterial unit cells. It is shown that the antenna has a broad bandwidth and very low loss. Near-field distributions of the antenna are measured and far-field radiation patterns are calculated from the measured data, which have good agreement with the full-wave simulations. Using all-dielectric metamaterials, the design can be scaled down to find applications at optical frequencies.

  11. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, John O [Los Alamos National Laboratory; Bernal, John E [Los Alamos National Laboratory

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

  12. Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging

    Science.gov (United States)

    Zhu, Feipeng; Bai, Pengxiang; Shi, Hongjian; Jiang, Zhencheng; Lei, Dong; He, Xiaoyuan

    2016-06-01

    At present, the accuracy of strain measurement using a common optical extensometer with 2D digital image correlation is not sufficient for experimental applications due to the effect of out-of-plane motion. Therefore, this paper proposes a dual-reflector imaging method to improve the accuracy of strain measurement when using a common optical extensometer, with which the front and rear surfaces of a specimen can be simultaneously recorded in the sensor plane of a digital camera. By averaging the strain in two optical extensometers formed on the front and rear surfaces of a specimen, the effect of any slight out-of-plane motion can be eliminated and therefore the strain measurement accuracy can also be improved. Uniaxial tensile tests with an Al-alloy specimen, including static loading and continuous loading, were conducted to validate the feasibility and reliability of the proposed method. The strain measurement results obtained with the proposed method and those obtained with an electrical-resistance strain gauge were found to be in good agreement. The average errors of the proposed method for the two continuous loading tests were found to be 8  ±  10 μɛ and  -6  ±  8 μɛ. Given that no correction sheet or compensation specimen is required, the proposed method is easy to implement and thus especially suitable for determining the mechanical properties of brittle materials due to the high level of accuracy with which strain can be measured.

  13. Design & Analysis of Optical Lenses by using 2D Photonic Crystals for Sub-wavelength Focusing

    Directory of Open Access Journals (Sweden)

    Rajib Ahmed

    2013-01-01

    Full Text Available 2D Photonic lenses (Convex-Convex, Convex-Plane, Plane-Convex, Concave-Concave, Concave-plane, and PlaneConcave have been designed, simulated and optimized for optical communication using FDTD method. The effect of Crystal structures (Rectangular, Hexagonal, Face centered Cubic (FCC, Body centered Cubic (BCC, variation lattice constant (Λ, hole radius(r, reflective index (n, is demonstrated to get optimized parameters. Finally, with optimized parameters the effect of variation of lens radius on focal lengths and Electrical Field Intensity (Ey is analyzed. Like optical lens, the focal length of photonic lens is also increased with lens radii, has dependency on optical axis. Moreover, with optimized parameters, ConcaveConcave lens have been found as an optimal photonic lens that show sub-wavelength focusing with spatial resolutions-9.22439μm (Rectangular crystal, 7.379512μm (Hexagonal Crystal, 7.840732μm (FCC, BCC.

  14. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.

    Science.gov (United States)

    Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael

    2015-07-01

    A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.

  15. Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation

    Science.gov (United States)

    Wu, Yicong; Zhang, Yuying; Xi, Jiefeng; Li, Ming-Jun; Li, Xingde

    2010-01-01

    A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe with an extremely compact electrically driven shape memory alloy (SMA). The 10-mm-long SMA allows 150-μm contractions with a driving voltage varying only from 50 to 100 mV. The response of the SMA contraction with the applied voltage is nonlinear, but repeatable and can be accurately calibrated. Depth-resolved imaging of acriflavine-stained biological tissues and unstained white paper with the endomicroscope is performed, and the results demonstrate the feasibility of 3-D nonlinear optical imaging with the SMA-based scanning fiber-optic endomicroscope. PMID:21198147

  16. A two-dimensionally focusing, quasi-optical antenna for millimeter-wave scattering in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Tatsukawa, T. (Faculty of Engineering, Fukui University, Fukui 910, Japan (JP)); Brand, G.F.; Fekete, P.W.; Moore, K.J. (School of Physics, University of Sydney, NSW 2006 (Australia))

    1990-06-01

    A two-dimensionally focusing, quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for use with a tunable gyrotron in order to carry out millimeter-wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. The advantages of this antenna are the following: (1) The elliptical reflector focuses the radiation beam in the toroidal direction, while the parabolic reflector focuses in the direction of major radius. This gives excellent two-dimensional focusing in the plasma region, and consequently excellent spatial resolution. (2) The focal point can be easily swept along the direction of major radius in the whole plasma region, simply by changing the angle of the parabolic reflector by a small amount. These features have been demonstrated experimentally using the tunable gyrotron source, GYROTRON III, and in computations of the radiated fields.

  17. All-optical sampling and magnification based on XPM-induced focusing

    CERN Document Server

    Nuno, J; Guasoni, M; Finot, C; Fatome, J

    2016-01-01

    We theoretically and experimentally investigate the design of an all-optical noiseless magnification and sampling function free from any active gain medium and associated high-power continuous wave pump source. The proposed technique is based on the co-propagation of an arbitrary shaped signal together with an orthogonally polarized intense fast sinusoidal beating within a normally dispersive optical fiber. Basically, the strong nonlinear phase shift induced by the sinusoidal pump beam on the orthogonal weak signal through cross-phase modulation turns the defocusing regime into localized temporal focusing effects. This periodic focusing is then responsible for the generation of a high-repetition-rate temporal comb upon the incident signal whose amplitude is directly proportional to its initial shape. This internal redistribution of energy leads to a simultaneous sampling and magnification of the signal intensity profile. This process allows us to experimentally demonstrate a 40-GHz sampling operation as well ...

  18. Optical methods for enabling focus cues in head-mounted displays for virtual and augmented reality

    Science.gov (United States)

    Hua, Hong

    2017-05-01

    Developing head-mounted displays (HMD) that offer uncompromised optical pathways to both digital and physical worlds without encumbrance and discomfort confronts many grand challenges, both from technological perspectives and human factors. Among the many challenges, minimizing visual discomfort is one of the key obstacles. One of the key contributing factors to visual discomfort is the lack of the ability to render proper focus cues in HMDs to stimulate natural eye accommodation responses, which leads to the well-known accommodation-convergence cue discrepancy problem. In this paper, I will provide a summary on the various optical methods approaches toward enabling focus cues in HMDs for both virtual reality (VR) and augmented reality (AR).

  19. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique.

    Science.gov (United States)

    Agrawal, Rupesh; Smart, Thomas; Nobre-Cardoso, João; Richards, Christopher; Bhatnagar, Rhythm; Tufail, Adnan; Shima, David; Jones, Phil H; Pavesio, Carlos

    2016-03-15

    A pilot cross sectional study was conducted to investigate the role of red blood cells (RBC) deformability in type 2 diabetes mellitus (T2DM) without and with diabetic retinopathy (DR) using a dual optical tweezers stretching technique. A dual optical tweezers was made by splitting and recombining a single Nd:YAG laser beam. RBCs were trapped directly (i.e., without microbead handles) in the dual optical tweezers where they were observed to adopt a "side-on" orientation. RBC initial and final lengths after stretching were measured by digital video microscopy, and a Deformability index (DI) calculated. Blood from 8 healthy controls, 5 T2DM and 7 DR patients with respective mean age of 52.4 yrs, 51.6 yrs and 52 yrs was analysed. Initial average length of RBCs for control group was 8.45 ± 0.25 μm, 8.68 ± 0.49 μm for DM RBCs and 8.82 ± 0.32 μm for DR RBCs (p optical tweezers method can hence be reliably used to assess RBC deformability.

  20. Test of a two-dimensionally focusing quasi-optical antenna using a gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Tatsukawa, T.; Brand, G.F.; Fekete, P.W.; Moore, K.J.

    1989-05-01

    A quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for millimeter wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. This letter reports the first demonstration of the properties of such an antenna using a gyrotron millimeter wave source. Its advantages are (1) good two-dimensional focusing (along the major radius and the toroidal directions) and (2) easy movement of the focus across the diameter of the plasma by changing the orientation of the parabolic reflector.

  1. Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-08-15

    In the previous work, non-imaging focusing heliostat that consists of m x n facet mirrors can carry out continuous astigmatic correction during sun-tracking with the use of only (m + n - 2) controllers. For this paper, a simplified astigmatic correction of non-imaging focusing heliostat is proposed for reducing the number of controllers from (m + n - 2) to only two. Furthermore, a detailed optical analysis of the new proposal has been carried out and the simulated result has shown that the two-controller system can perform comparably well in astigmatic correction with a much simpler and more cost effective design. (author)

  2. Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zhang Yin; Dong Jian-Ji; Lei Lei; Zhang Xin-Liang

    2012-01-01

    All-optical digital logic elementary circuits are the building blocks of many important computational operations in future high-speed all-optical networks and computing systems.Multifunctional and reconfigurable logic units are essential in this respect.Employing the demodulation properties of delay interferometers for input differential phase shift keying signals and the gain saturation effect in two parallel semiconductor optical amplifiers,a novel design of 40 Gbit/s reconfigurable all-optical dual-directional half-subtractor is proposed and demonstrated.All output logic results show that the scheme achieves over 11=dB extinction ratio,clear and wide open eye diagram,as well as low polarization dependence (< 1 dB),without using any additional input light beam.The scheme may provide a promising candidate for future ultrafast all-optical signal processing applications.

  3. Experimental demonstration of change of dynamical properties of a passively mode-locked semiconductor laser subject to dual optical feedback by dual full delay-range tuning.

    Science.gov (United States)

    Nikiforov, O; Jaurigue, L; Drzewietzki, L; Lüdge, K; Breuer, S

    2016-06-27

    In this contribution we experimentally demonstrate the change and improvement of dynamical properties of a passively mode-locked semiconductor laser subject to optical feedback from two external cavities by coupling the feedback pulses back into the gain segment. Hereby, we tune the full delay-phase of the pulse-to-pulse period of both external cavities separately and demonstrate the change of the repetition rate, timing jitter, multi-pulse formation and side-band suppression for the first time for such a dual feedback configuration. In addition, we thereby confirm modeling predictions by achieving both a good qualitative and quantitative agreement of experimental and simulated results. Our findings suggest a path towards the realization of side-band free all-optical photonic oscillators based on mode-locked lasers.

  4. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  5. Color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform

    National Research Council Canada - National Science Library

    Sun, Yan; Jiang, Ling

    2017-01-01

    .... After separating the luminance component and spectrum component, Fisher classification and fuzzy theory were chosen as the fusion rules to conduct the choice of the coefficients after the dual-tree...

  6. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  7. Measuring Tilt and Focus for Sodium Beacon Adaptive Optics on the Starfile 3.5 Meter Telescope -- Conference Proceedings (Preprint)

    Science.gov (United States)

    2008-09-01

    in detail by Link and Foucault . [2] They show these approaches to focus control have comparable performance in the presence of atmospheric turbulence... Foucault B., Investigation of focus control for NGAS, Starfire Optical Range internal memo, 8 May 2007. 3. Goodman J., Introduction to Fourier Optics

  8. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens

    Science.gov (United States)

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan

    2016-02-01

    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  9. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    Directory of Open Access Journals (Sweden)

    Lei Zhu, Ning Guo, Quanzheng Li, Ying Ma, Orit Jacboson, Seulki Lee, Hak Soo Choi, James R. Mansfield, Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide.Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data.Results: The dual-labeled probe 64Cu-RGD-C(DOTA-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp derived from dynamic optical imaging (1.762 ± 0.020 is comparable to that from dynamic PET (1.752 ± 0.026.Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  10. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  11. Compact dual-crystal optical parametric amplification for broadband IR pulse generation using a collinear geometry.

    Science.gov (United States)

    Hong, Zuofei; Zhang, Qingbin; Lu, Peixiang

    2013-04-22

    A novel compact dual-crystal optical parametric amplification (DOPA) scheme, collinearly pumped by a Ti:sapphire laser (0.8 μm), is theoretically investigated for efficiently generating broadband IR pulses at non-degenerate wavelengths (1.2 μm~1.4 μm and 1.8 μm~2.1 μm). By inserting a pair of barium fluoride (BaF(2)) wedges between two thin β-barium borate (BBO) crystals, the group velocity mismatch (GVM) between the three interacting pulses can be compensated simultaneously. In this case, the obtained signal spectrum centered at 1.3 μm is nearly 20% broader and the conversion efficiency is increased, but also the pulse contrast and beam quality are improved due to the better temporal overlap. Furthermore, sub-two-cycle idler pulses with carrier-envelope phase (CEP) fluctuation of sub-100-mrad root mean square (RMS) can be generated. Because a tunable few-cycle IR pulse with millijoule energy is attainable in this scheme, it will contribute to ultrafast community and be particularly useful as a driving or controlling field for the generation of ultrafast coherent x-ray supercontinuum.

  12. Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo, E-mail: hubo2011@semi.ac.cn

    2015-03-15

    The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.

  13. Numerical analysis of ultrafast physical random number generator using dual-channel optical chaos

    Science.gov (United States)

    Elsonbaty, Amr; Hegazy, Salem F.; Obayya, Salah S. A.

    2016-09-01

    Fast physical random number generators (PRNGs) are essential elements in the development of many modern applications. We numerically demonstrate an extraction scheme to establish an ultrafast PRNG using dual-channel optical-chaos source. Simultaneous suppression of time-delay signature in all observables of the output is verified using autocorrelation-function method. The proposed technique compares the level of the chaotic signal at time t with M levels of its delayed version. The comparators [1-bit analog-to-digital converters (ADCs)] are triggered using a clock subject to an incremental delay. All the delays of the chaotic signal before the ADCs and the relative delays of the clock are mutually incommensurable. The outputs of the ADCs are then combined using parity-check logic to produce physically true random numbers. The randomness quality of the generated random bits is evaluated by the statistical tests of National Institute of Standards and Technology Special Publication 800-22. The results verify that all tests are passed from M=1 to M=39 at sampling rate up to 34.5 GHz, which indicates that the maximum generation rate of random bits is 2.691 Tb/s without employing any preprocessing techniques. This rate, to the best of our knowledge, is higher than any previously reported PRNG.

  14. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi, E-mail: matsuyama@prec.eng.osaka-u.ac.jp [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kimura, Takashi [Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021 (Japan); Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya [SPring-8/RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); CREST, JST, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  15. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    Science.gov (United States)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  16. WE-EF-BRA-01: A Dual-Use Optical Tomography System for Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Bin, Z; Wong, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD (United States); He, X; Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: We develop a novel dual-use configuration for a tri-modality, CBCT/bioluminescence tomography(BLT)/fluorescence tomography(FT), imaging system with the SARRP that can function as a standalone system for longitudinal imaging research and on-board the SARRP to guide irradiation. BLT provides radiation guidance for soft tissue target, while FT offers functional information allowing mechanistic investigations. Methods: The optical assembly includes CCD camera, lens, filter wheel, 3-way mirrors, scanning fiber system and light-tight enclosure. The rotating mirror system directs the optical signal from the animal surface to the camera at multiple projection over 180 degree. The fiber-laser system serves as the external light source for the FT application. Multiple filters are used for multispectral imaging to enhance localization accuracy using BLT. SARRP CBCT provides anatomical information and geometric mesh for BLT/FT reconstruction. To facilitate dual use, the 3-way mirror system is cantilevered in front of the camera. The entire optical assembly is driven by a 1D linear stage to dock onto an independent mouse support bed for standalone application. After completion of on-board optical imaging, the system is retracted from the SARRP to allow irradiation of the mouse. Results: A tissue-simulating phantom and a mouse model with a luminescence light source are used to demonstrate the function of the dual-use optical system. Feasibility data have been obtained based on a manual-docking prototype. The center of mass of light source determined in living mouse with on-board BLT is within 1±0.2mm of that with CBCT. The performance of the motorized system is expected to be the same and will be presented. Conclusion: We anticipate the motorized dual use system provide significant efficiency gain over our manual docking and off-line system. By also supporting off-line longitudinal studies independent of the SARRP, the dual-use system is a highly efficient and cost

  17. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  18. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    Science.gov (United States)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-12-01

    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  19. Reason and reaction: the utility of a dual-focus, dual-processing perspective on promotion and prevention of adolescent health risk behaviour.

    Science.gov (United States)

    Gibbons, Frederick X; Houlihan, Amy E; Gerrard, Meg

    2009-05-01

    A brief overview of theories of health behaviour that are based on the expectancy-value perspective is presented. This approach maintains that health behaviours are the result of a deliberative decision-making process that involves consideration of behavioural options along with anticipated outcomes associated with those options. It is argued that this perspective is effective at explaining and predicting many types of health behaviour, including health-promoting actions (e.g. UV protection, condom use, smoking cessation), but less effective at predicting risky health behaviours, such as unprotected, casual sex, drunk driving or binge drinking. These are behaviours that are less reasoned or premeditated - especially among adolescents. An argument is made for incorporating elements of dual-processing theories in an effort to improve the 'utility' of these models. Specifically, it is suggested that adolescent health behaviour involves both analytic and heuristic processing. Both types of processing are incorporated in the prototype-willingness (prototype) model, which is described in some detail. Studies of health behaviour based on the expectancy-value perspective (e.g. theory of reasoned action) are reviewed, along with studies based on the prototype model. These two sets of studies together suggest that the dual-processing perspective, in general, and the prototype model, in particular, add to the predictive validity of expectancy-value models for predicting adolescent health behaviour. Research and interventions that incorporate elements of dual-processing and elements of expectancy-value are more effective at explaining and changing adolescent health behaviour than are those based on expectancy-value theories alone.

  20. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  1. Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis

    Science.gov (United States)

    Bo, En; Liu, Linbo

    2016-10-01

    We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.

  2. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    CERN Document Server

    Simandoux, Olivier; Gateau, Jerome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-01-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 \\mu m inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 \\mu m diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  3. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.

    Science.gov (United States)

    Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V

    2015-11-06

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  4. Studying focal ratio degradation of optical fibers for Subaru Prime Focus Spectrograph

    CERN Document Server

    Santos, Jesulino Bispo dos; Gunn, James; de Oliveira, Ligia Souza; de Arruda, Marcio Vital; Castilho, Bruno; Gneiding, Clemens Darvin; Ribeiro, Flavio Felipe; Murray, Graham; Reiley, Daniel J; Junior, Laerte Sodré; de Oliveira, Claudia Mendes

    2014-01-01

    Focal Ration Degradation (FRD) is a change in light angular distribution caused by fiber optics. FRD is important to fiber-fed, spectroscopic astronomical systems because it can cause loss of signal, degradation in spectral resolution, or increased complexity in spectrograph design. Laborat\\'orio Nacional de Astrof\\'isica (LNA) has developed a system that can accurately and precisely measures FRD, using an absolute method that can also measure fiber throughput. This paper describes the metrology system and shows measurements of Polymicro fiber FBP129168190, FBP127165190 and Fujikura fiber 128170190. Although the FRD of the two fibers are low and similar to one another, it is very important to know the exact characteristics of these fibers since both will be used in the construction of FOCCoS (Fiber Optical Cable and Connectors System) for PFS (Prime Focus Spectrograph) to be installed at the Subaru telescope.

  5. Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2

    Science.gov (United States)

    Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.

    2015-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.

  6. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    Science.gov (United States)

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  7. Scattering of a Tightly Focused Beam by an Optically Trapped Particle

    Science.gov (United States)

    Lock, James A.; Wrbanek, Susan Y.; Weiland, Kenneth E.

    2006-01-01

    Near-forward scattering of an optically trapped 5 m radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.

  8. Self-focusing of optical pulses in media with normal dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.;

    1996-01-01

    propagating in a nonlinear medium with normal dispersion will not collapse to a singularity in the transverse diffraction plane. It is explicitly shown that the pulse spreads out along the ''time-direction'' and ultimately splits up. The analytical results are supported by direct numerical solutions.......The self-focusing of ultra short optical pulses in a nonlinear medium with normal (i.e., negative) group-velocity dispersion is investigated. By using a combination of various techniques like virial-type arguments and self-similar transformations, we obtain strong evidence suggesting that a pulse...

  9. Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler

    CERN Document Server

    Chapman, J J; Streed, E W; Kielpinski, D

    2007-01-01

    The focusing properties of three aspheric lenses with numerical aperture (NA) between 0.53 and 0.68 were directly measured using an interferometrically referenced scanning knife-edge beam profiler with sub-micron resolution. The results obtained for two of the three lenses tested were in agreement with paraxial gaussian beam theory. It was also found that the highest NA aspheric lens which was designed for 830nm was not diffraction limited at 633nm. This process was automated using motorized translation stages and provides a direct method for testing the design specifications of high numerical aperture optics.

  10. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jinda; Li, Yong-qing, E-mail: liy@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  11. Control of polarization-induced stiffness asymmetry in highly focused optical tweezers

    CERN Document Server

    So, Jinmyoung

    2015-01-01

    Optical tweezers that utilize a highly focused, linearly polarized laser beam are shown to exhibit strong stiffness asymmetry, which originates from the anisotropic field distribution in the transverse plane. We present an experimental demonstration in which the degree of stiffness asymmetry is controlled by using the polarization state of the trapping beam as a tuning knob. Theoretical support for the experimental observations is provided based on the generalized Lorenz-Mie theory, which is revised to encompass the general polarization state of a trapping beam.

  12. First faint dual-field off-axis observations in optical long baseline interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Woillez, J.; Wizinowich, P.; Ragland, S. [W. M. Keck Observatory, Kamuela, HI 96743 (United States); Akeson, R.; Millan-Gabet, R. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Colavita, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Eisner, J. [University of Arizona, Tucson, AZ 85721-0065 (United States); Monnier, J. D. [University of Michigan, Ann Arbor, MI 48109-1090 (United States); Pott, J.-U. [Max-Planck-Institut für Astronomie, Heidelberg, D-69117 (Germany)

    2014-03-10

    Ground-based long baseline interferometers have long been limited in sensitivity in part by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on 2011 January 22 when the Keck Interferometer observed a K = 11.5 target, about 1 mag fainter than its K = 10.3 atmospherically imposed limit; the currently demonstrated limit is K = 12.5. These observations were made possible by the Dual-Field Phase-Referencing (DFPR) instrument, part of the NSF-funded ASTrometry and phase-Referenced Astronomy project; integration times longer than the turbulence time scale are made possible by its ability to simultaneously measure the real-time effects of the atmosphere on a nearby bright guide star and correct for it on the faint target. We present the implementation of DFPR on the Keck Interferometer. Then, we detail its on-sky performance focusing on the accuracy of the turbulence correction and the resulting fringe contrast stability.

  13. Focusing light through scattering media by full-polarization digital optical phase conjugation.

    Science.gov (United States)

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V

    2016-03-15

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single-polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first, to the best of our knowledge, full-polarization DOPC system that records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm-thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase-conjugation fidelity.

  14. Articulated dual modality photoacoustic and optical coherence tomography probe for preclinical and clinical imaging (Conference Presentation)

    Science.gov (United States)

    Liu, Mengyang; Zabihian, Behrooz; Weingast, Jessika; Hermann, Boris; Chen, Zhe; Zhang, Edward Z.; Beard, Paul C.; Pehamberger, Hubert; Drexler, Wolfgang

    2016-03-01

    The combination of photoacoustic tomography (PAT) with optical coherence tomography (OCT) has seen steady progress over the past few years. With the benchtop and semi-benchtop configurations, preclinical and clinical results have been demonstrated, paving the way for wider applications using dual modality PAT/OCT systems. However, as for the most updated semi-benchtop PAT/OCT system which employs a Fabry-Perot polymer film sensor, it is restricted to only human palm imaging due to the limited flexibility of the probe. The passband limit of the polymer film sensor further restricts the OCT source selection and reduces the sensitivity of the combined OCT system. To tackle these issues, we developed an articulated PAT/OCT probe for both preclinical and clinical applications. In the probe design, the sample arm of OCT sub-system and the interrogation part of the PAT sub-system are integrated into one compact unit. The polymer film sensor has a quick release function so that before each OCT scan, the sensor can be taken off to avoid the sensitivity drop and artefacts in OCT. The holding mechanism of the sensor is also more compact compared to previous designs, permitting access to uneven surfaces of the subjects. With the help of the articulated probe and a patient chair, we are able to perform co-registered imaging on human subjects on both upper and lower extremities while they are at rest positions. An increase in performance characteristics is also achieved. Patients with skin diseases are currently being recruited to test its clinical feasibility.

  15. The reconnaissance and early-warning optical system design for dual field of space-based "solar blind ultraviolet"

    Science.gov (United States)

    Wang, Wen-cong; Jin, Dong-dong; Shao, Fei; Hu, Hui-jun; Shi, Yu-feng; Song, Juan; Zhang, Yu-tu; Yong, Liu

    2016-07-01

    With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes a reconnaissance and early-warning optical system, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure takes advantage of a narrow field of view and long focal length optical system to achieve the target object detection, uses wide-field and short focal length optical system to achieve early warning of the target object. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm. A single pixel energy concentration is greater than 80%.

  16. Mapping Sentinel Lymph Node Metastasis by Dual-probe Optical Imaging

    Science.gov (United States)

    Yang, Xiangyu; Wang, Zhe; Zhang, Fuwu; Zhu, Guizhi; Song, Jibin; Teng, Gao-Jun; Niu, Gang; Chen, Xiaoyuan

    2017-01-01

    Purpose: Sentinel lymph node biopsy (SLNB) has emerged as the preferred standard procedure in patients with breast cancer, melanoma and other types of cancer. Herein, we developed a method to intra-operatively map SLNs and differentiate tumor metastases within SLNs at the same time, with the aim to provide more accurate and real-time intraoperative guidance. Experimental Design: Hyaluronic acid (HA), a ligand of lymphatic vessel endothelial hyaluronan receptor (LYVE)-1, is employed as a SLN mapping agent after being conjugated with a near-infrared fluorophore (Cy5.5). Different sized HAs (5, 10 and 20K) were tested in normal mice and mice with localized inflammation to optimize LN retention time and signal to background ratio. Cetuximab, an antibody against epidermal growth factor receptor (EGFR), and trastuzumab, an antibody against human epidermal growth factor receptor 2 (HER2), were labeled with near-infrared fluorophore (IRDye800) for detecting metastatic tumors. LN metastasis model was developed by hock injection of firefly luciferase engineered human head neck squamous carcinoma cancer UM-SCC-22B cells or human ovarian cancer SKOV-3 cells. The metastases within LNs were confirmed by bioluminescence imaging (BLI). IRDye800-Antibodies were intravenously administered 24 h before local administration of Cy5.5-HA. Optical imaging was then performed to identify nodal metastases. Results: Binding of HA with LYVE-1 was confirmed by ELISA and fluorescence staining. HA with a size of 10K was chosen based on the favorable migration and retention profile. After sequential administration of IRDye800-antibodies intravenously and Cy5.5-HA locally to a mouse model with LN metastases and fluorescence optical imaging, partially metastasized LNs were successfully distinguished from un-metastasized LNs and fully tumor occupied LNs, based on the different signal patterns. Conclusions: Fluorophore conjugated HA is a potential lymphatic mapping agent for SLNB. Dual-tracer imaging

  17. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  18. Focusing and imaging properties of diffractive optical elements with star-ring topological structure

    Science.gov (United States)

    Ke, Jie; Zhang, Junyong; Zhang, Yanli; Sun, Meizhi

    2015-08-01

    A kind of diffractive optical elements (DOE) with star-ring topological structure is proposed and their focusing and imaging properties are studied in detail. The so-called star-ring topological structure denotes that a large number of pinholes distributed in many specific zone orbits. In two dimensional plane, this structure can be constructed by two constrains, one is a mapping function, which yields total potential zone orbits, corresponding to the optical path difference (OPD); the other is a switching sequence based on the given encoded seed elements and recursion relation to operate the valid zone orbits. The focusing and imaging properties of DOE with star-ring topological structure are only determined by the aperiodic sequence, and not relevant to the concrete geometry structure. In this way, we can not only complete the traditional symmetrical DOE, such as circular Dammam grating, Fresnel zone plates, photon sieves, and their derivatives, but also construct asymmetrical elements with anisotropic diffraction pattern. Similarly, free-form surface or three dimensional DOE with star-ring topological structure can be constructed by the same method proposed. In consequence of smaller size, lighter weight, more flexible design, these elements may allow for some new applications in micro and nanphotonics.

  19. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  20. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization.

    Science.gov (United States)

    Park, Jesung; Jo, Javier A; Shrestha, Sebina; Pande, Paritosh; Wan, Qiujie; Applegate, Brian E

    2010-07-16

    Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue.

  1. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    Science.gov (United States)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  2. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    Science.gov (United States)

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  3. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    Science.gov (United States)

    Yu, Liqiang; Zhou, Daibing; Zhao, Lingjuan

    2014-09-01

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained.

  4. Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency.

    Science.gov (United States)

    Geng, Jihong; Staines, Sean; Jiang, Shibin

    2008-01-01

    We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100 GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of approximately 1.4 GHz/ degrees C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

  5. Speckle dynamics for dual-beam optical illumination of a rotating structure

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Yura, Harold; Hanson, Steen Grüner

    2009-01-01

    An out-of-plane rotating object is illuminated with two spatially separated coherent beams, giving rise to fully developed speckles, which will translate and gradually decorrelate in the observation plane, located in the far field. The speckle pattern is a compound structure, consisting of random...... speckles modulated by a smaller and repetitive structure. Generally, these two components of the compound speckle structure will move as rigid structures with individual velocities determined by the characteristics of the two illuminating beams. Closed-form analytical expressions are found for the space......- and time-lagged covariance of irradiance and the corresponding power spectrum for the two spatially separated illuminating beams. The present analysis is valid for propagation through an arbitrary ABCD system, though the focus for the experimental evaluation is far-field observations using an optical...

  6. Simplified Monolithic Flow Cytometer Chip With Three-Dimensional Hydrodyanmic Focusing And Integrated Fiber-Free Optics

    DEFF Research Database (Denmark)

    Motosuke, Masahiro; Jensen, Thomas Glasdam; Zhuang, Guisheng

    2011-01-01

    A miniaturized flow cytometry incorporating both fluidic and optical systems has a great possibility for portable biochemical sensing or point-of-care diagnostics. This paper presents a simple microfluidic flow cytometer combining reliable 3D hydrodynamic focusing and optical detection without op...... to be applied as a portable platform of cytometer chip....

  7. All-optical production of dual Bose-Einstein condensates of paired fermions and bosons with 6Li and 7Li

    Science.gov (United States)

    Ikemachi, Takuya; Ito, Aki; Aratake, Yukihito; Chen, Yiping; Koashi, Masato; Kuwata-Gonokami, Makoto; Horikoshi, Munekazu

    2017-01-01

    We report the first all-optical production of dual Bose-Einstein condensates (BECs) of paired 6Li (fermion) and one spin state of 7Li (boson) at the magnetic field where the s-wave interactions between fermions are resonant. Fermions are cooled efficiently by evaporative cooling and they serve as coolant for bosons. As a result, the dual condensates can be achieved by using a simple experimental apparatus and procedures, as in the case of the all-optical production of a single BEC. We show that the all-optical method enables us to realize variety of ultracold Bose-Fermi mixtures.

  8. Dual-modal photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source

    Science.gov (United States)

    Lee, Changho; Han, Seunghoon; Kim, Sehui; Jeon, Minyoung; Jeon, Mansik; Kim, Chulhong; Kim, Jeehyun

    2013-03-01

    We report the development of a combined dual-modal photoacoustic and optical coherence tomography (PA-OCT) system using a single near-infrared (NIR) supercontinuum laser source which can provide both optical absorption and scattering contrasts simultaneously. By using a small sized pulsed Nd:YAG microchip laser and a photonic crystal fiber, we fabricated a pulsed broadband supercontinuum source from 600 to 1700 nm. Under the same optical hardware system, intrinsically registered PA and OCT images are acquired in a single scanning. In order to demonstrate feasibility of our system, we successfully acquired the PA and OCT images of black and white hairs images at the same time. The black hair was detected in both PA and OCT images, while the white hair appeared only in the OCT image. This result suggests the potential of compact, cost-effective, and simple dual-modal PA-OCT system. Moreover, we believe that this approach will be a key point for commercialization and clinical translation.

  9. Theory and design of line-to-point focus solar concentrators with tracking secondary optics.

    Science.gov (United States)

    Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2013-12-10

    The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.

  10. Investigation of basal cell carcinoma using dynamic focus optical coherence tomography.

    Science.gov (United States)

    Avanaki, Mohammad R N; Hojjatoleslami, Ali; Sira, Mano; Schofield, John B; Jones, Carole; Podoleanu, Adrian Gh

    2013-04-01

    Optical coherence tomography (OCT) is becoming a popular modality for skin tumor diagnosis and assessment of tumor size and margin status. We conducted a number of imaging experiments on periocular basal cell carcinoma (BCC) specimens using an OCT configuration. This configuration employs a dynamic focus (DF) procedure where the coherence gate moves synchronously with the peak of the confocal gate, which ensures better signal strength and preservation of transversal resolution from all depths. A DF-OCT configuration is used to illustrate morphological differences between the BCC and its surrounding healthy skin in OCT images. The OCT images are correlated with the corresponding histology images. To the best of our knowledge, this is the first paper to look at DF-OCT imaging in examining periocular BCC.

  11. Development of near-field scanning microwave and optical dual probe: Application to characterization of high-T(c) superconductors

    Science.gov (United States)

    Aga, Roberto Sabas, Jr.

    In this dissertation, a novel dual-channel near-field scanning microwave and optical microprobe (NSMM/NSOM) was developed for simultaneous mapping of microwave and optical properties of a sample at microscopic scales. This microprobe is composed of an open-end coaxial resonator with its center conductor being replaced by a stainless steel tube terminated by a titanium/silver coated fiber optic with a tapered tip. The optical fiber serves as the channel for NSOM, while its metal coating is the channel for NSMM. Using this dual-channel NSMM/NSOM probe, a spatial resolution of ˜5 mum, that is comparable to the best reported for single-channel NSMM, has been achieved on metallic samples. This resolution is mainly limited by the sensitivity of the NSMM channel and may be further improved when the sensitivity of NSMM is enhanced. Characterization of the microwave properties of the highest-Tc Hg-based superconductors has been carried out using a traditional resonant cavity technique, as well as a novel single-channel NSMM and the dual-channel NSMM/NSOM. Using the traditional technique, the microwave surface resistance (Rs) and power handling capability (Pc) of HgBa 2CaCu2O6 (Hg-1212 with Tc ˜ 125 K) films have been measured for the first time, and the results are superior to the best achieved on other superconductors. For example, a comparable R s ˜ 0.3 mO (10 GHz) can be obtained on Hg-1212 at close to 120 K as opposed to the same Rs for YBa2Cu3O 7 (the most popular high-Tc superconductor with Tc ˜ 92 K) at around 77K. This can be attributed to the large difference in the Tcs between the two materials and has demonstrated the potential of Hg-1212 for microwave applications. A comparison of the microwave properties of Hg-1212, Tl-2212 and YBCO films at reduced temperature scale suggested further room for improvement of Hg-1212 performance. Using NSMM, the localized microwave properties, such as Tcs, sheet resistance and power handling capability have been investigated

  12. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    Science.gov (United States)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  13. Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching

    Science.gov (United States)

    Mekaru, Harutaka; Yano, Takayuki

    2012-06-01

    We produce patterns on minute and curved surfaces of optical fibers, and develop a processing technology for fabricating sensors, antennas, electrical circuits, and other devices on such patterned surfaces by metallization. A three-dimensional processing technology can be used to fabricate a spiral coil on the surface of cylindrical quartz materials, and then the microcoils can also be applied to capillaries of micro-fluid devices, as well as to receiver coils connected to a catheter and an endoscope of nuclear magnetic resonance imaging (MRI) systems used in imaging blood vessels. To create a spiral line pattern with a small linewidth on a full-circumference surface of an optical fiber, focused-ion-beam (FIB) etching was employed. Here, a simple rotation stage comprising a dc motor and an LR3 battery was built. However, during the development of a prototype rotation stage before finalizing a large-scale remodelling of our FIB etching system, a technical problem was encountered where a spiral line could not be processed without running into breaks and notches in the features. It turned out that the problem was caused by axis blur resulting from an eccentric spinning (or wobbling) of the axis of the fiber caused by its unrestrained free end. The problem was solved by installing a rotation guide and an axis suppression device onto the rotation stage. Using this improved rotation stage. we succeeded in the seamless patterning of 1-µm-wide features on the full-circumference surface of a 250-µm-diameter quartz optical fiber (QOF) by FIB etching.

  14. Application of LCoS to dynamical focusing in an optical system

    Science.gov (United States)

    Goldin, M.; Costanzo, G. Díaz; Martínez, O. E.; Iemmi, C.; Ledesma, S.

    2008-04-01

    Imaging of samples by different microscopy techniques has produced a relevant impact in the development of new diagnosis techniques in biology, medicine and material science. In many biological applications, where the sample changes or moves during the observation, a moving spot to track an identified sample is required. We introduce here an optical system that can perform this tracking without mechanical components. The system is based on the use of a high resolution liquid crystal on silicon (LCoS) device working as a mostly phase wave front modulator. The additional advantage of this system is performing the motion of the spot at video rate. In general, these devices produce coupled phase and amplitude modulation responses as a function of the applied voltage. This coupling effect deteriorates the response of those ideal optical elements designed as phase only or amplitude only functions. By means of an elliptical polarization light we can reduce the amplitude modulation and improve the phase modulation. We have experimentally found a configuration where the amplitude is almost constant while the phase reaches a high modulation. For this configuration we show how the spot can be moved through focus plane by means of linear phases, or displaced out of this plane by using a quadratic phase.

  15. Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size

    CERN Document Server

    White, Glen; Woodley, Mark; Bai, Sha; Bambade, Philip; Renier, Yves; Bolzon, Benoit; Kamiya, Yoshio; Komamiya, Sachio; Oroku, Masahiro; Yamaguchi, Yohei; Yamanaka, Takashi; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Marin, Eduardo

    2010-01-01

    The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing lowemittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere. The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the tuning procedures and describe operational experiences and performances

  16. Evaluation of Different Holder Devices for Freeze-Drying in Dual-Chamber Cartridges With a Focus on Energy Transfer.

    Science.gov (United States)

    Korpus, Christoph; Friess, Wolfgang

    2017-04-01

    For freeze-drying in dual-chamber cartridges, a holder device to enable handling and safe positioning in the freeze-dryer is necessary. The aim of this study was to analyze 4 different types of holder devices and to define the best system based on energy transfer. The main criteria were drying homogeneity, ability to minimize the influence of atypical radiation on product temperatures, and heat transfer effectiveness. The shell holder reduced the influence of atypical radiation by almost 60% compared to a block system and yielded the most homogenous sublimation rates. Besides the most efficient heat transfer with values of 1.58E-4 ± 2.06E-6 cal/(s*cm(2)*K) at 60 mTorr to 3.63E-4 ± 1.85E-5 cal/(s*cm(2)*K) at 200 mTorr for Ktot, reaction times to shelf temperature changes were up to 4 times shorter compared to the other holder systems and even faster than for vials. The flexible holder provided a comparable shielding against atypical radiation as the shell but introduced a third barrier against energy transfer. Block and guardrail holder were the least efficient system tested. Hence, the shell holder provided the best radiation shielding, enhanced the transferability of the results to a larger scale, and improved the homogeneity between the dual-chamber cartridges.

  17. Stable dual-wavelength single-longitudinal-mode ring erbium-doped fiber laser for optical generation of microwave frequency

    Science.gov (United States)

    Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.

    2012-05-01

    We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.

  18. Fast-channel LSO detectors and fiber-optic encoding for excellent dual photon transmission measurements in PET

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.F.; Moyers, J.C.; Casey, M.E.; Watson, C.C.; Nutt, R. [CTI PET Systems, Inc., Knoxville, TN (United States)

    1999-08-01

    Improved attenuation correction remains critical to PET. Currently with dual photon rotating rod sources, benefits of windowing are limited by counting losses of detectors nearest the rods, the near detectors. With single photon sources, improved statistics are offset by a greater need for collimation and more complex emission background correction. Now, a dual photon point source array with fast-channel, near detectors improves on these earlier techniques -- here, adding transmission measurement to dual-head rotating PET. Arrays of collimated point sources are aligned axially and orbit the FOV. With each source is a dedicated near detector (LSO crystal). Crystals couple to photomultipliers (PMTs). As the crystals are not ``block`` encoded, pulse-processing time is reduced (to 120 ns). Reduced processing time lowers dead time and permits hotter sources. For improved axial sampling, larger arrays (21 sources/head) may be configured. To reduce costs, crystals couple fiber-optically into unique PMT pairs -- decreasing the total number of near-detector PMTs by 71%.

  19. Focused beam total reflection X-ray fluorescence with low power sources coupled to doubly curved crystal optics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.W. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)]. E-mail: zchen@xos.com; Mail, N. [Center For X-ray Optics, State University of New York, University at Albany (United States); Wei, F.Z. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States); MacDonald, C.A. [Center For X-ray Optics, State University of New York, University at Albany (United States); Gibson, W.M. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)

    2005-04-30

    A focused beam total X-ray fluorescence technique was developed based on doubly curved crystal optics. This technique provides good detection sensitivity and spatial resolution for localized detection of surface deposits. Compact low power X-ray sources were used to demonstrate the benefit of the X-ray optics for focusing Cr K{alpha}, Cu K{alpha} and Mo K{alpha} radiation. The detection capability of the focused beam Total reflection X-ray fluorescence system was investigated with dried droplets of calibrated low concentration solutions. Detection limits at the femtogram level were demonstrated.

  20. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  1. A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals

    Indian Academy of Sciences (India)

    Shyamal Mondal; Satya Pratap Singh; Sourabh Mukhopadhyay; Aditya Date; Kamal Hussain; Shouvik Mukherjee; Prasanta Kumar Datta

    2014-02-01

    A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.

  2. Analog time-reversed ultrasonically encoded (TRUE) optical focusing inside scattering media with high power gain (Conference Presentation)

    Science.gov (United States)

    Ma, Cheng; Xu, Xiao; Wang, Lihong V.

    2016-03-01

    Focusing light deep inside scattering media plays a key role in such biomedical applications as high resolution optical imaging, control, and therapy. In recent years, wavefront shaping technologies have come a long way in controlling light propagation in complex media. A prominent example is time-reversed ultrasonically encoded (TRUE) focusing, which allows noninvasive introduction of "guide stars" inside biological tissue to guide light focusing. By measuring the optical wavefront emanating from an ultrasound focus created at the target location, TRUE determines the desired wavefront non-iteratively, and achieves focusing at the target position via a subsequent optical time reversal. Compared to digital counterparts that employ slow electronic spatial light modulators and cameras, analog TRUE focusing relies on nonlinear photorefractive crystals that inherently accommodate more spatial modes and eliminate the troublesome alignment and data transfer required by digital approaches. However, analog TRUE focusing suffers from its small gain, defined as the energy or power ratio between the focusing and probing beams in the focal volume. Here, by implementing a modified analog TRUE focusing scheme that squeezes the duration of the time-reversed photon packet below the carrier-recombination-limited hologram decay time of the crystal, we demonstrated a photon flux amplification much greater than unity at a preset focal voxel in between two scattering layers. Although the energy gain was still below unity, the unprecedented power gain will nevertheless benefit new biomedical applications.

  3. Novel design of a refractive index sensor based on a dual-core micro-structured optical fiber

    CERN Document Server

    Tsigaridas, G; Persephonis, P

    2014-01-01

    In the present work a new model of a refractive index (RI) sensor is exhibited. This is based on a dual core micro-structured optical fiber (MOF), where two holes are introduced at the core centers. In this way, the model enhances the interaction of the fiber modes propagated in the core region, providing the possibility of increasing the dimensions of the fiber sensor. Thus, the filling of the fiber holes with the fluid under study is facilitated, and generally the practical use of the system as a refractive index sensor is simplified. The influence of the core separation and the diameter of the central holes on the sensitivity of the sensor have been studied by a numerical simulation. The results are in agreement with the expected behavior as it is determined by the physics of the problem. Based on the same operating principle, it is verified that a dual-core conventional optical fiber with micro-fluidic channels at the center of the cores, can also operates as an RI sensor.

  4. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    Science.gov (United States)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  5. Numerical analysis and optimization of a dual-order mode all-optical wavelength converter

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Wolfson, David; Kloch, Allan;

    2001-01-01

    A numerical analysis of a dual-order mode (DOMO) wavelength converter has been carried out. We optimize the waveguide dimensions for high speed and compare to a single mode device. We also identify a crosstalk penalty when converting to wavelengths close to the original....

  6. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dual-wavelength BBO optical parametric oscillator.

    Science.gov (United States)

    Notake, Takashi; Nawata, Kouji; Kawamata, Hiroshi; Matsukawa, Takeshi; Qi, Feng; Minamide, Hiroaki

    2012-11-01

    We developed a difference frequency generation (DFG) source with an organic nonlinear optical crystal of DAST or BNA selectively excited by a dual-wavelength β-BaB(2)O(4) optical parametric oscillator (BBO-OPO). The dual-wavelength BBO-OPO can independently oscillate two lights with different wavelengths from 800 to 1800 nm in a cavity. THz-wave generation by using each organic crystal covers ultrawide range from 1 to 30 THz with inherent intensity dips by crystal absorption modes. The reduced outputs can be improved by switching over the crystals with adequately tuned pump wavelengths of the BBO-OPO.

  7. Variations of lumbrical muscle innervation patterns in the hand, focusing on the dual innervation of the third lumbrical muscle.

    Science.gov (United States)

    Hur, Mi-Sun

    2017-02-01

    This study was conducted to clarify the innervation patterns of the lumbrical muscles by identifying the origin of the nerve fascicles innervating these muscles. The lumbricals in the hand were investigated in 50 specimens of embalmed Korean adult cadavers. Dual innervation of the third lumbrical was most frequently observed in 64.0%. The third lumbrical was innervated by a branch arising from the median nerve (MN) distal to site at which the superficial branch of the ulnar nerve (sUN) joins the MN in 34%. When separating and tracing the nerve fascicles from the MN distal to the communicating branch from the sUN to MN, the fascicles contained parts of the MN and sUN in 18% and part of the MN in 16%. These results will be helpful for accurate diagnoses, surgical procedures, and electrophysiological examinations in lesions of the MN and ulnar nerve in the hand. Muscle Nerve, 2016 Muscle Nerve 55: 160-165, 2017. © 2016 Wiley Periodicals, Inc.

  8. Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    CERN Document Server

    Sugai, Hajime; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H; Bennett, Charles L; Bickerton, Steve; Bozier, Alexandre; Braun, David F; Bui, Khanh; Capocasale, Christopher M; Carr, Michael A; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C Y; Dawson, Olivia R; Dekany, Richard G; Ek, Eric M; Ellis, Richard S; English, Robin J; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D; Golebiowski, Mirek; Gunn, James E; Hart, Murdock; Heckman, Timothy M; Ho, Paul T P; Hope, Stephen; Hovland, Larry E; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E; Kempenaar, Jason G; King, Matthew E; Fèvre, Olivier Le; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H; Madec, Fabrice; Mao, Peter; Marrara, Lucas Souza; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J; de Oliveira, Antonio Cesar; de Oliveira, Claudia Mendes; de Oliveira, Ligia Souza; Orndorff, Joe D; Vilaça, Rodrigo de Paiva; Partos, Eamon J; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J; Riddle, Reed; Santos, Leandro; Santos, Jesulino Bispo dos; Schwochert, Mark A; Seiffert, Michael D; Smee, Stephen A; Smith, Roger M; Steinkraus, Ronald E; Sodré, Laerte; Spergel, David N; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C; Wyse, Rosie; Yan, Chi-Hung

    2015-01-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 {\\mu}m to 1.26 {\\mu}m, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 {\\mu}m to 0.89 {\\mu}m will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning ...

  9. Generation of Laguerre Gaussian beams using spiral phase diffractive elements fabricated on optical fiber tips using focused ion beam milling

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Dahal, P.; Guerreiro, A.; Jorge, P. A. S.; Viegas, J.

    2016-03-01

    In this work, spiral phase lenses fabricated on the tip of single mode optical fibers are reported. This allows tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The phase profiles are evaluated and validated using an implementation of the Finite Differences Time Domain. The output optical intensity profiles matching the numerical simulations are presented and analyzed. Finally, results on cell trapping and manipulation are briefly described.

  10. Compensation of spectral artifacts in dual-modality intravascular optical coherence tomography and near-infrared spectroscopy (Conference Presentation)

    Science.gov (United States)

    Fard, Ali M.; Gardecki, Joseph A.; Ughi, Giovanni J.; Hyun, Chulho; Tearney, Guillermo J.

    2016-02-01

    Intravascular optical coherence tomography (OCT) is a high-resolution catheter-based imaging method that provides three-dimensional microscopic images of coronary artery in vivo, facilitating coronary artery disease treatment decisions based on detailed morphology. Near-infrared spectroscopy (NIRS) has proven to be a powerful tool for identification of lipid-rich plaques inside the coronary walls. We have recently demonstrated a dual-modality intravascular imaging technology that integrates OCT and NIRS into one imaging catheter using a two-fiber arrangement and a custom-made dual-channel fiber rotary junction. It therefore enables simultaneous acquisition of microstructural and composition information at 100 frames/second for improved diagnosis of coronary lesions. The dual-modality OCT-NIRS system employs a single wavelength-swept light source for both OCT and NIRS modalities. It subsequently uses a high-speed photoreceiver to detect the NIRS spectrum in the time domain. Although use of one light source greatly simplifies the system configuration, such light source exhibits pulse-to-pulse wavelength and intensity variation due to mechanical scanning of the wavelength. This can be in particular problematic for NIRS modality and sacrifices the reliability of the acquired spectra. In order to address this challenge, here we developed a robust data acquisition and processing method that compensates for the spectral variations of the wavelength-swept light source. The proposed method extracts the properties of the light source, i.e., variation period and amplitude from a reference spectrum and subsequently calibrates the NIRS datasets. We have applied this method on datasets obtained from cadaver human coronary arteries using a polygon-scanning (1230-1350nm) OCT system, operating at 100,000 sweeps per second. The results suggest that our algorithm accurately and robustly compensates the spectral variations and visualizes the dual-modality OCT-NIRS images. These

  11. Laser Plasmas : Lie-optic matrix algorithm for computer simulation of paraxial self-focusing in a plasma

    Indian Academy of Sciences (India)

    D Subbarao; R Uma; Kamal Goyal; Sanjeev Goyal; Karuna Batra

    2000-11-01

    Propagation algorithm for computer simulation of stationary paraxial self-focusing laser beam in a medium with saturating nonlinearity is given in Lie-optic form. Accordingly, a very natural piece-wise continuous Lie transformation that reduces to a restricted Lorentz group of the beam results. It gives rise to a matrix method for self-focusing beam propagation that is constructed and implemented. Although the results use plasma nonlinearities of saturable type, and a gaussian initial beam, these results are applicable for other media like linear optical fibers and to more general situations.

  12. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    Science.gov (United States)

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  13. Optical design of f-theta lens for dual wavelength selective laser melting

    Science.gov (United States)

    Feng, Lianhua; Cao, Hongzhong; Zhang, Ning; Xu, Xiping; Duan, Xuanming

    2016-10-01

    F-theta lens is an important unit for selective laser melting (SLM) manufacture. The dual wavelength f-theta lens has not been used in SLM manufacture. Here, we present the design of the f-theta lens which satisfies SLM manufacture with coaxial 532 nm and 1030 nm 1080 nm laser beams. It is composed of three pieces of spherical lenses. The focal spots for 532 nm laser and 1030 nm 1080 nm laser are smaller than 35 μm and 70 μm, respectively. The results meet the demands of high precision SLM. The chromatic aberration could cause separation between two laser focal spots in the scanning plane, so chromatic aberration correction is very important to our design. The lateral color of the designed f-theta lens is less than 11 μm within the scan area of 150 mm x 150 mm, which meet the application requirements of dual wavelength selective laser melting.

  14. Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors

    CERN Document Server

    Dober, B; Beall, J A; Becker, D; Che, G; Cho, H M; Devlin, M; Duff, S M; Galitzki, N; Gao, J; Groppi, C; Hilton, G C; Hubmayr, J; Irwin, K D; McKenney, C M; Li, D; Lourie, N; Mauskopf, P; Vissers, M R; Wang, Y

    2016-01-01

    The next generation BLAST experiment (BLAST-TNG) is a suborbital balloon payload that seeks to map polarized dust emission in the 250 $\\mu$m, 350 $\\mu$m and 500 $\\mu$m wavebands. The instrument utilizes a stepped half-wave plate to reduce systematics. The general requirement of the detectors is that they are photon-noise-limited and dual-polarization sensitive. To achieve this goal, we are developing three monolithic arrays of cryogenic sensors, one for each waveband. Each array is feedhorn-coupled and each spatial pixel consists of two orthogonally spaced polarization-sensitive microwave kinetic inductance detectors (MKIDs) fabricated from a Ti/TiN multilayer film. In previous work, we demonstrated photon-noise-limited sensitivity in 250 $\\mu$m waveband single polarization devices. In this work, we present the first results of dual-polarization sensitive MKIDs at 250 $\\mu$m.

  15. Shared p-cycles design for dual link failure restorability in optical WDM networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pre-configured cycles (p-cycles) can attain high capacity efficiency and fast protection switching times in wavelength division multiplexing (WDM) networks.This article proposes the weighted straddling link algorithm (WSLA) for generating a subset of all cycles that can guarantee 100% restorability in case of dual link failure, and give an integer linear programming (ILP) formulation that solves the shared p-cycles design problem minimizing the total spare capacities.Numerical result shows that our method can achieve 100% dual link failure restorability with acceptable spare capacity.The larger standard deviation of demand set and the larger node degree network, the better the shared p-cycles scheme performs.

  16. Impact of Saturated Parameters on High Order Dual Steady Slow Optical Solitons%饱和参数对高阶双稳态慢光孤子的影响

    Institute of Scientific and Technical Information of China (English)

    蒋朝龙; 孙建强; 黄荣芳

    2014-01-01

    慢光和慢光孤子由于在全光通信技术等领域内的重要应用已成为量子光学和非线性光学研究的热点。利用四阶紧致分裂步有限差分法离散精确描述三能级冷原子介质中高阶型双稳态慢光孤子行为的广义非线性薛定谔方程,得到相应的离散格式。采用 Rb原子 D1线精细结构参数进行数值模拟,通过适当改变精细结构饱和参数和初始入射探测场,分析单个和多个双稳态慢光孤子的演化行为。数值结果表明饱和参数对高阶双稳态慢光孤子的演化有显著的影响,多个慢光孤子的相互作用不但与慢光孤子的振幅和相互距离有关,还和慢光孤子的排列方式有关。%Slow light and slow optical solitons have become the focus of quantum optics and nonlinear optics for their application in all optical communication technology etc.Applying the fourth order compact splitting step finite difference method to discretize the generalized nonlinear Schrodinger equation precisely describing the behaviors of high order dual steady slow optical solitons in three-level gaseous media,we obtained the corresponding discrete scheme.Taking the Rb atomic fine structure parameters to simulate,we analyzed the evolution behaviors of single and multiple slow optical solitons by changing the fine structure parameter and the initial probe field properly.Numerical simulation results showed that the saturated parameters have an obvious effects on the evolution of high order dual steady slow optical solitons.Interaction of multiple high order dual steady slow optical solitons has something to do with the amplitudes,the distance and the array of optical solitons.

  17. Scan-less, line-field confocal microscopy by combination of wavelength/space conversion with dual optical comb

    Science.gov (United States)

    Yasui, Takeshi; Hase, Eiji; Miyamoto, Shuji; Hsieh, Yi-Da; Minamikawa, Takeo; Yamamoto, Hirotsugu

    2016-03-01

    Optical frequency comb (OFC) has attracted attentions for optical frequency metrology in visible and infrared regions because the mode-resolved OFC spectrum can be used as a precise frequency ruler due to both characteristics of broadband radiation and narrow-line CW radiation. Furthermore, the absolute accuracy of all frequency modes in OFC is secured by phase-locking a repetition frequency frep and a carrier-envelope-offset frequency fceo to a frequency standard. However, application fields of OFC other than optical frequency metrology are still undeveloped. One interesting aspect of OFC except for the frequency ruler is optical carrier having a huge number of discrete frequency channels because OFC is composed of a series of frequency spikes regularly separated by frep in the broad spectral range. If a certain quantity to be measured is encoded on each comb mode by dimensional conversion, a huge number of data for the measured quantity can be obtained from a single mode-resolved spectrum of OFC. In this paper, we encode the confocal microscopic line-image of a sample on the mode-resolved OFC spectrum by the dimensional conversion between wavelength and 1D-space. The resulting image-encoded OFC spectrum is acquired by an optical spectrum analyzer or dual comb spectrometer. Finally, the line image of the sample is decoded from the spectral amplitude of the mode-resolved OFC spectrum. The combination of OFC with the dimensional conversion enables to establish both confocal modality and line-field imaging under the scan-less condition.

  18. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator

    Directory of Open Access Journals (Sweden)

    Kyung-Il Joo

    2016-10-01

    Full Text Available We propose a liquid crystal (LC-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters.

  19. Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output

    Science.gov (United States)

    Hou, Lianping; Zhu, Hongliang; Zhou, Fan; Wang, Lufeng; Bian, Jing; Wang, Wei

    2005-09-01

    We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to a planar light-guide circuit silica waveguide or cleaved single-mode optical fibre. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three-step low-pressure MOVPE growth. For the device structure, in the SOA/EAM section, a double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) was incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of the ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3 dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0° × 12.6°, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

  20. Semiconductor optical amplifier monolithically integrated with an electroabsorption modulator and dual-waveguide spot-size converters

    Science.gov (United States)

    Hou, Lianping; Zhu, Hongliang; Wang, Baojun; Zhou, Fan; Wang, Lufeng; Bian, Jing; Wang, Wei

    2005-09-01

    We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) were incorporated. Such combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550~1600nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0°×12.6°, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber.

  1. Design optimization of the proximity focusing RICH with dual aerogel radiator using a maximum-likelihood analysis of Cherenkov rings

    Science.gov (United States)

    Pestotnik, R.; Križan, P.; Korpar, S.; Iijima, T.

    2008-09-01

    The use of a sequence of aerogel radiators with different refractive indices in a proximity focusing Cherenkov ring imaging detector has been shown to improve the resolution of the Cherenkov angle. In order to obtain further information on the capabilities of such a detector, a maximum-likelihood analysis has been performed on simulated data, with the simulation being appropriate for the upgraded Belle detector. The results show that by using a sequence of two aerogel layers with different refractive indices, the K/π separation efficiency is improved in the kinematic region above 3 GeV/ c. In the low momentum region, the focusing configuration (with n1 and n2 chosen such that the Cherenkov rings from different aerogel layers at 4 GeV/ c overlap) shows a better performance than the defocusing one (where the two Cherenkov rings are well separated).

  2. Experimental verification of long-term evolution radio transmissions over dual-polarization combined fiber and free-space optics optical infrastructures.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2016-03-10

    This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.

  3. Optical sub-diffraction limited focusing for confined heating and lithography

    Science.gov (United States)

    Traverso, Luis M.

    Electronics and nanotechnology is constantly demanding a decrease in size of fabricated nanoscale features. This decrease in size has become much more difficult recently due to the limited resolution of optical systems that are fundamental to many nanofabrication methods. A lot of effort has been made to fabricate devices smaller than the diffraction limit of light. Creating devices that are capable of confining fields by means of interference patterns of propagating wave modes and surface plasmon, has proven successful to confine light into smaller spot sizes. Zone plate diffraction lenses generate spots with dimensions very close to the diffraction limit. We report the fabrication of zone plates to be used in laser direct writing of silicon nanowires. We show experimentally and with numerical models that a silicon substrate subjected to a focused spot is capable of reaching the necessary temperature for the synthesis of silicon nanowires with widths of 60 nm, which is considerably smaller than the diffraction limit of the processing laser. Nanoscale ridge apertures are devices with a great potential to confine light energy. Such apertures have been experimentally proven to create very small lithography features. We believe that these apertures can be further modified in order to achieve a practical smaller confinement in the near field region. In this thesis we discuss several attempts to design and fabricate apertures with sharp edges and implement them in a previously reported parallel lithography setup. In an attempt to use apertures for parallel fabrication of patterns, we developed a system to control the position of the near-field region with respect to a lithography substrate. To do this we use a method of interferometric-spatial- phase-imaging (ISPI). With the implementation of this method we were able to produce an array of 32X32 lines with confined widths as small as 22 nm. Nanoscale ridge apertures were also studied to be used as near field transducers

  4. Development of Optical Voltage Transducer Based on Dual-Mode Highly Elliptical-Core Polarization Maintenance Fiber

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Bi; Feng Liu; Xuan Guo

    2008-01-01

    This paper describes an optical voltage transducer (OVT) for the 35 kV electric power system based on modular interference in dual-mode highly elliptical-core polarization maintenance fiber (E-Core PMIF). The temperature and environmental perturb-bation can be compensated automatically. In the scheme, a quartz crystal cylinder wrapped with highly elliptical-core fiber plays the role of voltage sensor head. The two interference output lobes' intensity from the E-core PMF is modulated with the converse piezoelectric effect of quartz crystal. A PZT wrapped with E-core PMF at ground potential serves as the static modular phase difference control and temperature compensation unit. The experiment results indicate that the OVT designed in this paper has satisfying performance and could successfully rejects the temperature perturbation.

  5. Optimal Design of Dual-Pump Fibre-Optical Parametric Amplifiers with Dispersion Fluctuations Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Ming; LI Yan-He

    2005-01-01

    @@ Solutions of dual-pump fibre-optical parametric amplifiers (DP-FOPAs) with dispersion fluctuations are derived by using a matrix operator. Based on these solutions and a hybrid genetic algorithm, we have optimized threesection DP-FOPAs to increase the signal band and improve the gain uniformity. The optimizations demonstrate that when dispersion fluctuations are taken into account, the 44-nm signal band with the 0.37-dB ripple and over 14.8-dB gain can be obtained from the three-section DP-FOPA, instead of the lowest gain of ~13dB with the ripple of more than 15dB from the single-section DP-FOPA.

  6. Optical generation of microwave signals with a dual-phase-shifted Al2O3:Yb3+ distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, E.H.; Khan, M.R.H.; Roeloffzen, C.G.H.; Wolferen, van H.A.G.M.; Wörhoff, K.; Ridder, de R.M.; Pollnau, M.

    2012-01-01

    We demonstrate the optical generation of stable microwave signals from a dual-wavelength distributed-feedback waveguide laser in ytterbium-doped alumina. The microwave beat signal was produced at ~15 GHz with a frequency stability of ±2.5 MHz.

  7. Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Science.gov (United States)

    Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.

    2012-01-01

    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.

  8. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation.

    Science.gov (United States)

    Kudo, Tetsuhiro; Wang, Shun-Fa; Yuyama, Ken-Ichi; Masuhara, Hiroshi

    2016-05-11

    We report optical trapping and assembling of colloidal particles at a glass/solution interface with a tightly focused laser beam of high intensity. It is generally believed that the particles are gathered only in an irradiated area where optical force is exerted on the particles by laser beam. Here we demonstrate that, the propagation of trapping laser from the focus to the outside of the formed assembly leads to expansion of the assembly much larger than the irradiated area with sticking out rows of linearly aligned particles like horns. The shape of the assembly, its structure, and the number of horns can be controlled by laser polarization. Optical trapping study utilizing the light propagation will open a new avenue for assembling and crystallizing quantum dots, metal nanoparticles, molecular clusters, proteins, and DNA.

  9. Speckle noise reduction of a dual-frequency laser Doppler velocimeter based on an optically injected semiconductor laser

    Science.gov (United States)

    Cheng, Chih-Hao; Lee, Jia-Wei; Lin, Tze-Wei; Lin, Fan-Yi

    2012-02-01

    We develop and investigate a dual-frequency Laser Doppler Velocimeter (DF-LDV) based on an optically injected semiconductor laser. By operating the laser in a period-one oscillation (P1) state, the laser can emit light with two coherent frequency components separated by about 11.25 GHz. Through optical heterodyning, the velocity of the target can be determined from the Doppler shift of the beat signal of the dual-frequency light. While the DF-LDV has the same advantages of good directionality and high intensity as in the conventional singlefrequency LDV (SF-LDV), having an effective wavelength in the range of microwave in the beat signal greatly reduces the speckle noise caused by the random phase modulation from the rough surface of the moving target. To demonstrate the speckle noise reduction, the Doppler shifted signals from a moving target covered by the plain paper are measured both from the SF-LDV and the DF-LDV. The target is rotated to provide a transverse velocity, where the speckle noise increases as the transverse velocity increases. The bandwidth of the Doppler signal obtained from the SF-LDV is increased from 4.7 kHz to 9.4 kHz as the transverse velocity increases from 0 m/s to 5 m/s. In contrast, the bandwidth obtained from the DF-LDV maintains at 0.09 Hz with or without the rotation limited by the linewidth of the P1 state used. By phase-locking the laser with a RF current modulation, the linewidth of the P1 state can be much reduced to further improve the velocity resolution and extend the detection range.

  10. Wavefront-correction for nearly diffraction-limited focusing of dual-color laser beams to high intensities.

    Science.gov (United States)

    Zhao, Baozhen; Zhang, Jun; Chen, Shouyuan; Liu, Cheng; Golovin, Grigory; Banerjee, Sudeep; Brown, Kevin; Mills, Jared; Petersen, Chad; Umstadter, Donald

    2014-11-03

    We demonstrate wavefront correction of terawatt-peak-power laser beams at two distinct and well-separated wavelengths. Simultaneous near diffraction-limited focusability is achieved for both the fundamental (800 nm) and second harmonic (400 nm) of Ti:sapphire-amplified laser light. By comparing the relative effectiveness of various correction loops, the optimal ones are found. Simultaneous correction of both beams of different color relies on the linear proportionality between their wavefront aberrations. This method can enable two-color experiments at relativistic intensities.

  11. Photonic analogue of Josephson effect in a dual-species optical-lattice cavity

    CERN Document Server

    Lei, Soi-Chan; Lee, Ray-Kuang

    2010-01-01

    We extend the idea of quantum phase transitions of light in the photonic Bose-Hubbard model with interactions to two atomic species by a self-consistent mean field theory. The excitation of two-level atoms interacting with coherent photon fields is analyzed with a finite temperature dependence of the order parameters. Four ground states of the system are found, including an isolated Mott-insulator phase and three different superfluid phases. Like two weakly coupled superconductors, our proposed dual-species lattice system shows a photonic analogue of Josephson effect. The dynamics of the proposed two species model provides a promising quantum simulator for possible quantum information processes.

  12. Simulation experiments to generate broadband chaos using dual-wavelength optically injected Fabry-Perot laser

    Science.gov (United States)

    Obaid, Hafiz Muhammad; Khawar Islam, Muhammad; Obaid Ullah, Muhammad

    2016-08-01

    Broadband chaos can be generated by beating two wavelengths in a hybrid arrangement of Fabry-Perot (FP) Laser and Fiber ring cavity by injecting dual wavelengths. The bandwidth of generated chaos can be controlled by detuning different modes of FP Laser for beating. The bandwidth of generated chaos increased to many folds depending upon the injected strength and wavelength spacing matched to FP laser modes. The bandwidth enhancement in different simulation experiments conducted is optimized by varying different parameters of FP laser and cavity. The waveforms are analyzed and Lyapunov exponents are calculated in order to validate the existence of high bandwidth non-pulsating chaos.

  13. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2013-01-01

    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated. © 2013 Optical Society of America.

  14. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  15. Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples.

    Science.gov (United States)

    Vermeulen, P; Zhan, H; Orieux, F; Olivo-Marin, J-C; Lenkei, Z; Loriette, V; Fragola, A

    2015-09-01

    We propose a structured illumination microscopy method to combine super resolution and optical sectioning in three-dimensional (3D) samples that allows the use of two-dimensional (2D) data processing. Indeed, obtaining super-resolution images of thick samples is a difficult task if low spatial frequencies are present in the in-focus section of the sample, as these frequencies have to be distinguished from the out-of-focus background. A rigorous treatment would require a 3D reconstruction of the whole sample using a 3D point spread function and a 3D stack of structured illumination data. The number of raw images required, 15 per optical section in this case, limits the rate at which high-resolution images can be obtained. We show that by a succession of two different treatments of structured illumination data we can estimate the contrast of the illumination pattern and remove the out-of-focus content from the raw images. After this cleaning step, we can obtain super-resolution images of optical sections in thick samples using a two-beam harmonic illumination pattern and a limited number of raw images. This two-step processing makes it possible to obtain super resolved optical sections in thick samples as fast as if the sample was two-dimensional.

  16. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  17. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.

    Science.gov (United States)

    Whitley, Kevin D; Comstock, Matthew J; Chemla, Yann R

    2017-01-01

    Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection-fluorescence optical tweezers, or "fleezers"-is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.

  18. A photo-driven dual-frequency addressable optical device of banana-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Prasad, S., E-mail: skpras@gmail.com; Lakshmi Madhuri, P.; Hiremath, Uma S.; Yelamaggad, C. V. [Centre for Soft Matter Research, Jalahalli, Bangalore 560 013 (India)

    2014-03-17

    We propose a photonic switch employing a blend of host banana-shaped liquid crystalline molecules and guest photoisomerizable calamitic molecules. The material exhibits a change in the sign of the dielectric anisotropy switching from positive to negative, at a certain crossover frequency of the probing field. The consequent change in electric torque can be used to alter the orientation of the molecules between surface-determined and field-driven optical states resulting in a large change in the optical transmission characteristics. Here, we demonstrate the realization of this feature by an unpolarized UV beam, the first of its kind for banana-shaped molecules. The underlying principle of photoisomerization eliminates the need for a second driving frequency. The device also acts as a reversible conductance switch with an order of magnitude increase of conductivity brought about by light. Possible usage of this for optically driven display devices and image storage applications is suggested.

  19. Experimental demonstration of a FBG-based temporal optical pulse shaping scheme dual to spatial arrangements for its use in OCDMA systems

    Science.gov (United States)

    Tainta, Santiago; Amaya, Waldimar; García, Raimundo; Erro, María J.; Garde, María J.; Sales, Salvador; Muriel, Miguel A.

    2009-11-01

    We have demonstrated a reconfigurable time domain spectral phase encoding scheme for coherent optical code-divisionmultiple- access application. The proposed scheme is based on the concept of temporal pulse shaping dual to spatial arrangements. It uses Fiber Bragg Gratings as dispersive elements and electro-optic modulators. The data speed is 1.25 Gbps and the code is introduced at 10 Gcps, using a subset of the Hadamard codes with a length of 8 chips within a 0.7 nm optical window. The system is electrically reconfigurable and compatible with fiber systems and permits scalability in the size of the codes by modifying only the phase modulator velocity.

  20. Emulation of lossless exciton-polariton condensates by dual-core optical waveguides: Stability, collective modes, and dark solitons

    CERN Document Server

    Salasnich, Luca; Toigo, Flavio

    2014-01-01

    We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion (GVD) point, and the other core being linear and dispersive. Both 2D and 1D EP systems may be emulated by means of this optical setting. In the framework of this system, we find that, while the uniform state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations, the upper branch is always subject to the modulational instability (MI). The stability and instability are verified by direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound velocity and energy gap. The effect of a uniform phase gra...

  1. Emulation of lossless exciton-polariton condensates by dual-core optical waveguides: stability, collective modes, and dark solitons.

    Science.gov (United States)

    Salasnich, Luca; Malomed, Boris A; Toigo, Flavio

    2014-10-01

    We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion point, and the other core being linear and dispersive. Both two-dimensional (2D) and one-dimensional (1D) EP systems may be emulated by means of this optical setting. In the framework of this system, we find that, while the uniform state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations, the upper branch is always subject to the modulational instability. The stability and instability are verified by direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound velocity and energy gap. The effect of a uniform phase gradient (superflow) on the stability is considered too, with a conclusion that the lower-branch state becomes unstable above a critical wave number of the flux. Finally, we demonstrate that the stable 1D state may carry robust dark solitons.

  2. Prenatal determinants of optic nerve hypoplasia: Review of suggested correlates and future focus

    OpenAIRE

    Garcia-Filion, Pamela; Borchert, Mark

    2013-01-01

    Optic nerve hypoplasia (ONH), a congenital malformation characterized by an underdeveloped optic nerve, is a seemingly epidemic cause of childhood blindness and visual impairment with associated lifelong morbidity. While the prenatal determinants of ONH are unknown, early case reports have led to a longstanding speculation that risky health behaviors (e.g. recreational drugs, alcohol) are a likely culprit. There has yet to be a systematic review of the epidemiology of ONH to assess the common...

  3. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  4. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  5. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  6. CHF3 Dual-Frequency Capacitively Coupled Plasma by Optical Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    XU Yi-Jun; YE Chao; HUANG Xiao-Jiang; YUAN Jing; XING Zhen-Yu; NING Zhao-Yuan

    2008-01-01

    @@ We investigate the intermediate gas phase in the CHF3 13.56 MHz//2 MHz dual-frequency capacitively couple plasma (CCP) for the SiCOH low dielectric constant (low-k) film etching, and the effect of 2MHz power on radicals concentration. The major dissociation reactions of CHF3 in 13.56 MHz CCP are the low dissociation bond energy reactions, which lead to the low F and high CF2 concentrations. The addition of 2MHz power can raise the probability of high dissociation bond energy reactions and lead to the increase of F concentration while keeping the CF2 concentration almost a constant, which is of advantage to the SiCOH low-k films etching. The radical spatial uniformity is dependent on the power coupling of two sources. The increase of 2 MHz power leads to a poor uniformity, however, the uniformity can be improved by increasing 13.56 MHz power.

  7. Crystal Structure and Optical Properties of Al-Doped ZnO Large-Area Thin Films Using 1500 mm Dual Cylindrical Cathodes.

    Science.gov (United States)

    Lee, JinJu; Ha, Jong-Yoon; Yim, Haena; Choi, Won-Kook; Choi, Ji-Won

    2015-11-01

    The large-area Al-doped ZnO thin films are successfully deposited at room temperature on polycarbonate substrate using a 1500 mm dual cylindrical cathodes sputtering system. Those thin films have smooth surfaces (RMS: 9.6 nm) and lower thicknesses deviation (Uniformity: 98.6%) despite of high RF power. The optical transmittance properties of 3.13 wt% Al doped ZnO thin films have above 85% in visible region. A dual cylindrical cathodes sputtering system can fabricate transparent electrode on flexible electronic devices at room temperature for mass production of 6th generation solar cell and display industry.

  8. LD end-pumped acousto-optic Q-switched 1319 nm/1338 nm dual-wavelength Nd:YAG laser

    Science.gov (United States)

    Wu, C. T.; Yu, M.; Wang, C.; Yu, K.; Yu, Y. J.; Chen, X. Y.; Jin, G. Y.

    2016-10-01

    Laser characteristics of acousto-optic Q-switched operation of 1319 nm/1338 nm dual-wavelength composite Nd:YAG laser were studied. Maximum output power of 5.77 W was achieved in CW operation. Under Q-switched operation, the maximum peak power of 3.96 kW and minimum pulse width of 65.6 ns was obtained at repetition frequency of 20 kHz with the duty ratio of 96%. The influence of the duration of the ultrasonic field acted on the Q-switch to the output characteristics of dual-wavelength composite Nd:YAG laser had been reported first time.

  9. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing.

    Science.gov (United States)

    Wang, Xiandi; Que, Miaoling; Chen, Mengxiao; Han, Xun; Li, Xiaoyi; Pan, Caofeng; Wang, Zhong Lin

    2017-01-06

    Pressure sensor matrix (PSM) with full dynamic range can accurately detect and spatially map pressure profile. A 100 × 100 large-scale PSM gives both electrical and optical signals by itself without applying an external power. The device represents a major step toward digital imaging and visible display of pressure distribution covers a large dynamic range.

  10. Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography

    DEFF Research Database (Denmark)

    Unterhuber, A.; Povaay, B.; Müller, André;

    2013-01-01

    We demonstrate an optical coherence tomography device that simultaneously combines different novel ultrabroad bandwidth light sources centered in the 800 and 1060 nm regions, operating at 66 kHz depth scan rate, and a confocal laser scanning ophthalmoscope-based eye tracker to permit motion-artif...

  11. Dual-wavelength optical-resolution photoacoustic microscopy for cells with gold nanoparticle bioconjugates in three-dimensional cultures

    Science.gov (United States)

    Lee, Po-Yi; Liu, Wei-Wen; Chen, Shu-Ching; Li, Pai-Chi

    2016-03-01

    Three-dimensional (3D) in vitro models bridge the gap between typical two-dimensional cultures and in vivo conditions. However, conventional optical imaging methods such as confocal microscopy and two-photon microscopy cannot accurately depict cellular processing in 3D models due to limited penetration of photons. We developed a dualwavelength optical-resolution photoacoustic microscopy (OR-PAM), which provides sufficient penetration depth and spatial resolution, for studying CD8+ cytotoxic T lymphocytes (CTLs) trafficking in an in vitro 3D tumor microenvironment. CTLs play a cardinal role in host defense against tumor. Efficient trafficking of CTLs to the tumor microenvironment is a critical step for cancer immunotherapy. For the proposed system, gold nanospheres and indocyanine green (ICG) have been remarkable choices for contrast agents for photoacoustic signals due to their excellent biocompatibility and high optical absorption. With distinct absorption spectrums, targeted cells with gold nanospheres and ICG respectively can be identified by switching 523-nm and 800-nm laser irradiation. Moreover, we use an x-y galvanometer scanner to obtain high scanning rate. In the developed system, lateral and axial resolutions were designed at 1.6 μm and 5 μm, respectively. We successfully showed that dual-spectral OR-PAM can map either the distribution of CTLs with gold nanospheres at a visible wavelength of 523 nm or the 3D structure of tumor spheres with ICG in an in vitro 3D microenvironment. Our OR-PAM can provide better biological relevant information in cellular interaction and is potential for preclinical screening of anti-cancer drugs.

  12. Hybrid optical-thermal antennas for enhanced light focusing and local temperature control

    CERN Document Server

    Boriskina, Svetlana V; Tong, Jonathan K; Hsu, Wei-Chun; Chen, Gang

    2016-01-01

    Metal nanoantennas supporting localized surface plasmon resonances have become an indispensable tool in bio(chemical) sensing and nanoscale imaging applications. The high plasmon-enhanced electric field intensity in the visible or near-IR range that enables the above applications may also cause local heating of nanoantennas. We present a design of hybrid optical-thermal antennas that simultaneously enable intensity enhancement at the operating wavelength in the visible and nanoscale local temperature control. We demonstrate a possibility to reduce the hybrid antenna operating temperature via enhanced infrared thermal emission. We predict via rigorous numerical modeling that hybrid optical-thermal antennas that support high-quality-factor photonic-plasmonic modes enable up to two orders of magnitude enhancement of localized electric fields and of the optical power absorbed in the nanoscale metal volume. At the same time, the hybrid antenna temperature can be lowered by several hundred degrees with respect to i...

  13. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  14. Tracking and imaging of dynamic objects in scattering media by time-reversed adapted-perturbation (TRAP) optical focusing

    CERN Document Server

    Ma, Cheng; Liu, Yan; Wang, Lihong V

    2014-01-01

    The ability to steer light propagation inside scattering media has long been sought-after due to its potential widespread applications. To form optical foci inside scattering media, the only feasible strategy is to guide photons by using either implanted or virtual guide stars. However, all of these guide stars must be introduced extrinsically, either invasively or by physical contact, limiting the scope of their application. Here, we focus light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we concentrate light to the origin of the perturbation, where the permittivity varied spontaneously. We demonstrate dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media, without invasiveness and physical contact. Anticipated applications include all-weather optical communication with airplanes or satellites, tracking vehicles in thick fogs, and imaging and ph...

  15. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    Science.gov (United States)

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  16. Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation

    Science.gov (United States)

    Ursaki, V. V.; Tiginyanu, I. M.; Ricci, P. C.; Anedda, A.; Hubbard, S.; Pavlidis, D.

    2003-09-01

    Persistent photoconductivity (PPC) and optical quenching (OQ) of photoconductivity (PC) were investigated in a variety of n-GaN layers characterized by different carrier concentrations, luminescence characteristics, and strains. The relation between PPC and OQ of PC was studied by exciting the samples with two beams of monochromatic radiation of various wavelengths and intensities. The PPC was found to be excited by the first beam with a threshold at 2.0 eV, while the second beam induces OQ of PC in a wide range of photon energies with a threshold at 1.0 eV. The obtained results are explained on the basis of a model combining two previously put forward schemes with electron traps playing the main role in PPC and hole traps inducing OQ of PC. The possible nature of the defects responsible for optical metastability of GaN is discussed.

  17. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging. Addendum

    Science.gov (United States)

    2008-05-01

    an 18 gauge hypodermic needle was inserted. There are five different radial positions for the needle rang- ing from the center to just below the...surface, with step size of 2.54 mm. The light is emitted from the tapered end of the optical fiber 1 mm in size which was threaded through the needle ;41...light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory ,” IEEE Trans. Biol. Eng. 36, 1162–1168 1989

  18. Single integrated device for optical CDMA code processing in dual-code environment.

    Science.gov (United States)

    Huang, Yue-Kai; Glesk, Ivan; Greiner, Christoph M; Iazkov, Dmitri; Mossberg, Thomas W; Wang, Ting; Prucnal, Paul R

    2007-06-11

    We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length.

  19. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    Science.gov (United States)

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  20. Construction of Ray Diagrams in Geometrical Optics: A Media-Focused Approach

    Science.gov (United States)

    Santana, Alejandro; Rodriguez, Yohany; Gomez, Edgar A.

    2012-01-01

    Ray diagrams offer a powerful framework for understanding and characterizing many properties of optical systems, such as images and magnifications. However, this construction also introduces many conceptual hurdles for students. The idea of representing the propagation of waves by means of a light ray, which is a line or curve perpendicular to the…

  1. Convergence of Object Focused Simultaneous Estimation of Optical Flow and State Dynamics

    Directory of Open Access Journals (Sweden)

    Nicholas Bauer

    2014-10-01

    Full Text Available The purpose of this study is to prove the convergence of the simultaneous estimation of the optical flow and object state (SEOS method. The SEOS method utilizes dynamic object parameter information when calculating optical flow in tracking a moving object within a video stream. Optical flow estimation for the SEOS method requires the minimization of an error function containing the object's physical parameter data. When this function is discretized, the Euler-Lagrange equations form a system of linear equations. The system is arranged such that its property matrix is positive definite symmetric, proving the convergence of the Gauss-Seidel iterative methods. The system of linear equations produced by SEOS can alternatively be resolved by Jacobi iterative schemes. The positive definite symmetric property is not sufficient for Jacobi convergence. The convergence of SEOS for a block diagonal Jacobi is proved by analysing the Euclidean norm of the Jacobi matrix. In this paper, we also investigate the use of SEOS for tracking individual objects within a video sequence. The illustrations provided show the effectiveness of SEOS for localizing objects within a video sequence and generating optical flow results.

  2. Free Space Optical Channel Characterization and Modeling with Focus on Algeria Weather Conditions

    Directory of Open Access Journals (Sweden)

    Mehdi ROUISSAT

    2012-04-01

    Full Text Available Free-Space Optics (FSO is a wireless optical technology that enables optical transmission of data, voice and video communications through the air, up to 10 Gbps of data, based on the use of the free space (the atmosphere as transmission medium and low power lasers as light sources.Quality and performance of FSO links are generally affected by link distance and weather conditions like environmental temperature and light, sun, fog, snow, smoke, haze and rain. In this paper we study the effects of weather conditions on the performance of FSO links, taking the climate of Algeria as an example, and since there is no known analysis on the effects of weather conditions in this country, this paper offers an attempt to analyze and identify the challenges related to the deployment of FSO links under Algeria’s weather. We also present a Graphic User Interface “GUI” to provide an approximate availability estimate of an atmospheric optical link in term of probability of connection.

  3. Preparation and characterization of a magnetic and optical dual-modality molecular probe

    Energy Technology Data Exchange (ETDEWEB)

    Bumb, A; Brechbiel, M W [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, NIH, Building 10, Room 1B53, 10 Center Drive, Bethesda, MD 20892 (United States); Regino, C A S; Ogawa, M; Choyke, P L [Molecular Imaging Program, NCI, NIH, Building 10, Room B3B69, 10 Center Drive, Bethesda, MD 20892 (United States); Perkins, M R [Vaccine Research Center, NIAID, NIH, Building 40, Room 3608B, 40 Convent Drive, Bethesda, MD 20892 (United States); Bernardo, M [SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702 (United States); Fugger, L [MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, The University of Oxford, Oxford OX3 9DS (United Kingdom); Dobson, P J, E-mail: Bumba@mail.nih.gov, E-mail: martinwb@mail.nih.gov [Oxford University Begbroke Science Park, Sandy Lane, Kidlington, Oxon OX5 1PF (United Kingdom)

    2010-04-30

    Multi-modality imaging probes combine the advantages of individual imaging techniques to yield highly detailed anatomic and molecular information in living organisms. Herein, we report the synthesis and characterization of a dual-modality nanoprobe that couples the magnetic properties of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with the near infrared fluorescence of Cy5.5. The fluorophore is encapsulated in a biocompatible shell of silica surrounding the iron oxide core for a final diameter of {approx} 17 nm. This silica-coated iron oxide nanoparticle (SCION) has been analyzed by transmission electron microscopy, dynamic light scattering, and superconducting quantum interference device (SQUID). The particle demonstrates a strong negative surface charge and maintains colloidal stability in the physiological pH range. Magnetic hysteresis analysis confirms superparamagnetic properties that could be manipulated for thermotherapy. The viability of primary human monocytes, T cells, and B cells incubated with the particle has been examined in vitro. In vivo analysis of agent leakage into subcutaneous A431 tumors in mice was also conducted. This particle has been designed for diagnostic application with magnetic resonance and fluorescence imaging, and has future potential to serve as a heat-sensitive targeted drug delivery platform.

  4. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Satoshi, E-mail: okumura.satoshi@c.mbox.nagoya-u.ac.jp [Nagoya University Graduate School of Medicine (Japan); Yamamoto, Seiichi [Nagoya University Graduate School of Medicine (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University (Japan); Kato, Natsuki; Hamamura, Huka [Nagoya University Graduate School of Medicine (Japan)

    2015-05-01

    A PET system for small animals requires a small detector ring to obtain high-spatial resolution images. However, when we use a relatively large size of photodetector such as a position-sensitive photomultiplier tube (PSPMT), the detector ring is arranged in a hexagonal- or octagonal-shape, and the PET system has large gaps between the block detectors. The large gaps produce image distortion, and the reconstruction algorithm is difficult. To solve these problems, we proposed to arrange two scintillator blocks on one PSPMT using two angled optical fiber-based image guides. We could set two scintillator blocks angled at 22.5° on a PSPMT so that these scintillator blocks are arranged in a nearly circular (hexadecagonal) shape with eight developed block detectors. We used Gd{sub 2}SiO{sub 5} (GSO) scintillators with Ce concentrations of 1.5 mol% (decay time: 39 ns) and 0.4 mol% (decay time: 63 ns). Sizes of these GSO cells were 1.6×2.4×7.0 mm{sup 3} and 1.6×2.4×8.0 mm{sup 3} for 1.5 mol% Ce and 0.4 mol% Ce, respectively. These two types of GSO were arranged in an 11×15 matrix and optically coupled in the depth direction to form a depth-of-interaction (DOI) detector. Two GSO blocks and two optical fiber-based image guides were optically coupled to a 2-in. PSPMT (Hamamatsu Photonics H8500: 8×8 anodes). We measured the performances of the block detector with Cs-137 gamma photons (662-keV). We could resolve almost all pixels clearly in a two-dimensional position histogram. The average peak-to-valley ratios (P/Vs) of the two-dimensional position histogram along profiles were 2.6 and 4.8 in horizontal and vertical directions, respectively. The energy resolution was 28.4% full-width at half-maximum (FWHM). The pulse shape spectra showed good separation with a P/V of 5.2. The developed block detector performed well and shows promise for the development of high-sensitivity and high-spatial resolution PET systems.

  5. Dual Modality Photothermal Optical Coherence Tomography and Magnetic Resonance Imaging of Carbon Nanotubes

    OpenAIRE

    Tucker – Schwartz, Jason M.; Hong, Tu; Colvin, Daniel C.; Xu, Yaqiong; Skala, Melissa C.

    2012-01-01

    We demonstrate polyethylene glycol coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic resonance imaging. Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude modulated 750 nm pump beam using 10 mW of power, and T2 MR imaging was achieved with a 4.7 T animal system. Photothermal OCT and T2 MR imaging achieved sensitivities of nM concentrations to CNTs dispersed in amine terminate...

  6. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo.

    Science.gov (United States)

    Cui, Dongyao; Liu, Xinyu; Zhang, Jing; Yu, Xiaojun; Ding, Sun; Luo, Yuemei; Gu, Jun; Shum, Ping; Liu, Linbo

    2014-12-01

    1 μm axial resolution spectral domain optical coherence tomography (OCT) is demonstrated for in vivo cellular resolution imaging. Output of two superluminescent diode sources is combined to provide near infrared illumination from 755 to 1105 nm. The spectral interference is detected using two spectrometers based on a Si camera and an InGaAs camera, respectively. Spectra from the two spectrometers are combined to achieve an axial resolution of 1.27 μm in air. Imaging was conducted on zebra fish larvae to visualize cellular details.

  7. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances

    National Research Council Canada - National Science Library

    Tuniz, Alessandro; Kaltenecker, Korbinian J; Fischer, Bernd M; Walther, Markus; Fleming, Simon C; Argyros, Alexander; Kuhlmey, Boris T

    2013-01-01

    .... Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only...

  8. Designing Dual Emissions via Co-doping or Physical Mixing of Individually Doped ZnO and Their Implications in Optical Thermometry.

    Science.gov (United States)

    Senapati, Subrata; Nanda, Karuna Kar

    2017-05-17

    Here, we report on the novel design of dual emission via defect state engineering in codoped oxide microstructures and its implication in fluorescence intensity ratio (FIR) based optical temperature sensing. Eu- and Er-co-doped ZnO (EuEr:ZnO) microrods prepared by hydrothermal method. The emission peaks corresponding to Eu(3+) and Er(3+) are observed suggesting dual emission from codoped ZnO. Interestingly, Er(3+) peak intensity decreases and that of Eu(3+) increases with increase of temperature as is the case of individual doped cases and dual emission is also achieved via phyical mixing of the individual doped ZnO. The opposite trend is due to the electron transfer from the defect levels of host ZnO to Eu(3+) and not to Er(3+). Overall, our results pave the way in designing dual emission that can be exploited in FIR based temperature sensing. As an example, we probe temperature dependency of congo-red and polyvinyle alcohol (PVA) composite using EuEr:ZnO as optical probe for temperature sensing.

  9. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Samanta, G K; Ebrahim-Zadeh, M

    2011-08-15

    We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. © 2011 Optical Society of America

  10. Cracks Near Interfaces in Composites: A Focus on Optical Materials with Graded Microstructures

    Science.gov (United States)

    2010-02-12

    microstructural development of transparent magnesium aluminate spinel; progress was made to understand the specific role of LiF in developing 1. REPORT DATE...develop a fundamental understanding of crack growth near interfaces in optically transparent materials. Transparent magnesium aluminate spinel and a...transparent magnesium aluminate spinel (strength, transparency) is to understand the role of LiF in processing. The PIs continue to reveal the complex

  11. Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery.

    Science.gov (United States)

    Pan, Biwei; Guo, Lu; Zhang, Limeng; Lu, Dna; Huo, Li; Lou, Caiyun; Zhao, Lingjuan

    2016-04-10

    We demonstrate a monolithic dual-mode amplified feedback laser for photonic millimeter-wave generation and all-optical clock recovery. Dual-mode lasing with beating frequency around 100 GHz was realized by using a single-mode distributed feedback (DFB) laser with a short feedback cavity that was integrated by simple quantum-well intermixing technology. By tuning the bias currents of the laser sections, the beating-frequency can be continuously tuned from 75 to 109 GHz, almost covering the entire W-band (75-110 GHz). Furthermore, by using this device, an all-optical clock recovery for 100 Gbit/s return-to-zero on-off-keying signal was achieved with a timing jitter of 301 fs.

  12. Optical timing receiver for the NASA Spaceborne Ranging System. Part I. Dual peak-sensing timing discriminator

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, B.; Lo, C.C.; Zizka, G.

    1978-01-01

    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the time-resolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to their time-resolution capabilities, to design a very low time walk timing discriminator and to develop a high-resolution event-timing digitizer which will be used in the high-resolution spaceborne laser ranging system receiver. The development of a new dual-peak sensing timing discriminator is described. The amplitude dependent time walk is less than +-150 psec for a 100:1 dynamic range of Gaussian-shaped input signals having pulse widths between 11 and 17 nsec. The unit produces 800 mV negative output pulses, each 10 nsec wide, and 3V positive pulses with widths of 15 nsec. The time delay through the discriminator is approximately 37 nsec. In this discriminator the input signal is processed by a peak-crossing circuit which produces a bipolar pulse having its zero-crossing point at the peak of the input signal. All essential functions in the discriminator are performed by means of tunnel diodes with backward diodes as nonlinear loads. The discriminator is designed to be CAMAC compatible to a conventional time-interval unit or a high-precision event timing digitizer. The adjustment procedure for obtaining minimum time walk is also given.

  13. Design and Evaluation of Virtual Reality-Based Therapy Games with Dual Focus on Therapeutic Relevance and User Experience for Children with Cerebral Palsy.

    Science.gov (United States)

    Ni, Lian Ting; Fehlings, Darcy; Biddiss, Elaine

    2014-06-01

    Virtual reality (VR)-based therapy for motor rehabilitation of children with cerebral palsy (CP) is growing in prevalence. Although mainstream active videogames typically offer children an appealing user experience, they are not designed for therapeutic relevance. Conversely, rehabilitation-specific games often struggle to provide an immersive experience that sustains interest. This study aims to design and evaluate two VR-based therapy games for upper and lower limb rehabilitation and to evaluate their efficacy with dual focus on therapeutic relevance and user experience. Three occupational therapists, three physiotherapists, and eight children (8-12 years old), with CP Level I-III on the Gross Motor Function Classification System, evaluated two games for the Microsoft(®) (Redmond, WA) Kinect™ for Windows and completed the System Usability Scale (SUS), Physical Activity Enjoyment Scale (PACES), and custom feedback questionnaires. Children and therapists unanimously agreed on the enjoyment and therapeutic value of the games. Median scores on the PACES were high (6.24±0.95 on the 7-point scale). Therapists considered the system to be of average usability (50th percentile on the SUS). The most prevalent usability issue was detection errors distinguishing the child's movements from the supporting therapist's. The ability to adjust difficulty settings and to focus on targeted goals (e.g., elbow/shoulder extension, weight shifting) was highly valued by therapists. Engaging both therapists and children in a user-centered design approach enabled the development of two VR-based therapy games for upper and lower limb rehabilitation that are dually (a) engaging to the child and (b) therapeutically relevant.

  14. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  15. Interspecies collision-induced losses in a dual species 7Li-85Rb magneto-optical trap

    Science.gov (United States)

    Dutta, Sourav; Altaf, Adeel; Lorenz, John; Elliott, D. S.; Chen, Yong P.

    2014-05-01

    In this article, we report the measurement of collision-induced loss rate coefficients βLi, Rb and βRb, Li, and also discuss means to significantly suppress such collision-induced losses. We first describe our dual-species magneto-optical trap (MOT) that allows us to simultaneously trap ≥5 × 108 7Li atoms loaded from a Zeeman slower and ≥2 × 108 85Rb atoms loaded from a dispenser. We observe strong interspecies collision-induced losses in the MOTs which dramatically reduce the maximum atom number achievable in the MOTs. We measure the trap loss rate coefficients βLi, Rb and βRb, Li, and, from a study of their dependence on the MOT parameters, determine the cause for the losses observed. Our results provide valuable insights into ultracold collisions between 7Li and 85Rb, guide our efforts to suppress collision-induced losses, and also pave the way for the production of ultracold 7Li85Rb molecules.

  16. Interspecies collision-induced losses in a dual species 7Li-85Rb magneto-optical trap

    CERN Document Server

    Dutta, Sourav; Lorenz, John; Elliott, D S; Chen, Yong P

    2013-01-01

    In this article, we report the measurement of collision-induced loss coefficients \\beta_{Li,Rb} and \\beta_{Rb,Li}, and also discuss means to significantly suppress such collision induced losses. We first describe our dual-species magneto-optical trap (MOT) that allows us to simultaneously trap > 5x10^8 7Li atoms loaded from a Zeeman slower and > 2x10^8 85Rb atoms loaded from a dispenser. We observe strong interspecies collision-induced losses in the MOTs which dramatically reduce the maximum atom number achievable in the MOTs. We measure the trap loss rate coefficients \\beta_{Li,Rb} and \\beta_{Rb,Li}, and, from a study of their dependence on the MOT parameters, determine the cause for the losses observed. Our results provide valuable insights into ultracold collisions between 7Li and 85Rb, guide our efforts to suppress collision induced losses, and also pave the way for the production of ultracold 7Li85Rb molecules.

  17. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation.

    Science.gov (United States)

    Guo, L B; Zhang, B Y; He, X N; Li, C M; Zhou, Y S; Wu, T; Park, J B; Zeng, X Y; Lu, Y F

    2012-01-16

    In laser-induced breakdown spectroscopy (LIBS), a pair of aluminum-plate walls were used to spatially confine the plasmas produced in air by a first laser pulse (KrF excimer laser) from chromium (Cr) targets with a second laser pulse (Nd:YAG laser at 532 nm, 360 mJ/pulse) introduced parallel to the sample surface to re-excite the plasmas. Optical emission enhancement was achieved by combing the spatial confinement and dual-pulse LIBS (DP-LIBS), and then optimized by adjusting the distance between the two walls and the interpulse delay time between both laser pulses. A significant enhancement factor of 168.6 for the emission intensity of the Cr lines was obtained at an excimer laser fluence of 5.6 J/cm(2) using the combined spatial confinement and DP-LIBS, as compared with an enhancement factor of 106.1 was obtained with DP-LIBS only. The enhancement mechanisms based on shock wave theory and reheating in DP-LIBS are discussed.

  18. Laser Plasmas : Lie-optics, geometrical phase and nonlinear dynamics of self-focusing and soliton evolution in a plasma

    Indian Academy of Sciences (India)

    D Subbarao; R Uma; H Singh; Kamal Goyal; Sanjeev Goyal; Ravinder Kumar

    2000-11-01

    It is useful to state propagation laws for a self-focusing laser beam or a soliton in grouptheoretical form to be called Lie-optical form for being able to predict self-focusing dynamics conveniently and amongst other things, the geometrical phase. It is shown that the propagation of the gaussian laser beam is governed by a rotation group in a non-absorbing medium and by the Lorentz group in an absorbing medium if the additional symmetry of paraxial propagation is imposed on the laser beam. This latter symmetry, however, needs care in its implementation because the electromagnetic wave of the laser sees a different refractive index profile than the laboratory observer in this approximation. It is explained how to estimate this non-Taylor paraxial power series approximation. The group theoretical laws so-stated are used to predict the geometrical or Berry phase of the laser beam by a technique developed by one of us elsewhere. The group-theoretical Lie-optic (or ABCD) laws are also useful in predicting the laser behavior in a more complex optical arrangement like in a laser cavity etc. The nonlinear dynamical consequences of these laws for long distance (or time) predictions are also dealt with. Ergodic dynamics of an ensemble of laser beams on the torus during absorptionless self-focusing is discussed in this context. From the point of view of new physics concepts, we introduce a stroboscopic invariant torus and a stroboscopic generating function in classical mechanics that is useful for long-distance predictions of absorptionless self-focusing.

  19. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Moiseyenko, Rayisa [Department of Physics, Technical University of Denmark, DTU Physics, Building 309, DK-2800 Kongens Lyngby (Denmark); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Rouhani, Bahram Djafari [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, l' UNAM, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  20. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances

    Science.gov (United States)

    Tuniz, Alessandro; Kaltenecker, Korbinian J.; Fischer, Bernd M.; Walther, Markus; Fleming, Simon C.; Argyros, Alexander; Kuhlmey, Boris T.

    2013-10-01

    Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells.

  1. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    Science.gov (United States)

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

  2. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    Science.gov (United States)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  3. Manufacturing process for the WEAVE prime focus corrector optics for the 4.2m William Hershel Telescope

    Science.gov (United States)

    Lhomé, Emilie; Agócs, Tibor; Abrams, Don Carlos; Dee, Kevin M.; Middleton, Kevin F.; Tosh, Ian A.; Jaskó, Attila; Connor, Peter; Cochrane, Dave; Gers, Luke; Jonas, Graeme; Rakich, Andrew; Benn, Chris R.; Balcells, Marc; Trager, Scott C.; Dalton, Gavin B.; Carrasco, Esperanza; Vallenari, Antonella; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.

    2016-07-01

    In this paper, we detail the manufacturing process for the lenses that will constitute the new two-degree field-of-view Prime Focus Corrector (PFC) for the 4.2m William Herschel Telescope (WHT) optimised for the upcoming WEAVE Multi-Object Spectroscopy (MOS) facility. The corrector, including an Atmospheric Dispersion Corrector (ADC), is made of six large lenses, the largest being 1.1-meter diameter. We describe how the prescriptions of the optical design were translated into manufacturing specifications for the blanks and lenses. We explain how the as-built glass blank parameters were fed back into the optical design and how the specifications for the lenses were subsequently modified. We review the critical issues for the challenging manufacturing process and discuss the trade-offs that were necessary to deliver the lenses while maintaining the optimal optical performance. A short description of the lens optical testing is also presented. Finally, the subsequent manufacturing steps, including assembly, integration, and alignment are outlined.

  4. Simultaneous all-optical digital comparator and dual-directional half-subtractor for two-input 40 Gbit/s DPSK signals employing SOAs

    Science.gov (United States)

    Zhang, Yin; Lei, Lei; Dong, Jianji; Zhang, Xinliang

    2012-02-01

    A module of simultaneous implementation of all-optical digital comparator and dual-directional half-subtractor is proposed. Proof-of-concept experiment is performed at 40 Gbit/s employing the four-wave mixing and cross gain modulation in three parallel semiconductor optical amplifiers. All output results with over 10 dB extinction ratios, clear and wide open eye diagrams, are obtained without using assistant/holding light beam. All-optical half-adder can also be obtained by adjusting the phase shifter of delay interferometer in the proposed module because of its inherent reconfigurability and flexibility. The module would be a promising digital logic elementary circuit in all-optical networks and computing systems.

  5. Hyperbolic shock waves of the optical self-focusing with normal group-velocity dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Germaschewski, K.; Grauer, R.

    2002-01-01

    The theory of focusing light pulses in Kerr media with normal group-velocity dispersion in (2+1) and (3+1) dimensions is revisited. It is shown that pulse splitting introduced by this dispersion follows from shock fronts that develop along hyperbolas separating the region of transverse self...

  6. Pure optic ataxia and visual hemiagnosia - extending the dual visual hypothesis.

    Science.gov (United States)

    Meichtry, Jurka R; Cazzoli, Dario; Chaves, Silvia; von Arx, Sebastian; Pflugshaupt, Tobias; Kalla, Roger; Bassetti, Claudio L; Gutbrod, Klemens; Müri, René M

    2017-03-04

    Goodale and Milner's two visual system hypothesis is an influential model for the understanding of the primate visual system. Lesions of either the ventral (occipito-temporal) or the dorsal (occipito-parietal) stream produce distinct and dissociated syndromes in humans: visual agnosia is typical for ventral damage, whereas optic ataxia (OA) for dorsal damage. We studied the case of a 59-year-old left-handed woman with a circumscribed lesion around the left posterior occipital sulcus, extending to the underlying white matter. Initially, she presented with a central visual field OA, which regressed to an OA to the right visual hemifield during the 3 months observation period. In addition, tachistoscopic experiments showed visual hemiagnosia to the right visual hemifield. In line with the findings of the neuropsychological experiments, the analysis of the structural MR data by means of a trackwise hodologic probabilistic approach revealed damage to the left superior longitudinal fasciculus and to the left inferior longitudinal fasciculus, indicating an impairment of both the dorsal and the ventral stream. The combination of OA and visual hemiagnosia in the same patient has never been previously described. The present case study thus provides further insights for the understanding of visual processing.

  7. Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals.

    Science.gov (United States)

    Pinchetti, Valerio; Meinardi, Francesco; Camellini, Andrea; Sirigu, Gianluca; Christodoulou, Sotirios; Bae, Wan Ki; De Donato, Francesco; Manna, Liberato; Zavelani-Rossi, Margherita; Moreels, Iwan; Klimov, Victor I; Brovelli, Sergio

    2016-07-26

    Two-color emitting colloidal semiconductor nanocrystals (NCs) are of interest for applications in multimodal imaging, sensing, lighting, and integrated photonics. Dual color emission from core- and shell-related optical transitions has been recently obtained using so-called dot-in-bulk (DiB) CdSe/CdS NCs comprising a quantum-confined CdSe core embedded into an ultrathick (∼7-9 nm) CdS shell. The physical mechanism underlying this behavior is still under debate. While a large shell volume appears to be a necessary condition for dual emission, comparison between various types of thick-shell CdSe/CdS NCs indicates a critical role of the interface "sharpness" and the presence of potential barriers. To elucidate the effect of the interface morphology on the dual emission, we perform side-by-side studies of CdSe/CdS DiB-NCs with nominally identical core and shell dimensions but different structural properties of the core/shell interface arising from the crystal structure of the starting CdSe cores (zincblende vs wurtzite). While both structures exhibit dual emission under comparable pump intensities, NCs with a zincblende core show a faster growth of shell luminescence with excitation fluence and a more readily realized regime of amplified spontaneous emission (ASE) even under "slow" nanosecond excitation. These distinctions can be linked to the structure of the core/shell interface: NCs grown from the zincblende cores contain a ∼3.5 nm thick zincblende CdS interlayer, which separates the core from the wurtzite CdS shell and creates a potential barrier for photoexcited shell holes inhibiting their relaxation into the core. This helps maintain a higher population of shell states and simplifies the realization of dual emission and ASE involving shell-based optical transitions.

  8. HfO{sub 2}/SiO{sub 2} multilayer enhanced aluminum alloy-based dual-wavelength high reflective optics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Angela Q. [Johns Hopkins University, The Zanvyl Krieger School of Arts and Sciences, Baltimore, MD 21218 (United States); Corning Advanced Optics, Fairport, NY 14450-1376 (United States); Wang, Jue [Corning Advanced Optics, Fairport, NY 14450-1376 (United States); D' lallo, Michael J.; Platten, Jim E. [Corning Advanced Optics, Fairport, NY 14450-1376 (United States); Crifasi, Joseph C.; Roy, Brian P. [Corning Advanced Optics, Keene, NH 03431 (United States)

    2015-10-01

    Laser durable multiband high reflective optics can be attained by depositing HfO{sub 2}/SiO{sub 2} stacks on diamond-turned and optically polished aluminum alloy substrates. HfO{sub 2} and SiO{sub 2} single layers were prepared using modified plasma-ion assisted deposition. Ellipsometric measurements were performed using two types of variable angle spectroscopic ellipsometry with a combined spectral range of 150 nm to 14 μm. Optical constants were generated in the entire spectral range. Scatter loss as a function of surface roughness was calculated at 1064 nm, 1572 nm, and 4.1 μm, representing a primary wavelength, a secondary wavelength, and a middle wave infrared band selected for a dual-wavelength laser beam expander, respectively. The surface requirement of the aluminum alloy substrates was determined. Calculated and measured spectral reflectances were compared. Laser-induced damage threshold tests were performed at 1064 nm, 20 ns, and 20 Hz. A laser-induced damage threshold of 47 J/cm{sup 2} was determined. Post-damage analysis suggests that nodule defects are the limiting factor for the laser-induced damage threshold. Surface modification of the aluminum alloy was identified as a potential technical solution that may further increase the laser damage resistance of the dielectric enhanced dual-wavelength reflective optics. - Highlights: • A dual-wavelength was considered on dielectric enhanced mirrors. • A modified plasma-ion assisted deposition enabled in-situ plasma smoothing. • Optical constants were derived from deep ultraviolet to long-wave infrared. • Laser-induced damage mechanism was discussed.

  9. Final-focus optics for the LHeC electron beam line

    CERN Document Server

    Abelleira, J; Tomas, R; Zimmermann, F

    2012-01-01

    One of the options considered for the ECFA-CERNNuPECC design study for a Large Hadron electron Collider (LHeC) based on the LHC is adding a recirculating energy-recovery linac tangential to the LHC. First designs of the electron Final Focus System have shown the need to correct the chromatic aberrations. Two designs using different approaches for the chromaticity correction are compared, namely, the local chromaticity correction and the traditional approach using dedicated sections.

  10. Optic Nerve Sheath Diameter: Translating a Terrestrial Focused Technique into a Clinical Monitoring Tool for Spaceflight

    Science.gov (United States)

    Mason, Sara; Foy, Millennia; Sargsyan, Ashot; Garcia, Kathleen; Wear, Mary L.; Bedi, Deepak; Ernst, Randy; Van Baalen, Mary

    2015-01-01

    Ultrasonography is increasingly used to quickly measure optic nerve sheath diameter (ONSD) when increased intracranial pressure (ICP) is suspected. NASA Space and Clinical Operations Division has been using ground and on-orbit ultrasound since 2009 as a proxy for ICP in non-acute monitoring for space medicine purposes. In the terrestrial emergency room population, an ONSD greater than 0.59 cm is considered highly predictive of elevated intracranial pressure. However, this cut-off limit is not applicable to the spaceflight setting since over 50% of US Operating Segment (USOS) astronauts have an ONSD greater than 0.60 cm even before launch. Crew Surgeon clinical decision-making is complicated by the fact that many astronauts have history of previous spaceflights. Our data characterize the distribution of baseline ONSD in the astronaut corps, its longitudinal trends in long-duration spaceflight, and the predictive power of this measure related to increased ICP outcomes.

  11. Comparison of measurements from optical CMM and focus-variation microscope of a μPIM mechanical part

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Salaga, Jacek; Tosello, Guido

    2016-01-01

    Two sets of 5 green and 5 sintered mechanical parts, manufactured by micro powder injection moulding (μPIM), were measured using an optical coordinate measuring machine (OCMM) and a focus-variation microscope (FVM). The examined features of size, including diameter, radii and distances, span...... geometrical features, such as surface texture and flatness, may depict FVM measurements as more attractive. However, measurements should be suitable for in-line quality control, in a production environment, where fast cycle time is required and measuring times are more compatible to those of the OCMM....

  12. PAOLO: a Polarimeter Add-On for the LRS Optics at a Nasmyth focus of the TNG

    CERN Document Server

    Covino, S; Bruno, P; Cecconi, M; Conconi, P; D'Avanzo, P; di Fabrizio, L; Fugazza, D; Giarrusso, M; Giro, E; Leone, F; Lorenzi, V; Scuderi, S

    2013-01-01

    We describe a new polarimetric facility available at the Istituto Nazionale di AstroFisica / Telescopio Nazionale Galileo at La Palma, Canary islands. This facility, PAOLO (Polarimetric Add-On for the LRS Optics), is located at a Nasmyth focus of an alt-az telescope and requires a specific modeling in order to remove the time- and pointing position-dependent instrumental polarization. We also describe the opto-mechanical structure of the instrument and its calibration and present early examples of applications.

  13. Comparison of measurements from optical CMM and focus-variation microscope of a μPIM mechanical part

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Salaga, Jacek; Tosello, Guido

    2016-01-01

    Two sets of 5 green and 5 sintered mechanical parts, manufactured by micro powder injection moulding (μPIM), were measured using an optical coordinate measuring machine (OCMM) and a focus-variation microscope (FVM). The examined features of size, including diameter, radii and distances, span...... in the range of (10-1–101) mm. Comparing the corresponding measurements from the two instruments, a relative maximum deviation of 8 % was found for the linear dimensions of the green parts and a relative maximum deviation of 6 % for the ones of the sintered parts. The maximum relative deviation of the radii...... was 17 % for the green parts and 30 % for the sintered parts (relative deviations have been evaluated considering focus-variation measurements as reference).OCMM showed some problems in the detection of the smallest dimensional features (above all radii) where the presence of defects on the edges, quite...

  14. Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor.

    Science.gov (United States)

    Ishiguro, Yasushi; Hayakawa, Ryoma; Yasuda, Takeshi; Chikyow, Toyohiro; Wakayama, Yutaka

    2013-10-09

    We demonstrate a new device that combines a light-field effect and an electrical-gate effect to control the drain current in a dual-gate transistor. We used two organic layers, photochromic spiropyran (SP)-doped poly(triarylamine) (PTAA) and pristine PTAA, as top and bottom channels, respectively, connected to common source and drain electrodes. The application of voltage to the top and bottom gates modulated the drain current through each layer independently. UV irradiation suppressed the drain current through the top channel. The suppressed current was then maintained even after the UV light was turned off because of an optical memory effect induced by photoisomerization of SP. In contrast, UV irradiation did not change the drain current in the bottom channel. Our dual-gate transistor thus has two organic channels with distinct photosensitivities: an optically active SP-PTAA film and an optically inactive PTAA film. This device configuration allows multi-level switching via top- and bottom-gate electrical fields with an optical-memory effect.

  15. Stark Broadening Analysis Using Optical Spectroscopy of the Dense Plasma Focus

    Science.gov (United States)

    Ross, Patrick; Bennett, Nikki; Dutra, Eric; Hagen, E. Chris; Hsu, Scott; Hunt, Gene; Koch, Jeff; Waltman, Tom; NSTec DPF Team

    2015-11-01

    To aid in validating numerical modeling of MA-class dense plasma focus (DPF) devices, spectroscopic measurements of the Gemini Dense Plasma Focus (DPF) were performed using deuterium and deuterium/dopant (argon/krypton) gas. The spectroscopic measurements were made using a fiber-coupled spectrometer and streak camera. Stark line-broadening analysis was applied to the deuterium beta emission (486 nm) in the region near the breakdown of the plasma and during the run-down and run-in phases of the plasma evolution. Densities in the range of 1e17 to low 1e18 cm-3 were obtained. These values are in agreement with models of the DPF performed using the LSP code. The spectra also show a rise and fall with time, indicative of the plasma sheath passing by the view port. Impurity features were also identified in the spectra which grew in intensity as the gas inside the DPF was discharged repeatedly without cycling. Implications of this impurity increase for D-T discharges (without fresh gas fills between every discharge) will be discussed. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2515.

  16. Blind, fast and SOP independent polarization recovery for square dual polarization-MQAM formats and optical coherent receivers.

    Science.gov (United States)

    Chagnon, Mathieu; Osman, Mohamed; Xu, Xian; Zhuge, Qunbi; Plant, David V

    2012-12-03

    We present both theoretically and experimentally a novel blind and fast method for estimating the State of Polarization (SOP) of a single carrier channel modulated in square Dual Polarization (DP) MQAM format for optical coherent receivers. The method can be used on system startup, for quick channel reconfiguration, or for burst mode receivers. It consists of converting the received waveform from Jones to Stokes space and looping over an algorithm until a unitary polarization derotation matrix is estimated. The matrix is then used to initialize the center taps of the subsequent classical decision-directed stochastic gradient algorithm (DD-LMS). We present experimental comparisons of the initial Bit Error Rate (BER) and the speed of convergence of this blind Stokes space polarization recovery (PR) technique against the common Constant Modulus Algorithm (CMA). We demonstrate that this technique works on any square DP-MQAM format by presenting experimental results for DP-4QAM, -16QAM and -64QAM at varying distances and baud rates. We additionally numerically assess the technique for varying differential group delays (DGD) and sampling offsets on 28 Gbaud DP-4QAM format and show fast polarization recovery for instantaneous DGD as high as 90% of symbol duration. We show that the convergence time of this blind PR technique does not depend on the initial SOP as CMA does and allows switching to DD-LMS faster by more than an order of magnitude. For DP-4QAM, it shows a convergence time of 5.9 ns, which is much smaller than the convergence time of recent techniques using modified CMA algorithms for quicker convergence. BER of the first 20 × 10(3) symbols is always smaller by several factors for DP-16QAM and -64QAM but not always for DP-4QAM.

  17. Optically controllable dual-mode switching in single-mode Fabry-Pérot laser diode subject to one side-mode feedback and external single mode injection

    Science.gov (United States)

    Wu, Jian-Wei; Won, Yong Hyub

    2017-06-01

    In this paper, broadly tunable dual-mode lasing system is presented and demonstrated based on single-mode Fabry-Pérot laser diode subject to the feedback of one side mode amplified by an erbium-doped fiber amplifier in the external feedback cavity. The spacing between two resonance modes in output lasing spectrum is broadly tuned by introducing differently amplified side mode into the single-mode laser via the external cavity consisted of amplifier, filter, and polarization controller so that two difference frequencies of 1 THz and 0.6 THz are given to display the tunable behavior of dual-mode emission in this work. Therefore, under an external injection mode into the laser condition, the power dependent injection locking and optical bistability of generated dual-mode emission are discussed in detail. At different wavelength detunings, the emitted two resonance modes including the dominant and feedback modes are switched to on- or off-state by selecting proper high-low power level of the external injection mode. As a consequence, the maximum value of achieved dual-mode on-off ratio is as high as up to 45 dB.

  18. Integrated or dual vocational training focused on the operations of a nuclear power plant; La formacion profesional integrada y/o dual enfocada a la operativa de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Roca, F.

    2014-10-01

    Dual vocational training is understood to be all the mixed employment and training actions and initiatives, the purpose of which in the vocational qualification of workers in a system alternating a job in a company with the training activity received in the framework of the vocational training system for employment of the educational system. The dual vocational training that results from this mixed strategy is provided via the following modality: Shared training between the training center and the company, which consists of coparticipation to varying degrees in the teaching and learning processes in the company and the training center. (Author)

  19. Optical characterization of solar furnace system using fixed geometry nonimaging focusing heliostat and secondary parabolic concentrator

    Science.gov (United States)

    Chong, Kok-Keong; Lim, Chuan-Yang; Keh, Wee-Liang; Fan, Jian-Hau; Rahman, Faidz Abdul

    2011-10-01

    A novel solar furnace system has been proposed to be consisted of a Nonimaging Focusing Heliostat and a smaller parabolic concentrator. In this configuration, the primary heliostat consists of 11×11 array of concave mirrors with a total reflective area of 121 m2 while the secondary parabolic concentrator has a focal length of 30 cm. To simplify the design and reduce the cost, fixed geometry of the primary heliostat is adopted to omit the requirement of continuous astigmatic correction throughout a year. The overall performance of the novel solar furnace configuration can be optimized if the heliostat's spinning-axis is fixed in the orientation dependent on the latitude angle so that the annual variation of incidence angle is the least, which ranges from 33° to 57°. Case study of the novel solar furnace system has been performed with the use of ray-tracing method to simulate solar flux distribution profile for two different target distances, i.e. 50 m and 100 m. The simulated results have revealed that the maximum solar concentration ratio ranges from 20,530 suns to 26,074 suns for the target distance of 50 m, and ranges from 40,366 suns to 43,297 suns for the target distance of 100 m.

  20. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, N. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy)], E-mail: nicolas.barriere@iasf-roma.inaf.it; Ballmoos, P. von [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Abrosimov, N.V. [IKZ, Max Born-Str. 2, D-12489 Berlin (Germany); Bastie, P. [LSP UMR 5588, 140 Av. de la physique, 38402 Saint Martin d' Heres (France); Camus, T. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Courtois, P.; Jentschel, M. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Knoedlseder, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Natalucci, L. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy); Roudil, G.; Rousselle, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Wunderer, C.B. [SSL, University of California at Berkeley, CA 94708 (United States); Kurlov, V.N. [Institute of Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2009-10-21

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  1. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya

    Directory of Open Access Journals (Sweden)

    Roger G. Barry

    2008-05-01

    Full Text Available The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs, glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances. The current limitations and on-going challenges in using remote sensing for mapping characteristics of mountain glaciers also discussed, specifically in the context of the Himalaya.

  2. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Craig, W.W.; Hailey, C.J.;

    2000-01-01

    telescope HPD, we designed a figure metrology system and a new mounting technique. We describe a cylindrical metrology system built for fast axial and roundness figure measurement of hard x-ray conical optics. These developments lower cost and improve the optics performance of the HEFT (high-energy focusing...

  3. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Craig, W.W.; Hailey, C.J.

    2000-01-01

    telescope HPD, we designed a figure metrology system and a new mounting technique. We describe a cylindrical metrology system built for fast axial and roundness figure measurement of hard x-ray conical optics. These developments lower cost and improve the optics performance of the HEFT (high-energy focusing...

  4. Value of probe-based confocal laser endomicroscopy (pCLE) and dual focus narrow-band imaging (dNBI) in diagnosing early squamous cell neoplasms in esophageal Lugol’s voiding lesions

    OpenAIRE

    Prueksapanich, Piyapan; Pittayanon, Rapat; Rerknimitr, Rungsun; Wisedopas, Naruemon; Kullavanijaya, Pinit

    2015-01-01

    Background and study aims: Lugol’s chromoendoscopy provides excellent sensitivity for the detection of early esophageal squamous cell neoplasms (ESCN), but its specificity is suboptimal. An endoscopy technique for real-time histology is required to decrease the number of unnecessary biopsies. This study aimed to compare the ESCN diagnostic capability of probed-based confocal laser endomicroscopy (pCLE) and dual focus narrow-band imaging (dNBI) in Lugol’s voiding lesions. Patients and methods:...

  5. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  6. Graphics processing unit aided highly stable real-time spectral-domain optical coherence tomography at 1375 nm based on dual-coupled-line subtraction

    Science.gov (United States)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2013-04-01

    We have proposed and demonstrated a highly stable spectral-domain optical coherence tomography (SD-OCT) system based on dual-coupled-line subtraction. The proposed system achieved an ultrahigh axial resolution of 5 μm by combining four kinds of spectrally shifted superluminescent diodes at 1375 nm. Using the dual-coupled-line subtraction method, we made the system insensitive to fluctuations of the optical intensity that can possibly arise in various clinical and experimental conditions. The imaging stability was verified by perturbing the intensity by bending an optical fiber, our system being the only one to reduce the noise among the conventional systems. Also, the proposed method required less computational complexity than conventional mean- and median-line subtraction. The real-time SD-OCT scheme was implemented by graphics processing unit aided signal processing. This is the first reported reduction method for A-line-wise fixed-pattern noise in a single-shot image without estimating the DC component.

  7. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  8. Design investigation of a cost-effective dual-band (MWIR/LWIR) and a wide band optically athermalized application

    Science.gov (United States)

    Ding, Fujian; Washer, Joe; Morgen, Daniel

    2016-10-01

    Dual-band and wide-band lenses covering both the MWIR and LWIR spectral bands are increasingly needed as dualband MWIR/LWIR detectors have become prevalent and broadband applications have expanded. Currently in dual-band /wide-band applications, the use of more than three elements per lens group and the use of chalcogenide glass is common. This results in expensive systems. Also, many chalcogenides are available only in small diameters, which is a problem for large aperture broadband lenses. In this paper an investigation of cost-effective designs for dual-band MWIR/LWIR lens using only widely available IR materials, specifically Ge, ZnSe and ZnS were performed. An athermalized dual-band MWIR/LWIR using these three materials is presented. The performance analysis of this lens shows that this design form with these three common IR materials works well in certain applications. The required large size blanks of these materials can be easily obtained. Traditional chromatic aberration correction without diffraction for either wide-band or dual-band application was employed. In addition, the methods of harmonic diffraction for dual-band applications, especially with one narrow band, were used for two different presented designs.

  9. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  10. Study on cavitation behavior during high-intensity focused ultrasound exposure by using optical and ultrasonic imaging

    Science.gov (United States)

    Taguchi, Kei; Takagi, Ryo; Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Cavitation bubbles are known to enhance the heating effect of high-intensity focused ultrasound (HIFU). In our previous study, the use of a “triggered HIFU” sequence consisting of a high-intensity pulse and a relatively low-intensity burst was proposed as an effective method to utilize the effect of cavitation bubbles. However, the duration of each component in the sequence has not been optimized. In this study, optical imaging was carried out to observe the behavior of cavitation bubbles in a gel phantom during the triggered HIFU exposure. Ultrasound imaging using the pulse inversion method was also conducted to detect the behavior of the bubbles. The results suggest that the oscillation of cavitation bubbles become inactive as the duration of HIFU burst exposure increases to the order of 10 ms. It was also suggested that ultrasonic imaging has potential use for detecting a change in the oscillation of cavitation bubbles for optimizing a triggered HIFU sequence.

  11. Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Savenko, Alexey;

    2011-01-01

    We introduce a highly compact fiber-optic Fabry-Pérot refractive index sensor integrated with a fluid channel that is fabricated directly near the tip of a 32 μm in diameter single-mode fiber taper. The focused ion beam technique is used to efficiently mill the microcavity from the fiber side...... and finely polish the end facets of the cavity with a high spatial resolution. It is found that a fringe visibility of over 15 dB can be achieved and that the sensor has a sensitivity of ∼1731 nm/RIU (refractive index units) and a detection limit of ∼5.78 × 10−6 RIU. This miniature integrated all-in-fiber...

  12. Controlling the optical fiber output beam profile by focused ion beam machining of a phase hologram on fiber tip.

    Science.gov (United States)

    Han, Jiho; Sparkes, Martin; O'Neill, William

    2015-02-01

    A phase hologram was machined on an optical fiber tip using a focused ion beam (FIB) system so that a ring-shaped beam emerges from the fiber tip. The fiber used for this work was a commercial single-mode optical fiber patch cable for a design wavelength of 633 nm with a germanosilicate core. The ring-shaped beam was chosen to ensure a simple geometry in the required phase hologram, though the Gerchberg-Saxton algorithm can be used to calculate a hologram for an arbitrary beam shape. The FIB machining took approximately 45 min at 30 kV and 200 pA. The radius of the resulting ring beam was 0.083 m at 1 m standoff, as compared to 0.1 m as was initially desired. Results suggest that this imaging technique may provide a basis for a beam-shaping method with several advantages over the current commercial solutions, having permanent alignment, compactness, and mechanical robustness. However, it would appear that minimizing the speckle pattern will remain a critical challenge for this technique to become widely implemented.

  13. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation

    Science.gov (United States)

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-08-01

    Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.

  14. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  15. A fiber laser pumped dual-wavelength mid-infrared laser based on optical parametric oscillation and intracavity difference frequency generation

    Science.gov (United States)

    Wang, Peng; Shang, Yaping; Li, Xiao; Shen, Meili; Xu, Xiaojun

    2017-02-01

    We report a dual-wavelength mid-infrared laser based on intracavity difference frequency generation (DFG) in an MgO-doped periodically poled LiNbO3, which was pumped by a dual-wavelength fiber MOPA consisting of two parts: a dual-wavelength seed and a power amplifier. The maximum pump power was 74.1 W and the wavelengths were 1060 nm and 1090 nm. The wavelengths of the mid-infrared output were 3.1 µm and 3.4 µm under maximum pump power with a total idler power of 6.57 W. The corresponding pump-to-idler slope efficiency reached 12%. The contrast for the peak intensity of the emissions for the two idlers was 0.6. A power preamplifier was added in a further experiment to enhance the contrast. The idler output reached 4.45 W under the maximum pump power of 70 W, which was lower than before. However, the contrast for the idler emission peak intensity was increased to 1.18. The signal wave generated in the experiment only had a single wavelength around 1.6 µm, indicating that two kinds of nonlinear processes occurred in the experiment, namely optical parametric oscillation and intracavity DFG.

  16. Improving the energy-extraction efficiency of laser-plasma accelerator driven free-electron laser using transverse-gradient undulator with focusing optics and longitudinal tapering

    CERN Document Server

    Zhou, G; Wu, J; Zhang, T

    2016-01-01

    It is reported that [Z. Huang et al., Phys. Rev. Lett. 109, 204801 (2012)], high-gain free-electron laser (FEL) can be generated by transverse-dispersed electron beams from laser-plasma accelerators (LPAs) using transverse-gradient undulator (TGU) assuming an ideal constant dispersion function without focusing optics. The constant dispersion function keeps electrons beyond the resonant energy bandwidth still being on resonant with the FEL radiation. Instead, in this paper, the case with focusing optics in an LPA-driven FEL using TGU is numerically studied, in which the dispersion function should be monotonously decreasing along the undulator. Even though the FEL resonance is not always satisfied for off-energy electrons in this case, through subtly optimizing the initial dispersion and focusing parameters, it is feasible to achieve a similar radiation power to the case assuming an ideal constant dispersion function without focusing optics, and meanwhile, to attain a good transverse coherence. Moreover, higher...

  17. The Influences of Thickness on the Optical and Electrical Properties of Dual-Ion-Beam Sputtering-Deposited Molybdenum-Doped Zinc Oxide Layer

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2011-01-01

    Full Text Available The thickness of transparent conductive oxide (TCO layer significantly affects not only the optical and electrical properties, but also its mechanical durability. To evaluate these influences on the molybdenum-doped zinc oxide layer deposited on a flexible polyethersulfone (PES substrate by using a dual-ion-beam sputtering system, films with various thicknesses were prepared at a same condition and their optical and electrical performances have been compared. The results show that all the deposited films present a crystalline wurtzite structure, but the preferred orientation changes from (002 to (100 with increasing the film thickness. Thicker layer contains a relative higher carrier concentration, but the consequently accumulated higher internal stress might crack the film and retard the carrier mobility. The competition of these two opposite trends for carrier concentration and carrier mobility results in that the electrical resistivity of molybdenum-doped zinc oxide first decreases with the thickness but suddenly rises when a critical thickness is reached.

  18. Single-lens Fourier-transform-based optical color image encryption using dual two-dimensional chaotic maps and the Fresnel transform.

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Chen, Xia; Xu, Wenjun; Cai, Yuanxue

    2017-01-20

    We propose an optical color image encryption system based on the single-lens Fourier transform, the Fresnel transform, and the chaotic random phase masks (CRPMs). The proposed encryption system contains only one optical lens, which makes it more efficient and concise to implement. The introduction of the Fresnel transform makes the first phase mask of the proposed system also act as the main secret key when the input image is a non-negative amplitude-only map. The two CRPMs generated by dual two-dimensional chaotic maps can provide more security to the proposed system. In the proposed system, the key management is more convenient and the transmission volume is reduced greatly. In addition, the secret keys can be updated conveniently in each encryption process to invalidate the chosen plaintext attack and the known plaintext attack. Numerical simulation results have demonstrated the feasibility and security of the proposed encryption system.

  19. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    Science.gov (United States)

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.

  20. Dual Credit Report

    Science.gov (United States)

    Light, Noreen

    2016-01-01

    In 2015, legislation to improve access to dual-credit programs and to reduce disparities in access and completion--particularly for low income and underrepresented students--was enacted. The new law focused on expanding access to College in the High School but acknowledged issues in other dual-credit programs and reinforced the notion that cost…

  1. Application of dual time phases imaging of 18F-FDG PET/CT to diagnosis of pulmonary sarcoidosis focus%18F-FDG双时相显影在肺结节病灶中的应用

    Institute of Scientific and Technical Information of China (English)

    周克; 吴平; 陈治明; 陈钰

    2011-01-01

    目的 探讨18F-FDG双时相显影在肺结节性病灶诊断与鉴别诊断的临床应用价值.方法 回顾性分析43例18F-FDG双时相显影且经病理证实的肺结节性病例.其中男性31例,女性12例,年龄38~84岁.使用18F-FDG行全身或肺部PET/CT及双时相病灶扫描,依据PET图像、CT图像、PET/CT融合图像进行综合性分析.结果 43例肺结节性病灶的病例中,双时相显影诊断肺癌26例,病理证实23例;诊断可疑肺癌8例,病理证实5例;诊断良性病变9例,病理证实8例.结论 对于肺结节性病灶,应用18F-FDG双时相显影可提高诊断的准确性.%Objective To investigate the clinical application values of dual time phases imaging of 18 F - FDG PET/CT to diagnosis of the diagnosis and differential diagnosis of pulmonary sarcoidosis focus. Methods A retrospective analysis was made in 43 patients( 31 men, 12 women and aged from 38 to 84 years )with detected by dual time phases imaging of 18F - FDG PET/CT and confirmed by pathological examination. They received the whole body or lung PET/CT and dual time phase focal scanning, and a comprehensive analysis was made according to the PET,CT images and PET/CT fusion images. Results Among the 43 subjects,26 ones were diagnosed as lung cancer by the dual time phase imaging and 24 ones were verified by pathological examination; 8 ones were diagnosed as suspicious lung cancer by the dual time phase imaging and 5 ones were verified by pathological examination;9 ones were diagnosed as benign lesion and 8 ones were verified by pathological examination. Conclusion The application of dual time phase imaging of 18F - FDG PET/CT can improve the accuracy of the diagnosis of pulmonary sarcoidosis focus.

  2. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  3. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  4. Passive athermalization design of dual field infrared optical system%双视场红外光学系统被动无热化设计

    Institute of Scientific and Technical Information of China (English)

    王铮; 王政

    2014-01-01

    Temperature change could cause the degradation of imaging quality of infrared optical system.In order to improve the adaptability of airborne infrared optical system and ensure steady image quality of the infrared optical sys-tem in complex airborne environment,an athermalization design of dual field infrared optical system was proposed.The key technical indexes and requires of this system are given,and the theory and realization method of the system are ex-plained.Zoom theory and athermal technology are applied in this system.%温度变化会导致红外光学系统的成像质量差,为提高机载红外光学系统的环境适应性,保证红外光学系统在机载动态环境中能够稳定成像,提出了一种双视场红外光学系统无热化设计,给出了系统的主要技术指标和要求,说明了系统的原理和实现方法。

  5. Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband

    Science.gov (United States)

    Reshidko, Dmitry; Reshidko, Pavel; Carmeli, Ran

    2015-09-01

    Optical systems can provide simultaneous imaging in several spectral bands and thus be much more useful. A new and current generation of focal plane arrays is allowing detection in more than one spectral region. The design of a refractive imaging lens for such detectors requires correcting chromatic aberrations over the wider range of wavelengths. However, the fewer available refracting materials, the material properties that change between the spectral bands, and the system transmission requirements make the design of such lenses particularly challenging. We present a dual-field zoom lens designed for a cooled detector sensing across short-wave infrared (SWIR) and midwave infrared (MWIR) spectral bands (continuous imaging for 1-5 μm). This zoom lens has a 75 mm focal length in the wide mode and a 250mm focal length in the narrow mode, and operates at f/4.7 in both discrete zoom positions. The lens is actively compensated to work in thermal environments from -20°C to +60°C. We discuss the optical design methodology, review the selection of materials and coatings for the optical elements, and analyze the transmission of the lens and optical performance. A prototype system has been manufactured and assembled. We validate our design with experimental data.

  6. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Steenbergen, Wiendelt; Hogg, Richard; Smallwood, Rod

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: (1) optical delay line in an optical coherence tomography (OCT) setup; (2) as a delay line measuring coherence function of a low coherence source (

  7. A retrospective analysis focusing on a group of patients with dual diagnosis treated by both mental health and substance use services

    Directory of Open Access Journals (Sweden)

    Di Lorenzo R

    2014-08-01

    Full Text Available Rosaria Di Lorenzo,1 Agnese Galliani,2 Alessia Guicciardi,3 Giulia Landi,3 Paola Ferri2 1Mental Health Department, Azienda USL di Modena, Modena, Italy; 2School of Nursing, University of Modena and Reggio Emilia, Modena, Italy; 3Department of Psychiatry, University of Modena and Reggio Emilia, Modena, Italy Objective: To highlight which demographic, familial, premorbid, clinical, therapeutic, ­rehabilitative, and assistance factors were related to dual diagnosis, which, in psychiatry, means the co-occurrence of both mental disorder and substance use in the same patient.Methods: Our sample (N=145 was chosen from all outpatients with a dual diagnosis treated from January 1, 2012 to July 31, 2012 by both the Mental Health Service and the Substance Use Service of Modena and Castelfranco Emilia, Italy. Patients who dropped out during the study period were excluded. Demographic data and variables related to familial and premorbid history, clinical course, rehabilitative programs, social support and nursing care, and outcome complications were collected. The patients’ clinical and functioning conditions during the study period were evaluated.Results: Our patients were mostly men suffering from a cluster B personality disorder. Substance use was significantly more likely to precede psychiatric disease (P<0.001, and 60% of the sample presented a positive familial history for psychiatric or addiction disease or premorbid traumatic factors. The onset age of substance use was related to the period of psychiatric treatment follow-up (P<0.001 and the time spent in rehabilitative facilities (P<0.05, which, in turn, was correlated with personality disorder diagnosis (P<0.05. Complications, which presented in 67% of patients, were related to the high number of psychiatric hospitalizations (P<0.05 and professionals involved in each patient’s treatment (P<0.05. Males more frequently presented familial, health, and social complications, whereas females more

  8. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography, optical coherence microscopy, and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Hogg, Richard; Smallwood, Rod; Steenbergen, Wiendelt; Andersen, Peter E.; Bouma, Brett E.

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: 1) optical delay line in optical coherence tomography (OCT) setup; 2) as a delay line measuring coherence function of a low coherence source (e.g.

  9. Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    CERN Document Server

    Sugai, Hajime; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H; Bennett, Charles L; Bickerton, Steve; Bozier, Alexandre; Braun, David F; Bui, Khanh; Capocasale, Christopher M; Carr, Michael A; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C Y; Dawson, Olivia R; Dekany, Richard G; Ek, Eric M; Ellis, Richard S; English, Robin J; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D; Golebiowski, Mirek; Gunn, James E; Hart, Murdock; Heckman, Timothy M; Ho, Paul T P; Hope, Stephen; Hovland, Larry E; Hsuc, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E; Kempenaar, Jason G; King, Matthew E; Fèvre, Olivier Le; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H; Madec, Fabrice; Mao, Peter; Marrara, Lucas Souza; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J; de Oliveira, Antonio Cesar; de Oliveira, Claudia Mendes; de Oliveira, Ligia Souza; Orndorff, Joe D; Vilaça, Rodrigo de Paiva; Partos, Eamon J; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J; Riddle, Reed; Santos, Leandro; Santos, Jesulino Bispo dos; Schwochert, Mark A; Seiffert, Michael D; Smee, Stephen A; Smith, Roger M; Steinkraus, Ronald E; Sodré, Laerte; Spergel, David N; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C; Wyse, Rosie; Yan, Chi-Hung

    2014-01-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam works on the imaging part. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit componen...

  10. Dual Optical Path Visibility System Measuring Method and Experiment%双光路能见度测量方法和试验

    Institute of Scientific and Technical Information of China (English)

    杜传耀; 马舒庆; 杨玲; 张春波

    2014-01-01

    双光路能见度测量系统是一种基于 CCD(Charge-Coupled Device)数字摄像和光在大气中衰减理论的能见度测量系统,首先设置远、近两个固定距离的特性相同的目标光源和背景装置,然后通过 CCD 拍摄所设置的目标光源和背景,拍摄的图像由1394数据线和图像采集卡传输到计算机,通过数字图像处理获取目标光源和背景的灰度信息,最终利用相应的算法计算能见度。试验表明:双光路能见度测量系统和透射式能见度仪对比偏差随能见度的升高而升高,而与前向散射式能见度仪对比偏差随能见度的升高有小幅降低,通过白天和夜晚数据对比可知,白天太阳光的影响已基本消除。%Dual optical path visibility system is a visibility measuring system based on a charge coupled device (CCD)digital camera and a light attenuation theory in atmosphere.Photovoltaic conversion process is real-ized by using the CCD to measure the light attenuation in the atmosphere.Two target reflection and back-ground devices at different fixed distances are installed in the dual optical path visibility system and have i-dentical characteristics except for distances.During measurement,a light source and the CCD are arranged at the same place,light signal sent by the light source is transmitted to the target reflector and reflected back,two beams of light reflected back are received by the CCD,the CCD converted reflected beams of light to corresponding facula images,and the whole photovoltaic conversion process is completed.Com-pared with the traditional digital camera method in which the same distance between a CCD and a target de-vice is set,the light path distance of the dual optical path visibility system is doubled because of light re-flection.The facula images captured by the CCD are transmitted to a computer and the attenuation infor-mation and background grey information of target facula images are acquired by

  11. Bit-efficient sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media (Conference Presentation)

    Science.gov (United States)

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.

    2016-03-01

    Optical focusing plays a central role in biomedical optical imaging, manipulation, and therapy. However, in scattering media, direct optical focusing becomes infeasible beyond ~10 mean free paths. To break this limit, time-reversed ultrasonically encoded (TRUE) optical focusing phase-conjugates ultrasonically tagged diffuse light back to the ultrasonic focus, thus forming a focus deep inside scattering media. In previous works, the speed of wavefront measurement was limited by the low frame rate of the camera used to record the four images required for phase-shifting holography. Moreover, most of the bits of a pixel value were used to represent an informationless background caused by the large amount of untagged light, increasing the amount of data to transfer and necessitating the use of costly high-resolution analog-to-digital converters (ADCs). Here, we developed a digital TRUE focusing system based on a lock-in camera (300×300 pixels), in which each pixel performs analog lock-in detection on chip. Since only the information of the signal, not that of the background, is digitized, the lock-in camera reduces the amount of data to transfer, and enables the use of cheap low-resolution ADCs. Using this lock-in camera, we were able to measure the wavefront of ultrasonically tagged light in less than 0.3 ms, and to achieve TRUE focusing in between two ground glass diffusers. Even when the signal-to-background ratio dropped to 6.32×10^-4, a phase sensitivity as low as 0.51 rad could still be realized, which is more than enough for digital optical phase conjugation.

  12. Tunable microwave output over a wide RF region generated by an optical dual-wavelength fiber laser

    Science.gov (United States)

    Soltanian, M. R. K.; Ahmad, H.; Pua, C. H.; Harun, S. W.

    2014-10-01

    The dual-wavelength fiber laser provides a compact, robust and stable platform for the generation of microwave signals. Two approaches towards generating microwave emissions using dual wavelengths are explored in this work, with both exploiting the heterodyning beat technique. Both approaches are based on a ring fiber laser with an erbium-doped fiber, having absorption coefficients of 16.0-20.0 dBm at 1531 nm and 11.0-13.0 dBm at 980 nm, serving as the active gain medium. A 10 cm long photonic crystal fiber with a solid core diameter of 4.37 μm and surrounded by air holes of 5.06 μm diameter with a separation of 5.52 μm between them serves to create the desired dual-wavelength output. A tunable band pass filter with bandwidth of 0.8 nm serves as a tuning mechanism together with a polarization controller. Channel spacings as narrow as 0.00043 nm can be realized, giving a microwave output of about 671.9 MHz. Furthermore, the channel spacing can be extended to as large as 0.03631 nm, giving a microwave emission in excess of 4.59 GHz. The output is highly stable, with little change in power or wavelength observed over a test period of 22 min.

  13. Non-invasive image-guided laser microsurgery by a dual-wavelength fiber laser and an integrated fiber-optic multi-modal system.

    Science.gov (United States)

    Tsai, Meng-Tsan; Li, Dean-Ru; Chan, Ming-Che

    2016-10-15

    A new approach to non-invasive image-guided laser micro-treatment is demonstrated by a dual-wavelength fiber laser source and an integrated fiber-based multi-modal system. The fiber-based source, operated in 1.55 and 1.2 μm simultaneously, was directly connected to an integrated fiber-based multi-modal system for imaging and laser micro-treatment at the same time. The 1.2 μm radiations, within the 1.2-1.35 μm bio-penetration window of skin, were utilized for spectral domain optical coherence tomography imaging. The 1.55 μm radiations, highly absorptive to waters, were utilized for laser microsurgery. The new approach, which is simple in configuration and accurately controls the positions and exposure time of the laser microsurgery, shows great promises for future clinical applications.

  14. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips

    Directory of Open Access Journals (Sweden)

    Malcolm S. Purdey

    2015-12-01

    Full Text Available This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2 concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1 and seminaphtharhodafluor-2 (SNARF2 within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre.

  15. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators.

    Science.gov (United States)

    Song, LouJin; Awari, Daniel W; Han, Elizabeth Y; Uche-Anya, Eugenia; Park, Seon-Hye E; Yabe, Yoko A; Chung, Wendy K; Yazawa, Masayuki

    2015-05-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics.

  16. Optical and electrical properties of zinc oxide thin films with low resistivity via Li-N dual-acceptor doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daoli, E-mail: zhang_daoli@mail.hust.edu.cn [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Zhang Jianbing [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Guo Zhe [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Miao Xiangshui [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China)

    2011-05-19

    Highlights: > Zinc oxide films have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified SILAR method. > The resistivity of ZnO film was found to be 1.04 {Omega} cm with a Hall mobility of 0.749 cm{sup 2} V{sup -1} s{sup -1}, carrier concentration of 8.02 x 1018 cm{sup -3}, and transmittance of about 80% in visible range showing good crystallinity with prior c-axis orientation. > A shallow acceptor level of 91 meV is identified from free-to-neutral-acceptor transitions. > Another deep level of 255 meV was ascribed to Li{sub Zn}-Li{sub i} complex. - Abstract: Zinc oxide thin films with low resistivity have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified successive ionic layer adsorption and reaction process. The thin films were systematically characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, ultraviolet-visible spectrophotometry and fluorescence spectrophotometry. The resistivity of zinc oxide film was found to be 1.04 {Omega} cm with a Hall mobility of 0.749 cm{sup 2} V{sup -1} s{sup -1} and carrier concentration of 8.02 x 10{sup 18} cm{sup -3}. The Li-N dual-acceptor doped zinc oxide films showed good crystallinity with prior c-axis orientation, and high transmittance of about 80% in visible range. Moreover, the effects of Li doping level and other parameters on crystallinity, electrical and ultraviolet emission of zinc oxide films were investigated.

  17. Design and analysis of a dual-axis resonator fiber-optic gyroscope employing a single source.

    Science.gov (United States)

    Pinnoji, Prerana Dabral; Nayak, Jagannath

    2013-08-01

    In this paper, design of a resonator fiber-optic gyroscope comprised of a single laser source and two optical fiber resonator rings is presented. A typical gyroscope measures angular rotation around a fixed axis, whereas the proposed design can sense simultaneous rotation about two orthogonal axes. Two variants of the design are proposed and analyzed using a mathematical model based on Jones matrix methodology.

  18. Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.

    Science.gov (United States)

    Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu

    2016-05-16

    Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.

  19. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation.

  20. Synthesis and pharmacological evaluation of optically pure, novel carbonyl guanidine derivatives as dual 5-HT2B and 5-HT7 receptor antagonists.

    Science.gov (United States)

    Moritomo, Ayako; Yamada, Hiroyoshi; Matsuzawa-Nomura, Takaho; Watanabe, Toshihiro; Itahana, Hirotsune; Oku, Makoto; Akuzawa, Shinobu; Okada, Minoru

    2014-11-01

    A series of 9-disubstituted N-(9H-fluorene-2-carbonyl)guanidine derivatives have been discovered as potent and orally active dual 5-HT(2B) and 5-HT(7) receptor antagonists. Upon screening several compounds, N-(diaminomethylene)-4',5'-dihydro-3'H-spiro[fluorene-9,2'-furan]-2-carboxamide (17) exhibited potent affinity for both 5-HT(2B) (Ki = 5.1 nM) and 5-HT(7) (K(i) = 1.7 nM) receptors with high selectivity over 5-HT(2A), 5-HT(2C), α(1), D(2) and M(1) receptors. Optical resolution of the intermediate carboxylic acid 16 via the formation of diastereomeric salts using chiral alkaloids gave the optically pure compounds (R)-17 and (S)-17. Both enantiomers suppressed 5-HT-induced dural protein extravasation in guinea pigs in a dose-dependent manner and the amount of leaked protein was suppressed to near normal levels when orally administrated at 10 mg/kg. (R)-17 and (S)-17 were therefore selected as candidates for human clinical trials.

  1. A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.

    Science.gov (United States)

    Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun

    2014-01-01

    In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.

  2. A Dual Field-of-View Zoom Metalens

    CERN Document Server

    Zheng, Guoxing; Li, Zile; Zhang, Shuang; Mehmood, Muhammad Qasim; He, Pingan; Li, Song

    2016-01-01

    Conventional optical zoom system is bulky, expensive and complicated for real time adjustment. Recent progress in the metasurface research has provided a new solution to achieve innovative compact optical systems. In this paper, we propose a highly integrated zoom lens with dual field-of-view (FOV) based on double sided metasurfaces. With silicon nanobrick arrays of spatially varying orientations sitting on both side of a transparent substrate, this ultrathin zoom metalens can be designed to focus an incident circular polarized beam with spin-dependent FOVs without varying the focal plane, which is important for practical applications. The proposed dual FOV zoom metalens, with the advantages such as ultracompactness, flexibility and replicability, can find applications in fields which require ultracompact zoom imaging and beam focusing.

  3. A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging.

    Science.gov (United States)

    Lapointe, Eric; Pichette, Julien; Bérubé-Lauzière, Yves

    2012-06-01

    We present a non-contact diffuse optical tomography (DOT) scanner with multi-view detection (over 360°) for localizing fluorescent markers in scattering and absorbing media, in particular small animals. It relies on time-domain detection after short pulse laser excitation. Ultrafast time-correlated single photon counting and photomultiplier tubes are used for time-domain measurements. For light collection, seven free-space optics non-contact dual wavelength detection channels comprising 14 detectors overall are placed around the subject, allowing the measurement of time point-spread functions at both excitation and fluorescence wavelengths. The scanner is endowed with a stereo camera pair for measuring the outer shape of the subject in 3D. Surface and DOT measurements are acquired simultaneously with the same laser beam. The hardware and software architecture of the scanner are discussed. Phantoms are used to validate the instrument. Results on the localization of fluorescent point-like inclusions immersed in a scattering and absorbing object are presented. The localization algorithm relies on distance ranging based on the measurement of early photons arrival times at different positions around the subject. This requires exquisite timing accuracy from the scanner. Further exploiting this capability, we show results on the effect of a scattering hetereogenity on the arrival time of early photons. These results demonstrate that our scanner provides all that is necessary for reconstructing images of small animals using full tomographic reconstruction algorithms, which will be the next step. Through its free-space optics design and the short pulse laser used, our scanner shows unprecedented timing resolution compared to other multi-view time-domain scanners.

  4. Subaru adaptive-optics high-spatial-resolution infrared K- and L'-band imaging search for deeply buried dual AGNs in merging galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi; Saito, Yuriko, E-mail: masa.imanishi@nao.ac.jp [Also at Department of Astronomy, School of Science, Graduate University for Advanced Studies (SOKENDAI), Mitaka, Tokyo 181-8588, Japan. (Japan)

    2014-01-01

    We present the results of infrared K- (2.2 μm) and L'-band (3.8 μm) high-spatial-resolution (<0.''2) imaging observations of nearby gas- and dust-rich infrared luminous merging galaxies, assisted by the adaptive optics system on the Subaru 8.2 m telescope. We investigate the presence and frequency of red K – L' compact sources, which are sensitive indicators of active galactic nuclei (AGNs), including AGNs that are deeply buried in gas and dust. We observed 29 merging systems and confirmed at least one AGN in all but one system. However, luminous dual AGNs were detected in only four of the 29 systems (∼14%), despite our method's being sensitive to buried AGNs. For multiple nuclei sources, we compared the estimated AGN luminosities with supermassive black hole (SMBH) masses inferred from large-aperture K-band stellar emission photometry in individual nuclei. We found that mass accretion rates onto SMBHs are significantly different among multiple SMBHs, such that larger-mass SMBHs generally show higher mass accretion rates when normalized to SMBH mass. Our results suggest that non-synchronous mass accretion onto SMBHs in gas- and dust-rich infrared luminous merging galaxies hampers the observational detection of kiloparsec-scale multiple active SMBHs. This could explain the significantly smaller detection fraction of kiloparsec-scale dual AGNs when compared with the number expected from simple theoretical predictions. Our results also indicate that mass accretion onto SMBHs is dominated by local conditions, rather than by global galaxy properties, reinforcing the importance of observations to our understanding of how multiple SMBHs are activated and acquire mass in gas- and dust-rich merging galaxies.

  5. Dual-channel optical sensing platform for detection of diminazene aceturate based on thioglycolic acid-wrapped cadmium telluride/cadmium sulfide quantum dots.

    Science.gov (United States)

    Hao, Chenxia; Zhou, Tao; Liu, Shaopu; Wang, Linlin; Huang, Bowen; Kuang, Nianxi; He, Youqiu

    2016-06-15

    A dual-channel optical sensing platform which combines the advantages of dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) and fluorescence has been designed for the detection of diminazene aceturate (DA). It is based on the use of thioglycolic acid-wrapped CdTe/CdS quantum dots (Q-dots). In the absence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots exhibit the high fluorescence spectrum and low RRS spectrum, so are selected to develop an easy-to-get system. In the presence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots and DA form a complex through electrostatic interaction, which result in the RRS intensity getting enhanced significantly with new RRS peaks appearing at 317 and 397 nm; the fluorescence is powerfully quenched. Under optimum conditions, the scattering intensities of the two peaks are proportional to the concentration of DA in the range of 0.0061-3.0 μg mL(-1). The detection limits for the two single peaks are 4.1 ng mL(-1) and 3.3 ng mL(-1), while that of the DWO-RRS method is 1.8 ng mL(-1), indicating that the DWO-RRS method has high sensitivity. Besides, the fluorescence also exhibits good linear range from 0.0354 to 10.0 μg mL(-1) with a detection limit of 10.6 ng mL(-1). In addition, the system has been applied to the detection of DA in milk samples with satisfactory results.

  6. Single all-optical platform for measurement of twist and transverse stress using polarization modulation in distinct dual-mode fiber placed in a Sagnac loop.

    Science.gov (United States)

    Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy

    2016-01-01

    We report here the experimental demonstration of measurement of both twist and transverse stress using polarization modulation in a single all-fiber circuit consisting of a single-mode fiber (SMF)/dual-mode fiber (DMF) in a Sagnac interferometer (SI) loop. The SMF-SI prototype setup is seen to be suitable for precise measurement of twist over a broad range of ±50° and transverse stress up to 5 N with a sensitivity as high as 2.85×10(6)  pW/° and 2.08×10(7)  pW/N, respectively. It is envisaged that nearly ideal operation for twist measurement can be achieved by appropriately selecting the operating domain (pretwisted Sagnac loop for practical realization of the device) and required magnitude of applied transverse stress (weight yielding maximum sensitivity). Unlike SMF-SI, a DMF assisted SI exhibits asymmetric transmittance yielding a peak shift (∼45°) in addition to falling/rising peak amplitude of effective power(∼20  μW). This key characteristic is further utilized for tunable measurement of torsion (unidirectional from -70° to 40°) while keeping the sensitivity fixed. This research problem is then analyzed on the avenue of theoretical consideration and using classical polarization optics; we have derived the Jones birefringence matrix that accurately describes the transmission behavior of the configured fiber circuit (SMF-SI and DMF-SI) for each of the three cases, namely, transverse stress, twist, and both twist and transverse stress. Series of experimental measurements for various conditions of induced birefringence (linear/circular) were performed at length, and the results were compared with those determined theoretically towards configuring a twist and stress measuring device. The study provides an understanding of the underlying physics of dual-mode interference in a Sagnac configuration experiencing linear and circular birefringence.

  7. Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs.

    Science.gov (United States)

    Sones, C L; Feinaeugle, M; Sposito, A; Gholipour, B; Eason, R W

    2012-07-02

    We present femtosecond laser-induced forward transfer of focused ion beam pre-machined discs of crystalline magneto-optic yttrium iron garnet (YIG) films. Debris-free circular micro-discs with smooth edges and surface uniformity have been successfully printed. The crystalline nature of the printed micro-discs has not been altered by the LIFT printing process, as was confirmed via micro-Raman measurements.

  8. Running at Double Pace: Women in Dual-Profession Marriages.

    Science.gov (United States)

    Arfken, Deborah Elwell

    Although the problems facing dual-profession couples are almost universally acknowledged, studies on dual-profession couples have only recently emerged from those on dual-worker or dual-career families. To explore the perceptions that women in dual-profession marriages have of their roles, conflicts, and coping strategies, focus group interviews…

  9. Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream

    Science.gov (United States)

    Dong-Nhat, Nguyen; Malekmohammadi, Amin

    2016-06-01

    In this paper, for the first time transmission of 2.5 Gb/s duobinary signal is investigated for the downlink direction in 40 GHz optical millimeter-wave generation or up-conversion, utilizing a dual-arm LiNb{O}_3 Mach-Zehnder modulator based on different modulation schemes, namely double- and single-sideband (DSB and SSB) and optical carrier suppression (OCS). The up-converted optical millimeter-wave employing OCS modulation scheme indicates the highest back-to-back received optical power and the smallest power penalty after long propagation in the single-mode fiber, in comparison to DSB and SSB. Directly modulated laser in association with OCS modulation scheme has been used to generate duobinary optical millimeter-wave signal in order to minimize the cost and complexity of the system.

  10. Dual-shaped offset reflector antenna designs from solutions of the geometrical optics first-order partial differential equations

    Science.gov (United States)

    Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.

    1990-01-01

    In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.

  11. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function

    Science.gov (United States)

    Kassis, Timothy; Kohan, Alison B.; Weiler, Michael J.; Nipper, Matthew E.; Cornelius, Rachel; Tso, Patrick; Brandon Dixon, J.

    2012-08-01

    Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with customized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contraction through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism.

  12. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.

    Science.gov (United States)

    Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W

    2013-02-01

    A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion.

    Science.gov (United States)

    Rolland, A; Brunel, M; Loas, G; Frein, L; Vallet, M; Alouini, M

    2011-02-28

    Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10-60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5×10⁻¹¹. The principle is applicable to beat notes in the millimeter-wave range.

  14. Ionic liquid-based variable focus electrowetting optics with bandwidths spanning the visible to mid-infrared

    CERN Document Server

    Watson, Alexander M; Niederriter, Robert D; Terrab, Soraya; Gopinath, Juliet T; Bright, Victor M

    2016-01-01

    Infrared optical materials and devices are important for a wide range of applications in the defense, scientific, and consumer markets. For imaging, spectroscopy, microscopy and persistent surveillance, adaptive optic systems that span the visible to infrared region are particularly useful. We address this need with novel electrowetting lens and prism elements that operate from 400 to 5000 nm. In contrast to conventional electrowetting devices that use polar liquids, limited by high absorption in the infrared region, we present room-temperature ionic liquid-based (RTIL, N-Propyl-Nmethylpyrrolidinium Bis(fluorosulfonyl)imide, Pyr1333a, Solvionic) lens and prism elements with unprecedented spectral bandwidths. Our electrowetting lenses tune over 20 diopters and have been demonstrated at 588, 1550 and 3000 nm wavelengths. Additionally, we have demonstrated prism elements with a steering angle of 0.56{\\deg} at 1550 nm.

  15. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  16. Performance test of dual modulator polarimeters in two different configurations for magneto-optic measurement of fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)], E-mail: 05m19220@nr.titech.ac.jp; Akiyama, Tsuyoshi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Azuma, Yoshifumi; Tsuji-Iio, Shunji; Tsutsui, Hiroaki; Shimada, Ryuichi [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-10-15

    We proposed and tested a new configuration of a magneto-optic polarimeter with a pair of photoelastic modulators (PEMs). In the new configuration, the number of optical components including PEMs can be much smaller than that in a conventional one with PEMs. This paper describes the results of performance test and comparisons to the conventional configuration. The dependences on the light source (a He-Ne laser, 632.8 nm and a superluminescent diode, SLD, 822 nm) are also discussed. The polarization angle can be measured and angle resolution comparable to those in the conventional one was obtained. Angle resolution of 0.002 deg. and 0.07 deg. with a response time of 10 ms was achieved at an incident polarization angle of about 0 deg. and 21 deg., respectively. The resolution of 0.07 deg. corresponds to 7 G when a 40-mm-long ZnSe sensing rod is used. Linearity of the measured angle against the real one degraded, especially with He-Ne laser, increasing the numbers of the mirrors for beam transmission. On the other hand, the resolution is insensitive to the number of mirrors. Good long-time stability was confirmed with the SLD but a little deterioration was found with the He-Ne laser in the two configurations.

  17. Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links.

    Science.gov (United States)

    Giacoumidis, E; Jarajreh, M A; Sygletos, S; Le, S T; Farjady, F; Tsokanos, A; Hamié, A; Pincemin, E; Jaouën, Y; Ellis, A D; Doran, N J

    2014-05-05

    A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

  18. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    Science.gov (United States)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school

  19. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    Science.gov (United States)

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  20. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  1. Subaru Adaptive-optics High-spatial-resolution Infrared K- and L'-band Imaging Search for Deeply Buried Dual AGNs in Merging Galaxies

    CERN Document Server

    Imanishi, Masatoshi

    2013-01-01

    We present the results of infrared K- (2.2 micron) and L'-band (3.8 micron) high-spatial-resolution (<0.2 arcsec) imaging observations of nearby gas- and dust-rich infrared luminous merging galaxies, assisted by the adaptive optics (AO) system on the Subaru 8.2-m telescope. We investigate the presence and frequency of red K-L' compact sources, which are sensitive indicators of active galactic nuclei (AGNs), including AGNs that are deeply buried in gas and dust. We observed 29 merging systems and confirmed at least one AGN in all but one system. However, luminous dual AGNs were detected in only four of the 29 systems (~14%), despite our method's being sensitive to buried AGNs. For multiple nuclei sources, we compared the estimated AGN luminosities with supermassive black hole (SMBH) masses inferred from large aperture K-band stellar emission photometry in individual nuclei. We found that mass accretion rates onto SMBHs are significantly different among multiple SMBHs, such that larger-mass SMBHs generally s...

  2. Optical and electrochemical dual channel sensing of Cu2 + using functionalized furo[2,3-d]pyrimidines-2,4[1H,3H]-diones

    Science.gov (United States)

    Kumar, Manoj; Kumawat, Lokesh Kumar; Bhatt, Priyanka; Jha, Anjali; Agarwal, Shilpi; Sharma, Anuj; Gupta, Vinod Kumar

    2017-06-01

    Owing to their easy accessibility and high degree of structural and functional diversity, many multicomponent reactions (MCRs) have been a rich source of conjugate π-systems, functionalised chromophores (or fluorophore) and redox active molecules. Despite their high explorative potential and practical benefits, only a few MCR products have been so far investigated for their metal sensing abilities. In the present report, two furopyrimidinones (FPys) based molecular systems have been synthesized by [4 + 1] cycloaddition based MCR sequence. Designed chemosensors displayed optic (absorption spectra) as well as electroanalytical (ion selective electrode) response toward Cu2 + ion in solution and membrane phase respectively (dual channel sensing). Different aspects of both the sensing phenomena such as selectivity, association constants, detection limit, membrane composition etc. were studied in detail using UV-Vis spectroscopy, NMR titration and cell assembly. Both the compounds showed excellent performance characteristics such as high selectivity, acceptable affinity and low detection limits (10- 7 M) in both sensing assays with potential utility in the area of sample monitoring.

  3. Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system.

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    Full Text Available A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI system and a Doppler optical microangiography (DOMAG system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO, deoxyhemoglobin (Hb and total hemoglobin (HbT in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.

  4. Dual changes in conformation and optical properties of fluorophores within a metal-organic framework during framework construction and associated sensing event.

    Science.gov (United States)

    Cho, Won; Lee, Hee Jung; Choi, Goeun; Choi, Sora; Oh, Moonhyun

    2014-09-03

    Microsized chemosensor particle (CPP-16, CPP means coordination polymer particle), which is made from a metal-organic framework (MOF), is synthesized using pyrene-functionalized organic building block. This building block contains three important parts, a framework construction part, a Cu(2+) detection part, and a fluorophore part. PXRD studies have revealed that CPP-16 has a 3D cubic structure of MOF-5. During both MOF formation and sensing event, fluorophores within CPP-16 undergo dual changes in conformation and optical properties. After MOF construction, pyrene moieties experience an unusual complete conversion from monomer to excimer form. This conversion takes place due to a confinement effect induced by space limitations within the MOF structure. The selective sensing ability of CPP-16 on Cu(2+) over many other metal ions is verified by emission spectra and is also visually identified by fluorescence microscopy images. Specific interaction of Cu(2+) with binding sites within CPP-16 causes a second conformational change of the fluorophores, where they change from stacked excimer (CPP-16) to quenched excimer states (CPP-16·Cu(2+)).

  5. Preparation of Anti-Scratch Optical Light Diffusing Film Via Thermal/UV Dual Curing Method%热/UV双重固化制备耐划伤光学扩散膜

    Institute of Scientific and Technical Information of China (English)

    杨柱; 夏萍; 邓康清; 龚露露; 常征; 施文芳

    2013-01-01

    采用热/UV双重固化方式制备高透光率、高雾度光学扩散膜扩散涂层.分别研究了不同树脂/粒子比例(以热固化树脂为参考)、双重固化树脂比例(UV固化树脂/热固化树脂),以及相同树脂/粒子比例条件下不同粒子粒径等参数对光学扩散膜扩散涂层力学性能、光学性能的影响.对制备的光学扩散膜扩散涂层力学、光学性能及表观形貌进行表征.测试结果表明:使用合适比例的热/UV混合固化树脂,能够制备出具有耐划伤性能且翘曲度较低的光学扩散膜扩散涂层.%A kind of high light transmittance and high haze diffusion optical light diffusion film was prepared using thermal/UV dual curing methods.The influence of the different resin/ particle ratio(base on the thermosetting resin),the ratio of dual curing resin(UV Curing resin/thermosetting resin) and different size particles with the same resin/particle ratio on the mechanical properties and optical performance of optical diffusion film diffusion coating were studied,respectively.The particle size and its distribution was tested,optical properties and surface morphology of the optical light diffusion coating were characterized.The test results showed that,a kind of anti-scratch diffusion coating of optical light diffusion film which possesses low curl value could be produced when using proper ratio of dual curing resin.

  6. High residual platelet reactivity during dual antiplatelet therapy, found by optical aggregometry and the rate of atherothrombotic complications after coronary artery stenting in patients with ischemic heart disease in clinical practice

    OpenAIRE

    N. F. Puchinyan; N. V. Furman; P. V. Dolotovskaya; L. L. Malinova

    2016-01-01

    Aim. To study the prevalence of high residual platelet reactivity (HRPR) during the dual antiplatelet therapy (DAT) with acetylsalicylic acid (ASA) and clopidogrel by optical aggregometry in patients with ischemic heart disease (IHD) after percutaneous transluminal coronary angioplasty (PTCA) in clinical practice, as well as to determine its value for the prediction of clinical course and outcome of disease.Material and methods. Patients after PTCA and during DAT were included into the study....

  7. Sensitive and accurate dual wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols

    CERN Document Server

    David, G; Thomas, B; Rairoux, P

    2012-01-01

    An UV-VIS polarization Lidar has been designed and specified for aerosols monitoring in the troposphere, showing the ability to precisely address low particle depolarization ratios, in the range of a few percents. Non-spherical particle backscattering coefficients as low as 5 {\\times} 10-8 m-1.sr-1 have been measured and the particle depolarization ratio detection limit is 0.6 %. This achievement is based on a well-designed detector with laser-specified optical components (polarizers, dichroic beamsplitters) summarized in a synthetic detector transfer matrix. Hence, systematic biases are drastically minimized. The detector matrix being diagonal, robust polarization calibration has been achieved under real atmospheric conditions. This UV-VIS polarization detector measures particle depolarization ratios over two orders of magnitude, from 0.6 up to 40 %, which is new, especially in the UV where molecular scattering is strong. Hence, a calibrated UV polarization-resolved time-altitude map is proposed for urban an...

  8. 双参数估计的改进自聚焦算法%Imiproved auto-focus algorithm of dual parameters estimation

    Institute of Scientific and Technical Information of China (English)

    唐波

    2011-01-01

    To figure out the phase error in the high-resolution Synthetic Aperture Radar (SAR) imaging caused by using traditional auto-focus algorithm in which only velocity is considered, the quality of SAR image was analyzed when errors of two parameters of Doppler rate exist. One method of estimating both velocity and the nearest distance of range was proposed, which was based on the mathematic model that was much closer to the real, and this method could estimate the nearest range better. Finally, the testing data verify the effectiveness and applicability of the algorithm in the high-resolution SAR imaging.%传统自聚焦算法的多普勒调频率拟合模型中当最近斜距存在误差时,由于只考虑载机地速对多普勒调频率的影响,导致多普勒调频率拟合后会引入沿距离向变化的二次相位误差,该二次相位误差会严重影响高分辨率合成孔径雷达(SAR)成像的质量.为解决此问题,通过分析载机地速和最近斜距两个系统参数存在误差时对多频率调频率拟合的影响,提出了基于自聚焦算法结合最小二乘方法联合估计最近斜距和载机地速的双参数估计算法.该算法采用的估计模型相比于传统单参数估计算法更加符合真实的方位多普勒模型,在没有外定标的情况下可以很好地估计最近斜距误差.最后通过实测数据成像验证了该算法在高分辨率SAR成像中的有效性和适用性.

  9. Measurements of Tilt and Focus for Sodium Beacon Adaptive Optics on the Starfire 3.5 Meter Telescope

    Science.gov (United States)

    2010-09-01

    beacon and natural guide star operation. This approach, and a more complicated approach, are described in detail by Link and Foucault [3]. They show these...Astronomical Telescopes and Instrumentation Conference, Glasgow, Scotland, 21–25 June 2004. 3. Link D. and Foucault B., "Investigation of focus control

  10. Manufacturing process for the WEAVE prime focus corrector optics for the 4.2m William Hershel Telescope

    NARCIS (Netherlands)

    Lhomé, Emilie; Agócs, Tibor; Abrams, Don Carlos; Dee, Kevin M.; Middleton, Kevin F.; Tosh, Ian A.; Jaskó, Attila; Connor, Peter; Cochrane, Dave; Gers, Luke; Jonas, Graeme; Rakich, Andrew; Benn, Chris R.; Balcells, Marc; Trager, Scott C.; Dalton, Gavin B.; Carrasco, Esperanza; Vallenari, Antonella; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.

    2016-01-01

    In this paper, we detail the manufacturing process for the lenses that will constitute the new two-degree field-of-view Prime Focus Corrector (PFC) for the 4.2m William Herschel Telescope (WHT) optimised for the upcoming WEAVE Multi-Object Spectroscopy (MOS) facility. The corrector, including an

  11. Weld line optimization on thermoplastic elastomer micro injection moulded components using 3D focus variation optical microscopy

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Elsborg, R.; Tosello, G.;

    2015-01-01

    The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify the correlat...

  12. Benefits of Dual Language Education

    Science.gov (United States)

    Wallstrum, Kiara

    2009-01-01

    The focus of this paper examines how dual language education (DLE) programs are valuable. The literature shows that children do much more than just thrive in a dual language environment. According to research, children who are bilingual are cognitively, academically, intellectually, socially and verbally more advantaged than their monolingual…

  13. Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility

    Science.gov (United States)

    Skladnik-Sadowska, E.; Dan'ko, S. A.; Kwiatkowski, R.; Sadowski, M. J.; Zaloga, D. R.; Paduch, M.; Zielinska, E.; Kharrasov, A. M.; Krauz, V. I.

    2016-12-01

    Optical emission spectroscopy techniques were used to investigate the spectra of dense deuterium-plasma jets generated by high-current pulse discharges within the large PF-1000U facility and to estimate parameters of plasma inside the jets and their surroundings. Time-resolved optical spectra were recorded by means of a Mechelle®900 spectrometer. From an analysis of the deuterium line broadening, it was estimated that the electron concentration at a distance 57 cm from the electrode outlets amounted to (0.4-3.7) × 1017 cm-3 depending on the initial gas distribution and the time interval of the spectrum registration after the instant of the plasma jet generation. From the re-absorption dip in the Dβ profile, it was assessed that the electron concentration in the surrounding gas was equal to about 1.5 × 1015 cm-3. On the basis of the measured ratio of He II 468.6 nm and He I 587.6 nm line intensities, it was estimated that the electron temperature amounted to about 5.3 eV. Also estimated were some dimensionless parameters of the investigated plasma jets.

  14. Optic Nerve Sheath Diameter: Translating a Terrestrial Focused Technique Into a Clinical Monitoring Tool for Space Flight

    Science.gov (United States)

    Mason, Sara S.; Foy, Millennia; Sargsyan, Ashot; Garcia, Kathleen; Wear, Mary L.; Bedi, Deepak; Ernst, Randy; Van Baalen, Mary

    2014-01-01

    Emergency medicine physicians recently adopted the use of ultrasonography to quickly measure optic nerve sheath diameter (ONSD) as concomitant with increased intracranial pressure. NASA Space and Clinical Operations Division has been using ground and on-orbit ultrasound capabilities since 2009 to consider this anatomical measure as a proxy for intracranial pressure in the microgravity environment. In the terrestrial emergency room population, an ONSD greater than 0.59 cm is considered highly predictive of elevated intracranial pressure. However, this cut-off limit is not applicable to the spaceflight setting since over 50% of US Operating Segment (USOS) astronauts have an ONSD greater than 0.60 cm even before missions. Crew Surgeon clinical decision-making is complicated by the fact that many astronauts have history of previous spaceflights. Data will be presented characterizing the distribution of baseline ONSD in the astronaut corps, longitudinal trends in-flight, and the predictive power of this measure related to increased intracranial pressure outcomes.

  15. A synergistic approach for soil moisture estimation using modified Dubois model with dual-polarized SAR and optical satellite data

    Science.gov (United States)

    Thanabalan, P.; Vidhya, R.

    2016-05-01

    This paper discusses about an estimation of soil moisture in agricultural region using SAR data with the use of HH and HV polarization. In this study the semi empirical approach derived by Dubois et al (1) was modified to work using (σdegHH) and σ°VV) so that soil moisture can be obtained for the larger area extent. The optical remote sensing is helps to monitor changes in vegetation biomass and canopy cover surface reflectance by using NDVI and LAI from which the site suitability from different land use/land cover are identified. The second use involves retrieve the backscattering coefficient valuesσ°) derived from SAR for soil moisture studies. In SAR techniques, the relative surface roughness can be directly estimate using surface roughness derivation empirical algorithms. The mid incidence angle is used to overcome the incidence angle effect and it worked successfully to this study. The modified Dubois Model (MDM) in combination with The Topp's et al (2) model is used to retrieve soil moisture. These two models have equations (HH, VV) and two independent variables i.e. root mean square height (s) and dielectric constant (epsilon). The linear regression analysis is performed and the surface roughness derived from SAR is well correlated with ground surface roughness having the value of (r2 = 0.69). By using the dielectric constant (epsilon) the modified Dubois model in combination with Topp's model are performed and the soil moisture is derived from SAR having value of (r2 = 0.60). Thus, the derived model is having good scope for soil moisture monitoring with present availability of SAR datasets.

  16. X-ray diffraction imaging of metal–oxide epitaxial tunnel junctions made by optical lithography: use of focused and unfocused X-ray beams

    Science.gov (United States)

    Mocuta, Cristian; Barbier, Antoine; Stanescu, Stefan; Matzen, Sylvia; Moussy, Jean-Baptiste; Ziegler, Eric

    2013-01-01

    X-ray diffraction techniques are used in imaging mode in order to characterize micrometre-sized objects. The samples used as models are metal–oxide tunnel junctions made by optical lithography, with lateral sizes ranging from 150 µm down to 10 µm and various shapes: discs, squares and rectangles. Two approaches are described and compared, both using diffraction contrast: full-field imaging (topography) and raster imaging (scanning probe) using a micrometre-sized focused X-ray beam. It is shown that the full-field image gives access to macroscopic distortions (e.g. sample bending), while the local distortions, at the micrometre scale (e.g. tilts of the crystalline planes in the vicinity of the junction edges), can be accurately characterized only using focused X-ray beams. These local defects are dependent on the junction shape and larger by one order of magnitude than the macroscopic curvature of the sample. PMID:23412494

  17. Direct observation of bulk second-harmonic generation inside a glass slide with tightly focused optical fields

    Science.gov (United States)

    Wang, Xianghui; Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Hui, Rongqing

    2016-04-01

    Bulk second-harmonic generation (SHG) inside glass slides is directly detected unambiguously without interference from surface contributions. This is enabled by tightly focused and highly localized ultrashort laser pulses. The theoretical calculations based on vector diffraction theory and the phenomenological model of SHG inside centrosymmetric materials agree well with the measured far-field SHG radiation patterns for different polarization states of the fundamental beam. The results indicate that the observed bulk SHG is predominantly related to the bulk parameter δ' and originates from the three-dimensional field gradient in the focal region.

  18. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  19. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  20. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    Science.gov (United States)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  1. Tracking and understanding the acoustic signature of fluido-fractures: a dual optical/micro-seismic study

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2015-04-01

    The characterization and comprehension of irreversible rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, control the mechanical stability of rock and soil formations during the injection or extraction of fluids, landslides with hydrological control, volcanic eruptions), or in the industry, as CO2 sequestration. In this study, analogue models are developed (similar to the previous work of Johnsen[1] but in rectangular shape) to study the instabilities developing during motion of fluid in dense porous materials: fracturing, fingering, channelling… We study these complex fluid/solid mechanical systems using two imaging techniques: fast optical imaging and high frequency resolution of acoustic emissions. Additionally, we develop physical models rendering for the fluid mechanics (similar to the work of Niebling[2] but with injection of fluid) in the channels and the propagation of microseismic waves around the fracture. We then confront a numerical resolution of this physical system with the observed experimental system. The experimental setup consists in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system with a constant injection pressure from the point opposite to the semi-permeable boundary. The fluid penetrates into the solid using the pore network. At the large enough injection pressures, the fluid also makes its way via creating channels, fractures to the semi-permeable boundary. During the experiments acoustic signals are recorded using different sensors then, those signals are compared and investigated further in both time and frequency domains

  2. A laser-induced fluorescence dual-fiber optic array detector applied to the rapid HPLC separation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Sean J.; Hall, Gregory J.; Kenny, Jonathan E. [Tufts University, Chemistry Department, Medford, MA, (United States)

    2002-01-01

    A multi-channel detection system utilizing fiber optics has been developed for the laser-induced fluorescence (LIF) analysis of chromatographic eluents. It has been applied to the detection of polycyclic aromatic hydrocarbons (PAH) in a chromatographically overlapped standard mixture and to a complex soil sample extract obtained during fieldwork. The instrument utilizes dual-fiber optic arrays, one to deliver multiple excitation wavelengths (258-342 nm) generated by a Raman shifter, and the other to collect fluorescence generated by the sample at each excitation wavelength; the collected fluorescence is dispersed and detected with a spectrograph/CCD combination. The resulting data were arranged into excitation emission matrices (EEM) for visualization and data analysis. Rapid characterization of PAH mixtures was achieved under isocratic chromatographic conditions (1.5 mL min{sup -1} and 80% acetonitrile in water), with mid {mu}g L{sup -1} detection limits, in less than 4 minutes. The ability of the instrument to identify co-eluting compounds was demonstrated by identifying and quantifying analytes in the rapid analysis of a 17 component laboratory-prepared PAH mixture and a soil extracted sample. Identification and quantification were accomplished using rank annihilation factor analysis (RAFA) using pure component standards and the EEMs of mixtures measured during the rapid high-performance liquid chromatography (HPLC) method as the unknowns. The percentage errors of the retention times (RTs) determined using RAFA compared to the known RTs measured with a standard absorbance detector were between 0 and 11%. For the standard PAH mixture, all 17 components were identified correctly and for the soil extracted sample, all 8 analytes present were correctly identified with only one false positive. Overall, the system achieved excellent qualitative performance with semi-quantitative results in the concentration predictions of both the standard mixture and the real

  3. Dynamic and static control of the optical phase of guided p-polarized light for near-field focusing at large angles of incidence

    Science.gov (United States)

    Huang, Danhong; Michelle Easter, M.; David Wellems, L.; Mozer, Henry; Gumbs, Godfrey; Cardimona, D. A.; Maradudin, A. A.

    2013-07-01

    Both dynamic and static approaches are proposed and investigated for controlling the optical phase of a p-polarized light wave guided through a surface-patterned metallic structure with subwavelength features. For dynamic control, the important role of photo-excited electrons in a slit-embedded atomic system with field-induced transparency (FIT) is discovered within a narrow frequency window for modulating the intensity of focused transmitted light in the near-field region. This is facilitated by electromagnetic coupling to surface plasmons between the two FIT-atom embedded slits. The near-field distribution can be adjusted by employing a symmetric (or asymmetric) slit configuration and by a small (or large) slit separation. In addition, the cross-transmission of a light beam is also predicted as a result of this strong coupling between optical transitions in embedded FIT atoms and surface plasmons. For static control, the role of surface curvature is found for focused transmitted light passing through a Gaussian-shaped metallic microlens embedded with a linear array of slits. A negative light-refraction pattern, which is associated with higher-order diffraction modes, was also found for large angles of incidence in the near-field region. This anomalous negative refraction can be suppressed when higher-order waveguide modes of light leak through a very thin film. In addition, this negative refraction can also be suppressed with a reinforced reflection at the left foothill of a Gaussian-shaped slit array of the forward-propagating surface-plasmon wave at large angles of incidence. A prediction is given of near-field focusing of light with its sharpness dynamically controlled by the frequency of the light in a very narrow window. Moreover, a different scheme based on Green's second integral identity is proposed for overcoming a difficulty in calculating the near-field distribution very close to a metallic surface by means of a finite-difference-time-domain method.

  4. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  5. Focusing of Intense Laser via Parabolic Plasma Concave Surface

    Science.gov (United States)

    Zhou, Weimin; Gu, Yuqiu; Wu, Fengjuan; Zhang, Zhimeng; Shan, Lianqiang; Cao, Leifeng; Zhang, Baohan

    2015-12-01

    Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity - focusing of an intense laser via a parabolic plasma concave surface - is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities. supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics

  6. Design of TFT-LCD panels optical detection auto-focus system%TFT-LCD面板光学检测自动对焦系统设计

    Institute of Scientific and Technical Information of China (English)

    肖磊; 程良伦; 范富明

    2011-01-01

    针对TFT-LCD面板尺寸大、厚度薄、光透过率高的特性,建立了基于激光三角测距法的自动对焦系统.采用光学回路和机械结构设计,对激光光斑中心位置准确求取以及自动对焦原理等算法进行了研究.首先,根据激光三角法测距原理进行了光学回路设计,并以纳米定位平台作为微小行程对焦驱动轴.其次,通过分析光斑图像特性,调节相机快门调整曝光量从而对图像进行噪声消除.另外,采用质心法快速提取光斑中心,在分析激光光斑中心位置与离焦关系的基础上,说明了自动对焦算法.最后,介绍了系统自动对焦时间的设定方法.实验结果表明:在行程为100μm的自动对焦范围内,5X物镜下,自动对焦时间为0.36 s,重复定位精度为±1.98μm.50X物镜下,自动对焦时间为0.41 s,重复定位精度为±0.26 μm.该系统稳定性好、对焦精度高、抗干扰能力强,基本满足大尺寸玻璃基板光学检测的需要.%In connection with the characteristics of TFT-LCD panel large size, thin thickness and high light transmittance, an auto-focusing system based on the distance measuring of laser triangulation sensor was established. Moreover, with the design of optical circuit and mechanical structure, the laser spot center was accurately calculated and the theory of auto-focusing was studied in this paper. Firstly, according to the principle of laser-triangulation, the optical system was design and the driveshaft was auto-focused using the nano-positioning stage as the minor stroke. Secondly, by analyzing the characteristics of spot images, using the camera shutter to adjust the image exposure, the noise of the image was eliminated. Thirdly, employing the center of gravity theory to pick up the spot center quickly, the algorithm of auto-focusing was explained on the basis of analyzing the relationship between the laser spot center and the out-focusing. Finally, the setting methods of auto-focusing

  7. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    Science.gov (United States)

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

  8. Laser-optical measurements of the velocities of the plasma jets formed from different gases in a kilojoule-range plasma focus facility

    Energy Technology Data Exchange (ETDEWEB)

    Polukhin, S. N., E-mail: snpol@lebedev.ru; Dzhamankulov, A. M.; Gurei, A. E.; Nikulin, V. Ya., E-mail: vnik@lebedev.ru; Peregudova, E. N.; Silin, P. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-12-15

    The velocities of the plasma jets formed from Ne, N{sub 2}, Ar, and Xe gases in plasma focus facilities were determined by means of laser-optical shadowgraphy of the shock waves generated at the jet leading edge. In spite of the almost tenfold ratio between the atomic weights of these gases, the outflow velocities of the plasma jets formed in experiments with these gases differ by less than twice, in the range of (0.7–1.1) × 10{sup 7} cm/s under similar discharge conditions. The energies of the jet ions were found to vary from 0.7 keV for nitrogen to 4 keV for xenon.

  9. Zeeman-insensitive cooling of a single atom to its two-dimensional motional ground state in tightly focused optical tweezers

    Science.gov (United States)

    Sompet, P.; Fung, Y. H.; Schwartz, E.; Hunter, M. D. J.; Phrompao, J.; Andersen, M. F.

    2017-03-01

    We combine near-deterministic preparation of a single atom with Raman sideband cooling, to create a push-button mechanism to prepare a single atom in the motional ground state of tightly focused optical tweezers. In the two-dimensional (2D) radial plane, we achieve a large ground-state fidelity for the entire procedure (loading and cooling) of ˜0.73 , while the ground-state occupancy is ˜0.88 for realizations with a single atom present. For 1D axial cooling, we attain a ground-state fraction of ˜0.52 . The combined 3D cooling provides a ground-state population of ˜0.11 . Our Raman sideband cooling variation is indifferent to magnetic field fluctuations, allowing widespread unshielded experimental implementations. Our work provides a pathway towards a range of coherent few-body experiments.

  10. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    Science.gov (United States)

    Kanmani, B.; Vasu, R. M.

    2007-03-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme.

  11. Dual optical marker Raman characterization of strained GaN-channels on AlN using AlN/GaN/AlN quantum wells and {sup 15}N isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Meng; Li, Guowang; Protasenko, Vladimir; Zhao, Pei; Verma, Jai; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Hu, Zongyang; Yan, Xiaodong; Xing, Huili Grace; Jena, Debdeep, E-mail: djena@nd.edu [Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Mintairov, Alexander [Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Ioffe Physico-Technical Institute, Russian Academy of Sciences, Saint Petersburg 194021 (Russian Federation)

    2015-01-26

    This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters and for power electronics.

  12. Dynamic and static control of the optical phase of guided p-polarized light for near-field focusing at large angles of incidence

    CERN Document Server

    Huang, Danhong; Wellems, L David; Mozer, Henry; Gumbs, Godfrey; Cardimona, D A; Maradudin, A A

    2013-01-01

    Both dynamic and static approaches are proposed and investigated for controlling the optical phase of a p-polarized light wave that is guided through a surface-patterned metallic structure with subwavelength features. For dynamic control, field-induced transparency (FIT) from photo-excited electrons in a slit-embedded atomic system show up within a narrow frequency window for modulating the intensity of focused transmitted light in the near-field region. Based on the electromagnetic coupling, this is facilitated by surface plasmons between the two FIT-atom embedded slits. For static control, the role of surface curvature is obtained for focused transmitted light passing through a Gaussian-shaped metallic microlens embedded with a linear array of slits, in addition to a negative light-refraction pattern, which is associated with higher-diffraction modes of light, under a large angle of incidence in the near-field region. Most interesting, however, this anomalous negative light-refraction pattern becomes suppre...

  13. Dual-comb MIXSEL

    Science.gov (United States)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  14. Final focus test beam

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  15. Dual diagnosis

    OpenAIRE

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  16. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    Science.gov (United States)

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  17. Optimization of an open-focused microwave oven digestion procedure for determination of metals in diesel oil by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Sant'Ana, Flavio W; Santelli, Ricardo E; Cassella, Alessandra R; Cassella, Ricardo J

    2007-10-01

    This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.

  18. Dual-tip-enhanced ultrafast CARS nanoscopy

    CERN Document Server

    Ballmann, Charles W; Sinyukov, Alexander M; Sokolov, Alexei V; Voronine, Dmitri V

    2013-01-01

    Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond adaptive spectroscopic techniques (FAST CARS) have been successfully used for molecular spectroscopy and microscopic imaging. Recent progress in ultrafast nanooptics provides flexibility in generation and control of optical near fields, and holds promise to extend CARS techniques to the nanoscale. In this theoretical study, we demonstrate ultrafast subwavelentgh control of coherent Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited by ultrashort laser pulses. The simulated nanostructure design provides localized excitation sources for CARS by focusing incident laser pulses into subwavelength hot spots via two self-similar nanolens antennas connected by a waveguide. Hot-spot-selective dual-tip-enhanced CARS (2TECARS) nanospectra of DNA nucleobases are obtained by simulating optimized pump, Stokes and probe near fields using tips, laser polarization- and pulse-shaping. This technique may be used to explore ...

  19. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  20. New Physical Optics Method for Curvilinear Refractive Surfaces and its Verification in the Design and Testing of W-band Dual-Aspheric Lenses

    Science.gov (United States)

    2013-10-01

    aspheric ( plano -convex) and (b) optimized dual- aspheric W-band PTFE lenses as needed for a non-paraxial system of Fig. 1 . . 10 3 Profiles of (a) full...is comparable with the given lens diameter Dc = 140mm. Following conventional solutions, non-paraxial lenses of plano -convex type are usually em...optimized by applying more advanced methods, e.g., full-wave approaches, etc. When considering plano -convex lenses by ray-tracing methods, we arrive at

  1. Design and implementation of a Sun tracker with a dual-axis single motor for an optical sensor-based photovoltaic system.

    Science.gov (United States)

    Wang, Jing-Min; Lu, Chia-Liang

    2013-03-06

    The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.

  2. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Chia-Liang Lu

    2013-03-01

    Full Text Available The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.

  3. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    Science.gov (United States)

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  4. Dual-Schemata Model

    Science.gov (United States)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  5. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  6. Microresonator Soliton Dual-Comb Spectroscopy

    CERN Document Server

    Suh, Myoung-Gyun; Yang, Ki Youl; Yi, Xu; Vahala, Kerry

    2016-01-01

    Rapid characterization of optical and vibrational spectra with high resolution can identify species in cluttered environments and is important for assays and early alerts. In this regard, dual-comb spectroscopy has emerged as a powerful approach to acquire nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain and avoid bulky mechanical spectrometers. Recently, a miniature soliton-based comb has emerged that can potentially transfer the dual-comb method to a chip platform. Unlike earlier microcombs, these new devices achieve high-coherence, pulsed mode locking. They generate broad, reproducible spectral envelopes, which is essential for dual-comb spectroscopy. Here, dual-comb spectroscopy is demonstrated using these devices. This work shows the potential for integrated, high signal-to-noise spectroscopy with fast acquisition rates.

  7. Dense central office solution for point-to-point fibre access including a novel compact dual bi-directional fibre optical transceiver

    Science.gov (United States)

    Arvidsson, Gunnar; Junique, Stéphane; Persson, Karl-Åke; Sundberg, Erland

    2006-07-01

    The centralized Point-to-Point fibre access approach with a dedicated single mode optical fibre link connecting each customer to a Central Office (CO) has advantages regarding future-proofness, security, and simple and low-cost optical links and transceivers. The potential bottleneck in handling the large number of optical fibres that need to be terminated in the CO, and combined with optoelectronic components, has been studied within the IST 6th Framework Programme integrated project MUSE. The key parts in the CO are the passive cabinet where customer fibres are accessible through fibre connectors in the Optical Distribution Frame (ODF), and the active cabinet with switching equipment and optical transceivers. For the passive cabinet we conclude, that the most efficient solution is that each connection from the active cabinet to a customer passes only one ODF, and that small form factor connectors are used. For the active cabinet we have demonstrated the feasibility of an SFF-size module containing two bi-directional transceiver units by building and successfully testing a prototype, increasing the customer port density by a factor of two compared to commercial transceivers. The power consumption, which impacts power supply, cooling and cost, has been analyzed, and we propose measures to significantly decrease the power consumption.

  8. Population thinking and natural selection in dual-inheritance theory

    OpenAIRE

    Houkes, WN Wybo

    2012-01-01

    A deflationary perspective on theories of cultural evolution, in particular dual-inheritance theory, has recently been proposed by Lewens. On this ‘pop-culture’ analysis, dual-inheritance theorists apply population thinking to cultural phenomena, without claiming that cultural items evolve by natural selection. This paper argues against this pop-culture analysis of dual-inheritance theory. First, it focuses on recent dual-inheritance models of specific patterns of cultural change. These model...

  9. Dual accelerating Airy-Talbot recurrence effect

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Liu, Xing; Zhong, Weiping; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    We demonstrate the dual accelerating Airy-Talbot recurrence effect, i.e., the self-imaging of accelerating optical beams, by propagating a superposition of Airy beams with successively changing transverse displacements. The dual Airy-Talbot effect is a spontaneous recurring imaging of the input and of the input with alternating component signs. It results from the constructive interference of Airy wave functions, which is also responsible for other kinds of Airy beams, for example, Airy breathers. An input composed of finite-energy Airy beams also displays the dual Airy-Talbot effect, but it demands a large transverse displacement and diminishes fast along the propagation direction.

  10. The impact of position and number of methoxy group(s) to tune the nonlinear optical properties of chalcone derivatives: a dual substitution strategy.

    Science.gov (United States)

    Muhammad, Shabbir; Al-Sehemi, Abdullah G; Irfan, Ahmad; Chaudhry, Aijaz R; Gharni, Hamid; AlFaify, S; Shkir, Mohd; Asiri, Abdullah M

    2016-04-01

    Using the state-of-art computational techniques, we limelight a structure-property relationship for the position and number of methoxy group(s) to tune the optical and nonlinear optical (NLO) properties (first hyperpolarizability) of chalcone derivatives. Based on our previously synthesized chalcones [system 1 ((E)-1-(2,5-dimethylthiophen-3-yl)-3-(2-methoxyphenyl)prop-2-en-1-one and system 4 (E)-1-(2,5-dimethylthiophen-3-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one)], we systematically design several novel derivatives with tuned optical and NLO properties. For instance, the rotation of methoxy group substitutions at three different possible ortho, meta, and para positions on phenyl ring show significant changes in NLO properties of these chalcones derivatives. The system 3 has shown β tot amplitude of 1776 a.u. with terminal 4-methoxyphenyl group (para-methoxy substitution), which is ~2.2 and 2.4 times larger than that of ortho- and meta-methoxyphenyl systems 1 and 2, respectively. Additionally, systems 3a and 4a, which are cyano derivatives of the systems 3 and 4 show significantly large β tot amplitudes of 3280 and 4388 a.u., respectively, which are about 3 and 4 times larger than that of para-nitro aniline (PNA) molecule (a typical donor-acceptor molecule) at the same LC-wPBE/6-311G** level of theory. The origin of larger β tot amplitudes has been traced in lower transition energies and higher oscillator strengths for crucial transitions of designed derives. Thus, our investigation reveals that the chalcones derivatives with para-methoxyphenyl groups possess reasonably large amplitudes of their first hyperpolarizability and good optical transparency (3.0-4.7 eV), which can make them attractive candidates for nonlinear optical applications.

  11. 超长焦距红外双视场光学系统设计%Design of infrared optical system with super-long focal length and dual field-of-view

    Institute of Scientific and Technical Information of China (English)

    白玉琢; 木锐; 马琳; 贾钰超; 普群雁; 薛经纬

    2014-01-01

    设计了一种超长焦距中波红外双视场光学系统,该系统采用二次成像结构,通过透镜轴向移动实现变焦功能。设计结果表明,该系统可以实现超长焦距600~150 mm的变焦功能,且中心视场在探测器特征频率20 lp/mm处的光学传递函数值高于0.5,接近衍射极限,能够很好地满足军事侦察对远距离目标同时搜索和瞄准的要求。%A mid-wavelength infrared optical system with super-long focal length and dual field-of-view is de-signed in this paper .Based on the re-image configuration , this system can realize the zoom by axial motion of a lens along the optical axis .The design results show that this system realizes the zoom with a super-long focal length of 600-1 500 mm, and the MTF of the central view is more than 0.5 at the characteristic frequency of 20 lp/mm of detector , which shows its optical performance approximates to the diffraction limit .This system can meet the requirement of military investigation for seeking and aiming at target in a long distance .

  12. Dynamic focusing in the zebrafish beating heart

    Science.gov (United States)

    Andrés-Delgado, L.; Peralta, M.; Mercader, N.; Ripoll, J.

    2016-03-01

    Of the large amount of the animal models available for cardiac research, the zebrafish is extremely valuable due to its transparency during early stages of development. In this work a dual illumination laser sheet microscope with simultaneous dual camera imaging is used to image the beating heart at 200 fps, dynamically and selectively focusing inside the beating heart through the use of a tunable lens. This dual color dynamic focusing enables imaging with cellular resolution at unprecedented high frame rates, allowing 3D imaging of the whole beating heart of embryonic zebrafish.

  13. Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mathieu [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2007-02-15

    The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L{sup -1} Na, K, Rb and Ba as matrix elements and 300 {mu}g L{sup -1} Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers.

  14. Stay Focused! The Effects of Internal and External Focus of Attention on Movement Automaticity in Patients with Stroke.

    Science.gov (United States)

    Kal, E C; van der Kamp, J; Houdijk, H; Groet, E; van Bennekom, C A M; Scherder, E J A

    2015-01-01

    Dual-task performance is often impaired after stroke. This may be resolved by enhancing patients' automaticity of movement. This study sets out to test the constrained action hypothesis, which holds that automaticity of movement is enhanced by triggering an external focus (on movement effects), rather than an internal focus (on movement execution). Thirty-nine individuals with chronic, unilateral stroke performed a one-leg-stepping task with both legs in single- and dual-task conditions. Attentional focus was manipulated with instructions. Motor performance (movement speed), movement automaticity (fluency of movement), and dual-task performance (dual-task costs) were assessed. The effects of focus on movement speed, single- and dual-task movement fluency, and dual-task costs were analysed with generalized estimating equations. Results showed that, overall, single-task performance was unaffected by focus (p = .341). Regarding movement fluency, no main effects of focus were found in single- or dual-task conditions (p's ≥ .13). However, focus by leg interactions suggested that an external focus reduced movement fluency of the paretic leg compared to an internal focus (single-task conditions: p = .068; dual-task conditions: p = .084). An external focus also tended to result in inferior dual-task performance (β = -2.38, p = .065). Finally, a near-significant interaction (β = 2.36, p = .055) suggested that dual-task performance was more constrained by patients' attentional capacity in external focus conditions. We conclude that, compared to an internal focus, an external focus did not result in more automated movements in chronic stroke patients. Contrary to expectations, trends were found for enhanced automaticity with an internal focus. These findings might be due to patients' strong preference to use an internal focus in daily life. Future work needs to establish the more permanent effects of learning with different attentional foci on re-automating motor control

  15. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1 developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2 validating the system on ex vivo murine plaques.A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylamino-6-Deoxyglucose (6-NBDG, respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs (2.6 × 10(4 ± 1.4 × 10(3 vs. 5.4 × 10(3 ± 1.3 × 10(3 A.U., P = 0.008. Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6 × 10(2 ± 2.7 × 10(1 vs. 3.8 × 10(1 ± 5.9 A.U., P = 0.002. The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a

  16. Design of single-polarization coupler based on dual-core photonic band-gap fiber implied in resonant fiber optic gyro

    Science.gov (United States)

    Xu, Zhenlong; Li, Xuyou; Zhang, Chunmei; Ling, Weiwei; Liu, Pan; Xia, Linlin; Yang, Hanrui

    2016-12-01

    A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 μm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.

  17. Dual massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Morand, Kevin, E-mail: Kevin.Morand@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France); Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)

    2012-08-29

    The linearized massive gravity in three dimensions, over any maximally symmetric background, is known to be presented in a self-dual form as a first order equation which encodes not only the massive Klein-Gordon type field equation but also the supplementary transverse-traceless conditions. We generalize this construction to higher dimensions. The appropriate dual description in d dimensions, additionally to a (non-symmetric) tensor field h{sub {mu}{nu}}, involves an extra rank-(d-1) field equivalently represented by the torsion rank-3 tensor. The symmetry condition for h{sub {mu}{nu}} arises on-shell as a consequence of the field equations. The action principle of the dual theory is formulated. The focus has been made on four dimensions. Solving one of the fields in terms of the other and putting back in the action one obtains two other equivalent formulations of the theory in which the action is quadratic in derivatives. In one of these representations the theory is formulated entirely in terms of a rank-2 non-symmetric tensor h{sub {mu}{nu}}. This quadratic theory is not identical to the Fierz-Pauli theory and contains the coupling between the symmetric and antisymmetric parts of h{sub {mu}{nu}}. Nevertheless, the only singularity in the propagator is the same as in the Fierz-Pauli theory so that only the massive spin-2 particle is propagating. In the other representation, the theory is formulated in terms of the torsion rank-3 tensor only. We analyze the conditions which follow from the field equations and show that they restrict to 5 degrees of freedom thus producing an alternative description to the massive spin-2 particle. A generalization to higher dimensions is suggested.

  18. 4D-visualization of the orbit based on dynamic MRI with special focus on the extra-ocular muscles and the optic nerves

    Energy Technology Data Exchange (ETDEWEB)

    Kober, C. [Univ. of Applied Sciences Osnabrueck (Germany); Boerner, B.I.; Buitrago, C.; Klarhoefer, M.; Scheffler, K.; Kunz, C.; Zeilhofer, H.F. [Univ. Hospital Basle (Switzerland)

    2007-06-15

    By recording time dependent patients' behaviour, dynamic radiology is dedicated to capturing functional anatomy. Dynamic 'quasi-continuous' MRI data of lateral eye movements of a healthy volunteer were acquired using SE imaging sequence (Siemens, 1.5 T). By means of combined application of several image processing and visualization techniques, namely shaded and transparent surface reconstruction as well as direct volume rendering, 4D-visualization of the dynamics of the extra ocular muscles was possible. Though the original MRI data were quite coarse vascular structures could be recognized to some extent. For the sake of 4D-visualization of the optic nerve, the optic cavity was opened by axial clipping of the visualization. Superimposition of the original MRI slices to the visualization, either transparently or opaque, served as validation and comparison to conventional diagnosis. For facilitation of the analysis of the visualization results, stereoscopic rendering was rated as quite significant especially in the clinical setting. (orig.)

  19. Methodology for optimal in situ alignment and setting of bendable optics for nearly diffraction-limited focusing of soft x-rays

    Science.gov (United States)

    Merthe, Daniel J.; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Kunz, Martin; Tamura, Nobumichi; McKinney, Wayne R.; Artemiev, Nikolay A.; Celestre, Richard S.; Morrison, Gregory Y.; Anderson, Erik H.; Smith, Brian V.; Domning, Edward E.; Rekawa, Senajith B.; Padmore, Howard A.

    2013-03-01

    We demonstrate a comprehensive and broadly applicable methodology for the optimal in situ configuration of bendable soft x-ray Kirkpatrick-Baez mirrors. The mirrors used for this application are preset at the Advanced Light Source Optical Metrology Laboratory prior to beamline installation. The in situ methodology consists of a new technique for simultaneously setting the height and pitch angle of each mirror. The benders of both mirrors were then optimally tuned in order to minimize ray aberrations to a level below the diffraction-limited beam waist size of 200 nm (horizontal)×100 nm (vertical). After applying this methodology, we measured a beam waist size of 290 nm (horizontal)×130 nm (vertical) with 1 nm light using the Foucault knife-edge test. We also discuss the utility of using a grating-based lateral shearing interferometer with quantitative wavefront feedback for further improvement of bendable optics.

  20. Methodology for optimal in situ alignment and setting of bendable optics for diffraction-limited focusing of soft x-rays

    Science.gov (United States)

    Merthe, Daniel J.; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Kunz, Martin; Tamura, Nobumichi; McKinney, Wayne R.; Artemiev, Nikolay A.; Celestre, Richard S.; Morrison, Gregory Y.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Rekawa, Senajith B.; Padmore, Howard A.

    2012-09-01

    We demonstrate a comprehensive and broadly applicable methodology for the optimal in situ configuration of bendable soft x-ray Kirkpatrick-Baez mirrors. The mirrors used for this application are preset at the ALS Optical Metrology Laboratory prior to beamline installation. The in situ methodology consists of a new technique for simultaneously setting the height and pitch angle of each mirror. The benders of both mirrors were then optimally tuned in order to minimize ray aberrations to a level below the diffraction-limited beam waist size of 200 nm (horizontal) × 100 nm (vertical). After applying this methodology, we measured a beam waist size of 290 nm (horizontal) × 130 nm (vertical) with 1 nm light using the Foucault knife-edge test. We also discuss the utility of using a grating-based lateral shearing interferometer with quantitative wavefront feedback for further improvement of bendable optics.